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Abstract

Much attention has been paid to the theo-
retical explanation of the empirical success of
AdaBoost. The most influential work is the
margin theory, which is essentially an upper
bound for the generalization error of any vot-
ing classifier in terms of the margin distribu-
tion over the training data. However, Breiman
raised important questions about the margin
explanation by developing a boosting algo-
rithm arc-gv that provably generates a larger
minimum margin than AdaBoost. He also gave
a sharper bound in terms of the minimum mar-
gin, and argued that the minimum margin gov-
erns the generalization. In experiments how-
ever, arc-gv usually performs worse than Ad-
aBoost, putting the margin explanation into
serious doubts. In this paper, we try to give
a complete answer to Breiman’s critique by
proving a bound in terms of a new margin
measure called Equilibrium margin (Emargin).
The Emargin bound is uniformly sharper than
Breiman’s minimum margin bound. This re-
sult suggests that the minimum margin is not
crucial for the generalization error. We also
show that a large Emargin implies good gener-
alization. Experimental results on benchmark
datasets demonstrate that AdaBoost usually
has a larger Emargin and a smaller test error
than arc-gv, which agrees well with our theory.

1 Introduction

The AdaBoost algorithm [FS96, FS97] has achieved
great success in the past ten years. It has demonstrated
excellent experimental performance both on benchmark
datasets and real applications [BK99, Die00, VJ01]. It
is observed in experiments that the test error of a com-
bined voting classifier usually keeps decreasing as its
size becomes very large and even after the training er-
ror is zero [Bre98, Qui96]. This fact, on the first sight,
obviously violates Occam’s razor.

∗This work was supported by NSFC(60775005, 60635030,
60721002) and Global COE Program of Tokyo Institute of
Technology.

Schapire et al. [SFBL98] tried to explain this phe-
nomenon in terms of the margins of the training ex-
amples. Roughly speaking, the margin of an example
with respect to a classifier is a measure of the confidence
of the classification result. Schapire et al. [SFBL98]
proved an upper bound for the generalization error of
a voting classifier that does not depend on how many
classifiers were combined, but only on the margin distri-
bution over the training set, the number of the training
examples and the size (the VC dimension for example)
of the set of base classifiers. They also demonstrate
that AdaBoost has the ability to produce a good mar-
gin distribution. This theory indicates that producing
a good margin distribution is the key to the success of
AdaBoost and explains well the surprising phenomenon
observed in experiments.

Soon after that however, Breiman [Bre99] cast seri-
ous doubts on this margin explanation. He developed a
boosting-type algorithm called arc-gv, which provably
generates a larger minimum margin than AdaBoost1
(Minimum margin is the smallest margin over all the
training examples, see Section 2 for the formal defini-
tion). Then he gave an upper bound for the generaliza-
tion error of a voting classifier in terms of the minimum
margin, as well as the number of training examples and
the size of the set of base classifiers. This bound is
sharper than the bound based on the margin distribu-
tion given by Schapire et al.

Breiman argued that if the bound of Schapire et
al. implied that the margin distribution is the key to the
generalization error, his bound implied more strongly
that the minimum margin is the key to the generaliza-
tion error, and the arc-gv algorithm would achieve the
best performance among all boosting-type algorithms.
In experiments, even though arc-gv always produces
larger minimum margins than AdaBoost, its test error
is consistently higher. Breiman also investigated the
margin distributions generated by AdaBoost and arc-
gv, and found that arc-gv actually produced uniformly
better margin distributions than AdaBoost. Thus he
concluded that neither the minimum margin nor the
margin distribution determined the generalization error
and a new theoretical explanation is needed.

1Actually, the minimum margin of arc-gv converges to
the largest possible value among all voting classifiers.



Breiman’s argument seems convincing and put the
margin explanation into serious doubts. Recently how-
ever, Reyzin and Schapire [RS06] gained important dis-
covery after a careful study on Breiman’s arc-gv algo-
rithm. Note first that the bounds of both Breiman
and Schapire et al. state that the generalization er-
ror also depends on the complexity of the set of base
classifiers as well as the minimum margin or the mar-
gin distribution. To investigate how the margin affects
the generalization error, one has to keep the complexity
of the base classifiers fixed. In Breiman’s experiments,
he tried to control this by always using CART trees
[BFOS84] of a fixed number of leaves as the base clas-
sifier. Reyzin and Schapire re-conducted Breiman’s ex-
periments and found that the trees produced by arc-gv
were much deeper than those produced by AdaBoost.
Since deeper trees are more complex even though the
number of leaves is the same, arc-gv uses base classi-
fiers of higher complexity than AdaBoost in Breiman’s
experiments. Thus it was not a fair comparison.

In order to study the margin explanation in a fair
manner, a more controlled setting is needed. Reyzin
and Schapire then compared arc-gv and AdaBoost by
using the decision stump, whose complexity is fixed, as
the base classifier. Experiments showed that arc-gv pro-
duced larger minimum margins yet still a higher error
rate. But this time, the margin distribution generated
by arc-gv is not as “good” as that AdaBoost generated
(see Fig.7 in [RS06]). So they argued that according
to the Schapire et al. bound in terms of the margin
distribution, the empirical observation, i.e., the inferior
performance of arc-gv, could be explained.

From a more critical point of view however,
Breiman’s doubt has not been fully answered by the
above results. First of all, Breiman backed up his ar-
gument with a sharper bound in terms of the minimum
margin. In Reyzin and Schapire’s experiment with the
decision stumps, arc-gv still produced larger minimum
margin and had worse performance. Even though Ad-
aBoost generates a “better” margin distribution than
arc-gv, it would not disprove Breiman’s critique unless
we could show a bound in terms of the margin distribu-
tion and is uniformly sharper than Breiman’s minimum
margin bound. Another problem is how to measure the
“goodness” of a margin distribution. The statement
that AdaBoost generates “better” margin distributions
than arc-gv is vague. Reyzin and Schapire used the
average margin as a measure to compare margin dis-
tributions produced by AdaBoost and arc-gv. But the
average margin does not explicitly appear in the bound
of Schapire et al. Thus a larger average margin does
not necessarily imply a smaller generalization error in
theory.

In this paper, we try to give a complete answer to
Breiman’s doubt by solving the two problems mentioned
above. We first propose a novel upper bound for the
generalization error of voting classifiers. This bound is
uniformly sharper than Breiman’s bound. The key fac-
tor in this bound is a new margin notion which we refer
to as the Equilibrium margin (Emargin). The Emar-

gin can be viewed as a measure of how good a margin
distribution is. In fact, the Emargin depends, in a com-
plicated way, on the margin distribution, and has little
relation to the minimum margin. Experimental results
show that AdaBoost usually produces a larger Emargin
than arc-gv when the complexity of the base classifier
is well controlled. Our results thus explain the inferior
performance of arc-gv and give Breiman’s doubt a neg-
ative answer.

The rest of this paper is organized as follows: In Sec-
tion 2 we briefly describe the margin theory of Schapire
et al. and Breiman’s argument. Our main results are
given in Section 3. We provide further explanation of
the main bound in Section 4. All the proofs can be found
in Section 5. We provide experimental justification in
Section 6 and conclude in Section 7.

2 Background and Related Work

In this section we briefly review the existing margin
bounds and the two boosting algorithms.

Consider binary classification problems. Examples
are drawn independently according to an underlying dis-
tribution D over X ×{−1,+1}, where X is an instance
space. Let H denote the space from which the base
hypotheses are chosen. A base hypothesis h ∈ H is a
mapping from X to {−1,+1}. A voting classifier f(x)
is of the form

f(x) =
∑

αihi(x),

where ∑
αi = 1, αi ≥ 0.

An error occurs on an example (x, y) if and only if

yf(x) ≤ 0.

We use PD(A(x, y)) to denote the probability of the
event A when an example (x, y) is chosen randomly ac-
cording to the distribution D. Therefore, PD(yf(x) ≤
0) is the generalization error which we want to bound.
We also use PS(A(x, y)) to denote the probability with
respect to choosing an example (x, y) uniformly at ran-
dom from the training set S.

For an example (x, y), the value of yf(x) reflects the
confidence of the prediction. Since each base classifier
outputs −1 or +1, one has

yf(x) =
∑

i:y=hi(x)

αi −
∑

i:y 6=hi(x)

αi.

Hence (yf(x) is the difference between the weights as-
signed to those base classifiers that correctly classify
(x, y) and the weights assigned to those that misclassify
the example. yf(x) is called the margin for (x, y) with
respect to f . If we consider the margins over the whole
set of training examples, we can regard PS(yf(x) ≤ θ)
as a distribution over θ (−1 ≤ θ ≤ 1), since PS(yf(x) ≤
θ) is the fraction of training examples whose margin is
at most θ. This distribution is referred to as the margin
distribution. The minimum margin of f , which is the
smallest margin over the training examples, then can



Input: S = (x1, y1), (x2, y2), . . . , (xn, yn)
where xi ∈ X, yi ∈ {−1, 1}.

Initialization: D1(i) = 1/n.
for t = 1 to T do

1. Train base learner using distribution Dt.
2. Get base classifier ht : X → {−1, 1}.
3. Choose αt.
4. Update:

Dt+1(i) =
Dt(i) exp(−αtyiht(xi))

Zt
,

where Zt is a normalization factor chosen so
that Dt+1 will be a distribution.

end
Output: The final Classifier

H(x) = sgn

(
T∑
t=1

αtht(x)

)
.

Algorithm 1: A unified description of AdaBoost and
arc-gv.

be equivalently represented by the maximum value of θ
such that PS(yf(x) ≤ θ) = 0.

A unified description of AdaBoost and arc-gv is
shown in Algorithm 1. The only difference of the two
algorithms is the choice of αt. AdaBoost sets αt as

αt =
1
2

log
1 + γt
1− γt

,

where γt is the edge of the base classifier ht, defined as:

γt =
n∑
i=1

Dt(i)yiht(xi).

The edge γt is an affine transformation of the error rate
of ht with respect to the distribution Dt.

Arc-gv chooses αt in a different way. It takes into
consideration of the minimum margin of the composite
classifier up to the current round. Denote by ρt the
minimum margin of the voting classifier of round t− 1,
that is,

ρt = min
i

(
yi

∑t−1
s=1 αshs(xi)∑t−1

s=1 αs

)
.

Let
βt =

1
2

log
1 + γt
1− γt

− 1
2

log
1 + ρt
1− ρt

.

Arc-gv sets αt as [Bre99]:

αt =

{ 1 : βt > 1,
βt : 0 ≤ βt ≤ 1,
0 : βt < 0.

The first margin explanation of the AdaBoost algo-
rithm [SFBL98] is to upper bound the generalization
error of voting classifiers in terms of the margin distri-
bution, the number of training examples and the com-
plexity of the set from which the base classifiers are

chosen. The theory contains two bounds: one applies
to the case that the base classifier set H is finite, and
the other applies to the general case that H has a finite
VC dimension.

Theorem 1 [SFBL98] For any δ > 0, with probability
at least 1− δ over the random choice of the training set
S of n examples, every voting classifier f satisfies the
following bounds:

PD

(
yf(x) ≤ 0

)
≤ inf
θ∈(0,1]

[
PS

(
yf(x) ≤ θ

)
+O

(
1√
n

(
log n log |H|

θ2
+ log

1
δ

)1/2
)]

,

if |H| <∞. And

PD

(
yf(x) ≤ 0

)
≤ inf
θ∈(0,1]

[
PS

(
yf(x) ≤ θ

)
+O

(
1√
n

(
d log2(n/d)

θ2
+ log

1
δ

)1/2
)]

,

where d is the VC dimension of H.

The theorem states that if the voting classifier gen-
erates a good margin distribution, that is, most training
examples have large margins so that PS(yf(x) ≤ θ) is
small for not too small θ, then the generalization error
is also small. In [SFBL98] it has also been shown that
for the AdaBoost algorithm, PS(yf(x) ≤ θ) decreases
to zero exponentially fast with respect to the number
of boosting iterations if θ is not too large. These re-
sults imply that the excellent performance of AdaBoost
is due to its good margin distribution.

Breiman’s doubts on the margin explanation came
from the arc-gv algorithm. It can be shown that the
minimum margin generated by arc-gv converges to the
largest possible value among all voting classifiers. In
practice, arc-gv has larger minimum margins than Ad-
aBoost in most cases for a finite number of boosting
iterations. Breiman also proved an upper bound for the
generalization error of voting classifiers. This bound de-
pends only on the minimum margin, not on the entire
margin distribution.

Theorem 2 [Bre99] Let θ0 be the minimum margin de-
fined as

θ0 = min {yf(x) : (x, y) ∈ S} , (1)

where S is the training set. If

|H| <∞,

θ0 > 4

√
2
|H|

,

R =
32 log(2|H|)

nθ20
≤ 2n,



then for any δ > 0, with probability at least 1 − δ over
the random choice of the training set S of n examples,
every voting classifier f satisfies the following bounds:

PD

(
yf(x) ≤ 0

)
≤ R

(
log(2n) + log

1
R

+ 1
)

+
1
n

log(
|H|
δ

). (2)

Breiman pointed out that his bound is sharper than
the margin distribution bound of Schapire et al. If θ
in Theorem 1 is taken to be the minimum margin θ0,
the bound in Theorem 2 is about the square of the
bound in terms of the margin distribution, since the
bound in Theorem 2 is O(log n/n) and the bound in
Theorme 1 is O(

√
log n/n). Breiman then argued that

compared to the margin distribution explanation, his
bound implied more strongly that the minimum mar-
gin governs the generalization error. However, arc-gv
performs almost consistently worse than AdaBoost in
experiments2. These empirical results contradict what
the margin theory predicts and therefore put the margin
explanation into serious doubts.

A lot of efforts have been made on providing better
explanation of the boosting algorithms in recent years
[MBG02, KP02, KP05, AKLL02]. Koltchinskii and
Panchanko [KP02, KP05] proved a number of bounds in
terms of the margin distribution which are sharper than
Theorem 1. However, it is difficult to compare the min-
imum margin bound to these bounds since they contain
unspecified constants. Nevertheless, these results imply
that the margin distribution might be more important
than the minimum margin for the generalization error
of voting classifiers.

3 Main Results

In this section we propose upper bounds in terms of
the Emargin. The bound is uniformly sharper than
Breiman’s minimum margin bound.

First let us introduce some notions. Consider the
Bernoulli relative entropy function D(q||p) defined as

D(q||p) = q log
q

p
+ (1− q) log

1− q
1− p

, 0 ≤ p, q ≤ 1.

For a fixed q, D(q||p) is a monotone increasing function
of p for q ≤ p ≤ 1. It is easy to check that

D(q||p) = 0 when p = q,

and
D(q||p)→∞ as p→ 1.

Thus one can define the inverse function of D(q||p) for
fixed q as D−1(q, u), such that

D(q||D−1(q, u)) = u for all u ≥ 0 and D−1(q, u) ≥ q.

See also [Lan05].

2Actually, the inferior performance has also been ob-
served when using other voting classifiers that maximize the
minimum margin (see also [GS98, RW02]).

The next theorem is our main result: the Emargin
bound. Here we consider the case that the base classifier
set H is finite. For the case that H is infinite but has
a finite VC dimension, the bound is more complicated
and will be given in Theorem 8. All the proofs can be
found in Section 5.

Theorem 3 If |H| < ∞, then for any δ > 0, with
probability at least 1 − δ over the random choice of the
training set S of n examples, every voting classifier f
satisfies the following bound:

PD

(
yf(x) ≤ 0

)
≤ log |H|

n
+ inf
q∈{0, 1n ,

2
n ,...,1}

D−1
(
q, u

[
θ̂(q)

])
, (3)

where

u
[
θ̂(q)

]
=

1
n

(
8

θ̂2(q)
log
(

2n2

log |H|

)
log |H|

+ log |H|+ log
n

δ

)
,

and θ̂(q) is given by

θ̂(q) = sup

{
θ ∈

(√
8/|H|, 1

]
: PS

(
yf(x) ≤ θ

)
≤ q

}
.

(4)

Clearly the key factors in this bound are the optimal q
and the corresponding θ̂(q).

Definition 4 Let q∗ be the optimal q in Eq.(3), and
denote

θ∗ = θ̂(q∗).
We call θ∗ the Equilibrium margin (Emargin).

The name equilibrium is due to the following fact.

Proposition 5 q∗ is the empirical error at the Emargin
θ∗.

PS

(
yf(x) < θ∗

)
= q∗. (5)

With Definition 4, the Emargin bound (3) can be simply
written as

PD

(
yf(x) ≤ 0

)
≤ log |H|

n
+D−1

(
q∗, u (θ∗)

)
. (6)

Theorem 3 then states that the generalization error of
a voting classifier depends on its Emargin and the em-
pirical error at the Emargin.

Our Emargin bound has a similar flavor to Theo-
rem 1. Note that the Emargin depends, in a compli-
cated way, on the whole margin distribution. Roughly,
if most training examples have large margins, then θ∗

is large and q∗ is small. The minimum margin is only
a special case of the Emargin. From Eq.(4) one can see
that θ̂(0) is the minimum margin. Hence the Emargin is



equal to the minimum margin if and only if the optimal
q∗ is zero.

We next compare our Emargin bound to Breiman’s
minimum margin bound. We show that the Emargin
bound is uniformly sharper than the minimum margin
bound.

Theorem 6 The bound given in Theorem 3 is uni-
formly sharper than the minimum margin bound in The-
orem 2. That is

log |H|
n

+D−1
(
q∗, u (θ∗)

)
≤ R

(
log(2n) + log

1
R

+ 1
)

+
1
n

log
|H|
δ
,

where

R =
32 log(2|H|)

nθ20
≤ 2n.

According to this theorem, the minimum margin is
not crucial for the generalization error, i.e., a larger min-
imum margin does not necessarily imply a smaller test
error. Thus arc-gv does not necessarily have better per-
formance than AdaBoost. Our new bound implies that
it is the Emargin θ∗ and the empirical error q∗ at θ∗ that
govern the performance of the classifier. The following
theorem describes how the Emargin θ∗ and the Emargin
error q∗ affect the generalization ability. It states that
a larger Emargin and a smaller Emargin error result in
a lower generalization error.

Theorem 7 Let f1, f2 be two voting classifiers. Denote
by θ1, θ2 the Emargin and by q1, q2 the empirical error
at θ1, θ2 of f1, f2 respectively. That is

qi = PS

(
yfi(x) < θi

)
, i = 1, 2.

Also denote by B1, B2 the Emargin upper bound of the
generalization error of f1, f2 (i.e. the right-hand side
of Eq.(3)). Then

B1 ≤ B2,

if
θ1 ≥ θ2 and q1 ≤ q2.

Theorem 7 suggests that the Emargin and the Emar-
gin error can be used as measures of the goodness of
a margin distribution. A large Emargin and a small
Emargin error indicate a good margin distribution. Ex-
perimental results in Section 6 show that AdaBoost usu-
ally has larger Emargins and smaller Emargin errors
than arc-gv.

The last theorem of this section is the Emargin
bound for the case that the set of base classifiers has
a finite VC dimension.

Theorem 8 Suppose the set of base classifiers H has
VC dimension d. Then for any δ > 0, with probability
at least 1− δ over the random choice of the training set

S of n examples, every voting classifier f satisfies the
following bounds:

PD

(
yf(x) ≤ 0

)
≤ d2 + 1

n
+ inf
q∈{0, 1n ,

2
n ,...,1}

n

n− 1
·D−1

(
q, u

[
θ̂(q)

])
,

where

u
[
θ̂(q)

]
=

1
n

(
16d

θ̂2(q)
log

n

d
log

en2

d

+ 3 log

(
16

θ̂2(q)
log

n

d
+ 1

)
+ log

2n
δ

)
,

and θ̂(q) is

θ̂(q) = sup

{
θ ∈

(
0, 1
]

: PS
(
yf(x) ≤ θ

)
≤ q

}
. (7)

4 Explanation of the Emargin Bound

In Theorem 3, we adopt the partial inverse of the
relative entropy to upper bound the generalization
error. The key term in the Emargin bound is
infqD−1(q, u[θ̂(q)]). To better understand the bound,
we make use of three different upper bounds of
infqD−1(q, u) to obtain simpler forms of the Emargin
bound. We list in the following lemma the upper bounds
of infqD−1(q, u[θ̂(q)]).

Lemma 9 The following bounds holds.

1.

inf
q
D−1

(
q, u

[
θ̂(q)

])
≤ D−1

(
0, u

[
θ̂(0)

])
≤ u

[
θ̂(0)

]
.

2.

inf
q
D−1

(
q, u

[
θ̂(q)

])
≤ inf

q

q +

u
[
θ̂(q)

]
2

1/2
 .

3.

inf
q
D−1

(
q, u

[
θ̂(q)

])
≤ inf

q≤Cu[θ̂(q)]
D−1

(
q, u

[
θ̂(q)

])
≤ inf

q≤Cu[θ̂(q)]
C ′u[θ̂(q)],

where C > 0 is any constant and C ′ = max(2C, 8).

Note from Theorem 3 that

u
[
θ̂(q)

]
= O

(
1
n

(
log n log |H|

θ̂(q)2
+ log

1
δ

))
,

and
q = PS

(
yf(x) ≤ θ̂(q)

)
.

Thus we can derive the following three bounds from
the Emargin bound by using the three inequalities in
Lemma 9 respectively.



Corollary 10 If |H| < ∞, then for any δ > 0, with
probability at least 1 − δ over the random choice of the
training set S of n examples, every voting classifier f
satisfies the following bounds:

1.

PD(yf(x) ≤ 0) ≤ O
(

1
n

(
log n log |H|

θ20
+ log

1
δ

))
,

where θ0 is the minimum margin.
2.

PD

(
yf(x) ≤ 0

)
≤ inf
θ∈(0,1]

[
PS

(
yf(x) ≤ θ

)
+O

(
1√
n

(
log n log |H|

θ2
+ log

1
δ

)1/2
)]

,

3.

PD(yf(x) ≤ 0) ≤ O
(

1
n

(
log n log |H|

θ2
+ log

1
δ

))
,

for all θ such that

PS(yf(x) ≤ θ) ≤ O
(

1
n

(
log n log |H|

θ2
+ log

1
δ

))
.

The first bound in the Corollary has the same or-
der of magnitude as the minimum margin bound. The
second bound is the same as Theorem 1. So essen-
tially, previous bounds can be derived from the Emar-
gin bound. The third bound in the Corollary is new.
It states that the generalization error is O( logn log |H|

nθ2 )
even in the non-zero error case, provided the margin
error PS(yf(x) ≤ θ) is small enough.

5 Proofs

In this section, we give proofs of the theorems, lemmas
and corollaries.

5.1 Proof of Theorem 3
The proof uses the tool developed in [SFBL98]. The
difference is that we do not bound the deviation of the
generalization error from the empirical margin error di-
rectly, instead we consider the difference of the general-
ization error to a zero-one function of a certain empiri-
cal measure. This allows us to unify the zero-error and
nonzero-error cases and it results in a sharper bound.
For the sake of convenience, we follow the convention in
[SFBL98].

Let C(H) denote the convex hull of H. Also let
CN (H) denote the set of unweighted averages over N
elements from the base classifier set H. Formally,

CN (H) =

{
g : g =

1
N

N∑
j=1

hj , hj ∈ H

}
.

For any voting classifier

f =
∑

βihi ∈ C(H),

where ∑
βi = 1, βi ≥ 0,

there can be associated with a distribution over H by
the coefficients {βi}. We denote this distribution as
Q̃(f). By choosing N elements independently and ran-
domly from H according to Q̃(f), we can generate a
classifier g ∈ CN (H). The distribution of g is denoted
by Q(f). For any fixed α (0 < α < 1)

PD

(
yf(x) ≤ 0

)
≤ PD,g∼Q(f)

(
yg(x) ≤ α

)
+ PD,g∼Q(f)

(
yg(x) > α, yf(x) ≤ 0

)
≤ PD,g∼Q(f)

(
yg(x) ≤ α

)
+ exp

(
−Nα

2

2

)
. (8)

We next bound the first term on the right-hand side of
the inequality. For any fixed g ∈ CN (H), and for any
positive number ε and nonnegative integer k such that
k ≤ nε, we consider the probability (over the random
draw of n training examples) that the training error at
margin α is less than k/n, while the true error of g at
margin α is larger than ε. A compact representation of
this probability is

Pr
S∼Dn

(
PD(yg(x) ≤ α) > I

[
PS

(
yg(x) ≤ α) >

k

n

)]
+ ε

)
where PrS∼Dn denotes the probability over n training
samples chosen independently at random according to
D, and I is the indicator function. Note that

Pr
S∼Dn

(
PD

(
yg(x) ≤ α

)
> I

[
PS

(
yg(x) ≤ α

)
>
k

n

]
+ ε

)

≤ Pr
S∼Dn

(
PS

(
yg(x) ≤ α

)
≤ k

n

∣∣∣∣∣ PD(yg(x) ≤ α
)
> ε

)

≤
k∑
r=0

(
n

r

)
εr(1− ε)n−r.

Then applying the relative entropy Chernoff bound to
the Bernoulli trials, we further have

k∑
r=0

(
n

r

)
εr(1− ε)n−r ≤ exp

(
−nD

(
k

n

∥∥∥ε)) .
We thus obtain

Pr
S∼Dn

(
PD

(
yg(x) ≤ α

)
> I

[
PS

(
yg(x) ≤ α

)
>
k

n

]
+ ε

)

≤ exp
(
−nD

(
k

n

∥∥∥ε)) . (9)



We only consider α at the values in the set

U =
{

1
|H|

,
2
|H|

, . . . , 1
}
.

There are no more than |H|N elements in CN (H). Using
the union bound we get

Pr
S∼Dn

(
∃g ∈ CN (H), ∃α ∈ U, PD

(
yg(x) ≤ α

)
> I

[
PS

(
yg(x) ≤ α

)
>
k

n

]
+ ε

)

≤ |H|(N+1) exp
(
−nD

(
k

n

∥∥∥ε)) .
Note that

Eg∼Q(f)PD

(
yg(x) ≤ α

)
= PD,g∼Q(f)

(
yg(x) ≤ α

)
,

Eg∼Q(f)I

[
PS

(
yg(x) ≤ α

)
>
k

n

]
= Pg∼Q(f)

(
PS

(
yg(x) ≤ α

)
>
k

n

)
.

We have

Pr
S∼Dn

(
∃f ∈ C(H),∃α ∈ U, PD,g∼Q(f)

(
yg(x) ≤ α

)
> Pg∼Q(f)

(
PS(yg(x) ≤ α) >

k

n

)
+ ε

)

≤ |H|(N+1) exp
(
−nD

(
k

n

∥∥∥ε)) .
Let

δ = |H|(N+1) exp
(
−nD

(
k

n

∥∥∥ε)) ,
then

ε = D−1

(
k

n
,

1
n

[
(N + 1) log |H|+ log

1
δ

])
.

We obtain that with probability at least 1− δ over the
draw of the training samples, for all f ∈ C(H), all α ∈
U ,

PD,g∼Q(f)

(
yg(x) ≤ α

)
≤ Pg∼Q(f)

(
PS

(
yg(x) ≤ α

)
>
k

n

)
+D−1

(
k

n
,

1
n

[
(N + 1) log |H|+ log

1
δ

])
.

Using the union bound over k = 0, 1, . . . , n, then with
probability at least 1 − δ over the draw of the training
samples, for all f ∈ C(H), all α ∈ U , and all k

PD,g∼Q(f)

(
yg(x) ≤ α

)
≤ Pg∼Q(f)

(
PS

(
yg(x) ≤ α

)
>
k

n

)
+D−1

(
k

n
,

1
n

[
(N + 1) log |H|+ log

n

δ

])
. (10)

We next bound the first term in the right-hand side of
Eq.(10). Using the same argument for deriving Eq.(8),
we have for any θ > α

Pg∼Q(f)

(
PS

(
yg(x) ≤ α

)
>
k

n

)
≤ I

[
PS

(
yf(x) ≤ θ

)
>
k

n

]
+ Pg∼Q(f)

(
PS

(
yg(x) > α

)
>
k

n
,

PS

(
yf(x) ≤ θ

)
≤ k

n

)
. (11)

Note that the last term in Eq.(11) can be further
bounded by

Pg∼Q(f)

(
∃(xi, yi) ∈ S : yig(xi) ≤ α and yif(xi) > θ

)

≤ n exp
(
−N(θ − α)2

2

)
. (12)

Combining (8), (10), (11) and (12), we have that with
probability at least 1 − δ over the draw of training ex-
amples, for all f ∈ C(H), all α ∈ U , all θ > α, and all
k, but fixed N

PD

(
yf(x) ≤ 0

)
≤ exp

(
−Nα

2

2

)
+ n exp

(
−N(θ − α)2

2

)
+ I

[
PS

(
yf(x) ≤ θ

)
>
k

n

]
+D−1

(
k

n
,

1
n

[
(N + 1) log |H|+ log

n

δ

])
.

Let
α =

θ

2
− η

|H|
∈ U,

where 0 ≤ η < 1. It is easy to check that the sum of
the first two terms on the right-hand side of the above
inequality can be bounded by

max
(

2n, exp
(

N

2|H|

))
exp

(
−Nθ

2

8

)
.

Let
δN = δ · 2−N ,

we can get a union bound over all N . Put

N =
8
θ2

log
(

2n2

log |H|

)
,

note that if

θ >

√
8
|H|

,

then

2n > exp
(

N

2|H|

)
.



We obtain

PD

(
yf(x) ≤ 0

)
≤ log |H|

n

+ inf
0≤k<n

(
I

[
PS

(
yf(x) ≤ θ

)
>
k

n

]
+D−1

(
k

n
, u

))
,

where

u =
1
n

(
8
θ2

log
(

2n2

log |H|

)
log |H|+ log |H|+ log

n

δ

)
.

The theorem follows.

5.2 Proof of Proposition 5
Let M be the set defined as

M =
{
q : θ̂(q) = θ̂(q∗) = θ∗

}
.

Let q0 be the minimal q in M . We will show that

q∗ = q0, (13)

and
PS

(
yf(x) < θ∗

)
= q0. (14)

To show q∗ = q0, note thatD−1(q, u) is an increasing
function of q for fixed u. Since q∗ is the optimal value
such that D−1

(
q, u
(
θ̂(q)

))
achieves the minimum, one

must have q∗ = q0.
To show

PS

(
yf(x) < θ∗

)
= q0,

first note that

PS

(
yf(x) < θ∗

)
∈M.

For every q ∈M , by the definition of θ̂(q), one has

PS

(
yf(x) < θ∗

)
≤ q.

This implies

PS

(
yf(x) < θ∗

)
= q0.

This completes the proof.

5.3 Proof of Theorem 6
The following lemma will be used to prove Theorem 6.

Lemma 11 D−1(0, p) ≤ p for p ≥ 0.

Proof of Lemma 11. We only need to show

D(0||p) ≥ p,

since D(q||p) is a monotonic increasing function of p for
p ≥ q. By the Taylor expansion

D(0||p) = − log(1− p) = p+
p2

2
+
p3

3
+ · · · ≥ p.

Proof of Theorem 6. The right-hand side of the
Emargin bound (3) is the minimum over all q ∈

{
0, 1

n ,
2
n , . . . , 1

}
. Take q = 0, it is clear that θ̂(0) is the

minimum margin. By Lemma 9, the Emargin bound
can be relaxed to

PD

(
yf(x) ≤ 0

)
≤ 1
n

(
8
θ20

log
(

2n2

log |H|

)
log |H|

+ 2 log |H|+ log
n

δ

)
. (15)

We show that this relaxed bound is sharper than The-
orem 2. For the minimum margin bound, we only con-
sider the case that R ≤ 1, since otherwise the bound
is larger than one. Simple calculations show that the
right-hand side of (15) is smaller than the minimum
margin bound. The theorem then follows.

5.4 Proof of of Theorem 7

According to Proposition 5, we have that qi =
PS(yfi(x) < θi) is also the optimal q∗ in the Emargin
bound. Thus we only need to show

D−1
(
q1, u(θ1)

)
≤ D−1

(
q2, u(θ2)

)
.

Note that if θ1 ≥ θ2, then u(θ1) ≤ u(θ2). So

D−1
(
q2, u(θ2)

)
≥ D−1

(
q2, u(θ1)

)
,

since D−1(q, u) is an increasing function of u for fixed
q. Also D−1(q, u) is an increasing function of q for fixed
u, we have

D−1
(
q2, u(θ1)

)
≥ D−1

(
q1, u(θ1)

)
since q1 ≤ q2. This completes the proof.

5.5 Proof of Theorem 8

The next lemma is a modified version of the uniform
convergence result of [VC71, Vap98] and its refinement
[Dev82]. It will be used for proving Theorem 8.

Lemma 12 Let A be a class of subsets of a space Z.
Let NA(z1, z2, . . . , zn) be the number of different sets in{

{z1, z2, . . . , zn}
⋂
A : A ∈ A

}
.

Define

s(A, n) = max
(z1,z2,...,zn)∈Zn

NA(z1, z2, . . . , zn).

Then for any fixed integer k

Pr
S∼Dn

(
∃A ∈ A : PD(A) > I

[
PS(A) >

k

n

]
+ ε

)
≤ 2 · s(A, n2) exp

(
−nD

(
k

n

∥∥∥ε′)) ,
where

ε′ =
n

n− 1
ε− 1

n
.



Proof of Lemma 12. The proof is the standard argu-
ment. We first show that for any 0 < α < 1, ε > 0, and
any integer n′

Pr
S∼Dn

(
∃A ∈ A : PD(A) > I

[
PS(A) >

k

n

]
+ ε

)
≤
(

1
1− e−2n′α2ε2

)
Pr

S∼Dn, S′∼Dn′

(
∃A ∈ A : PS′(A)

> I

[
PS(A) >

k

n

]
+ (1− α)ε

)
.

Or equivalently,

Pr
S∼Dn

(
sup
A∈A

(
PD(A)− I

[
PS(A) >

k

n

])
> ε

)
≤
(

1
1− e−2n′α2ε2

)
Pr

S∼Dn, S′∼Dn′

(
sup
A∈A

(
PS′(A)

− I
[
PS(A) >

k

n

])
> (1− α)ε

)
. (16)

Let V denote the event

sup
A∈A

(
PD(A)− I

[
PS(A) >

k

n

])
> ε.

Let A∗ be (one of) the optimal A so that

PD(A)− I
[
PS(A) >

k

n

]

achieves the maximum. Note that the following two
events

PS′(A∗) ≥ PD(A∗)− αε

and

PD(A∗)− I
[
PS(A∗) >

k

n

]
> ε

imply that

PS′(A∗)− I
[
PS(A∗) >

k

n

]
> (1− α)ε.

Then

Pr
S∼Dn, S′∼Dn′

(
sup
A∈A

(
PS′(A)− I

[
PS(A) >

k

n

])

> (1− α)ε

)

=
∫
dP

∫
I

[
sup
A∈A

(
PS′(A)− I

[
PS(A) >

k

n

])

> (1− α)ε

]
dP ′

≥
∫
V

dP

∫
I

[
sup
A∈A

(
PS′(A)− I

[
PS(A) >

k

n

])

> (1− α)ε

]
dP ′

≥
∫
V

dP

∫
I

[
PS′(A∗)− I

[
PS(A∗) >

k

n

]

> (1− α)ε

]
dP ′

≥
∫
V

dP

∫
I

[
PS′(A∗) ≥ PD(A∗)− αε

]
dP ′

≥
(

1− e−2n′α2ε2
)∫

V

dP

=
(

1− e−2n′α2ε2
)

× Pr
S∼Dn

(
sup
A∈A

(
PD(A)− I

[
PS(A) >

k

n

])
> ε

)
.

This completes the proof of (16).
Take

n′ = n2 − n,

α =
1

(n− 1)ε
,

we have

Pr
S∼Dn

(
∃A ∈ A : PD(A) > I

[
PS(A) >

k

n

]
+ ε

)
≤ 2 Pr

S∼Dn, S′∼Dn′

(
∃A ∈ A : PS′(A)

> I

[
PS(A) >

k

n

]
+ (ε− 1

n− 1
)

)
.

Proceeding as [Dev82] and using the relative entropy
Hoeffding inequality, the theorem follows.

Proof of Theorem 8. The proof is the same as The-
orem 3 until we have Eq.(9). Let α = θ

2 , we need to



bound

Pr
S∼Dn

(
∃g ∈ CN (H), ∃θ > 0, PD

(
yg(x) ≤ θ

2

)
> I

[
PS

(
yg(x) ≤ θ

2

)
>
k

n

]
+ ε

)
.

Note that we only need to consider θ = 0, 1
N ,

2
N , . . . , 1.

Let

A(g) =
{

(x, y) ∈ X × {−1, 1} : yg(x) ≤ θ

2

}
,

and
A = {A(g) : g ∈ CN (H)} .

By Sauer’s lemma [Sau72] it is easy to see that

s(A, n) ≤
(en
d

)Nd
,

where d is the VC dimension of H. By Lemma 12, we
have

Pr
S∼Dn

(
∃g ∈ CN (H), ∃θ > 0, PD

(
yg(x) ≤ θ

2

)
> I

[
PS

(
yg(x) ≤ θ

2

)
>
k

n

]
+ ε

)

≤ 2(N + 1)
(
en2

d

)Nd
exp

(
−nD

(
k

n

∥∥∥ε′)) ,
where

ε′ =
n

n− 1
ε− 1

n
.

Using the argument as Theorem 3, the theorem
follows.

Proof of Lemma 9. The first inequality has already
been proved in Lemma 11.

For the second inequality, we only need to show

D−1(q, u) ≤ q +
√
u/2,

or equivalently

D(q, q +
√
u/2) ≥ u,

since D is an increasing function in the second param-
eter. But this is immediate by a well known result
[Hoe63]:

D(q, q + δ) ≥ 2δ2.
For the third inequality we first show that for all

0 < q < 1
D−1(

q

2
,
q

8
) ≤ q, (17)

which is equivalent to

D(
q

2
||q) ≥ q

8
.

For fixed q, let φ(x) = D(qx||q), 0 < x ≤ 1. Note that

φ(1) = φ′(1) = 0,

and
φ′′(x) =

q

x(1− qx)
≥ q,

we have

D(
q

2
||q) = φ(

1
2

) ≥ q

8
.

This completes the proof of Eq. (17).
Now if q ≤ Cu[θ̂(q)], recall that C ′ = max(2C, 8),

and note D−1 is increasing function on its first and sec-
ond parameter respectively. We have

D−1
(
q, u

[
θ̂(q)

])
≤ D−1

(
C ′

2
u
[
θ̂(q)

]
, u
[
θ̂(q)

])
≤ D−1

(
C ′

2
u
[
θ̂(q)

]
,
C ′

8
u
[
θ̂(q)

])
≤ C ′u

[
θ̂(q)

]
.

The lemma then follows.

6 Experiments

In this section we provide experimental results to verify
our theory. We compare AdaBoost and arc-gv in terms
of their Emargin, Emargin error and the generalization
error. Theorem 7 indicates that if a voting classifier f1
has a larger Emargin and a smaller Emargin error than
another classifier f2, then f1 would have better perfor-
mance on the test data. The goal of the experiment
is to see whether the empirical results agree with the
theoretical prediction.

The experiments are conducted on 10 benchmark
datasets described in Table 1. Except the USPS which
contains handwritten digits, all datasets are from the
UCI repository [AN07]. If the data is multiclass, we
group them into two classes, since we study the binary
classification problem. For instance, the “letter” dataset
has 26 classes, we use the first 13 as the positive and the
others as the negative. In the preprocessing stage, each
feature is normalized to [0, 1]. All datasets are used in a
five-fold cross validation manner. For the USPS which
originally has a training set and a test set, we merge
them and regenerate the cross validation data.

In all experiments, decision stumps are adopted as
the base learner, so the complexity of the base classifiers
is well controlled. We use a finite set of possible decision
stumps. Specifically, for each feature we consider 100
thresholds uniformly distributed on [0, 1]. Therefore the
size of the base classifier set is 2 × 100 × k, where k
denotes the number of features.

We run AdaBoost and arc-gv for 500 rounds, then
calculate the Emargin, Emargin error, test error as well
as the minimum margin of them respectively. The re-
sults are described in Table 2. AdaBoost has a larger or
equal Emargin and a smaller Emargin error than arc-gv
on all the datasets except German and Ionosphere. Ac-
cording to our theory, it predicts that AdaBoost would
have a lower generalization error. The experiments show
that among these eight datasets, AdaBoost outperforms
arc-gv on six datasets, ties on one dataset, and loses



Table 1: Description of the datasets

Dataset # Examples # Features Dataset # Examples # Features
Breast 683 9 Letter 20000 16
Diabetes 768 8 Satimage 6435 36
German 1000 24 USPS 9298 256
Image 2310 16 Vehicle 846 20
Ionosphere 351 34 Wdbc 569 30

Table 2: Margin measures and performances of AdaBoost and arc-gv. For the datasets in bold-face, AdaBoost
generates larger Emargins and smaller Emargin errors than arc-gv. AdaBoost outperforms arc-gv on all these
datasets except the Image dataset.

Emargin Emargin Error Test Error Minimum margin
Breast AdaBoost 0.313 0.803 0.052 0.005

arc-gv 0.281 0.909 0.057 0.008
Diabetes AdaBoost 0.110 0.748 0.255 -0.064

arc-gv 0.049 0.759 0.256 -0.017
German AdaBoost 0.157 0.824 0.258 -0.118

arc-gv 0.034 0.780 0.261 -0.026
Image AdaBoost 0.196 0.610 0.023 -0.009

arc-gv 0.195 0.705 0.021 -0.003
Ionosphere AdaBoost 0.323 0.800 0.100 0.084

arc-gv 0.131 0.577 0.106 0.061
Letter AdaBoost 0.078 0.645 0.174 -0.165

arc-gv 0.063 0.958 0.178 -0.034
Satimage AdaBoost 0.133 0.521 0.053 -0.054

arc-gv 0.133 0.956 0.057 -0.019
USPS AdaBoost 0.108 0.972 0.450 -0.142

arc-gv 0.053 0.990 0.460 -0.024
Vehicle AdaBoost 0.129 0.737 0.297 -0.117

arc-gv 0.052 0.794 0.304 -0.033
Wdbc AdaBoost 0.350 0.581 0.035 -0.130

arc-gv 0.350 0.710 0.035 -0.100

only on one dataset. These results agree well with our
theory.

Note also that on all the datasets except Ionosphere,
arc-gv has a larger minimum margin than AdaBoost,
but arc-gv has a lower test error than AdaBoost only
on one dataset. This verifies that the minimum margin
is not crucial for the generalization error.

7 Conclusions

In this paper we tried to give a complete answer to
Breiman’s doubt on the margin explanation of the Ad-
aBoost algorithm. We proposed a bound in terms of
a new margin measure called the Emargin, which de-
pends on the whole margin distribution. This bound
is uniformly sharper than the minimum margin bound
used by Breiman to back up his argument. According to
our theory, arc-gv does not necessarily outperform Ad-
aBoost even though it generates larger minimum mar-
gins.

Our bounds also imply that the Emargin and the

Emargin error are the key to the generalization error
of a voting classifier—a larger Emargin and a smaller
Emargin error result in better generalization ability. Ex-
periments on benchmark datasets agree well with our
theory.

A future work is to study why AdaBoost generates
larger Emargins and smaller Emargin errors, i.e., better
margin distributions, than arc-gv. Can we find a strat-
egy that optimizes the margin distribution? If such an
algorithm exists, it would be a good test of our theory to
see whether it has better performance than AdaBoost
as we predict.
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