
Density estimation in linear time

Satyaki Mahalanabis∗ and Daniel Štefankovič
Department of Computer Science

University of Rochester
Rochester, NY 14627

{smahalan,stefanko}@cs.rochester.edu

Abstract

We consider the problem of choosing a den-
sity estimate from a set of densities F , min-
imizing the L1-distance to an unknown dis-
tribution. Devroye and Lugosi [DL01] ana-
lyze two algorithms for the problem: Scheffé
tournament winner and minimum distance es-
timate. The Scheffé tournament estimate re-
quires fewer computations than the minimum
distance estimate, but has strictly weaker guar-
antees than the latter.

We focus on the computational aspect of den-
sity estimation. We present two algorithms,
both with the same guarantee as the minimum
distance estimate. The first one, a modifica-
tion of the minimum distance estimate, uses
the same number (quadratic in |F|) of compu-
tations as the Scheffé tournament. The second
one, called “efficient minimum loss-weight es-
timate,” uses only a linear number of compu-
tations, assuming that F is preprocessed. We
then apply our algorithms to bandwidth selec-
tion for kernel estimates and bin-width selec-
tion for histogram estimates, yielding efficient
procedures for these problems.

We also give examples showing that the guar-
antees of the algorithms cannot be improved
and explore randomized algorithms for density
estimation.

1 Introduction

We study the following density estimation problem con-
sidered in [DL96, DL01, DGL02]. There is an unknown
distribution g and we are given n (not necessarily in-
dependent) samples which define empirical distribution
h. Given a finite class F of densities, our objective is
to output f ∈ F such that the error ‖f − g‖1 is mini-
mized. The use of the L1-norm is well justified because
it has many useful properties, for example, scale invari-
ance and the fact that approximate identification of a

∗Supported by NSF grant IIS-0546554

distribution in the L1-norm gives an estimate for the
probability of every event.

The following two parameters influence the error of
a possible estimate: the distance of g from F and the
empirical error. The first parameter is required since
we have no control over F , and hence we cannot select
a density which is better than the “optimal” density
in F , that is, the one closest to g in L1-norm. It is
not obvious how to define the second parameter—the
error of h with respect to g. We follow the definition
of [DL01], which is inspired by [Yat85] (see Section 1.1
for a precise definition).

Devroye and Lugosi [DL01] analyze two algorithms
in this setting: Scheffé tournament winner and min-
imum distance estimate. The minimum distance es-
timate, defined by Yatracos [Yat85], is a special case
of the minimum distance principle, formalized by Wol-
fowitz in [Wol57]. It is a general density estimation
tool which has been applied, for example, by [DL96,
DL97] to the bandwidth selection problem for kernels
and by [DL04, DL01] to bin-width selection for his-
tograms. The minimum distance estimate also finds ap-
plication in hypothesis testing [DGL02].

The Scheffé tournament winner algorithm requires
fewer computations than the minimum distance esti-
mate, but it has strictly weaker guarantees (in terms of
the two parameters mentioned above) than the latter.
Our main contribution are two procedures for selecting
an estimate from F , both of which have the same guar-
antees as the minimum distance estimate, but are com-
putationally more efficient. The first has a quadratic (in
|F|) cost, matching the cost of the Scheffé tournament
winner algorithm. The second one is even faster, using
linearly many (in |F|) computations (after preprocess-
ing F).

We also apply our estimation procedures to the prob-
lem of bandwidth selection for kernels and to that of bin-
width selection for histograms, following [DL01, DL96,
DL97, DL04]. We show that in each of these applica-
tions “efficient minimum loss-weight estimate” is faster
than our “modified minimum distance estimate,” which
in turn is faster than the minimum distance estimate.

Now we outline the rest of the paper. In Section 1.1
we give the required definitions and introduce the no-
tion of a test-function (a variant of Scheffé set). Then, in
Section 1.2, we restate the previous density estimation



algorithms (Scheffé tournament winner and the mini-
mum distance estimate) using test-functions. Next, in
Section 2, we present our algorithms. In Section 3 we
discuss two widely studied nonparametric estimation
problems where the computational cost of efficient min-
imum loss-weight estimate (including preprocessing) is
much smaller than that of both the modified minimum
distance and the minimum distance estimates. In Sec-
tion 4 we explore randomized density estimation algo-
rithms. In the final Section 5, we give examples showing
tightness of the theorems stated in the previous sections.

Throughout this paper we focus on the case when
F is finite, in order to compare the computational costs
of our estimates to previous ones. However our results
generalize in a straightforward way to infinite classes as
well if we ignore computational complexity.

1.1 Definitions and Notations

Throughout the paper g will be the unknown distribu-
tion. We will use h to denote the empirical distribution,
which given samples X1, X2, . . . , Xn, is defined for each
set A ⊆ Ω as

h(A) =
1

n

n
∑

i=1

1[Xi∈A]

Let F be a set of densities. We will assume that F is
finite. Let d1(g,F) be the L1-distance of g from F , that
is, minf∈F ‖f − g‖1.

Given two functions fi, fj on Ω (in this context, den-
sities) we define a test-function Tij : Ω → {−1, 0, 1} to
be the function Tij(x) = sgn(fi(x) − fj(x)). Note that
Tij = −Tji. We also define TF to be the set of all test-
functions for F , that is,

TF = {Tij ; fi, fj ∈ F }.
Let · be the inner product for the functions on Ω, defined
for any 2 functions f, f ′ as f · f ′ =

∫

f f ′. Note that

(fi − fj) · Tij = ‖fi − fj‖1.

We use the inner product of the empirical distribution
h with the test-functions to choose an estimate, which
is a density from F .

In this paper we only consider algorithms which make
their decisions purely on inner products of the test-
functions with h and members of F . It is reasonable
to assume that the computation of the inner product
will take significant time. Hence we measure the com-
putational cost of an algorithm is by the number of inner
products used.

We say that fi wins against fj if

(fi − h) · Tij < (fj − h) · Tji. (1)

Note that either fi wins against fj , or fj wins against
fi, or there is a draw (that is, there is equality in (1)).
We will say that fi loses to fj if

(fi − h) · Tij ≥ (fj − h) · Tji.

The algorithms choose an estimate f ∈ F using the
empirical distribution h. The L1-distance of the esti-
mates from the unknown distribution g will depend on

the following measure of distance between the empirical
and the unknown distribution:

∆ := max
T∈TF

(g − h) · T. (2)

Now we discuss how test-functions can be viewed
as a reformulation of Scheffé sets, defined by Devroye
and Lugosi [DL01] (inspired by [Sch47] and implicit
in [Yat85]), as follows. The Scheffé set of densities fi, fj

is
Aij = {x ; fi(x) > fj(x)}.

Devroye and Lugosi say that fi wins against fj if
∣

∣

∣

∣

∣

∫

Aij

fi − h(Aij)

∣

∣

∣

∣

∣

<

∣

∣

∣

∣

∣

∫

Aij

fj − h(Aij)

∣

∣

∣

∣

∣

. (3)

The advantage of using Scheffé sets is that for a concrete
set F of densities one can immediately use the theory of
Vapnik-Chervonenkis dimension [VČ71] for the family
of Scheffé sets of F (this family is called the Yatracos
class of F), to obtain a bound on the empirical error.

If h, fi, fj are non-negative and integrate to 1 then
the condition (1) is equivalent to (3) (to see this recall
that Tij = −Tji, and add (fi−h) ·1 = (h−fj) ·1 to (1),
where 1 is the constant one function on Ω). Thus, in our
algorithms the test-functions can be replaced by Scheffé
sets and VC dimension arguments can be applied.

We chose to use test-functions for two reasons: first,
they allow us to give succinct proofs of our theorems
(especially Theorem 8), and second, they immediately
extend to the case when the members of F do not corre-
spond to distributions (cf, e. g., Exercise 6.2, in [DL01]).

Remark 1 Note that our value of ∆, defined in terms
of TF , is at most twice the ∆ used in [DL01], which is
defined in terms of Scheffé sets.

1.2 Previous Estimates

In this section we restate the two algorithms for den-
sity estimation from Chapter 6 of [DL01]) using test-
functions. The first algorithm requires less computation
but has worse guarantees than the second algorithm.

Algorithm 1 - Scheffé tournament winner.
Output f ∈ F with the most wins (tie broken arbi-
trarily).

Theorem 2 ([DL01], Theorem 6.2) Let f1 ∈ F be
the density output by Algorithm 1. Then

‖f1 − g‖1 ≤ 9 d1(g,F) + 8∆.

The number of inner products used by Algorithm 1 is
Θ(|F|2).

Algorithm 2 - Minimum distance estimate.
Output f ∈ F that minimizes

max
{

|(f − h) · Tij | ; fi, fj ∈ F
}

. (4)



Theorem 3 ([DL01], Theorem 6.3) Let f1 be the den-
sity output by Algorithm 2. Then

‖f1 − g‖1 ≤ 3 d1(g,F) + 2∆.

The number of inner products used by Algorithm 2 is
Θ(|F|3).

Let us point out that Theorems 6.2 and 6.3 in [DL01]
require that each f ∈ F corresponds to a distribution,
that is,

∫

f = 1. Since we use test-functions in the
algorithms instead of Scheffé set based comparisons, the
assumption

∫

f = 1 is not actually needed in the proofs
of Theorems 6.2 and 6.3 (we skip the proof), and is not
used in the proofs of Theorems 4, 8.

2 Our estimators

2.1 A variant of the minimum distance
estimate

The following modified minimum distance estimate uses
only O(|F|2) computations as compared to O(|F|3) com-
putations used by Algorithm 2 (equation (5) takes min-
imum of O(|F|) terms, whereas equation (4) takes min-
imum of O(|F|2) terms), but as we show in Theorem 4,
it gives us the same guarantee as the minimum distance
estimate.

Algorithm 3 - Modified minimum distance esti-

mate.
Output fi ∈ F that minimizes

max
{

|(fi − h) · Tij | ; fj ∈ F
}

. (5)

Theorem 4 Let f1 ∈ F be the density output by Algo-
rithm 3. Then

‖f1 − g‖1 ≤ 3 d1(g,F) + 2∆.

The number of inner products used by Algorithm 3 is
Θ(|F|2).
Proof :
Let f1 ∈ F be the function output by Algorithm 3. Let
f2 = argminf∈F‖f − g‖1. By the triangle inequality we
have

‖f1 − g‖1 ≤ ‖f1 − f2‖1 + ‖f2 − g‖1. (6)
We bound ‖f1 − f2‖1 as follows:

‖f1 − f2‖1 = (f1 − f2) · T12

≤ |(f1 − h) · T12| + |(f2 − h) · T12|
≤ |(f1 − h) · T12| + max

fj∈F
|(f2 − h) · T2,j|

where in the last inequality we used the fact that T12 =
−T21.

By the criteria of selecting f1 we have |(f1−h)·T12| ≤
maxfj∈F |(f2 − h) · T2,j| (since otherwise f2 would be
selected). Hence

‖f1 − f2‖1 ≤ 2 max
fj∈F

|(f2 − h) · T2,j |

≤ 2 max
fj∈F

|(f2 − g) · T2,j|

+2 max
fj∈F

|(g − h) · T2,j|

≤ 2‖(f2 − g)‖1 + 2 max
T∈TF

|(g − h) · T |

= 2‖f2 − g‖1 + 2∆.

Combining the last inequality with (6) we obtain

‖f1 − g‖1 ≤ 3‖f2 − g‖1 + 2∆.

�

Remark 5 Note that one can modify the Lemma to
only require that g and h be “close” with respect to the
test functions for the “best” function in the class, that
is, only |(g − h) · T2,j | need to be small (where f2 is
argminf∈F‖f − g‖1).

One can ask whether the observation in Remark 5
can lead to improved density estimation algorithms for
concrete sets of densities. The bounds on ∆ (which is
given by (2)) are often based on the VC-dimension of
the Yatracos class of F . Recall that the Yatracos class Y
is the set of Aij = {x ; fi(x) > fj(x)} for all fi, fj ∈ F .
Remark 5 implies that instead of the Yatracos class it
is enough to consider the set Yi = {Aij ; fj ∈ F} for
fi ∈ F . Is it possible that the VC-dimension of each
set Yi is smaller the VC-dimension of the Yatracos class
Y ? The following (artificial) example shows that this
can, indeed, be the case. Let Ω = {0, . . . , n}. For each
(n + 1)-bit binary string a0, a1, . . . , an, let us consider
the distribution

P (k) =
1

4n
(1 + (1/2 − a0)(1/2 − ak))2−

Pn
j=1

aj2
j

,

for k ∈ {1, . . . , n} (with P (0) chosen to make P into a
distribution). For this family of 2n+1 distributions the
VC-dimension of the Yatracos class is n, whereas each Yi

has VC-dimension 1 (since a pair of distributions fi, fj

has a non-trivial set Aij if and only if their binary strings
differ only in the first bit).

2.2 An even more efficient estimator -
minimum loss-weight

In this section we present an estimator which, after pre-
processing F , uses only O(|F|) inner products to obtain
a density estimate. The guarantees of the estimate are
the same as for Algorithms 2 and 3.

The algorithm uses the following quantity to choose
the estimate:

loss-weight(f) = max
{

‖f − f ′‖1 ; f loses

to f ′ ∈ F
}

.

Intuitively a good estimate should have small loss-
weight (ideally the loss-weight of the estimate would be
−∞ = max{}, that is, the estimate would not lose at
all). Thus the following algorithm would be a natural
candidate for a good density estimator (and, indeed, it
has a guarantee matching Algorithms 2 and 3), but, un-
fortunately, we do not know how to implement it using
O(|F|) inner products.

Algorithm 4a - Minimum loss-weight estimate.
Output f ∈ F that minimizes loss-weight(f).

The next algorithm, seems less natural than algorithm 4a,
but its condition can be implemented using only O(|F|)
inner products.



Algorithm 4b - Efficient minimum loss-weight

estimate.
Output f ∈ F such that for every f ′ to which f loses
we have

‖f − f ′‖1 ≤ loss-weight(f ′). (7)

Before we delve into the proof of (8) let us see how
Algorithm 4b can be made to use |F|−1 inner products.
We preprocess F by computing L1-distances between all
pairs of densities in F and store the distances in an list
sorted in decreasing order. When the algorithm is pre-
sented with the empirical distribution h, all it needs to
do is perform comparison between select pairs of densi-
ties. The advantage is that we preprocess F only once
and, for each new empirical distribution we only com-
pute inner products necessary for the comparisons.

We will compute the estimate as follows.

input : family of densities F , list L of all pairs
{fi, fj} sorted in decreasing order by
‖fi − fj‖1, oracle for computing inner
products h · Tij .

output : f ∈ F such that: (∀f ′) f loses to f ′

=⇒ ‖f − f ′‖1 ≤ loss-weight(f ′).

S ← F1

repeat2

pick the first edge {fi, fj} in L3

if fi loses to fj then f ′ ← fi else f ′ ← fj fi4

remove f ′ from S5

remove pairs containing f ′ from L6

until |S| = 17

output the density in S8

Detailed version of algorithm 4b - using O(|F|)
inner products.

Note that while Algorithm 4b uses only O(|F|) in-
ner products its running time is actually Θ(|F|2), since
it traverses a list of length Θ(|F|2). Are we cheating?
There are two answers to this question: practical and
theoretical. As we will see in applications the inner
products dominate the computation, justifying our fo-
cus on just the inner products (of which there are lin-
early many). Theoretically, if we are willing to spend
exponential time for the preprocessing, we can build the
complete decision tree corresponding to Algorithm 4b
and obtain a linear-time density selection procedure.
We find the following question interesting: Is it possible
to achieve linear running time using only polynomial-
time preprocessing?

Question 6 (Tournament Revelation Problem)
We are given a weighted undirected complete graph on
n vertices. Assume that the edge-weights are distinct.
We preprocess the weighted graph and then play the fol-
lowing game with an adversary until only one vertex
remains: we report the edge with the largest weight and
the adversary chooses one of the endpoints of the edge
and removes it from the graph (together with all the ad-
jacent edges).

Our goal is to make the computational cost during
the game linear-time (in n) in the worst-case (over the

adversary’s moves). Is it possible to achieve this goal
with polynomial-time preprocessing?

We now show that the detailed version of algorithm 4b
outputs f satisfying the required condition.

Lemma 7 The estimate f output by the detailed ver-
sion of algorithm 4b satisfies (7) for every f ′ to which
f loses.

Proof :
We show, using induction, that the following invariant
is always satisfied on line 2. For any f ∈ S and any
f ′ ∈ F \ S we have that if f loses to f ′ then ‖f −
f ′‖1 ≤ loss-weight(f ′). Initially, F \S is empty and the
invariant is trivially true. For the inductive step, let f ′

be the density most recently removed from S. To prove
the induction step we only need to show that for every
f ∈ S we have that if f loses to f ′ then ‖f − f ′‖1 ≤
loss-weight(f ′). Let W be the L1-distance between two
densities in S ∪ {f ′}. Then loss-weight(f ′) ≥ W (since
f ′ lost), and ‖f − f ′‖1 ≤ W (by the definition of W ).
�

Theorem 8 Let f1 ∈ F be the density output by Algo-
rithm 4a (or Algorithm 4b). Then

‖f1 − g‖1 ≤ 3 d1(g,F) + 2∆. (8)

Assume that we are given L1-distances between every
pair in F . The number of inner products used by Algo-
rithm 4b is Θ(|F|).
Proof of Theorem 8:
Let f4 = g. Let f2 be the function f ∈ F minimizing
‖g − f‖1. We can reformulate our goal (8) as follows:

(f1 − f4) · T14 ≤ 2∆ + 3(f2 − f4) · T24. (9)

Let f3 ∈ F be the function f ′ ∈ F such that f2 loses
against f ′ and ‖f2 − f ′‖1 is maximal (there must be
at least one function to which f2 loses, otherwise the
algorithm would pick f2 and we would be done). Note
that f1, f2, f3 ∈ F , but f4 does need to be in F .

We know that f2 loses against f3, that is, we have
(see (1))

2h · T23 ≤ f2 · T23 + f3 · T23, (10)

and, since f1 satisfied (7), we also have

(f1 − f2) · T12 ≤ (f2 − f3) · T23. (11)

By (2) we have

2(f4 − h) · T23 ≤ 2∆. (12)

Adding (10), (11), and (12) we obtain

2(f2 − f4) · T23 + (f2 − f1) · T12 + 2∆ ≥ 0. (13)

Note that for any i, j, k, ℓ we have:

(fi − fj) · (Tij − Tkℓ) ≥ 0, (14)

since if fi(x) > fj(x) then Tij − Tkℓ ≥ 0, if
fi(x) < fj(x) then Tij−Tkℓ ≤ 0, and if fi(x) = fj(x)

then the contribution of that x is zero. By applying (14)
four times we obtain

(f2−f4) ·(3T24−2T23−T14)+(f1−f2) ·(T12−T14) ≥ 0.
(15)

Finally, adding (13) and (15) yields (9). �



Remark 9 Note that Remark 5 also applies to Algo-
rithms 4a and 4b, since (12) is the only inequality in
which ∆ is used.

Lemma 10 If the condition (7) of Algorithm 4b is re-
laxed to

‖f − f ′‖1 ≤ C · loss-weight(f ′), (16)

for some C ≥ 1, an analogue of Theorem 8 with (8)
replaced by

‖f1 − g‖1 ≤ (1 + 2C) d1(g,F) + 2C∆ (17)

holds.

Proof :
The proof is almost identical to the proof of Theorem 8.
Let f4 = g. Let f2 be the function f ∈ F minimizing
‖g − f‖1. We can reformulate our goal (17) as follows:

(f1 − f4) · T14 ≤ 2C∆ + (1 + 2C)(f2 − f4) · T24. (18)

Let f3 ∈ F be the function f ′ ∈ F such that f2 loses
against f ′ and ‖f2 − f ′‖1 is maximal (there must be
at least one function to which f2 loses, otherwise the
algorithm would pick f2 and we would be done). Note
that f1, f2, f3 ∈ F , but f4 does need to be in F .

Equations (10) and (12) from proof of Theorem 8
are satisfied here as well. Since f1 satisfies (16), we also
have

(f1 − f2) · T12 ≤ C(f2 − f3) · T23. (19)

Adding (10) multiplied by C, (19), and (12) multiplied
by C we obtain

2C(f2 − f4) · T23 + (f2 − f1) · T12 + 2C∆ ≥ 0. (20)

By applying (14) four times we obtain

(f2 − f4) · ((1 + 2C)T24 − 2CT23 − T14)+

(f1 − f2) · (T12 − T14) ≥ 0.
(21)

Finally, adding (20) and (21) yields (18). �

Lemma 10 allows us to run Algorithm 4b with dis-
tances between the densities computed approximately
with relative error (1 ± ε) and obtain analogue of The-
orem 8.

Corollary 11 Assume that we are given approximate
L1-distances between every pair in F with relative error
(1±ε). Let f1 ∈ F be the density output by Algorithm 4a
(or Algorithm 4b), where the algorithm uses the approx-
imate distances (instead of the true distances). Then

‖f1 − g‖1 ≤ 3 + ε

1 − ε
d1(g,F) +

2 + 2ε

1 − ε
∆. (22)

The number of inner products used by Algorithm 4b is
Θ(|F|).

Proof :
Let D(f, f ′) be the approximate L1-distance between f
and f ′ given to the algorithm (for every pair f, f ′ ∈ F).
Let

loss-weight
′

(f) = max
{

D(f, f ′) ; f loses

to f ′ ∈ F
}

.

The proof of Lemma 7 yields that the estimate f
output by the detailed version of algorithm 4b satisfies
the following inequality

D(f, f ′) ≤ loss-weight
′

(f ′).

for every f ′ to which f loses. Now using the fact that
D(f, f ′) is an (1± ε) approximation of ‖f − f ′‖1 we ob-
tain that the estimate f output by algorithm 4b satisfies
the following

‖f − f ′‖1 ≤ 1 + ε

1 − ε
· loss-weight(f ′).

for every f ′ to which f loses. �

3 Applications

We now describe two nonparametric density estimation
problems where our estimates can be used to obtain ef-
ficient algorithms. The first of these problems is that of
selecting the optimal smoothing factor for kernel esti-
mates (Section 3.1) while the second one is that of find-
ing an optimal bin-width for 1-dimensional histograms
(Section 3.3).

3.1 Bandwidth selection for kernel estimates

We are going to show that our estimates give fast algo-
rithms for the bandwidth selection problem for uniform
kernels on R.

Given n i.i.d samples x1, . . . , xn ∈ R drawn from an
unknown distribution g the kernel estimate for g is the
density

fn,s(x) =
1

ns

n
∑

i=1

K

(

x − xi

s

)

where K, the kernel, is a function (usually nonnegative)
with

∫

K = 1 and
∫

|K| < ∞, and s > 0 is called
the smoothing factor. For us K will be the uniform
distribution on [−1, 1].

Given x1, . . . , xn the bandwidth selection problem is
to select an s∗ > 0 such that ‖fn,s∗ − g‖1 is close to
infs>0 ‖fn,s−g‖1 [DL01, DL96, DL97]. The data split-
ting approach to bandwidth selection uses n − m (n ≫
m > 0) samples x1, . . . , xn−m to define the kernel esti-
mate fn−m,s and remaining m samples xn−m+1, . . . , xn

as a test set which defines an empirical measure h. De-
vroye and Lugosi ([DL96]) use the minimum distance
estimate to give an algorithm for selecting s∗. Given
n > 0 samples, they select s from an interval [an, bn]
(where, e. g., an = e−n, bn = en). They discretize
[an, bn] by defining s1 = an, s2 = an(1 + δn), . . . , si =
an(1 + δn)i−1, . . . , sN = an(1 + δn)N−1 where N =
⌊ln(bn/an)/ ln(1+δn)⌋ and δn > 0 is a parameter. They
now select s∗ to be si such that fn−m,si

is the minimum
distance estimate for {fn−m,si

; 1 ≤ i ≤ N} and mea-
sure h. Their main theorem is the following.

Theorem 12 ([DL96]) Let K be nonnegative, Lipschitz
and nonzero only in [−1, 1]. Let an, bn be such that
nan → 0, bn → ∞ as n → ∞. Assume that δn = c√

n



and that ln bn

an
≤ c′na where c, c′, a > 0 are constants.

If
m

n
→ 0 and

m

n4/5 lnn
→ ∞ as n → ∞,

then the estimate fn−m,s∗ satisfies

sup
g

lim sup
n→∞

E[‖fn−m,s∗ − g‖1]

infs>0 E[‖fn,s − g‖1]
≤ 3. (23)

Observation 13 For an, bn, δn, a as in Theorem 12,
N = Θ(n1/2+a).

We can replace minimum distance with the mini-
mum loss-weight estimate (Algorithm 4b) in this set-
ting. Simply define ŝ to be si (1 ≤ i ≤ N) such that
fn−m,si

is the efficient minimum loss-weight estimate for
{fn−m,si

; 1 ≤ i ≤ N} and measure h. This requires the
computation of L1 distances between all O(N2) pairs
of densities. Assume however that the kernel K is such
that we are able to compute approximate estimates Di,j ,
1 ≤ i, j ≤ N such that with probability at least 1 − δ,

∀ i, j, (1 − ε)Dij ≤ ‖fn−m,si
− fn−m,sj

‖1 ≤ (1 + ε)Dij

(24)
We can now define the approximate minimum loss-weight
estimate ŝ′ in the same way we defined ŝ. In other
words, ŝ′ is si such that Algorithm 4b outputs fn−m,si

for the class {fn−m,si
; 1 ≤ i ≤ N} and the measure h,

except that it uses Dij instead of ‖fn−m,si
− fn−m,sj

‖1

for each i, j. The following theorem is the analogue of
Theorem 12 for both ŝ and ŝ′.

Theorem 14 Let K, an, bn, δn, a > 0, m be as in Theo-
rem 12. Then ŝ satisfies

sup
g

lim sup
n→∞

E[‖fn−m,ŝ − g‖1]

infs>0 E[‖fn,s − g‖1]
≤ 3. (25)

Morever, if

ε → 0 and
δ

n−2/5
→ 0 as n → ∞

then ŝ′ satisfies

sup
g

lim sup
n→∞

E[‖fn−m,ŝ′ − g‖1]

infs>0 E[‖fn,s − g‖1]
≤ 3. (26)

The proof of Theorem 14 is identical to that of The-
orem 12, except that the use of Theorem 3 needs to
replaced by Theorem 8 for (25), and by Corollary 11 for
(26).

Finally we state a lemma which shows, using ideas
from [Ind06] and [LHC07], that it is indeed possible to
efficiently compute approximate estimates Dij satisfy-
ing (24) (with confidence δ) when the kernel K is the
uniform distribution on [−1, 1].

Lemma 15 Let the kernel K be the uniform distribu-
tion on [−1, 1]. Let ε, δ ∈ (0, 1). Then there is a ran-
domized algorithm which in time
O((1/ε)2(nN + N2) log(nN/δ)) computes Dij for i, j ∈
[N ] such that with probability ≥ 1 − δ we have that for
all i, j ∈ [N ]

(1 − ε)Dij ≤ ‖fn−m,si
− fn−m,sj

‖1 ≤ (1 + ε)Dij .

Proof :
Follows immediately from Lemma 17. �

Let us analyze the time required for computing ŝ′

for the uniform kernel. Let Tij denote the test function
for fn−m,si

, fn−m,sj
. If we sort x1, . . . , xn−m (using

O(n log n) time) in the preprocessing step then com-
puting the inner product fn−m,si

· Tij for any i, j re-
quires only O(n) time. Computing Tij at any point in
R takes O(log n) time (using a single binary search).
Hence computing the inner product h · Tij can be done
in O(m log n) time.

So the preprocessing time

O((1/ε)2(nN + N2) log(nN/δ) + n log n)

dominates the running time of the rest of the procedure,
which is

O((n + m log n)N).

Choosing ε = 1/ logn and δ = 1/
√

n yields a running
time of O((nN + N2)polylog(n)). In contrast, modified
minimum distance requires N2(m log n + n) time while
the minimum distance estimate requires N3(m log n+n)
time, both of which are much slower since in Theo-
rem 12, m = Ω(n4/5).

3.2 Efficient approximation of L1-distances
using projections.

Our main tool will be the following result of [LHC07]
(for related work see also [Ind06]).

Lemma 16 (Lemma 8 of [LHC07]) Let v1, . . . , vN ∈
R

M . Let ε, δ ∈ (0, 1). Let

d ≥ 11(2 logN − log δ)/ε2

be an integer. Let R be an d × M matrix whose entries
are i.i.d. from the Cauchy distribution C(0, 1). Let wi =
Rvi for i ∈ [N ]. Let Dij be the geometric mean of the
coordinates of |wi −wj |. With probability ≥ 1− δ (over
the choice of the entries in R) we have for all pairs
i, j ∈ [N ]

(1 − ε)Dij ≤ ‖vi − vj‖1 ≤ (1 + ε)Dij . (27)

As an immediate consequence of Lemma 16 we ob-
tain an efficient algorithm for approximating all pair-
wise L1-distances between N densities each of which is
a mixture of n uniform distributions on intervals.

Lemma 17 Let n and N be positive integers. Let ε, δ ∈
(0, 1). For each i ∈ [N ] let fi be a mixture of n uni-
form densities on intervals (fi is given by a set of n
mixture coefficients αi,1, . . . , αi,n and n disjoint inter-
vals [ai,1, bi,1), . . . , [ai,n, bi,n)). There is a randomized
algorithm which in time O((1/ε)2(nN +N2) log(nN/δ))
computes Dij (for i, j ∈ [N ]) such that with probability
≥ 1 − δ we have that for all i, j ∈ [N ]

(1 − ε)Dij ≤ ‖fi − fj‖1 ≤ (1 + ε)Dij . (28)



Proof :
Let S = s0 < s1 < · · · < sM be the sequence obtained
by sorting the set

{ai,j ; i ∈ [N ], j ∈ [n]} ∪ {bi,j ; i ∈ [N ], j ∈ [n]}.

Note that M < 2Nn. Let vi ∈ R
M be the vector whose

j-th coordinate is the measure of [sj−1, sj) under fi. We
have ‖fi − fj‖1 = ‖vi − vj‖1 for all i, j ∈ [N ]. Now we
will apply Lemma 16 to v1, . . . , vN .

Let d = ⌈11(2 log 2nN − log δ)/ε2⌉. Let R be an
d × M matrix whose entries are i.i.d. from the Cauchy
distribution C(0, 1). We can compute R in time O(dM).
Suppose that we computed wi = Rvi for i ∈ [N ]. Then
we can compute Dij , the coordinate mean of |wi − wj |
for all i, j ∈ [N ] in time O(N2d). The equation (27)
and the fact that ‖fi − fj‖1 = ‖vi − vj‖1 implies (28).
It remains to show how to compute wi = Rvi efficiently.

The j-th coordinate of vi is the measure of [sj−1, sj)
under fi which is (sj − sj−1) times the density of fi on
the interval [sj−1, sj) (the density of fi is constant on
this interval). Let R′ be obtained from matrix R by
multiplying j-th column by (sj − sj−1) for j ∈ [M ]. We
can obtain R′ from R in time O(dM). Let R′′ be the
matrix with R′′

ij = R′
i1 + R′

i2 + · · · + R′
ij (again we can

compute R′′ from R′ in time O(dM)). We have

(Rvi)k =
n

∑

j=1

αij

bij − aij

(

R′′
k,r(bij)

− R′′
k,r(aij)−1

)

. (29)

Using equation (29) we can compute all vi in time O(nNd).
�

Remark 18 In a forthcoming paper [MŠ08] we gener-
alize Lemma 17 to piecewise polynomial densities. For
each i ∈ [N ], let density fi be specified by n disjoint
intervals

[ai,1, bi,1), . . . [ai,n, bi,n),

and in interval [ai,j , bi,j) for each j ∈ [n] by coefficients

α
(0)
i,j , α

(1)
i,j , . . . , α

(d)
i,j such that

(∀x ∈ [ai,j , bi,j)) f(x) = α
(0)
i,j + α

(1)
i,j x + . . . + α

(d)
i,j xd.

Theorem 5.1 of [MŠ08] states that there is a randomized
algorithm which takes O(N(N +n)(d

ε )3 log N
δ ) time and

outputs Dij , 1 ≤ i < j ≤ N such that with probability
at least 1 − δ, for each 1 ≤ i < j ≤ N

(1 − ε)Dij ≤ ‖fi − fj‖1 ≤ (1 + ε)Dij .

3.3 Bin-width selection for histogram
estimates

Here we show how the efficient minimum loss-weight es-
timate yields a fast algorithm for finding the optimal
bin-width of 1-dimensional histograms. The set of den-
sities arising in this problem will be such that for any
subset of them it will be trivial to determine the pair
whose L1-distance is maximal.

Given a bin-width s > 0, define At for each integer
t to be the interval [ts, (t + 1)s). Given n sample points
x1, . . . , xn ∈ R drawn from a distribution g, a regular

histogram estimate fn,s is defined as the density such
that for each t and each x ∈ At

fn,s(x) =
|{xi ; xi ∈ At}|

ns
. (30)

Devroye and Lugosi [DL01, DG85] consider the prob-
lem of finding L1-optimal histogram estimates. As in
the case of kernel estimates, they use the first n − m
sample points x1, . . . , xn−m to define the histogram esti-
mate fn−m,s, and the remaining points xn−m+1, . . . , xn

to define the empirical distribution h. Now, given a
set Θ to choose from, s∗ is defined to be the bin-width
such that fn−m,s∗ is the minimum distance estimate for
{fn−m,s ; s ∈ Θ} and h. If each width in Θ is 2k for
some integer k, Devroye and Lugosi [DL01] prove the
following about s∗.

Theorem 19 ([DL01], Theorem 10.3 and Lemma 10.5)
If Θ ⊆ {2i ; i ∈ Z} then for all n and m, with 0 < m ≤
n/2,

E
[

‖fn−m,s∗ − g‖1

]

≤

3 inf
s∈Θ

E
[

‖fn,s − g‖1

]

(

1 +
2m

n − m
+ 8

√

m

n

)

+8

√

log(2(m + 1)n2)

m
+

3

n
.

Once again, like kernel estimates, we can simply use
efficient minimum loss-weight instead of minimum dis-
tance. Now, define ŝ to be such that fn−m,ŝ is the effi-
cient minimum loss-weight estimate (Algorithm 4b) for
{fn−m,s ; s ∈ Θ} and h.

We state below the analogue of Theorem 19 for the
efficient minimum loss-weight estimate. The proof is the
same, except, one uses Theorem 8 instead of Theorem 3.

Theorem 20 If Θ is as in Theorem 19 then for all n
and m with 0 < m ≤ n/2,

E
[

‖fn−m,ŝ − g‖1

]

≤

3 inf
s∈Θ

E
[

‖fn,s − g‖1

]

(

1 +
2m

n − m
+ 8

√

m

n

)

+8

√

log(2(m + 1)n2)

m
+

3

n
.

Let us now consider the computational cost. For
each n, lets say we choose Θ to be {2i ; −N ≤ i ≤ N}
(where, e. g., N = n is a possible choice) so that we have
2N + 1 densities to select from. Define si = 2−N+i for
each 0 ≤ i ≤ 2N . The following lemma shows that we
need not actually pre-compute pairwise L1-distances in
the preprocessing step of Algorithm 4b.

Lemma 21 For any i ≤ k ≤ ℓ ≤ j,

‖fn,sℓ
− fn,sk

‖1 ≤ ‖fn,sj
− fn,si

‖1.

Proof :
We first prove that for any n and i < j,

‖fn,sj
− fn,si+1

‖1 ≤ ‖fn,sj
− fn,si

‖1, (31)



and
‖fn,sj−1

− fn,si
‖1 ≤ ‖fn,sj

− fn,si
‖1. (32)

In order to prove (31), consider any bin

At = [tsi+1, (t + 1)si+1) = [2tsi, 2(t + 1)si).

Denote the density of fn,sj
in this bin by µ, and that of

fn,si
in [2tsi, (2t+1)si), [(2t+1)si, (2t+2)si) respectively

by µ1, µ2. Clearly the density of fn,si+1
in At is µ1+µ2

2 .
However,

∫

At

|fn,sj
− fn,si

| = si(|µ − µ1| + |µ − µ2|)

≥ 2si

∣

∣

∣
µ − µ1 + µ2

2

∣

∣

∣

=

∫

At

|fn,sj
− fn,si+1

|.

Thus

‖fn,sj
− fn,si

‖1 =
∑

t

∫

At

|fn,sj
− fn,si

| ≥

∑

t

∫

At

|fn,sj
− fn,si+1

| = ‖fn,sj
− fn,si+1

‖1.

The proof of (32) is similar. The lemma now follows
by induction. �

So in each iteration of Algorithm 4b, the pair of den-
sities that are picked for comparison simply correspond
to the smallest and the largest bin-widths remaining to
be considered. In other words, if si and sj are respec-
tively the minimum and the maximum width remaining,
fn−m,si

is compared against fn−m,sj
.

Now let Tij denote, as usual, the test function for
fn−m,si

, fn−m,sj
. Now we analyze the time needed to

compute fn−m,si
· Tij and h · Tij . We first preprocess

x1, . . . , xn−m by sorting them (O(n log n) time). For
any x the value of Tij(x) can be computed in time
O(log n) (using binary search on x1, . . . , xn−m) and hence
h·Tij can be computed in O(m log n) time. We can com-
pute fn−m,si

·Tij in O(n) time (using one pass over the
array x1, . . . , xn−m).

Hence the efficient minimum loss-weight estimate re-
quires only O(N(n+m logn)+n logn) computations in
total. In contrast, modified minimum distance requires
O(N2(n+m logn)+n log n) and minimum distance re-
quires O(N3(n + m log n) + n log n), making efficient
minimum loss-weight the fastest of the three.

4 Randomized algorithm and mixtures

In this section we explore the following question: can
constant 3 be improved if we allow randomized algo-
rithms? Let f be the output of a randomized algorithm
(f is a random variable with values in F). We would
like to bound the expected error E

[

‖f − g‖1

]

, where
the expectation is taken only with respect to coin tosses
made by the algorithm (and not with respect to the
distribution of the samples).

If instead of randomization we consider algorithms
which output mixtures of densities in F we obtain a

related problem. Indeed, let α be the distribution on
F produced by a randomized algorithm, and let r =
∑

s∈F αss be the corresponding mixture. Then, by tri-
angle inequality, we have

‖r − g‖1 ≤ E
[

‖f − g‖1

]

.

Hence the model in which the output is allowed to be a
mixture of densities in F is “easier” than the model in
which the density selection algorithm is randomized.

We consider here only the special case in which F
has only two densities f1, f2, and give an randomized
algorithm with a better guarantee than is possible for
deterministic algorithms. Later, in Section 5, we give a
matching lower bound in the mixture model.

To simplify the exposition we will, without loss of
generality, assume that ‖f1 − f2‖1 > 0. Thus for any h
we have (f1 − h) · T12 + (h− f2) · T12 = ‖f1 − f2‖1 > 0.

Algorithm 5 - Randomized estimate.
Let

r =
|(f1 − h) · T12|
|(f2 − h) · T12|

.

With probability 1/(r+1) output f1, otherwise output
f2.

(By convention, if |(f2−h)·T12| = 0 then we take r = ∞
and output f2 with probability 1).

Theorem 22 Let F = {f1, f2}. Let f ∈ F be the den-
sity output by Algorithm 5. Then

E
[

‖f − g‖1

]

≤ 2 d1(g,F) + ∆,

where the expectation is taken only with respect to the
coin tosses made by the algorithm.

Proof :
Without loss of generality assume that

f2 = argminf∈F‖f − g‖1.

First we bound the error of f1 and later use it to bound
the error of f . We have, by triangle inequality,

‖f1 − g‖1 ≤ ‖f1 − f2‖1 + ‖f2 − g‖1.

We can bound ‖f1 − f2‖1 as follows

‖f1 − f2‖1 = (f1 − f2) · T12

≤ |(f1 − h) · T12| + |(f2 − h) · T12|
= (r + 1)|(f2 − h) · T12|

≤ (r + 1)|(f2 − g) · T12| + (r + 1)|(g − h) · T12|.
Thus,

‖f1 − g‖1 ≤ (r + 2)‖f2 − g‖1 + (r + 1)∆. (33)

Hence

E
[

‖f − g‖1

]

=
1

r + 1
‖f1 − g‖1 +

r

r + 1
‖f2 − g‖1

≤ 2‖f2 − g‖1 + ∆

where in the last inequality we used (33). �



5 Lower bound examples

In this section we construct an example showing that
deterministic density selection algorithms based on test-
functions cannot improve on the constant 3, that is,
Theorems 2, 3, 4, 8 are tight. For algorithms that out-
put mixtures (and hence randomized algorithms) the
example yields a lower bound of 2, matching the con-
stant in Theorem 22.

Lemma 23 For every ε′ > 0 there exist distributions
f1, f2, and g = h such that

‖f1 − g‖1 ≥ (3 − ε′)‖f2 − g‖1,

and f1 · T12 = −f2 · T12 and h · T12 = 0.

Before we prove Lemma 23 let us see how it is ap-
plied. Consider the behavior of the algorithm on empir-
ical distribution h for F = {f1, f2} and F ′ = {f ′

1, f
′
2},

where f ′
1 = f2 and f ′

2 = f1. Note that T ′
12 = T21 = −T12

and hence

f ′
1 · T ′

12 = −f ′
2 · T ′

12 = f1 · T12 = −f2 · T12.

Moreover, we have h · T12 = h · T ′
12 = 0. Note that all

the test-functions have the same value for F and F ′.
Hence a test-function based algorithm either outputs f1

and f ′
1, or it outputs f2 and f ′

2 = f1. In both cases it
outputs f1 for one of the inputs and hence we obtain
the following consequence.

Corollary 24 For any ε > 0 and any deterministic
test-function based algorithm there exist an input F and
h = g such that the output f1 of the algorithm satisfies
‖f1 − g‖1 ≥ (3 − ε)d1(g,F).

Proof of Lemma 23:
Consider the following probability space consisting of of
4 atomic events A1, A2, A3, A4:

A1 A2 A3 A4

f1 0 1/4 + ε 1/2 1/4 − ε
f2 1/2 + ε 1/4 − ε 0 1/4

g = h 1/2 1/2 0 0
T12 −1 1 1 −1

Note that we have f1 · T12 = −f2 · T12 = 1
2 + 2ε, and

‖f1 − g‖1 = 3
2 − 2ε, ‖f2 − g‖1 = 1

2 + 2ε. The ratio
‖f1 − g‖1/‖f2 − g‖1 gets arbitrarily close to 3 as ε goes
to zero. �

Consider f1 and f2 from the proof of Lemma 23. Let
f = αf1 +(1−α)f2 where α ≥ 1/2. For 0 < ε < 1/4 we
have ‖f − g‖1 = 1/2+ α− 2εα ≥ 1− 2ε. By symmetry,
for one of F = {f1, f2} and F ′ = {f ′

1, f
′
2} (with f ′

1 = f2

and f ′
2 = f1), the algorithm outputs αf1 + (1 − α)f2

with α ≥ 1/2, and hence we obtain the following.

Corollary 25 For any ε > 0 and any deterministic
test-function based algorithm which outputs a mixture
there exist an input F and h = g such that the output
f of the algorithm satisfies ‖f − g‖1 ≥ (2 − ε)d1(g,F).

Thus for two distributions the correct constant is
2 for randomized algorithms using test-functions. For
larger families of distributions we do not know what the
value of the constant is (we only know that it is from
the interval [2, 3]).

Question 26 What is the correct constant for deter-
ministic test-function based algorithm which output a
mixture? What is the correct constant for randomized
test-function based algorithms?

Next we construct an example showing that 9 is the
right constant for Algorithm 1.

Lemma 27 For every ε′ > 0 there exist probability dis-
tributions f1, f2, f3 = f ′

3 and g such that

‖f1 − g‖1 ≥ (9 − ε′)‖f2 − g‖1,

yet the Algorithm 1, for F = {f1, f2, f3, f
′
3}, even when

given the true distribution (that is, h = g) outputs f1.

Proof :
Consider the following probability space with 6 events
A1, . . . , A6 and f1, f2 and g with the probabilities given
by the following two tables:

A1 A2 A3

g = h 2/3 − 21ε 1/9 − 2ε 9ε
f1 0 18ε 2/3 − 12ε
f2 2/3 − 30ε 0 0
f3 2/3 − 21ε 9ε 9ε
T12 -1 1 1
T13 -1 1 1
T23 -1 -1 -1

A4 A5 A6

g = h 0 2/9 + 14ε 0
f1 2/9 − 13ε 9ε 1/9 − 2ε
f2 0 2/9 + 14ε 1/9 + 16ε
f3 2/9 − 4ε 0 1/9 + 7ε
T12 1 -1 -1
T13 -1 1 -1
T23 -1 1 1

Note that we have

f1 · T12 = 7/9 − 14ε, h · T12 = −7/9 + 14ε,

f2 · T12 = −1, f1 · T13 = 1/3 + 30x,

h · T13 = −1/3 + 42x, f3 · T13 = −1 + 36x,

f2 · T23 = −1/3 + 60x, h · T23 = −5/9 + 28x,

f3 · T23 = −7/9 + 14x.

Hence f1 wins over f3, f3 wins over f2, and f2 wins over
f1. Since f3 = f ′

3 we have that f1 is the tournament
winner. Finally, we have ‖f1 − g‖1 = 2− 72ε and ‖f2 −
g‖1 = 2/9+32ε. As ε → 0 the ratio ‖f1−g‖1/‖f2−g‖1

gets arbitrarily close to 9. �



References

[DG85] Luc Devroye and László Györfi. Nonparamet-
ric density estimation: the L1 view. Wiley
series in probability and mathematical statis-
tics. John Wiley & Sons, New York, 1985.

[DGL02] Luc Devroye, László Györfi, and Gábor Lu-
gosi. A note on robust hypothesis testing.
IEEE Transactions on Information Theory,
48(7):2111–2114, 2002.

[DL96] Luc Devroye and Gábor Lugosi. A univer-
sally acceptable smoothing factor for kernel
density estimates. Ann. Statist., 24(6):2499–
2512, 1996.

[DL97] Luc Devroye and Gábor Lugosi. Nonasymp-
totic universal smoothing factors, kernel com-
plexity and Yatracos classes. Ann. Statist.,
25(6):2626–2637, 1997.

[DL01] Luc Devroye and Gábor Lugosi. Combinato-
rial methods in density estimation. Springer
Series in Statistics. Springer-Verlag, New
York, 2001.

[DL04] Luc Devroye and Gábor Lugosi. Bin width se-
lection in multivariate histograms by the com-
binatorial method. Test, 13:1–17, 2004.

[Ind06] Piotr Indyk. Stable distributions, pseudoran-
dom generators, embeddings, and data stream
computation. Journal of the ACM, 53(3):307–
323, 2006.

[LHC07] Ping Li, Trevor J. Hastie, and Kenneth W.
Church. Nonlinear estimators and tail bounds
for dimension reduction. Journal of Machine
Learning Research, 8:2497–2532, 2007.

[MŠ08] Satyaki Mahalanabis and Daniel
Štefankovič. Approximating l1-distances
between mixture distributions us-
ing random projections. arXiv.org,
http://arxiv.org/abs/0804.1170, April
2008.

[Sch47] Henry Scheffé. A useful convergence theo-
rem for probability distributions. Ann. Math.
Statistics, 18:434–438, 1947.

[VČ71] Vladimir N. Vapnik and Alexey J.
Červonenkis. The uniform convergence
of frequencies of the appearance of events
to their probabilities. Teor. Verojatnost. i
Primenen., 16:264–279, 1971.

[Wol57] Jacob Wolfowitz. The minimum distance
method. The Annals of Mathematical Statis-
tics, 28:75–88, 1957.

[Yat85] Yannis G. Yatracos. Rates of convergence
of minimum distance estimators and Kol-
mogorov’s entropy. Ann. Statist., 13(2):768–
774, 1985.


