
Optimal Strategies from Random Walks

Jacob Abernethy∗
Division of Computer Science

UC Berkeley
jake@cs.berkeley.edu

Manfred K. Warmuth†
Department of Computer Science

UC Santa Cruz
manfred@cse.ucsc.edu

Joel Yellin
Division of Physical and

Biological Sciences
UC Santa Cruz

yellin@soe.ucsc.edu

Abstract

We analyze a sequential game between a Gam-
bler and a Casino. The Gambler allocates bets
from a limited budget over a fixed menu of gam-
bling events that are offered at equal time intervals,
and the Casino chooses a binary loss outcome for
each of the events. We derive the optimal min-max
strategies for both participants. We then prove that
the minimum cumulative loss of the Gambler, as-
suming optimal play by the Casino, is exactly a
well-known combinatorial quantity: the expected
number of draws needed to complete a multiple
set of “cards” in the generalized Coupon Collec-
tor’s Problem. We show that this quantity and the
optimal strategy of the Gambler can be efficiently
estimated from a simple random walk.

1 Introduction
This paper analyzes the problem of sequential prediction and
decision making from the perspective of a two player game.
The game is played by a learner, called here the Gambler,
who makes a sequence of betting decisions. The Gambler’s
opponent is the Casino in which he plays.

Gambler vs. Casino:
1. On each day, the Gambler arrives at the Casino with $1.

The Casino presents n events and each event is played
once per day. The Gambler chooses a distribution vec-
tor w ∈ [0, 1]n, where

∑
wi = 1, and bets the portion

wi of his $1 budget on event i.

2. On each day the Casino determines the outcome of each
event with the objective of winning as much money
from the Gambler as possible. In particular, after ob-
serving the distribution of the Gambler’s bets the Casino
decides between a loss or a no loss for all daily events.
These choices are summarized by a loss vector ` ∈
{1, 0}n where `i = 1 implies that on event i, the Gam-
bler lost. (For simplicity, we assume the only relevant
quantities are losses. By shifting our baseline we can
model wins as non-losses).

∗Supported by DARPA grant FA8750-05-2-0249 and NSF grant
DMS-0707060.

†Supported by NSF grant CCR 9821087.

3. At the end of each day, the Gambler leaves the Casino
having lost w · ` =

∑
i wi`i and the cumulative loss of

the gambler is updated as L← L+w · `. The Gambler
also monitors the cumulative performance of each event
with a state vector s ∈ Nn, where si is the current total
loss of event i. After incurring loss ` at the current day,
the state vector is updated to s← s + `.

4. The Gambler stops playing as soon as he observes that
each even has suffered more than k losses, where k is
some fixed positive integer known to both. The Casino
is aware of this decision and behaves accordingly.

Gambling against a casino may seem an unlikely start-
ing point for a model of sequential decision making – we
generally consider the typical environment for learning to be
stochastic rather than adversarial. Yet are these two envi-
ronments necessarily incompatible? Among the objectives
of this paper is to address questions such as: “What will be
the Gambler’s worst-case cumulative loss?”; and “What is
the optimal betting strategy?” These questions, while clearly
game-theoretic, are ultimately answered here by considering
a randomized Casino rather than an adversarial one. From
this perspective, randomness may indeed be the Gambler’s
worst adversary.

Early work on sequential decision making focused on the
problem of predicting a binary outcome given advice from a
set of n experts. In that setting, the goal of the predictor is to
combine the predictions of the experts to make his own pre-
diction, with the objective of performing well, in hindsight,
compared to the best expert. The performance of both the
learner and the experts is measured by a loss function that
compares predictions to outcomes. One of the early algo-
rithms, the Weighted Majority algorithm [LW94], utilizes a
distribution corresponding to the degree of trust in each ex-
pert.

It was observed by Freund and Schapire [FS97] that the
analysis of the Weighted Majority algorithm can be applied
to the so-called hedge setting. Rather than predict a binary
outcome, the learner now plays some distribution over the
experts on every round, a loss value is assigned to each ex-
pert independently, and the learner suffers the expected loss
according to his chosen distribution. In this case, the learner
bears the exact burden of the Gambler - that of “hedging” his
bets so as to minimize his cumulative loss. To emphasize that
the Gambler/Casino game is useful for settings other than
prediction, we use the term “event” rather than “expert”.

A central theme of much of the sequential decision mak-
ing literature is the use of so-called “exponential weights” to
determine the learner’s distribution on each round. Use of
the exponential weighting scheme in the case of the Casino
game results in the following strategy for the Gambler: At a
state s, bet

wi =
βsi∑
j βsj

on event i, (1)

where the factor β lies in [0, 1).
From the analysis of the Weighted Majority algorithm it

follows that the cumulative loss of the Gambler using the
above strategy is bounded by

lnn + k ln 1
β

1− β
.

Under the assumption that the loss of the best event is at most
k, the factor β can be tuned [FS97] so that the above bound
becomes

k +
√

2k lnn + lnn.

The exponential weights framework, as well as other on-
line learning techniques, can be motivated using the method
of relative entropy regularization [KW99]. While the result-
ing algorithms are elegant and in some cases can be shown
to be asymptotically optimal [CBFHW96], they do not opti-
mally solve the underlying game. Some improvements have
been made using, for example, binomial weights that lead to
slightly better but still non-optimal solutions [CBFHW96]
in a setting where the experts must produce a prediction.
While it is formally easy to define the optimal algorithms
using minimax expressions, it has generally been assumed
that actually computing an efficient solution is quite chal-
lenging [CBFH+97]. More recently, however, a minimax
result [ALW07] was obtained for the specific game of pre-
diction with absolute loss. The resulting algorithm, Binning,
is efficient and optimal in a slightly relaxed setting.

In this paper we show that the minimax solution to the
Gambler/Casino prediction game, which is identical to the
underlying game of the hedge setting with binary losses, can
be obtained efficiently. In addition, the game can be fully
analyzed using a simple Markov process: a random walk on
an n-dimensional lattice. The value of the game, that is the
cumulative loss of an optimal Gambler, can be interpreted as
the expected length of such a random walk. The Gambler’s
optimal play, the portion of his budget he should bet on a
given event, can similarly be interpreted as manifesting an
assessment of the probability of a specific random outcome
of this walk.

The game’s stopping criterion, that is when all events
have lost at least k + 1 times, may seem unusual at first yet
fits quite naturally within the experts framework. Indeed,
online learning bounds are often tuned with an explicit a
priori knowledge of the cumulative loss of the best expert,
which here would be k1. While perhaps not realistic in prac-

1Strictly speaking, in the expert setting it is assumed that at
least one expert has not crossed the k-mistake threshold, while here
we stop the Gambler/Casino game when the loss of the last ex-
pert/event goes beyond this threshold. It is easy to show that this
slight modification, made for convenience, increases the worst-case
loss of the Gambler by exactly 1.

tice, k can be estimated and various techniques such as suc-
cessive doubling can be used to obtain near-optimal bounds
[CBFH+97].

The paper is structured as follows. In Section 2 we give a
minimax definition of the optimal value of the game consid-
ered here. In Section 2.1 we modify the game by restricting
the adversary’s choices to unit loss vectors. In Section 3,
we then turn our attention to a specific Markov process with
a number of relevant properties. We apply this randomized
approach to the Casino game in Section 4, where we prove
our main results. In Section 5 we give recurrences and exact
formulas, based on sums over multinomials, for the value of
the game and for the optimal probabilities. We set out an
efficient method to compute both the optimal strategy of the
Gambler and the value of the game. In Section 6 we com-
pare the optimal regret bound to previous results, and in Sec-
tion 7 we draw a connection between our game and a well
studied version of the coupon collector problem. We also
briefly summarize what is known about the asymptotics of
this problem. We conclude with a discussion of our results
and list open problems (Section 8).

2 The Value of the Game
Assume that in each event the Gambler has already suffered
some losses specified by state vector s. Define V (s) to be
the total money lost by an optimal Gambler playing against
an optimal Casino starting from the state s. That is, V (s)
is the amount of money that the optimal Gambler will lose
(against an optimal Casino) from now until the end of the
game. Roughly speaking, the value of the game is computed
as:

V (s) ?= min
dist. w

max
`∈{0,1}n

w · ` + V (s + `)

The Gambler chooses w to minimize the loss while the Casino
chooses ` to maximize the loss, where the loss is computed
as the loss w·` on this round plus the worst case loss V (s+`)
on future rounds. However, we have to be careful, as this re-
cursive definition doesn’t address the following issues:

• When is the game over? What is the base case of V (·)?

• Is this recursion bounded?

• Do we need to record the losses si that go above k?

We address these issues beginning with some simplifica-
tions and notational conventions. First, we assume that the
state vector s lies within the set S = {0, 1, . . . , k+1}n. Note
that it is not necessary to record the losses of events that have
already crossed the k threshold. We call such events dead.
Since the losses of dead events are not restricted, having loss
k + 3 is the same as loss k + 100. We therefore “round” all
states s into the state space {0, 1, . . . , k + 1}n using the no-
tation +̇ which we define below. We use the notation λ(s) to
record the set of live events; the statement i /∈ λ(s) is exactly
the statement si = k + 1.

Second, as the game is defined recursively, we must guar-
antee that this recursion terminates. If the Casino repeatedly
chose ` = 〈0, . . . , 0〉, for example, the game would make
no progress. The same problem occurs if the Casino causes

losses on only dead events. We must therefore place addi-
tional restrictions so that the dead state is reached eventu-
ally. The simplest way to ensure this is to forbid the Casino
from inflicting loss on only dead events. Yet this is not suf-
ficient: with this restriction alone the Gambler would have
a guaranteed non-losing strategy by betting solely on dead
events. We thus assume that neither can the Casino can in-
flict losses on dead events nor can the Gambler bet money on
them (keeping in mind that all such bets are in any case non-
optimal). We must enforce this explicitly in order to have a
well-defined game.

We use two notational conventions to describe the above
restrictions. First, we write w ∼ λ(s) to describe the set
{w ∈ ∆n | wi = 0 ∀i /∈ λ(s)} where ∆n is the n-simplex.
We also abuse notation slightly and write ` ⊂ λ(s) to mean
that ` ∈ {0, 1}n and `i = 0 for all i /∈ λ(s).

We now define the value of the game precisely.

Definition 1 Define the value V (s) of the game as follows.

• At the dead state, V (d) := 0.

• For any other s ∈ S, we define V (s) recursively as

V (s) := min
w∼λ(s)

max
0 6=`⊂λ(s)

w · ` + V (s + `). (2)

In our notation, we commonly make use of several spe-
cial states. The state where the game begins is the “initial”
state, s = 0. Once all events have lost more than k times
the game is over and we refer to this as the dead state d. It
will also be useful to consider one-live states oi, where all
events except i are dead, and the remaining event has exactly
k losses. By the game definition, it is easy to check that
V (oi) = 1, since the Gambler must bet all of his money on
this event, and the Casino must inflict a corresponding loss,
charging the Gambler $1 and ending the game.

Below, we include a list of notations for reference:

Notation:

S :={0, . . . , k + 1}n (the state space)
0 := 〈0, 0, . . . , 0〉 = 〈0n〉 (the initial state)
d := 〈(k + 1)n〉 (the dead state)
oi := d− ei (ith one-live state)

λ(s) := {i ∈ [n] : si ≤ k} (set of live events)

s+̇` := 〈min(si + `i, k + 1)〉 (“rounded” addition)

|s| :=
∑

si (elementwise sum)

∆n := {w ∈ Rn
+ : |w| = 1} (the n-simplex)

2.1 The Modified Game
We also consider a modified game that we make easier for
the Gambler. In this new game, we restrict the Casino to
inflict loss on exactly one event in each round, i.e. ` must be
a basis vector e1, . . . , en. So for ` = ei we have w · ` = wi.
We can then precisely define the value V̂ (·) of the modified
game:

Definition 2 Define V̂ (d) := V (d) = 0. Otherwise

V̂ (s) := min
w∼λ(s)

max
i∈λ(s)

wi + V̂ (s + ei). (3)

One of the central results of this paper is that the above game,
while seemingly more restricted, is ultimately just as difficult
for the Gambler as the original game. It is easy to show that
V (s) ≥ V̂ (s), since the Casino has strictly more choices in
the original game. We go further and prove as our main result
in Theorem 12 that

V (s) = V̂ (s).

Thus both games have the same worst-case outcome.
Both the analysis of the modified game, as well as the

proof of the above result, requires a different formulation of
the Casino’s actions.

3 A Randomized Casino
In Section 2 we presented a game-theoretic analysis of a
well-known sequential prediction problem characterized as
a game between a Gambler and a Casino. In the present sec-
tion, we consider a different framework, in which the Casino
uses random events. We will show that introducing a ran-
domized strategy of the Casino enables us to specify the op-
timal strategy of the Gambler.

3.1 A Random Walk on the State Graph
Let us now imagine that our Casino does not fix outcomes
deterministically, but instead chooses the outcome of each
event using the following random process. Assume we are at
state s and that, on each day, an event i is chosen uniformly
at random from {1, . . . , n} and a loss is assigned to event
i. In other words, the loss vector ` is a uniformly sampled
unit vector ei, and after the loss the new state is s+̇ei. This
process continues until we reach the dead state d.

We can model this behavior as a Markov process on the
state space as follows. Consider any sequence of indices
I1, I2, . . . ∈ [n], and let St :=

∑t
m=1 eIm

, where S0 := 0.
Assuming that we start at state s, this induces a sequence of
states

s = s+̇S0 → s+̇S1 → s+̇S2 → . . .→ s+̇St.

Notice that this process has “self-loops”; i.e. it is quite pos-
sible that s+̇St = s+̇St+1. This occurs when (s+̇St)It+1 is
already at k + 1.

If we imagine the state space S as an n-dimensional lat-
tice, which we will call the state lattice, then the Markov
process above can be interpreted as a random walk on this
lattice. The walker starts at the initial state 0, and on every
time interval a positively directed single step is taken along
an axis drawn uniformly at random. If the walker has already
reached the k + 1 boundary in this dimension, he remains in
place. The walk stops once the dead state d is reached. We
will show that the value V is 1/n times the expected total
number of random draws that achieves this position. Thus V
is the expected walk/path length from s to d.

3.2 Survival Probabilities
We now define a survival probability at a state s. We will
show in the next section that such probabilities are the basis
for the Gambler’s optimal strategy.

Definition 3 Assume we are at state s, and let the random
state s+̇St be the result of the above random walk after t

steps. Define the ith survival probability p̂i(s) to be the prob-
ability that

∃t : s+̇St = oi.

Equivalently,

p̂i(s) = Pr(λ(s+̇St) = {i} for some t).

We call these survival probabilities since p̂i(s) is the prob-
ability that, if the losses were assigned randomly to the events
in sequence, the ith event would be the last non-dead event.

Lemma 4 For any s 6= d, the vector

p̂(s) := 〈p̂i(s)〉ni=1

defines a distribution on {1, . . . , n}.
Proof: The quantity

∑
i p̂i(s) is the probability that eventu-

ally there is exactly one live event. This probability is exactly
1, given that the current state is not the dead state d.

We list some examples of survival probabilities:

• When s = 0 (or any other symmetric state), we have

p̂i(s) =
1
n

, ∀i

bexause there is a uniform chance of survival.

• When i is a dead event, i.e. si = k + 1, then

p̂i(s) = 0

because no dead event can be the last remaining live
event.

• If there is only one remaining live event, i.e. λ(s) =
{i}, then

p̂i(s) = 1.

Computing p̂i(s) for more general s requires a recursion, and
we leave this discussion for Section 5.

3.3 Expected Path Lengths
Another important quantity we consider is the length of a
random path, i.e. the number of steps in the random walk on
the state lattice required until the dead state d is reached.

Definition 5 For a sequence S0, S1, . . ., let

T (s) := min{t ≥ 0 : s+̇St = d}.
That is, T (s) is the length of the random path starting at s
and just entering d. Furthermore, let

τ(s) := E T (s)

be the expected path length.

We note that paths may be infinitely long due to self-loops,
yet such paths occur with probability 0. A key fact is that the
expected path length τ(s) can be rewritten using indicator
variables:

T (s) =
∞∑

t=0

1[s+̇St 6= d], (4)

i.e. T (s) is the number of initial segments (including the
empty segment) of a random path starting at s that has not
reached the dead state d.

We now prove a relationship between expected path length
τ(s) and survival probabilities p̂i(s):

Lemma 6 For any state s and event i,

p̂i(s) =
1
n

(τ(s)− τ(s+̇ei)).

Proof: When i /∈ λ(s), then s = s+̇ei and it is trivially true
that

p̂i(s) = 0 =
1
n

(τ(s)− τ(s+̇ei)).

The interesting case is when i ∈ λ(s). Indeed, Using (4), we
have

τ(s)− τ(s + ei)
= E T (s)− E T (s + ei)

= E

[∞∑
t=0

1[s+̇St 6= d]− 1[(s + ei)+̇St 6= d]

]
.

Since the dead state d is an absorbing state we have that
for any path S, if s+̇S = d, then s + ei+̇S = d as well.
Equivalently, if (s + ei)+̇S 6= d, then s+̇S 6= d. Thus
in the difference between the expectations, we only need be
concerned with sequences St that are accounted for in the
first expectation but not in the second. Therefore the above
difference becomes

= E

[∞∑
t=0

1[(s+̇St 6= d) ∧ ((s + ei)+̇St) = d]

]
.

We claim that any sequence St that satisfies the conjunction
must have the property that (St)i = k − si. This is true
because (s + ei)+̇St = d and therefore (St)i ≥ k + 1− si.
Also (St)j ≥ k + 1 − sj , for j 6= i. This implies that
s+̇St = oi and the above difference becomes

E
[∑∞

t=0 1[s+̇St = oi]
]
.

The last term is exactly p̂i(s), the probability that s+̇St even-
tually arrives at oi, times the expected number of iterations
spent in state oi before arriving at d. To leave oi, the ran-
dom walk must make a step in the ith direction, and thus the
expected “waiting time” at oi is can be computed as

∞∑
q=1

q (1− 1
n

)q−1︸ ︷︷ ︸
prob. of q − 1 loops

1
n︸︷︷︸

prob. of leaving

= n.

The last lemma implies an important fact about the state
lattice. Interpret the state lattice as a directed graph with
directed edges at all pairs (s, s + ei) for each i ∈ λ(s). Also
associate the edge (s, s + ei) with the survival probability
p̂i(s). Consider starting at state s and walking through this
directed graph:

s→ s + ei1 → s + ei1 + ei2 → . . .

Corollary 7 Consider any two states s, s′. For any path
from s to s′ through the directed state graph, the sum of
all edge weights p̂i(·) along this path is independent of the
choice of path.

Proof: Assume the path s = s1, s2, . . . , sT , sT+1 = s′ de-
fined by a sequence of moves is i1, i2, . . . , iT , where st+1 =
st + eit . By Lemma 6 the total weight sum is

T∑
t=1

p̂it(s
t) =

T∑
t=1

1
n

(τ(st)− τ(st+1)) =
1
n

(τ(s)− τ(s′)),

which is independent of the choice of path.

Note that in the definition of the directed state graph
above and in the corollary we ignore loops, which occur
when s = s+̇ei (or equivalently i /∈ λ(s)). Such loops out
of state s are immaterial because they correspond to dead
events, and i /∈ λ(s) iff p̂i(s) = 0.

4 The Optimal Strategy

We now have the all the tools to express V̂ (s) in terms of
the expected path length τ(s), prove that V (s) = V̂ (s), and
show that the optimal betting strategy for the gambler is p̂(s).

We prove two major theorems in this section. We pro-
vide the mathematically precise argument for each but, as
formality often obscures the true intuition, we also provide
an “English Version” so that the reader sees a rough sketch.
Our mathematical proofs require induction on the state space
S, so we need a “measure of progress” for state vectors s.
For any s ∈ S, define m(s) := n(k + 1) − |s|, the num-
ber of steps required before reaching the dead state. Clearly
m(s) = 0 if and only if s = d.

Theorem 8 For all states s,

V̂ (s) =
1
n

τ(s).

Proof: (English Version) Assume that the Gambler always
plays according to the distribution vector p̂(s). Then we may
think of the Casino’s choices as a walk around the state graph
and, as we discussed at the end of Section 3, a collection of
the “weights” p̂i(·) along the way, ending at d. But as we
proved in Corollary 7 for the weights p̂(.), it doesn’t matter
what path is taken: the Casino will always receive 1

n (τ(s)−
τ(d)) = 1

nτ(s) on any path from s that just ended in d.
If the Gambler ever chooses a distribution w different

from p̂(s) at some state s, then the Casino can simply let
` = ej for any j for which wj > p̂j(s), and on this round
the casino will force loss greater than p̂j(s). This means that
on some path starting from s, the Casino will accrue total
weight/loss larger than 1

nτ(s), and therefore that the distri-
bution w at s was non-optimal for the Gambler. We conclude
that for the Gambler p̂(.) is the only optimal assignment of
distributions to states.

Proof: (Formal Version) We induct on m(s). First we check
the base case s = d. In this case, the expected path length is
exactly 0 since we have already reached the dead state. Thus
τ(s)

n = 0 = V̂ (d) as desired.

Now assume that m(s) > 0. Then

V̂ (s) = min
w∼λ(s)

max
i∈λ(s)

wi + V̂ (s + ei)

(induc.) = min
w∼λ(s)

max
i∈λ(s)

wi +
1
n

τ(s + ei)

≤ max
i∈λ(s)

p̂i(s) +
1
n

τ(s + ei)

(Lem. 6) = max
i

1
n

(τ(s)− τ(s + ei)) +
1
n

τ(s + ei)

=
1
n

τ(s).

We prove V̂ (s) ≥ 1
nτ(s) by a similar induction. Assume

that the Gambler chooses the optimal distribution w∗ which
may indeed be different from p̂(s). For any i /∈ λ(s), p̂i(s)
is defined as zero. For the optimal strategy w∗

i = 0 as
well because otherwise the Casino can incurr unbounded loss
by playing ei repeatedly. Since w∗ and p̂(s) are different
distributions on the live events λ(s), there must exist some
j ∈ λ(s) for which w∗

j > p̂j(s). We now have

V̂ (s) = max
i∈λ(s)

w∗
i + V̂ (s + ei)

(induc.) = max
i∈λ(s)

w∗
i +

1
n

τ(s + ei)

≥ w∗
j +

1
n

τ(s + ei)

> p̂j(s) +
1
n

τ(s + ei)

(Lem.6) =
1
n

(τ(s)− τ(s + ei)) +
1
n

τ(s + ei)

=
1
n

τ(s).

Corollary 9 For any s 6= d, p̂(s) is the unique optimal prob-
ability vector for the learner for the game related to V̂ .

Proof: See end of last proof.

Corollary 10 For all s and all i ∈ [n],

p̂i(s) = V̂ (s)− V̂ (s+̇ei)

Proof: This follows from the previous theorem and Lemma
6.

We need one more lemma before we can prove our main
result.

Lemma 11 For any state s and distinct events i, j ∈ λ(s),
we have

p̂i(s) < p̂i(s + ej).

This fact is intuitive: if losses are randomly assigned then
the probability that the ith event will survive last strictly in-
creases when another event suffers a loss. We prove this
precisely below.

Proof: To show that p̂i(s) ≤ p̂i(s + ej) is straightforward.
Any sequence S0, S1, S2, . . . that brings s to the one-live
state oi also brings s + ej to oi. Indeed, if s+̇St = oi

for some t then certainly (s + ej)+̇St = oi as well.
To show that this inequality is strict, we need only find

one random sequence for which s+ej is brought to oi but not
s. Take any sequence S0, S1, . . . such that s+̇St = d− ei −
ej (where the only events remaining are i and j) and where
St+1 = St + ei. Then (s + ej)+̇St = oi but s+̇St+1 =
s+̇(St + ei) = oj .

Theorem 12 For all states s,

V (s) = V̂ (s) =
1
n

τ(s).

Proof: (English Version) Imagine a gambler who plays the
distribution p̂(s) at every state s. We already know that the
Casino can use its modified game strategy and simply play
unit vectors ` = ei on each round to force 1

nτ(s) loss. Yet
since ` is unrestricted, can it obtain more? The answer is
No: consider what happens if the Casino decides to choose `
larger than a unit vector, e.g. let ` = ei + ej for simplicity.
Then on this round it obtains p̂i(s) + p̂j(s), but it can do
better! We proved in Lemma 11 that survival probabilities
strictly increase and therefore p̂i(s) < p̂i(s + ej). Thus,
a more patient Casino could choose ` = ej on this round,
obtain p̂j(s), and then choose ` = ei on the next round to
obtain p̂i(s+ej). As p̂j(s)+ p̂i(s+ej) > p̂j(s)+ p̂i(s), the
Casino only does worse by playing non-unit vectors. Indeed,
this suggests that the Gambler has a strategy by which the
Casino can inflict only as much loss as in the modified game,
and thus the value V (s) is no different from V̂ (s).

Proof: (Formal Version) Certainly V (s) ≥ V̂ (s), since the
Casino is given strictly fewer choices in the modified game.
Thus we are left to show that V (s) ≤ V̂ (s). We proceed
via induction on m(s). By definition, V (s) = V̂ (s) for the
case s = d. Now assume that, for all successive states s′

where m(s′) < m(s), V (s′) = V̂ (s′). We proceed by di-
rectly analyzing the recursive definition (2). Assume that the
Gambler has chosen the (possibly non-optimal) distribution
w = p̂(s) to distribute his wealth on the live events λ(s), and
let `∗ ∈ {0, 1}n be an optimal choice of the Casino (which
can depend on the Gambler’s choice). By definition (1) of
V (s), the chosen loss vector can’t be 0 and all events with
loss one must be in λ(s). More precisely,

V (s) = min
w∼λ(s)

max
0 6=`⊂λ(s)

w · ` + V (s + `)

(ind.) = min
w∼λ(s)

max
0 6=`⊂λ(s)

w · ` + V̂ (s + `)

≤ max
0 6=`⊂λ(s)

p̂(s) · ` + V̂ (s + `)

= p̂(s) · `∗ + V̂ (s + `∗)

If `∗ is any unit vector ei, s.t. i ∈ λ(s), then

V (s) ≤ p̂(s) · ei + V̂ (s + ei)

= p̂i(s) + V̂ (s + ei) = V̂ (s)

and in this case, V (s) = V̂ (s) and we are done. We now
prove by contradiction that `∗ can have no more than one
non-zero coordinate. Assume indeed that |`∗| > 1, i.e. it
admits a decomposition `∗ = ei +¯̀ for some i and bit vector
¯̀ 6= 0 with ¯̀

i = 0. Applying Lemma 11 repeatedly, we have
that p̂i(s) < p̂i(s + ¯̀) and therefore

p̂(s) · `∗ + V̂ (s + `∗)

= p̂i(s) + p̂(s) · ¯̀ + V̂ (s + `∗)

(Lem. 11) < p̂i(s + ¯̀) + p̂(s) · ¯̀ + V̂ (s + `∗)

(Cor. 10) = V̂ (s + ¯̀)− V̂ (s + `∗) + p̂(s) · ¯̀ + V̂ (s + `∗)

= p̂(s) · ¯̀ + V̂ (s + ¯̀).

But the statement p̂(s) ·`∗+ V̂ (s+`∗) < p̂(s) · ¯̀+ V̂ (s+¯̀)
implies `∗ is a non-optimal choice for the Casino and this
contradicts our assumption that `∗ was optimum.

Corollary 13 For any s 6= d, if the learner plays with the
optimum probability vector p̂(s), then the only optimal re-
sponses of the adversary in the recurrence (2) for V is to
choose a unit vector of a live event.

Proof: Proved at the end of the last theorem.

5 Recurrences, Combinatorics and
Randomized Algorithms

The quantities V (s), τ(s) and p̂i(s) have a number of inter-
esting properties that we lay out in this section.

5.1 Some Recurrences
The expected path length, τ(s) satisfies a very natural recur-
sion. When s = d, then the path length is deterministically 0
and therefore τ(d) = 0. Otherwise, we see that the expected
path length is

τ(s) = 1 +
∑n

i=1 τ(s+̇ei)
n

. (5)

That is, the expected path length is 1, for the current step in
the path, plus the expected path length of the next random
state. Since the next state is chosen randomly from the set
{s+̇ei : i = 1, . . . , n}, the probability of any given state is
1
n , hence the normalization factor.

Of course, our original quantity of interest is V (s), and as
we showed in Theorem 12 V (s) = 1

nτ(s). This immediately
gives us a recursion for V :

V (s) =
1
n

(
1 +

1
n

n∑
i=1

τ(s+̇ei)

)

=
1 +

∑n
i=1 V (s+̇ei)

n
.

This recurrence, while true for the function V (·), is ambigu-
ous because V (s) can occur on both sides of the equation.
Indeed, whenever i /∈ λ(s), V (s+̇ei) = V (s). However, we
can rearrange all V (s) terms to obtain the following well-
defined recursion:

V (s) =
1 +

∑
i∈λ(s) V (s + ei)

|λ(s)|
. (6)

We can find a similar recurrence for p̂i(·). For the one-
live states oi we have p̂j(oi) = 1 if i = j and 0 otherwise.
If |λ(s)| > 1, then

p̂i(s) =

∑n
j=1 p̂i(s+̇ej)

n
.

As p̂i(s) is the probability of ending at state oi after exe-
cuting the Markov chain, this formula is obtained by con-
ditioning on one step of the Markov process. That is, the
probability of ending at state oi is∑

j

Pr(j chosen)Pr(random process takes s+̇ej to oi).

This recurrence suffers from the same problem as did our
initial recurrence for V (·): p̂(s) can occur on both sides of
the equality. We again solve this problem by rearranging
terms and obtain

p̂i(s) =

∑
j∈λ(s) p̂i(s + ej)

|λ(s)|
.

5.2 Combinatorial Sums
A further analysis gives us exact expressions for both p̂i(s)
and V (s) in terms of infinite sums of multinomials.

Proposition 5.1 For any state s ∈ S,

p̂i(s) =
∑

r:s+̇r=oi

(
|r|

r1, r2, . . . , rn

)(
1
n

)|r|+1

.

Proof: By definition, p̂i(s) is the probability that s reaches
the one-live state oi eventually. To compute this probabil-
ity, we consider at what point the Markov process exits the
state oi and into d. Recall the random variable St defined in
Section 3. Take any r for which s+̇r = oi and condition on
St = r. Then

p̂i(s) =
∑

r:s+̇r=oi

Pr(St = r)Pr(St+1 = r + ei|St = r)

The first probability is exactly
(|r|
r1,r2,...,rn

)
n−|r| and the sec-

ond probability is exactly 1/n.

Since V (s) can be written as an expected path length, we
can obtain a similar expression as a sum of multinomials for
V (s):

Proposition 5.2

V (s) =
n∑

i=1

∑
r:r+̇s=oi

(|r|+ 1)
(

|r|
r1, r2, . . . , rn

)(
1
n

)|r|+1

.

5.3 Randomized Approximations
Computing the exact value V (s) for large but non-asymptotic
values of the state vector is difficult because we have no poly-
nomial time algorithm. On the other hand, finding a random-
ized approximation to V (s) can be done very efficiently. In-
deed, as we now have a representation of V (s) in terms of the
length of a random walk, we can simply run the random walk
S1, S2, . . . several times, note the length T (s), and return the

mean. Such random approximations require that the distri-
bution on T (s) has low-variance, yet this certainly holds in
the case at hand. While the random walk requires at least
n(k + 1) iterations to finish, a simple argument shows that
with probability 1−δ the random walk completes in less than
nk log(nk/δ) rounds.

Algorithm 1 Random Approximation to V (s)
Input: state s
t← 0
for i = 1, . . . , NUMITER do

z← s
repeat

Sample i ∈ {1, . . . , n} u.a.r.
z← z+̇ei

t← t + 1
until z = d

end for
Return t

n·NUMITER .

If R(s) is the random variable returned by the above al-
gorithm, then clealy ER(s) = V (s). By increasing NUMITER,
the variance of this estimate can be reduced quickly.

A randomized approximation for p̂(s) can be obtained
similarly. Again the above algorithm approximately com-

Algorithm 2 Random Approximation to p̂(s)
Input: state s 6= d
p← 0
for i = 1, . . . , NUMITER do

z← s
repeat

Sample i ∈ {1, . . . , n} u.a.r.
z← z+̇ei

until z = oj for some j
p← p + ej

end for
Return p

NUMITER
.

putes p̂(s) in the following sense: If R(s) is the random vari-
able returned by the above algorithm, then clearly ER(s) =
p̂(s). Again increasing NUMITER, reduces the variance of the
estimate.

5.4 A Simple Strategy in a Randomized Setting
In the particular case of betting against the Casino, it may
be necessary for the Gambler to compute p̂i(s) in order to
place his bets optimally. In an alternative setting, however,
a randomized algorithm may be sufficient. Let us consider
the case in which the Gambler chooses to bet according to
the outcome of several coin tosses. Further assume that the
Casino can observe his strategy but cannot see the outcome
of the coin tosses or his final bets. In this scenario, the
Gambler can even bet all of his money on a random event
I ∈ {1, . . . , n} drawn according to some distribution as long

0 5 10 15 20 25 30 35 40
4

6

8

10

12

14

16

18

20

22

The parameter k

T
h
e

v
a
lu

e
V

(0
)
−

k
Randomly Computing V

10 Samples

1 Sample

Exact Value of V

Figure 1: We illustrate the accuracy of the randomized approxima-
tion to V (0) stated in Algorithm 1. The plot compares the exact
value of V (0) to that obtained by using either 1 or 10 samples of
the random walk. Here n = 100.

as E1[I = i] = p̂i(s) for all i, and indeed his expected loss
would be p̂(s) · `.

For this scenario, randomly approximating p̂ is not nec-
essary: only one sample is needed! To be precise, the Gam-
bler can take the state s, run the random walk until the state
reaches oi for some i, and then bet his full dollar on event i.
This bet will be correct in expectation, i.e. he will pick event
i with probability p̂i(s), and thus his expected loss will be
exactly p̂ · `. The key here is that sampling from the distribu-
tion p̂(s) may be quite easy even when computing it exactly
may take more time.

Note that the above method based on one sample is sim-
ilar to the way the Randomized Weighted Majority algo-
rithm approximates the Weighted Majority algorithm (more
precisely the WMC algorithm of [LW94]). More precisely
NUMITER=1 of Algorithm 5.3 corresponds to WMR, and
NUMITER→∞ corresponds to WMC.

6 Comparison to Previous Bounds
As mentioned in the introduction, the bound obtainable base
on exponential weights [FS97] is

k +
√

2k log n + log n (7)

and can be shown to be asymptotically optimal [Vov98].2
Having computed the minimax solution to the same game,
we can compute the game-theoretically optimal bound of
V (0) using Algorithm 1. For small values of n and k, these
bounds do differ quite substantially. We present in Figure 2 a

2A slightly better but more complicated bound than (7) was
given in [Vov98]. In the full paper we compare the optimal bound
to this one as well.

comparison of the regret for n = 2, 10, 100 and k = 1, . . . , 20.

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

T he parameter k

R
e
gr

e
t

The Optimal Bound vs. the Hedge Bound

Optimal, n=2
Hedge, n=2
Optimal, n=10
Hedge, n=10
Optimal, n=100
Hedge, n=100

Figure 2: We compare the optimal regret bound we obtain from
V (0) to that found in [FS97], which we refer to as the hedge bound.
While asymptotically optimal, we observed that the hedge bound of
k +

√
2k log n + log n is not tight for small values of n and k.

7 Connections to classic problems of
probabilistic enumerative combinatorics.

Theorem 12 shows that an optimal strategy for the Casino re-
quires unit vector plays. This leads to alternative interpreta-
tions of the game in terms of well studied random processes.

For example, one can easily confirm that our game also
describes the random process underlying a generalized form
of the Coupon Collector’s Problem [?] in which the collec-
tor buys cereal boxes one by one in order to obtain K = k+1
complete sets of n baseball cards, assuming one card is ran-
domly placed within each cereal box. The value of our game,
V (0, 0), is in fact the expected number of cereal boxes, per
baseball card, needed to obtain the desired K complete sets.

Specifically, the probability generating function for the
generalized Coupon Collector’s Problem is [MW03]

Gn,K(z) =
n

(K − 1)!

∫ ∞

0

e−nt/ztK−1

∑
j≥k

tj

j!

n−1

dt.

Taking the derivative at z = 1 and dividing by n, we derive
the expected number of steps to obtain K sets, which is also
the value of our game, viz.

V (0n) =
n

(K − 1)!

∫ ∞

0

tKe−nt

∑
j≥k

tj

j!

n−1

dt. (8)

Equation (8) gives us an elegant closed form for the two-card
case (n = 2):

V (〈0, 0〉) = K +
K

22K

(
2K

K

)

From (8) we also obtain the well known asymptotic expres-
sion for the value, for large n and fixed K,

V (0n)→n→∞ log n + (K − 1) log log n[1 + o(1)].

The same asymptotic form appears in the analysis of an evolv-
ing random graph. [ER60] The random walk on the state lat-
tice provides yet another interpretation of the same dynam-
ics.

For K >> n >> 1, the law of large numbers gives
[NS60]

V (〈0n〉) = K + O(K1/2).

8 Conclusion
We showed in Corollary 13 that against the optimal learning
algorithm the optimal strategy of the adversary is to choose
one of the unit loss vectors as his response. Curiously enough
it can be show that this is also true of the Weighted Majority
algorithm (1). That is, any trial in which q > 1 experts in-
curred a unit of loss can be split into q trials in which a single
expert has a unit of loss, and doing this always increases the
loss of the algorithm for all update factor β ∈ [0, 1). This ob-
servation about the Weighted Majority algorithm might actu-
ally lead to improved loss bounds for this algorithm, perhaps
in the way the parameter β is tuned.

There remains also a deep question regarding the tech-
niques introduced in this paper: how general is this method
of computing the value of a game based on a random path?
Can it handle slightly more involved problems? Examples
we have considered include competing against m-sized sets
of experts, discussed in [WK06], in which the loss of the
algorithm is compared to the loss of the best m-subset. An-
other example is the problem of competing against permuta-
tions of n objects [HW07], where the loss of a permutation
is linearly assigned. Our preliminary investigation suggests
that similar techniques can be adapted to also handle such
more complex problems. In the full paper we hope to de-
lineate the scope of our new method of optimal algorithm
design.

References
[ALW07] J. Abernethy, J. Langford, and M. K. War-

muth. Continuous experts and the Binning al-
gorithm. In Proceedings of the 19th Annual
Conference on Learning Theory (COLT06),
pages 544–558. Springer, June 2007.

[CBFH+97] Nicolò Cesa-Bianchi, Yaov Freund, David
Haussler, David P. Helmbold, Robert E.
Schapire, and Manfred K. Warmuth. How to
use expert advice. J. ACM, 44(3):427–485,
1997.

[CBFHW96] N. Cesa-Bianchi, Y. Freund, D. P. Helm-
bold, and M. K. Warmuth. On-line prediction
and conversion strategies. Machine Learning,
25:71–110, 1996.

[ER60] P. Erdos and A. Renyi. On the evolution of
random graphs. Publ. Math. Inst. Hung. Acad.
Sci., 5A:17–61, 1960.

[FS97] Yoav Freund and Robert E. Schapire. A
decision-theoretic generalization of on-line
learning and an application to Boosting. J.
Comput. Syst. Sci., 55(1):119–139, 1997. Spe-
cial Issue for EuroCOLT ’95.

[HW07] D. Helmbold and M. K. Warmuth. Learn-
ing permutations with exponential weights. In
Proceedings of the 20th Annual Conference on
Learning Theory (COLT07). Springer, 2007.

[KW99] Jyrki Kivinen and Manfred K. Warmuth. Av-
eraging expert predictions. In Computa-
tional Learning Theory, 4th European Con-
ference, EuroCOLT ’99, Nordkirchen, Ger-
many, March 29-31, 1999, Proceedings, vol-
ume 1572 of Lecture Notes in Artificial Intel-
ligence, pages 153–167. Springer, 1999.

[LW94] N. Littlestone and M. K. Warmuth. The
Weighted Majority algorithm. Inform. Com-
put., 108(2):212–261, 1994. Preliminary ver-
sion in in FOCS 89.

[MW03] A. Myers and H. S. Wilf. Some new aspects
of the Coupon-Collector’s problem. SIAM J.
Disc. Math., 17:1–17, 2003.

[NS60] D. Newman and L. Shepp. The Double Dixie
Cup problem. Amer. Math Monthly., 67:541–
574, 1960.

[Vov98] V. Vovk. A game of prediction with expert ad-
vice. J. of Comput. Syst. Sci., 56(2):153–173,
1998. Special Issue: Eighth Annual Confer-
ence on Computational Learning Theory.

[WK06] M. K. Warmuth and D. Kuzmin. Random-
ized PCA algorithms with regret bounds that
are logarithmic in the dimension. In Advances
in Neural Information Processing Systems 19
(NIPS 06). MIT Press, December 2006.

