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Abstract

A problem of learning a prediction rule that
is approximated in a linear span of a large
number of reproducing kernel Hilbert spaces
is considered. The method is based on pe-
nalized empirical risk minimization with `1-
type complexity penalty. Oracle inequalities
on excess risk of such estimators are proved
showing that the method is adaptive to un-
known degree of “sparsity” of the target func-
tion.

1 Introduction

Let (X,Y ) be a random couple in S×T, where (S,S), (T, T )
are measurable spaces. Usually, T is either a finite set,
or a subset of R (in the first case, T can be also identi-
fied with a finite subset of R). Most often, S is a com-
pact domain in a finite dimensional Euclidean space, or
a compact manifold. Let P denote the distribution of
(X,Y ) and Π denote the distribution of X. In a general
framework of prediction, X is an observable instance
and Y is an unobservable label which is to be predicted
based on an observation of X. Let ` : T × R 7→ R+

be a loss function. It will be assumed in what follows
that, for all y ∈ T, the function `(y; ·) is convex. Given
f : S 7→ R, denote

(` • f)(x, y) := `(y, f(x))

and define the (true) risk of f as

E`(Y ; f(X)) = P (` • f).

The prediction problem then can be formulated as con-
vex risk minimization problem with the optimal predic-
tion rule f∗ defined as

f∗ := argminf :S 7→RP (` • f)

where the minimum is taken over all measurable func-
tions f : S 7→ R. It will be assumed in what follows that
∗Partially supported by NSF grant DMS-0624841.
†Partially supported by NSF grant DMS-0624841.

f∗ exists and it is uniformly bounded. We shall also as-
sume the uniqueness of f∗ in the following discussion.

In the case when the distribution P of (X,Y ) is
unknown, it has to be estimated based on the training
data which (in the simplest case) consists of n inde-
pendent copies (X1, Y1), . . . , (Xn, Yn) of (X,Y ). Let Pn
denote the empirical distribution based on the training
data. Then the risk P (` • f) can be estimated by the
empirical risk

n−1
n∑
j=1

`(Yj , f(Xj)) = Pn(` • f).

The direct minimization of the empirical risk over
a large enough family of function f : S 7→ R almost in-
evitably leads to overfitting. To avoid it, a proper com-
plexity regularization is needed. In this paper, we will
study a problem in which the unknown target function
f∗ is being approximated in a linear span H of a large
dictionary consisting of N reproducing kernel Hilbert
spaces (RKHS) H1, . . . ,HN . It will be assumed that we
are given N symmetric nonnegatively definite kernels
Kj : S×S 7→ R, j = 1, . . . , N and that Hj is the RKHS
generated by Kj : Hj = HKj

. Suppose, for simplicity,
that

Kj(x, x) ≤ 1, x ∈ S, j = 1, . . . , N.
The space

H := l.s.
( N⋃
j=1

Hj
)

consists of all functions f : S 7→ R that have the follow-
ing (possibly, non-unique) additive representation

f = f1 + . . . fN , fj ∈ Hj , fj ∈ Hj , j = 1, . . . , N

and it can be naturally equipped with the `1-norm:

‖f‖`1 := ‖f‖`1(H) := inf
{ N∑
j=1

‖fj‖Hj : f

=
N∑
j=1

fj , fj ∈ Hj , j = 1, . . . , N
}
.

Additive models are a well-known special case of
this formulation. In additive models, S is a subset of



RN , i.e., X = (x1, . . . , xN )′, and Hj represents a func-
tional space defined over xj . Several approaches have
been proposed recently to exploit the sparsity in addi-
tive models (Lin and Zhang, 2006; Ravikumar et al.,
2007; Yuan, 2007). In this paper, we consider an exten-
sion of `1 penalization technique to a more general class
of problem.

In particular, we study the following penalized em-
pirical risk minimization problem:

f̂ε := argminf∈H

[
Pn(` • f) + ε‖f‖`1

]
, (1.1)

where ε > 0 is a small regularization parameter. Equiv-
alently, this problem can be written as

(f̂ε1 , . . . , f̂
ε
N ) := argminfj∈Hj ,j=1,...,N (1.2)[

Pn(` • (f1 + · · ·+ fN )) + ε

N∑
j=1

‖fj‖Hj

]
.

According to the representer theorem (Wahba, 1990),
the components of the minimizer f̂εj have the following
representation:

f̂εj (x) =
n∑
i=1

ĉijKj(Xi, x)

for some real vector ĉj = (ĉij : i = 1, . . . , n). In other
words, (1.2) can be rewritten as a finite dimensional con-
vex minimization problem over (cij : i = 1, . . . , n; j =
1, . . . , N).

It is known (see, e.g., Micchelli and Pontil, 2005)
that

‖f‖`1(H) = inf
{
‖f‖K : K ∈ conv{Kj : j = 1, . . . , N}

}
,

where ‖ · ‖K denote the RKHS-norm generated by sym-
metric nonnegatively definite kernel K and

conv{Kj : j = 1, . . . , N} :=
{ N∑
j=1

cjKj :

cj ≥ 0,
N∑
j=1

cj = 1
}
.

Therefore (1.2) can be also written as

(f̂ε, K̂ε) := argminK∈conv(Kj ,j=1,...,N)argminf∈HK
(1.3)[

Pn(` • f) + ε‖f‖K
]
,

leading to an interpretation of the problem as the one
of learning not only the target function f∗, but also the
kernel K in the convex hull of a given dictionary of ker-
nels (which can be viewed as “aggregation” of kernel
machines). Similar problems have been studied recently
by Bousquet et al. (2003), Cramer et al. (2003), Lanck-
riet et al. (2004), Micchelli and Pontil (2005) and Srebro
and Ben-David (2006) among others.

The choice of `1-norm for complexity penalization
is related to our interest in the case when the total num-
ber N of spaces Hj in the dictionary is very large, but
the target function f∗ can be approximated reasonably
well by functions from relatively small number d of such
spaces. The `1-penalization technique has been com-
monly used to recover sparse solutions in the case of sim-
ple dictionaries that consist of one-dimensional spaces
Hj (see, e.g, Koltchinskii (2007) and references therein).
The goal is to extend this methodology to more general
class of problems that include aggregation of large en-
sembles of kernel machines and sparse additive models.
In the case of additive models with the quadratic loss,
(1.1) becomes the so-called COSSO estimate recently
introduced by Lin and Zhang (2006).

For f ∈ H, define the excess risk of f as

E(f) = P (` • f)− P (` • f∗) = P (` • f)− inf
g:S 7→R

P (` • g).

Our main goal is to control the excess risk of f̂ε, E(f̂ε).
Throughout the paper, we shall also make the fol-

lowing assumption

nγ ≤ N ≤ en

for some γ > 0.
It will also be assumed that the loss function `

satisfies the following properties: for all y ∈ T, `(y, ·) is
twice differentiable, `′′u is a uniformly bounded function
in T × R,

sup
y∈T

`(y; 0) < +∞, sup
y∈T

`′u(y; 0) < +∞

and

τ(R) :=
1
2

inf
y∈T

inf
|u|≤R

`′′u(y, u) > 0, R > 0. (1.4)

We also assume without loss of generality that, for all
R, τ(R) ≤ 1. These assumptions imply that

|`′u(y, u)| ≤ L1 + L|u|, y ∈ T, u ∈ R

with some constants L1, L ≥ 0 (if `′u is uniformly bounded,
one can take L = 0).

The following bound on the excess risk holds under
the assumptions on the loss:

τ(‖f‖∞ ∨ ‖f∗‖∞)‖f − f∗‖2L2(Π)

≤ E(f) ≤ C‖f − f∗‖2L2(Π) (1.5)

with a constant C > 0 depending only on `. This bound
easily follows from a simple argument based on Taylor
expansion and it will be used later in the paper.

The quadratic loss `(y, u) := (y − u)2 in the case
when T ⊂ R is a bounded set is one of the main exam-
ples of such loss functions. In this case, τ(R) = 1 for all
R. In regression problems with a bounded response vari-
able, more general loss functions of the form `(y, u) :=
φ(y − u) can be also used, where φ is an even non-
negative convex twice continuously differentiable func-
tion with φ′′ uniformly bounded in R, φ(0) = 0 and



φ′′(u) > 0, u ∈ R. In classification problems, the loss
function of the form `(y, u) = φ(yu) is commonly used,
with φ being a nonnegative decreasing convex twice con-
tinuously differentiable function such that, again, φ′′ is
uniformly bounded in R and φ′′(u) > 0, u ∈ R. The loss
function φ(u) = log2(1 + e−u) (often referred to as the
logit loss) is a specific example.

We will assume in what follows that H is dense in
L2(Π), which, together with (1.5), implies that

inf
f∈H

P (` • f) = inf
f∈L2(Π)

P (` • f) = P (` • f∗).

We also need several basic facts about RKHS which
can be found in, for example, Wahba (1990). Let K be
a symmetric nonnegatively definite kernel on S×S with

sup
x∈S

K(x, x) ≤ 1

and HK be the corresponding RKHS. Given a probabil-
ity measure Π on S, let φk, k ≥ 1 be the orthonormal
system of fuctions in L2(Π) such that the following spec-
tral representation (as in Mercer’s theorem) holds:

K(x, y) =
∞∑
k=1

λkφk(x)φk(y), x, y ∈ S,

which is true under mild regularity conditions. Without
loss of generality we can and do assume that {λk} is a
decreasing sequence, λk → 0. It is well known that for
f, g ∈ HK ,

〈f, g〉HK
=
∞∑
k=1

〈f, φk〉L2(Π)〈g, φk〉L2(Π)

λk
.

Denote HD ⊂ HK the linear span of functions f ∈ HK
such that

∞∑
k=1

〈f, φk〉2L2(Π)

λ2
k

<∞

and let D : HD 7→ L2(Π) be a linear operator defined
as follows:

Df :=
∞∑
k=1

〈f, φk〉L2(Π)

λk
φk, f ∈ HD.

Then we obviously have

〈f, g〉HK
= 〈Df, g〉L2(Π), f ∈ HD, g ∈ HK .

Given a dictionary {H1, . . . ,HN} of RKHS, one
can quite similarly define spectral representations of ker-
nelsKj with nonincreasing sequences of eignevalues {λ(j)

k :
k ≥ 1} and orthonormal in L2(Π) eigenfunctions {φ(j)

k :
k ≥ 1}. This also defines spaces HDj

and linear opera-
tors Dj : HDj

7→ L2(Π) such that

〈f, g〉Hj = 〈Djf, g〉L2(Π), f ∈ HDj , g ∈ HKj .

2 Bounding the `1-norm

Our first goal is to derive upper bounds on ‖f̂ε‖`1 that
hold with a high probability. In what follows we use the
notation

(`′ • f)(x, y) := `′u(y, f(x)),

where `′u(y, u) is the derivative of ` with respect to the
second variable.

Theorem 1 There exists a constant D > 0 depending
only on ` such that for all A ≥ 1 and for all ε > 0 and
f ∈ H satisfying the condition

ε ≥ D‖`′•f‖∞

√
A logN

n

∨
4 max

1≤k≤N
sup

‖hk‖Hk
≤1

|P ((`′ • f)hk) |,

the following bound holds

P
{
‖f̂ε‖`1 ≥ 3‖f‖`1

}
≤ N−A. (2.1)

In particular, if ε ≥ D‖`′ • fε/4‖∞
√

A logN
n , then

P
{
‖f̂ε‖`1 ≥ 3‖fε/4‖`1

}
≤ N−A. (2.2)

Proof. By the definition of f̂ε, for all f ∈ H,

Pn(` • f̂ε) + ε‖f̂ε‖`1 ≤ Pn(` • f) + ε‖f‖`1 .

The convexity of the functional f 7→ Pn(` • f) implies
that

Pn(` • f̂ε)− Pn(` • f) ≥ Pn
(

(`′ • f)(f̂ε − f)
)
.

As a result,

ε‖f̂ε‖`1 ≤ ε‖f‖`1 + Pn

(
(`′ • f)(f − f̂ε)

)
≤ ε‖f‖`1 + max

1≤k≤N
sup

‖hk‖Hk
≤1

|Pn ((`′ • f)hk) | ×

×‖f̂ε − f‖`1 .

It follows that(
ε− max

1≤k≤N
sup

‖hk‖Hk
≤1

|Pn ((`′ • f)hk) |
)
‖f̂ε‖`1

≤
(
ε+ max

1≤k≤N
sup

‖hk‖Hk
≤1

|Pn ((`′ • f)hk) |
)
‖f‖`1 .

Under the assumption

ε > max
1≤k≤N

sup
‖hk‖Hk

≤1

|Pn ((`′ • f)hk) |,

this yields

‖f̂ε‖`1 ≤
ε+ max1≤k≤N sup‖hk‖Hk

≤1 |Pn ((`′ • f)hk) |
ε−max1≤k≤N sup‖hk‖Hk

≤1 |Pn ((`′ • f)hk) |
‖f‖`1 .

(2.3)



Note that

max
1≤k≤N

sup
‖hk‖Hk

≤1

|Pn ((`′ • f)hk) |

≤ max
1≤k≤N

sup
‖hk‖Hk

≤1

|(Pn − P )(`′ • f)hk|+

+ max
1≤k≤N

sup
‖hk‖Hk

≤1

|P ((`′ • f)hk) |.

Also, for any i = 1, . . . , N

sup
‖hi‖Hi

≤1

|(Pn − P )(`′ • f)hi|

= sup
‖hi‖Hi

≤1

∣∣∣∣n−1
n∑
j=1

(
(`′ • f)(Xj , Yj)〈hi,Ki(Xj , ·)〉Hi

−E(`′ • f)(Xj , Yj)〈hi,Ki(Xj , ·)〉Hi

)∣∣∣∣
=

∥∥∥∥n−1
n∑
j=1

(
(`′ • f)(Xj , Yj)Ki(Xj , ·)

−E(`′ • f)(Xj , Yj)Ki(Xj , ·)
)∥∥∥∥
Hi

.

Using Bernstein’s type inequality in Hilbert spaces, we
are easily getting the bound

max
1≤k≤N

sup
‖hk‖Hk

≤1

|(Pn − P )(`′ • f)hk| ≤

C‖`′ • f‖∞
(√

A logN
n

∨ A logN
n

)
with probability at least 1−N−A. As soon as

ε ≥ 4C‖`′ • f‖∞
(√

A logN
n

∨ A logN
n

)
and

ε ≥ 4 max
1≤k≤N

sup
‖hk‖Hk

|P ((`′ • f)hk) |,

we get

max
1≤k≤N

sup
‖hk‖Hk

≤1

|Pn ((`′ • f)hk) | ≤ ε/2,

and it follows from (2.3) that with probability at least
1−N−A

‖f̂ε‖`1 ≤
ε+ ε/2
ε− ε/2

‖f‖`1 = 3‖f‖`1 ,

implying (2.1).
In particular, we can use in (2.1) f := fε/4. Then,

by the necessary conditions of extremum in the defini-
tion of fε/4,

max
1≤k≤N

sup
‖hk‖Hk

≤1

|P
(

(`′ • fε/4)hk
)
| ≤ ε

4
,

and the second bound follows.
We now provide an alternative set of conditions on

ε so that (2.1) holds. By the conditions on the loss,

‖`′ • f‖∞ ≤ C(1 + L‖f‖∞) ≤ C(1 + L‖f‖`1)

with constants C,L depending only on ` (if `′ is uni-
formly bounded, L = 0).

Since, by the necessary conditions of minimum at
f∗,

P ((`′ • f∗)hk) = 0, hk ∈ Hk, k = 1, . . . , N,

we also have

max
1≤k≤N

sup
‖hk‖Hk

≤1

|P ((`′ • f)hk) |

= max
1≤k≤N

sup
‖hk‖Hk

≤1

|P
(

(`′ • f)− (`′ • f∗)
)
hk|

≤ C‖f − f∗‖L2(Π)

where we used the fact that `′u(y, u) is Lipschitz with
respect to u. Therefore, the condition on ε in (2.1) is
satisfied if

ε ≥ D(1 + ‖f‖`1)

√
A logN

n

and
‖f − f∗‖L2(Π) ≤ ε/D

with a properly chosen D (depending only on `).

3 Oracle inequalities

In what follows we will assume that R > 0 is such that

‖f̂ε‖`1 ≤ R
with probability at least 1−N−A. In particular, if f̄ ∈ H
satisfies the assumption of Theorem 1, i.e.,

ε ≥ D‖`′•f̄‖∞

√
A logN

n

∨
4 max

1≤k≤N
sup

‖hk‖Hk
≤1

|P
(
(`′ • f̄)hk

)
|,

then one can take R = 3‖f̄‖`1 .
We need some measures of dependence (in a prob-

abilistic sense) between the spaces Hj , j = 1, . . . , N. In
the case of a simple dictionary {h1, . . . , hN} consisting
of N functions (equivalently, N one-dimensional spaces)
the error of sparse recovery depends on the Gram matrix
of the dictionary in the space L2(Π) (see, e.g., Koltchin-
skii (2007)). A similar approach is taken here. Given
hj ∈ Hj , j = 1, . . . , N and J ⊂ {1, . . . , N}, denote
by κ({hj : j ∈ J}) the minimal eigenvalue of the Gram

matrix
(
〈hi, hj〉L2(Π)

)
i,j∈J

and κ̄({hj : j ∈ J}) its max-

imal eigenvalue. Let

κ(J) := inf
{
κ({hj : j ∈ J}) : hj ∈ Hj , ‖hj‖L2(Π) = 1

}
and

κ̄(J) := sup
{
κ({hj : j ∈ J}) : hj ∈ Hj , ‖hj‖L2(Π) = 1

}
Also, denote LJ the linear span of subspacesHj , j ∈

J. Let

ρ(J) := sup
{ 〈f, g〉L2(Π)

‖f‖L2(Π)‖g‖L2(Π)
: f ∈ LJ , g ∈ LJc ,

f 6= 0, g 6= 0
}
.



In what follows, we will consider a setO = O(M1,M2)
of functions (more precisely, their additive representa-
tions) f = f1 + · · · + fN ∈ H, fj ∈ Hj , j = 1, . . . , N
that will be called “admissible oracles”. Let Jf := {j :
fj 6= 0} and suppose the following assumptions hold:

O1. The “relevant” part Jf of the dictionary satisfies
the condition

κ̄(Jf )
κ(Jf )(1− ρ2(Jf ))

≤M1.

O2. For some β > 1/2 and for all j ∈ Jf

λ
(j)
k ≤M2k

−2β , k = 1, 2, . . .

Recall that Dj is the linear operator defined in the
first section. Denote

ζ(f) :=
1

card(Jf )

∑
j∈Jf

‖Djfj‖2L2(Π)

‖fj‖2Hj

.

We are now in the position to state the main result
of this paper.

Theorem 2 There exist constants D,L depending only
on ` (L = 0 if `′u is uniformly bounded) such that for all
A ≥ 1, for all f ∈ O with card(Jf ) = d and for all

ε ≥ D(1 + LR)

√
logN
n

with probability at least 1−N−A

E(f̂ε) + 2ε
∑
j 6∈Jf

‖f̂εj ‖Hj

≤ 7E(f) +K

[
d(2β−1)/(2β+1)

n2β/(2β+1)
+ ζ(f)dε2 +

A logN
n

]
,

where K is a constant depending on `, R,M1,M2, ‖f‖∞
and ‖f∗‖∞.

The meaning of this result can be described as fol-
lows. Suppose there exists an oracle f such that the
excess risk of f is small (i.e., f provides a good ap-
proximation of f∗); the set Jf is small (i.e., f has a
sparse representation in the dictionary); the condition
(O1) is satisfied, i.e. the relevant part of the dictionary
is “well posed” in the sense that the spaces Hj , j ∈ Jj
are not “too dependent” among themselves and with
the rest of the spaces in the dictionary; the condition
(O2) is satisfied, which means “sufficient smoothness”
of functions in the spaces Hj , j ∈ Jf ; finally, the com-
ponents fj , j ∈ Jf of the oracle f are even smoother
in the sense that the quantities ‖Djfj‖L2(Π)

‖fj‖Hj
, j ∈ Jf are

properly bounded. Then the excess risk of the empir-
ical solution f̂ε is controlled by the excess risk of the
oracle as well as by its degree of sparsity d and, at the
same time, f̂ε is approximately sparse in the sense that

∑
j 6∈Jf

‖fεj ‖Hj
is small. In other words, the solution ob-

tained via `1-penalized empirical risk minimization is
adaptive to sparsity (at least, subject to constraints de-
scribed above).

Proof. Throughout the proof we fix representa-
tions f = f1 + · · ·+ fN and f̂ε = f̂ε1 + · · ·+ f̂εN (and we
use (1.2) to define f̂εj ). The definition of f̂εj implies that
for all f ∈ H,

Pn(` • f̂ε) + ε‖f̂ε‖`1 ≤ Pn(` • f) + ε‖f‖`1 .
Therefore,

E(f̂ε) + ε
∑
j 6∈Jf

‖f̂εj ‖Hj

≤ E(f) + ε
∑
j∈Jf

(‖fj‖Hj
− ‖f̂εj ‖Hj

)

+(P − Pn)(` • f − ` • f̂ε).
We first show that

E(f̂ε) + 2ε
∑
j 6∈Jf

‖f̂εj ‖Hj

≤ 3E(f) +
2ζ(f)d

τκ(Jf )(1− ρ2(Jf ))
ε2

+2(P − Pn)(` • f − ` • f̂ε),
where

τ = τ(‖f‖∞ ∨ ‖f̂ε‖∞ ∨ ‖f∗‖∞).

Let sj(fj) be a subgradient of fj 7→ ‖fj‖Hj at
fj ∈ Hj , i.e. sj(fj) = fj

‖fj‖Hj
if fj 6= 0 and sj(fj) is an

arbitrary vector with ‖sj(fj)‖Hj ≤ 1 otherwise. Then
we have

‖fj‖Hj − ‖f̂εj ‖Hj ≤ 〈sj(fj), fj − f̂εj 〉Hj

= 〈Djsj(fj), fj − f̂εj 〉L2(Π)

≤ ‖Djsj(fj)‖L2(Π)‖fj − f̂εj ‖L2(Π).

It follows that

E(f̂ε) + ε
∑
j 6∈Jf

‖f̂εj ‖Hj

≤ E(f) + ε

(∑
j∈Jf

‖Djsj(fj)‖2L2(Π)

)1/2

×

×
(∑
j∈Jf

‖fj − f̂εj ‖2L2(Π)

)1/2

+(P − Pn)(` • f − ` • f̂ε).
It can also be shown that (see Koltchinskii, 2007, Propo-
sition 1) (∑

j∈Jf

‖fj − f̂εj ‖2L2(Π)

)1/2

≤

√
1

κ(Jf )(1− ρ2(Jf ))
‖f − f̂ε‖L2(Π).



This allows us to write

E(f̂ε) + ε
∑
j 6∈Jf

‖f̂εj ‖Hj

≤ E(f) + ε

√
ζ(f)d

κ(Jf )(1− ρ2(Jf ))
‖f − f̂ε‖L2(Π)

+(P − Pn)(` • f − ` • f̂ε).
Then, using the bounds

‖f − f̂ε‖L2(Π) ≤ ‖f − f∗‖L2(Π) + ‖f̂ε − f∗‖L2(Π)

and

E(f) ≥ τ‖f − f∗‖2L2(Π), E(f̂ε) ≥ τ‖f̂ε − f∗‖2L2(Π),

we get

E(f̂ε) + ε
∑
j 6∈Jf

‖f̂εj ‖Hj

≤ E(f) + ε

√
ζ(f)d

κ(Jf )(1− ρ2(Jf ))
×

×
(√E(f)

τ
+

√
E(f̂ε)
τ

)
+(P − Pn)(` • f − ` • f̂ε).

Applying the inequality ab ≤ a2/2 + b2/2, we show that

ε

√
ζ(f)d

κ(Jf )(1− ρ2(Jf ))

√
E(f)
τ

≤ E(f)
2

+
ζ(f)d

2τκ(Jf )(1− ρ2(Jf ))
ε2.

Similarly,

ε

√
ζ(f)d

κ(Jf )(1− ρ2(Jf ))

√
E(f̂ε)
τ

≤ E(f̂ε)
2

+
ζ(f)d

2τκ(Jf )(1− ρ2(Jf ))
ε2.

This leads to the following bound

E(f̂ε) + ε
∑
j 6∈Jf

‖f̂εj ‖Hj

≤ E(f) +
E(f̂ε)

2
+

ζ(f)d
2τκ(Jf )(1− ρ2(Jf ))

ε2

+
E(f)

2
+

ζ(f)d
2τκ(Jf )(1− ρ2(Jf ))

ε2

+(P − Pn)(` • f − ` • f̂ε).
It easily follows that

E(f̂ε) + 2ε
∑
j 6∈Jf

‖f̂εj ‖Hj

≤ 3E(f) +
2ζ(f)d

τκ(Jf )(1− ρ2(Jf ))
ε2

+2(P − Pn)(` • f − ` • f̂ε).

Denote

αn(δ,∆, R) := sup
{
|(Pn − P )(` • g − ` • f)| :

‖g − f‖L2(Π) ≤ δ,
∑
j 6∈Jf

‖gj‖Hj
≤ ∆, ‖g‖`1 ≤ R

}
.

If ‖f̂ε‖`1 ≤ R (which holds with probability at least
1−N−A), then we have

E(f̂ε) + 2ε
∑
j 6∈Jf

‖f̂εj ‖Hj

≤ 3E(f) +
2ζ(f)d

τκ(Jf )(1− ρ2(Jf ))
ε2

+2αn
(
‖f̂ε − f‖L2(Π),

∑
j 6∈Jf

‖f̂εj ‖Hj , R
)

with τ = τ(R∨‖f‖∞∨‖f∗‖∞). We use Lemma 8 to get

E(f̂ε) + 2ε
∑
j 6∈Jf

‖f̂εj ‖Hj

≤ 3E(f) +
2ζ(f)d

τκ(Jf )(1− ρ2(Jf ))
ε2

+C(1 + LR)
[√

κ̄(Jf )
κ(Jf )(1− ρ2(Jf ))

×

×‖f̂ε − f‖L2(Π)

√
dm

n
+R

√
maxj∈Jf

∑
k>m λ

(j)
k

n
+

+R
√

max
j∈Jf

λ
(j)
m

√
log d
n

+
∑
j 6∈Jf

‖f̂εj ‖Hj ×

×
√

log(N − d) + 1
n

]
+ C(1 + LR)×

×‖f̂ε − f‖L2(Π)

√
A logN

n

+CR(1 + LR)
A logN

n
(3.1)

(Lemma 8 can be used only under the assumption R ≤
eN ; however, for very large R > eN , the proof of the
inequality of the theorem is very simple). Recall that

‖f̂ε − f‖L2(Π) ≤

√
E(f̂ε)
τ

+

√
E(f)
τ

.

Under the assumption

ε ≥ C(1 + LR)

√
logN
n

,



we get

E(f̂ε) + ε
∑
j 6∈Jf

‖f̂εj ‖Hj

≤ 3E(f) + 2
2ζ(f)d

τκ(Jf )(1− ρ2(Jf ))
ε2 +

C(1 + LR)
[√

κ̄(Jf )
κ(Jf )(1− ρ2(Jf ))

×

×
(√
E(f̂ε)
τ

+

√
E(f)
τ

)√
dm

n
+R×

×

√
maxj∈Jf

∑
k>m λ

(j)
k

n
+R

√
max
j∈Jf

λ
(j)
m

√
log d
n

]

+C(1 + LR)
(√
E(f̂ε)
τ

+

√
E(f)
τ

)√
A logN

n

+CR(1 + LR)
A logN

n
. (3.2)

Then we have

C(1 + LR)

√
κ̄(Jf )

κ(Jf )(1− ρ2(Jf ))

√
E(f̂ε)
τ

√
dm

n

≤ 1
4
E(f̂ε) + 2C2(1 + LR)2 κ̄(Jf )

τκ(Jf )(1− ρ2(Jf ))
dm

n

and

C(1 + LR)

√
κ̄(Jf )

κ(Jf )(1− ρ2(Jf ))

√
E(f)
τ

√
dm

n

≤ 1
4
E(f) + 2C2(1 + LR)2 κ̄(Jf )

τκ(Jf )(1− ρ2(Jf ))
dm

n
.

Similarly,

C(1 + LR)

√
E(f̂ε)
τ

√
A logN

n

≤ 1
4
E(f̂ε) + 2C2(1 + LR)2A logN

n

and

C(1 + LR)

√
E(f)
τ

√
A logN

n

≤ 1
4
E(f) + 2C2(1 + LR)2A logN

n
.

This yields the following bound
1
2
E(f̂ε) + ε

∑
j 6∈Jf

‖f̂εj ‖Hj

≤ 7
2
E(f) + 2

2ζ(f)d
τκ(Jf )(1− ρ2(Jf ))

ε2 +

4C2(1 + LR)2

[
κ̄(Jf )

τκ(Jf )(1− ρ2(Jf ))
dm

n

+R

√
maxj∈Jf

∑
k>m λ

(j)
k

n
+

R

√
max
j∈Jf

λ
(j)
m

√
log d
n

]
+ 4C2(1 + LR)2 ×

×A logN
n

+ CR(1 + LR)
A logN

n
. (3.3)

It remains to take

m :=
n1/(2β+1)

d2/(2β+1)

(
(1 + LR)2

Rτ

)−2/(2β+1)

×

×
(

κ̄(Jf )
κ(Jf )(1− ρ2(Jf ))

)−2/(2β+1)

to get the following bound (with some constant C > 0)

E(f̂ε) + 2ε
∑
j 6∈Jf

‖f̂εj ‖Hj

≤ 7E(f) + 8
ζ(f)d

τκ(Jf )(1− ρ2(Jf ))
ε2 +

+C
(

(1 + LR)2

τ

)(2β−1)/(2β+1)

×

×
(

κ̄(Jf )
κ(Jf )(1− ρ2(Jf ))

)(2β−1)/(2β+1)

×

×d
(2β−1)/(2β+1)

n2β/2β+1
+
(

4C2(1 + LR)2 +

+CR(1 + LR)
)
A logN

n
, (3.4)

which implies the result.

4 Appendix

The Rademacher process is defined as

Rn(g) := n−1
n∑
j=1

εjg(Xj)

where {εj} are i.i.d. Rademacher random variables in-
dependent of {Xj}.

We will need several bounds for Rademacher pro-
cesses indexed by functions from RKHS (some of them
are well known; see, e.g., Mendelson (2002) and Blan-
chard, Bousquet and Massart (2007)). We state them
without proofs for brevity.

First we consider a single RKHS HK where K is
a kernel with eingenvalues λk and eigenfunctions φk (in
L2(Π)).



Lemma 3 The following bound holds:

E sup
‖h‖HK

≤1

|Rn(h)| ≤
√∑∞

k=1 λk
n

.

Let m ≥ 1. Denote by L the linear span of the
functions {φk : k = 1, . . . ,m} and by L⊥ the closed
linear span (in L2(Π)) of the functions {φk : k ≥ m+1}.
PL, PL⊥ will denote orthogonal projectors in L2(Π) on
the corresponding subspaces.

Lemma 4 For all m ≥ 1,

E sup
‖h‖HK

≤1

|Rn(PL⊥h)| ≤

√∑∞
k=m+1 λk

n
.

We now turn to the case of a dictionary {Hj : j =
1, . . . , N} of RKHS with kernels {Kj : j = 1, . . . N}.
As before, denote {λ(j)

k : k ≥ 1} the eigenvalues (ar-
ranged in decreasing order) and {φ(j)

k : k ≥ 1} the
L2(Π)-orthonormal eigenfunctions of Kj . The following
bounds will be needed in this case.

Lemma 5 With some numerical constant C,

E max
1≤j≤N

sup
‖hj‖Hj

≤1

|Rn(hj)| ≤

√
max1≤j≤N

∑∞
k=1 λ

(j)
k

n

+C

√
logN
n

.

Proof. We use bounded difference inequality to
get for each j = 1, . . . , N with probability at least 1 −
e−t−logN

sup
‖hj‖Hj

≤1

|Rn(hj)| ≤ E sup
‖hj‖Hj

≤1

|Rn(hj)|+
C
√
t+ logN√
n

.

By the union bound, this yields with probability at least
1−Ne−t−logN = 1− e−t

max
1≤j≤N

sup
‖hj‖Hj

≤1

|Rn(hj)| ≤ max
1≤j≤N

E sup
‖hj‖Hj

≤1

|Rn(hj)|

+
C
√
t√
n

+
C
√

logN√
n

,

which holds for all t > 0 and implies that

E max
1≤j≤N

sup
‖hj‖Hj

≤1

|Rn(hj)| ≤ max
1≤j≤N

E sup
‖hj‖Hj

≤1

|Rn(hj)|

+
C
√

logN√
n

with a properly chosen constant C > 0. Note that, by
Lemma 3,

E sup
‖hj‖Hj

≤1

|Rn(hj)| ≤

√∑∞
k=1 λ

(j)
k

n
,

which implies the result.
As before, denote Lj , L⊥j the subspaces of L2(Π)

spanned on {φ(j)
k : k ≤ m} and {φ(j)

k : k > m}, re-
spectively, PLj , P

⊥
Lj

being the corresponding orthogonal
projections. Recall that sequence {λjk} is nonincreasing.
The following statement is a uniform version of Lemma
4.

Lemma 6 With some numerical constant C,

E max
1≤j≤N

sup
‖hj‖Hj

≤1

|Rn(PL⊥j hj)|

≤ 2

√
max1≤j≤N

∑∞
k=m+1 λ

(j)
k

n

+2
√

max
1≤j≤N

λ
(j)
m

√
logN + C

n
+ 2

logN + C

n
.

Lemma 7 The following bound holds:

E sup
{
|Rn(g − f)| : ‖g − f‖L2(Π) ≤ δ, ‖g‖`1 ≤ R,

∑
j 6∈Jf

‖gj‖Hj
≤ ∆

}
≤ C

√
κ̄(Jf )

κ(Jf )(1− ρ2(Jf ))
δ

√
dm

n

+2R

√
maxj∈Jf

∑
k>m λ

(j)
k

n
+ CR

√
max
j∈Jf

λ
(j)
m

√
log d
n

+C∆

√
log(N − d) + 1

n
.

Proof. First note that

E sup
{∣∣∣∣Rn( N∑

j=1

(
gj − fj)

)∣∣∣∣ : ‖g − f‖L2(Π) ≤ δ, ‖g‖`1 ≤ R,

∑
j 6∈Jf

‖gj‖Hj
≤ ∆

}
≤ E sup

{∣∣∣∣Rn(∣∣∣∣∑
j∈Jf

(gj − fj)
)∣∣∣∣ :

‖g − f‖L2(Π) ≤ δ, ‖g‖`1 ≤ R,
∑
j 6∈Jf

‖gj‖Hj
≤ ∆

}
+

E sup
{∣∣∣∣Rn(∑

j 6∈Jf

(gj − fj)
)∣∣∣∣ : ‖g − f‖L2(Π) ≤ δ, ‖g‖`1 ≤ R,

∑
j 6∈Jf

‖gj‖Hj ≤ ∆
}
.



The second term can be bounded as follows:

E sup
{∣∣∣∣Rn(∑

j 6∈Jf

gj

)∣∣∣∣ : ‖g − f‖L2(Π) ≤ δ, ‖g‖`1 ≤ R,

∑
j 6∈Jf

‖gj‖Hj ≤ ∆
}
≤ E sup

{∣∣∣∣Rn(∑
j 6∈Jf

‖gj‖Hjhj

)∣∣∣∣ :

∑
j 6∈Jf

‖gj‖Hj ≤ ∆, ‖hj‖Hj ≤ 1
}
≤

∆E max
j 6∈Jf

sup
‖hj‖Hj

≤1

|Rn(hj)| ≤ C∆

√
log(N − d) + 1

n
,

where we used Lemma 5. As to the first term, we use
the bound

E sup
{∣∣∣∣Rn(∑

j∈Jf

(gj − fj)
)∣∣∣∣ : ‖g − f‖L2(Π) ≤ δ, ‖g‖`1 ≤ R,

∑
j 6∈Jf

‖gj‖Hj
≤ ∆

}
≤ E sup

{∣∣∣∣Rn(∑
j∈Jf

PLj
(gj − fj)

)∣∣∣∣ :

‖g − f‖L2(Π) ≤ δ
}

+E sup
{∣∣∣∣Rn(∑

j∈Jf

PL⊥j (gj − fj)
)∣∣∣∣ : ‖g‖`1 ≤ R

}
.

Note that

∥∥∥∑
j∈Jf

PLj
(gj − fj)

∥∥∥2

L2(Π)
≤ κ̄(Jf )

∑
j∈Jf

∥∥∥PLj
(gj − fj)

∥∥∥2

L2(Π)

≤ κ̄(Jf )
∑
j∈Jf

‖gj − fj‖2L2(Π) ≤
κ̄(Jf )
κ(Jf )

∥∥∥∑
j∈Jf

(gj − fj)
∥∥∥2

L2(Π)

≤ κ̄(Jf )
κ(Jf )(1− ρ2(Jf ))

∥∥∥ n∑
j=1

(gj − fj)
∥∥∥2

L2(Π)
≤

κ̄(Jf )
κ(Jf )(1− ρ2(Jf ))

δ2.

Also,
∑
j∈Jj

PLj (gj − fj) takes values in the linear span
of
⋃
j∈Jf

Lj whose dimension ≤ dm. This yields the
following bound

E sup
{∣∣∣∣Rn(∑

j∈Jf

PLj (gj − fj)
)∣∣∣∣ : ‖g − f‖L2(Π) ≤ δ

}

≤ C

√
κ̄(Jf )

κ(Jf )(1− ρ2(Jf ))
δ

√
dm

n
.

Finally, we use Lemma 6 to get

E sup
{∣∣∣∣Rn(∑

j∈Jf

PL⊥j (gj − fj)
)∣∣∣∣ : ‖g‖`1 ≤ R

}

≤ E sup
{∣∣∣∣Rn(∑

j∈Jf

‖gj − fj‖HjPL⊥j hj

)∣∣∣∣ : ‖g‖`1 ≤ R,

‖hj‖Hj
≤ 1, j = 1, . . . , N

}
≤ 2RE max

j∈Jf

sup
‖hj‖Hj

≤1

|Rn(PL⊥j hj)|

≤ 2R

√
maxj∈Jf

∑
k>m λ

(j)
k

n
+ C

√
max
j∈Jf

λ
(j)
m

√
log d
n

.

Combining the above bounds we get

E sup
{
|Rn(g − f)| : ‖g − f‖L2(Π) ≤ δ, ‖g‖`1 ≤ R,

∑
j 6∈Jf

‖gj‖Hj
≤ ∆

}
≤ C

√
κ̄(Jf )

κ(Jf )(1− ρ2(Jf ))
δ

√
dm

n

+2R

√
maxj∈Jf

∑
k>m λ

(j)
k

n
+ CR

√
max
j∈Jf

λ
(j)
m

√
log d
n

+C∆

√
log(N − d) + 1

n
.

Recall that
αn(δ,∆, R) :=

sup
{
|(Pn − P )(` • g − ` • f)| : g ∈ G(δ,∆, R)

}
,

where
G(δ,∆, R) :={

g : ‖g − f‖L2(Π) ≤ δ,
∑
j 6∈Jf

‖gj‖Hj
≤ ∆, ‖g‖`1 ≤ R

}
.

We will assume that R ≤ eN (recall also the as-
sumption N ≥ nγ).

Lemma 8 There exist constants C,L depending only
on the loss ` (L = 0 if `′ is bounded) such that for all

n−1/2 ≤ δ ≤ 2R, n−1/2 ≤ ∆ ≤ R (4.1)
and for all A ≥ 1 the following bound holds with proba-
bility at least 1−N−A :

αn(δ,∆, R) ≤ C(1 + LR)
[√

κ̄(Jf )
κ(Jf )(1− ρ2(Jf ))

×

δ

√
dm

n
+R

√
maxj∈Jf

∑
k>m λ

(j)
k

n
+

R

√
max
j∈Jf

λ
(j)
m

√
log d
n

+ ∆

√
log(N − d) + 1

n

]
+C(1 + LR)δ

√
A logN

n
+ CR(1 + LR)

A logN
n

. (4.2)



Proof. First note that, by Talagrand’s concentra-
tion inequality, with probability at least 1− e−t

αn(δ; ∆;R) ≤

2
[
Eαn(δ; ∆, R) + C(1 + LR)δ

√
t

n
+
CR(1 + LR)t

n

]
.

To apply Talagrand’s inequality we used the assump-
tions on the loss function. It follows from these assump-
tions that for all g ∈ G(δ,∆, R)

‖`•g−`•f‖L2(Π) ≤ C(1+LR)‖g−f‖L2(Π) ≤ C(1+LR)δ

and also

‖` • g − ` • f‖∞ ≤ CR(1 + LR).

Next, by symmetrization inequality,

Eαn(δ; ∆, R) ≤ 2E sup
{
|Rn((`•g−`•f : g ∈ G(δ,∆, R).

}
.

We write u = g − f and

` • g − ` • f = ` • (f + u)− ` • f

and observe that the function

[−R,R] 3 u 7→ ` • (f + u)− ` • f

is Lipschitz with constant C(1 + LR). This allows us
to use Rademacher contraction inequality (Ledoux and
Talagrand, 1991) to get

Eαn(δ; ∆, R) ≤ C(1 + LR)×

×E sup
{∣∣∣Rn(g − f)

∣∣∣ : g ∈ G(δ,∆, R)
}
.

The last expectation can be further bounded by Lemma
7. As a result, we get the following bound that holds
with probability at least 1− e−t :

αn(δ; ∆, R) ≤ C(1 + LR)
[√

κ̄(Jf )
κ(Jf )(1− ρ2(Jf ))

δ

√
dm

n

+R

√
maxj∈Jf

∑
k>m λ

(j)
k

n
+R

√
max
j∈Jf

λ
(j)
m

√
log d
n

+

∆

√
log(N − d) + 1

n

]
+ C(1 + LR)δ

√
t

n

+
CR(1 + LR)t

n
=: β̃n(δ,∆, R; t).(4.3)

The next goal is to make the bound uniform in

n−1/2 ≤ δ ≤ 2R and n−1/2 ≤ ∆ ≤ R. (4.4)

To this end, consider

δj := 2R2−j , ∆j := R2−j .

We will replace t by t+ 2 log log(2R
√
n) and use bound

(4.3) for all δ = δj and ∆ = ∆k satisfying the conditions
(4.4). By the union bound, with probability at least

1− log(R
√
n) log(2R

√
n) exp

{
−t− 2 log log(2R

√
n)
}

≥ 1− e−t,

the following bound holds for all δj ,∆k satisfying (4.4):

αn(δj ,∆k, R) ≤ β̃n
(
δj ,∆k, R; t+ 2 log log

(
2R√
n

))
.

It is enough now to substitute in the above bound t :=
A logN and to use the fact that the functions αn(δ,∆, R)
and β̃n(δ,∆, R; t) are nondecreasing with respect to δ
and ∆. Together with the conditions R ≤ eN and N ≥
nγ , this implies the claim.
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