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Abstract

We study the problem of learning mixtures of
distributions, a natural formalization of clus-
tering. A mixture of distributions is a collec-
tion of distributionsD = {D,..., Dr} and
weightsws, ..., wp. A sample from a mix-
ture is drawn by selecting); with probabil-

ity w; and then selecting a sample froby.
The goal, in learning a mixture, is to learn the
parameters of the distributions comprising the
mixture, given only samples from the mixture.

In this paper, we focus on learning mixtures of
heavy-tailed product distributions, which was
studied by[[DHKSO05]. The challenge in learn-
ing such mixtures is that the techniques de-
veloped for learning mixture-models, such as
spectral methods and distance concentration,
do not apply. The previous algorithm for this
problem was due to [DHKSO05], which
achieved performance comparable to the al-
gorithms of [AMO05, [ KSV05] CRQ08] given a
mixture of Gaussians, but took time exponen-
tial in the dimension. We provide an algo-
rithm which has the same performance, but
runs in polynomial time.

Our main contribution is an embedding which
transforms a mixture of heavy-tailed product
distributions into a mixture of distributions

over the hypercube in a higher dimension, while
still maintaining separability. Combining this
embedding with standard spectral techniques
results in algorithms that can learn mixtures
of heavy-tailed distributions with separation
comparable to the guarantees lof [DHKSO05].
Our algorithm runs in time polynomial in the
dimension, number of clusters, and imbalance
in the weights.
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1 Introduction

We study the problem of learning mixtures of distribu-
tions, a natural formalization of clustering. rixture

of distributionsis a collection ofT" distributionsD =
{D,..., Dy} overR"™ and mixing weightsvy, . . ., wr
such thaty."_, w; = 1. A sample from a mixture is
drawn by first selecting with probabilityw;, and then
choosing a random sample frafw. The goal, in learn-
ing a mixture, is to learn the parameters of the distribu-
tions comprising the mixture, and to classify the samples
according to source distribution, given only the ability to
sample from the mixture.

Learning mixtures of distributions frequently arise
in many applications in machine learning, and a fair
amount of empirical work has been devoted to the prob-
lem. On the theoretical side, all work (except for the
work of [DHKSO0S]) has focussed on learning mixtures
of distributions with one of the following characteristics
either the distributions in question have exponentially-
decaying tails, for example, mixtures of Gaussians [Das99,
DS00, AM05, KSV05, AKO1, VWO0P], or they have
severely bounded range, for example, mixtures of binary
product distributions [FOS05, CRO8]. In the latter case,
the bounds deteriorate with the maximum range of val-
ues taken by any coordinate of a sample drawn from the
mixture.

In this paper, we focus our attention to learning mix-
tures of more general distributions. In particular, we
study learning mixtures of heavy-tailed product distribu-
tions, which was introduced by Dasguptaal[DHKSO05].

If the distributions comprising a mixture are very
close together, in the sense that they have a high over-
lap in probability mass, then, even if we knew the pa-
rameters of the distributions comprising the mixture, the
samples would be hard to classify. To address this, Das-
gupta[Das99] introduced the notion a$eparation con-
dition.A separation condition is a promise that the dis-
tributions comprising a mixture are sufficiently differ-
ent according to some measure, and the goal of the al-
gorithm is to learn correctly a mixture which obeys a
certain separation condition. Naturally, the less strin-
gent a separation condition is, the harder it is to learn
a mixture, and therefore, a line of theoretical research



has focussed on learning mixtures of distributions under
less and less restrictive separation conditions. For mix-

heavy-tailed product distributions.
More specifically, our results are as follows. Given a

tures of Gaussians, the common measure of separatiormixture of general product distributions, such that each
used is the minimum distance between the means of anydistribution is symmetric about its median, and Ijas

two distributions in the mixture, parameterized by the
maximum directional standard deviation of any distri-
bution in the mixture. However, this is not a good mea-

radius upper-bounded by, our embedding transforms

itinto a mixture of distributions ovef0, 1}°"*), while
preserving the distance between the centers in a certain

sure for the type of distributions considered here, as the sense which is explained in Theoréi 1. We can now

directional standard deviation may be infinite; follow-

apply either SVD-based clustering algorithrns [KSVO05,

ing [DHKSOS], we therefore use as a measure of separa<aMo5], and in this case, for sucess with probability:

tion the minimum distance between thedianof any
two distributions in the mixture, as parameterized by the
maximums3-radius Recall that give) < 3 < 1, the-
radius of a one-dimensional distributiédhwith median
m(D) is the minimum numbeR s such that the proba-
bility mass ofD in the intervalim(D) — Rg, m(D) +

Rg] is at leasts.

The major challenge in learning mixtures of heavy-
tailed distributions is that none of the tools developed in
the literature for learning mixtures of Gaussians or bi-
nary product distributions work when the mixture con-
sists of more general distributions. The key ingredi-
ents of such algorithms for learning mixtures are: (1)
a singular value decomposition of part [CR08] or whole
[VWO02| [KSV05,[AMO5] of the covariance matrix of the

samples and (2) distance-thresholding based clustering

algorithms. Singular value decompositions of the co-
variance matrix do not converge if the distributions have
infinite variance. Even for mixtures of distributions with
finite variance, distance concentration, which works on
the principle that two samples from the same distribu-
tion are closer in space than two samples from differ-
ent distributions, does not work unless the distributions
have light tails or a very small range. The previous al-
gorithm for the problem is due to [DHKSD5], which
learns mixtures of heavy-tailed distributions with per-
formance comparable to the performance of algorithms
in [AMO5] KSV05, [CRO8] given a mixture of Gaus-
sians; however, it involves an exhaustive search over all
partitions ofQ2(n) samples, where is the number of

dimensions, and hence takes time exponential in the di-

mension.

In this paper, we show a general procedure for trans-
forming mixtures of heavy-tailed product distributions
into mixtures which are more well-behaved, while pre-
serving the separability of the distributions in the mix-
ture. In particular, we provide an efficiently computable
embedding fromR™ to {0, 1}°""*). Our embedding,
when applied to a mixture of heavy-tailed product dis-
tributions which have certain conditions comparable to
those in[DHKSO5], produces a mixture of distributions

in {0,1}°("*"*) with centers that are far apart. In addi-

tion, we show that the resulting mixture has good prop-
erties such that standard algorithms for learning mix-
tures of binary product distributions — such as the SVD-

based algorithms of [AM05, KSV(05] and the correlations-

based algorithm of_ [CR08] can be applied to learn it,
leading to efficient algorithms for learning mixtures of

4, we require that (a) the separation between the medians

of distributionsD; andD; be Q(R(w; /% +w; /%) +

Ry /T log %) and (b) this separation be spread across

Q((w; ? + wj_l/Q)2 + T'log %) coordinates. Alter-
natively, we can apply the correlations-based algorithm
of [CRO&] on the transformed mixture, to get a logarith-
mic dependence on the mixing weights. In this case, to
learn the mixture with probability — §, we require that

(a) the minimum distance between the medians of any
two distributions in the mixture to b@(R+/T log A +

R+/Tlog(nT/é)) and (b) that this separation to be spread
across2(T log A+ T log(nT/0)) coordinates, wher&

is polynomial inn,T and 1—.

We note that conditions comparable to all these four
conditions are required by [DHKSD5] for learning mix-
tures of heavy-tailed distributions; our work improves
on their results by providing a polynomial-time algo-
rithm for the problem, as opposed to an exponential-
time algorithm. In addition, we also do not need the re-
striction, needed by [DHKSO05], that the probability den-
sity function should be decreasing with distance from
the median. We also note that the guarantees of our al-
gorithms are comparable to the guarantees of [AMO5,
KSVO05, [CR08] when the input is a mixture of axis-
aligned Gaussians.

Our Techniques

An initial approach for converting a mixture of general
product distributions to a mixture of distributions with
better properties is to remove toatlier points which

lie very far from the other samples. However, for the
types of distributions we consider, a sample may be an
outlier along each coordinate with constant4) proba-
bility, and since there ane coordinates, with high prob-
ability, every pointis an outlier. Another approach could
be to try to round the outlier points along each dimen-
sion; however, since the different mixture components
may have different mixing weights, given samples from
the mixture, it is hard to determine which of the samples
are outliers along a specific coordinate.

To address these issues, we use techniques from met-
ric embeddings [Ind01]. The main idea behind our em-
bedding is to use many randaentting pointsto divide
the real line into intervals of lengtfi( R); points which
fall into the even intervals are then mappedOt@and
those which fall into the odd intervals are mapped to
1. Although this process does not preserve distances be-



tween all pairs of points, we show that this succeeds in
separating the centers of two distributions which have
medians that are far apart compared to tB¢it-radius

R. Our techniques are related to techniques in metric-
embedding[[IndQ1]; however, so far as we know, this is
the first time they have been applied to learning mixtures
of distributions. Combining our embedding with exist-
ing standard algorithms for learning mixtures of distri-
butions, we get efficient algorithms for learning mix-
tures of heavy-tailed distributions.

2 Reated Work

Heavy-Tailed Mixtures

The work most related to ours is the work of Dasgupta,
Hopcroft, Kleinberg and Sandler [DHKSO05]. Dasgupta
et. al [DHKSO05] introduced the problem of learning

our algorithms work with separation and spreading con-
straints comparable to algorithm (1) of [DHKSO05].
[DHKSO05] also works with a second class of dis-
tributions, which have mildly decaying tails. In this
case, they provide an algorithm which clusters correctly
1 — ¢ fraction of the samples in time exponentiahin
so long as the separation between any two distributions
is Q(R'T®/?/52).

Other Mixture Models

There has been a long line of theoretical work on learn-
ing mixtures of Gaussians. For this problem, the sepa-
ration condition is usually expressed in termsnotthe
number of dimensions;, the maximum directional stan-
dard deviation of any distribution in the mixture, afid

the number of clusters. In_[Das99], Dasgupta provided

mixtures of heavy-tailed distributions and the notion of @n algorithm which learns mixtures of spherical Gaus-
using the distance between the medians, parameterize#12S when the centers of each pair of distributions is
by the half-radius, as a measure of separation betweenSeParated b2(o/n). In [DS00], Dasgupta and Schul-
such distributions. Their work deals with the class of all Man provided an algorithm which applied to more situ-
product distributions in which the distribution of each ations and required a separation(@fon'/*). [AKOI]
coordinate has the following properties: (a) symmetry Showed how to learn mixtures of arbitrary Gaussians

around the median (b) decreasing probability density With a separation of2(on'/*) using distance concen-
tration. In addition to the usual separation between the

centers, their results apply to other situations, for exam-
ple, to concentric Gaussians with sufficiently different
variance.

The first algorithm that removed the dependence on
n was due to Vempala and Wang_[VWO02], who gave a
singular value decomposition based algorithm for learn-
ing mixtures of spherical Gaussians with a separation
of Q(T'/*s). Their algorithm applies a singular value
decomposition of the matrix of samples to compute a
T-dimensional subspace which approximates the sub-
space containing the centers, and then uses distance con-
centration to cluster the samples projected on this low-
dimensional space. In further work, [KSV05] and
[AMQ5] showed how to use singular value decomposi-
tion based algorithms to learn mixtures of general Gaus-
sians when the separation between the centers of distri-

butionsD; andD; is
) + o4/Tlog(%)). The algorithm

with distance from the median and (é}radius upper
bounded byR’. In contrast, we require the distribution
of each coordinate to be symmetric about its median and
have%—radius upper bounded bg, and do not require
the second assumption 6f [DHKSO05].

[DHKSO5] provide two algorithms for learning such
mixtures. First, they provide an algorithm which re-

quires a separation @(R’\/?) and a spreading con-
dition that the distance between the medians of any two
distributions in the mixture should be spread o9¢7’/J)

coordinates, to classify &— ¢ fraction of the samples
correctly. This algorithm works by performing an ex-

haustive search over alll partitions@(“fﬂ) sam-
ples, and therefore has a running time exponential in
@(M). In contrast, our algorithms work with sim-

ilar seB'éiration and spreading conditions, and only take
time polynomial inn.

Second, they provide an algorithm which works with
a stronger separation requirement(®fR’,/n) and a
spreading condition that the distance between the me-
dians of any two distributions in the mixture be spread
over©(7'/6) coordinates. Typically, for such problems,
the dimensiom is much larger than the number of clus-

tersT, and hence the separation needed here is much

larger than the separation needed by the previous al-
gorithm and our algorithms. This algorithm works by
performing an exhaustive search over all partitions of

021y samples, and therefore has a running time
exponential inQ (1221 Sincew,y, is at most,
this may be polynomial im but remains exponential in

T. In contrast, the running times of our algorithms are
polynomial inn, T, andw#_, and for distributions in

which the%-radius is comparable with the half-radius,

Q(a(w;1/2 —i—w;l/Z
of [AMO5] was shown to apply tg’-convergent ang-
concentrated distributions, with bounds that vary with
the nature of the distributions. Their algorithm also ap-
plies to product distributions on binary vectors. How-
ever, their algorithm does not apply to distributions with
infinite variance. Even for distributions with finite vari-
ance, unless the distribution has rapidly decaying tails,
their algorithm yields poor guarantees, proportional to
the maximum range of the distribution of each coordi-
nate.

More recently, [CR08] show an algorithm which,
under certain conditions, learns mixtures of binary prod-
uct distributions and axis-aligned Gaussians when the
centers are separated by

Q0. (VTlog A + (/T log(%))) whereo, is the max-



imum directional variance in the space containing the

centers, and\ is polynomial inn, T and ——. Their
algorithm also does not work for distributions with infi-

We us€|z|| to denote thd., norm of a vector:. We
usen to denote the number of dimensions antb de-
note the number of samples. For a painaind subspace

nite variance and yields poor guarantees for mixtures of H, we useP+(z) to denote the projection af onA.

heavy-tailed product distributions.

3 A Summary of our Results

We begin with some definitions about distributions over

high-dimensional spaces.

Mixture of Distributions. A mixture of distributions
is a collection of distribution® = {D;,...,Dr} and
mixing weightswy, . .., wr such thatZZ.T:1 w; = 1. A

sample from a mixture is drawn by selectifiyy with

probabilityw; and then choosing a sample fram.

Median. We say that a distributio® on R has median
m(D) if the probability that a sample drawn from is
less than or equal tov(D) is 1/2. We say that a distri-
bution D onR™ has mediann(D) = (mq, ..., m,) if
the projection ofD on the f-th coordinate axis has me-
dianmy, for 1 < f < n. For a distributionD, we write
m(D) to denote the median db.

Center. We say that a distributio® on R™ has center
(c1,...,cy) if the projection of D on the f-th coordi-
nate axis has expectatiop, for1 < f <n.

#-Radius. For0 < 8 < 1, the 5-Radius of a distribu-
tion D onR with medianm (D) is the smallesi?z such
that

P%[m(D) —Rg<xz<m(D)+ Rg] >

xrev
Effective Distance. To better describe our results, we
need to define the concepteffective distanceThe ef-

fective distance between two pointsandy in R™ at
scaleR, denoted bylg(z,y) is defined as:

S wmin(R2, (af — yf)2)

f=1

dR(x7y) =

The effective distance between two pointaandy at
scaleR is thus high if many coordinates contribute to
the distance between the points.

Notation. We use subscripts j to index over distribu-
tions in the mixture and subscripfsg to index over co-
ordinates irR™. Moreover, we use subscrigtg, k), . . .

3.1 Our Results

The main contribution of this paper is an embedding
from R™ to {0,1}", wheren/ > n. The embedding
has the property that samples from two product distri-
butions onR™ which have medians that are far apart
map to samples from distributions ¢f, 1} with cen-
ters which are also far apart. In particular, Bt =
{Dz,..., Dt} beamixture of product distributions such
that each coordinat¢ of each distributionD; in the
mixture satisfies the following properties:

1. Symmetnabout the median.
2. 3-radius upper bounded hy.

In particular, this allows the distribution of each co-
ordinate to have infinite variance. Then the properties
of our embedding can be summarized by the following
theorems.

Theorem 1 Suppose we are given access to samples from
a mixture of product distribution® = {D,..., Dy}

overR™ such that for every and f, Df satisfies prop-
erties (1) and (2). Moreover, let for any/i; denote the
center of the distributiorD; obtained by applying our
embeddingp on D;. If, for some constant,

dr(m(D;),m(D;)) > 1R
, then, there exists a constant such that
i — fij|| = can®/*T"/2(log nlog T)*/2

 dn(m(D3), m(D,))
R

with probability1 — % over the randomness in comput-
ing ®. Moreover, for anyi, anyk, k£’ and anyf # [/,
coordinates(f, k) and (f’, k') of D, are independently
distributed.

Our embedding can be combined with the SVD-based
clustering algorithms of [KSV05, AM05] to provide an

to index over coordinates in the transformed space. We efficient algorithm for learning mixtures of heavy-tailed

useR to denote the maximuri-radius of any coordi-

distributions. The resulting clustering algorithm has the

nate of any distribution in the mixture. For each distri- following guarantees.

bution D; in the mixture, and each coordingtewe use
le to denote the projection db; on thef-th coordinate

axis. For anyi, we useD; to denote the distribution in-
duced by applying our embedding @n. Similarly, for

any: and anyf, we useDl?c to denote the distribution
induced by applying our embedding dm[ Moreover,

we usefi; to denote the center db; andﬂ{ to denote

the center oD/ .

Theorem 2 Suppose we are given access to samples from
a mixture of product distribution® = {D,..., Dy}

overR™ such that for every and f, D{ satisfies prop-
erties (1) and (2). If, for some constant

dr(m(D;),m(D;)) > 03R(w;1/2 + wj_l/Q

/ T
+ Tlog%)



Then, AlgorithnHT-SVD clusters the samples correctly
with probability1 — § over the samples, and with prob-

ability 1 — 1 over the randomness in the algorithm. The
algorithm runs in time polynomial in and7’, and the

number of samples required by the algorithr@i@%).

Alternatively, we can also combine our algorithm
with the more recent correlation-based clustering algo-
rithm of [CRO8]. The result is an efficient algorithm
with the following guarantees.

Theorem 3 Suppose we are giversamples from a mix-
ture of product distribution® = {Ds,..., Dy} over
R™ such that for every and f, le satisfies properties
(1) and (2). If, for some constant,

dr(m(D;),m(D;)) > csR(\/Tlog A+ /T log g)

whereA = @(%ﬁ’f"). Then,
AlgorithmHT-CoRRELATIONSclusters the samples cor-
rectly with probabilityl — § over the samples, and with
at least constant probability over the randomness in the
algorithm. The algorithm runs in time polynomialin
andT’, and the number of samples required by the algo-
rithm is polynomial inn, 7', and ——.

Wmin

The condition imposed on the centers of the distri-
butions states that every pair of centers is sufficiently far

apart in space, and the distance between every pair of

centers is spread acro@s(T log A + T'log %) coor-
dinates.

3.2 Discussions

Symmetry. Our embedding still seems to work when
the distributions do not have perfect symmetry, but sat-
isfy an approximate symmetry condition. However, we

in any interval of siz€R is very high. Therefore, since
our embedding relies on the fact that two distributions
which have medians that are far apart, %ndadius
bounded byR, have low overlap in probability mass in a
region of size(R) around the median, it does not work
for distributions likeD; and Ds.

Spreading Condition. We note that our spreading con-
dition, while similar to thesloperequirement of [DHKSO05],
is weaker; while they require the total contribution to
the distance between any two medians from all the co-
ordinates to be large with respect to the contribution
from the maximum coordinate, we only require that the
contribution come from a few coordinates, regardless of
what the maximum contribution from a coordinate is.

4 Embedding Distributions onto the
Hamming Cube

In this section, we describe an embedding which maps
points inR™ to points on a Hamming Cube of higher di-
mension. The embedding has the following property. If
for anys andj, D; and.D; are product distributions on
R™ with properties (1) and (2) such that their medians
are far apart, then, the distributions induced on the Ham-
ming cube by applying the embedding on points from
D, and D; respectively also have centers which are far
apart.

The building blocks of our embedding are embed-
dings{®,}, one for each coordinatg, in {1,...,n}.
The final embeddin@ is a concatenation of the maps
¢, for1 < f < n. We describe more precisely how
to put together the maph; in Sectior 4.B; for now, we
focus on the individual embeddings .

Each embeddin@, in its turn, is a concatenation
of two embeddings. The first one ensures that, foriany
andj, if D] andD/ are two distributions with proper-

ties (1) and (2) such tha: (D) — m(DY)| is smaller

illustrate by an example that we need at least a weak than (or in the same range &) then, the expected dis-

version of the symmetry condition for our embedding
to work. LetD; and D, be the following distributions
overR, whereM is a very large number. Fadp; the
probability density function is:

filz) = %, —R<z<R
_ ﬁ, MR <z <2MR
_ ﬁ, 9MR<z<-MR
The density function foDs is:
fo(x) = %, —R<z<R
_ ﬁ, 9MR<z<-MR

We note that although the medians bf and D, are
R/3 distance apart, the overlap in their probability mass

tance between the centers of the distributions induced
by applying the embedding on points frabyf and D/

is Q(M). Unfortunately, this embedding
does not provide good guarantees whenD; ) —m(D?)|

is large with respect t&. To address this, we use our
second embedding, which guarantees that Wh&m){)—

m(DY)| is large with respect ta?, the centers of the
two distributions induced by applying the embedding on
points from D/ and D/ are at least constant distance
apart. By concatenating these two embeddings, we en-
sure that in either case, the centers of the induced distri-

butions obtained by applying; on D} andD? are far
apart.

4.1 Embedding Distributionswith Small
Separation

In this section, we describe an embedding with the fol-
lowing property. If, for any, 7, andf, sz ande have



properties (1) and (2) ann(D]) — m(D])| < SR,

then the distance between the centers of the distributions

induced by applying) to points generated fI’O[ﬁZf and

[m(D])—m(D])]
07
DJ is proportional t

The embeddingis as foIIows Given a paraméier
andr € [0, R;), we define, for a point € R,

o(z) = 0,if L‘f”];lr

|is even

1, otherwise

In other words, we divide the real line into intervals of
length R, and assign labe) to the even intervals and
labell to the odd intervals. The value gf.(x) is then
the label of the interval containing— r.

The properties of this embedding can be summa-
rized as follows.

Theorem 4 For anyi, j, and f, if Df and Df have
properties (1) and (2), and if is drawn uniformly at

random from0, R;) andRy > 2R+3|m(D])—m(D])|,
then,
E[| Pr [¢(z) =0] = Pr [(z) = 0]]]
:CND :CND
f f
_ [m(Di) —m(Dj)|

2R
Here the expectation is taken over the distributiom.of

Notation Fori = 1,...,T, we writecp{ as the proba-
bility density function of distributiorDl?c centered a0,
and F/ as the cumulative density function of distribu-
tion D/ centered a0. For a real number € [0, R;),

and fori =1,...,T, we define
ol ()= Y (F/(r+ @+ 1)R1) - F/ (r+2)Ry))
A=—00

More specifically,af (r) is the sum of the probabil-
ity mass of the distributio®; in the even intervals when
the shift isr, which is again the probability that a point
drawn fromD; is mapped t® by the embedding,.. In
the sequel, we usa to denotgm(D]) — m(D])|. We
also assume without loss of generality thm(Df) <
m(D), andm(D]) = 0. Then, the left-hand side of
the equation in Theoreld 4 can be written as follows.

Bl Pr () =0~ Pr [vn(x) = 0]]
x~ D] x~D

1 [Ri/2
== 1)
Ry /7'=—R1 /2

The proof of Theorerml4 follows in two steps. First,
we show that ifD/ were a shifted version ob/, a
shghtly stronger version of Theordm 4 would hofd This
is shown in Lemma&l5. Next, Lemlﬂa 8 shows that even
if Df is not a shifted version oD the statements in
Theorenﬂ still hold.

jof (r + A) = af (r)|dr

A A
<—|

T
a’

e

Figure 1: Proof of Lemmial6

Lemma5 ForanyA, if Ry > 3A + 2R, then, for any

VA
R1/2
/ (af (r) -
T:*Rl /2

Note that the difference between the statement of The-
orem[4 and LemmaAl5 is that the left-hand side of the
equation in Theorein 4 has an absolute value, and hence
Lemmal® makes a stronger statement (under stronger
assumptions).

Before we prove Lemnid 5, we need the following lemma.

a
2

a{(A +7))dr >

Lemma6 Let[a, a] be any interval of length more than
2A. Then, for anyi,

’

A. / r)dr >/ (F/ (r + A) — F/ (r))dr
- a —A
2o [l
r=a+A
Proof: For anyr,
r+A
8- F )= [ ol
t=r

We divide the intervala, a'] into infinitesimal intervals
of lengthd. The probability mass of distributioP; in
an intervallt, t + 6] is & - ! ().

Note that in the expression

’

| e+ 8) - Far

the probability mass of each intervigl ¢ + §] wheret
liesinja+ A,a’ — A] is counted exactly% times, and
the probability mass ab; in an intervalt, t + &), where
tliesin the intervala, a + A) U (@’ — A, o’] is counted

at most4 times — see Figuré 1. Singg/ (t) > 0 for

all t, the lemma follows in the limit whed — 0. O
Proof: (Of Lemmd5) The shaded area in Figule 2 shows
the value ofa! (r) — of (r + A) for a distributionD;.



o+
H

Figure 2: Proof of Lemmial5

We can write:

R1/2

[ @l -altr+ apar
T:*R1/2
R1/2 o0

_ / ST F (r+ @A+ DRy)

T:*R1/2 A=—00

—F/(r+2\R)) — (F/ (r + A+ 2A + 1)R))

—F/(r+ A+ 2)\R,))|dr

Ry/2 oo
/7'=—R1/2 Z

A=—00
—F/r+ A+ +1)R)) -
—F/(r+ A+ 2)\R,))dr

Ry/2 )
B /r:—Rl/Q Z

A=—00
—F/(r 4+ 2\R))) — (F/ (r + @A+ DR, + A)
—F/(r+ @A+ 1)Ry))]dr

[(F(r + (2A+1)Ry)

(F/ (r + 2\Ry)

[(F(r +2AR, + A)

From Lemmab, the first term is at least
Ri/2—A

A - Z/ golr+2)\R1)d

Ao oo JT=—R1/2+A

This is A times the total probability mass @; in the
intervals[2AR; — R1/2 + A,2AR; + R1/2 — A], for
all A. SinceR; > 2A + 2R, this includes the interval
[ R, R], and as the median d@; is at0 and D; has%-
radius less than or equal 19, the value of the first term
is at least2 .

From Lemmab, the second term is at most

o0

Ry /2
A
Z /7:—131/2

A=—o00

of (r + (2A + 1)Ry)dr

This is the total probability mass db; in the intervals
[(2)\ + ].)Rl — R1/2, (2)\ + 1)R1 + R1/2], for all .
SinceR; > 3A + 2R, none of these intervals have any
intersection with[—R, R]. The total probability mass
in these intervals is therefore at mo}gt and therefore
the value of the second term is at m%I The lemma
follows. [J

Next we show that Theoreinh 4 holds even if distribu-
tion D/ is not a shifted version of distribution. This

is shown by a combination of Lemmik 7 ddd 8, which
are both consequences of the symmetry of the distribu-

tions D/ andD/.

Lemma7 Suppose that for any, j, and f, D{,D/
have property (1) and median Then, for any-,
f

al (r) — «

!

J(r) =af(=r) —al(-r)

J

Proof: We define

i Fl(r+2\R)) — F ' (r + 2A = 1)Ry)

A=—o00

Thus,df(r) is the probability mass ob; in the odd
intervals, which is again the probability that maps a
random point fromD; to 1 when the shift chosen is
Thereforeﬂ{( )=1—q f(r). SinceD; |s symmetric
with median0, for any mterval[a al,a > a >0,

Fl(a') = F/(a) = F/(—a) — F/(=d’). Therefore,

af (-r)
= > Fl(—r+@ +1R1) -

A=—00

Ff (=r 4+ 2\R))

_ i Fl(r—=2\R)) — F/(r — 2\ + 1)R))

A=—00
= al(r)
The lemma follows because
al(r)—al(r)=al(r) - al(r)

O

Lemma8 For anyi andy, if D{ and D/ have proper-
ties (1) and (2), then,

Ry/2
/ |a (r+A)fa()|dr
=—R,/2

R1/2 ;
> [ o)~
r=—R1/2

Proof: By LemmalY, for every- € [—R1/2, R1/2],
there is a unique’ = —r such thaw/ (r) — o/ (r) =

ol (r') — af (). We claim that for every such pairr”,

oz;(r + A))dr

lof (r + A) -

> (af (r) -

af ()]
ol (' + A))

o ()| + | (7' + A) -
of (r+ A)) + (al (") —



We note that for a fixed pair, '),
ol (r+ A) = of ()| + o] (" + &) = of ()]
ol (r+ A) = of ()] + o] (" + A) + ol (r)
Iy —al ()]

> |oz§c 7“—|—A)—a{(r)—i—a;(r'—i—A)—i—a;(r)
—af(r) - af )

= [(](r+A) = aj(n) + (o] (" + &) = af (1))
+(af (r) + af (") = of (r) = af ()]

The lemma follows by summing over all such pdirs’).
(]

Proof: (Of Theoreni#) From Equatidd 1 and Lempia 5,

B[ Pr [n(z) = 0]~ Pr [n(z) =0]]
z~Dj z~ D3

1 e A

— [(r+ A) —al (r)]dr > —

7,00 ) ol ldr > 5o

The second step follows from Lemima®B.

4.2 Embedding Distributionswith Large
Separation

In this section, we describe an embedding with the fol-
lowing property. For any, j, andf, if D andD/ have
properties (1) and (2), angn(D]) — m(D)| > SR,

then, the expected gap between the centers of the distri-

butions induced by applying the embeddings on points
from D andD/ is at least a constant.

The embedding is as follows. Given a randgm:
{p,{er}rez} Wherepis a numberif0, R2) and{e; } is
an infinite sequence of bits, we defige: R — {0,1}
as follows.

o¢ ()

= ()

T—p
7 |
In other words, ifz — p lies in the interval8k R, 8(k +
R), then¢><(m) = ¢€k.
The properties of the embeddigg can be summa-
rized as follows.

Ex(x),Where k(z) = |

Theorem 9 For anyi, j, and f, let D and D! have

properties (1) and (2), and l¢tn(D{) —m(D!)| > 8R.

If R, > 8R, and if p is generated uniformly at random
from the interval0, R»), and eachy,, is generated by an
independent toss of a fair coin, then,

1
Bl Pr [6c(a) = >

, 0= Pr [sc(x) =0]]
z~Dj

~D7
;cDj

where the expectation is taken over the distributiog.of

Proof: We say that an intervéd, a’] of length8 R or less
is cut by the embedding if there exists somes [a, a')

such that’ is an integer. Ifla,a’] is cut aty, then,

with probability  over the choice ofey}, any pointz
in the intervalja, y] has a different value af¢ (z) than
any point in(y,a’]. If an interval is not cut, then all
points in the interval have the same valueggf with
probability1 over the choice ofe; }.

Since the intervalgn (D] )~ R, m(D] )+R] and[m (D] ) -
R,m(D!) + R] have length at leagiR,

Pr{[m(D]) — R,m(D]) + R], [m(D]) — R,m(D]) +

2R+2R S

8R

If none of the interval$m(D/) — R, m(D!) + R] and
[m(D]) — R,m(D]) + R] are cut,

R
1
arenotcut>1— 3

1

Pr{oc(m(D]) — R) # dc(m(D) — B)] =

Let us assume that the intervéds(D/) — R, m(D/) +
R] and[m(DJf) —R, m(DJf) + R] are not cut and

¢c(m(D]) = R) # ¢c(m(D]) — R)
. From the two equations above, the probability of this
eventis at Ieas}. Also suppose without loss of general-
ity that¢<(m(Df) — R) = 0. Then, sinceR is an upper
bound on the}—radius of the distribution@f andD]f.,
the probability mass on that maps td is at least?,
and the probability mass (ﬂf that maps td is at most
1. Therefore, with probability at leagt,

| Pr [oc(x)

f
z~Dj

1
0= Pr foc() =0]| 2 5

~DJ
:ij

The theorem follows]

4.3 Combining the Embeddings

In this section, we show how to combine the embed-
dings of Sections 411 afd 4.2 to provide a ndaphich
obeys the guarantees of Theorein 1. Given parameters
R1, Ry, andq, we defined; for a coordinatef as fol-
lows.

q)f(x) = (¢C1 (:Cf>a ceey ngq (xf>a z/}7“1 (:Cf>a s aqu (:ﬁgg)
Here, (i, .. ., {; areqg independentrandom valuesof=
(p,{ek}rez), Wherep is drawn uniformly at random
from the interval0, R,), andey, for all k, are generated
by independent tosses of an unbiased coin.... 7,
areq independent random values.gfwherer is drawn
uniformly at random from the intervad, R, ). Finally,
the embeddin@ is defined as:

P(r) =P1(2) D ... O Pp(x) (4)

The properties of the embeddidgare summarized in
Theorenil. Next, we prove Theoréin 1. We begin with
the following lemma, which demonstrates the properties
of each®.



Lemmal10 LetR; > 26R, Ry > 8R, and

g = 4y/nTlognlogT, and suppose we are given sam-
ples from a mixture of product distributions which sat-
isfy conditions (1) and (2). Then, for alland j, the
embeddingd = @ ;P defined in Equatiori]3 satisfies
the following conditions. With probability at leakt- %
over the randomness in the embedding, for each coordi-
nate f,

1. It jm(D]) — m(D])| > 8R, then, for some con-
stantcs,
1B, ps[@s(@)] —E, pr[®r(2)]l] 2 csn' /AT

x (lognlog T)/?

) —m(D])| < 8R, then, for some

~ B, [®(@)]]| > con'/ T/

xNDJf
alm(D]) = m(D])]
R

x (lognlogT)

Proof: (Of Lemmal[ID) The first part of the lemma fol-
lows by Theoreni19, along with an application of the
Chernoff Bounds, followed by a Union Bound over all
i, 7, f. The second part follows similarly by an applica-
tion of Theoreni ¥

Proof: (Of Theorenil) We call a coordinagevery low
for distributionsi and; if [m(D])—m(D])| < L, low

it & < |m(D]) —m(D])| < 8R, andhighotherwise.
LetV; ;, L; ; andH; ; respectively denote the set of very

low, low and high coordinates for distributiod; and
D;. Then,

s — agll? = > el = w12+ > (el - w11
feVi; feL;
+ >0l = AP
f€EH; ;
From LemmdID0,this sum is at least
im(D]) — m(D])|?
R2

Z cgn'/*TlognlogT
fEL;
+ Z 05n1/2Tlogn10gT
feH; ;

which, by the definition of effective distance is at least

2 (m(D; D;

2T og mlog (D) (D)
R2

> sev,, (m(Df) = m(D]))?

B R2 )
wherec; is some constant. Now the contribution from

the very low coordinates to the distance betwe#gD, )

andm(D;) is atmost, /> R?/n = R. Since

dr(m(D;), m(D;)) = 2R

, this contribution is at mos% the total distance. The
first part of the theorem therefore follows.

For any sample: from any D; in the mixture, and
any k, k', coordinatesf, k) and (f’, k') of ®(x) are
function of z/ andz/’ respectively. As forf # f/, zf
andz?" are independently distributed, the second part of
the theorem follows]

5 Applications: Learning Mixtures

In this section, we show how our embedding in The-
orem[1 can be combined with standard algorithm for
learning mixture models to yield algorithms than can
learn mixtures of heavy-tailed distributions. First, in
Section 5.1, we show how to combine our embedding
with SVD-based algorithms df [KSV05, AM05]; in Sec-
tion[5.2, we show how to combine our embedding with
the more recent algorithm of [CROS].

5.1 Clusteringusing SVD

In this section, we present Algorithm HT-SVD-a com-
bination of SVD-based algorithms daf [AM0OB5, KSV05]
with our embedding in Theorelm 1. The input to the al-
gorithm is a setS of samples, and the output is a par-
titioning of the samples. The algorithm is described in
Figure3.

The properties of Algorithm HT-SVD are summa-
rized by Theorerfil2, which we prove for the rest of this
section. The two main steps in the proof are as fol-
lows: first, we show that after applying our embedding,
the tranformed distributions have good properties, such
as low directional variance and distance-concentration.
Next, we show that these properties imply that SVD-
based algorithms, such as those_ of [KSM05, AM05] can
learn these mixtures effectively. The following lemma
shows that the maximum directional variance of the trans-
formed distributions in the mixture is high; this fact is
later used crucially in demonstrating that SVD-based al-
gorithms can effectively cluster the mixture.

Lemmall For anyi, the maximum directional vari-
ance of the transformed distributidn; is at most
O(n'?>TlognlogT).

Proof: Letv be any unit vector in the transformed space.
The variance of the transformed distributiby alongv



HT-SVD(S)

Sinto S, andSp uniformly at random.

(resp.vi,B,...,vr,B).

after projection.

1. LetR; = 26R, Ry = 8R, andq = 4,/nT lognlog T. ComputeS = {®(z)|z € S}. Partition

2. Construct the x ng matrix S 4 (respectivelyS) in which the entry at row and column’ is
thel’-th coordinate of thé-th sample point irf 4 (Sp respectively).

3. Let{via,...,vra} (resp.{vi 5, ...,vr 5}) be the togl singular values of 4 (resp.Sz).
Project each point iz (resp.S.4) on the subspadé 4 (resp.K ) spanned by 4,..

4. Use a distance-based clustering algorithm a5 in [AKOHauition the points inS4 andSp

-, VT, A

Figure 3: Algorithm Using SVDs

can be written as:
E; p [(v,7 — E[Z])’]

B, p (3 (074 - (3 — B2

(.k)
+2 0 Y wfE LGl gafh)
FROXUED
x (@K — Bz )
< B, p ) @2 Yo ofk S
(F.k) (FR)(F7 ")
x (@ —Bl#H) - (@ F — B
< Ei~f)i[z (v/F)? 4 QZZUf’ka’k’
(.k) Ik
x (@ — Bl#lM) - (@ — ElEN])]
<

E; 5> O v*)
f ok

As /¥ is distributed independently af -+ when f
f',in this case,
By, (27" = B/ *)) - (@7 — B[] =0

The lemma follows a§{z/-* — E[z/*])| < 1 for any f
andk, and there are at moét(n'/?T log nlog T') coor-
dinates corresponding to a single[d

Next we show that the transformed distributions also
possess some distance-concentration properties.

Lemma 12 LetH be ad-dimensional subspace of
{0,1}4n*/*T10g Tlogn Then for any,

Pr [|[Py (& — Bl&)|| < 4n'/*T"/2(lognlog T)"/2

x+/dlog(d/8)] > 1—4¢

xr~L;

Proof: Letq = 4n'/?T'lognlogT. Letwy,..
an orthonormal basis 6f. As
d

1P+ (E)I1” = Y (0, )
=1
we apply the Method of Bounded Differences to bound
the value of eacljv;, Z).
Z vlf’k bk
k

f
As changing each coordinate of the original sample point
x will change at mosg coordinates of, vy, the change
in (v, ) when we change a coordinafeof the orig-

inal sample point is at mosf _, vlf’k)Q. Therefore,
v =393 =3 (3, v/")?2 Sincey is a unit vector,
~v < q. Thus, for any,

Pr(|(vi, &) — (v, E[Z])| > v/ qlog(d/d)] <

As ||Py (2 — E[z])|]? = >, (v, @ — E[Z])?, the lemma
follows by applying a Union Bound over each vector
O

., g be

<vla :f>

ISHISY]

We are now ready to prove Theoréin 2. The main
toolin our proofis the following lemma, due to [AMO5],
which shows that if the separation between the trans-
formed centers is large, then, Step 3 of the algorithm
will find a subspace in which the transformed centers
are far apart.

Lemma 13 Let, for eachi, ¢; 4 be the empirical cen-
ters of D; computed from the points ifi4, and leto be

the maximum directional standard deviation of aby:.
Then,

IPrp(cia—ciall =

lleia = ¢j.all

71/2+w

—o(w; e

J



Proof: (Of Theoren(R) Lety = 4n'/?T'lognlogT.
When the distributions in the input mixture obey the
separation conditions of Theordrh 2, from Theofdm 1,
for eachi andj, the distance between the transformed
centersi; andji; is at least :

Q) - (w; "/ +w; 2 + \/Tlog(Tn/5))

Since the number of samples is at Ie@@%), the
distance between the sample means and actual means
the transformed distributions are at mel). There-
fore, from Theorerh 13,

[[Picy(cia —cja)ll > cs\/qT log(Tn/d)

wherec; 4 andc; 4 are the empirical centers of the trans-
formed distributions, ands is some constant. A&
has dimension at mogt, from Lemmé&IR and a union
bound over all pairs of samples, with probability- ¢,

all pairs of samples drawn from a distributi@® have
distance at most

20 /4T 2 (log nlog T)Y 2\ /2T log(nT /)

in the subspac& z. On the other hand, for some con-
stanta’, a sample drawn fronD,; and a sample drawn
from D; are at least

a/n*ATY2(log nlog T)Y/2\/T log(nT/4)

apart inCg. Algorithm HT-SVD therefore works for
a > 2v2.0

5.2 Clusgtering Using Correlations

In this section, we present Algorithm HTERRELATIONS
which is a combination of our embedding with the
correlations-based clustering algorithm [of [CIR08]. Al-
gorithm HT-CORRELATIONS is described in Figurgl4.
The input to the algorithm is a sétof s samples, and
the output is a partitioning of the samples.

The properties of Algorithm HT-GRRELATIONSare
described in Theoren{] 3. This section is devoted to
proving Theorerl3. The proof proceeds in three steps.
First, we deduce from Theorehh 1 that if the distribu-
tions satisfy the conditions in Theoréin 3, then the trans-
formed distributions satisfy the separation and spread-
ing requirements of Theorem 1 in [CR08]. We can then
apply Theorem 1 to show that the centers of the trans-
formed distributions are far apart K4 and g, the
subspaces computed in Step 4 of
Algorithm HT-CORRELATIONS. Finally, we use this
fact along with LemmadsZ1 andl12 to show that distance

concentration algorithms work in these output subspaces.

Proof:(Of TheoreniB) Lety = 4n'/2T log nlog T. From
Theorent]l and Conditions (1) and (2), for eagnd,
the distance between the transformed cernfigend i
is at least

Q(y/a)(v/Tlog A + v/Tlog(nT}2))

We note that the proof of Theorem 1 In [CRO08] requires
only that for each distribution, the coordinatesfinare
independently distributed from the coordinategirSince
the distribution of any coordinate ifi is independent of
the distribution inG (although the coordinates withif

or G are not necessarily independently distributed), we
can apply Theorem 1 in [CR0D8] to conclude that for each

grandj, there exists some constansuch that:

Q(d(fii; f15))
a(\/qT log A + \/qT log(nT/5))

As Kp has dimension at mo&f’, from Lemmd 1P
and a union bound, with probability— ¢, all pairs of
samples drawn from a distributiah; have distance at
most 2+/¢T log(Tn/d) in the subspac&z. On the
other hand, a sample drawn frai) and a sample drawn

from D; are at leasta; — 2)/2¢T log(T'n/é) apartin

Kg. Algorithm HT-CORRELATIONS therefore works.
g

d’CB (ﬂu ﬁj)
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