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Abstract

We study the problem of learning mixtures of
distributions, a natural formalization of clus-
tering. A mixture of distributions is a collec-
tion of distributionsD = {D1, . . . , DT } and
weightsw1, . . . , wT . A sample from a mix-
ture is drawn by selectingDi with probabil-
ity wi and then selecting a sample fromDi.
The goal, in learning a mixture, is to learn the
parameters of the distributions comprising the
mixture, given only samples from the mixture.

In this paper, we focus on learning mixtures of
heavy-tailed product distributions, which was
studied by [DHKS05]. The challenge in learn-
ing such mixtures is that the techniques de-
veloped for learning mixture-models, such as
spectral methods and distance concentration,
do not apply. The previous algorithm for this
problem was due to [DHKS05], which
achieved performance comparable to the al-
gorithms of [AM05, KSV05, CR08] given a
mixture of Gaussians, but took time exponen-
tial in the dimension. We provide an algo-
rithm which has the same performance, but
runs in polynomial time.

Our main contribution is an embedding which
transforms a mixture of heavy-tailed product
distributions into a mixture of distributions
over the hypercube in a higher dimension, while
still maintaining separability. Combining this
embedding with standard spectral techniques
results in algorithms that can learn mixtures
of heavy-tailed distributions with separation
comparable to the guarantees of [DHKS05].
Our algorithm runs in time polynomial in the
dimension, number of clusters, and imbalance
in the weights.

1 Introduction

We study the problem of learning mixtures of distribu-
tions, a natural formalization of clustering. Amixture
of distributionsis a collection ofT distributionsD =
{D1, . . . , DT } overRn and mixing weightsw1, . . . , wT

such that
∑T

i=1 wi = 1. A sample from a mixture is
drawn by first selectingi with probabilitywi, and then
choosing a random sample fromDi. The goal, in learn-
ing a mixture, is to learn the parameters of the distribu-
tions comprising the mixture, and to classify the samples
according to source distribution, given only the ability to
sample from the mixture.

Learning mixtures of distributions frequently arise
in many applications in machine learning, and a fair
amount of empirical work has been devoted to the prob-
lem. On the theoretical side, all work (except for the
work of [DHKS05]) has focussed on learning mixtures
of distributions with one of the following characteristics:
either the distributions in question have exponentially-
decaying tails, for example, mixtures of Gaussians [Das99,
DS00, AM05, KSV05, AK01, VW02], or they have
severely bounded range, for example, mixtures of binary
product distributions [FOS05, CR08]. In the latter case,
the bounds deteriorate with the maximum range of val-
ues taken by any coordinate of a sample drawn from the
mixture.

In this paper, we focus our attention to learning mix-
tures of more general distributions. In particular, we
study learning mixtures of heavy-tailed product distribu-
tions, which was introduced by Dasguptaet. al[DHKS05].

If the distributions comprising a mixture are very
close together, in the sense that they have a high over-
lap in probability mass, then, even if we knew the pa-
rameters of the distributions comprising the mixture, the
samples would be hard to classify. To address this, Das-
gupta [Das99] introduced the notion of aseparation con-
dition.A separation condition is a promise that the dis-
tributions comprising a mixture are sufficiently differ-
ent according to some measure, and the goal of the al-
gorithm is to learn correctly a mixture which obeys a
certain separation condition. Naturally, the less strin-
gent a separation condition is, the harder it is to learn
a mixture, and therefore, a line of theoretical research



has focussed on learning mixtures of distributions under
less and less restrictive separation conditions. For mix-
tures of Gaussians, the common measure of separation
used is the minimum distance between the means of any
two distributions in the mixture, parameterized by the
maximum directional standard deviation of any distri-
bution in the mixture. However, this is not a good mea-
sure for the type of distributions considered here, as the
directional standard deviation may be infinite; follow-
ing [DHKS05], we therefore use as a measure of separa-
tion the minimum distance between themediansof any
two distributions in the mixture, as parameterized by the
maximum3

4 -radius. Recall that given0 < β ≤ 1, theβ-
radius of a one-dimensional distributionD with median
m(D) is the minimum numberRβ such that the proba-
bility mass ofD in the interval[m(D) − Rβ ,m(D) +
Rβ ] is at leastβ.

The major challenge in learning mixtures of heavy-
tailed distributions is that none of the tools developed in
the literature for learning mixtures of Gaussians or bi-
nary product distributions work when the mixture con-
sists of more general distributions. The key ingredi-
ents of such algorithms for learning mixtures are: (1)
a singular value decomposition of part [CR08] or whole
[VW02, KSV05, AM05] of the covariance matrix of the
samples and (2) distance-thresholding based clustering
algorithms. Singular value decompositions of the co-
variance matrix do not converge if the distributions have
infinite variance. Even for mixtures of distributions with
finite variance, distance concentration, which works on
the principle that two samples from the same distribu-
tion are closer in space than two samples from differ-
ent distributions, does not work unless the distributions
have light tails or a very small range. The previous al-
gorithm for the problem is due to [DHKS05], which
learns mixtures of heavy-tailed distributions with per-
formance comparable to the performance of algorithms
in [AM05, KSV05, CR08] given a mixture of Gaus-
sians; however, it involves an exhaustive search over all
partitions ofΩ(n) samples, wheren is the number of
dimensions, and hence takes time exponential in the di-
mension.

In this paper, we show a general procedure for trans-
forming mixtures of heavy-tailed product distributions
into mixtures which are more well-behaved, while pre-
serving the separability of the distributions in the mix-
ture. In particular, we provide an efficiently computable
embedding fromR

n to {0, 1}O(n3/2). Our embedding,
when applied to a mixture of heavy-tailed product dis-
tributions which have certain conditions comparable to
those in [DHKS05], produces a mixture of distributions
in {0, 1}O(n3/2) with centers that are far apart. In addi-
tion, we show that the resulting mixture has good prop-
erties such that standard algorithms for learning mix-
tures of binary product distributions – such as the SVD-
based algorithms of [AM05, KSV05] and the correlations-
based algorithm of [CR08] can be applied to learn it,
leading to efficient algorithms for learning mixtures of

heavy-tailed product distributions.
More specifically, our results are as follows. Given a

mixture of general product distributions, such that each
distribution is symmetric about its median, and has3

4 -
radius upper-bounded byR, our embedding transforms
it into a mixture of distributions over{0, 1}O(n3/2), while
preserving the distance between the centers in a certain
sense which is explained in Theorem 1. We can now
apply either SVD-based clustering algorithms [KSV05,
AM05], and in this case, for sucess with probability1−
δ, we require that (a) the separation between the medians
of distributionsDi andDj beΩ(R(w

−1/2
i + w

−1/2
j ) +

R
√

T log nT
δ ) and (b) this separation be spread across

Ω((w
−1/2
i + w

−1/2
j )2 + T log nT

δ ) coordinates. Alter-
natively, we can apply the correlations-based algorithm
of [CR08] on the transformed mixture, to get a logarith-
mic dependence on the mixing weights. In this case, to
learn the mixture with probability1− δ, we require that
(a) the minimum distance between the medians of any
two distributions in the mixture to beΩ(R

√
T log Λ +

R
√

T log(nT/δ)) and (b) that this separation to be spread
acrossΩ(T log Λ+T log(nT/δ)) coordinates, whereΛ
is polynomial inn,T and 1

wmin
.

We note that conditions comparable to all these four
conditions are required by [DHKS05] for learning mix-
tures of heavy-tailed distributions; our work improves
on their results by providing a polynomial-time algo-
rithm for the problem, as opposed to an exponential-
time algorithm. In addition, we also do not need the re-
striction, needed by [DHKS05], that the probability den-
sity function should be decreasing with distance from
the median. We also note that the guarantees of our al-
gorithms are comparable to the guarantees of [AM05,
KSV05, CR08] when the input is a mixture of axis-
aligned Gaussians.

Our Techniques

An initial approach for converting a mixture of general
product distributions to a mixture of distributions with
better properties is to remove theoutlier points, which
lie very far from the other samples. However, for the
types of distributions we consider, a sample may be an
outlier along each coordinate with constant (1/4) proba-
bility, and since there aren coordinates, with high prob-
ability, every point is an outlier. Another approach could
be to try to round the outlier points along each dimen-
sion; however, since the different mixture components
may have different mixing weights, given samples from
the mixture, it is hard to determine which of the samples
are outliers along a specific coordinate.

To address these issues, we use techniques from met-
ric embeddings [Ind01]. The main idea behind our em-
bedding is to use many randomcutting pointsto divide
the real line into intervals of lengthΩ(R); points which
fall into the even intervals are then mapped to0 and
those which fall into the odd intervals are mapped to
1. Although this process does not preserve distances be-



tween all pairs of points, we show that this succeeds in
separating the centers of two distributions which have
medians that are far apart compared to their3/4-radius
R. Our techniques are related to techniques in metric-
embedding [Ind01]; however, so far as we know, this is
the first time they have been applied to learning mixtures
of distributions. Combining our embedding with exist-
ing standard algorithms for learning mixtures of distri-
butions, we get efficient algorithms for learning mix-
tures of heavy-tailed distributions.

2 Related Work
Heavy-Tailed Mixtures

The work most related to ours is the work of Dasgupta,
Hopcroft, Kleinberg and Sandler [DHKS05]. Dasgupta
et. al [DHKS05] introduced the problem of learning
mixtures of heavy-tailed distributions and the notion of
using the distance between the medians, parameterized
by the half-radius, as a measure of separation between
such distributions. Their work deals with the class of all
product distributions in which the distribution of each
coordinate has the following properties: (a) symmetry
around the median (b) decreasing probability density
with distance from the median and (c)1

2 -radius upper
bounded byR′. In contrast, we require the distribution
of each coordinate to be symmetric about its median and
have 3

4 -radius upper bounded byR, and do not require
the second assumption of [DHKS05].

[DHKS05] provide two algorithms for learning such
mixtures. First, they provide an algorithm which re-

quires a separation ofΩ(R′
√

T
δ ) and a spreading con-

dition that the distance between the medians of any two
distributions in the mixture should be spread overΘ(T/δ)
coordinates, to classify a1 − δ fraction of the samples
correctly. This algorithm works by performing an ex-
haustive search over all partitions ofΘ(n log(nT )

wmin
) sam-

ples, and therefore has a running time exponential in
Θ(n log(nT )

wmin

). In contrast, our algorithms work with sim-
ilar separation and spreading conditions, and only take
time polynomial inn.

Second, they provide an algorithm which works with
a stronger separation requirement ofΩ(R′√n) and a
spreading condition that the distance between the me-
dians of any two distributions in the mixture be spread
overΘ(T/δ) coordinates. Typically, for such problems,
the dimensionn is much larger than the number of clus-
tersT , and hence the separation needed here is much
larger than the separation needed by the previous al-
gorithm and our algorithms. This algorithm works by
performing an exhaustive search over all partitions of
Θ( log(nT )

wmin

) samples, and therefore has a running time

exponential inΘ( log(nT )
wmin

). Sincewmin is at most 1
T ,

this may be polynomial inn but remains exponential in
T . In contrast, the running times of our algorithms are
polynomial inn, T , and 1

wmin
, and for distributions in

which the 3
4 -radius is comparable with the half-radius,

our algorithms work with separation and spreading con-
straints comparable to algorithm (1) of [DHKS05].

[DHKS05] also works with a second class of dis-
tributions, which have mildly decaying tails. In this
case, they provide an algorithm which clusters correctly
1 − δ fraction of the samples in time exponential inn,
so long as the separation between any two distributions
is Ω(R′T 5/2/δ2).

Other Mixture Models

There has been a long line of theoretical work on learn-
ing mixtures of Gaussians. For this problem, the sepa-
ration condition is usually expressed in terms ofn, the
number of dimensions,σ, the maximum directional stan-
dard deviation of any distribution in the mixture, andT ,
the number of clusters. In [Das99], Dasgupta provided
an algorithm which learns mixtures of spherical Gaus-
sians when the centers of each pair of distributions is
separated byΩ(σ

√
n). In [DS00], Dasgupta and Schul-

man provided an algorithm which applied to more situ-
ations and required a separation ofΩ(σn1/4). [AK01]
showed how to learn mixtures of arbitrary Gaussians
with a separation ofΩ(σn1/4) using distance concen-
tration. In addition to the usual separation between the
centers, their results apply to other situations, for exam-
ple, to concentric Gaussians with sufficiently different
variance.

The first algorithm that removed the dependence on
n was due to Vempala and Wang [VW02], who gave a
singular value decomposition based algorithm for learn-
ing mixtures of spherical Gaussians with a separation
of Ω(T 1/4σ). Their algorithm applies a singular value
decomposition of the matrix of samples to compute a
T -dimensional subspace which approximates the sub-
space containing the centers, and then uses distance con-
centration to cluster the samples projected on this low-
dimensional space. In further work, [KSV05] and
[AM05] showed how to use singular value decomposi-
tion based algorithms to learn mixtures of general Gaus-
sians when the separation between the centers of distri-
butionsDi andDj is

Ω(σ(w
−1/2
i + w

−1/2
j ) + σ

√

T log(T
δ )). The algorithm

of [AM05] was shown to apply tof -convergent andg-
concentrated distributions, with bounds that vary with
the nature of the distributions. Their algorithm also ap-
plies to product distributions on binary vectors. How-
ever, their algorithm does not apply to distributions with
infinite variance. Even for distributions with finite vari-
ance, unless the distribution has rapidly decaying tails,
their algorithm yields poor guarantees, proportional to
the maximum range of the distribution of each coordi-
nate.

More recently, [CR08] show an algorithm which,
under certain conditions, learns mixtures of binary prod-
uct distributions and axis-aligned Gaussians when the
centers are separated by

Ω(σ∗(
√
T log Λ +

√

T log(T
δ ))) whereσ∗ is the max-



imum directional variance in the space containing the
centers, andΛ is polynomial inn, T and 1

wmin

. Their
algorithm also does not work for distributions with infi-
nite variance and yields poor guarantees for mixtures of
heavy-tailed product distributions.

3 A Summary of our Results

We begin with some definitions about distributions over
high-dimensional spaces.

Mixture of Distributions. A mixture of distributions
is a collection of distributionsD = {D1, . . . , DT} and
mixing weightsw1, . . . , wT such that

∑T
i=1 wi = 1. A

sample from a mixture is drawn by selectingDi with
probabilitywi and then choosing a sample fromDi.

Median. We say that a distributionD onR has median
m(D) if the probability that a sample drawn fromD is
less than or equal tom(D) is 1/2. We say that a distri-
butionD onR

n has medianm(D) = (m1, . . . ,mn) if
the projection ofD on thef -th coordinate axis has me-
dianmf , for 1 ≤ f ≤ n. For a distributionD, we write
m(D) to denote the median ofD.

Center. We say that a distributionD onR
n has center

(c1, . . . , cn) if the projection ofD on thef -th coordi-
nate axis has expectationcf , for 1 ≤ f ≤ n.

β-Radius. For 0 < β ≤ 1, theβ-Radius of a distribu-
tionD onR with medianm(D) is the smallestRβ such
that

Pr
x∼D

[m(D) −Rβ ≤ x ≤ m(D) +Rβ] ≥ β

Effective Distance. To better describe our results, we
need to define the concept ofeffective distance. The ef-
fective distance between two pointsx andy in R

n at
scaleR, denoted bydR(x, y) is defined as:

dR(x, y) =

√

√

√

√

n
∑

f=1

min(R2, (xf − yf )2)

The effective distance between two pointsx and y at
scaleR is thus high if many coordinates contribute to
the distance between the points.

Notation. We use subscriptsi, j to index over distribu-
tions in the mixture and subscriptsf, g to index over co-
ordinates inRn. Moreover, we use subscripts(f, k), . . .
to index over coordinates in the transformed space. We
useR to denote the maximum34 -radius of any coordi-
nate of any distribution in the mixture. For each distri-
butionDi in the mixture, and each coordinatef , we use
Df

i to denote the projection ofDi on thef -th coordinate
axis. For anyi, we useD̃i to denote the distribution in-
duced by applying our embedding onDi. Similarly, for
any i and anyf , we useD̃f

i to denote the distribution
induced by applying our embedding onDf

i . Moreover,
we useµ̃i to denote the center of̃Di andµ̃f

i to denote
the center ofD̃f

i .

We use||x|| to denote theL2 norm of a vectorx. We
usen to denote the number of dimensions ands to de-
note the number of samples. For a pointx, and subspace
H, we usePH(x) to denote the projection ofx onH.

3.1 Our Results

The main contribution of this paper is an embedding
from R

n to {0, 1}n′

, wheren′ > n. The embedding
has the property that samples from two product distri-
butions onR

n which have medians that are far apart
map to samples from distributions on{0, 1}n′

with cen-
ters which are also far apart. In particular, letD =
{D1, . . . , DT } be a mixture of product distributions such
that each coordinatef of each distributionDi in the
mixture satisfies the following properties:

1. Symmetryabout the median.

2. 3
4 -radius upper bounded byR.

In particular, this allows the distribution of each co-
ordinate to have infinite variance. Then the properties
of our embedding can be summarized by the following
theorems.

Theorem 1 Suppose we are given access to samples from
a mixture of product distributionsD = {D1, . . . , DT}
overRn such that for everyi andf , Df

i satisfies prop-
erties (1) and (2). Moreover, let for anyi, µ̃i denote the
center of the distributioñDi obtained by applying our
embeddingΦ onDi. If, for some constantc1,

dR(m(Di),m(Dj)) ≥ c1R

, then, there exists a constantc2, such that

||µ̃i − µ̃j || ≥ c2n
1/4T 1/2(logn logT )1/2

×dR(m(Di),m(Dj))

R

with probability1 − 1
n over the randomness in comput-

ing Φ. Moreover, for anyi, anyk, k′ and anyf 6= f ′,
coordinates(f, k) and(f ′, k′) of D̃i are independently
distributed.

Our embedding can be combined with the SVD-based
clustering algorithms of [KSV05, AM05] to provide an
efficient algorithm for learning mixtures of heavy-tailed
distributions. The resulting clustering algorithm has the
following guarantees.

Theorem 2 Suppose we are given access to samples from
a mixture of product distributionsD = {D1, . . . , DT}
overRn such that for everyi andf , Df

i satisfies prop-
erties (1) and (2). If, for some constantc3,

dR(m(Di),m(Dj)) ≥ c3R(w
−1/2
i + w

−1/2
j

+

√

T log
nT

δ
)



Then, AlgorithmHT-SVD clusters the samples correctly
with probability1 − δ over the samples, and with prob-
ability 1− 1

n over the randomness in the algorithm. The
algorithm runs in time polynomial inn andT , and the
number of samples required by the algorithm isÕ(n3/2T

wmin

).

Alternatively, we can also combine our algorithm
with the more recent correlation-based clustering algo-
rithm of [CR08]. The result is an efficient algorithm
with the following guarantees.

Theorem 3 Suppose we are givens samples from a mix-
ture of product distributionsD = {D1, . . . , DT } over
R

n such that for everyi andf , Df
i satisfies properties

(1) and (2). If, for some constantc3,

dR(m(Di),m(Dj)) ≥ c3R(
√

T log Λ +

√

T log
nT

δ
)

whereΛ = Θ(T
√

n log2 n
wmin

). Then,
AlgorithmHT-CORRELATIONSclusters the samples cor-
rectly with probability1 − δ over the samples, and with
at least constant probability over the randomness in the
algorithm. The algorithm runs in time polynomial inn
andT , and the number of samples required by the algo-
rithm is polynomial inn, T , and 1

wmin

.

The condition imposed on the centers of the distri-
butions states that every pair of centers is sufficiently far
apart in space, and the distance between every pair of
centers is spread acrossΩ

(

T log Λ + T log nT
δ

)

coor-
dinates.

3.2 Discussions

Symmetry. Our embedding still seems to work when
the distributions do not have perfect symmetry, but sat-
isfy an approximate symmetry condition. However, we
illustrate by an example that we need at least a weak
version of the symmetry condition for our embedding
to work. LetD1 andD2 be the following distributions
overR, whereM is a very large number. ForD1 the
probability density function is:

f1(x) =
3

8R
, −R ≤ x ≤ R

=
1

8MR
, MR ≤ x ≤ 2MR

=
1

8MR
, −2MR ≤ x ≤ −MR

The density function forD2 is:

f2(x) =
3

8R
, −R ≤ x ≤ R

=
1

4MR
, −2MR ≤ x ≤ −MR

We note that although the medians ofD1 andD2 are
R/3 distance apart, the overlap in their probability mass

in any interval of size2R is very high. Therefore, since
our embedding relies on the fact that two distributions
which have medians that are far apart, and3

4 -radius
bounded byR, have low overlap in probability mass in a
region of sizeΩ(R) around the median, it does not work
for distributions likeD1 andD2.

Spreading Condition. We note that our spreading con-
dition, while similar to thesloperequirement of [DHKS05],
is weaker; while they require the total contribution to
the distance between any two medians from all the co-
ordinates to be large with respect to the contribution
from the maximum coordinate, we only require that the
contribution come from a few coordinates, regardless of
what the maximum contribution from a coordinate is.

4 Embedding Distributions onto the
Hamming Cube

In this section, we describe an embedding which maps
points inR

n to points on a Hamming Cube of higher di-
mension. The embedding has the following property. If
for anyi andj, Di andDj are product distributions on
R

n with properties (1) and (2) such that their medians
are far apart, then, the distributions induced on the Ham-
ming cube by applying the embedding on points from
Di andDj respectively also have centers which are far
apart.

The building blocks of our embedding are embed-
dings{Φf}, one for each coordinate,f in {1, . . . , n}.
The final embeddingΦ is a concatenation of the maps
Φf for 1 ≤ f ≤ n. We describe more precisely how
to put together the mapsΦf in Section 4.3; for now, we
focus on the individual embeddingsΦf .

Each embeddingΦf , in its turn, is a concatenation
of two embeddings. The first one ensures that, for anyi

andj, if Df
i andDf

j are two distributions with proper-

ties (1) and (2) such that|m(Df
i ) −m(Df

j )| is smaller
than (or in the same range as)R, then, the expected dis-
tance between the centers of the distributions induced
by applying the embedding on points fromDf

i andDf
j

is Ω
( |m(Df

i )−m(Df
j )|

R

)

. Unfortunately, this embedding

does not provide good guarantees when|m(Df
i )−m(Df

j )|
is large with respect toR. To address this, we use our
second embedding, which guarantees that when|m(Df

i )−
m(Df

j )| is large with respect toR, the centers of the
two distributions induced by applying the embedding on
points fromDf

i andDf
j are at least constant distance

apart. By concatenating these two embeddings, we en-
sure that in either case, the centers of the induced distri-
butions obtained by applyingΦf onDf

i andDf
j are far

apart.

4.1 Embedding Distributions with Small
Separation

In this section, we describe an embedding with the fol-
lowing property. If, for anyi, j, andf ,Df

i andDf
j have



properties (1) and (2) and|m(Df
i ) − m(Df

j )| < 8R,
then the distance between the centers of the distributions
induced by applyingψ to points generated fromDf

i and

Df
j , is proportional to

|m(Df
i )−m(Df

j )|
8R .

The embedding is as follows. Given a parameterR1,
andr ∈ [0, R1), we define, for a pointx ∈ R,

ψr(x) = 0, if
⌊x− r

R1

⌋

is even

= 1, otherwise

In other words, we divide the real line into intervals of
lengthR1 and assign label0 to the even intervals and
label1 to the odd intervals. The value ofψr(x) is then
the label of the interval containingx− r.

The properties of this embedding can be summa-
rized as follows.

Theorem 4 For any i, j, and f , if Df
i andDf

j have
properties (1) and (2), and ifr is drawn uniformly at
random from[0, R1) andR1 > 2R+3|m(Df

i )−m(Df
j )|,

then,

E[| Pr
x∼Df

i

[ψr(x) = 0] − Pr
x∼Df

j

[ψr(x) = 0]|]

≥
|m(Df

i ) −m(Df
j )|

2R1

Here the expectation is taken over the distribution ofr.

Notation For i = 1, . . . , T , we writeϕf
i as the proba-

bility density function of distributionDf
i centered at0,

andF f
i as the cumulative density function of distribu-

tion Df
i centered at0. For a real numberr ∈ [0, R1),

and fori = 1, . . . , T , we define

αf
i (r) =

∞
∑

λ=−∞
(F f

i (r+(2λ+1)R1)−F f
i (r+2λR1))

More specifically,αf
i (r) is the sum of the probabil-

ity mass of the distributionDi in the even intervals when
the shift isr, which is again the probability that a point
drawn fromDi is mapped to0 by the embeddingψr. In
the sequel, we use∆ to denote|m(Df

i ) −m(Df
j )|. We

also assume without loss of generality thatm(Df
j ) ≤

m(Df
i ), andm(Df

i ) = 0. Then, the left-hand side of
the equation in Theorem 4 can be written as follows.

E[| Pr
x∼Df

i

[ψr(x) = 0] − Pr
x∼Df

j

[ψr(x) = 0]|]

=
1

R1

∫ R1/2

r=−R1/2

|αf
j (r + ∆) − αf

i (r)|dr (1)

The proof of Theorem 4 follows in two steps. First,
we show that ifDf

i were a shifted version ofDf
j , a

slightly stronger version of Theorem 4 would hold. This
is shown in Lemma 5. Next,Lemma 8 shows that even
if Df

i is not a shifted version ofDf
j , the statements in

Theorem 4 still hold.

Figure 1: Proof of Lemma 6

Lemma 5 For any∆, if R1 > 3∆ + 2R, then, for any
i,

∫ R1/2

r=−R1/2

(αf
i (r) − αf

i (∆ + r))dr ≥ ∆

2

Note that the difference between the statement of The-
orem 4 and Lemma 5 is that the left-hand side of the
equation in Theorem 4 has an absolute value, and hence
Lemma 5 makes a stronger statement (under stronger
assumptions).
Before we prove Lemma 5, we need the following lemma.

Lemma 6 Let[a, a′] be any interval of length more than
2∆. Then, for anyi,

∆ ·
∫ a′

a

ϕf
i (r)dr ≥

∫ a′

r=a

(F f
i (r + ∆) − F f

i (r))dr

≥ ∆ ·
∫ a′−∆

r=a+∆

ϕf
i (r)dr

Proof: For anyr,

F f
i (r + ∆) − F f

i (r) =

∫ r+∆

t=r

ϕf
i (t)dt

We divide the interval[a, a′] into infinitesimal intervals
of lengthδ̄. The probability mass of distributionDi in
an interval[t, t+ δ̄] is δ̄ · ϕf

i (t).
Note that in the expression

∫ a′

r=a

(F f
i (r + ∆) − F f

i (r))dr

the probability mass of each interval[t, t + δ̄] wheret
lies in [a+ ∆, a′ − ∆] is counted exactly∆

δ̄
times, and

the probability mass ofDi in an interval[t, t+ δ̄], where
t lies in the interval[a, a+ ∆) ∪ (a′ −∆, a′] is counted
at most∆

δ̄
times – see Figure 1. Sinceϕf

i (t) ≥ 0 for
all t, the lemma follows in the limit when̄δ → 0. �

Proof:(Of Lemma 5) The shaded area in Figure 2 shows
the value ofαf

i (r) − αf
i (r + ∆) for a distributionDi.



Figure 2: Proof of Lemma 5

We can write:
∫ R1/2

r=−R1/2

(αf
i (r) − αf

i (r + ∆))dr

=

∫ R1/2

r=−R1/2

∞
∑

λ=−∞
[(F f

i (r + (2λ+ 1)R1)

−F f
i (r + 2λR1) − (F f

i (r + ∆ + (2λ+ 1)R1)

−F f
i (r + ∆ + 2λR1))]dr

=

∫ R1/2

r=−R1/2

∞
∑

λ=−∞
[(F f

i (r + (2λ+ 1)R1)

−F f
i (r + ∆ + (2λ+ 1)R1) − (F f

i (r + 2λR1)

−F f
i (r + ∆ + 2λR1))]dr

=

∫ R1/2

r=−R1/2

∞
∑

λ=−∞
[(F f

i (r + 2λR1 + ∆)

−F f
i (r + 2λR1)) − (F f

i (r + (2λ+ 1)R1 + ∆)

−F f
i (r + (2λ+ 1)R1))]dr

From Lemma 6, the first term is at least

∆ ·
∞
∑

λ=−∞

∫ R1/2−∆

r=−R1/2+∆

ϕf
i (r + 2λR1)dr

This is∆ times the total probability mass ofDi in the
intervals[2λR1 − R1/2 + ∆, 2λR1 + R1/2 − ∆], for
all λ. SinceR1 > 2∆ + 2R, this includes the interval
[−R,R], and as the median ofDi is at0 andDi has3

4 -
radius less than or equal toR, the value of the first term
is at least3∆4 .

From Lemma 6, the second term is at most

∆ ·
∞
∑

λ=−∞

∫ R1/2

r=−R1/2

ϕf
i (r + (2λ+ 1)R1)dr

This is the total probability mass ofDi in the intervals
[(2λ + 1)R1 − R1/2, (2λ + 1)R1 + R1/2], for all λ.
SinceR1 > 3∆ + 2R, none of these intervals have any
intersection with[−R,R]. The total probability mass
in these intervals is therefore at most1

4 , and therefore
the value of the second term is at most∆

4 . The lemma
follows. �

Next we show that Theorem 4 holds even if distribu-
tionDf

i is not a shifted version of distributionDf
j . This

is shown by a combination of Lemmas 7 and 8, which
are both consequences of the symmetry of the distribu-
tionsDf

i andDf
j .

Lemma 7 Suppose that for anyi, j, and f , Df
i ,Df

j
have property (1) and median0. Then, for anyr,

αf
i (r) − αf

j (r) = αf
j (−r) − αf

i (−r)

Proof: We define

ᾱf
i (r) =

∞
∑

λ=−∞
F f

i (r + 2λR1) − F f
i (r + (2λ− 1)R1)

Thus, ᾱf
i (r) is the probability mass ofDi in the odd

intervals, which is again the probability thatψr maps a
random point fromDi to 1 when the shift chosen isr.
Therefore,̄αf

i (r) = 1 − αf
i (r). SinceDi is symmetric

with median0, for any interval[a, a′], a′ > a > 0,
F f

i (a′) − F f
i (a) = F f

i (−a) − F f
i (−a′). Therefore,

αf
i (−r)

=

∞
∑

λ=−∞
F f

i (−r + (2λ+ 1)R1) − F f
i (−r + 2λR1)

=

∞
∑

λ=−∞
F f

i (r − 2λR1) − F f
i (r − (2λ+ 1)R1)

= ᾱf
i (r)

The lemma follows because

ᾱf
i (r) − ᾱf

j (r) = αf
j (r) − αf

i (r)

�

Lemma 8 For anyi andj, if Df
i andDf

j have proper-
ties (1) and (2), then,

∫ R1/2

r=−R1/2

|αf
j (r + ∆) − αf

i (r)|dr

≥
∫ R1/2

r=−R1/2

(αf
j (r) − αf

j (r + ∆))dr

Proof: By Lemma 7, for everyr ∈ [−R1/2, R1/2],
there is a uniquer′ = −r such thatαf

i (r) − αf
j (r) =

αf
j (r′)−αf

i (r′). We claim that for every such pairr, r′,

|αf
j (r + ∆) − αf

i (r)| + |αf
j (r′ + ∆) − αf

i (r′)|
≥ (αf

j (r) − αf
j (r + ∆)) + (αf

j (r′) − αf
j (r′ + ∆))



We note that for a fixed pair(r, r′),

|αf
j (r + ∆) − αf

i (r)| + |αf
j (r′ + ∆) − αf

i (r′)|
= |αf

j (r + ∆) − αf
i (r)| + |αf

j (r′ + ∆) + αf
j (r)

−αf
j (r) − αf

i (r′)|
≥ |αf

j (r + ∆) − αf
i (r) + αf

j (r′ + ∆) + αf
j (r)

−αf
j (r) − αf

i (r′)|
≥ |(αf

j (r + ∆) − αf
j (r)) + (αf

j (r′ + ∆) − αf
j (r′))

+(αf
j (r) + αf

j (r′) − αf
i (r) − αf

i (r′))|

The lemma follows by summing over all such pairs(r, r′).
�

Proof: (Of Theorem 4) From Equation 1 and Lemma 5,

E[| Pr
x∼Df

i

[ψr(x) = 0] − Pr
x∼Df

j

[ψr(x) = 0]|]

1

R1

∫ R1/2

−R1/2

|αf
j (r + ∆) − αf

i (r)|dr ≥ ∆

2R1

The second step follows from Lemma 5.�

4.2 Embedding Distributions with Large
Separation

In this section, we describe an embedding with the fol-
lowing property. For anyi, j, andf , if Df

i andDf
j have

properties (1) and (2), and|m(Df
i ) − m(Df

j )| ≥ 8R,
then, the expected gap between the centers of the distri-
butions induced by applying the embeddings on points
fromDf

i andDf
j is at least a constant.

The embedding is as follows. Given a randomζ =
{ρ, {εk}k∈Z} whereρ is a number in[0, R2) and{εk} is
an infinite sequence of bits, we defineφζ : R → {0, 1}
as follows.

φζ(x) = εk(x),where k(x) =
⌊x− ρ

R2

⌋

(2)

In other words, ifx − ρ lies in the interval[8kR, 8(k +
1)R), thenφζ(x) = εk.

The properties of the embeddingφζ can be summa-
rized as follows.

Theorem 9 For any i, j, andf , let Df
i andDf

j have

properties (1) and (2), and let|m(Df
i )−m(Df

j )| ≥ 8R.
If R2 ≥ 8R, and ifρ is generated uniformly at random
from the interval[0, R2), and eachεk is generated by an
independent toss of a fair coin, then,

E[| Pr
x∼Df

i

[φζ(x) = 0] − Pr
x∼Df

j

[φζ(x) = 0]|] ≥ 1

8

where the expectation is taken over the distribution ofζ.

Proof: We say that an interval[a, a′] of length8R or less
is cut by the embedding if there exists somey ∈ [a, a′]

such thaty−r
8R is an integer. If[a, a′] is cut aty, then,

with probability 1
2 over the choice of{εk}, any pointx

in the interval[a, y] has a different value ofφζ(x) than
any point in(y, a′]. If an interval is not cut, then all
points in the interval have the same value ofφζ with
probability1 over the choice of{εk}.
Since the intervals[m(Df

i )−R,m(Df
i )+R] and[m(Df

j )−
R,m(Df

j ) +R] have length at least2R,

Pr[[m(Df
i ) −R,m(Df

i ) +R], [m(Df
j ) −R,m(Df

j ) +R]

are not cut] ≥ 1 − 2R+ 2R

8R
≥ 1

2

If none of the intervals[m(Df
i ) − R,m(Df

i ) + R] and
[m(Df

j ) −R,m(Df
j ) +R] are cut,

Pr[φζ(m(Df
i ) −R) 6= φζ(m(Df

j ) −R)] =
1

2

Let us assume that the intervals[m(Df
i )−R,m(Df

i )+

R] and[m(Df
j ) −R,m(Df

j ) +R] are not cut and

φζ(m(Df
i ) −R) 6= φζ(m(Df

j ) −R)

. From the two equations above, the probability of this
event is at least14 . Also suppose without loss of general-

ity thatφζ(m(Df
i )−R) = 0. Then, sinceR is an upper

bound on the3
4 -radius of the distributionsDf

i andDf
j ,

the probability mass ofDf
i that maps to0 is at least34 ,

and the probability mass ofDf
j that maps to0 is at most

1
4 . Therefore, with probability at least14 ,

| Pr
x∼Df

i

[φζ(x) = 0] − Pr
x∼Df

j

[φζ(x) = 0]| ≥ 1

2

The theorem follows.�

4.3 Combining the Embeddings

In this section, we show how to combine the embed-
dings of Sections 4.1 and 4.2 to provide a mapΦ which
obeys the guarantees of Theorem 1. Given parameters
R1, R2, andq, we defineΦf for a coordinatef as fol-
lows.

Φf (x) = (φζ1
(xf ), . . . , φζq (x

f ), ψr1
(xf ), . . . , ψrq(x

f ))
(3)

Here,ζ1, . . . , ζq areq independent random values ofζ =
(ρ, {εk}k∈Z), whereρ is drawn uniformly at random
from the interval[0, R2), andεk, for all k, are generated
by independent tosses of an unbiased coin.r1, . . . , rq
areq independent random values ofr, wherer is drawn
uniformly at random from the interval[0, R1). Finally,
the embeddingΦ is defined as:

Φ(x) = Φ1(x) ⊕ . . .⊕ Φn(x) (4)

The properties of the embeddingΦ are summarized in
Theorem 1. Next, we prove Theorem 1. We begin with
the following lemma, which demonstrates the properties
of eachΦf .



Lemma 10 LetR1 ≥ 26R,R2 ≥ 8R, and
q = 4

√
nT logn logT , and suppose we are given sam-

ples from a mixture of product distributions which sat-
isfy conditions (1) and (2). Then, for alli and j, the
embeddingΦ = ⊕fΦf defined in Equation 3 satisfies
the following conditions. With probability at least1− 1

n
over the randomness in the embedding, for each coordi-
natef ,

1. If |m(Df
i ) − m(Df

j )| > 8R, then, for some con-
stantc5,

||Ex∼Df
i
[Φf (x)] − Ex∼Df

j
[Φf (x)]|| ≥ c5n

1/4T 1/2

×(logn logT )1/2

2. If R√
n
≤ |m(Df

i ) −m(Df
j )| ≤ 8R, then, for some

constantc6,

||Ex∼Df
i
[Φf (x)] − Ex∼Df

j
[Φf (x)]|| ≥ c6n

1/4T 1/2

×(logn logT )1/2
|m(Df

i ) −m(Df
j )|

R

Proof:(Of Lemma 10) The first part of the lemma fol-
lows by Theorem 9, along with an application of the
Chernoff Bounds, followed by a Union Bound over all
i, j, f . The second part follows similarly by an applica-
tion of Theorem 4.�
Proof:(Of Theorem 1) We call a coordinatef very low
for distributionsi andj if |m(Df

i )−m(Df
j )| ≤ R√

n
, low

if R√
n
≤ |m(Df

i )−m(Df
j )| < 8R, andhighotherwise.

LetVi,j ,Li,j andHi,j respectively denote the set of very
low, low and high coordinates for distributionsDi and
Dj . Then,

||µ̃i − µ̃j ||2 =
∑

f∈Vi,j

||µ̃f
i − µ̃f

j ||2 +
∑

f∈Li,j

||µ̃f
i − µ̃f

j ||2

+
∑

f∈Hi,j

||µ̃f
i − µ̃f

j ||2

From Lemma 10,this sum is at least

∑

f∈Li,j

c6n
1/2T logn logT

|m(Df
i ) −m(Df

j )|2
R2

+
∑

f∈Hi,j

c5n
1/2T logn logT

which, by the definition of effective distance is at least

c7n
1/2T logn logT

(d2
R(m(Di),m(Dj))

R2

−
∑

f∈Vi,j
(m(Df

i ) −m(Df
j ))2

R2

)

wherec7 is some constant. Now the contribution from
the very low coordinates to the distance betweenm(Di)

andm(Dj) is at most
√

∑

f R
2/n = R. Since

dR(m(Di),m(Dj)) ≥ 2R

, this contribution is at most12 the total distance. The
first part of the theorem therefore follows.

For any samplex from anyDi in the mixture, and
any k, k′, coordinates(f, k) and (f ′, k′) of Φ(x) are
function ofxf andxf ′

respectively. As forf 6= f ′, xf

andxf ′

are independently distributed, the second part of
the theorem follows.�

5 Applications: Learning Mixtures

In this section, we show how our embedding in The-
orem 1 can be combined with standard algorithm for
learning mixture models to yield algorithms than can
learn mixtures of heavy-tailed distributions. First, in
Section 5.1, we show how to combine our embedding
with SVD-based algorithms of [KSV05, AM05]; in Sec-
tion 5.2, we show how to combine our embedding with
the more recent algorithm of [CR08].

5.1 Clustering using SVD

In this section, we present Algorithm HT-SVD– a com-
bination of SVD-based algorithms of [AM05, KSV05]
with our embedding in Theorem 1. The input to the al-
gorithm is a setS of samples, and the output is a par-
titioning of the samples. The algorithm is described in
Figure 3.

The properties of Algorithm HT-SVD are summa-
rized by Theorem 2, which we prove for the rest of this
section. The two main steps in the proof are as fol-
lows: first, we show that after applying our embedding,
the tranformed distributions have good properties, such
as low directional variance and distance-concentration.
Next, we show that these properties imply that SVD-
based algorithms, such as those of [KSV05, AM05] can
learn these mixtures effectively. The following lemma
shows that the maximum directional variance of the trans-
formed distributions in the mixture is high; this fact is
later used crucially in demonstrating that SVD-based al-
gorithms can effectively cluster the mixture.

Lemma 11 For any i, the maximum directional vari-
ance of the transformed distributioñDi is at most
O(n1/2T logn logT ).

Proof: Letv be any unit vector in the transformed space.
The variance of the transformed distributionD̃i alongv



HT-SVD(S)

1. LetR1 = 26R,R2 = 8R, andq = 4
√
nT logn logT . ComputeS̃ = {Φ(x)|x ∈ S}. Partition

S̃ into S̃A andS̃B uniformly at random.

2. Construct thes2 × nq matrix S̄A (respectivelyS̄B) in which the entry at rowl and columnl′ is
thel′-th coordinate of thel-th sample point iñSA (S̃B respectively).

3. Let{v1,A, . . . , vT,A} (resp.{v1,B, . . . , vT,B}) be the topT singular values of̄SA (resp.S̄B).
Project each point iñSB (resp.S̃A) on the subspaceKA (resp.KB) spanned byv1,A, . . . , vT,A

(resp.v1,B , . . . , vT,B).

4. Use a distance-based clustering algorithm as in [AK01] topartition the points iñSA andS̃B

after projection.

Figure 3: Algorithm Using SVDs

can be written as:

Ex̃∼D̃i
[〈v, x̃ − E[x̃]〉2]

= Ex̃∼D̃i
[
∑

(f,k)

(vf,k)2 · (x̃f,k − E[x̃f,k])2

+2
∑

(f,k),(f ′,k′)

vf,k · vf ′,k′ · (x̃f,k − E[x̃f,k])

×(x̃f ′,k′ − E[x̃f ′,k′

])]

≤ Ex̃∼D̃i
[
∑

(f,k)

(vf,k)2 + 2
∑

(f,k),(f ′,k′)

vf,k · vf ′,k′

×(x̃f,k − E[x̃f,k]) · (x̃f ′,k′ − E[x̃f ′,k′

])]

≤ Ex̃∼D̃i
[
∑

(f,k)

(vf,k)2 + 2
∑

f

∑

k,k′

vf,kvf,k′

×(x̃f,k − E[x̃f,k]) · (x̃f,k′ − E[x̃f,k′

])]

≤ Ex̃∼D̃i
[
∑

f

(
∑

k

vf,k)2]

As x̃f,k is distributed independently of̃xf ′,k′

whenf 6=
f ′, in this case,

Ex̃∼D̃i
[(x̃f,k − E[x̃f,k]) · (x̃f ′,k′ − E[x̃f ′,k′

])] = 0

The lemma follows as|(x̃f,k − E[x̃f,k])| ≤ 1 for anyf
andk, and there are at mostO(n1/2T logn logT ) coor-
dinates corresponding to a singlef . �

Next we show that the transformed distributions also
possess some distance-concentration properties.

Lemma 12 LetH be ad-dimensional subspace of
{0, 1}4n3/2T log T log n. Then for anyi,

Pr
x̃∼D̃i

[||PH(x̃− E[x̃])|| < 4n1/4T 1/2(log n logT )1/2

×
√

d log(d/δ)] ≥ 1 − δ

Proof: Let q = 4n1/2T logn logT . Let v1, . . . , vd be
an orthonormal basis ofH. As

||PH(x̃)||2 =

d
∑

l=1

(〈vl, x̃〉)2

we apply the Method of Bounded Differences to bound
the value of each〈vl, x̃〉.

〈vl, x̃〉 =
∑

f

∑

k

vf,k
l · x̃f,k

As changing each coordinate of the original sample point
x will change at mostq coordinates of̃x, γf , the change
in 〈vl, x̃〉 when we change a coordinatef of the orig-
inal sample point is at most(

∑

k v
f,k
l )2. Therefore,

γ =
∑

f γ
2
f =

∑

f (
∑

k v
f,k
l )2. Sincevl is a unit vector,

γ ≤ q. Thus, for anyl,

Pr[|〈vl, x̃〉 − 〈vl,E[x̃]〉| >
√

q log(d/δ)] ≤ δ

d

As ||PH(x̃−E[x̃])||2 =
∑

l〈vl, x̃−E[x̃]〉2, the lemma
follows by applying a Union Bound over each vectorvl.
�

We are now ready to prove Theorem 2. The main
tool in our proof is the following lemma, due to [AM05],
which shows that if the separation between the trans-
formed centers is large, then, Step 3 of the algorithm
will find a subspace in which the transformed centers
are far apart.

Lemma 13 Let, for eachi, ci,A be the empirical cen-
ters ofD̃i computed from the points iñSA, and letσ be
the maximum directional standard deviation of anyD̃i.
Then,

||PKB (ci,A − cj,A)|| ≥ ||ci,A − cj,A||
−σ(w

−1/2
i + w

−1/2
j )



Proof: (Of Theorem 2) Letq = 4n1/2T logn logT .
When the distributions in the input mixture obey the
separation conditions of Theorem 2, from Theorem 1,
for eachi andj, the distance between the transformed
centers̃µi andµ̃j is at least :

Ω(
√
q) · (w−1/2

i + w
−1/2
j +

√

T log(Tn/δ))

Since the number of samples is at leastΩ( n3/2

wmin
), the

distance between the sample means and actual means of
the transformed distributions are at mostO(1). There-
fore, from Theorem 13,

||PKB (ci,A − cj,A)|| ≥ c8
√

qT log(Tn/δ)

whereci,A andcj,A are the empirical centers of the trans-
formed distributions, andc8 is some constant. AsKB

has dimension at mostT , from Lemma 12 and a union
bound over all pairs of samples, with probability1 − δ,
all pairs of samples drawn from a distributionDi have
distance at most

2n1/4T 1/2(log n logT )1/2
√

2T log(nT/δ)

in the subspaceKB. On the other hand, for some con-
stanta′, a sample drawn fromDi and a sample drawn
fromDj are at least

a′n1/4T 1/2(logn logT )1/2
√

T log(nT/δ)

apart inKB. Algorithm HT-SVD therefore works for
a′ > 2

√
2. �

5.2 Clustering Using Correlations

In this section, we present Algorithm HT-CORRELATIONS
which is a combination of our embedding with the
correlations-based clustering algorithm of [CR08]. Al-
gorithm HT-CORRELATIONS is described in Figure 4.
The input to the algorithm is a setS of s samples, and
the output is a partitioning of the samples.

The properties of Algorithm HT-CORRELATIONSare
described in Theorem 3. This section is devoted to
proving Theorem 3. The proof proceeds in three steps.
First, we deduce from Theorem 1 that if the distribu-
tions satisfy the conditions in Theorem 3, then the trans-
formed distributions satisfy the separation and spread-
ing requirements of Theorem 1 in [CR08]. We can then
apply Theorem 1 to show that the centers of the trans-
formed distributions are far apart inKA andKB, the
subspaces computed in Step 4 of
Algorithm HT-CORRELATIONS. Finally, we use this
fact along with Lemmas 11 and 12 to show that distance
concentration algorithms work in these output subspaces.
Proof:(Of Theorem 3) Letq = 4n1/2T logn logT . From
Theorem 1 and Conditions (1) and (2), for eachi andj,
the distance between the transformed centersµ̃i andµ̃j

is at least

Ω(
√
q)(

√

T log Λ +
√

T log(nT/δ))

We note that the proof of Theorem 1 in [CR08] requires
only that for each distribution, the coordinates inF are
independently distributed from the coordinates inG. Since
the distribution of any coordinate inF is independent of
the distribution inG (although the coordinates withinF
or G are not necessarily independently distributed), we
can apply Theorem 1 in [CR08] to conclude that for each
i andj, there exists some constanta such that:

dKB (µ̃i, µ̃j) ≥ Ω(d(µ̃i, µ̃j))

≥ a(
√

qT log Λ +
√

qT log(nT/δ))

As KB has dimension at most2T , from Lemma 12
and a union bound, with probability1 − δ, all pairs of
samples drawn from a distributionDi have distance at
most 2

√

qT log(Tn/δ) in the subspaceKB. On the
other hand, a sample drawn fromDi and a sample drawn
fromDj are at least(a1 − 2)

√

2qT log(Tn/δ) apart in
KB. Algorithm HT-CORRELATIONS therefore works.
�
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HT-CORRELATIONS(S)

1. Partition the set of coordinates intoF andG uniformly at random.

2. PartitionS uniformly at random intoSA andSB. Let R1 = 26R, R2 = 8R, and q =
4
√
nT logn logT . ComputeS̃A = {Φ(x)|x ∈ SA} andS̃B = {Φ(x)|x ∈ SB}.
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2 × nq

2 covariance matrixMA (respectivelyMB), which has a row for each
tuple (f, k), f ∈ F , k ∈ [q], and a column for each tuple(g, k), g ∈ G, k ∈ [q]. The entry
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transformed points over all samples inSA (SB respectively).

4. Let {v1,A, . . . , vT,A} and{y1,A, . . . , yT,A} ({v1,B, . . . , vT,B} and{y1,B, . . . , yT,B} respec-
tively) be the topT left and right singular vectors ofMA (resp.MB). Project each point iñSB

(resp. S̃A) on the subspaceKA (resp.KB) spanned by{v1,A, . . . , vT,A} ∪ {y1,A, . . . , yT,A}
(resp.{v1,B, . . . , vT,B} ∪ {y1,B, . . . , yT,B}).

5. Use a distance-based clustering algorithm [AK01] to partition the points inS̃A andS̃B after
projection.

Figure 4: Algorithm Using Correlations
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