
Learning Random Monotone DNF Under the Uniform Distribution

Linda Sellie∗
University of Chicago, Chicago IL
lmsellie@uchicago.edu

Abstract

We show that randomly generated monotone
c log(n)-DNF formula can be learned exactly in
probabilistic polynomial time. Our notion of ran-
domly generated is with respect to a uniform dis-
tribution. To prove this we identify the class of
well behaved monotone c log(n)-DNF formulae,
and show that almost every monotone DNF for-
mula is well-behaved, and that there exists a prob-
abilistic Turing machine that exactly learns all well
behaved monotone c log(n)-DNF formula.

1 Introduction
Intuitively, a monotone c log(n)-DNF, f , is well behaved if it
satisfies three smoothness criteria—the “small”, “medium,”
and “large” z properties—that collectively rule out having an
unexpectedly large number of terms having a common subset
of the variables. Thus by removing terms we maintain our
well-behaved criteria and we have:

Theorem (Subset property of the set of well-behaved func-
tions). If f is well-behaved and f ′ contains a subset of the
terms of f then f ′ is also well-behaved.

The question of what is meant by “a randomly generated
monotone c log(n)-DNF formula” is somewhat application
specific, but because of the subset property of the set of well-
behaved functions, our learning algorithm and proof of cor-
rectness is quite robust. We imagine a process that randomly
selects m terms of size c log(n); we show that such a func-
tion will be well behaved with high probability as long as
m ≤ 2 log log(n)nc (where roughly 1

log(n) of the exam-
ples will be false when m = 2 log log(n)nc.) This sub-
sumes standard notions of randomness that are intended to
generate formula which are expected to be true with fixed
probability less than one. For functions with the small and
medium smoothness properties and for a set of variables,
s, of bounded size, we can efficiently determine by sam-
pling whether or not there exists a term t ∈ f such that
s ⊂ t with high probability. Our algorithm considers all
subsets of variables, s, of a given, fixed size. To extend s
we make multiple trials of random extension of s, through

∗Computer Science Department, University of Chicago.

|s| = β(n) = log log 3
√

n. The medium and small subset
properties guarantee that with high probability, if s′ ⊃ s has
size at most β(n) and there exists a term t ∈ f such that
s′ ⊂ t, then s′ is generated by this process. At this point, the
large smoothness property comes into play and guarantees
that the previous t is unique, and therefore can be efficiently
found. In this way, we find all terms t of f in polynomial
time.

1.1 Motivation and Past Work
Mentioning DNF, Valiant [12] states:

The possible importance of disjunctions of con-
junctions as a knowledge representation stems from
the observations that on the one hand humans ap-
pear to like using it, and, on the other, that there
is circumstantial evidence that significantly larger
classes may not be learnable in polynomial time.

Many learning theorist have considered learning mono-
tone DNF formula. Angluin [2] completely solved this prob-
lem for the case of exact learning using membership queries
— all monotone DNF are learnable in polynomial time in
this model for all distributions. This problem has proven
more difficult if the learner is restricted to sampling, i.e.
learning by example. The obstacle seems to be “cluster struc-
ture” within the formula, specifically a relatively large set of
variables common to a relatively large number of clauses.
Existing results in the literature tackle this obstacle in two
different ways. (1) allow the running time of the learner
to explode in the face of such clusters, e.g. Verbeurgt [13]
learns any poly(n)-size DNF in time nO(log(n)) from uni-
form examples. Or (2) consider classes of formula that do
not contain such clusters, specifically by random generation
and limited number of terms, e.g. Servedio [9] learns any
2
√

log(n)-term DNF in polynomial time from a product dis-
tribution. Other researchers have used similar approaches to
other problems, [10], [8], and [6].

The results of this paper belong to group (2). Our result
is distinguished from Servedio [9] in that our definition of
well behaved represents an initial attempt to formalize the
obstacle, and to obtain the best possible result based on that
formalization. From this, we obtain conditions of greater
generality.

Despite the difficulty of learning monotone DNF with
random examples drawn from the uniform distribution, the

naturalness of the class suggests in some restricted form, it
must be possible to learn. In their 1994 paper, Aizenstein and
Pitt proposed learning most DNF instead of all DNF. They
defined “most” as the DNF generated randomly with certain
parameters set, one parameter is choosing the variables in a
term with probability 1

2 . They left as an open question a more
natural setting of those parameters. Jackson and Servedio
in 2006 started answering the open question of Aizenstein
and Pitt in their paper [7]. They learned “most” monotone
DNF where the number of terms is bounded by O(n2−γ)
with fixed term size, log m, where m is the number of terms.
We continue this work left open by Aizenstein and Pitt, and
Jackson and Servedio.

We expand the approach used by Jackson and Servedio
in their paper [7]. To learn random monotone DNF with
O(n2−γ) number of terms, they use a clustering algorithm
after using an inclusion/exclusion pair finding algorithm. In
our paper, we learn O(nc) number of terms in polynomial
time for any constant c, and fixed term size, c log(n).

Similar results are independently obtained by Jackson,
Lee, Servedio and Wan [5] but are slightly weaker. They
use a similar algorithm but significantly different underlying
proofs.

Theorem 1. Given a random monotone DNF, f , Algorithm
Learn Random Monotone DNF finds f in polynomial time
with high probability.

1.2 Our Model and Random Functions

Continuing the work of Aizenstein and Pitt [1] and Jackson
and Servedio [7], we explore learning a function chosen ran-
domly from a large class of functions. Jackson and Servedio
learn a monotone DNF formula chosen randomly from a sub-
class of monotone DNF; we do the same except we choose a
larger subclass of monotone DNF. As in Jackson and Serve-
dio, we randomly choose the terms for our function from

(
n
k

)
possible terms of size k. We differ from Jackson and Serve-
dio’s choice of a class of functions in two ways. The most
important is that we learn functions with nc terms for any c,
while they learn only for c ≤ 2 − γ for γ > 0. The second
way we differ is by loosening Jackson and Servedio’s restric-
tion which bounds the function away from 0 and 1 by a con-
stant; we restrict our attention to functions that are bounded
away from one by a slow growing function in n, and without
restriction on how close the function is to zero. Even in the
case of c ≤ 2, for large n, the set of functions they learn is
a subset of the functions we learn. They allow the number
of terms, m, to be α2k ≤ m ≤ 2k+1 ln 2

α for a constant α,
(0 < α < 0.09). Instead, we restrict the number of terms,
m, to be m ≤ 2k+1c log log(n).

As Jackson and Servedio in [7]; we learn in the uniform
distribution model; where each example is chosen uniformly
at random and labeled according to the unknown function.

Our goal is stronger than theirs, in that we exactly learn
with probability 1 − δ. (They learn a function which is ε
close with probability 1 − δ.) We run in time polynomial
in the probability of an example satisfying a term, (i.e. time
polynomial in 2k.)

The model for our class of random monotone DNF for-
mulas is as follows, let Fn,k,m be the set of monotone DNF

over n variables, with terms of size k, and m terms. Or in-
terest is when with m ≤ 2k+1c log log(n) where c = k

log(n) .
Each term is selected independently and uniformly from the
set of all k-variable terms.

2 Notation and Definitions
Our function will be defined on n variables; we let X =
{x1, x2, . . . , xn} be the set of variables. For s ⊂ X we
define X\s = {x ∈ X | x 6∈ s}. Let t ⊂ X be a term,
and k = |t| = c log(n) be the size of a term. Let m be the
number of terms; where m ≤ mmax = 2k+1c log log(n) =
2nc log log(n). Let f = ∪

i=1...m
ti. We define f\t = {t′ ∈

f | t′ 6= t}.
Let E = {0, 1}n be the set of all examples, and E+ =

{e ∈ E | f(e)} be the set of all positive examples. Let s ⊂
X , and let as be a partial assignment of the variables in s.
For x ∈ s, and as a partial assignment, then by an abuse of
notation, we define x(as) = 1 iff the assignment to x is 1
and 0 otherwise. Let Xas = {x ∈ s | x(as)} be the set of
variables in s that as satisfies.

We use as to partition the set of examples, E+, and the
set terms in f . We then explore the relationship between
these sets in the paper with an inclusion/exclusion algorithm
that allows us to find subsets of terms in f . Let Eas =
{e ∈ E | ∀x ∈ s, x(as) = x(e)} be the set of assignments
who agree with as on all the variables s. Let E+

as
= Eas ∩

E+ be the set of positive assignments who agree with as on
all the variables s. Let Tas = {t ∈ f | t ∩ s = Xas}.

Let Te = {t ∈ f | t(e)} be the set of terms satisfying
an example e. Let #0(as) = | {x ∈ s | x(as) = 0} |, e.g.
#0(10110) = 2.

Let β(n) = log log(3
√

n). We use β(n) throughout the
paper as a bound that is not constant – and not too large. For
technical ease we chose this value of β(n), we could have
chosen other values for β(n), such as β(n) = log log(n).

For ease of notation, we define ij = i!
(i−j)! .

For e and as, we define a transformation, e′ = es←as
to

be ∀x 6∈ s, x(e′) = x(e) and ∀x ∈ s, x(e′) = x(as). For e
and x′ we define e′ = eflip(x′) to be ∀x ∈ (X\ {x′}), x(e′) =
x(e) and x′(e′) = 1− x′(e).

Our algorithm discovers f by finding subsets of terms in
f . We use the knowledge that a set of variables, s, is a subset
of a term iff there is a positive example, e, which becomes
false for eflip(x) for any x ∈ s.

Definition 2. e is s-minimal for f iff

• e ∈ E+, and

• ∀x ∈ s, ex←0 6∈ E+.

We define the set of s-minimal examples:

Definition 3. Let Υs = {e ∈ E+ | e is s-minimal}.

Thus, given any e ∈ Υs and t ∈ f , if t(e) = 1 then
s ⊂ t.

The idea behind our proof is that we can determine if Υs

is non-empty for any s of cardinality greater than c + 1 and
less than or equal to β(n)+1, thus finding a subset of a term.

Function Distinguishing Subsets

• S =
{

s ⊂ X | |s| = c + 2, and Is > 2n · 1

nc+ 1
5

}
• For i = (c + 3) to β(n)

– S′ = ∅
– For s ∈ S and x ∈ X

∗ If Is∪{x} > 2n · 1

nc+ 1
5

then add (s ∪ {x}) to

S′

– S = S′

• Return S

Figure 1: Function Distinguishing Subsets

From this knowledge we build the rest of the term. Our goal
is to exactly learn f with probability 1− δ.

Unfortunately we don’t know how to compute the size of
Υs. Instead we estimate |Υs|.

Definition 4. Let Is =
∑

as
(−1)#0(as)|E+

as
|.

Our paper focuses on proving that most monotone k-
DNF are well behaved, that for well behaved functions Is ap-
proximates |Υs| for c+2 ≤ |s| ≤ β(n)+1, and if s ⊂ t ∈ f
then Υs is sufficiently large.

The organization of our paper is as follows: in Section
3 we present a simple algorithm that exploits the knowledge
that we can find a subset of at term. In Subsection 4.1 we
partition the set of positive examples and use this partition to
define how Is miscounts the size of Υs. In Subsection 4.2
we prove most f ∈ Fn,k,m are well behaved. In Subsection
4.3 we bound by how much Is misclassifies |Υs| for well
behaved functions. In Subsection 4.4 we prove that for well-
behaved f ∈R Fn,k,m, if s ⊂ t ∈ f then Υs is sufficiently
large enabling us to discover if s ⊂ t.

We put some of the technical details into the appendix.
In Appendix 1A, we provide some observations and sim-
plifications of algebraic expressions used in our proofs. In
Appendix 1B, we prove that most f ∈R Fn,k,m are well
behaved. In Appendix 1C, we bound Υt for well behaved
DNF. In Appendix 2A, we use standard sampling techniques
to prove we can approximate |E+

as
| sufficiently. In Appendix

2B, for the sake of completeness, we provide the details that
show our algorithm finds the unknown monotone DNF in
polynomial time with high probability.

3 The Algorithm for Finding f Using Is

Using Is as our estimate for |Υs|, our algorithm builds terms
in three stages. First our algorithm tests all subsets of size
c + 2, selecting those that are a subset of a term in f . Next,
it builds upon these subsets, variable by variable, till it has
found all subsets of terms of f of size β(n). Finally, having a
subset unique to a single term in f (we prove the uniqueness
of terms of size β(n) later in the paper in Corollary 46,) we
find the rest of variables for this term. The steps of the first
two stages are in Figure 1 and the steps for the third stage are
in Figure 2.

Algorithm Learn Random Monotone DNF

• S = Distinguishing Subsets

• f = ∅

• For s ∈ S

– t = ∅
– For x ∈ X

∗ If Is∪{x} > 2n · 1

nc+ 1
5

then add x to t

– add t to f

• Return f

Figure 2: Algorithm Learn Random Monotone DNF

4 Approximating Υs by Is

In this section, we show that with high probability Is ap-
proximates |Υs| for c + 2 ≤ |s| ≤ β(n) + 1 to within

2n · 4k log6(n)n2/3

nc+1 (i.e. |Is − |Υs|| < 2n · 4k log6(n)n2/3

nc+1 .) We
use Subsections 4.1 through 4.3 to prove this main theorem.
In Subsection 4.4, we prove that |Υs| ≥ 2n · 1

8 log4c(n)
1

nc if
and only if s ⊂ t ∈ f .

4.1 Observations about Is

To explore how Is relates to the size of Υs, we partition the
set E+ of positive examples. We partition E+ by grouping
examples that “map” under s to the same example in E+

1s
.

Observing the behavior of a partition during the calculation
of Is, we bound how Is misjudges the size of Υs. (We bound
the size of the miscalculation in Subsection 4.3.)

Definition 5. For s ⊂ X , and e ∈ E+
1s

, we define a set
of partial assignments, Ae,s = {as | es←as

∈ E+} , which
map e to another positive example under s.

Next, using this partition of the set of positive examples,
we define a criteria for e ∈ E+

1s
to be correctly counted.

Definition 6. For e ∈ E+
1s

we define

Ie =
∑

as∈Ae,s

(−1)#0(as).

Observation 7. Is =
∑

e∈E+
1s

Ie.

Definition 8. An e ∈ E+
1s

is correctly counted iff e ∈ E+
1s
\Υs

then Ie = 0, and if e ∈ Υs then Ie = 1.

Note, if all examples in E+
1s

are counted correctly then
Is = |Υs|. We observe that e ∈ Υs is correctly counted.

Lemma 9. For all e ∈ Υs then Ie = 1.

Proof: Ae,s = {1s} .
By characterizing examples which are correctly counted,

we restrict the number of examples that could be incorrectly
counted. We describe two ways examples are correctly counted.

Lemma 10. An example, e ∈ E+
1s

, is correctly counted if
∃x ∈ s such that ∀as ∈ Ae,s, (as)flip(x) ∈ Ae,s.

Proof: Let x be such that ∀as ∈ Ae,s and (as)flip(x) ∈
Ae,s then (−1)#0(as) and (−1)#0((as)flip(x)) are included in
the sum, where the parity of #0(as) and #0((as)flip(x)) are
opposite. Thus Ie = 0 and e is counted correctly.

Corollary 11. An example, e ∈ E+
1s

, is correctly counted if
∃t ∈ f such that t(e) and t ∩ s = ∅.

Proof: The Corollary follows from Lemma 10 and the
definition of Ie since all partial assignments are contained in
Ae,s.

If e is not known to be correctly counted by Lemma 10
and Corollary 11, it may or may not be correctly counted,
but our proof will not need to consider this option.

Definition 12. Let s ⊂ X , we define the set of miscounted
examples by

Ms =
{
e ∈ E+

1s
\Υs | Ie 6= 0

}
.

Partitioning Ms based on sets of partial assignments, we
simplify bounding the number of miscounted examples.

Definition 13. Let s ⊂ X , and A ⊂ {0, 1}|s|; we define
Ms,A = {e ∈ Ms | Ae,s = A}.

We define a partial order by a′s ≺ a′′s iff ∀x ∈ s then
x(a′s) ≤ x(a′′s) and a′s 6= a′′s . The smallest partial assign-
ments are very important to our proof; they determine if an
example e ∈ E+

1s
is miscounted.

Definition 14. Let A ⊆ {0, 1}|s|, we define

L(A) = {as ∈ A | ∀a′s ∈ A, a′s 6≺ as} .

Lemma 15. Let e ∈ Ms,A, then ∀as ∈ L(A),∃t ∈ Tas

where t(e).

Proof: By definition 5, given any e ∈ Ms,A and ∀as ∈
L(A), ∃e′ ∈ E+

as
such that e′ maps under s to e (i.e. e =

e′s←1s
) which implies e′ = es←as

. Because e′ is Xas
-mini-

mal, we know ∃t ∈ Tas
such that t(e′) which implies t(e)

since f is monotone.
We have now proved in Lemmas 10 and 15 that every

miscounted example is satisfied by a set of terms whose union
contains s. We will use this fact in Lemma 24 where we
bound the number of miscounted examples in Ms,A.

Knowing A is a subset of the partial assignments to s, we
calculate by how much an example has been miscounted.

Observation 16. Let e ∈ Ms,A then |Ie| < |A| ≤ 2|s|.

Definition 17. Let As = {A|A = Ae,s for an e ∈ Ms}.

Observation 18.

Is − |Υs| =
∑

e∈Ms

Ie =
∑

A∈As

∑
e∈Ms,A

Ie.

4.2 Properties of Well Behaved Functions
In this subsection, we describe the properties a function needs
for our proof to hold; our algorithm works for functions that
are not “clustered” together. We prove that with high prob-
ability these properties hold for f ∈R Fn,k,m. We will call
DNF formulas that have this property “well behaved.”

Definition 19. A monotone DNF function, f ∈ Fn,k,m is
well behaved iff for all s ⊂ t ∈ f where |s| ≤ β(n) + 1, and
∀as where z = #1(as) then

• Small z property:
if 0 < z ≤ c then |Tas

| < 3mmaxk
z/nz ,

• Medium z property:
if c < z < β(n) then |Tas | < β(n), and

• Large z property:
if z ≥ β(n) then |Tas

| ≤ 1.

Using Chernoff bounds we prove random monotone DNF
are well behaved with high probability.

Theorem 20. For a fixed c and sufficiently large n, if f ∈R
Fn,k,m for m ≤ 2k+1c log log(n) then f is well behaved
with probability at least 1− n2c log(n)

(
1
n

)β(n)
.

Proof: This follows from Corollaries 42, 44,and 46 (found
in the appendix,) and noting that the probability of small,
medium and large z properties of being well behaved are not
satisfied with probability at most 1

3n2c log(n)
(

1
n

)β(n)−1 +
1
3n2c log(n)/3

(
1
n

)β(n)−1+ 1
3n2c log(n)/3

(
1
n

)β(n)−1
. Con-

sequently f ∈R Fn,k,m is well behaved with probability at
least 1− n2c log(n)

(
1
n

)β(n)
.

4.3 Observations about well behaved Monotone DNF
Formulas

In this subsection, we derive some properties of well behaved
functions. First, we bound the number of variables that occur
in more than one term from a set of terms, T ⊂ f for f ∈R
Fn,k,m. Next we bound the probability an example satisfies
every term in T . Third, we bound the size of Ms,A, using
the probability an example satisfies a term in Tas

for every
as ∈ L(A). At the end of this subsection we bound |Ms| and
Is − |Ms|.

Corollary 21. Let f be a well behaved monotone k-DNF
formula and T ⊂ f , then |{x | x ∈ (t ∩ t′) for some t, t′ ∈
T}| < |T |2β(n).

Proof: For f , a well behaved monotone k-DNF, we know
that a pair of terms t, t′ ∈ f have in common at most β(n)
variables. Since the number of pairs is

(|T |
2

)
, we bound the

total number of variables used by more that one term by(|T |
2

)
β(n). Note that what we’ve proved is stronger than

what we’ve claimed. The form of our claim is for our subse-
quent technical convenience.

Knowing an upper bound on the number of variables oc-
curring in a set of terms, we bound the probability an exam-
ple satisfies every term in this set of terms.

Lemma 22. Let f be a well behaved monotone k-DNF, and
T ⊂ f a subset of terms then

| {e ∈ E | ∀t ∈ T, t(e)} | ≤ 2n · 1
2(|T |k−|T |2β(n))

.

Proof: The T terms share at most |T |2β(n) variables out
|T |k variables by Corollary 21. Thus the number of variables
that need to be satisfied is at least |T |k − |T |2β(n).

We note that if we restrict our examples to have the bits
in s set to one, we get the following corollary.

Corollary 23. For s ⊂ X and | {e ∈ E | ∀t ∈ T, t(e)} | ≤
2n · 1

2(|T |k−|T |2β(n)) then

| {e ∈ E1s | ∀t ∈ T, t(e)} | ≤ 2n · 1
2(|T |k−|T |2β(n))

.

Proof: The size of the set E1s
is 2n−|s|. Given that

| {e ∈ E | ∀t ∈ T, t(e)} | ≤ 2n · 1
2(|T |k−|T |2β(n)) , the restric-

tion of the variables to be from the set E1s
reduces the num-

ber of variables that must be satisfied to at least (|T |k −
|T |2β(n) − |s|). (i.e. at most |s| bits were forced to one.)
Thus | {e ∈ E1s | ∀t ∈ T, t(e)} | ≤ 2n−|s|· 1

2(|T |k−|T |2β(n)−|s|)

= 2n · 1
2(|T |k−|T |2β(n)) .

We now bound the number of examples in Ms,A.

Lemma 24. For fixed c and sufficiently large n, let f be a
well behaved monotone k-DNF, s ⊂ X where c + 2 ≤ |s| ≤
β(n) + 1, and A ∈ As then |Ms,A| < 2n · k log5(n)

nc+1 .

Proof: Let v = |L(A)|.
As noted in Lemma 15, e ∈ Ms,A are satisfied by at least

one term from every Tas
for every as ∈ L(A). From Corol-

lary 23, we know that the probability an example satisfies a
set of v terms in E1s

is at most 2n · 1
2vk−v2β(n)

Therefore we bound |Ms,A| by bounding the number of
e ∈ Ms,A which is satisfied by at least one term from every
Tas

for every as ∈ L(A). We create this bound by using a
Bonferroni type argument.

|Ms,A|
= | {e ∈ Ms | ∀as ∈ L(A),∃t ∈ Tas

, t(e)} | (Def. 13.)

≤ 2n · 1
2vk−v2β(n)

∏
as∈L(A)

|Tas
| (Lemma 15.)

In counting the number of possible ways an example e ∈
Ms,A could be satisfied by one term from every Tas

, for ev-
ery as ∈ L(A), we consider two cases.

In the first case, we assume that for all as ∈ L(A) that
#1(as) ≤ c. Using the assumption that f is well defined,
we know that |Tas | < 3mmax

(
k#1(as)

n#1(as)

)
, we compute the

probability as follows.

|Ms,A| ≤ 2n · 1
2vk−v2β(n)

∏
as∈L(A)

3mmax

(
k#1(as)

n#1(as)

)
.

By Lemma 10 and Corollary 11, s ⊆
(
∪

t∈Te

t

)
and ∀as ∈

Ae,s,#1(as) ≥ 1. Let w =
∑

as∈L(A) #1(as) ≥

max {|L(A)|, |s|} (and since v = |L(A)|.) This implies that

|Ms,A| ≤ 2n · 3vmv
max

2vk−v2β(n)

kw

nw

≤ 2n · 2v2β(n)(6c log log(n))vncv

2vk

kw

nw

= 2n · 2v2β(n)(6c log log(n))v kw

nw
(ncv = 2kv.)

≤ 2n · 3
√

n(6c log log(n))c+2 kc+2

nc+2

(From Obs. 35, w ≥ v, and w ≥ |s| ≥ c + 2.)

≤ 2n · 1
nc+1

(From Observation 33.)

In the second case, there exists an a′s ∈ L(A) such that
#1(a′s) > c; by f being well behaved we know that |Ta′s | <
β(n). Let v′ = | {a′s ∈ L(A)|#1(a′s) > c} |. If as ∈ L(A)
where #1(as) ≤ c then by f being well behaved we know
that |Tas

| < 3mmax

(
k#1(as)

n#1(as)

)
. Using these bounds, we

compute an upper bound by again noting that e′ ∈ Ms,A

is satisfied by one from each Tas for all as ∈ L(A).

|Ms,A| ≤ 2n · (β(n))v′

2vk−v2β(n)

∏
as∈L(A),#1(as)≤c

3mmax ·
k#1(as)

n#1(as)
.

By Lemma 11, we know #1(as) ≥ 1 for all as ∈ L(A),
and

(
k#1(as)

n#1(as)

)
≤
(

k
n

)
. we reduce the formula so that

|Ms,A|

≤ 2n · (β(n))v′

2vk−v2β(n)
(3mmax)v−v′

(
k

n

)(v−v′)

≤ 2n · (β(n))v′

2vk−v2β(n)
(6c log log(n)2k)(v−v′)

(
k

n

)(v−v′)

(since nc(v−v′) = 2k(v−v′).)

≤ 2n · (β(n))v′2v2β(n)

2v′k
(6c log log(n))(v−v′)

(
k

n

)(v−v′)

We now break the calculations down into two sub-cases.
If v = 2 then the equation is largest if v′ = 1. In this case
we bound |Ms,A| by 2n · β(n)24β(n)

2k (6c log log(n))
(

k
n

)
≤

2n · β(n) log4(3√n)
2k (6c log log(n))

(
k
n

)
< 2n · log5(n)k

n2k .

If v ≥ 3, we note 1 this equation is again largest if v′ = 1,
and using Observation 35, we reduce the formula to:

2n · β(n) 3
√

n

2k
(6c log log(n))(v−1)

(
k

n

)(v−1)

≤ 2n · 1
n2k

.

Therefore |Ms,A| ≤ 2n · k log5(n)
nc+1 .

Having computed an upper bound on the number of mis-
counted examples in Ms,A, we now bound |Ms|.

1Argument here passes over a minor potential difficulty. i.e. if
v′ is large, Corollary 23 does not come into play — but the crucial
fact is the nevertheless true as we show in Observation 32.

Corollary 25. Let f be a well behaved monotone k-DNF,
and let s ⊂ X where c + 2 ≤ |s| ≤ β(n) + 1 then |Ms| <

2n · 4k log5(n)n2/3

nc+1 .

Proof: This follows from |Ms| =
∑

A∈As
|Ms,A| <

|As|
(
2n · k log5(n)

nc+1

)
. We note that |As| is bounded by the

number of subsets of the subsets of s, i.e. 22|s| ≤ 22β(n)+1
=

22log log(3√n)+1 ≤ 4n2/3.
Thus |Ms| < 2n · 4k log5(n)n2/3

nc+1 .
Knowing |Ms|, we now compute the difference between

Is and |Υs|. This bound is computed by multiplying |Ms|
and a bound of how large the misclassification is for an ex-
ample.

Theorem 26. Let f be a well behaved monotone k-DNF for-
mula, and s ⊂ X where c + 2 ≤ |s| ≤ β(n) + 1 then

|Is − |Υs|| < 2n · 4k log6(n)n2/3

nc+1 .

Proof: As noted earlier, Is − |Υs| =
∑

e∈Ms
Ie.

Using Corollary 25, we know |Ms| < 2n · 4k log5(n)n2/3

nc+1 .
From Observation 16, we know that that for all e, |Ie| ≤
log(3

√
n).

Consequently,

|Is − |Υs|| ≤ |Ms|log(3
√

n) < 2n · 4k log6(n)n2/3

nc+1
.

4.4 Bounding |Υs|
Definition 27. Let Ef\t = {e ∈ E | ∃t′ ∈ f\t, t′(e)}.

Next we prove that every term has a high probability of
being uniquely satisfied. Jackson and Servedio have a similar
lemma, Lemma (3.6).

Lemma 28. Let f ∈ Fn,k,m be a well behaved monotone k-
DNF function, t ∈ f then |E+

1t
−Ef\{t}| ≥ 2n · 1

8 log4c(n)
1

nc

The proof of this lemma is found in Appendix 1 in Sub-
section C.

We note that if f is a monotone DNF and e ∈ (Et −
Ef\{t}), then e ∈ Υt.

Corollary 29. Let f ∈ Fn,k,m be a well behaved monotone
k-DNF, and s ⊂ t ∈ f then |Υs| > 2n · 1

8 log4c(n)
1

nc .

The following theorem is crucial; it is the key compu-
tation we use in our algorithm Learn Random Monotone
DNF.

Theorem 30. Let f ∈ Fn,k,m be well behaved, and let c +
2 ≤ |s| ≤ β(n) + 1:

• if s ⊂ t ∈ f then Is ≥ 2n· 1
8 log4c(n)

1
nc−2n· 4k log6(n)n2/3

nc+1 ,

• if s 6⊂ t ∈ f then Is ≤ 2n · 4k log6(n)n2/3

nc+1 .

The previous theorem shows there exists a large gap that
reliably determines if s ⊂ t ∈ f for c+2 ≤ |s| ≤ β(n)+1 by
computing Is. This means that given a small set s ⊂ t ∈ f
and x ∈ X\s we can determine whether or not s∪x ⊂ t ∈ f ,
and this is the key to our algorithm.

In this section, we proved we could determine if a set, s,
is a subset of a term if c + 2 ≤ |s| ≤ β(n) + 1 by com-
puting Is. Unfortunately, we cannot efficiently compute Is

since we cannot compute |E+
as
| in polynomial time. Instead

we approximate Is using standard sampling techniques. We
estimate this value by sampling gs = n2c+32k+|s| uniformly
chosen labeled examples from E. Thus we can effectively
estimate Is with high probability. Details can be seen in Ap-
pendix 2 in Subsection A. Our fairly straightforward algo-
rithm is easily adapted to use our sampled values of Is, and
thus runs in polynomial time in n and 2k. Details can be
found in Appendix 2 in Subsection B.

5 Future Work
Extensions of the ideas presented here can also handle the
non-monotone case. We are currently writing up this case
and checking the proofs. We are also working on relaxing
the requirement that k is fixed.

Acknowledgement
I would like to thank Stuart Kurtz for many conversations
and help with the presentation, and Carsten Lund for help
with polishing the paper.

References
[1] H. Aizenstein and L. Pitt. On the Learnability of Dis-

junctive Normal Form Formulas. Machine Learning,
19:183, 1995.

[2] D. Angluin. Queries and concept learning. Machine
Learning, 2(4):319–342, 1988.

[3] Canny. Lecture 10 CS 174
www.cs.berkeley.edu/ jfc/cs174/lecs/lec10/lec10.pdf.

[4] J. Jackson. An efficient membership-query algorithm for
learning DNF with respect to the uniform distributon.
Journal of Computer and System Sciences, 55(3):414–
440, 1997.

[5] J. Jackson, H. Lee, R. Servedio and A. Wan. Learn-
ing random monotone DNF. Electronic Colloquium on
Computational Complexity, Report No. 129, 2007.

[6] J. Jackson and R. Servedio. Learning Random Log-
Depth Decision Trees under Uniform Distribution.
SIAM J. on Computing, 34(5), 2005.

[7] J. Jackson and R. Servedio. On Learning Random DNF
Formulas Under the Uniform Distribution. Theory of
Computing, 2(8):147–172, 2006.

[8] E. Mossel, R. O’Donnell,R. Servedio. Learning juntas.
STOC 206–212, 2003.

[9] R. Servedio. On learning monotone DNF under product
distributions. Information and Computation, 193(1):57–
74, 2004.

[10] S. Smale. On the average number of steps of the sim-
plex method of linear programming. Math. Programming
27: 241–267, 1983.

[11] Valiant, L.G. (1984). A theory of the learnable. Com-
munications of the ACM, 27(11):1134–1142.

[12] Valiant, L.G. Learning disjunctions of conjunctions. In
Proceedings of the 9th n International Joint Conference
on Artificial Intelligence, Vol. 1, pages 560–566, 1985.

[13] K. Verbeurgt. Learning DNF under the uniform dis-
tribution in quasi-polynomial time. In Proceedings of
the Third Annual Workshop on Computational Learning
Theory, pp. 314326, 1990. [ACM:92571.92657]. 1.1, 2.2

APPENDIX 1

A Useful Observations
We use the following observations and simplifications of al-
gebraic expressions in our proofs.
Observation 31. For f a well behaved monotone k-DNF,
T ⊂ f where |T | ≥ 2 log log(n) then |{e ∈ E1s | t(e)∀t ∈
T}| < 2n · 1

nlog log(n) for sufficiently large n.

Proof: First, we observe that if T ′ ⊂ T then {e ∈ E1s |
t(e),∀t ∈ T ′} ⊃ {e ∈ E1s | t(e),∀t ∈ T}.

Therefore, using Corollary 23 we know given any T ′ ⊂
T where |T ′| = 2 log log(n), then |{e ∈ E1s

| t(e),∀t ∈
T ′} ≤ 2n · 1

22 log log(n)k−(2 log log(n))2β(n) < 2n · 1
nlog log(n) .

Observation 32. For a well-behaved monotone k-DNF, given
A ⊂ {0, 1}|s| where |{as ∈ A | #1(as) > c}| ≥ 2 log log(n)
then |Ms,A| < β(n)2 log log(n)

nlog log(n) .

Proof: Let A′ = {as ∈ A | #1(as) > c}. Using Obser-
vation 31, if |A′| ≥ 2 log log(n) then |Ms,A| ≤ |{e ∈ E1s

|
∀as ∈ A′,∃t ∈ Tas

such that t(e)}|
≤ 2n · 1

nlog log(n)

∏
as∈A′ |Tas | ≤ 2n · β(n)2 log log(n)

nlog log(n) . The last
inequality follows from noting that ∀#1(as) > c, |Tas

| ≤
β(n) by the large z property, and from noting that the prod-
uct is maximized for |A′| = 2 log log(n).
Observation 33. For c a constant, then nc+1 = n(n −
1) · · · (n− c) > nc+1 −

(
(c(c+1))

2

)
nc and nc+1 < nc+1 −(

(c(c+1))
2

)
nc +

(
(c(c+1))

2

)2

nc−1 .

Observation 34. Let s ⊂ X , e ∈ E+, and as = e|s if

#1(as) ≤ c,∀as ∈ L(Ae,s) then |L(Ae,s)| < |s|
(c+1)c

2 .

Proof: This follows from observing that
(|s|

c

)
≤ |s|c.

Observation 35. Let s ⊂ X where |s| ≤ β(n) + 1, and e ∈
E+ then if #1(as) ≤ c,∀as ∈ L(Ae,s) then 2|L(Ae,s)|2β(n) <
3
√

n for large enough n.

Proof: Let s ⊂ X where |s| ≤ β(n) + 1, and Ae,s be
such that #1(as) ≤ c,∀as ∈ L(Ae,s). Then using Observa-
tion 34 we know |L(Ae,s)| < |s|

(c+1)c
2 .

2|L(Ae,s)|2β(n) ≤ 2

„
(β(n)+1)

(c+1)c
2

«2

β(n)

= 2(β(n)+1)(c+1)cβ(n)

< 2(log log 3√n+1)(c+1)c log log 3√n

< (log 3
√

n)(log log 3√n+1)(c+1)c

< 3
√

n.

Lemma 36. For a positive integer a ≥ β(n) and
c ≤ log(n)/(3 log log(n)) then(

m

a

)(
kc+1

nc+1

)a

>

(
m

a + 1

)(
kc+1

nc+1

)a+1

.

Proof: The proof follows from expanding the formulas:(
m

a

)(
kc+1

nc+1

)a

>

(
m

a + 1

)(
kc+1

nc+1

)a+1

⇔

ma

a!

(
1(

nc+1
)a
)

>
ma+1

(a + 1)!

(
kc+1(

nc+1
)a+1

)
⇔

1 >
m− a

a + 1

(
kc+1

nc+1

)
.

Observation 37. For positive integer k,
(
1− 1

2k

)2k

≥ 1
4

Proof: The proof follows from expanding the formula
and noting that(

2k

2i

)(
− 1

2k

)2i

+
(

2k

2i + 1

)(
− 1

2k

)2i+1

≥ 0,

and (
2k

2

)(
− 1

2k

)2

+
(

2k

3

)(
− 1

2k

)3

≥ 1
4
.

Thus (
1− 1

2k

)2k

=
∑

i=0...2k

(
2k

i

)(
− 1

2k

)i

≥ 1
4
.

Observation 38. For constant c and sufficiently large n,

log(n)
(

m
β(n)

) (
kc+1

nc+1

)β(n)

+m
(

m
log(n)

) (
kc+1

nc+1

)log(n)

< 1
nβ(n)−1 .

Proof: The proof follows from the following calcula-
tions:

log(n)
(

m

β(n)

)(
kc+1

nc+1

)β(n)

+m

(
m

log(n)

)(
kc+1

nc+1

)log(n)

<
log(n)(2c log log(n))β(n)ncβ(n)k(c+1)β(n)

(nc+1 − (c+1)(c+2)
2 nc)β(n)

+
(2c log log(n))log(n)+1nc(log(n)+1)k(c+1) log(n)(

nc+1 − (c+1)(c+2)
2 nc

)log(n)

≤ log(n)(2c log log(n))β(n)k(c+1)β(n)(
n− (c+1)(c+2)

2

)β(n)

+
(2c log log(n))log(n)+1nck(c+1) log(n)(

n− (c+1)(c+2)
2

)log(n)

<
1

nβ(n)−1
.

The first inequality follows from Observation 33 and substi-
tution using m ≤ 2c log log(n)nc and

(
m
i

)
≤ mi. The sec-

ond inequality can be seen by multiplying the first summand
by 1/ncβ(n)

1/ncβ(n) and the second summand by 1/nc log(n)

1/nc log(n) . The last

inequality can be seen by:
(
n− (c+1)(c+2)

2

)β(n)

> nβ(n) −
β(n)(c+1)(c+2)

2 nβ(n)−1 and
(
n− (c+1)(c+2)

2

)log(n)

> nlog(n)−
log(n)(c+1)(c+2)

2 nlog(n)−1 and log(n)(2c log log(n))β(n)k(c+1)β(n)

(1− β(n)(c+1)(c+2)
2n)

+

(2c log log(n))log(n)+1nck(c+1) log(n)„
nlog(n)−β(n)− β(n)(c+1)(c+2)nlog(n)−β(n)−1

2

« < n.

B Proving Random Monotone Functions are
Well Behaved with High Probability

In this sections we prove that most monotone DNF inFn,k,m

are well behaved.
For the small z property of being well behaved, bounding

|Tas
| for #1(as) ≤ c, we first find the expected value of

|Tas
|. Next we use Chernoff bounds to give an upper bound

on how far |Tas
| is away from the expected value with high

probability.

Observation 39. For s ⊂ X , as where z = #1(as), and
|s| ≤ k ≤ log2(n) then

m
kz

2nz
< Ef∈RFn,k,m {|Tas

|} < m
kz

nz
.

Proof: We first observe that

Ef∈RFn,k,m {|Tas
|} = m

(
n−|s|
k−z

)(
n
k

) = m
kz(n− k)|s|−z

n|s|
.

The upper bound follows by observing that

(n− k)|s|−z

n|s|
=

(n− k)|s|−z

nz(n− z)|s|−z
≤ 1

nz

(remember z ≤ k,) and thus

Ef∈RFn,k,m {|Tas
|} ≤ m

kz

nz
.

The lower bound follows from
(n− k)|s|−z

n|s|
=

1
nz

∏
i=0...|s|−z−1

n− k − i

n− z − i

=
1
nz

∏
i=0...|s|−z−1

(
1− k − z

n− z − i

)

≥ 1
nz

(
1− k − z

n− |s|

)|s|
By
(

1− k − z

n− |s|

)|s|
> 1− |s| k − z

n− |s|
.

> 1/2
1
nz

,

and thus m kz

2nz < mkz(n−k)|s|−z

n|s|
.

Next, we state the simplified Chernoff upper bound from
Canny’s lecture notes [3]; we use this Chernoff bound to
bound the expected value.

Lemma 40 (Chernoff). Let δ < 2e − 1, µ be the expected
value, and χ be a series of independent Poisson trials, then
Pr {χ > (1 + δ)µ} < e(−µδ2/4).

We now bound the number of terms in Tas
for #1(as) ≤

c, with high probability.

Lemma 41. Fix s ⊂ X , as where z = #1(as) ≤ c, and
k ≤ log2(n), then

Prf∈RFn,k,m

{
|Tas | > 3mmax

kz

nz

}
< e−c log log(n)kc

.

Proof: We note that z ≤ c < c log(n) = k, thus we
know the bounds of Observation 39 hold. Let f ′ be a random
extension of f to mmax terms.

Prf∈RFn,k,m {|Tas
| ≥ 3mmaxk

z/nz}
≤ Prf ′∈RFn,k,mmax

{
|T ′as

| ≥ 3mmaxk
z/nz

}
≤ Prf ′∈RFn,k,mmax

{
|T ′as

| ≥ (1 + δ)E{T ′as
}
}

≤ e−u′δ2/4,

where µ′ = E{T ′as
} by Chernoff.

We can obtain an upper bound for this expression from a
lower bound for its unnegated exponent. Let δ = 2.

µ′δ2/4 = µ′

> mmaxk
z/2nz

> 2ncc · log log(n)kz/2nz

> c · log log(n)kc Since kz/2nz ≥ kc/2nc.

Therefore

Prf∈RFn,k,m

{
|Tas

| > 3mmax
kz

nz

}
≤ e−c log log(n)kc

.

Corollary 42 (The Small z Property Holds with High Prob-
ability). Therefore for s ⊂ t ∈ f where |s| ≤ β(n) + 1
and z = #1(as) then Prf∈RFn,k,m{∃as, 0 < #1(as) ≤
c, |Tas

| > 3mmax
kz

nz } < n2c log(n)
(

1
n

)β(n)−1
.

Proof: We assume c ≥ 1; if c < 1 then there does not
exist a z since 0 < z ≤ c < 1 and z is an integer.

If c ≥ 1 then the number of s ⊂ t and as where z =
#1(as) ≤ c is bounded by

m
∑

|s|=1,...,β(n)+1

(
k

|s|

) ∑
z=1,...,c

(
|s|
z

)
< mmax · β(n)kβ(n)+1 · 2β(n)

<
1
3
nc+1.

(i.e. For a given term, the number of different sets of size s
is
(

k
|s|
)
. The number of terms is m. For a given set, s, the

number of ways to choose z items from the set is
(|s|

z

)
.)

Thus, by Lemma 41:

Prf∈RF{∃as,#1(as) ≤ c, |Tas | > 3mmax
kz

nz
}

<
1
3
nc+1e−c log log(n)kc

<
1
3
n2c log(n)

(
1
n

)β(n)−1

.

Therefore, with high probability, the small z property for
f ∈R Fn,k,m is proved.

Next we prove the medium z property: that for #1(as)
where c < #1(as) < β(n) then |Tas

| < β(n) with high
probability.

Lemma 43. For fixed c, and sufficiently large n, let s ⊂ X ,
and as with #1(as) > c then

Prf∈RFn,k,m {|Tas | ≥ β(n)} <

(
1
n

)β(n)−1

.

Proof: Let z = #1(as).
If z > k then |Tas

| = 0, since there does not exist a term
with more that k variables.

If z ≤ k then the probability a random term t ∈ Tas
is

(n−|s|
k−z)
(n

k)
< kz

nz . Consequently,

Prf∈RFn,k,m {|Tas | ≥ β(n)}

<
∑

j=β(n)...m

(
m

j

)(
kz

nz

)j (
1− kz

nz

)m−j

<
∑

j=β(n)... log(n)−1

(
m

j

)(
kz

nz

)j (
1− kz

nz

)m−j

+
∑

j=log(n)...m

(
m

j

)(
kz

nz

)j (
1− kz

nz

)m−j

< log(n)
(

m

β(n)

)(
kc+1

nc+1

)β(n)

+m

(
m

log(n)

)(
kc+1

nc+1

)log(n)

<

(
1
n

)β(n)−1

.

The third inequality follows from the observation that the
sum is maximized for z = c + 1, and from Lemma 36. The
fourth inequality follows from Observation 38.

Corollary 44 (The Medium z Property Holds with High Prob-
ability). Therefore for s ⊂ t ∈ f where |s| ≤ β(n) + 1,
Prf∈RFn,k,m{∃as, c < #1(as) < β(n), |Tas | ≥ β(n)} <
1
3n2c log(n)

(
1
n

)β(n)−1
for sufficiently large n.

Proof: The number of s ⊂ t and as where c < #1(as) <

β(n) is bounded by

m
∑

|s|=dce,...,β(n)+1

(
k

|s|

) ∑
z=c+1,...,bβ(n)c

(
|s|
z

)
< mmax · β(n)kβ(n)+1 · 2β(n)

≤ nc+1

<
1
3
n2c log(n).

(i.e.
∑
|s|=dce,...,β(n)+1

(
k
|s|
)

is the number of ways to find a
subset of t ∈ f of size greater than c and less than or equal
to β(n) + 1. The sum

∑
z=c+1,...,bβ(n)c

(|s|
z

)
is the number

of ways to choose a set of size z from |s| elements.)
Therefore using Lemma 43, we know

Prf∈RFn,k,m{∃as, c < #1(as) < β(n), |Tas | ≥ β(n)} ≤
1
3n2c log(n)

(
1
n

)β(n)−1
.

Consequently, the medium z property is also satisfied by
a random f ∈R Fn,k,m with high probability.

The large z property is that two terms in f overlap by at
most β(n); we prove this with a counting argument. Jackson
and Servedio’s paper [7] has a similar lemma, Lemma (3.5).

Lemma 45. Let s, s′ ⊆ X be sets of k ≤ 3
√

n variables cho-
sen independently at random, then the Pr{|s ∩ s′| ≥ β(n)} <(

1
n

)β(n)−1
.

Proof
Pr {|s ∩ s′| ≥ β(n)}

=
k∑

j=β(n)

(
n
j

)(
n−j
k−j

)(
n−k
k−j

)(
n
k

)2
=

k∑
j=β(n)

(kj)2(n− k)k−j

j!nk

(The sum is maximized for j = β(n).)

< k
(kβ(n))2

β(n)!nβ(n)

<
1

nβ(n)−1
.

Corollary 46 (The Large z Property Holds with High Proba-
bility). Therefore, Prf∈RFn,k,m{∃t, t′ ∈ f, |t∩t′| ≥ β(n)} <
1
3n2c log(n)

(
1
n

)β(n)−1
.

Proof: The proof follows from noting that
Prf∈RFn,k,m{∃t, t′ ∈ f, |t ∩ t′| ≥ β(n)} ≤

(
m
2

)
1

nβ(n)−1 ≤(
mmax

2

)
1

nβ(n)−1 <
(
mmax

2

)
1

nβ(n)−1
1

1− β(n)(β(n)−1)
2n

< 1
3n2c log(n)

(
1
n

)β(n)−1
.

The third inequality follows from Observation 33 and
nβ(n)−1− (β(n)−1)β(n)

2 nβ(n)−2 = nβ(n)−1
(
1− (β(n)−1)β(n)

2n

)
.

Since two terms in f ∈R Fn,k,m share less than β(n)
variables with high probability, a random f ∈R Fn,k,m sat-
isfies the large z property in being well behaved with high
probability.

Recalling Corollaries 42, 44, and 46 and the definition of
“well behaved,” we note that f ∈R Fn,k,m is well behaved
with high probability.

C Bounding Υs

Next we present the proof of Lemma 28 that for f a well
behaved monotone k-DNF function, m ≤ 2k+1c log log n
and t ∈ f then |E+

1t
− E+

f\{t}| ≥ 2n · 1
8 log4c(n)

1
nc .

Proof: Divide f\ {t} into three disjoint sets,

• Tdisjoint = {t′ ∈ f\ {t} | t ∩ t′ = ∅} ,

• Tsmall = {t′ ∈ f\ {t} | 1 ≤ |t′ ∩ t| ≤ c} and

• Tnot small = f\(Tdisjoint ∪ Tsmall).

Looking only at examples in E+
1t

, we now calculate the prob-
ability that each of these sets is not satisfied. Remember-
ing that f is monotone, we note that if one set is not satis-
fied, it increases the chance another set is not satisfied. (i.e.
Pre∈E {¬t | ¬t′} ≥ Pre∈E {¬t} since if we know at least
one variable is set to zero that increases the odds of another
term to be set to zero if they share a variable.)

In the first case for Tdisjoint,
Pre∈E1t

{∀t′ ∈ Tdisjoint,¬t′(e)} > (1− 1
2k)m

≥ (1 − 1
2k)2

k+1c log log (n) =
(
(1− 1

2k)2
k
)2c log log (n)

≥
1

42c log log(n) = 1
log4c(n)

, by Observation 37.
In the second case, if t′ ∈ Tsmall and r = t ∩ t′ with at

such that Xat = r then by f being well behaved we know
that |Tat | ≤ 3mmax

(
k|r|

n|r|

)
. Therefore

Pre∈E+
1t

{∀t′ ∈ Tsmall,¬t′(e)}

>
∏

r⊂t,1≤|r|≤c

(
1− 2|r|

2k

)3mmax

„
k
|r|

n
|r|

«

≥
∏

1≤|r|≤c

(
1− 2|r|

2k

)2k+3c log log(n)

„
k
|r|

n
|r|

«
(k
|r|)

≥
∏

1≤|r|≤c

(
1− 2|r|

2k

)2(k−|r|)2|r|+3c log log(n)

„
k
|r|

n
|r|

«
(k
|r|)

≥
∏

1≤|r|≤c

(
1
4

)2|r|+3c log log(n)

„
k
|r|

n
|r|

«
(k
|r|)

By Obs. 37.

≥
(

1
4

) 16c2 log log(n)k2

n

.

The last inequality follows from noticing the product is max-
imized for |r| = 1, thus

Pre∈E+
1t

{
e ∈R E+

1t
| ∀t′ ∈ Tsmall,¬t′(e)

}
>

1
4
.

We now bound the third case. Since f is well behaved,
we know that a term in f overlaps another term by at most

β(n) variables, and the number of terms overlapping by a set
r ⊂ t in Tnot small is at most β(n). Therefore
Pre∈E+

1t

{∀t′ ∈ Tnot small,¬t′(e)}

>
∏

r⊂t,c<|r|≤β(n)

(
1− 2|r|

2k

)β(n)

>
(
1− 2β(n)

2k

)β2(n)(k
β(n)) ≥ 1

2 , (since
(

k
|r|
)
≤
(

k
β(n)

)
.)

Therefore (remembering 2k = nc)

|
{
e ∈R E+

1t
| ∀t′ ∈ f\ {t} ,¬t′(e)

}
|

> 2n−k ·
(

1
4

)(
1

log4 c(n)

)(
1
2

)
= 2n · 1

8 log4c(n)
1
nc

.

APPENDIX 2

In the next two sections we present the standard arguments
for the sake of completeness. In Section A we prove that we
can sample to find a sufficient approximation to Is(E+). In
Section B we prove that our very straightforward algorithm
runs in polynomial time and produces f .

A Sampling and Approximating Is

In Section 4, we proved we could determine if a set, s, is a
subset of a term if c + 2 ≤ |s| ≤ β(n) + 1 by computing
Is. Unfortunately, we cannot efficiently compute Is since
we cannot efficiently compute |E+

as
|. Instead, we show how

to approximate Is. We estimate this value by sampling gs

uniformly chosen labeled examples from E.

Definition 47. For s ⊂ X , let ESample(gs) ⊂ E be a random
sample of gs labeled examples drawn uniformly from E.

Definition 48. Given ESample(gs) ⊂ E, let E+
Sample(gs) =

ESample(gs)∩E+ be the set of positive examples in ESample(gs).
Similary, let ΥSamples(gs) = ESample(gs) ∩ Υs be the set of
positive examples from ESample(gs) which satisfy only terms
in T1s

.

Observation 49. Let s ⊂ X , we note that E
(∣∣ΥSamples(gs)

∣∣)
= gs · |Υs|

|E| = gs

2n |Υs|.

Using sampled labeled examples, we compute the fol-
lowing function to approximate Is.

Definition 50. Let s ⊂ X , we define Is,Sample(gs) =∑
e∈E+

Sample(gs)
(−1)#0(as(e)) to be our approximation of Is,

where as(e) is e|s .

Observation 51. We note that the E
(
Is,Sample(gs)

)
= gs

2n Is.

This observation follows since the expected value of

|ESample(gs) ∩ E+
as
| is gs

|E+
as |
|E| and

E
(
Is,Sample(gs)

)
=
∑

as
(−1)(#0(as))gs

|E+
as
|

|E| .

Next, we bound how different our sampled Is,Sample(gs)

is from the expected value, As we have not yet provided a
lower tail bound, we state it next, as it is described in Canny
[3].

Lemma 52 (Chernoff). Let δ ∈ (0, 1], µ be the expected
value, and χ be a series of independent Poisson trials then
Pr {χ < (1− δ)µ} < e−µδ2/2.

Applying the lower and upper Chernoff bounds from Lem-
mas 40 and 52, we prove that Is,Sample(gs) is within 2gs

nc+1

fraction of E
(
Is,Sample(gs)

)
.

Lemma 53. For gs = n2c+32k+|s| and given access to ex-
amples drawn from a well behaved monotone k-DNF then∣∣Is,Sample(gs) −E

(
Is,Sample(gs)

)∣∣ < gs · 2
nc+1 with proba-

bility 1− 4e−n/4.

Proof: To apply the Chernoff bounds, our main diffi-
culty is our sum has both positive and negative values, we
overcome this difficulty by bounding the positive and neg-
ative values separately. We define two indicator functions.
Let reven(e) = 1 iff f(e) = 1 and #0(e|s) is even, and let
rodd(e) = 1 iff f(e) = 1 and #0(e|s) is odd.

Let ESample(g) be a randomly generated set of gs exam-
ples from E. Let Xeven =

∑
e∈ESample(gs) reven(e). (Simi-

larly for Xodd.)
We observe that Is,Sample(gs) = Xeven −Xodd.

If ∃as such that E+
as

6= ∅, then there is a term consis-
tent with at least one as. This term satisfies the examples
in Eas

with probability at least 1
2k . There are 2|s| different

as, thus if #0(as) is even, we expect at least 1
2|s|2k frac-

tion of total examples are set to one by reven. Therefore in
gs = n2c+32k+|s| examples, the expected value of the indi-
cator function is either zero, or the expected value is at least
n2c+3. (Similarly for the case where #0(as) is odd.)

Using the Chernoff bounds with δ = 1
nc+1 , we bound

E(Xeven), in the cases where the expected value is not zero.

Pr {|Xeven − (1± δ)E(Xeven)} ≤ 2e−
n2c+3

4n2c+2 = 2e−n/4.
(Similarly for E(Xodd).) Consequently, the indicator func-
tions will be 1

nc+1 close to their respective expected value
functions.

Therefore we know |(Xeven−Xodd)−E(Is,Sample(gs))| ≤
1

nc+1 (E(Xeven) + E(Xodd)) ≤ gs
2

nc+1 . Thus Is,Sample(gs)

differs from E
(
Is,Sample(gs)

)
by at most gs · 2

nc+1 with high
probability.

Using the previous Lemma 53, Theorem 26, and Obser-
vation 49, we note that we can determine if s ⊂ X is a sub-
set of a term in a well behaved monotone k-DNF function by
sampling labeled examples from the uniform distribution.

Lemma 54. Let f be a well behaved monotone k-DNF for-
mula, s ⊂ X where c + 2 ≤ |s| ≤ β(n) + 1, and gs =
n2c+32k+|s|;

• if s ⊂ t ∈ f then Is,Sample(gs) > gs · 1

nc+ 1
5

with proba-

bility 1− 4e−n/4.

• If s 6⊂ t ∈ f then Is,Sample(gs) < gs · 1

nc+ 1
5

with proba-

bility 1− 4e−n/4.

Proof: From Lemma 53 and Observation 51, we know

− 2gs

nc+1
+

gs

2n
Is ≤ Is,Sample(gs) ≤

2gs

nc+1
+

gs

2n
Is

Algorithm Learn Random Monotone DNF

1. S = Distinguishing Subsets

2. f = ∅

3. For s ∈ S

(a) t = ∅
(b) For x ∈ X

• If Is∪{x},Sample(gs) > gs · 1

nc+ 1
5

then add x

to t

(c) add t to f

4. Return f

Figure 3:

Function Distinguishing Subsets

1. S = {s ⊂ X | |s| = c + 2,
: and Is,Sample(gs) > gs · 1

nc+ 1
5
}

2. For i = (c + 3) to β(n)

(a) S′ = ∅
(b) For s ∈ S and x ∈ X

• If Is∪{x},Sample(gs) > gs · 1

nc+ 1
5

then add (s∪
{x}) to S′

(c) S = S′

3. Return S

Figure 4:

with probability greater than 1− 4e−n/4.
By Theorem 30, Observation 51, and Lemma 53 we know:

• if s ⊂ t ∈ f then Is ≥ 2n· 1
8 log4c(n)

1
nc−2n· 4k log6(n)n2/3

nc+1 .

Thus, Is,Sample(gs) ≥ −gs · 2
nc+1 +gs ·Is ≥ −gs · 2

nc+1 +

gs · 1
8 log4c(n)

1
nc − gs · 4k log6(n)n2/3

nc+1 > gs · 1

nc+ 1
5

with

probability greater than 1− 4e−n/4.

• If s 6⊂ t ∈ f then Is ≤ 2n · 4k log6(n)n2/3

nc+1 . Thus,
Is,Sample(gs) ≤ gs · 2

nc+1 + gs · Is ≤ gs · 2
nc+1 + gs ·

4k log6(n)n2/3

nc+1 < gs · 1

nc+ 1
5

with probability greater than

1− 4e−n/4.

B Learning Random Monotone DNF by
Finding Terms in Polynomial Time

Next, we restate our algorithm to use ISample(gs).
Referring to our algorithm in Figures 3 and 4, the lem-

mas, and theorems in the previous sections, we prove our

algorithm discovers the unknown well behaved monotone k-
DNF from random examples drawn from the uniform dis-
tribution with high probability in polynomial time. We show
this by following the steps our algorithm takes; first our algo-
rithm finds all (c+2)-sized subsets of s in time O(gc+2n

c+2)
with probability greater than 1−4nc+2e−n/4. Next, given all
(c+2)-sized subsets of terms in f , our algorithm grows those
subsets till they are of size β(n) with probability greater
than 1−4nmkβ(n)e−n/4 in time O(nmgβ(n)k

β(n)). Finally,
given a subset of a term of size β(n), our algorithm discovers
all the variables in that term in time mngβ(n)+1k

β(n) with
probability at least 1−mnkβ(n)(4en/4).

Observation 55. For s ⊂ X , computing Is,Sample(gs) takes
time O(gs).

In step 1, our algorithm finds all the (c+2)-sized subsets
of terms in f .

Lemma 56. Given a well behaved f ∈ Fn,k,m, our function
Distinguishing Subsets finds {s | s ⊂ t ∈ f, |s| = c +
2} in time O(gc+2n

c+2) with probability greater than 1 −
4nc+2e−n/4 in step 1.

Proof: Let s ⊂ X where |s| = c + 2. By Lemma 54, iff
s ⊂ t ∈ f then Is,Sample(gs) ≥ gs · 1

nc+ 1
5

with probability

greater than 1 − 4e−n/4. Function Distinguishing Subsets
tests all subsets of size c + 2, thus our function has correctly
selected the sets which are subset of terms in f with proba-
bility greater than 1−4nc+2e−n/4 in time O(gc+2n

c+2).
Having found all subsets of t ∈ f of size c + 2 with high

probability, our algorithm builds these sets till all the subsets
of terms has size β(n).

Lemma 57. Given a well behaved f ∈ Fn,k,m, and T =
{s | s ⊂ t ∈ f, |s| = c + 2}, function Distinguishing
Subsets in step 2 returns {s | s ⊂ t ∈ f, |s| = β(n)} with
probability greater than 1− 4mnkβ(n)e−n/4 in time bound-
ed by O(nmgβ(n)k

β(n)).

Proof: Using the result of Lemma 54, each iteration
of our loop is given a set S = {s | s ⊂ t ∈ f, |s| = i} and
produces S′ = {s | s ⊂ t ∈ f, |s| = i + 1} with probability
more than 1−4nm

(
k
i

)
e−n/4 for i = c+2 . . . β(n)−1 in time

bounded by O(ginmki). Thus in β(n)−1−(c+2) iterations
our algorithm produces S = {s | s ⊂ t ∈ f, |s| = β(n)}with
probability greater than 1− 4β(n)nmkβ(n)−1e−n/4 in time
bounded by O(nmgβ(n)k

β(n)−1).
Given all β(n)-sized subsets of t ∈ f , algorithm Learn

Random Monotone DNF finds all the terms of f.

Lemma 58. Given a well behaved f ∈ Fn,k,m, and S =
{s | s ⊂ t ∈ f, |s| = β(n)} our algorithm, Learn Random
Monotone DNF, finds f in time bounded by
O(mngβ(n)+1k

β(n)) with probability greater than
1− nmkβ(n)(4e−n/4) in step 3.

Proof: Algorithm Learn Random Monotone DNF uses
Corollary 46 and Lemma 54.

Corollary 46 states that, for a well behaved monotone k-
DNF, ∀s ∈ S where |s| ≥ β(n) then |{t | s ⊂ t ∈ f}| ≤ 1.
Thus every s ∈ S is associated with at most one term t ∈ f .

Lemma 54 states that for a given s ⊂ X and x ∈ X
where |s∪{x}| = β(n)+1 iff Is∪{x},Sample(gs) ≥ gs · 1

nc+ 1
5

then s ∪ {x} ⊂ t ∈ f with probability at least 1 − 4e−n/4.
Thus for |s| = β(n), ∃!t such that s ⊂ t, we can determine
if x ∈ t with high probability.

Combining these ideas, given s ∈ S we can find a term in
the inside loop of step 3 by testing every x ∈ X to determine
if {x} ∪ s ⊂ t ∈ f , and thus find {x | Is∪{x},Sample(gs) ≥
gs · 1

nc+ 1
5
} = t ∈ f in time O(gβ(n)+1n) with probability

greater than 1− 4ne−n/4.
Together, the outside loop in step 3 selects every s ∈ S

and the inside loop finds t where s ⊂ t. Since ∀t ∈ f , there
exists s ∈ S such that s ⊂ t, Algorithm Learn Random
Monotone DNF produces f .

The time it takes to do this is the time is bounded by
O(gβ(n)+1nmkβ(n)) with probability bounded by

1− 4nmkβ(n)e−n/4.

Theorem 59. Given a well behaved f ∈ Fn,k,m, Algorithm
Learn Random Monotone DNF finds f in time bounded
by O(mngβ(n)+1k

β(n)) with probability greater than 1 −
9mnkβ(n)e−n/4.

Proof: Using Lemmas 56, 57, 58 we have proven that
our algorithm finds all subsets of size c + 2 of terms in f
in Lemma 56, and having found these subsets it builds upon
till our algorithm has found all subsets of terms of f of size
β(n) in Lemma 57; it then uses the uniqueness of terms of
size β(n) to find all the variables of a term in f ; thus finding
the entire function.

The algorithm runs in time bounded by

O(mngβ(n)+1k
β(n))

with probability greater than 1− 9mnkβ(n)e−n/4.

