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Abstract The most basic regret studied ésternal regret which

) L . is the difference between the loss incurred by the algorithm
We consider the problem of minimizing regret with and the loss incurred by the best action in hindsight. An-
respect to a given set of pairs of time selection other kind of regret commonly studied is calliediernal re-
functions and modifications rules. We give an on- gret This was introduced by Foster and Vohra [FV98]. Here,
line algorithm that ha®) (/T log |S|) regret with we consider the set of modification rules where for each pair
respect taS when the algorithm is run fof’ time (a,b) of actions we have a rule of the kind: Every time the
steps and there a®¥ actions allowed. This im- algorithm suggests picking, pick b instead. The internal
proves the upper bound 6¥(,/TN log(|Z||F|)) regret of the algorithm is the regret of not having applied
given by Blum and Mansour [BM07a] for the case one of these modification rules. Each rule here can be con-
whenS = 7 x F for a setZ of time selection sidered as a functioif, ;, that maps every action to itself,
functions and a sef of modification rules. We do except actioru which gets mapped tb. If we consider the
so by giving a simple reduction that uses an online set of modification rules corresponding to all functions map-
algorithm for external regret as a black box. ping the set of actions into itself, we get the notiorsafap

regret Finally, we can allow any subset of these mappings as

. the set of allowed modification rules which gives the notion
1 Introduction of wide range regret This was defined by Lehrer [Leh03].
We consider the following online optimization problem. At Lehrer also associatéisne selectiorfunction with each rule
the beginning of each day (a time step), we have to choosethat indicates whether a rule is “active” at a give time or not.
one of theN allowed actions. Instead of picking one ac- A related model is that of “sleeping experts” or “specialists”
tion deterministically, we may come up with a distribution defined in Freund et al. [FSSW97]. Here, at the beginning of
over the actions. At the end of the day, an adversary, with timet, each specialist can decide whether are not the current
the knowledge of the distribution we picked, fixes a loss for situation is her area of speciality and make a prediction only
each action. We give a concrete example from Cesa-Bianchiif it does. In addition, Blum and Mansour [BM07a] con-
et al. [CBFH97]. Suppose we want to predict the proba- sider the case where the experts can be “partially awake”.
bility that it rains on a day based on the predictionshof ~ One way to interpret the activeness function is that it mea-
weather forecasting websites. But we don’t know which of sures degree of confidence that the corresponding rule will
these “experts” give good forecasts. We come up with some perform well at a given time. In this case, we weigh the loss
weights on the websites using an online algorithm and useincurred by the algorithm and the modified action with the
the weighted prediction as our guess for the probability of time selection function to calculate the regret.
raining. At the end of the day, based on whether or not it The first algorithm with external regret sublinearh
rained, everyone is incurs a loss depending on how inaccu-was developed by Hannan [Han57]. An algorithm whose
rate their prediction was. Usually it is assumed that the loss external regret has only logarithmic dependence\owas
for each action is picked from a fixed interval, like, 1]. given by Littlestone and Warmuth [LW94] and Cesa-Bianchi
For example, we could charge a person who predicés et al. [CBFH97].
the probability of rainl — p if it rains andp if does not.
After T' days, we compare the loss incurred by the online
algorithm we used to the loss incurred if we had followed a : A o
simple strategy (like just picking the same action each day). %re picked fronj—1, +1]. The running time is polynomial in

\ S : andN.

Our goal is to minimize ouregretfor not following one of
the simple strategies. One may also compare the algorithm’sThe number of time step$ for which it will be run need
performance to the performance if the distribution over ac- not be provided as an input to the above algorithm. Stoltz
tions at each time step were modified using a certain set ofand Lugosi [SLO5] give a general method to convert any
rules. We consider the problem of designing algorithms with “weighted average predictor” algorithm for external regret
low regret with respect to a given set of strategies or modifi- to a low internal or swap regret algorithm. At a high level,
cation rules. they pretend there is an expert for each modification rule

Lemma 1 ([CBFH*97]) There exists an online algorithm
with external regret at mosb (/T log N) when the losses



who always suggests using that rule. At each time step,
the expert is charged the loss that would be incurred if his

modification rule were actually used. The weighted aver-

age predictor would give a distribution over the experts. The

distribution over the actual actions is found by computing
the fixed point of the expected modification rule picked from
the distribution over the experts. This gives algorithms with

O(v/Tlog N) internal regret and (/TN log N) swap re-

gret. Our approach for wide range regret with time selec-

regretof H to be

Ry eat = max Ry q.
a€[N]

We now define the model with time selection functions
from Blum and Mansour [BMQ7a]. A time selection function
is a function : N — [0,1]. LetZ be the set of time
selection functions. At the beginning of timghe adversary
sets the values aof(t) for eachl € Z. The algorithm then

tion functions is based on the same idea. A drawback of apicks p* after which the adversary now picksas before.
swap regret algorithm constructed this way is that it needs Given a modification rul¢f : [N] — [N], defineM to be

to maintainN " weights. Blum and Mansour [BM07a] give
an algorithm that ha®(\/T N log N) swap regret and runs
in time polynomial inN too. They also give an algorithm
that hasD (/TN log(K M)) regret with respect t& modi-
fication rules and/ time selection functions. Here, for each
modification rule and time selection function, the regret of
not having modified the algorithms action by the rule with

the losses weighed by the time selection function is consid-

ered. In this case, we can think of there belgeople who
are interested in following an algorithm’s predictions. They

the matrix with al in column(¢) of row for all  and zeros
everywhere else. Define the regretffwith respect to time
selection functiorl and a modification rulg to be

ZI > phll — 1)

aE[N]
_Z[ It —

Informally, we first weigh all the losses at timdy I(t), the

Ru15=

tTMfl )

have varying degrees of importance associated with each daysignificance attached to time Then we look at the differ-

(given by their corresponding time selection function) and
want to minimize regret with respect to all the modification
rules. The algorithm’s goal is to minimize the maximum re-
gret of a person. This is a bit different from the model consid-
ered in Lehrer [Leh03]. But with some effort, one can check
that the result of Blum and Mansour [BMOQ7a] can be gener-
alized to the model of Lehrer [Leh03]. We refer the reader to
[BMO7b]for other bounds on the regret minimization and the
relation of various kinds of regret to equilibriums in games.
The paper is organized as follows. In the next section,
we define the model we work with formally and state our

ence between the expected lossfbfand the expected loss
if the output of H were modified every time by applyinf}
That is, we measure the regret of not having played action
f(a) every time we played. Given a setS of pairs(Z, f),
wherel is a time selection function anflis a modification
rule, thewide range regrebf H with respect taS is defined
as
Ry s = max

(I,f)es
Let1 : N — [0, 1] be the function that always outputs 1,
i.e., 1(¢) = 1. For simplicity of notation, we will us¢ to

Rp,1,¢.

main result. We state the ideas we use from related results inalso denote the paff, f) when we are not concerned with
Section 3. We prove our main result of an improved upper time selection functions, in which case we assume that the

bound for wide range regret in Section 4. We conclude with
a “first-order” upper bound in Section 5.

2 Our Model and Result

Let the set of actions bgV] = {1,2,..., N}. Consider the
following T round game between an online algorittifrand
an adversary. At the beginning of time= 1,2,...,T, the
algorithm picks a probability vectdtp’ = (p, ps, ..., pY).
The adversary then picks the loss vedtor (14,15, ..., 1%)
for timet. The entries of’ are picked from a f|xed interval.

adversary always seigt) to 1. Itis easy to check that exter-
nal regret is the samBy; 7,,, whereFe,; = { fa}aeqn) and
Vb € [N] : fo(b) = a. Theinternal regretof H is defined
to be Ry #,,,, whereF;,; = {fap}apein) @and fap(a) = b
while f,5(c) = cfor ¢ # a. Theswap regretof H is de-
fined to beRy 7, ., WhereF,,q, is the set of all functions

We prove the following theorem for minimizing wide
range regret.

Theorem 2 There exists an online algorithid that for any

In this paper, we assume the losses are either picked fromgiven setS satisfies

[0,1] or from[—1, +1].
Define the regret off with respect to action € [N] to
be

Rya= Z Z Pt —11)

t=1 be[N

T
=303 oy 1.

t=1 be[N]

This can be mterpreted as the difference between the ex-

pected loss off and the loss of action. Define theexternal

A probability vector is a vector in which the entries are non-
negative and sum to 1.

2All vectors we consider are column vectors. We will Us¢o
denote the transpose.

e Rus O(y/Tlog |S]) when the losses are picked
from the[0, 1].

e The running time off is polynomial inT", N and|S].

Note that this matches (upto a constant) the results for ex-
ternal, internal and swap regret if we are not concerned with
time selection functions. A drawback of our apporoach is
that if the size of the sef is large, the running time is high.
For example, for swap regret with time selection functions,
we may need time polynomial i and NV, But for this
case, the result of Blum and Mansour already gives a more
efficient algorithm with the same regret (upto a constant).



3 Previous Results show that this achieves a low external regret with respect to
all time selection functions.

To generalize this idea for wide range regret, where
T x F, they introduce an expert for eaghe [N], I € Z and
f € F. Thereisa weighmg_l,f for each such expert. Note
that this does not simplify to the reduction in the previous
paragraph for the case whénh= F..;. Instead, in the next
section we obtain a reduction where there are experts only
for each(1, f) € S. Intuitively, this is where we remove
the polynomial dependence of wide range regref\oand
obtain a slightly simpler reduction.

We use ideas from Stoltz and Lugosi [SL0O5] and Blum and
Mansour [BMO7a].

We first describe the approach of Stoltz and Lugosi [SL0O5]
for internal regret. The idea is to simulate a low external re-
gret algorithm forN (N — 1) imaginary experts. Start with
any “weighted average predictoH.,; with low external re-
gret. There aréV(N — 1) imaginary experts, one for each
modification rulef, ;. The expert corresponding ¥ , al-
ways suggests playinginstead ofa. We will specify how
the probability weights over the actual actions are calculated
ILZT;ZZ%‘Q@“;QF%;@ i;f;_"w the losses are generated for 4 A Reduction from Wide Range Regret to

At time ¢, supposeH.,.; outputs probability;’ , for the External Regret
expert corresponding tfi, ,. Then compute the probability
vectorp® = (p!,ph, ..., p%) on the actual actions as a fixed

point of
pt = Z qz,pr—»b’

a,be[N] Theorem 3 Given an algorithmH.,,, with external regret
wherep!, _, denotes the probability vector obtained frplm (7', V) when the losses are frof-1, +1], one can con-
by changing the weight of actiomto zero at putting it on  Struct an algorithm/ that when given losses froj, 1] sat-

We will prove Theorem 2 in this section. We first give an
algorithm that when given a low external regret algorithm as
a black box uses it to guarantee low wide range regret.

actiond. This can also be expressed as isfies:
P = P My, =pT D ai My, e Rus = R(T,|S))
a,b a,b

e The running time off is polynomial in the running time

Let the adversary return batkas the loss vector at time of Heyr, T, N, @nd|S|.

The loss incurred at timeby each of the imaginary experts

for f,, is calculated as Idea: H will basically simulate an instance éf.,; with the
“ elements ofS being the actions. Figure 1 shows the inputs
l}a , = It. pf_v, — ptTMfa,b”- and outputs off and H.,; at timet. Attimet, H.,; pro-

) . . ) duces some; , for each(, f) € S, where they; ; form a
;[)rllllgvx?eu da?rglet;yei%grgg ;chci]l:;gezttig; "’(‘)Sf :Jkl]aeyli%zi é?ecgér%‘? if we propability distribution ovesS. H will then use this to come
a. up with a probability vectop’ = (pi,ps,...,p% ) on the
Stoltz and Lugosi [SLO5] showed that this achieves low in- agtual actigns.H wiI>I/ basicaﬁly pic(lflaprQandon?y)f) with
e have an expert for each modifcation e # and the  PrOPDIIY proportional tal(t)qf . After his, it picks &
probability and loss vectors are now calculated as vectorp'’ over the actual actions such tpitis a fixed point
of such a randony, i.e., modifyingp® by f in expectation
pt =p'T Z v just yieldsp?. Intuitively, the loss passed to the black box
f H., for (I, f) is such that;f,’f measures the regret with re-

e spect to time selection functiahof not having modified the
and output of H using functionf. Multiplying this by I (¢) takes
lt — ptTM It. 3 3 )
f f care of the relevance ¢f, f) at timet. Basically, the algo
We now discuss the ideas we use from Blum and Man- rithm makes sure that if the regret with respectfpf) was
sour [BMO7a]. We start with the case whefe= 7 x F..; large so far, then that regret doesn't increase at the current
for someZ. In this case, there is an expert for edéhf,) € step.
S. There is a weighty! , associated with this expert at the  Proof: We first specify how/ compute’ andl’" at timet.
end of timet where To computep?, getq’ from H,,;. If > (1)es I(t)g; ¢ =0,
wh, = ﬁfﬁz},a then output any probability vect@: Otherwise defin@’ to

be any vector satisfying
and

~ i ’ ’ I(t qt M

71 Z(I,f)es I(t)q?f

for some parametes € (0,1). Above,l; is the actual 10ss  Thjs is well defined Sinc® ;.4 1(t)g} ; # 0. Such avector
incurred at time. The quantityR} , is called a “less-strict” p’ exists since every row of ’

external regret. The probabilipf, associated with the action .
a at timet is then proportional t({j?ez I(t)wj ,. By op- 2 It)a; My
timizing for the parametef, Blum and Mansour [BMO07a] Z(I P I(t)qt ¢

@)
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Figure 1: The reduction from wide range to external regret.

is a probability vector becaudé; has exactly oné in each
row. That is, (2) defines the transition matrix of a Markov
chain. WhenH gets back loss vectdf, it computes

f_I Zpa lf(a) lt _I( )ptT(Mf_I)It
aeEN
wherel is the identity matrix. This yields

U= 1P (Mg = DI = —Rpz 5.
t t

Thatis,l} ; is exactly the decrease at timef the regret with
respect tq7, f). Itis easy to check thdf ; € [-1, +1].

From the low external regret guaranteefdf,;, for all
(I,f)eS:

3)

S L, <Zz + R(T,|S)). (4)
t (J,9)€S
We will next show that
> iyl =0 (5)

(J,9)eS
Together with (3) and (4), this will show that for &lf, f) €

0<—Rpur5+ R(T,|S)),
or Ry 1y < R(T,|S|) which proves the theorem.
We now proceed to prove (5)
Z Z ng

ngg g_l)lt

(J.9)es (J,9)
— Z ng tTM |t Z ng tT t
(J,9)
- p” (Z It M1 = (3 qs,gm)) (1),

(J,9) (4,9)

(Case 1:)Suppose_;

use (1) to get
> diglhy = (D dh, I
(4,9)

(J,9)eS
(Z ng

(J,9)

J(t)q5, # 0. In this case we can

ICHD

) (1Y)
=0.

(Case 2:)Assumey” ; v J(t)q5, = 0. ThenJ(t)q5, = 0
for all pairs(J, g) since J(t) andq}; , are all non-negative,

which implies
Z q'tf»glfft,g =
(J,9)€S
|

It can be seen easily that Theorem 3 and Lemma 1 imply
Theorem 2.

5 A First-Order Bound for Wide Range
Regret

If we are only concerned with regret bounds as a function
of T and N (called “zero-order” bounds in Cesa-Bianchi
et al. [CBMSO05]), Theorem 2 matches (up to a constant)
the known upper bounds for external, internal and swap re-
gret. One can also try to obtain “first-order” bounds, bounds
that depend on the sum of payoffs of actions instead of the
time. For example, Blum and Mansour [BM07a] show a
Lynin log(NM) + log(NM)) upper bound for mini-
mizing external regret with respect to a gevf M time se-
lection functions, wheré,,,;,, = maxymin, L , andL; , =
>, I(t)l%. For the case when there is at least one “real” ex-
pert that does well most of the time, such a bound will be
much tighter than a zero-order bound. One can hope to use
external regret algorithms with good first-order bounds like
the following to come up with good first-order bounds for
wide range regret.

Lemma 4 (Cesa-Bianchi et al. [CBFF97]) There exists an
algorithm with running time polynomial i and N and ex-
ternal regretO(/Lyin log N + log N) when the losses are
picked from[0, 1].

We need an algorithm that can handle losses from the in-
terval[—1,+1] in Theorem 3. One way to use the algorithm
from Lemma 4 is to map the lossgs; to the interval0, 1]
by a linear transformation. But th|s also changes the loss
of best action and makes the first order bound obtained very
weak. Another alternative is to tinker with the quantity that
Ut 77 signifies. If we are concerned only with modification

rules (and not time selection functions), we can redetl?‘ne

as
_ t 7t
= vl
aeN

But for technical reasons, this can’'t be done if we are also

working with time selection functions. Note that the only
term in (4) that depends ahand f is I/} s»and hence it must



capture all the terms that dependaither I or f in the defi-
nition of R ; r. So we give a method based on the approach
of Blum and Mansour [BM07a]. The main idea is to define
areduced regrefor each pair(/, f).

Theorem 5 There exists an online algorithm that for asy
satisfies:

e The wide range regret with respect &is at mostO(

Lynin log |S| + log|S]), where

Lypin = Max min I(t)p "M I

I (1.fes4
e The running time is polynomial i, N, and|S]|.

Proof: Define the loss o with respect td till time ¢ as

t

Ligs = S 1000 1

t'=1
and the loss off with respect tq, f) till time ¢ as

t

Liyr;=Y_It)p Ml

t'=1

gives

Z wi =

(I,f)es

<D

(L,f)

Z wt 1ﬁ[(t)(ptTMf|t ppt1Y)
(L.f)

lwl f ( (1- ﬂ)I(t)ptTMflt)

X (1 (1= BIt)p - |t)

S Z w§}1 _ Wt 1 Z qI tTMfIt
(I1,f) (I,f)
+ BYW'1S " gf (I(t)p' -1

=2 vl -

(L.f)

(=W T (S g T (eMy )1
(L,1)

+ (=W (3 a 1) (1)
(1,f)
=2 wi

(1,f)

Above the second inequality follows from the definition of

We assume that at any tintenot all I(t) are zero. This is and the last equality follows from (2). m

without loss of generality since in this case, the losses de- ar f

fined above don't change at tinte For somes € (0, 1) We now get back to the proof of the theorem. The claim
to be fixed later, we basically run a exponentially weighted implies that for al(Z, f) € S,

predictor with a weight for each paali f). The weight of

(1, f) atthe end of time is w} , = 5~ Riurs, where Bl Linng) = g Ry = wi ;< Z Wy = IS|

(J,9) €S
R ry = BLs = Ligry which gives
That is,R@I,Lf is a regret offf with respecttd/, f) where (BLY; 1 — L1 ;) log(1/8) < log|S|
the incurred loss is reduced by a factbrWe defineq}f = or
t—1 t—1 t t i
W=+ whereW' = is the sum of the log |S
wry/ 21 pes Wiy Lipps + ol

weights.
At time t, the algorithm does the following. It computes
qﬁ, ; as above. The probability vectpt over the actual ac-

tions is picked as in (2). This is well defined sirwé’f (and

Since for a given/, the statement is true for afl such that
(I, f) € S, we can rewrite it as:

henceq§7f) are all non-zero and at least one of thg) is I oy logls|
also non-zero (by assumption). Then the algorithm updates Ly < H.L,min T Tog(1/5)
all the losses and weights when it gets b#{ckom the ad- T B
versary. We firs'g show that the sum of the weights can not where
increase at any time. .
Litmin= MmN Lgry.
f:(I,f)eS
Claim 6 Settings so that
Z wy g < Z Wiy 1 . log | S|
(I.f)eS (I.f)eS B~ =1+ min I 2

Proof: We will use the fact that for ang € (0,1) andx €
0,1, <1—-(1—-B)xandf~* <1+ (1 - p)x/B. This

gives the theorem.
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