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Abstract

We consider the problem of minimizing regret with
respect to a given setS of pairs of time selection
functions and modifications rules. We give an on-
line algorithm that hasO(

√
T log |S|) regret with

respect toS when the algorithm is run forT time
steps and there areN actions allowed. This im-
proves the upper bound ofO(

√
TN log(|I||F|))

given by Blum and Mansour [BM07a] for the case
whenS = I × F for a setI of time selection
functions and a setF of modification rules. We do
so by giving a simple reduction that uses an online
algorithm for external regret as a black box.

1 Introduction
We consider the following online optimization problem. At
the beginning of each day (a time step), we have to choose
one of theN allowed actions. Instead of picking one ac-
tion deterministically, we may come up with a distribution
over the actions. At the end of the day, an adversary, with
the knowledge of the distribution we picked, fixes a loss for
each action. We give a concrete example from Cesa-Bianchi
et al. [CBFH+97]. Suppose we want to predict the proba-
bility that it rains on a day based on the predictions ofN
weather forecasting websites. But we don’t know which of
these “experts” give good forecasts. We come up with some
weights on the websites using an online algorithm and use
the weighted prediction as our guess for the probability of
raining. At the end of the day, based on whether or not it
rained, everyone is incurs a loss depending on how inaccu-
rate their prediction was. Usually it is assumed that the loss
for each action is picked from a fixed interval, like[0, 1].
For example, we could charge a person who predictsp as
the probability of rain1 − p if it rains andp if does not.
After T days, we compare the loss incurred by the online
algorithm we used to the loss incurred if we had followed a
simple strategy (like just picking the same action each day).
Our goal is to minimize ourregret for not following one of
the simple strategies. One may also compare the algorithm’s
performance to the performance if the distribution over ac-
tions at each time step were modified using a certain set of
rules. We consider the problem of designing algorithms with
low regret with respect to a given set of strategies or modifi-
cation rules.

The most basic regret studied isexternal regret, which
is the difference between the loss incurred by the algorithm
and the loss incurred by the best action in hindsight. An-
other kind of regret commonly studied is calledinternal re-
gret. This was introduced by Foster and Vohra [FV98]. Here,
we consider the set of modification rules where for each pair
(a, b) of actions we have a rule of the kind: Every time the
algorithm suggests pickinga, pick b instead. The internal
regret of the algorithm is the regret of not having applied
one of these modification rules. Each rule here can be con-
sidered as a functionfa,b that maps every action to itself,
except actiona which gets mapped tob. If we consider the
set of modification rules corresponding to all functions map-
ping the set of actions into itself, we get the notion ofswap
regret. Finally, we can allow any subset of these mappings as
the set of allowed modification rules which gives the notion
of wide range regret. This was defined by Lehrer [Leh03].
Lehrer also associatestime selectionfunction with each rule
that indicates whether a rule is “active” at a give time or not.
A related model is that of “sleeping experts” or “specialists”
defined in Freund et al. [FSSW97]. Here, at the beginning of
time t, each specialist can decide whether are not the current
situation is her area of speciality and make a prediction only
if it does. In addition, Blum and Mansour [BM07a] con-
sider the case where the experts can be “partially awake”.
One way to interpret the activeness function is that it mea-
sures degree of confidence that the corresponding rule will
perform well at a given time. In this case, we weigh the loss
incurred by the algorithm and the modified action with the
time selection function to calculate the regret.

The first algorithm with external regret sublinear inT
was developed by Hannan [Han57]. An algorithm whose
external regret has only logarithmic dependence onN was
given by Littlestone and Warmuth [LW94] and Cesa-Bianchi
et al. [CBFH+97].

Lemma 1 ([CBFH+97]) There exists an online algorithm
with external regret at mostO(

√
T log N) when the losses

are picked from[−1,+1]. The running time is polynomial in
T andN .

The number of time stepsT for which it will be run need
not be provided as an input to the above algorithm. Stoltz
and Lugosi [SL05] give a general method to convert any
“weighted average predictor” algorithm for external regret
to a low internal or swap regret algorithm. At a high level,
they pretend there is an expert for each modification rule



who always suggests using that rule. At each time step,
the expert is charged the loss that would be incurred if his
modification rule were actually used. The weighted aver-
age predictor would give a distribution over the experts. The
distribution over the actual actions is found by computing
the fixed point of the expected modification rule picked from
the distribution over the experts. This gives algorithms with
O(
√

T log N) internal regret andO(
√

TN log N) swap re-
gret. Our approach for wide range regret with time selec-
tion functions is based on the same idea. A drawback of a
swap regret algorithm constructed this way is that it needs
to maintainNN weights. Blum and Mansour [BM07a] give
an algorithm that hasO(

√
TN log N) swap regret and runs

in time polynomial inN too. They also give an algorithm
that hasO(

√
TN log(KM)) regret with respect toK modi-

fication rules andM time selection functions. Here, for each
modification rule and time selection function, the regret of
not having modified the algorithms action by the rule with
the losses weighed by the time selection function is consid-
ered. In this case, we can think of there beingM people who
are interested in following an algorithm’s predictions. They
have varying degrees of importance associated with each day
(given by their corresponding time selection function) and
want to minimize regret with respect to all the modification
rules. The algorithm’s goal is to minimize the maximum re-
gret of a person. This is a bit different from the model consid-
ered in Lehrer [Leh03]. But with some effort, one can check
that the result of Blum and Mansour [BM07a] can be gener-
alized to the model of Lehrer [Leh03]. We refer the reader to
[BM07b]for other bounds on the regret minimization and the
relation of various kinds of regret to equilibriums in games.

The paper is organized as follows. In the next section,
we define the model we work with formally and state our
main result. We state the ideas we use from related results in
Section 3. We prove our main result of an improved upper
bound for wide range regret in Section 4. We conclude with
a “first-order” upper bound in Section 5.

2 Our Model and Result

Let the set of actions be[N ] = {1, 2, . . . , N}. Consider the
following T round game between an online algorithmH and
an adversary. At the beginning of timet = 1, 2, . . . , T , the
algorithm picks a probability vector12 pt = (pt

1, p
t
2, . . . , p

t
N ).

The adversary then picks the loss vectorlt = (lt1, l
t
2, . . . , l

t
N )

for time t. The entries oflt are picked from a fixed interval.
In this paper, we assume the losses are either picked from
[0, 1] or from [−1,+1].

Define the regret ofH with respect to actiona ∈ [N ] to
be

RH,a =
T∑

t=1

(
∑

b∈[N ]

pt
bl

t
b − lta) =

T∑
t=1

∑
b∈[N ]

pt
b(l

t
b − lta).

This can be interpreted as the difference between the ex-
pected loss ofH and the loss of actiona. Define theexternal

1A probability vector is a vector in which the entries are non-
negative and sum to 1.

2All vectors we consider are column vectors. We will use> to
denote the transpose.

regretof H to be

RH,ext = max
a∈[N ]

RH,a.

We now define the model with time selection functions
from Blum and Mansour [BM07a]. A time selection function
is a functionI : N −→ [0, 1]. Let I be the set of time
selection functions. At the beginning of timet, the adversary
sets the values ofI(t) for eachI ∈ I. The algorithm then
picks pt after which the adversary now pickslt as before.
Given a modification rulef : [N ] −→ [N ], defineMf to be
the matrix with a1 in columnf(i) of row i for all i and zeros
everywhere else. Define the regret ofH with respect to time
selection functionI and a modification rulef to be

RH,I,f =
∑

t

I(t)
∑

a∈[N ]

pt
a(lta − ltf(a))

=
∑

t

I(t)(pt · lt − pt>Mf lt).

Informally, we first weigh all the losses at timet by I(t), the
significance attached to timet. Then we look at the differ-
ence between the expected loss ofH and the expected loss
if the output ofH were modified every time by applyingf .
That is, we measure the regret of not having played action
f(a) every time we playeda. Given a setS of pairs(I, f),
whereI is a time selection function andf is a modification
rule, thewide range regretof H with respect toS is defined
as

RH,S = max
(I,f)∈S

RH,I,f .

Let 1 : N −→ [0, 1] be the function that always outputs 1,
i.e., 1(t) = 1. For simplicity of notation, we will usef to
also denote the pair(1, f) when we are not concerned with
time selection functions, in which case we assume that the
adversary always sets1(t) to 1. It is easy to check that exter-
nal regret is the sameRH,Fext

whereFext = {fa}a∈[N ] and
∀b ∈ [N ] : fa(b) = a. The internal regretof H is defined
to beRH,Fint

, whereFint = {fa,b}a,b∈[N ] andfa,b(a) = b
while fa,b(c) = c for c 6= a. Theswap regretof H is de-
fined to beRH,Fswap

, whereFswap is the set of all functions
f : [N ] −→ [N ].

We prove the following theorem for minimizing wide
range regret.

Theorem 2 There exists an online algorithmH that for any
given setS satisfies

• RH,S = O(
√

T log |S|) when the losses are picked
from the[0, 1].

• The running time ofH is polynomial inT , N and|S|.

Note that this matches (upto a constant) the results for ex-
ternal, internal and swap regret if we are not concerned with
time selection functions. A drawback of our apporoach is
that if the size of the setS is large, the running time is high.
For example, for swap regret with time selection functions,
we may need time polynomial inT andNN . But for this
case, the result of Blum and Mansour already gives a more
efficient algorithm with the same regret (upto a constant).



3 Previous Results

We use ideas from Stoltz and Lugosi [SL05] and Blum and
Mansour [BM07a].

We first describe the approach of Stoltz and Lugosi [SL05]
for internal regret. The idea is to simulate a low external re-
gret algorithm forN(N − 1) imaginary experts. Start with
any “weighted average predictor”Hext with low external re-
gret. There areN(N − 1) imaginary experts, one for each
modification rulefa,b. The expert corresponding tofa,b al-
ways suggests playingb instead ofa. We will specify how
the probability weights over the actual actions are calculated
from the output ofHext and how the losses are generated for
the imaginary experts ofHext.

At time t, supposeHext outputs probabilityqt
a,b for the

expert corresponding tofa,b. Then compute the probability
vectorpt = (pt

1, p
t
2, . . . , p

t
N ) on the actual actions as a fixed

point of
pt =

∑
a,b∈[N ]

qt
a,bp

t
a→b,

wherept
a→b denotes the probability vector obtained frompt

by changing the weight of actiona to zero at putting it on
actionb. This can also be expressed as

pt> =
∑
a,b

qt
a,bp

t>Mfa,b
= pt>

∑
a,b

qt
a,bMfa,b

.

Let the adversary return backlt as the loss vector at timet.
The loss incurred at timet by each of the imaginary experts
for fa,b is calculated as

ltfa,b
= lt · pt

i→j = pt>Mfa,b
lt.

This quantity can be thought of as the loss incurred if we
followed the expert’s suggestion of playingb instead ofa.
Stoltz and Lugosi [SL05] showed that this achieves low in-
ternal regret. For an arbitrary set of modification rulesF ,
we have an expert for each modification rulef ∈ F and the
probability and loss vectors are now calculated as

pt = pt>
∑
f∈F

qt
f Mf

and
ltf = pt>Mf lt.

We now discuss the ideas we use from Blum and Man-
sour [BM07a]. We start with the case whereS = I × Fext

for someI. In this case, there is an expert for each(I, fa) ∈
S. There is a weightwt

I,a associated with this expert at the
end of timet where

wt
I,a = β−R̃t

I,a

and

R̃t
I,a =

t∑
t′=1

I(t′)(βlt
′

H − lt
′

a )

for some parameterβ ∈ (0, 1). Above,ltH is the actual loss
incurred at timet. The quantityR̃t

I,a is called a “less-strict”
external regret. The probabilitypt

a associated with the action
a at time t is then proportional to

∑t
I∈I I(t)wt

I,a. By op-
timizing for the parameterβ, Blum and Mansour [BM07a]

show that this achieves a low external regret with respect to
all time selection functions.

To generalize this idea for wide range regret, whereS =
I ×F , they introduce an expert for eacha ∈ [N ], I ∈ I and
f ∈ F . There is a weightwt

a,I,f for each such expert. Note
that this does not simplify to the reduction in the previous
paragraph for the case whenF = Fext. Instead, in the next
section we obtain a reduction where there are experts only
for each(I, f) ∈ S. Intuitively, this is where we remove
the polynomial dependence of wide range regret onN and
obtain a slightly simpler reduction.

4 A Reduction from Wide Range Regret to
External Regret

We will prove Theorem 2 in this section. We first give an
algorithm that when given a low external regret algorithm as
a black box uses it to guarantee low wide range regret.

Theorem 3 Given an algorithmHext with external regret
R(T,N) when the losses are from[−1,+1], one can con-
struct an algorithmH that when given losses from[0, 1] sat-
isfies:

• RH,S = R(T, |S|)
• The running time ofH is polynomial in the running time

of Hext, T , N , and|S|.

Idea: H will basically simulate an instance ofHext with the
elements ofS being the actions. Figure 1 shows the inputs
and outputs ofH andHext at timet. At time t, Hext pro-
duces someqt

I,f for each(I, f) ∈ S, where theqt
I,f form a

probability distribution overS. H will then use this to come
up with a probability vectorpt = (pt

1, p
t
2, . . . , p

t
N ) on the

actual actions.H will basically pick a random(I, f) with
probability proportional toI(t)qt

I,f . After this, it picks a
vectorpt over the actual actions such thatpt is a fixed point
of such a randomf , i.e., modifyingpt by f in expectation
just yieldspt. Intuitively, the loss passed to the black box
Hext for (I, f) is such thatqt

I,f measures the regret with re-
spect to time selection functionI of not having modified the
output ofH using functionf . Multiplying this byI(t) takes
care of the relevance of(I, f) at timet. Basically, the algo-
rithm makes sure that if the regret with respect to(I, f) was
large so far, then that regret doesn’t increase at the current
step.
Proof: We first specify howH computespt andl′t at timet.
To computept, getqt from Hext. If

∑
(I,f)∈S I(t)qt

I,f = 0,
then output any probability vectorp. Otherwise definept to
be any vector satisfying

pt> = pt>

(∑
(I,f)∈S I(t)qt

I,f Mf∑
(I,f)∈S I(t)qt

I,f

)
. (1)

This is well defined since
∑

(I,f) I(t)qt
I,f 6= 0. Such a vector

pt exists since every row of∑
(I,f) I(t)qt

I,f Mf∑
(I,f) I(t)qt

I,f

(2)
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Figure 1: The reduction from wide range to external regret.

is a probability vector becauseMf has exactly one1 in each
row. That is, (2) defines the transition matrix of a Markov
chain. WhenH gets back loss vectorlt, it computes

l′tI,f = I(t)
∑
a∈N

pt
a(ltf(a) − lta) = I(t)pt>(Mf − I)lt

whereI is the identity matrix. This yields∑
t

l′tI,f =
∑

t

I(t)pt>(Mf − I)lt = −RH,I,f . (3)

That is,l′tI,f is exactly the decrease at timet of the regret with
respect to(I, f). It is easy to check thatl′tI,f ∈ [−1,+1].

From the low external regret guarantee ofHext, for all
(I, f) ∈ S:∑

t

∑
(J,g)∈S

qt
J,gl

′t
J,g ≤

∑
t

l′tI,f + R(T, |S|). (4)

We will next show that∑
(J,g)∈S

qt
J,gl

′t
J,g = 0. (5)

Together with (3) and (4), this will show that for all(I, f) ∈
S,

0 ≤ −RH,I,f + R(T, |S|),
or RH,I,f ≤ R(T, |S|) which proves the theorem.

We now proceed to prove (5).∑
(J,g)∈S

qt
J,gl

′t
J,g =

∑
(J,g)

qt
J,gJ(t)pt>(Mg − I)lt

=
∑
(J,g)

qt
J,gJ(t)pt>Mg lt −

∑
(J,g)

qt
J,gJ(t)pt>lt

= pt>
(∑

(J,g)

J(t)qt
J,gMg

)
lt −

(∑
(J,g)

qt
J,gJ(t)

)
(pt>lt).

(Case 1:)Suppose
∑

(J,g) J(t)qt
J,g 6= 0. In this case we can

use (1) to get∑
(J,g)∈S

qt
J,gl

′t
J,g =

(∑
(J,g)

qt
J,gJ(t)

)
(pt>lt)

−
(∑

(J,g)

qt
J,gJ(t)

)
(pt>lt)

= 0.

(Case 2:)Assume
∑

(J,g) J(t)qt
J,g = 0. ThenJ(t)qt

J,g = 0
for all pairs(J, g) sinceJ(t) andqt

J,g are all non-negative,
which implies ∑

(J,g)∈S

qt
J,gl

′t
J,g = 0.

It can be seen easily that Theorem 3 and Lemma 1 imply
Theorem 2.

5 A First-Order Bound for Wide Range
Regret

If we are only concerned with regret bounds as a function
of T and N (called “zero-order” bounds in Cesa-Bianchi
et al. [CBMS05]), Theorem 2 matches (up to a constant)
the known upper bounds for external, internal and swap re-
gret. One can also try to obtain “first-order” bounds, bounds
that depend on the sum of payoffs of actions instead of the
time. For example, Blum and Mansour [BM07a] show a
O(
√

Lmin log(NM) + log(NM)) upper bound for mini-
mizing external regret with respect to a setI of M time se-
lection functions, whereLmin = maxIminaLI,a andLI,a =∑

t I(t)lta. For the case when there is at least one “real” ex-
pert that does well most of the time, such a bound will be
much tighter than a zero-order bound. One can hope to use
external regret algorithms with good first-order bounds like
the following to come up with good first-order bounds for
wide range regret.

Lemma 4 (Cesa-Bianchi et al. [CBFH+97]) There exists an
algorithm with running time polynomial inT andN and ex-
ternal regretO(

√
Lmin log N + log N) when the losses are

picked from[0, 1].

We need an algorithm that can handle losses from the in-
terval [−1,+1] in Theorem 3. One way to use the algorithm
from Lemma 4 is to map the lossesl′tI,f to the interval[0, 1]
by a linear transformation. But this also changes the loss
of best action and makes the first order bound obtained very
weak. Another alternative is to tinker with the quantity that
l′tI,f signifies. If we are concerned only with modification
rules (and not time selection functions), we can redefinel′tf
as

l′tf =
∑
a∈N

pt
altf(a).

But for technical reasons, this can’t be done if we are also
working with time selection functions. Note that the only
term in (4) that depends onI andf is l′tI,f , and hence it must



capture all the terms that depend oneitherI or f in the defi-
nition ofRH,I,f . So we give a method based on the approach
of Blum and Mansour [BM07a]. The main idea is to define
a reduced regretfor each pair(I, f).

Theorem 5 There exists an online algorithm that for anyS
satisfies:

• The wide range regret with respect toS is at mostO(√
Lmin log |S|+ log |S|), where

Lmin = max
I

min
(I,f)∈S

∑
t

I(t)pt>Mf lt.

• The running time is polynomial inT , N , and|S|.

Proof: Define the loss ofH with respect toI till time t as

Lt
H,I =

t∑
t′=1

I(t)pt · lt,

and the loss ofH with respect to(I, f) till time t as

Lt
H,I,f =

t∑
t′=1

I(t)pt>Mf lt.

We assume that at any timet, not all I(t) are zero. This is
without loss of generality since in this case, the losses de-
fined above don’t change at timet. For someβ ∈ (0, 1)
to be fixed later, we basically run a exponentially weighted
predictor with a weight for each pair(I, f). The weight of

(I, f) at the end of timet is wt
I,f = β−R̃t

H,I,f , where

R̃t
H,I,f = βLt

H,I − Lt
H,I,f .

That is,R̃t
H,I,f is a regret ofH with respect to(I, f) where

the incurred loss is reduced by a factorβ. We defineqt
I,f =

wt−1
I,f /W t−1, whereW t =

∑
(I,f)∈S wt

I,f is the sum of the
weights.

At time t, the algorithm does the following. It computes
qt
I,f as above. The probability vectorpt over the actual ac-

tions is picked as in (2). This is well defined sincewt
I,f (and

henceqt
I,f ) are all non-zero and at least one of theI(t) is

also non-zero (by assumption). Then the algorithm updates
all the losses and weights when it gets backlt from the ad-
versary. We first show that the sum of the weights can not
increase at any time.

Claim 6

∀t :
∑

(I,f)∈S

wt
I,f ≤

∑
(I,f)∈S

wt−1
I,f

Proof: We will use the fact that for anyβ ∈ (0, 1) andx ∈
[0, 1], βx ≤ 1− (1− β)x andβ−x ≤ 1 + (1− β)x/β. This

gives∑
(I,f)∈S

wt
I,f =

∑
(I,f)

wt−1
I,f βI(t)(pt>Mf lt−βpt·lt)

≤
∑
(I,f)

[
wt−1

I,f

(
1− (1− β)I(t)pt>Mf lt

)

×
(
1 + (1− β)I(t)pt · lt

)]

≤
∑
(I,f)

wt−1
I,f −

(1− β)W t−1
∑
(I,f)

qt
I,fI(t)pt>Mf lt


+

(1− β)W t−1
∑
(I,f)

qt
I,fI(t)pt · lt


=
∑
(I,f)

wt−1
I,f −

(1− β)W t−1pt>
(∑

(I,f)

qt
I,fI(t)Mf

)
lt


+

(1− β)W t−1
(∑

(I,f)

qt
I,fI(t)

)
(pt · lt)


=
∑
(I,f)

wt−1
I,f .

Above, the second inequality follows from the definition of
qt
I,f and the last equality follows from (2).

We now get back to the proof of the theorem. The claim
implies that for all(I, f) ∈ S,

β−(βLT
H,I−LT

H,I,f ) = β−R̃T
H,I,f = wT

I,f ≤
∑

(J,g)∈S

w0
J,g = |S|

which gives

(βLT
H,I − LT

H,I,f ) log(1/β) ≤ log |S|

or

LH,I ≤
LH,I,f + log |S|

log(1/β)

β
.

Since for a givenI, the statement is true for allf such that
(I, f) ∈ S, we can rewrite it as:

LH,I ≤
LH,I,min + log |S|

log(1/β)

β

where
LH,I,min = min

f :(I,f)∈S
LH,I,f .

Settingβ so that

β−1 = 1 + min


√

log |S|
Lmin

,
1
2


gives the theorem.
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