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Foreword

This volume contains papers presented at the 21st Annual Conference on Learning Theory (previously
known as the Conference on Computational Learning Theory) held in Helsinki, Finland from July 9-12,
2008. The technical program contained 44 papers selected from 126 submissions, three open problems
selected from among five contributed, and four invited lectures that were joint with UAI. The invited
lectures were given by Peter Griinwald on “The Catch-Up Phenomenon in Bayesian Inference,” by Robin
Hanson on “Combinatorial Prediction Markets,” by Dan Klein on “Unsupervised Learning for Natural
Language Processing,” and by Gabor Lugosi on “Concentration Inequalities.” The abstracts of these
lectures are included in this volume.

The Mark Fulk award is presented annually for the best paper co-authored by a student. This year
the Mark Fulk award was supported in part by the Machine Learning Journal, which also supported
two further awards. Thus three student papers were selected for prizes. The Mark Fulk Award was
awarded to Maria-Florina Balcan, Steve Hanneke and Jennifer Wortman for their paper “The True Sample
Complexity of Active Learning.” The two Machine Learning Journal Best Paper Awards were awarded
to Jacob Abernathy for his paper “Competing in the Dark: An Efficient Algorithm for Bandit Linear
Optimization” (co-authored by Elad Hazan and Alexander Rakhlin), and to Alexandru Niculescu-Mizil
and Yogeshwer Sharma for their paper “Regret Bounds for Sleeping Experts and Bandits” (co-authored
with Robert Kleinberg).

This year witnessed many COLT submissions and a very strong program of papers. The selected papers
cover a wide range of topics including clustering, unsupervised and semi-supervised learning, active learn-
ing, boosting, online learning, bandit problems and reinforcement learning, complexity-theoretic aspects
of learning, generalization and statistical learning, kernel methods, and other topics.

We would like to thank the many people who made COLT 2008 a success. We thank the members
of the Program Committee for COLT 2008: Dana Angluin (Yale University), Jean-Yves Audibert (Ecole
Nationale des Ponts), Peter Auer (University of Leoben), Peter Bartlett (UC Berkeley), Mikhail Belkin
(Ohio State University), Shai Ben-David (University of Waterloo), Stéphane Boucheron (Universit Paris-
Diderot), Nader Bshouty (Technion), Sanjoy Dasgupta (UC San Diego), Ran El-Yaniv (Technion), Vitaly
Feldman (IBM Research), Sham M. Kakade (Toyota Technology Institute), Adam Kalai (Georgia Tech),
Vladimir Koltchinskii (Georgia Tech), Sanjay Jain (National University of Singapore), John Langford
(YYahoo! Research), Ping Li (Cornell University), Shie Mannor (McGill University), Mehryar Mohri (New
York University), Massimiliano Pontil (University College, London), Rob Schapire (Princeton University),
Shai Shalev-Shwartz (Hebrew University), Alex Smola (National ICT Australia), Nati Srebro (Toyota
Technological Institute), Ingo Steinwart (Los Alamos National Laboratory), Nicolas Vayatis, (Ecole Nor-
male Suprieure de Cachan), Volodya Vovk (Royal Holloway, University of London), and Bob Williamson
(Australian National University). We are very grateful to all of them for their careful and thorough re-
viewing and for the detailed discussions that ensured a strong program for the conference. We thank the
many sub-reviewers who assisted the Program Committee; unfortunately space constraints prevent us from
including the long list of all their names, so we must ask them to accept our thanks anonymously.

We give special thanks to Jyrki Kivinen (University of Helsinki) who served as the Local Chair of COLT
2008. We thank Kati Kervinen for general administrative support of the conference, and Sanna Kettunen
for his work in publicizing the conference. We thank Greger Lindén for creating and maintaining the

vii



conference website, and Microsoft Research for providing the CMT software that was used in the Program
Committee deliberations. We thank Nicolo Cesa-Bianchi for helping to organize the conference in his role
as head of the COLT steering committee. We thank Ran Gilad-Bachrach for his work in updating and
maintaining the www.learningtheory.org website. We also thank the ICML and UAI conference organizers
for ensuring a smooth co-location of the three conferences, including overlap with UAL.

Finally, we would like to thank the Federation of Finnish Learned Societies, Google, Helsinki Institute
for Information Technology, IBM, the Machine Learning Journal, the University of Helsinki, and Yahoo!
for their support and sponsorship of the conference.

April 2008 Rocco Servedio and Tong Zhang
COLT 2008 Program Chairs

viii



The Catch-Up Phenomenon in Bayesian Inference

Peter Griinwald
CWI, Amsterdam, The Netherlands
Peter.Grunwald @cwi.nl

Abstract

Standard Bayesian model selection/averaging sometimes learn too slowly: there exist other learning methods that
lead to better predictions based on less data. We give a novel analysis of this “catch-up” phenomenon. Based on
this analysis, we propose the switching method, a modification of Bayesian model averaging that never learns slower,
but sometimes learns much faster than Bayes. The method is related to expert-tracking algorithms developed in the
COLT literature, and has time complexity comparable to Bayes.

The switching method resolves a long-standing debate in statistics, known as the AIC-BIC dilemma: model selec-
tion/averaging methods like BIC, Bayes, and MDL are consistent (they eventually infer the correct model) but, when
used for prediction, the rate at which predictions improve can be suboptimal. Methods like AIC and leave-one-out
cross-validation are inconsistent but typically converge at the optimal rate. Our method is the first that provably
achieves both. Experiments with nonparametric density estimation confirm that these large-sample theoretical results
also hold in practice in small samples.






Combinatorial Prediction Markets

Robin Hanson
Research Associate, Future of Humanity Institute at Oxford University
Associate Professor of Economics, George Mason University
rhanson@gmu.edu

Abstract

Several hundred organizations are now using prediction markets to forecast sales, project completion dates, and more.
This number has been doubling annually for several years. Most, however, are simple prediction markets, with one
market per number forecast, and several traders per market. In contrast, a single combinatorial prediction market
lets a few traders manage an entire combinatorial space of forecasts. For millions of numbers or less, implementa-
tion is easy, and lab experiments have confirmed feasibility and accuracy. For larger spaces, however, many open
computational problems remain.






Unsupervised Learning for Natural Language Processing

Dan Klein
University of California, Berkeley
klein @cs.berkeley.edu

Abstract

Given the abundance of text data, unsupervised approaches are very appealing for natural language processing. We
present three latent variable systems which achieve state-of-the-art results in domains previously dominated by fully
supervised systems. For syntactic parsing, we describe a grammar induction technique which begins with coarse
syntactic structures and iteratively refines them in an unsupervised fashion. The resulting coarse-to-fine grammars
admit efficient coarse-to-fine inference schemes and have produced the best parsing results in a variety of languages.
For coreference resolution, we describe a discourse model in which entities are shared across documents using a
hierarchical Dirichlet process. In each document, entities are repeatedly rendered into mention strings by a sequential
model of attentional state and anaphoric constraint. Despite being fully unsupervised, this approach is competitive
with the best supervised approaches. Finally, for machine translation, we present a model which learns translation
lexicons from non-parallel corpora. Alignments between word types are modeled by a prior over matchings. Given
any fixed alignment, a joint density over word vectors derives from probabilistic canonical correlation analysis. This
approach is capable of discovering high-precision translations, even when the underlying corpora and languages are
divergent.






Concentration inequalities

Gabor Lugosi
ICREA and Department of Economics, Pompeu Fabra University
Barcelona, Spain
gabor .l ugosi @mail . com

Abstract

In this talk by concentration inequalities we mean inequalities that bound the deviations of a function of independent
random variables from its mean. Due to their generality and elegance, many such results have served as standard tools
in a variety of areas, including statistical learning theory, probabilistic combinatorics, and the geometry of Banach
spaces. To illustrate some of the basic ideas, we start by showing simple ways of bounding the variance of a general
function of several independent random variables. We show how to use these inequalities on a few key quantities in
statistical learning theory. In the past two decades several techniques have been introduced to improve such variance
inequalities to exponential tail inequalities. We focus on a particularly elegant and effective method, the so-called
"entropy method”, based on logarithmic Sobolev inequalities and their modifications. Similar ideas appear in a variety
of areas of mathematics, including discrete and Gaussian isoperimetric problems, and estimation of mixing times of
Markov chains. We intend to shed some light to some of these connections. In particular, we mention some closely
related results on influences of variables of Boolean functions, phase transitions, and threshold phenomena.






Learning Mixtures of Product Distributionsusing Correlations and
I ndependence

Kamalika Chaudhuri

Satish Rao

Information Theory and Applications, UC San DiegoComputer Science Division, UC Berkeley

kamal i ka@oe. ucsd. edu

Abstract

We study the problem of learning mixtures of
distributions, a natural formalization of clus-
tering. A mixture of distributions is a col-
lection of distributionsD = {D;,...Dr},
andmixing weights {w1, ..., wr} such that
>, w; = 1. A sample from a mixture is gen-
erated by choosingwith probability w; and
then choosing a sample from distributidn.
The problem of learning the mixture is that
of finding the parameters of the distributions
comprisingD, given only the ability to sam-
ple from the mixture. In this paper, we restrict
ourselves to learning mixtures of product dis-
tributions.

The key to learning the mixtures is to find a
few vectors, such that points from different
distributions are sharply separated upon pro-
jection onto these vectors. Previous techniques
use the vectors corresponding to the top few
directions of highest variance of the mixture.
Unfortunately, these directions may be direc-
tions of high noise and not directions along
which the distributions are separated. Further,
skewed mixing weights amplify the effects of
noise, and as a result, previous techniques only
work when the separation between the input
distributions is large relative to the imbalance
in the mixing weights.

In this paper, we show an algorithm which
successfully learns mixtures of distributions
with a separation condition that depends only
logarithmically on the skewed mixing weights.
In particular, it succeeds for a separation be-
tween the centers that@®(o+/7T log A), where

o is the maximum directional standard devia-
tion of any distribution in the mixturd is the
number of distributions, and is polynomial

in T, o, log n and the imbalance in the mixing

sati shr @s. berkel ey. edu

weights. For our algorithm to succeed, we re-
quire aspreading conditionthat the distance
between the centers bpreadacros® (T log A)
coordinates. Additionally, with arbitrarily small
separationj.e., even when the separation is
not enough for clustering, with enough sam-
ples, we can approximate the subspace con-
taining the centers. Previous techniques failed
to do so in polynomial time for non-spherical
distributions regardless of the number of sam-
ples, unless the separation was large with re-
spect to the maximum directional varianee
and polynomially large with respect to the im-
balance of mixing weights.Our algorithm works
for Binary Product Distributiong&nd
Axis-Aligned GaussiansThe spreading con-
dition above is implied by the separation con-
dition for binary product distributions, and is
necessary for algorithms that rely on linear
correlations.

Finally, when a stronger version of our spread-
ing condition holds, our algorithm performs
successful clustering when the separation be-
tween the centers is on®(o../T log A),
whereo, is the maximum directional standard
deviation in the subspace containing the cen-
ters of the distributions.
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Clustering, the problem of grouping together data points
in high dimensional space using a similarity measure, is
a fundamental problem of statistics with numerous ap-
plications in a wide variety of fields. A natural model for
clustering is that ofearning mixtures of distributions

A mixture of distributions is a collection of distributions
D = {Ds,...Dr}, andmixing weights{ws, ..., wr}
such thay ", w; = 1. A sample from a mixture is gen-
erated by choosingwith probability w; and choosing

a sample from distributio®;. The problem of learning
the mixture is that of finding the parameters of the distri-
butions comprisin@, given only the ability to sample
from the mixture.

If the distributionsD+, . . ., Dy are very close to each
other, then even if we knew the parameters of the dis-
tributions, it would be impossible to classify the points
correctly with high confidence. Therefore, Dasgupta
[Das99] introduced the notion of separation condi-
tion, which is a promise that each pair of distributions is
sufficiently different according to some measure. Given
points from a mixture of distributions and a separation
condition, the goal is to find the parameters of the mix-
tureD, and cluster all but a small fraction of the points

I ntroduction

the centers.

This bound is suboptimal for two reasons. Although
mixtures with skewed mixing weights arise naturally in
practice(see [PSDO00] for an example), given enough sam-
ples, mixing weights have no bearing on the separability
of distributions. Consider two mixture®’ andD” of
distributionsD; and Ds: in D/, wy = we = 1/2, and
in D", w; = 1/4 andws = 3/4. Given enough com-
putational resources, if we can ledfr from 50 sam-
ples, we should be able to leaf’ from 100 samples.
This does not necessarily hold for SVD-based methods.
Secondly, regardless ef an algorithm, which has prior
knowledge of the subspace containing the centers of the
distributions, should be able to learn the mixture when
the separation is proportional to., the maximum di-
rectional standard deviation of any distribution in the
subspace containing the centers. An example in which
o and o, are significantly different is shown in Fig-
ure 1(b).

In this paper, we study the problem of learning mix-
tures of product distributions A product distribution
overR™ is one in which each coordinate is distributed
independently of any others. In practice, mixtures of
product distributions have been used as mathematical

correctly. A commonly used separation measure is the models for data and learning mixtures of product dis-

distance between the centers of the distributions param-

eterized by the maximum directional varianegpof any
distribution in the mixture.
A common approach to learning the mixtures and

tributions specifically has been studied [FM99, FOSO05,
FOS06, DHKSO05] — see the Related Work section for
examples and details. However, even under this seem-
ingly restrictive assumption, providing an efficient algo-

therefore, clustering the high-dimensional cloud of pointsrithm that does better than the bounds of [AM05, KSV05]
is to find afewinteresting vectors, such that points from turns out to be quite challenging. The main challenge is
different distributions are sharply separated upon pro- to find a low-dimensional subspace that contains most
jection onto these vectors. Various distance-based meth-of the separation between the centers; although the inde-
ods [AKO1, Llo82, DLR77] are then applied to cluster pendence assumption can (sometimes) help us identify
in the resulting low-dimensional subspace. The state- which coordinates contribute to the distance between
of-the-art, in practice, is to use the vectors correspond- some pair of centers, the problem of actually finding

ing to the top few directions dfighest variancef the
mixture and to hope that it contains most of the sepa-
ration between the centers. This is computed ISira
gular Value Decompositiq®VD) of the matrix of sam-

the low-dimensional space still requires more involved
techniques.

In this paper, we present an algorithm for learning
mixtures of product distributions, which is stable in the

ples. This approach has been theoretically analyzed bypresence of skewed mixing weights, and, under certain

[VWO02] for spherical distributions, and for more gen-

conditions, in the presence of high variance outside the

eral distributions in [KSV05, AMO5]. The latter show  supspace containing the centers. In particular, the de-
that the ma:XIml_Jm variance directions ’_étl’e |_ndeed the in- pendence of the Separation required by our a|gorithm on
teresting directions when the separatiorbis———), skewed mixing weights is only logarithmic. Addition-
wherewy,;, is the smallest mixing weight of any distri-  ally, with arbitrarily small separationj.é., even when
bution. the separation is not enough for classification), with

This is the best possible result for SVD-based ap- enough samples, we can approximate the subspace con-
proaches; the directions of maximum variance may well taining the centers. Previous technigues failed to do so
not be the directions in which the centers are separated,for non-spherical distributions regardless of the num-
but instead may be the directions of very high noise, as ber of samples, unless the separation was sufficiently
illustrated in Figure 1(b). This problem is exacerbated large. Our algorithm works for binary product distri-
when the mixing weights); are skewed — because a dis- butions and axis-aligned Gaussians. We require that the
tribution with low mixing weight diminishes the contri-  distance between the centersspeeadacros® (7 log A)
bution to the variance along a direction that separates coordinates, wher& depends polynomially on the max-
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imum distance between centers ang;,,. For our algo- with a separation condition closer to the information the-
rithm to classify the samples correctly, we further need oretic bound.
the separation between centers tad{e /7 log A).

In addition, if a stronger version of the spreading Related Work
condition is satisfied, then our algorithm requires a sepa- The first provable results for learning mixtures of Gaus-
ration of only©(o.+/T'log A) to ensure correct classifi-  sians are due to Dasgupta [Das99] who shows how to
cation of the samples. The stronger spreading condition, learn mixtures of spherical Gaussians with a separation
discussed in more detail later, ensures that when we splitof ©(s/n) in an n-dimensional space. An EM based
the coordinates randomly into two sets, the maximum algorithm by Dasgupta and Schulman [DS00] was shown
directional variance of any distribution in the mixture to apply to more situations, and with a separation of
along the projection of the subspace containing the cen-g(gn'/*). Arora and Kannan [AKO1] show how to
ters into the subspaces spanned by the coordinate vectearn mixtures of distributions of arbitrary Gaussians
tors in each set, is comparabled®. whose centers are separatedd.'/*c). Their results

In summary, compared to [AMO5, KSVO05], our al-  apply to many other situations, for examptencentric
gorithm is much (exponentially) less susceptible to the Gaussians with sufficiently different variance.
imbalance in mixture weights and, when the stronger  The first result that removed the dependence:on
spreading condition holds, to high variance noise out- in the separation requirement was that of Vempala and
side the subspace containing the centers. However, ounyang [VW02] who use SVD to learn mixtures of spher-
algorithm requires a spreading condition and coordinate- jcal Gaussians witlh (o T'/*) separation. They project
independence, while [AMO5, KSV05] are more general. to 3 subspace of dimensidhusing an SVD and use a
We note that for perfectly spherical distributions, the gistance based method in the low dimensional space. If
results of [VWO02] are better than our results — how- the separation is not enough for classification, [VW02]
ever, these results do not apply even for distributions can also find, given enough samples, a subspace approx-
with bounded eccentricity. Finally unlike the results jmating the subgspace containing the centers. While the
of [Das99, AKO1, DS00], which require the separation results of [VW02] are independent of the imbalance on
to grow polynomially with dimension, our separation mijxing weights, they apply only to perfectly spherical
only grows logarithmically with the dimension. Gaussians, and cannot be extended to Gaussians with

Our algorithm is based upon two key insights. The bounded eccentricity. In further work Kannan, Salmasian,
first insight is that if the centers are separated along sev-and Vempala[KSV05] and Achlioptas and McSherry
eral coordinates, then many of these coordinatesare [AMO5] show how to cluster general Gaussians using
relatedwith each other. To exploit this observation, we SVD. While these results are weaker than ours, they ap-
choose half the coordinates randomly, and search theply to a mixture of general Gaussians, axis-aligned or
space of this half for directions of high variance. We not. We note that their analysis also applies to binary
use the remaining half of coordinatesfilter the found product distributions again with polynomial dependence
directions. If a found direction separates the centers, it on the imbalance in mixing weights In contrast, our
is likely to have some correlation with coordinates in separation requirement §3(o./T log A), i.e.,is loga-
the remaining half, and therefore is preserved by the fil- rithmically dependent on the mixing weights and dimen-
ter. If, on the other hand, the direction found is due to sion and the maximum variance in noise directions.
noise, coordinate independence ensures that there will  There is also ample literature on specifically learn-
be no correlation with the second half of coordinates, ing mixtures of product distributions. Freund and Man-
and therefore such directions get filtered away. sour [FM99] show an algorithm which generates dis-

The second insight is that the tasks of searching for tributions that are=-close to a mixture of two product
and filtering the directions can be simultaneously ac- distributions over0, 1}" in time polynomial inn and
complished via a singular value decomposition of the 1/¢. Feldman, O’Donnell, and Servedio show how to
matrix of covariances between the two halves of coor- generate distributions that areclose to a mixture of”
dinates.In particular, we show that the top few direc- Product distributions [FOS05] and axis-aligned Gaus-
tions of maximum variance of the covariance matrix ap- Sians [FOS06]. Like [FM99], they have no separation
proximately capture the subspace containing the centersrequirements, but their algorithm takeS(”°) time. Das-
Moreover, we show that the covariance matrix has low guptaet. al[DHKSO05] provide an algorithm for learn-
singular value along any noise direction. By combining ing mixtures of heavy-tailed product distributions which
these ideas, we obtain an algorithm that is almost in- works with a separation df)(R\/T), whereR is the
sensitive to mixing weights, a property essential for ap- maximum half-radius of any distribution in the mixture.
plications like population stratification [CHRZ07], and
which can be implemented using the heavily optimized They do not directly address binary product distributions
and thus, efficient, SVD procedure, and which works in their paper, but their techniques apply.
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While their separation requirement does not depend poly-
nomially on —2—, their algorithm runs in time expo-
nential in©(;*—). They also require a slope, which is NoiseT'@"'@ Noise
comparable to our spreading condition. Chaudbtail.
[CHRZO07] show an iterative algorithm for learning mix- @ — " >
tures of two product distributions that implicitly uses the Separation Separation
notion of co-ordinate independence to filter out noise di-
rections. However, the algorithm heavily uses the two Figyre 1: (a) Spherical Gaussians: Direction of maxi-
distribution restriction to find the appropriate directions, mum variance is the direction separating the centers (b)

and does not work wheffi > 2. Arbitrary Gaussians: Direction of maximum variance is
More broadly, the problem of analyzing mixture mod- 3 noise direction.

els data has received a great deal of attention in statis-

tics, see for example, [MB88, TSM85], and has numer-

ous applications. We present three applications where g

data is modelled as a mixture of product distirbutions. D D,
First, the problem of population stratification in popula- i = i

tion genetics has been posed as learning mixtures of bi- ‘

nary productdistributions in [SRHO7]. In their work, the ! ;
authors develop an MCMC method for addressing the D4 | Dy
problem and their software embodiment is widely used. [ R, S CEEF R BEEEE

A second application is in speech recognition [Rey95, ‘
PFKO02], which models acoustic features at a specific =l 7

time point as a mixture of axis-aligned Gaussians. A
third application is the widely used Latent Dirichlet Al- . )
location model [BNJO3]. Here, documents are modelled ~ Figure 2: An Example where All Covariances are
as distributions over topics which, in turn, are distri-

butions over words. Subsequent choices of topics and

words are assumed to bmlependent(For words, this is
referred to as the “bag of words” assumption.) [BNJO3]
develops variational techniques that provide interesting
results for various corpora. Interestingly, the same mode
was used by Kleinberg and Sandler [KS04] to model
user preferences for purchasing goods (users correspon
to documents, topics to categories, and words to goods).
Their algorithm, which provides provably good perfor-
mance in this model, also uses SVD-like clustering al-

gorithms as a subroutine. directions is0, and each direction has the same vari
rcl ring meth Iso invol nonical Cor- - )
Our clustering method also involves a Canonical Co ance. As this is also the case b, any SVD-bsed

relations Analysis of the samples, which seems to have |\ - ion’ naced algorithm will fail to distinguish
connections with multiview learning[KF07] and co-trammgﬁﬁ{?@ : 0 alg guist
etween the two mixtures. We also note that learning

binary product distributions with minimum separation
2 and average separatidn- %logT would allow one
The Spreading Condition. The spreading condition  to learn parities ofog T' variables with noise. Finally,
loosely states that the distance between each pair of cenwe note that when the spreading condition fails, one has
ters is spread along abo@iT log A) coordinates. We  only a few coordinates that contain most of the distance
demonstrate by an example, that a sprea@ (@), is a between centers. One could enumerate the set of possi-
natural limit for all methods that use linear correlations ble coordinates to deal with this case, and is exponen-
between coordinates, such as our methods and SVD bas@dnal in 7 log n log A. [FOS05] on the other hand takes
methods [VWO02, KSV05, AM05]. We present, as an time exponential irf™ log n, and works with no separa-
example, two distributions : a mixtuf®,; of T binary tion requirement.

product distributions, and a single binary product dis-

tribution Dy, which have exactly the same covariance 2 A Summary of Our Results

matrix. Our example is based on the Hadamard code, in

which a codeword for &-bit message i€"* bits long, We begin with some preliminary definitions about dis-
and includes a parity bit for each subset of the bits of tributions drawn ovemn dimensional spaces. We use

the message. The distributions comprisifg are de-
fined as follows. Each of th& = 2 centers is a code-
jword for ak—bit string appended by a string of length
n — k in which each coordinate has valug2. Notice
&hat the last: — & bits are noise. Thus, the centers are
separated by’/2 coordinates.D is the uniform dis-
tribution over then—dimensional hypercube. As there
are no linear correlations between any two bits in the
Hadamard code, the covariance Bf along any two

Discussion
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f,g,...torange over coordinates, and, . .. to range
over distributions. For any € R”, we writex/ for the
f-th coordinate of:. For any subspack (resp. vector
v), we useH (resp. v) to denote the orthogonal com-
plement ofH (resp.v). For a subspac# and a vector
v, we write P (v) for the projection ofv onto the sub-
spaceH. For any vector:, we usd|z|| for the Euclidean
norm ofz. For any two vectors: andy, we use(z, y)
for the dot-product of andy.

Mixtures of Distributions. A mixture of distributions
D, is a collection of distributions{ D1, ..., Dy}, over
points inR™, and a set of mixing weight&, . .., wr
such thatzi w; = 1. In the sequeln is assumed to
be much larger thafi’. In a product distribution over
R™, each coordinate is distributed independently of the
others. When working with a mixture of binary prod-
uct distributions, we assume that tffigh coordinate of

a point drawn from distributioD; is 1 with probability

p{, and0 with probability1 — M{- When working with

a mixture of axis-aligned Gaussian distributions, we as-
sume that thg¢-th coordinate of a point drawn from dis-

tribution D; is distributed as a Gaussian with meah
and standard deviatior .

Centers. We define thecenterof a distribution: as the
vector ui;, and thecenter of mass of the mixtues the
vector i whereji/ is the mean of the mixture for the
coordinatef. We write C for the subspace containing
Hiyeeey U

Directional Variance. We defines? as the maximum
variance of any distribution in the mixture along any
direction. We definer? as the maximum variance of
any distribution in the mixture along any direction in

(aboutT log T') coordinates. Due to technicalities in our
proofs, the number of coordinates we can ignore needs
to depend (logarithmically) on this distance.

We therefore define the spreading condition as fol-
lows. We define parametets; and a parametek as :

2 . .
A > —gmaTlosn__gndc, . is the maximum value such

Wnin-(ming ; c?j)
that there ard97 log A coordinateg with | uf — uf | >

cij. We note thatA is bounded by a polynomial in
T, 04, 1/Wmin, 1/¢;; and logarithmic im.

We definecy,;,, to be the minimum over all pairis j
of ¢;;. Given a pair of centersandy, let A;; be the set
of coordinatesf such that] — Mf| > ¢y;, and lety;;
be defined asz); = pif — pf, if f ¢ Ay, andvf; = ¢
otherwise. We defind(u;, 11;), the effective distance
betweenu; andy; to be the square of the, norm of
v;5. In contrast, the square of the norm of the vector
i — p; is the actual distance between centersand
w;, and is always greater than or equal to the effective
distance betweep; and ;. Moreover, given andj
and the subspad€, we definedx (1, 11;) as the square
of the norm of the vectar;; projected onto the subspace
K.

Under these definitions, our spreading condition now
requires thatl(p;, p;) > 49c§jTlogA and our stronger
spreading condition requires that every vecto€ihas
spreadB21'log .

A Formal Statement of our Results. Our main con-
tribution is Algorithm QRR-CLUSTER, a correlation
based algorithm for learning mixtures of binary prod-
uct distributions and axis-aligned Gaussians. The input
to the algorithm is a set of samples from a mixture of

the subspace containing the centers of the distributions.distributions, and the output is a clustering of the sam-

We write 02, as the maximum variance of the entire

mixture in any direction. This may be more thahdue

to contribution from the separation between the centers.

Spread. We say that a unit vectarin R™ has spread
if Z:f(vf)2 > S - max;(v/)2.

Distance. Given a subspack of R™ and two points
z,y in R™, we writedy(z, y) for the square of the Eu-
clidean distance betweenandy projected along the
subspacéC.

The Spreading Condition and EffectiveDistance. The

ples.

The main component of Algorithm@RR-CLUSTER
is Algorithm CoRR-SUBSPACE which, given samples
from a mixture of distributions, computes an approxi-
mation to the subspace containing the centers of the dis-
tributions. The motivation for approximating the latter
space is as follows. In tHE-dimensional subspace con-
taining the centers of the distributions, the distance be-
tween each pair of centers andy; is the same as their
distance inR"™; however, because of the low dimen-
sionality, the magnitude of the noise is small. There-

spreading condition tells us that the distance betweenfore, provided the centers of the distributions are suf-

eachy; andy; should not be concentrated along a few

ficiently separated, projection onto this subspace will

coordinates. One way to ensure this is to demand thatsharply separate samples from different distributions.

for all ¢, j, the vectoru; — p; has high spread. This is
comparable to the slope condition used in [DHKSO05].
However, we do not need such a strong condition for
dealing with mixtures with imbalanced mixing weights.
Ourspreading conditiotherefore demands that for each
pair of centergy;, p;, the norm of the vecton; — p;
high, even if we ignore the contribution of the top few
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SVD-based algorithms [VW02, AM05, KSV05] attempt
to approximate this subspace by the gingular vec-
tors of the matrix of samples. However, for product
distributions, our Algorithm ©RR-SUBSPACE can ap-
proximate this subspace correctly under more restrictive
separation conditions.

The properties of Algorithms GRR-SuBSPACEand



CoRR-CrLUsTERare formally summarized in Theorem 1
and Theorem 2 respectively.

Theorem 1 (Spanning centers) Suppose we are given
a mixture of distributionsD = {Dy,..., Dy}, with
mixing weightsuy, . .., wp. Then with at least constant
probability, the subspac#& of dimension at mo2T
output by AlgorithmCoRR-SUBSPACE has the follow-
ing properties.

1. If, for all i andj, d(p;, pj) > 49c§jTlogA, then,
for all pairs, j,

9 -
dic(pis 113) = o5 (At 1) — 49T log A)

2. If,in addition, every vector ifi has spread27 log >,
then, with at least constant probability, the maxi-
mum directional variance iC of any distribution
D; in the mixture is at mositlo?.

The number of samples required by AlgoritiBorRr-

SussPACEis polynomial inZ, T', n,0 and 1, and
the algorithm runs in time polynomial in, T', and the
number of samples.

then with probabilityl — % over the samples and
with constant probability over the random choices
made by the algorithm, Algorith@ORR-CLUSTER
computes a correct clustering of the sample points.

2. Foraxis-aligned Gaussians, if every vecto€ihas
spread at leas$27"log -, and for allz, j:

then, with constant probability over the random-
ness in the algorithm, and with probability —
% over the samples, Algorithf@ORR-CLUSTER
computes a correct clustering of the sample points.

15002T (log A + logn)

Algorithm CORR-CLUSTER runs in time polynomial in
n and the number of samples required by AlgoritBorR-
CLUSTERIs polynomial in--, T', n, o and L,

Wmin

We note that because we are required to do classifi-
cation here, we do require an absolute lower bound on
the distance between each pair of centers in Theorem 2.

The second theorem follows from the first and the

The subspack computed by Algorithm ©RR-SUBSPACE  gjistance concentration Lemmas of [AMO5] as described
approximates the subspace containing the centers of thgn getail in Chapter 3 of [Cha07]. The Lemmas show
distributions in the sense that the distance between eachy 5t once the points are projected onto the subspace com-
pair of centergu; and y; is high alongkC. Theorem 1 ted in Theorem 1, a distance-based clustering method
states that Algorithm GRR-SUBSPACEcOmputes an ap- g ffices to correctly cluster the points.

proximation to the subspace containing the centers of . .
the distributions, provided the spreading condition is sat- A Note on the Stronger Spreading Condition. The
isfied. If the strong spreading condition is satisfied as Motivation for requiring the stronger spreading condi-

well, then the maximum variance of eath alongK is tion is as follows. Our algorithm splits the coordinates
also’close 2. ) randomly into two sets andg. If Cx andCg denote

Note that in Theorem 1. there is no absolute lower the restriction of’ to the coordinates irf andg respec-

bound required on the distance between any pair of cen-tively, then our algorithm requires that the maximum
ters. This means that, so long as the spreading Condi_mrectlonal variance of any dlstrlbu.tlon in the_ mixture
tion is satisfied, and there are sufficiently many sam- IS close too. in Cr andCg respectively. Notice that
ples, even if the distance between the centers is not largelhis does not follow from the fact that the maximum di-
enough for correct classification, we can compute an ap- 'éctional variance along is o suppos& is spanned
proximation to the subspace containing the centers of PY (0-1,0.1,1,1) and(0.1,0.1, —1, 1), variances o)

the distributions. We also note that although we show al20_ng the axes argl0, 10, 1, 1), andF'is {1, 2}. Then,
that Algorithm QORR-SUBSPACE succeeds with con- s IS @bout2.8, while the variance oD, alongCr is10.
stant probability, we can make this probability higher However, as Lemma 9 shows, the required condition is

at the expense of a more restrictive spreading condition, €"Sured by the strong spreading condition. .
or by running the algorithm multiple times. However, in general, the maximum directional vari-

ance of anyD; in the mixture alongCr andCg may
still be close tar2, even though strong spreading condi-
tion is far from being met. For example:dfis the space
spanned by the fir§f coordinate vectors, . . ., er,then

with probability 1 — QLT the maximum variance along
Cr andCg is alsoo?.

Theorem 2 (Clustering) Suppose we are given a mix-
ture of distributionsD = {Dy,..., Dz}, with mixing
weightswy, . . ., wr. Then, AlgorithmCORR-CLUSTER
has the following properties.

1. Ifforalliandy, d(p, u;) > 49T} log A, and for
all i, j we have:
1 > 590°T(log A + logn)

d(pi, 1)
_ (for axis-aligned Gaussians) Our clustering algorithm follows the same basic frame-
d(pispg) > 59T (log A + logn) work as the SVD-based algorithms of [VW02, KSVO05,

(for binary product distributions)  AMO5]. The input to the algorithm is a s8tof samples,

3 Algorithm CORR-CLUSTER
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and the output is a pair of clusterings of the samples ac-
cording to source distribution.
CORR-CLUSTER(S)
PartitionS into S4 and Sg uniformly at ran-

dom.

2. Compute: K4 = Corr — Subspace(S4),
Kp = Corr — Subspace(Sg)

3. Projecteach pointifs (resp.S4) on the sub-
spacelC4 (resp.Kp).

4. Use a distance-based clustering algo-

rithm [AKO1l] to partition the points in
S 4 andSp after projection.

The first step in the algorithm is to use Algorithm
CoRR-SuBsPACEto find aO(T')-dimensional subspace
K which is an approximation to the subspace containing
the centers of the distributions. Next, the samples are
projected ontdC and a distance-based clustering algo-
rithm is used to find the clusters.

n/2 dimensions({ vector inn/2 dimensions con-
catenated withy; respectively). For each if the
singular value); is more than a threshold =

0] ( -+/log A) , we addv; andy; to K.

Step 5: Output Output the set of vectors.

2
WininCi;
Tlogn

The main idea behind our algorithm is to use half the
coordinates to compute a subspace which approximates
the subspace containing the centers, and the remaining
half to validate that the subspace computed is indeed a
good approximation. We critically use the coordinate
independence property of product distributions to make
this validation possible.

4 Analysisof Algorithm CORR-CLUSTER

This section is devoted to proving Theorems 1, and 2.
We use the following notation.

We note that in order to preserve independence the Notation.We write 7-space (respg-space) for the: /2

samples we project ontg should be distinct from the
ones we use to computé A clustering of the complete
set of points can then be computed by partitioning the
samples into two setd and B. We useA to compute

K 4, which is used to clusteB and vice-versa.

We now present our algorithm which computes a ba-
sis for the subspad€. With slight abuse of notation we
usek to denote the set of vectors that form the basis for
the subspack.The input to ®RR-SUBSPACEIS a setS
of samples, and the output is a subspiagf dimension
at most27'.

Algorithm CORR-SUBSPACE

Step 1: Initialize and Split Initialize the basisC with
the empty set of vectors. Randomly partition the
coordinates into two setsF and g, each of size
n/2. Order the coordinates as thoseffirst, fol-
lowed by those irg.

Step 2: Sample Translate each sample point so that the
center of mass of the set of sample points is at the
origin. Let F' (respectively&) be the matrix which
contains a row for each sample point, and a column
for each coordinate itt (respectivelyg). For each
matrix, the entry at row:;, columnf is the value of
the f-th coordinate of the sample pointdivided

by +/|S].

Step 3: Compute Singular Space For the matrixf' TG,

compute{vy, ..., vr}, the topT left singular vec-
tors,{y1, ..., yr}, the topT right singular vectors,
and{\i,...,Ar}, the topT singular values.

Step 4: Expand Basis For eachi, we abuse notation
and usev; (y; respectively) to denote the vector
obtained by concatenating with the 0 vector in
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dimensional subspace 8" spanned by the coordinate
vectors{e; | f € F} (resp.{e, | g € G}). We writeC
for the subspace spanned by the set of vegigrswWe
write Cr for the space spanned by the set of vectors
Pr(ui). We writeP £(Cx) for the orthogonal comple-
ment ofCx in the F-space. Moreover, we wWritér g
for the subspace of dimensi@ff' spanned by the union
of a basis o’ » and a basis afg. Next, we define a key
ingredient of the analysis.

Covariance Matrix. Let N be a large number. We de-
fine £ (resp.(), theperfect sample matriwith respect
to F (resp.G) as theN x n/2 matrix whose rows from
(w1 +...+w;—1)N + 1 through(wy +...4+w;)N are
equal to the vectoP »(y;)/vV/N (resp. Pg(ui)/V'N).
For a coordinat¢, let X ; be a random variable which is
distributed as th¢'-th coordinate of the mixtur®. As

the entry in rowf and columry in the matrix TG is
equal toCov(Xy, X,), the covariance of; and X,

we call the matrleTG thecovariance matribof F and

Q

Proof Structure. The overall structure of our proof is
as follows. First, we show that the centers of the dis-
tributions in the mixture have a high projection on the
subspace of highest correlation between the coordinates.
To do this, we first assume,in Section 4.1 that the input
to the algorithm in Step 2 are the perfect sample ma-
trices " andG. Of course, we cannot directly feed in
the matricesF, G, as the values of the centers are not
known in advance. Next, we show in Section 4.2 that
this holds even when the matricEsandG in Step 2 of
Algorithm CoRR-SuBSPACEare obtained by sampling.

In Section 4.3, we combine these two results and prove
Theorem 1. Finally, using results on distance concentra-
tion from [AMO5, AKO1], we complete the analysis by
proving Theorem 2.



4.1 ThePerfect Sample Matrix

The goal of this section is to prove Lemmas 3 and 7,

correlation of the covariance matrix constructed from

Moreover, for any pair of vectors in F-space and
y in G-space such that:, vz) = 0 and(y, vg) = 0,

which establish a relationship between directions of high T 7T 4 y = Zw.<7; Py, (pi—1)){y, Pog (ni—p1)) = 0
7 v v - 2\ VF 7 ) vg 2 -

the perfect sample matrix, and directions which contain

alot of separation between centers. Lemma 3 shows thatTherefore /T G, has rank at most.

a direction which contains a lot of effective distance be-
tween some pair of centers, is also a direction of high
correlation.

Lemma 7 shows that a directionc P =(Cr), which

is perpendicular to the space containing the centers, is a

direction with 0 correlation. In addition, we show in

Lemma 8, another property of the perfect sample ma-

trix — the covariance matrix constructed from the perfect
sample matrix has rank at md@st We conclude this sec-
tion by showing in Lemma 9 that when every vector in

C has high spread, the directional variance of any distri-

bution in the mixture alongF-space oG-space is of the
order ofo2.
We begin by showing that if a directiom contains

The proof strategy for Lemma 4 is to show that if
d, (i, p;) is large then the matrik' T &, has high norm.
We require the following notation. For each coordinate
f we define a'-dimensional vectot as

2p = WVwrPy(ul — i?), ..., JorP, (uf. — 7))
Notice that for any two coordinatesg:
(2f,2g) = Cov(Py(Xy), Py(Xy))
, computed over the entire mixture. We also observe that

D o llzllP =D wi- dy(i, )
¥ i

a lot of the distance between the centers, then, for most 1"e€ RHS of this equality is the weighted sum of the

ways of splitting the coordinates, the magnitude of the
covariance of the mixture along the projectionwobn
F-space and the projectionofj-space is high. In other
words, the projections aof alongF-space and@j-space
are directions of high correlation.

Lemma3 Let v be any vector irCz,g such that for
somei andj, dy (i, p1;) > 49T¢c;log A. If vy anduvg
are the normalized projections ofto F-space andj-
space respectively, then, with probability at least %

over the splitting step, for all such, vEFTGug > 7

wherer = O (w‘“‘“c?ﬂ' . \/@).

Tlog?n

A detailed proof, presented in [Cha07], is omitted due
to lack of space. However, the main ingredient of the
proof is Lemma 4.

Lemma4 Letw be afixed vector i such that for some
tandy, dy (pi, py) > 49Tc?j log A. If v anduvg are the
projections ofv to F-space andj-space respectively,
then, with probability at least— A 27 over the splitting

A 2
stepuEFTGug > 27 wherer = O (“’"“"C” -v/Iog A).

Tlog2n

Let £, (G, respectively) be the x n/2 matrix ob-

tained by projecting each row df (respectively) on
vr (respectivelyg). Then,

U}Fq’}‘évvg
D wilvr, Poy (1 — 1) (vg, Pug (11 — 1))

U}FTGUQ
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squares of the Euclidean distances between the centers
of the distributions and the center of mass. By the trian-
gle inequality, this quantity is at Iea@wmincij log A.

We also a couple of technical lemmas —Lemmas 5 and 6,
which are stated below. The proofs of these lemmas
are omitted due to lack of space, but can be found in
[Cha07].

Lemma5 LetA be a set of coordinates with cardinality
more thanl4472 log A such that for eaclf € A, ||z/||
is equal andy_ ;. 4 I|2¢|[> = D. Then, (1)

T p—

> =
= 28872 log A
F.96Af#g 8817 log

and (2) with probabilityl — A=2T over the splitting of
coordinates in Step 1,

>

fEFNA,geGNA

D2

2
>~
(25 20" 2 Ti5aT710g A

Lemma6 Let A be a set of coordinates such that for
eachf € A, [|z|| is equalandy_ . , ||z|]* = D. If

48T log A + T < |A| < 144T?log A, then (1)

> o

B —
= 11527 log A
F.9EA g 521" log

and (2) with probabilityl — A=27 over the splitting in
Step 1,

<vazg>2

D2

2
>
(25 20" 2 5087710 A

>

fEFNA,geGNA



Proof: (Of Lemma 4) From the definition of effective
distance, if the conditiond, (i, p1;) > 49¢},T log A
holds then there are at lealT" log A vectorsz; with
total squared norm at lea88wy,i,c;; 2T log A. In the
sequel we will scale down each vectoy with norm
greater tham;; /wmin SO that its norm is exactly
Cij\/Wmin- We divide the vectors inttog n groups as
follows: group By contains vectors which have norm
between“imin gnd “oy=min

We will call a vectorsmallif its norm is less than

VWminCij ; e _
W, and otherwise, we call the vectoig. We ob

serve that there exists a set of vecf®rwith the fol-

lowing properties: (1) the cardinality d® is more than

49T log A, (2) the total sum of squares of the norm of the
. 2

vectors inB is greater thaﬁ%, and, (3) the

ratio of the norms of any two vectors i is at most

2+/log n.

Case 1. Suppose there exists a grol of small vec-

tors the squares of whose norms sum to a value greate

49T wminc; log A .
than —22°u %82 - By definition, such a group has
ogn

more thant97T log A vectors, and the ratio is at maxt

Case 2: Otherwise, there are at lea$tT log A big vec-
tors. By definition, the sum of the squares of their norms

49T wiminc2, log A

exceeds— 4 ——.
ogn

at most24/log n.

We scale down the2 vectors B so that each vector
has squared norf”: in case 1, and, squared norm

2
WiinCj;

1o in case 2. Due to (2) and (3), the total squared
gn

L2
norm of the scaled vectors is at leagt mincis 1084

4log2n
Due to (1), we can now apply Lemmas 5 and 6 on

the vectors to conclude that for some constantwith
probabilityl — A=27,

fEF,geG
The above sum is the square of the Frobenius norm
|FTG,|p of the matrix Y G,. SinceF TG, has rank
at mostl, and the maximum singular value of a rahk
matrix is its Frobenius norm [GL96], plugging in

2
=0 (;;022:7 -/Tog A) completes the proofa
Next we show that a vectar ¢ Px(Cr) is a di-

rection of( correlation. A similar statement holds for a
vectory € Pg(Cg).

Due to the scaling, the ratio is

2 4

9 WininCij log A
Zr, 20" > a1 | —————
(2, 2g) 1 ( T2log"n

Lemma7 If at Step 2 of AlgorithmCORR-SUBSPACE

the values oft” and G are respectively” and G, and
for somek,the topk-th left singular vector i), and the
corresponding singular valug,, is more thanr, then
for any vectorz in P £(Cx), (vg, x) = 0.
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Proof: We first show that for any in P=(C), and any
Y, xTFTGy =0.
o T
T F Gy =Y wiPr(ui) ) - (Pg(ui)y)

=1

Sincex is in P£(Cr), (Px(u:),x) = 0, for all i, and
hencezTFTGy = 0 for all z in Px(Cx). We now
prove the Lemma by induction dn

Basecase (k = 1). Letv; = uy + 1, whereu; € Cr
andz; € Px(Cr). Lety; be the top right singular
vector of PTG, and let|z;| > 0. Then,oT FTGy, =
uT FTGyy, anduy /|uy| is a vector of normi such that
L uTEFTGy, > oT ET Gy, which contradicts the fact

Jur] 71

thatv, is the top left singular vector df TG.

Inductive case. Let v, = uy + i, Whereu, € Cr and
z1, € P£(Cr). Letyy be the topk-th right singular vec-
tor of FTG, and let|z;| > 0. We first show thai, is
orthogonal to each of the vectars, ..., vx_1. Other-
wise, suppose there is somel < j < k — 1, such that
(ug,v;) # 0. Then,(vg,v;) = (@, v;) + (ug,vj) =
(ug,vj) # 0. This contradicts the fact that, is a
left singular vector ofF TG ThereforepT FTGyy =
uF FT Gy, anduy,/|ug| is a vector of norm, orthogo-
naltovy,...,vy_1 such thal‘IuLuEFTéyk > UkTFTG’yk.

Kl

This contradict; thp fact that, is the topk-th left sin-
gular vector oft'T . The Lemma followsO

Lemma 8 The covariance matrix'T G has rank at most
T.

The proof is omitted due to space constraints.

Finally, we show that if the spread of every vector in
C is high, then with high probability over the splitting of
coordinates in Step 1 of Algorithm @RR-SUBSPACE,
the maximum directional variances of any distribution
D; in Cr andCg are high. This means that there is
enough information in botl¥-space andj-space for
correctly clustering the distributions through distance con-
centration.

Lemma9 If every vectorv € C has spread at least
32T'log -, then, with constant probability over the split-
ting of coordinates in Step 1 of Algorithm
CORR-SUBSPACE, the maximum variance along any di-
rection inCx or Cg is at mosto?.

Proof:(Of Lemma 9) Letv andv’ be two unit vectors
in C, and letvr (resp.v’s) andvg (resp.vg denote the
normalized projections of (resp. v’) on F-space and
G-space respectively. lfvr — v’z|| < 2=, then, the



directional variance of any; in the mixture along/z
can be written as:

E[(v)r. @ — Bla])’]
— El{vr,x - Bla))?] + Bl(vF — vr,o — B[e])?
+2E[(vr,x — Ble])E[(v) — vr,x — E[e])]
< Bllvr,x - Bl))?] + [Jor - o] ?0?

Thus, the directional variance of any distribution in the
mixture alongy’ is at most the directional variance along
v, plus an additiona#2. Therefore, to show this lemma,
we need to show that if is any vector on &=-cover

of C, then with high probability over the splitting of co-
ordinates in Step 1 of Algorithm @rRR-SUBSPACE the
directional variances of an; in the mixture along ~
andvg are at mostio?.

We show this in two steps. First we show that for
anyw in a %= -cover ofC, 1 < Zfef(vf)2 < 2. Then,
we show that this condition means that for this veetor
the maximum directional variances along andvg are
at mostdo2.

Let v be any fixed unit vector ii€. We first show
that with probabilityl — (”*)2 over the splitting of
coordinates in Step 1 of Algorithm @RR-SUBSPACE,

i < Yser(@)? < 2. To show this bound, we ap-
ply the Method of Bounded Difference[PDO05]. Since
we split the coordinates inté andG uniformly at ran-
dom, B[}, »(v/)?] = 3. Lety; be the change in
Zfef(vf)2 when the inclusion or exclusion of coordi-
nate f in the setF changes. Theny; = (v/)? and

= Zf ﬁ. Since the spread of vecteris at least
32T log = o= Z (Uf)4 < W' and from the

Method of Bounded Differences,

P Y (0 B 012 > g < e
feFr fer
Ox 2T
(%)
By taking an union bound over allon aZ*-cover ofC,

we deduce that for any sueh 1 < Zfef(vf) <3,
Since the maximum directional variance of any dis-
tribution D; in the mixture inC is at mostr2,

Zf(vf)2(olf)2 < o2. Therefore the maximum variance
anngv;c as well asug can be computed as:

P vaH2 Z

fer

2
< 4o

val

The lemma followsd

4.2 Working with Real Samples

In this section, we show that given sufficient samples,

the properties of the matrik™T GG, whereF andG are
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generated by sampling in Step 2 of AlgorithnDRRr-
CLUSTER are very close to the properties of the matrix
FT@. The lemmas are stated below. The proofs are
omitted due to space constraints, but can be found in
[Cha07]. The proofs use the Method of Bounded Dif-
ferences (when the input is a mixture of binary product
distributions) and the Gaussian Concentration of Mea-
sure Inequality (for axis-aligned Gaussians).

The central lemma of this section is Lemma 10, which
shows that, if there are sufficiently many samples, for
any set o2m vectors {vy, ..., v} @and{yi, ..., ym},

Y p v FTGyy andy, ]! FTGyk are very close. This
Iemma is then used to prove Lemmas 11 and 12. Lemma
11 shows that the top few singular vectorsio¥ G out-

put by Algorithm GORR-SUBSPACEhave very low pro-
jection onP £ (Cx) or Pg(Cg). Lemma 12 shows that
the rank of the matrix* TG is almostT, in the sense
that theT' + 1-th singular value of this matrix is very
low.

Lemma 10 LetU = {uy,...,un}, Y ={y1,- .-, Ym}

be any two sets of orthonormal vectors, anddeand GG

be the matrices generated by sampling in Stejf the
algorithm If the number of sampléS| is greater than
Q(’” n*logn 10é'("""‘*/‘5)) (for Binary Product Distribu-
tions), an(ﬂ(max(ah 0,2)) (for Axis-Aligned Gaussians),

4 2
whereag; = 22 n? log? gzl"g (@max/9) and

2 2 3 . (e . -
g = TZmaxm nlognlos(@ma/d) then, with probability
atleastl — 1/n,

1> uk (FTG —BIFTG)y| < 6
k

Lemmall Let F' andG be the matrices generated by
sampling in Steg of the algorithm, and let, ..., v,
be the vectors output by the algorithm in Steplf the

number of samplelsS| is greater than
m>®*n? log n(log A+log = L)
Q( g ) (for Binary Product Distribu-

tions), andmax(al,ag) (for Axis-Aligned Gaussians)
4
Wherea1 _c m*n? log? nlog? (A/F), and

T2
o202, m®nlognlog(A/e)
a2 = P

zinPx(Cr), (vg, ) < e

, then, for eactk, and any

Lemma 12 Let F and G be the matrices generated by
sampling in Step 2 of Algorithl@ORR-SUBSPACE If
the number of samples| is greater than

Q (w) (for binary product distributions) and

44 ZT3 /1 1 A .
o ln Tlgg’ log A Tinax® Toen ok for axis-

aligned Gaussians, ther;kTH, theT + 1-th singular
value of the matrix"T G is at mostr/8.

Q (max (



4.3 TheCombined Analysis

In this section, we combine the lemmas proved in Sec-
tions 4.1 and 4.2 to prove Theorem 1.

We begin with a lemma which shows that if every
vector inC has spread27'log -, then the maximum
directional variance i, the space output by Algorithm
CORR-SUBSPACE, is at mostl 152,

Lemma 13 Let K be the subspace output by the algo-
rithm, and letv be any vector iriC. If every vector irC
has spread2T log Z, and the number of samplgS|

is greater than

UGT4'rf21§%2 log A 7 frﬁjaXo‘lTj;(,le}og nlog A then
for any: the maximum variance @b; alongv is at most
1102

Q (max (

The proof is omitted due to space constraints, and
can be found in [Cha07].
The above Lemmas are now combined to prove Theo-
rem 1.
Proof:(Of Theorem 1)

Suppos& = K, UKg, whereKy, = {vy,...
the topm left singular vectors of TG and
Kr = {y1,...,ym} are the corresponding right singu-
lar vectors. We abuse notation and ugdo denote the
vectorvy, concatenated with a vector consistingrgf2
zeros, and usgy, to denote the vector consistingof2
zeros concatenated witfy,. Moreover, we uséC, K,
and K interchangeably to denote sets of vectors and
the subspace spanned by those sets of vectors.

We show that with probability at least- % over the
splitting step, there exists no vector Cr g such that
(1) v is orthogonal to the space spanned by the vedtors
and (2) there exists some pair of centeasd; such that
dy (s, p1y) > 49Tc§7- log A. For contradiction, suppose
there exists such a vector

Then, if vz andvg denote the normalized projec-
tions ofv onto F-space andj-space respectively, from
Lemma 3pF FTGug > 7 with probability at least —
% over the splitting step. From Lemma 10, if the num-

JUm }s

ber of sample$S| is greater thaf (w) for

binary product distributions, and 5| is greater than
2 2 e )
Q (max ( , T Tmax lTl;)gn 10gA)) for

axis-aligned GaussiansyFTGvg > % with at least
constant probability. Since is orthogonal to the space
spanned byC, vr is orthogonal tofC;, andvg is or-
thogonal toCgr. As A,,4+1 is the maximum value of
2T FTGy over all vectors: orthogonal ta/C;, andy or-
thogonal toCr, A1 > 7, which is a contradiction.
Moreover, from Lemma 12\7,; < g, and hence
m<T.

Let us construct an orthonormal series of vectors
V1,...,Um, ... Which arealmostin Cr as follows.

a*n?log?log A
T2
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vy, ..., Uy are the vectors output by Algorithmd®r-
SuBspPACE We inductively definey; as follows. Sup-
pose for eaclk, vy, = ui + zi, whereu,, € Cr and
xr € Px(Cr). Letu; be a unit vector irCx which is
perpendicular taiy, ..., u;—1. Then,u; = u;. By defi-
nition, this vector is orthogonal te,, ..., u;—1. In ad-
dition, for anyk # I, <vl, ’Uk> = <ul., uk> + <ul, $k> =0,
andv; is also orthogonal t@q, ..., v;_1. Moreover, if
€ < o7 UL, - - -, Uy, are linearly independent, and we
can always findlim(Cx) such vectors. Similarly, we
construct a set of vectots, y», . . .. Let us call the com-
bined set of vector§*.

We now show that if there are sufficient samples,
dee (pi, py) < cfj. Note that for any unit vectoo*
in C*, and any unitz € Crug, (v,z) < me. Also,
note that for anyu;, andu, k # 1, |{(ux, u;)| < €2, and
[lur|[* > 1 — €. Letv = 3, ayux be any unit vector
in Crug. Then,1 = H”UH2 = Zk,k’ g (Ug, ugr) >
o af[ur] 2 = T%€2),

The projection ofy on C* can be written as:

Z(U, Uk>2 = Z(v, uk>2
k k

Z Z af (ug, w)? + 2 Z oo (ug, ur) (g, upr)

P LU

> offfugl|* — TPt > 1 - Q(T7%€)
k
The last step follows because for edgh|uy||? > 1 —
€2. If the number of samplds| is greater than
3,2 .
Q- logn(log Atlos 100T) ) (for Binary Product Distri-
butions), and

4,4 27 2 2 2 23
. a*m*n?log® nlog®(100TA) o .. 0 m°nloglog(100TA)
max ( 7274 ¢ ) e 7274

(for axis-aligned Gaussians), thens 1/1007". There-
fore,

\%

de-(pis py) <
For anyi andj,

d(pir pry) = dic (i, pg) + deoyic (i ) + de= (pas 1)
Since vectorsv,,+1,... and y,+1, - .., all belong to
Crug (as well ag* \ IC, there exists no € C*\ K with
the Conditions (1) and (2) in the previous paragraph,
anddc, (i, pij) < 49T¢Z;log A. That is, the ac-
tual distance betweem; andy; in Crug \ K (as well
asC* \ K) is at most the contribution t@(;, 1¢;) from
the top49Tc§j log A coordinates, and the contribution
to d(ui, 1;) from K andC* is at least the contribution
from the rest of the coordinates. Sinég- (i, 1) <
Ld(us, p;), the distance betwegn andy; in K is at

L
100

100
leastpd(pi, i) — 49T log Ac?;). The first part of the
theorem follows.

The second part of the theorem follows directly from
Lemma 131
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Abstract

We study the problem of learning mixtures of
distributions, a natural formalization of clus-
tering. A mixture of distributions is a collec-
tion of distributionsD = {D,..., Dr} and
weightswy, ..., wr. A sample from a mix-
ture is drawn by selecting; with probabil-

ity w; and then selecting a sample fraby.
The goal, in learning a mixture, is to learn the
parameters of the distributions comprising the
mixture, given only samples from the mixture.

In this paper, we focus on learning mixtures of
heavy-tailed product distributions, which was
studied byl[DHKSOE]. The challenge in learn-
ing such mixtures is that the techniques de-
veloped for learning mixture-models, such as
spectral methods and distance concentration,
do not apply. The previous algorithm for this
problem was due to [DHKS05], which
achieved performance comparable to the al-
gorithms of [AMO05,[KSV05/ CR08] given a
mixture of Gaussians, but took time exponen-
tial in the dimension. We provide an algo-
rithm which has the same performance, but
runs in polynomial time.

Our main contribution is an embedding which
transforms a mixture of heavy-tailed product
distributions into a mixture of distributions
over the hypercube in a higher dimension, while
still maintaining separability. Combining this
embedding with standard spectral techniques
results in algorithms that can learn mixtures
of heavy-tailed distributions with separation
comparable to the guarantees [of [DHKSO05].
Our algorithm runs in time polynomial in the
dimension, number of clusters, and imbalance
in the weights.
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1 Introduction

We study the problem of learning mixtures of distribu-
tions, a natural formalization of clustering. rAixture

of distributionsis a collection ofT" distributionsD =
{Ds, ..., Dr}overR™ and mixing weightsv, .. ., wr
such thatZiT:1 w; = 1. A sample from a mixture is
drawn by first selecting with probability w;, and then
choosing a random sample frobBy. The goal, in learn-
ing a mixture, is to learn the parameters of the distribu-
tions comprising the mixture, and to classify the samples
according to source distribution, given only the ability to
sample from the mixture.

Learning mixtures of distributions frequently arise
in many applications in machine learning, and a fair
amount of empirical work has been devoted to the prob-
lem. On the theoretical side, all work (except for the
work of [DHKSOS]) has focussed on learning mixtures
of distributions with one of the following characteristics:
either the distributions in question have exponentially-
decaying tails, for example, mixtures of Gaussians [Das99,
DS00,AMO05,KSV05, AKO1, VWO0PR], or they have
severely bounded range, for example, mixtures of binary
product distributiond [FOS05, CRO8]. In the latter case,
the bounds deteriorate with the maximum range of val-
ues taken by any coordinate of a sample drawn from the
mixture.

In this paper, we focus our attention to learning mix-
tures of more general distributions. In particular, we
study learning mixtures of heavy-tailed product distribu-
tions, which was introduced by Dasguptaal [DHKS05].

If the distributions comprising a mixture are very
close together, in the sense that they have a high over-
lap in probability mass, then, even if we knew the pa-
rameters of the distributions comprising the mixture, the
samples would be hard to classify. To address this, Das-
gupta[Das99]introduced the notion aeparation con-
dition.A separation condition is a promise that the dis-
tributions comprising a mixture are sufficiently differ-
ent according to some measure, and the goal of the al-
gorithm is to learn correctly a mixture which obeys a
certain separation condition. Naturally, the less strin-
gent a separation condition is, the harder it is to learn
a mixture, and therefore, a line of theoretical research



has focussed on learning mixtures of distributions under
less and less restrictive separation conditions. For mix-

heavy-tailed product distributions.
More specifically, our results are as follows. Given a

tures of Gaussians, the common measure of separatiormixture of general product distributions, such that each
used is the minimum distance between the means of anydistribution is symmetric about its median, and tias

two distributions in the mixture, parameterized by the
maximum directional standard deviation of any distri-
bution in the mixture. However, this is not a good mea-

radius upper-bounded b, our embedding transforms

it into a mixture of distributions ove{0, 1}0("3/2), while
preserving the distance between the centers in a certain

sure for the type of distributions considered here, as the sense which is explained in Theor@ 1. We can now

directional standard deviation may be infinite; follow-

ing [DHKSO0E], we therefore use as a measure of separa-

tion the minimum distance between tmedianf any
two distributions in the mixture, as parameterized by the
maximum%-radius Recall that give < g < 1, thes-
radius of a one-dimensional distributi@ghwith median
m(D) is the minimum numbeRs such that the proba-
bility mass of D in the intervalm(D) — Rg, m(D) +
Rg]is at leasts.

The major challenge in learning mixtures of heavy-
tailed distributions is that none of the tools developed in
the literature for learning mixtures of Gaussians or bi-
nary product distributions work when the mixture con-
sists of more general distributions. The key ingredi-
ents of such algorithms for learning mixtures are: (1)
a singular value decomposition of part [CR08] or whole
VW02, [KSV05, AMO05] of the covariance matrix of the

samples and (2) distance-thresholding based clustering

algorithms. Singular value decompositions of the co-
variance matrix do not converge if the distributions have
infinite variance. Even for mixtures of distributions with
finite variance, distance concentration, which works on
the principle that two samples from the same distribu-
tion are closer in space than two samples from differ-
ent distributions, does not work unless the distributions
have light tails or a very small range. The previous al-
gorithm for the problem is due to [DHKSD5], which
learns mixtures of heavy-tailed distributions with per-
formance comparable to the performance of algorithms
in [AMO5] [KSVO05, [CR08] given a mixture of Gaus-
sians; however, it involves an exhaustive search over all
partitions ofQ2(n) samples, where is the number of

dimensions, and hence takes time exponential in the di-

mension.

In this paper, we show a general procedure for trans-
forming mixtures of heavy-tailed product distributions
into mixtures which are more well-behaved, while pre-
serving the separability of the distributions in the mix-
ture. In particular, we provide an efficiently computable
embedding fronR™ to {0, 1}°"*"*). Our embedding,
when applied to a mixture of heavy-tailed product dis-
tributions which have certain conditions comparable to
those in [DHKSO05], produces a mixture of distributions

in {0,1}°("*") with centers that are far apart. In addi-

tion, we show that the resulting mixture has good prop-
erties such that standard algorithms for learning mix-
tures of binary product distributions — such as the SVD-

based algorithms of [AM05, KSV05] and the correlations-

apply either SVD-based clustering algorithrns [KSV05,
AMOQ5], and in this case, for sucess with probability
4, we require that (a) the separation between the medians

of distributionsD; andD; be Q(R(w; /2 + w: /%) +

J
R+\/Tlog %) and (b) this separation be spread across

Q((w; 7?4+ w;m)2 + T'log 2L) coordinates. Alter-
natively, we can apply the correlations-based algorithm
of [CROE] on the transformed mixture, to get a logarith-
mic dependence on the mixing weights. In this case, to
learn the mixture with probability — §, we require that

(a) the minimum distance between the medians of any
two distributions in the mixture to b@(R+/T log A +
R+/Tlog(nT/d)) and (b) that this separation to be spread
across)(T log A+ T'log(nT/4)) coordinates, wherg

is polynomial inn, T and .

We note that conditions comparable to all these four
conditions are required bl [DHKSD5] for learning mix-
tures of heavy-tailed distributions; our work improves
on their results by providing a polynomial-time algo-
rithm for the problem, as opposed to an exponential-
time algorithm. In addition, we also do not need the re-
striction, needed by [DHKS05], that the probability den-
sity function should be decreasing with distance from
the median. We also note that the guarantees of our al-
gorithms are comparable to the guarantees of [AMOS5,
KSVO05, [CRO8] when the input is a mixture of axis-
aligned Gaussians.

Our Techniques

An initial approach for converting a mixture of general
product distributions to a mixture of distributions with
better properties is to remove toeatlier points which

lie very far from the other samples. However, for the
types of distributions we consider, a sample may be an
outlier along each coordinate with constant4) proba-
bility, and since there ane coordinates, with high prob-
ability, every pointis an outlier. Another approach could
be to try to round the outlier points along each dimen-
sion; however, since the different mixture components
may have different mixing weights, given samples from
the mixture, it is hard to determine which of the samples
are outliers along a specific coordinate.

To address these issues, we use techniques from met-
ric embedding< [Ind01]. The main idea behind our em-
bedding is to use many randaeutting pointsto divide
the real line into intervals of lengtf(R); points which
fall into the even intervals are then mappedOtand

based algorithm of [CR08] can be applied to learn it, those which fall into the odd intervals are mapped to
leading to efficient algorithms for learning mixtures of 1. Although this process does not preserve distances be-
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tween all pairs of points, we show that this succeeds in
separating the centers of two distributions which have
medians that are far apart compared to tB¢it-radius

R. Our techniques are related to techniques in metric-
embedding([Ind01]; however, so far as we know, this is
the first time they have been applied to learning mixtures
of distributions. Combining our embedding with exist-
ing standard algorithms for learning mixtures of distri-
butions, we get efficient algorithms for learning mix-
tures of heavy-tailed distributions.

2 Related Work

Heavy-Tailed Mixtures

The work most related to ours is the work of Dasgupta,
Hopcroft, Kleinberg and Sandler [DHKS05]. Dasgupta
et. al [DHKSOE] introduced the problem of learning

mixtures of heavy-tailed distributions and the notion of

using the distance between the medians, parameterize®

our algorithms work with separation and spreading con-
straints comparable to algorithm (1) of [DHKSO05].
[DHKSO0E] also works with a second class of dis-
tributions, which have mildly decaying tails. In this
case, they provide an algorithm which clusters correctly
1 — ¢ fraction of the samples in time exponentiakhin
so long as the separation between any two distributions
is Q(R'T®/?/8?).

Other Mixture Models

There has been a long line of theoretical work on learn-
ing mixtures of Gaussians. For this problem, the sepa-
ration condition is usually expressed in termswpthe
number of dimensions;, the maximum directional stan-
dard deviation of any distribution in the mixture, afid

the number of clusters. In_[Das99], Dasgupta provided
an algorithm which learns mixtures of spherical Gaus-
ians when the centers of each pair of distributions is

by the half-radius, as a measure of separation betweenSeParated b@(o/n). In [DSO0], Dasgupta and Schul-
such distributions. Their work deals with the class of all Mman provided an algorithm which applied to more situ-

product distributions in which the distribution of each
coordinate has the following properties: (a) symmetry
around the median (b) decreasing probability density
with distance from the median and (§)radius upper
bounded byR’. In contrast, we require the distribution

ations and required a separation(fon'/*). [AKOI]
showed how to learn mixtures of arbitrary Gaussians
with a separation of2(on!/4) using distance concen-
tration. In addition to the usual separation between the
centers, their results apply to other situations, for exam-

of each coordinate to be symmetric about its median and ple, to concentric Gaussians with sufficiently different

have3-radius upper bounded b, and do not require
the second assumption of [DHKSO05].

[DHKSOE] provide two algorithms for learning such
mixtures. First, they provide an algorithm which re-

quires a separation dt(R’ \/?) and a spreading con-

dition that the distance between the medians of any two

distributions in the mixture should be spread 0®¢%"/5)
coordinates, to classify a— ¢ fraction of the samples
correctly. This algorithm works by performing an ex-

haustive search over all partitions @(%&’:T)) sam-
ples, and therefore has a running time exponential in
(—)(M). In contrast, our algorithms work with sim-

variance.

The first algorithm that removed the dependence on
n was due to Vempala and Wang_[VWO02], who gave a
singular value decomposition based algorithm for learn-
ing mixtures of spherical Gaussians with a separation
of Q(T"/*s). Their algorithm applies a singular value
decomposition of the matrix of samples to compute a
T-dimensional subspace which approximates the sub-
space containing the centers, and then uses distance con-
centration to cluster the samples projected on this low-
dimensional space. In further work, [KSVO05] and
[AMO5] showed how to use singular value decomposi-
tion based algorithms to learn mixtures of general Gaus-

Wmin H 1 i i
ilar separation and spreading conditions, and only take Sians when the separation between the centers of distri-

time polynomial inn.
Second, they provide an algorithm which works with
a stronger separation requirement(fR’\/n) and a

spreading condition that the distance between the me-

dians of any two distributions in the mixture be spread
over©(T/6) coordinates. Typically, for such problems,
the dimensiom is much larger than the number of clus-

tersT, and hence the separation needed here is much
larger than the separation needed by the previous al-

gorithm and our algorithms. This algorithm works by
performing an exhaustive search over all partitions of

(—)(105(—”7)) samples, and therefore has a running time
exponential in@(%). Sincewn;, IS at most%,
this may be polynomial im but remains exponential in

T. In contrast, the running times of our algorithms are
polynomial inn, T, and w:]m, and for distributions in

which the%-radius is comparable with the half-radius,
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butionsD; andD; is

Qo(w;? +w; /%) + 0\ /Tlog(L)). The algorithm

of [AMO5] was shown to apply tg'-convergent ang-
concentrated distributions, with bounds that vary with
the nature of the distributions. Their algorithm also ap-
plies to product distributions on binary vectors. How-
ever, their algorithm does not apply to distributions with
infinite variance. Even for distributions with finite vari-
ance, unless the distribution has rapidly decaying tails,
their algorithm yields poor guarantees, proportional to
the maximum range of the distribution of each coordi-
nate.

More recently, [[CR0O8] show an algorithm which,
under certain conditions, learns mixtures of binary prod-
uct distributions and axis-aligned Gaussians when the
centers are separated by

Q(o.(vTTlogA + (/T log(%))) whereo, is the max-



imum directional variance in the space containing the

centers, and\ is polynomial inn, T andw%. Their
algorithm also does not work for distributions with infi-

We usél|z|| to denote thd.» norm of a vector:.. We
usen to denote the number of dimensions antb de-
note the number of samples. For a painand subspace

nite variance and yields poor guarantees for mixtures of H, we useP () to denote the projection af onH.

heavy-tailed product distributions.

3 A Summary of our Results

We begin with some definitions about distributions over

high-dimensional spaces.

Mixture of Distributions. A mixture of distributions
is a collection of distribution® = {Ds,...,Dr} and
mixing weightswy, . . ., wr such thatZ;Tp=1 w; = 1. A

sample from a mixture is drawn by selectifhiy with

probabilityw; and then choosing a sample fram.

Median. We say that a distributio® on R has median
m(D) if the probability that a sample drawn from is
less than or equal tov(D) is 1/2. We say that a distri-
bution D onR"™ has mediam(D) = (mq, ..., my) if
the projection ofD on the f-th coordinate axis has me-
dianmy, for 1 < f < n. For a distributionD, we write
m(D) to denote the median db.

Center. We say that a distributio® on R™ has center
(c1,...,cy) if the projection of D on the f-th coordi-
nate axis has expectatiop, for1 < f < n.

B-Radius. For0 < 3 < 1, the3-Radius of a distribu-
tion D on R with medianm (D) is the smallesRs such
that

PIb[m(D) —Rg<az< m(D) + Rﬁ} >0

Py
Effective Distance. To better describe our results, we
need to define the concepteffective distance. The ef-

fective distance between two pointsandy in R™ at
scaleR, denoted byir(z, y) is defined as:

dp(z,y) = | > min(R?, (z/ —y/)?)
f=1

The effective distance between two pointsandy at
scaleR is thus high if many coordinates contribute to
the distance between the points.

Notation. We use subscripts j to index over distribu-
tions in the mixture and subscripfsg to index over co-
ordinates irR™. Moreover, we use subscriptg, k), . . .

3.1 Our Results

The main contribution of this paper is an embedding
from R" to {0,1}", wheren/ > n. The embedding
has the property that samples from two product distri-
butions onR™ which have medians that are far apart
map to samples from distributions ¢f, 1}" with cen-
ters which are also far apart. In particular, et =
{Dxs,...,Dr} beamixture of productdistributions such
that each coordinatg¢ of each distributionD; in the
mixture satisfies the following properties:

1. Symmetnabout the median.
2. %-radius upper bounded bfy.

In particular, this allows the distribution of each co-
ordinate to have infinite variance. Then the properties
of our embedding can be summarized by the following
theorems.

Theorem 1 Suppose we are given access to samples from
a mixture of product distribution® = {D,,...,Dr}

overR™ such that for every and f, sz satisfies prop-
erties (1) and (2). Moreover, let for anyji; denote the
center of the distributiorD; obtained by applying our
embeddingp on D;. If, for some constant,

dr(m(D;), m(D;)) > e1 R
, then, there exists a constant such that
iz — fij]] > con/*T/*(log nlog T)"/?
 dr(m(D;), m(D;))
R

with probability1 — % over the randomness in comput-
ing ®. Moreover, for anyi, anyk, k¥’ and anyf # [/,
coordinates(f, k) and (', k') of D; are independently
distributed.

Our embedding can be combined with the SVD-based
clustering algorithms of [KSV05%, AM05] to provide an

to index over coordinates in the transformed space. We efficient algorithm for learning mixtures of heavy-tailed

useR to denote the maximunj-radius of any coordi-

distributions. The resulting clustering algorithm has the

nate of any distribution in the mixture. For each distri- following guarantees.

bution D; in the mixture, and each coordinagtewe use
Df to denote the projection dp; on thef-th coordinate
axis. For anyi, we useD; to denote the distribution in-
duced by applying our embedding @n. Similarly, for
anyi and anyf, we useDZf to denote the distribution
induced by applying our embedding a)){ Moreover,
we useji; to denote the center dp; and;]f to denote
the center oD/ .
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Theorem 2 Suppose we are given access to samples from
a mixture of product distribution® = {D,,..., Dy}
overR"™ such that for every and f, le satisfies prop-
erties (1) and (2). If, for some constant

dr(m(Di),m(D;)) > es R(w; /? +w; />

+4/Tlog %)



Then, AlgorithnHT-SVD clusters the samples correctly in any interval of siz&R is very high. Therefore, since
with probability1 — § over the samples, and with prob- our embedding relies on the fact that two distributions
ability 1 — % over the randomness in the algorithm. The which have medians that are far apart, gachdius
algorithm runs in time polynomial in and T, and the bounded by, have low overlap in probability mass in a
number of samples required by the algorithr@ig-—L),  region of size(R) around the median, it does not work
min for distributions likeD; and D-.
Spreading Condition. We note that our spreading con-
dition, while similar to thesloperequirement of [DHKSQ5],
is weaker; while they require the total contribution to
the distance between any two medians from all the co-
ordinates to be large with respect to the contribution
from the maximum coordinate, we only require that the
contribution come from a few coordinates, regardless of
what the maximum contribution from a coordinate is.

Alternatively, we can also combine our algorithm
with the more recent correlation-based clustering algo-
rithm of [CRO8]. The result is an efficient algorithm
with the following guarantees.

Theorem 3 Suppose we are giversamples from a mix-
ture of product distribution® = {D,,..., Dy} over

R” such that for every and f, D/ satisfies properties
(1) and (2). If, for some constan, 4 Embedding Distributions onto the

dn(m(D3), m(D;)) > esR(yTTogh + [ Tlog ™1 ) Hamming Cube

In this section, we describe an embedding which maps
_ o/Tynlog’n points inR"™ to points on a Hamming Cube of higher di-
whereA = O(-, . —). Then, mension. The embedding has the following property. If
for any: andj, D; andD; are product distributions on
R™ with properties (1) and (2) such that their medians
are far apart, then, the distributions induced on the Ham-
ming cube by applying the embedding on points from
D; andD; respectively also have centers which are far
apart.
The building blocks of our embedding are embed-
dings{®;}, one for each coordinatg, in {1,...,n}.
The final embeddin@ is a concatenation of the maps
oy for1 < f < n. We describe more precisely how
to put together the mapk; in Sectior{ 4.B; for now, we
focus on the individual embeddings.
3.2 Discussions Each embeddin@y, in its turn, is a concatenation
of two embeddings. The first one ensures that, foriany

andy, if D{ ande are two distributions with proper-

AlgorithmHT-COFEHI'?"ELAHONscIusters the samples cor-
rectly with probabilityl — ¢ over the samples, and with
at least constant probability over the randomness in the
algorithm. The algorithm runs in time polynomialin
andT, and the number of samples required by the algo-
rithm is polynomial inn, T, andﬁ.

The condition imposed on the centers of the distri-
butions states that every pair of centers is sufficiently far
apart in space, and the distance between every pair of
centers is spread acro€s(7' log A + T'log L) coor-

dinates.

Symmetry. Our embedding still seems to work when
the distributions do not have perfect symmetry, but sat- f P
isfy an approximate symmetry condition. However, we ties (1) and (2) such thatn(D; ) — m(D; )| is smaller
illustrate by an example that we need at least a weak than (or in the same range &) then, the expected dis-
version of the symmetry condition for our embedding fance between the centers of the distributions mjgiuced
to work. LetD; and D, be the following distributions ~ PY applylnfg the efmbeddmg on points froby and D
overR, whereM is a very large number. Fap; the is Q(\m(D, );m(Dﬂ\)_ Unfortunately, this embedding

robability density function is:
P Y Y does not provide good guarantees wheD; )—m(D!)|
3 is large with respect t&. To address this, we use our

) = g5 —R<z<R ; X
hi@) 8R ’ second embedding, which guarantees that Whﬂlﬂ){)f
= 1 , MR<z<2MR m(D?)| is large with respect t@k, the centers of the
8MR -7 two distributions induced by applying the embedding on
— 1 OMR<2<—MR points from D/ and D/ are at least constant distance
SMR’ - apart. By concatenating these two embeddings, we en-
The density function foD; is: sure that in either case, the centers of the induced distri-
3 butions obtained by applying; on DZ andD{ are far
f2(1') — @7 -R <z< R apart.
1 4.1 Embedding Distributionswith Small
= g MRsws-MR Separation
We note that although the medians ©f and D, are In this section, we describe an embedding with the fol-

R/3 distance apart, the overlap in their probability mass lowing property. If, for anyi, 7, andf, D{ andDJf have
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properties (1) and (2) andn(D]) — m(D])| < SR,

then the distance between the centers of the dlstrlbutlons

induced by applying to points generated frorﬂi and

m m f
Df, is proportional toM

The embeddingis as foIIows Given a paraméter
andr € [0, R;), we define, for a point € R,

()

= 0,if Lm}g TJ is even
1

1, otherwise

In other words, we divide the real line into intervals of
length R; and assign labd) to the even intervals and
label1 to the odd intervals. The value @f.(z) is then
the label of the interval containing— r.

The properties of this embedding can be summa-
rized as follows.

Theorem 4 For any i, j, and f, if D{ and D]f have
properties (1) and (2), and if is drawn uniformly at
random from{0, Ry) andR; > 2R+3[m(D])—m(D!)],
then,

BiJ P ) =01 =Py f0x(x) =)
_ Im(Df) ~m(D))
- 2R,

Here the expectation is taken over the distributiom.of

Notation Fori = 1,...,T, we Writegp{ as the proba-
bility density function of distributiorle centered a0,
and F/ as the cumulative density function of distribu-
tion le centered af. For a real number € [0, R;),

andfori =1,...,T, we define
ol ()= > (F/(r+ @A+ 1)Ry) — F/ (r+2)\Ry))
A=—00

More specificallypzf(r) is the sum of the probabil-
ity mass of the distributio®; in the even intervals when
the shift isr, which is again the probability that a point
drawn fromD; is mapped t@ by the embedding,.. In
the sequel, we usa to denotgm(D]) — m(D7)|. We
also assume without loss of generality tvaDf) <
m(Df), andm(le) = 0. Then, the left-hand side of
the equation in Theorel 4 can be written as follows.

Bl Pr [o(@) =01~ Pr [v(x) = 0]]
z~ D] ZNDj
1 Ry/2

B R_1 r=—Rq1/2
The proof of Theorerl4 follows in two steps. First,
we show that |fo were a shifted version oD/, a
sllghtly strongerversmn of Theordrh 4 would hofd This
is shown in Lemm&l5. Next,Lemm& 8 shows that even

if Df is not a shifted version on the statements in
Theoreni still hold.

jof (r+ &) —af (r)ldr (1)
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Figure 1: Proof of Lemmial 6

Lemmab5 ForanyA, if Ry > 3A + 2R, then, for any

1
Ri/2
[
r=—R1/2

Note that the difference between the statement of The-
orem[4 and LemmAl5 is that the left-hand side of the
equation in Theorefd 4 has an absolute value, and hence
Lemmal® makes a stronger statement (under stronger
assumptions).

Before we prove Lemnid 5, we need the following lemma.

—af (A+r)dr

A
> =
-2

Lemma6 Let[a,a’] be any interval of length more than
2A. Then, for anyi,

’

A / ¢! (r)dr > /;a(Fif(r—k A) -

>A-

Proof: For anyr,

F/(r+A) (t)dt

r+A
~Fo=[
t=r

We divide the intervala, ¢'] into infinitesimal intervals
of lengthé. The probability mass of distributioP; in
anintervallt,  + ] is 6 - ! (¢).

Note that in the expression

’

/ (F/ (r + A) — F/(r))dr

the probability mass of each intenialt 4 6] wheret
liesinja+ A,d’ — Al is counted exactly% times, and
the probability mass ab; in an intervall, t + 6], where

t liesin the intervala, a + A) U (¢ — A, o] is counted

at most4 times — see Figurél 1. Singe/ () > 0 for

all t, the lemma follows in the limit whed — 0. O
Proof: (Of Lemmd®%) The shaded area in Figlle 2 shows
the value ofaf(r) - a{(r + A) for a distributionD;.



o
R4

o

L}

Figure 2: Proof of Lemm@l5

We can write:
R1/2
/ (f (1) = af (r + A))dr
Jr=—Ry/2
"R1/2 00
_ / S F r+ @A+ 1)Ry)
r=—R1/2 \“_
—F/(r 4+ 2\R)) — (F/ (r + A+ 2A\+ 1D)R))

—F/(r+ A+ 2\R)))]dr

o0

R1/2
/rz—Rl/Q A_Z:

—F/r+ A+ 2 \+1)Ry) -
—F/(r + A+ 2)\R,)))dr

Ry /2 00
JAp

A=—00
—F/(r + 2)\R))) — (F/ (r + @A+ 1)Ry + A)
—F/(r + 2\ + 1)Ry))]dr

From LemmdDb, the first term is at least

[(Ff(r+ (2X+1)Ry)

(F/(r+2\R))

[(Ff (r +2\R, + A)

o0 R1/2 A f
A- / @l (r+2AR;)dr
Z =—R1/2+A

A=—00 "

This is A times the total probability mass @, in the
intervals[2AR; — R1/2 + A,2A\R;, + R1/2 — A, for
all . SinceR; > 2A + 2R, this includes the interval
[-R, R], and as the median d¥; is at0 andD; has2-
radius less than or equal 8, the value of the first term
is at leasts .

From Lemma®B, the second term is at most

AZ/

A——o0 U7 —Ry/2

R1/2
4,02 r+ (22 4+ 1)R;)dr

This is the total probability mass db; in the intervals
[(2)\ + 1)R1 — Rl/Q, (2/\ + 1)R1 + Rl/Q], for all \.
SinceR; > 3A + 2R, none of these intervals have any
intersection with[— R, R]. The total probability mass
in these intervals is therefore at mastand therefore
the value of the second term is at mt%t The lemma
follows. O

Next we show that Theorefnh 4 holds even if distribu-
tion D/ is not a shifted version of distributioﬁf. This
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is shown by a combination of Lemmak 7 4dd 8, which
are both consequences of the symmetry of the distribu-

tions D/ andD/.

Lemma 7 Suppose that for any, j, and f, Df,D/
have property (1) and median Then, for any-,

Ozf(r) -«

J1(r) = af(=r) —af(-r)

Proof: We define

i Fl(r+2\R)) — F/ (r + 2\ = 1)R))

A=—o00

Thus,o?f(v-) is the probability mass oD; in the odd
intervals, which is again the probability thét maps a
random point fromD, to 1 when the shift chosen is

Thereforea{'( )=1-¢f f(r). SinceD; |s symmetric
with median0, for any mterval[a al,a > a >0,

Fif(a/) - F;f(a) = Fz-f(—a) - Fif(—a’). Therefore,

af (=r)
= > Fl(—r+@\+1R) - F/(—r +2\Ry)
A=—00

= > Flr—2\R)-F/(r— 2\ +1)R)

A=—00

= al()

7

The lemma follows because
al(r)—al(r)=al(r)—af(r)
O

Lemma8 For anyi andj, if D/ and D! have proper-
ties (1) and (2), then,

Ry/2
/ |a (r+A)—a()|dr
Ry /2

Ry /2 ;
> [ @)~
7’:7R1/2

Proof: By LemmalT, for every € [—R;/2, R1/2],
there is a unique’ = —r such that! (r) — of (r) =

J
ajf. (r')— aif(r’). We claim that for every such pairr’,

ol ()]
al (1 + A))

af(r + A))dr

od (r + A) — o ()| + o] (7 + A) -

> (af (r) = af (r+ ) + (o (') —



We note that for a fixed pair, '),

> |of j i
of (r) = af (r'
> |( f(?”rA) af (r) + (af (' + &) = af ("))

af (r) +af (') = af (r) = of ()]

The lemma follows by summing over all such pdirs”’).
O

Proof: (Of Theoreni#) From Equatidn 1 and Lempia 5,

E[| Pr [¢y(z) =0] = Pr [i(z) = 0]

ZND IND
1 R1/2

A
o |a(+A)fa()|dr>T

“Ri/2 2
The second step follows from Lemiia(s.

4.2 Embedding Distributionswith Large
Separation

such that¥= [a,a’] is cut aty, then,
with probab|l|ty 5 over the ch0|ce ofer}, any pointz

in the intervalfa, y] has a different value af. () than
any point in(y,a’]. If an interval is not cut, then all
points in the interval have the same valueggf with
probability1 over the choice ofey}.

Since the interval{an(Df)—R, m(le)—l—R] and[m(Df)—
R, m(Df) + R] have length at leagtR,

Pr[[m(D]) — R,m(D{) + R], [m(D]) — R,m(D]) + R]
2R+ 2R 1
arenotcut>1— T 3
If none of the interval$m(Df) - R, m(Df) + R] and
[m(D]) — R,m(D!) + R] are cut,
1
Pr(pc(m(D]) = R) # ¢c(m(D]) — R)] = 3

Let us assume that the interv@hs(sz) - R, m(DZf) +
R and[m (D) — R,m(D/) + R] are not cut and

¢c(m(D]) — R) # ¢c(m(D]) — R)

. From the two equations above, the probability of this
eventis at Ieas}. Also suppose without loss of general-

ity that ¢ (m (Df) R) = 0. Then, sinceR is an upper

In this SeCtlon we describe an embeddlng with the fol- bound on the3_ radius of the d|str|but|onpf ande

lowing property. For any, j, andf, if Df ande have
properties (1) and (2), an\@ln(Df) (Df)\ > S8R,

then, the expected gap between the centers of the distri- 1
butions induced by applying the embeddings on points 4

from D/ and D/ is at least a constant.

The embedding is as follows. Given a randgQre-
{p,{er}rez} wherepis anumberin0, R;) and{es } is
an infinite sequence of bits, we defipe: R — {0,1}
as follows.

= |2
Ry
In other words, ifz — p lies in the interval8k R, 8(k +
1)R), then(ﬁc(l‘) = Ek.
The properties of the embeddigg can be summa-
rized as follows.

¢¢(z) = (), Where k(z) (2)

Theorem 9 For anyi, j, and f, let Df ande have
properties (1) and (2), and létw(D] ) —m(D{)| > 8R.

If R > 8R, and if p is generated unlformly at random
from the interval0, R,), and eacl,, is generated by an
independent toss of a fair coin, then,

E[| Pr [pc(z) =

IND

0] = Pr [¢c(z) =

LND

0Jf >

| =

where the expectation is taken over the distributiog.of

Proof: We say that an intervéd, o’] of length8 R or less
is cut by the embedding if there exists some [a, ']
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the probability mass on that maps td) is at Ieast3,
and the probability mass a}]?f that maps t® is at most
. Therefore, with probablhty at Iea%t,

| Pr [¢¢(z) =0] = Pr [¢¢(z) =0]|

J’ND .7:~Df

A%
N | =

The theorem followsl]

4.3 Combining the Embeddings

In this section, we show how to combine the embed-
dings of Section§ 411 aind 4.2 to provide a "dawhich
obeys the guarantees of Theorgln 1. Given parameters
Ry, Ry, andg, we defined; for a coordinatef as fol-
lows.

(I)f(m) = (¢C1 (*Tf)> ceey ¢<q (‘Tf)a wn (xf)7 ceey q/}rq ('x(g;)
Here,(y, ..., (, areqg independentrandom valuesf=

(p, {ek}rez), Wherep is drawn uniformly at random
from the interval0, R:), andgy, for all k, are generated
by independent tosses of an unbiased coip.. .., r,
areq independent random valuesfwherer is drawn

uniformly at random from the intervédd, R, ). Finally,
the embeddin@ is defined as:
O(z)=P1(2) @ ... 0 Dp(2) 4)

The properties of the embeddidgare summarized in
Theorenill. Next, we prove Theoréin 1. We begin with
the following lemma, which demonstrates the properties
of eachdy.



Lemmal0 LetR; > 26R, Ry > 8R, and

q = 4y/nTlognlog T, and suppose we are given sam-
ples from a mixture of product distributions which sat-
isfy conditions (1) and (2). Then, for alland j, the
embeddingd = @ ;P defined in Equatiori]3 satisfies
the following conditions. With probability at least-
over the randomness in the embedding, for each coordi-
nate f,

1. If m(D]) — m(D])| > 8R, then, for some con-
stantcs,
1B, ps[@s(@)] —E, pr[@r(2)]l] 2 csn' /AT
x (lognlog T)'/?

) —m(D])| < 8R, then, for some

(@) ~ B, _ps[@s(@)]l| = con'/*T"/?

m(D!) = m(DY)|
R

x (lognlog T)*/?

Proof: (Of Lemma[10) The first part of the lemma fol-
lows by Theoreni]9, along with an application of the
Chernoff Bounds, followed by a Union Bound over all
i, j, f. The second part follows similarly by an applica-
tion of Theoreni ¥[J

Proof: (Of Theoreni]l) We call a coordinafevery low
for distributions andj if |m(D)—m(D)| < L, low

if 2L < |m(D]) —m(D])| < 8R, andhighotherwise.
LetV; ;, L; ; andH; ; respectively denote the set of very
low, low and high coordinates for distributiod; and
D;. Then,

17 = gl = > Wil = A1+ D A — Al
fEVi feL;
+ > il Al
feH; ;
From Lemm&1l0,this sum is at least

DY —m(D!

iI?
R2

[m(

Z cgn/*TlognlogT
f€L;
+ Z 05n1/2Tlog nlogT
fEH;
which, by the definition of effective distance is at least
dg,(m(Di), m(D;))
RQ
> sevi,(m(Df) —m(D]))?
B R2 )
wherecy is some constant. Now the contribution from
the very low coordinates to the distance betweg; )

andm(D;) is atmost, />, R?/n = R. Since

e 2T lognlogT (
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, this contribution is at mosg the total distance. The
first part of the theorem therefore follows.

For any sample: from any D; in the mixture, and
any k, k’, coordinatesf, k) and (f’, k') of ®(x) are
function ofz/ andz/" respectively. As forf # f/, zf

andz/" are independently distributed, the second part of
the theorem follows

5 Applications: Learning Mixtures

In this section, we show how our embedding in The-
orem[1 can be combined with standard algorithm for
learning mixture models to yield algorithms than can
learn mixtures of heavy-tailed distributions. First, in
Section 5.1, we show how to combine our embedding
with SVD-based algorithms df [KSV05, AM05]; in Sec-
tion[5.2, we show how to combine our embedding with
the more recent algorithm of [CRO8].

5.1 Clusteringusing SVD

In this section, we present Algorithm HT-SVD- a com-
bination of SVD-based algorithms dof [AMD5, KSV05]
with our embedding in Theorel 1. The input to the al-
gorithm is a setS of samples, and the output is a par-
titioning of the samples. The algorithm is described in
Figurel3.

The properties of Algorithm HT-SVD are summa-
rized by Theoreril2, which we prove for the rest of this
section. The two main steps in the proof are as fol-
lows: first, we show that after applying our embedding,
the tranformed distributions have good properties, such
as low directional variance and distance-concentration.
Next, we show that these properties imply that SVD-
based algorithms, such as those of [KSM05, AM05] can
learn these mixtures effectively. The following lemma
shows that the maximum directional variance of the trans-
formed distributions in the mixture is high; this fact is
later used crucially in demonstrating that SVD-based al-
gorithms can effectively cluster the mixture.

Lemmall For anyi, the maximu[n directional vari-
ance of the transformed distributian; is at most
O(n'?TlognlogT).

Proof: Letv be any unit vector in the transformed space.
The variance of the transformed distributidn alongv



HT-SVD(S)

Sinto S, andSp uniformly at random.

3. Let{vi,a,...,vr4} (resp {1;1 By

(resp.v1,B,--.,v7,B)-

after projection.

1. LetR; = 26R, Ry = 8R, andg = 4y/nT lognlog T. ComputeS = {®(z)|z € S}. Partition

2. Construct the x ng matrix S 4 (respectivelyS) in which the entry at row and column’ is
thel’-th coordinate of thé-th sample point irf 4 (S respectively).

,vr.p}) be the topl singular values of 4 (resp.S5).
Project each point iz (resp.S4) on the subspade 4 (resp.Kg) spanned by 4, ...

4. Use a distance-based clustering algorithm a5in [AKO1] to partition the poirts and S

, UT, A

Figure 3: Algorithm Using SVDs

can be written as:

E;.p, (v, —E[7])’]
= Eip D (M) @ - Bl
(£:F)
+2 > wlE L @hh _EEfh)
(CRONCLY
x (@~ Bla )
< E:iwf)i[z (*)? +2 Z ol kLl
(£:F) (£k),(f" k")
x (@ —E[E) - @ - Bl )
< E;z-NDi[Z (v/F)2 42 szf,kvf,k«
(£:F) fokk
x (@ —B[a]) - (@ — Bl )]
<

b DO v R
f ok

As &% is distributed independently af’ "-*" when f +#
f’, in this case,

B p, (2" — B[] - @7 —EE ) =0
The lemma follows af /¥ — E[z/*])| < 1 forany f

andk, and there are at moék(n'/?T log nlog T') coor-
dinates corresponding to a single

Next we show that the transformed distributions also
possess some distance-concentration properties.

Lemma 12 LetH be ad-dimensional subspace of
{0,1}4n**Tlog Tlozn_Then for any,

Pr [||Px(& — Bl@)| < 4n'/*T"2(log nlog T)"/2

x+/dlog(d/d)] >1—§
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Proof: Letq = 4n'/?TlognlogT. Letwvy,...
an orthonormal basis 6f. As
d

> (o, @)

=1

we apply the Method of Bounded Differences to bound
the value of eacl(wl, z).

szfk Fhk

As changing each coordlnate of the original sample point
z will change at mosy coordinates of, ~, the change
in (v, ) when we change a coordinafeof the orig-

inal sample point is at mos(tzkvf’k)Q. Therefore,

Y=247F= Zf(zk *)2_ Sincey, is a unit vector,
~v < g. Thus, for anyl,

Prlo1,3) (o, Bl | > /aToB(@/0)) < &

As ||[Py(z — E[Z])||? = 3, (v, @ — E[#])?, the lemma
follows by applying a Union Bound over each vecter

, Ud be

1P (2)]* =

vla

We are now ready to prove Theoréin 2. The main
toolin our proofis the following lemma, due {0 [AMD5],
which shows that if the separation between the trans-
formed centers is large, then, Step 3 of the algorithm
will find a subspace in which the transformed centers
are far apart.

Lemma 13 Let, for eachi, ¢; 4 be the empirical cen-
ters of D; computed from the points ifl4, and leto be
the maximum directional standard deviation of aby.
Then,

P (cioa = >

> cjall
1/2 +w;1/2)

cj,a)ll llci,a —

—o(w;



Proof: (Of Theoren®) Lety = 4n'/?TlognlogT.
When the distributions in the input mixture obey the
separation conditions of Theordr 2, from Theofdm 1,
for eachi andy, the distance between the transforme
centersi; andji; is at least :

V@) (v/Tlog A + \/Tlog(nT/$))

g We note that the proof of Theorem 1 [n [CRO8] requires
only that for each distribution, the coordinatesfnare
independently distributed from the coordinate§irSince

the distribution of any coordinate i is independent of

“1/2

Qa) - (w; " + w; Tlog(Tn/9))

the distribution inG (although the coordinates withifA

or G are not necessarily independently distributed), we

Since the number of samples is at Iaa(st’—) the
distance between the sample means and actual means
the transformed distributions are at métl). There-
fore, from Theorerii 13,
qT log(Tn/d)

[[Prcy(cia—cja)ll >cs

wherec; 4 andc;, 4 are the empirical centers of the trans-
formed distributions, andg is some constant. AK g
has dimension at mo§t, from Lemma&_IR and a union
bound over all pairs of samples, with probability- 4,

all pairs of samples drawn from a distributi@n have
distance at most

most 2

dic s (fli, fiy)

can apply Theorem 1 i [CR08] to conclude that for each
dfandj, there exists some constansuch that:

%

Qd(fui, i)
a(\/qT log A + /qT log(nT'/3))

V

As K has dimension at mo&f", from LemmdIP
and a union bound, with probability — 4, all pairs of
samples drawn from a distributiaR; have distance at
qTlog(Tn/d) in the subspac&z. On the
other hand, a sample drawn fra) and a sample drawn

from D; are at leasta; — 2)+/2¢T log(Tn/J) apartin

2047 ?(log nlog T)"/*\/2T log(nT/3) Kp. Algorithm HT-CORRELATIONS therefore works.
O
in the subspac& . On the other hand, for some con-
stanta’, a sample drawn fronD; and a sample drawn o
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Abstract

We study the potential benefits to classification pre-
diction that arise from having access to unlabeled
samples. We compare learning in the semi-supervised
model to the standard, supervised PAC (distribu-
tion free) model, considering both the realizable
and the unrealizable (agnostic) settings.

Roughly speaking, our conclusion is that access
to unlabeled samples cannot provide sample size
guarantees that are better than those obtainable with-
out access to unlabeled data, unless one postulates
very strong assumptions about the distribution of
the labels.

In particular, we prove that for basic hypothesis
classes over the real line, if the distribution of un-
labeled data is ‘smooth’, knowledge of that distrib-
ution cannot improve the labeled sample complex-
ity by more than a constant factor (e.g., 2). We
conjecture that a similar phenomena holds for any
hypothesis class and any unlabeled data distribu-
tion. We also discuss the utility of semi-supervised
learning under the common cluster assumption con-
cerning the distribution of labels, and show that
even in the most accommodating cases, where data
is generated by two uni-modal label-homogeneous
distributions, common SSL paradigms may be mis-
leading and may result in poor prediction perfor-
mance.

1 Introduction

While the problem of classification prediction based on la-
beled training samples has received a lot of research atten-
tion and is reasonably well understood, in many practical
learning scenarios, labeled data is hard to come by and un-
labeled data is more readily available. Consequently, users
try to utilize available unlabeled data to assist with the clas-
sification learning process. Learning from both labeled and
unlabeled data is commonly called semi-supervised learning
(SSL). Due to its wide potential applications, this approach
is gaining attention in both the application oriented and the
theoretical machine learning communities.

However, theoretical analysis of semi-supervised learn-
ing has, so far, been scarce and it falls short of providing
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unequivocal explanation of merits of using unlabeled exam-
ples in learning. We take steps toward rectifying this theory-

practice gap by providing formal analysis of some semi-supervised

learning settings. The question we focus on is whether un-
labeled data can be utilized to provably improve the sample
complexity of classification learning.

We investigate what type of assumptions about the data
generating distribution (or which circumstances) are suffi-
cient to make the SSL approach yield better bounds on the
predictions accuracy than fully supervised learning. The bulk
of this paper focuses on showing that without prior knowl-
edge about the distribution of labels, SSL cannot guarantee
any significant advantages in sample complexity (e.g., no
more than a constant factor for learning tasks over the real
line).

we carry our analysis in a simplified, utopian, model of
semi-supervised learning, in which the learning algorithm
has perfect knowledge of the probability distribution of the
unlabeled data. We focus on estimating the labeled sample
complexity of learning. Since our model provides the learner
with more information than just a sample of the unlabeled
data distribution, lower bounds on the labeled sample com-
plexity of learning in our model imply similar lower bounds

for common notions of semi-supervised learning. Upper bounds,

or sample size sufficiency results (for the labeled samples) in
our model, apply to the common SSL setting only once suf-
ficiently large unlabeled samples are available to the learner.
In this paper we mainly discuss lower bounds, and when we
address upper bounds we settle for stating that they apply
eventually as the unlabeled sample sizes grow.

Our model of semi-supervised learning can be viewed as
learning with respect to a fixed distribution, (see Benedek
and Itai [5]). However, our emphasis is different. Our goal
is to compare how the knowledge of the unlabeled distribu-
tion helps, as opposed to learning when the only access to
the underlying unlabeled data distribution is via the training
labeled sample. We call the former setting semi-supervised
and the latter supervised or fully supervised learning.

We present explicit formalization of different ways in
which the merits of the semi-supervised paradigm can be
measured. We then investigate the extent by which SSL can
provide provable advantages over fully supervised learning
with respect to these measures.

Roughly speaking, we conclude that no special unlabeled
data distribution (like, say, one that breaks into clear data
clusters) suffices to render SSL an advantage over fully su-



pervised learning. Unlabeled data can make a difference
only under strong assumptions (or prior knowledge) about
the conditional labeled distribution.

One should note however, that in many cases such knowl-
edge can also be utilized by a fully supervised algorithm.
The search for justification to the SSL paradigm therefore
leaves us with one setting - the cases where there exists prior
knowledge about the relationship between the labels and the
unlabeled data structure (and not just about the labels per se).
However, we show in Section 3 that common applications of
SSL paradigms for utilizing such relationship (like the popu-
lar cluster assumption or the related algorithmic bias towards
class boundaries that pass through low-density data regions)
may lead to poor prediction accuracy, even when the data
does comply with the underlying data model (say, the data
is generated by a mixture of two Gaussian distributions, one
for each label, each generating a homogeneously labeled set
of examples).

The potential merits of SSL, in both settings - either with
or without making assumptions about the labeled distribu-
tion, have been investigated before. Vapnik’s model of trans-
ductive learning [15], as well as Kédridinen’s paper [12] ad-
dress the setting without restrictions on the way labels are
generated while Balcan-Blum’s augmented PAC model for
semi-supervised learning [3, 4] offers a framework for for-
malizing prior knowledge about the relationship between la-
bels and the structure of the unlabeled distribution. We elab-
orate more about these in the next section on related work.
One basic difference between these works and ours is that
they try to provide explanations of the success of the SSL
paradigm while we focus on investigating its inherent limi-
tations.

This paper does not resolve the issue of the utility of un-
labeled data in full generality. Rather, we provide answers
for relatively simple classes of concepts over the real line
(thresholds and unions of d intervals). We believe that these
answers generalize to other classes in an obvious way. We
also pose some conjectures and open questions.

The paper is organized as follows. We start by discussing
previous related work in Section 2. In Section 3 and show
that a commonly held assumption can result in performance
degradation of SSL. We continue on our main path in Sec-
tion 4 where we formally define our model of semi-supervised
learning and introduce notation. Section 5 casts the previous
paradigms in our model and formally poses the question of
the utility of unlabeled data to sample based label predic-
tion. This question guides the rest of the paper. Section 6
analyzes this question for basic learning tasks over the real
line. The section concludes by asking a slightly different
question about the possible meaningful formalizations of the
SSL and supervised learning comparison. We conclude our
paper in section 7 where we also discuss open questions and
directions for further research.

2 Related Work

Analysis of performance guarantees for semi-supervised learn-
ing can be carried out in two main setups. The first fo-
cuses on the unlabeled marginal data distribution and does
not make any prior assumptions about the conditional la-
bel distribution. The second approach focuses on assump-

tions about the conditional labeled distribution, under which
the SSL approach has potentially better label prediction per-
formance than learning based on just labeled samples. The
investigation of the first setup was pioneered by Vapnik in
the late 70s in his model of transductive learning, e.g. [15].
There has been growing interest in this model in the recent
years due to the popularity of using unlabeled data in practi-
cal label prediction tasks. This model assumes that unlabeled
examples are drawn IID from an unknown distribution, and
then the labels of some randomly picked subset of these ex-
amples are revealed to the learner. The goal of the learner is
to label the remaining examples minimizing the error. The
main difference between this model and SSL is that the er-
ror of learner’s hypothesis is judged only with respect to the
known initial sample.

However, there are no known bounds in the transduc-
tive setting that are strictly better than supervised learning
bounds. Vapnik’s bounds [15] are almost identical. El-Yaniv
and Pechyony [10] prove bounds that are similar to the usual
margin bounds using Rademacher complexity, except that
the learner is allowed to decide a posteriori the concept class
given the unlabeled examples. But they do not show whether
it can be advantageous to choose the class in this way. Their
earlier paper [9] gave bounds in terms of a notion of uni-
form stability of the learning algorithm, and in the broader
setting where examples are not assumed to come IID from
an unknown distribution. But again, it’s not clear whether
and when the resulting bounds beat the supervised learning
bounds.

Kadridinen [12] proposes a method for semi-supervised
learning without prior assumption on the conditional label
distributions. The algorithm of Kéiridinen is based on the
observation that one can output the function that minimizes
the unlabeled data weights in the symmetric differences to
all other functions of the version space. This algorithm can
be reduce the error of supervised ERM by a factor of 2. For
more details on these algorithms, see Section 5.

Earlier, Benedek and Itai [5] discuss a model of ”learn-
ing over a fixed distribution”. Such a model can be viewed
as SSL learning, since once the unlabeled data distribution
is fixed, it can be viewed as being known to the learner.
The idea of Benedek and Itai’s algorithm is to construct a
minimum e-cover of the hypothesis space under the pseudo-
metric induced by the data distribution. The learning algo-
rithm they propose is to apply empirical risk minimization
(ERM) on the functions in such a cover. Of course this ¢-
cover algorithm requires knowledge of the unlabeled distrib-
ution, without which the algorithm reduces to ERM over the
original hypothesis class.

The second, certainly more popular, set of semi-supervised
approaches focuses on assumptions about the conditional la-
beled distributions. A recent PAC model of SSL proposed
by Balcan and Blum [3, 4] attempts to formally capture such
assumptions. They propose a notion of a compatibility func-
tion that assigns a higher score to classifiers which “fit nicely”
with respect to the unlabeled distribution. The rationale is
that by narrowing down the set of classifiers to only compat-
ible ones, the capacity of the set of potential classifiers goes
down and the generalization bounds of empirical risk mini-
mization improve. However, since the set of potential classi-



fiers is trimmed down by a compatibility threshold, if the pre-
sumed label-structure relationship fails to hold, the learner
may be left with only poorly performing classifiers. One se-
rious concern about this approach is that it provides no way
of verifying these crucial modeling assumptions. In Sec-
tion 3 we demonstrate that this approach may damage learn-
ing even when the underlying assumptions seem to hold. In
Claim 3 we show that without prior knowledge of such rela-
tionship that the Balcan and Blum approach has poor worst-
case generalization performance.

Common assumptions include the smoothness assump-
tion and the related low density assumption [7] which sug-
gests that the decision boundary should lie in a low density
region. In section 3, we give examples of mixtures of two
Gaussians showing that the low density assumption may be
misleading even under favourable data generation models,
resulting in low density boundary SSL classifiers with larger
error than the outcome of straightforward supervised learn-
ing that ignores the unlabeled data.

Many other assumptions about the labels/unlabeled data
structure relationship have been investigated, most notably
co-training [6] and explicit generative data models [8].

However, all these approaches, are based on very strong
assumptions about the data generating distributions. Assump-
tions that are hard to verify, or to justify on the basis of prior
knowledge of a realistic learner.

3 On SSL and the Cluster Assumption

This paper has several results of the form “as long as one
does not make any assumptions about the behavior of the
labels, SSL cannot help much over algorithms that ignore
the unlabeled data.”

However, two arguments can be raised against such claims.
First, SSL is not really intended to be used without any prior
assumption about the distribution of labels. In fact, SSL can
be viewed as applying some prior knowledge (or just belief)
that the labels are somehow correlated with the unlabeled
structure of the data. Can we say anything (anything nega-
tive, naturally ...) under such an assumption?

Second, maybe using unlabeled data can’t always help
you, but if it can help sometimes why not use it (always)?
Well, can we show that in some cases the use of unlabeled
data can indeed hurt the learner? Of course, nothing of that
kind can apply for all potential learners, since a learner can
choose to ignore the unlabeled data and then of course not get
hurt by “using” it. We are therefore left with asking, “can
the use of unlabeled data hurt the performance of concrete
common SSL paradigms?”

We briefly address these two questions below by demon-
strating that for certain common SSL strategies (“low den-
sity cut” and Balcan-Blum style use of “compatibility thresh-
old”) SSL can sometimes hurt you, even when the (vaguely
stated) “cluster assumption” does hold (when the data breaks

into clear uni-modal distributions, each labeled homogeneously).

We also show a general lower bound on the sample complex-
ity of SSL under a general model of the cluster assumption.
In Figures 1, 2, and 3 we depict three examples of simple
data distributions over the real line. In all of these examples,
the data is generated by a mixture of two uni-modal distrib-
utions, each of these modes generates examples labeled ho-
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mogeneously, each by a different label. However, the min-
imum density point of the unlabeled mixture data is signif-
icantly off the optimal label prediction decision boundary.
Figure 1 shows a mixture of two equal-variance symmetric
Gaussians, Figure 2 is a mixture of different Gaussians and
Figure 3 shows an extreme case of uni-modal density func-
tions for which the error of the minimum density partition
has classification error that is twice that of the optimal deci-
sion boundary.

Note that in all such examples, not only does the minimum-
density bias mislead the learning process, but also, if one
follows the paradigm suggested by Balcan and Blum [4], a
wrong choice of the compatibility threshold level will doom
the learning process to failure (whereas a simple empirical
risk minimization that ignores unlabeled data will succeed
based on a small number of labeled samples).

In [13] Rigollet present a formal model of the clsuter
assumption. Given a probability distribution, D over some
Euclidean data domain, define, for any positive real number,
a, L(a) = z : p(x) > a. The cluster assumption says that
points in each of the connected components of L(a) [after
removal of lines or thin ribbons”] have the same Bayesian
optimum label.

This is a quite strong assumption under which one can
apply an SSL approach. However, in spite of this strong
cluster assumption, we can prove that the ratio between the
sample complexity of SSL and SL is at most d- the Euclidean
dimension of the data.

Namely, on one hand, the results of Section 6, below,

k+1n(1/6)

provide a lower bound of (2 (T) on the sample com-

plexity of SSL learning under this cluster assumption, where
k is the number of connected components of L(a). On the
other hand, a learner that has access to only labeled exam-
ples, can apply the basic ERM algorithm to the class of all k-
cell Voronoi partitions of the space. Since the VC-dimension
of the class of all k-cell Voronoi partitions in R? is of order
kd, the usual VC-bounds on the sample complexity of such

an SL learner is O (W) examples.

4 A No-Prior-Knowledge Model of
Semi-Supervised Learning

We work in the common (agnostic) PAC framework, in which
a learning problem is modeled by a probability distribution
P over X x {0,1} for some domain set, X. Any func-
tion from X to {0,1} is called a hypothesis. Examples are
pairs, (z,y) € X x {0, 1}, and a sample is a finite sequence
S = {(zi,y:) }1>, of examples.

Definition 1 (SL and SSL).

e A supervised learning (SL) algorithm is a function, L :
Umen(X x {0,1})™ — {0,1}*, that mapping sam-
ples to a hypotheses.

o A semi-supervised learning (SSL) algorithm is a func-
tion L : ,,en(X x {0,11)™ x P — {0,1}%, where
P is a set of probability distributions over X. Namely,
an SSL algorithm takes as input not only a finite labeled
sample but also a probability distribution over the do-
main set (and outputs a hypothesis, as before).
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Figure 1: Mixture of two Gaussians N'(0, 1) (labeled ’-") and
N (2,1) (labeled "+°) shows that the optimum threshold is at
x = 1, the densest point of the unlabeled distribution. The
sum of these two Gaussians is unimodal.
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Figure 2: Mixture of two Gaussians N(0, 1) (labeled *-*) and
N (4,2) (labeled *+°) with difference variances. The min-
imum density point of the unlabeled data (the sum of the
two distributions) does not coincide with the optimum label-
separating threshold where the two Gaussians intersect. The
classification error of optimum is ~ 0.17 and that of the min-
imum density partition is ~ 0.21.

P, slope =1 — 5'01'
. 1

1

1

1

’ 1
1

1

1

’
Err(min density) ~ 2Brr(OPT)
I

Py, slope = —1 |

min : density

1
1
1
1
: Err(OPT
1
1
1

Figure 3: The solid line indicates the distribution P; (labeled
’-’) and the dotted line is P, (labeled *+’). The = coordinate
of their intersection is the optimum label prediction bound-
ary. The slope of the solid line is slightly steeper than that
of the dotted line (| — 1| > 1 — ¢). The minimum density
point occurs where the density of P; reaches 0. The error of
the minimum unlabeled density threshold is twice that of the
optimum classifier.
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For a distribution P over X x {0, 1}, let D(P) denote the
marginal distribution over X. That is, formally, for X’ C
X we define D(P)(X’) = P(X’ x {0,1}) (provided that
X' x {0, 1} is P-measurable). For a learning problem P, we
call D(P) the unlabeled distribution of P.

Following the common PAC terminology and notation,
the error of a hypothesis h, with respect to P, is Err® (k)
Pr(, yy~p[h(x) # y]. Similarly, the empirical error, Err®(h),

of a hypothesis h on a sample S is defined as Err®(h) =
1y, .
EHZ : Z6{1727---77%}7 h(xl);«éylﬂ

Definition 2 (The sample complexities (SSL and SL) of a
class). For a class H of hypotheses, the sample com-
plexity of a semi-supervised learning algorithm A with re-
spect to P, confidence § > 0 and accuracy € > 0, is

m(A, H, P,e,6) =min{m € N :
P o Pyt
Sf’lgm[Err (A(S,D(P))) hl/rg{ Err” (') > €] <4} .

The sample complexity of a supervised learning algorithm A
is defined similarly, except that the second input parameter
D(P) is omitted.

We consider two settings, realizable and agnostic. In the
agnostic setting, P can be arbitrary. The realizable setting is
defined by assuming that there exists hypothesis h € H such
that Err”’(h) = 0; consequently infj, ¢ ;7 Err” (h') = 0. In
particular, this implies that for any x € X, the conditional
probabilities, P(y = 0] ) and P(y = 1| z) are always
either 0 or 1; in the agnostic setting the conditionals can be
arbitrary.

Without reference to any learning problem, an unlabeled
distribution D 1is simply any distribution over X. We use
Ext(D) to denote all possible extensions of D, thatis, Ext(D)
is the family of all possible distributions P over X x {0,1}
such that D(P) = D. For an unlabeled distribution D and
hypothesis h, Dj, denotes the probability distribution in Ext (D)
such that Dy (y = h(z) | ) = 1. For a hypothesis h and an
“unlabeled sample” S = {x;}" |, where z; € X, we denote
by (S, h(S)) the sample {(x;, h(x;)) ;.

For a subset T' of some domain set, we use 17" to de-
note its characteristic function. In particular, if 7' C X then
17T is a hypothesis over X. For two hypothesis g, h we use
gAh to denote their “symmetric difference”, that is, gAh is
a hypothesis 1{z € X : g(z) # h(z)}. Finally, VC(H)
denotes the VC-dimension [14] of hypothesis class H.

5 Previous No Prior Knowledge Paradigms

Previous approaches to SSL algorithms for the no prior knowl-
edge paradigm have used the unlabeled sample to figure out
the “geometry” of the hypothesis space with respect to the
unlabeled (marginal) distribution. A common approach is to
use that knowledge to reduce the hypothesis search space. In
doing so, one may improve the generalization upper bounds.
Recall that given an unlabeled distribution D and a hy-
pothesis class H, an e-cover is a subset H' C H such that
for any h € H there exists g € H' such that D(gAh) < e.
Note that if H' is an e-cover for H with respect to D, then
for every extension P € Ext(D) the inf,cp Err”’(g) <

infje g Err? (R) + €.



In some cases the construction of a small e-cover is a ma-
jor use of unlabeled data. Benedek and Itai [5] analyze the
approach, in the case when the unlabeled distribution is fixed
and therefore can thought of as known to the learner. They
show that the smaller an e-cover is the better its generaliza-
tion bound one for the ERM algorithm over this cover.

Balcan and Blum [4] suggest a different way of using
the unlabeled data to reduce the hypothesis space. However,
we claim that without making any prior assumptions about
the relationship between the labeled and unlabeled distribu-
tions, their approach boils down to the e-cover construction
described above.

Claim 3. Let H be any hypotheses class, €,0 > 0, and D
be any unlabeled distribution. Let H' C H be the set of
“compatible hypotheses.” Suppose A is an SSL algorithm
that outputs any hypothesis in H'. If H' does not contain an
e-cover of H with respect to D, the error of the hypothesis
that A outputs is at least € regardless of the size of the labeled
sample.

Proof. Since H' does not contain an e-cover of H, there exist
a hypothesis h € H such that for all g € H', D(gAh) > e.
Thus, for any g € H', Err”" (g) > €. Algorithm A outputs
some g € H' and the proof follows. O

Kédridinen [12] utilizes the unlabeled data in a different
way. Given the labeled data his algorithm constructs the ver-
sion space F' C H of all sample-consistent hypotheses, and
then applies the knowledge of the unlabeled distribution D to
find the “center” of that version space. Namely, a hypothesis
g € F that minimizes maxpep D(gAh).

Clearly, all the above paradigms depend on the knowl-
edge of the unlabeled distribution D. In return, better up-
per bounds on the sample complexity of the respective al-
gorithms (or equivalently on the errors of the hypotheses
produced by such algorithms) can be shown. For exam-
ple, Benedek and Itai give (for the realizable case) an up-
per bound on the sample complexity that depends on the size
of the e-cover—the smaller e-cover, the smaller the upper
bound.

In the next section we analyze the gains that such knowl-
edge of unlabeled data distribution can make in the no prior
knowledge setting. We prove that over the real line for any
“smooth” unlabeled distribution D, ERM over the full hy-
pothesis class H has worst case sample complexity that is
at most by constant factor bigger than the worst case sample
complexity of any SSL algorithm. We conjecture that this a
more general phenomenon.

Conjecture 4. For any hypothesis class H, there exists a con-
stant ¢ > 1 and a supervised algorithm A, such that for
any distribution D over the domain and any semi-supervised
learning algorithm B,

sup m(A, H, Dy, €,6) < c¢- sup m(B, H, Dy, €, )
heH heH

for any € and ¢ small enough, say smaller than 1/c.

Conjecture 5. For any hypothesis class H, there exists a con-
stant ¢ > 1 and a supervised algorithm A, such that for
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any distribution D over the domain and any semi-supervised
learning algorithm B,

sup m(A,H, Ped)<c-
PeExt(D)

sup m(B,H,P,¢,0)
PeExt(D)

for any € and § small enough, say smaller than 1/c.

6 Inherent Limitations of Semi-Supervised
Learning

This section is devoted to proving the inherent limitations of
SSL paradigm in the no prior knowledge model over the real
line. In Section 6.2 we prove Conjecture 4 for thresholds
on the real line in the realizable setting, under the condition
that the unlabeled distribution is absolutely continuous. In
Section 6.3 we prove Conjecture 5 for thresholds and union
of d intervals over the real line in the agnostic setting (under
the same unlabeled distribution condition).

The former follows from Theorems 8 and 10. The latter
follows from Corollary 13 (for thresholds) and from Corol-
lary 16 (for union of d intervals). To prove the results we rely
on a simple “rescaling trick” that we explain in Section 6.1.

We briefly sketch the idea of the proofs. Let us start by
defining the hypothesis classes. The class of thresholds is
defined as H = {1(—o0,t] : ¢t € R} and the class of union
of d intervals

UId:{1[(11,(12)U[ag,a4)U"'U[a2g_1,agg) .
0<d, a1 <ap <---<ag}.

The rescaling trick says that the SSL sample complexity of
learning H (resp. Uly) under any two absolutely continuous
unlabeled distributions is exactly the same. We can thus fo-
cus on the sample complexity of learning under some fixed
absolutely continuous distribution; for concreteness and con-
venience we chose the uniform distribution over (0, 1). By
proving a sample complexity lower bound on the learning
under the uniform distribution over (0, 1), we are effectively
proving a lower bound on the sample complexity of SSL un-
der any absolutely continuous distribution. Through the use
of techniques from the probabilistic method, we obtain lower
bounds on the SSL sample complexity that is within a con-
stant factor of the well-known upper bounds on SL sample
complexity (e.g. VC upper bounds on the sample complexity
of ERM for any unknown distribution).

In Section 6.4 we discuss other possible formulations of
the comparison between SL and SSL algorithms.

6.1 Rescaling Trick

In this section we show that learning any “natural” hypoth-
esis class on the real line has the same sample complexity
for any absolutely continuous unlabeled distribution inde-
pendent of its shape. Intuitively, if we imagine the real axis
made of rubber, then a natural hypothesis class is one that
is closed under rescaling (stretching) of the axis. Classes of
thresholds and union of d intervals are examples of such nat-
ural classes, since under any rescaling an interval remains an
interval. The rescaling will apply also on the unlabeled dis-
tribution over the real line and it will allow us to go from any
absolutely continuous distribution to the uniform distribution
over (0,1).



More formally, a rescaling is a continuous increasing
function f from an open interval I onto an open interval .J.
We denote by H|4 the restriction of a class H to a subset
A, that is, H|4 = {h|a h € H}. We use o to de-
note function composition. We say that a hypothesis class
H over R is closed under rescaling whenever for any rescal-
ing f:I — J,ifhly € H|yj, then h|;0 f € H|;. If
H is any class closed under rescaling, then any rescaling f
induces a bijection h|; — h|; o f between H|; and H|;.
(This follows since f~! is also rescaling.) Clearly, the class
of thresholds and the class of unions of d intervals are closed
under rescaling.

‘We show that the sample complexity is unaffected by the
rescalings provided that the hypothesis class is closed under
rescalings. We split the results into two lemmas—Lemma 6
and Lemma 7. The first lemma shows that if we have a su-
pervised algorithm with certain sample complexity for the
case when the unlabeled distribution is the uniform distribu-
tion over (0, 1), then the algorithm can be translated into an
SSL algorithm with the same sample complexity for the case
when the unlabeled distribution is any absolutely continuous
distribution. The second lemma shows the translation in the
other direction. Namely, that a SSL algorithm with certain
sample complexity on some absolutely continuous unlabeled
distribution can be translated to a supervised algorithm for
the case when unlabeled distribution is uniform over (0, 1).

Lemma 6 (Rescaling trick I). Let H be a hypothesis class
over R closed under rescaling. Let U be the uniform distrib-
ution over (0,1). Let €,6 > 0.

(a) (Realizable case): If A is any supervised or semi-
supervised algorithm, then there exists an semi-supervised
learning algorithm B such that for any distribution D over
an open interval I which is absolutely continuous with re-
spect to Lebesgue measure on [

sup m(B, H, Dy, €,0) < sup m(A, H,Uy,€,0) .
heH geH

ey

(b) (Agnostic case): If A is any supervised or semi-supervised

algorithm, then there exists an semi-supervised learning al-
gorithm B such that for any distribution D over an open in-

terval I which is absolutely continuous with respect to Lebesgue

measure on I

sup m(BaHaPa€76) < sup m(A>H7Q7675) . (2)
PecExt(D) QEExt(U)

Proof. Fix H and A. We construct algorithm B as follows.
The algorithm B has two inputs, a sample S = {(x;, v;) }™,
and a distribution D. Based on D the algorithm computes
the cumulative distribution function F' : I — (0, 1), F(t) =
D(I N (—o0,t]). Then, B computes from S transformed
sample S’ = {(, y;)}™, where z; = F(x;). On a sample
S’ the algorithm B simulates algorithm A and computes h =
A(S"). (If A is semi-supervised we fix its second input to be
U). Finally, B outputs g = h o F.

It remains to show that for any D with continuous cumu-
lative distribution function (1) and (2) holds for any €, > 0.
We prove (2), the other equality is proved similarly.

Let P € Ext(D). Slightly abusing notation, we define
the “image” distribution F'(P) over (0,1) x {0,1} to be

F(P)(M) = P({(z,y) : (F(z),y) € M})
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for any (measurable) M C (0,1) x {0,1}. It is not hard
to see that if S is distributed according to P™, then S’ is
distributed according to (F'(P))™. Clearly, D(F(P)) = U
ie. F(P) € Ext(U). Further note that since D is ab-
solutely continuous, F is a rescaling. Hence Err’ r )(h) =
Errf (h o F) and infre g Errf (h) = infrey Errf ) (p).
Henceforth, for any € and any m € N

[Err” (B(S, D)) — hlg}f{ Err” (h) > €]

[Err? (A(S") o F) — huelg Err”®)(h) > ¢

Pr
S’ ~F(P)™

_ F(P) Ny s F(P)
S/NE(rP)M[Err (A(S") }}g{ Err (h) > €.

Therefore, for any €,§ > 0,

m(B, H, P,e,8) = m(A, H, F(P),e,0)

S Sup m(A7 H7 Q7 6’ 5) *
QEExt(P)

Taking supremum over P € Ext(D) finishes the proof. [J

Lemma 7 (Rescaling trick II). Let H be a hypothesis class
over R closed under rescaling. Let U be the uniform distrib-
ution over (0,1). Let €,6 > 0.

(a) (Realizable case): If B is any supervised or semi-
supervised algorithm and D is any distribution over an open
interval I, which is absolutely continuous with respect to the
Lebesgue measure on I, then there exists a supervised learn-
ing algorithm A such that

sup m(A, H,Uy,€,0) < sup m(B, H, Dy, €,9) .
geH heH

3)

(b) (Agnostic case): If B is any supervised or semi-supervised

algorithm and D is any distribution over an open interval I,
which is absolutely continuous with respect to the Lebesgue
measure on I, then there exists a supervised learning algo-
rithm A such that

sup m(A, H,Q,¢0) < sup m(B, H,P,ed). (4)
QEExt(U) PeExt(D)

Proof. Fix H, B and D. Let F : I — (0,1) be the be
cumulative distribution function of D, thatis, F'(t) = D(IN
(—o0,t)). Since D is absolutely continuous, F is a rescaling
and inverse F'~1 exists.

Now, we construct algorithm A. Algorithm A maps in-
put sample 5' — { (2}, o), to sample S = {(zs, )}
where z; = F~1(x}). On a sample S the algorithm A sim-
ulates algorithm B and computes ¢ = B(S, D). (If B is
supervised, then the second input is omitted.) Finally, A out-
puts h =go F~ L

It remains to show that for any D with continuous cumu-
lative distribution function (3) and (4) holds for any ¢, § > 0.
We prove (4), the other equality is proved similarly.

Let @ € Ext(U). Slightly abusing notation, we define
the “pre-image” distribution £'~1(Q) over I x {0, 1} to be

FHQM) = Q{(F(x),y) « (z,y) € M})

for any (measurable) M C I x {0,1}. It is not hard to
see that if S’ is distributed according to @, then S is distrib-
uted according to (F~1(Q))™. Clearly, D(F~*(U) = D i.e.



F~YQ) € Ext(D). Since F~

Err® (hoF~1)andinfpecpr Eer(h) = inf,cy Err
Henceforth, for any € > 0 and any m € N

1is arescaling, Err’

Pr [Err?(A(S")) — inf Err@(h)]

S/ Qm heH

= Pr [Ex?(B(S,D)oFY) — inf Enrf (@ (p)]
SNF I(Q)m heH

=  Pr_[Exf (@(B(S,D))-inf En" @(p)].
=t f(Q)[ rr (B(S, D))~ inf Err ()]

Therefore, for any €,6 > 0,

m(A, H,Q,¢,6) =m(B,H, F

<

Q). ¢€,9)

sup m(B,H,P,¢,0)
PeExt(D)

Taking supremum over () € Ext(U) finishes the proof. [J

6.2 Sample Complexity of Learning Thresholds in the
Realizable Case

In this section we consider learning the class of thresholds,

= {1(—o0,t] t € R}, on the real line in the real-
izable setting and show that for absolutely continuous unla-
beled distributions SSL has at most factor 2 advantage over
SL in the sample complexity.

First, in Theorem 8, we show M upper bound on the
sample complexity of supervised learning. This seems to be
a folklore result. Second, we consider sample complexity
of semi-supervised learning in the case when D(P) is ab-
solutely continuous with respect to the Lebesgue measure on
R. In Theorems 9 and 10 we show that the sample complex-

ity is between 2072 1 O(L) and 2072 _ O(1).! Ignoring
the lower order terms, we see that the sample complexity of
supervised learning is (asymptotically) at most 2-times larger
than that of semi-supervised learning.

We will make use the following of two algorithms: su-
pervised algorithm L and semi-supervised algorithm B pro-
posed by Kéiridinen [12]. Both algorithms on a sample S =

((z1,92), (v2,92); - - - (Tm, Ym)) first compute
ie{l,2,...,m}, y; =1},
cie{l,2,...,m}, y; =0} .
Algorithm L simply outputs the hypothesis 1(—oo, ¢]. Algo-
rithm B makes use of its second input, distribution D. Pro-

vided that ¢ < r, B computes t” = sup{t’ : D((¢,¢']) <
D((¢,7])/2} and outputs hypothesis 1(—o0, t”].

Theorem 8 (SL upper bound). Let H be the class of thresh-

¢ = max{x;

r = min{z;

olds and L be the supervised learning algorithm defined above.

For any D, for any €,6 > 0, and any “target” h € H,
In(1/4)

-
Proof. Let h = 1(—o0,t) and let s = sup{s : D((s,t]) >
€}. The event Err”"(L(S)) > € occurs precisely when

m(A, H, Dy, €,0) <

!"The 2.01 in the lower bound can be replaced by arbitrary num-
ber strictly greater than 2. This slight imperfection is a consequence
of that the true dependence of the sample complexity on e, in this
case, is of the form 1/1In(1 — 2¢) and not 1/(2¢).

71(Q)(h) —
F’I(Q)(h)'
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the interval (s, t] does not contain any sample points. This
happens with probability (1 — D((s,t]))™ < (1 —¢e)™. If
m > M, then (1 — €)™ < exp(—em) < 0. O

Theorem 9 (SSL upper bound). Let H be the class of thresh-
olds and B be the semi-supervised learning algorithm de-
fined above. For any absolutely contmuous dzstrlbution D

over an open interval, any € € (0,1), § € (0,3), and any
“target” h € H,
In(1/6 In2
m(B, H,Dy,c,0) < 20/0) | 2
2¢ 2¢

Proof. By rescaling trick (Lemma 6 part (a)) we can assume

that D is uniform over (0, 1). Fix € € (0,1), 5 € (0, 1) and
h € H. We show that, for any m > 2,
SPlgm[Eerh (B(S,Dp)) > ¢ <2(1—20)™, (5)
~h
from which the theorem easily follows, since if m > % +

82 ‘thenm > 2 and 2(1 — 26)™ < 2exp(—2me) < 4.

In order to prove (5), let h = 1(—o0,t] be the “tar-
get”. Without loss of generality t € [0,1]. With a little
abuse, we assume that £ € [0,¢] and r € [t,1]. For conve-
nience, we define a : [0,¢] — [t,1], b : [0,¢] — [t,1] as
a(f) = max(2t — ¢ — 2¢,t) and b(¢) = min(2t — £ + 2¢,1)
respectively. It is easily verified that Err?" (B(S, D)) < €
if and only if r € [a(£), b(£)].

We lower bound the probability of success

— Dy, <
P SN}‘)II;?[EI”I“ (B(S,Dp)) <€ .

There are two cases:

Case 1: If t > 2¢, then we integrate over all possible
choices of the rightmost positive example in S (which de-
termines ¢) and leftmost negative example in .S (which de-
termines 7). There are m(m — 1) choices for the rightmost
positive example and leftmost negative example. We have

t rb(0)
mfl)/ / (1—r+0)m™2drdl .
0 Ja(l)

Case 2: If t < 2¢, then we integrate over all possible
choices of the rightmost positive example in S and leftmost
negative example in S. Additionally we also consider sam-
ples without positive examples, and integrate over all possi-
ble choices of the leftmost (negative) example. We have

b(o)
—1// 1—T+€m2drd£
2e
+m/ (1
t

Both cases split into further subcases.
Subcase la: Ift > 2eandt +4e < landt+¢ > 1/2,

p=pL=m

pPZ=p2=m

r)mfl dr



then0 <2t +2¢—1<t—2¢<tand

242e—1  b(£)
p1 =m(m —1[/ / (1—r+0)™m™2drdl

b(L)
/2t+26 1/(4)
b(£)
+/ / (1—r40m2 drdé}
t—2e Ja(
2t+2e—1
m(m —1[/ / (1—r+0™m2drde
2t—0—2¢
t—2€ 2t—L0+2€
s
2t+2e—1 J2t—€—2¢
2t—0+2¢
/ / (1—r+0)m™ 2drd£]
t 25 t

_1—5(1—%—26)

>1-2(1—2)™

Subcase 1b: If t > 2eand t+e < 1/2,then 2t+2e—1 <
0<t—2<tand

t—2e pb(0)
—1[/ / (1—r+0)™m2drdl
b(£)
+/ L
t—2e Ja(l)
t—2 p2t—0+2¢
meol [
2t—f—2e
2t—0+2¢
+/ / (1—r+0m2 drde]
t—2e Jt

=1—(1-29™

1—-r+6m™" 2 drde

1-r+ E)m_z drd/

1
2( 1+ 2t + 6¢)™

1—r4+6m™" erdf}

(L—r+0)™>drde

1
+ (=2t 20"

26)7” .

Subcase Ic: Ift > 2candt +4e > 1,then 0 <t —2¢e <
2t +2e—1<t, and

t—2e pb(L)
1{/ / 1—r+€m2drd€
2t+2e—1  pb(¥)
/ / (1—r4+0)m2drdl
t
b(é)
/t+25 1 /a(f)
t—2e¢
=m(m — 1){/ / (1—r+0)™2drdl
0 2t—0—2e¢
2t+2e—1
T
t—2e¢
t 2t—0+2¢
+ / 1-r+ £)m—2 drdf}
2t42¢—1

1
=1-(1-20" — J(1-2+20)" —
>1-2(1—2)™

21_§(1_
2

(I=r+6m" 2drd4

(1—r4+0)m2drdl

1

1

—(1-2¢)™
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Subcase 2a: Ift < 2eandt+ € > 1/2, thent — 2e <
0<2t+2¢—1<tand

2t+2e—1  1b(f)
p2 = m(m —1) {/ / (1—r+0)™2drdl
0
b(e)
/ / 1—r+€m2drd4
2t+2e—1
2e
+ m/ (1
t
264+2e—1 [yl
m1)U /(1—r+£)m*2drde
0 t
t 2—0+2¢
+ / / (1—7r+6)m2 drdﬁ}
2t+2e—1J¢

FA-t)™—(1-29™

r)m_l dr

3
=1-501-29™ -

>1-2(1—2)™.

Subcase 2b: Ift < 2ecandt+ e < 1/2,thent — 2¢ <0,
2t +2e — 1 < 0and

b(£)
nu [
@)
2e
+ m/ (1

2t—0+2¢
—1// (1—r+ 6™ 2drdl
+(1-)"=-01-20™

1

(I—r+0™m™" 2 drde

)™t dr

3
=1-51-29"
>1-2(1—2)™

- 5(1 — 2t —2¢)™

O

Theorem 10 (SSL lower bound). For any (randomized) semi-
supervised algorithm A, any ¢ € (0,0.001), any § > 0,

any absolutely continuous probability distribution D over an

open interval, there exists h € H, such that

In(1/6) In2

2.01e 2.01e
Proof. By rescaling trick (Lemma 7 part (a)) we can as-
sume that D is uniform over (0,1). Fix A,¢,0. We show
the existence of required h by a probabilistic argument. We
consider picking ¢ uniformly at random from (0, 1) and let
h = 1(—o0, t]. We prove that for any m > 0,

m(A7H7 Dha€75) >

E Pr [Err”"(A(S,Dy)) >

]>1(1
t S~D 6_2

2™ . (6)

The left-hand side can rewritten as

D}L >
B Pr (B (A(S, D)) 2 d

= IE
SND'"

E1{(t,5) :

1{(t,S) : Err”"(A(S,D)) > €}

JE E ErrP" (A((S, h(S)), D)) > €}

E  Pr[Ecr®"(A(h(S), D)) > €

S~Dm ¢



To lower bound the last expression, fix unlabeled points 0 <
1 <29 < --- <z, < 1. For convenience, let zo = 0 and
Tm+1 = 1. We claim that

Pr [Er® (A((S,h(5)). D)) > ¢] >

Z max (241 — x5 — 26,0) . (7)

1=0

To prove that we also fix i € {0,1,2,...,m} and restrict ¢
to lie in the interval (z;, ;11]. The labels in (S, h(S)) are
hence fixed. Hence the hypothesis g = A((S, h(S)), D) is
fixed. It is not hard to see that regardless of g

Ti41
/ 1{t : Err”"(g) > €} dt > max(z;41—2;,—2¢,0) ,

i

which follows from that the set {¢ ErrP" (g) < €} is
contained in an interval of length at most 2¢. Summing over
all 7 we obtain (7).

In order to prove (6) we will compute expectation over
S ~ D™ of both sides of (7). Expectation of the left side of
(7) equals to the left side of (6). The expectation of the right
side of (7) is equal to

Tm+1 Tm Tm—1 T2
Im B m! / / / o /
0 0 0 0

m times

Z max(x;41 — x; — 2¢,0)
i=0

dz; - - -dzy,_odz,y,1dx,, ,

since there are m! equiprobable choices for the order of the
points x1, o, . .., T, among which we choose, without loss
of generality, the one with 1 < 25 < -+ < x,,,. We look at
I,,, as a function of z,,,+1 and we prove that

I (€my1) = (max(zp, 11 — 26,0))™ 1 (8)

forany m > 0 and any z,,+1 € [0, 1]. The bound (6) follows
from (8), since I, = I,,,(1) = (1 — 2¢)™ ! > 1(1 — 2¢)™
for ¢ < 1/4. In turn, (8) follows, by induction on m, from
the recurrence

Tm+41
Im(xm-‘rl) = m/ Im—l(ajm)
0

+max (T, i1 — Tm — 26,0) - 2™ dx,, ,

which is valid for all m > 1. In the base case, m = 0,
Ip(z1) = max(xz; — 2¢,0) trivially follows by definition.
In the inductive case, m > 1, we consider two cases. First
case, 1 < 2€, holds since max(x; 11 — z; — 2¢,0) =0
and hence by definition I,,, (2,,4+1) = 0. In the second case,
Tm+1 > 2€, from the recurrence and the induction hypothe-

sis we have

Tm41
I (1) = m/ (max(z,, — 2¢,0))™
0

+ max(Tm41 — T — 2€,0) - xm_l dz,,
Tm+1
=m (m — 26)™ dayy,
2e

xm+1726
+ m/ (Tt — T — 2€)™ 1 day,
0

m
= o1 @ = 20"
oy e =297
= (l‘m+1 — 2€)m+1 .
. In(1/5)
To finish the proof of the theorem, suppose m < 55522 —

522 Then (1 — 2€)™ > 4, since

In (;(1 - 26)"1) =

—In2+mln(l —2¢) > —In2 —m(2.0l¢) > Ind,

where we have used that In(1 — 2¢) > —2.01¢ for any € €
(0,0.001). Therefore from (6), for at least one target h =
1(—o0, t], with probability greater than J, algorithm A fails
to output a hypothesis with error less than e. O
Remark. The 13(3{ i) — O(%) lower bound applies to super-
vised learning as well. However, we do not know of any su-
pervised algorithm (deterministic or randomized) that has as-
ymptotic sample complexity CM for any constant ¢ < 1.
For example, the randomized algorithm that outputs with
probability 1/2 the hypothesis 1(—o0, ¢] and with probabil-
ity 1/2 the hypothesis 1(—oo, r) still cannot achieve the SSL
sample complexity. We conjecture that all supervised algo-
rithms for learning thresholds on real line in the realizable
In(1/8)

setting have asymptotic sample complexity at least ———.

6.3 Sample Complexity in Agnostic Case

In this section, we show that even in the agnostic setting SSL
does not have more than constant factor improvement over
SL. We prove some lower bounds for some classes over the
real line. We introduce the notion of a b-shatterable distri-
bution, which intuitively, are distributions where there are b
“clusters” that can be shattered by the concept class. The
main lower bound of this section are for such distributions
(see Theorem 15). We show how this lower bound results
in tight sample complexity bounds for two concrete prob-
lems. The first is learning thresholds on the real line where
we show a bound of ©(In(1/5)/€?). Then we show sample

complexity of © (%}1/‘5)) for the union of d intervals on

the real line.

The sample complexity of the union of d intervals for a
fixed distribution in a noisy setting has also been investigated
by Gentile and Helmbold [11]. They show a lower bound
of 2 (2dlog % /(A(1 —2n)?)) where A is the distance to
the target that the learning algorithm should guarantee with



high probability, and 7 is the probability of a wrong label ap-
pearing (see classification noise model of [1]). This notation
implies that the difference in true error of target and the algo-
rithm’s output is e = (1—2n)A. Settingn = 1/2—¢/4 gives
Q(2d/€?). We note that we do not make the assumption of a
constant level of noise for each unlabeled example. It turns
out, however, that in our proofs we do construct worst case
distributions that have a constant noise rate that is slightly
below 1/2.

We point out two main differences between our results
and that of Gentile and Helmbold. The first being that we
explicitly construct noisy distributions to obtain € in the
denominator. The second difference is that our technique
appears to be quite different from theirs, which uses an in-
formation theory approach, whereas we make use of known
techniques based on lower bounding how well one can dis-
tinguish similar noisy distributions, and then applying an av-
eraging argument. The main tools used in this section come
from Anthony and Bartlett [2, Chapter 5].

We first cite a result on how many examples are needed to
distinguish two similar, Bernoulli distributions in Lemma 11.
Then in Lemma 12 we prove an analogue of this for arbitrary
unlabeled distributions. The latter result is used to give us a
lower bound in Theorem 15 for b-shatterable distributions
(see Definition 14). Corollary 13 and 16 gives us tight sam-
ple complexity bounds for thresholds and union of intervals
on R.

Lemma 11 (Anthony and Bartlett [2]). Suppose that P is
a random variable uniformly distributed on { P, P»} where
Py, Py are Bernoulli distributions over {0, 1} with Py(1)
1/2 — v and Py(1) = 1/2 + v for 0 < v < 1/2. Suppose
that &1, . .., &m are IID {0, 1} valued random variables with
Pr(¢; = 1) = P(1) for each i. Let f be a function from
{0,1}™ — {Py, P>}. Then

1 —4mry?
> 1 (1—\/1—exp<1_472>>

=: F(m,7).

E Pr [f(§)# P

P¢npm

One can view the lemma this way: if one randomly picks
two weighted coins with similar biases, then there’s a lower
bound on the confidence with which one can accurately pre-
dict the coin that was picked.

The next result is similar except an unlabeled distribution
D is fixed, and the distributions we want to distinguish will
be extensions of D.

Lemma 12. Fix any X, H, D over X, and m > 0. Sup-
pose there exists h,g € H with D(hAg) > 0. Let P,
and P, be the extension of D such that P, ((x, h(z))|z)
P,((z,9(x))|x) = 1/2+~. Let Ap : (hAgx{0,1})™ — H
be any function. Then for any 1, ..., T, € hAg, there ex-
ists P € { Py, Py} such that if y; ~ Py, for all i,

l;r[ErrP(AD((xl, Y1)s- s (TmyYm))) — OPTp
> yD(hAg)] > F(m,7) .

Where P, is the conditional distribution of P given x, and
OPTp = 1/2 — ~. Thus if the probability of failure is at
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most §, we require

> L 1)1 1
m — = n—.
—\4ry? 86
Proof. Suppose for a contradiction this is not true. Let P =
{P), P;}. Then there exists an Ap and z1, . .., &, such that

)

VP e P, Pr[ErrP(AD((xl, Y1)s- s (TmyYm)))—OPTp
Yi

> vD(hAg)] < F(m,v). (10)

Then we will show that the lower bound in Lemma 11 can
be violated. Now hAg can be partitioned into Ag = {z :
h(z) = 0} and Ay = {z : h(z) = 1}. Without loss of gen-
erality assume {z1,...,2;} C Ag and {zj41,...,2m} C
Ay Let A= Ap((z1,y1),- -5 (Tm, Ym))-

From the triangle inequality D(AAR) + D(AAg) >

D(hAg). Thusif Aiscloserto hthen D(AAg) > D(hAg)/2
and vice versa. Let P be a random variable uniformly dis-

tributed on P. We have Pr(y; = 1) =--- =Pr(y; = 1) =
Pao(1) = Pr(yip1 = 0) = --- = Pr(ym = 0) = Pa, (0).
Let &1,...,6n ~ Pa, sothat Pr(§; = 1) = 1/2 — v

when P = P, and equal to 1/2 + v when P = P,. Let us
define the function f : {0,1}™ — P as follows. It will take
as input &y, . . . , &, then transform this to an input of Ap as
I= (xlaé-l)v sy (xhgl)a (xl+17 1_§l+1)7 vy (.’L’m, 1_§m)
so that &; and 1 — ¢; is from the same distribution as y; and
y;, respectively, for ¢ <1, j > [. Now define

[P i D(Ap(I)AR) < D(Ap(1)Ag)
UG {Pg otherwise '
We have

B Br 1) £ )

<EPr [D(Ap(I)AOPTp) > D(hAg)/2]
<EPr [Err”(Ap(I)) — OPTp > yD(hAg)]
< F(m,7)

where the last inequality follows from (10). This is a con-
tradiction, so the lower bound from Lemma 11 must apply.
If the probability of failure F'(m, ) is at most §, solving the
inequality for m gives (9). O

Corollary 13. The SSL sample complexity of learning thresh-
olds over the uniform distribution over (0,1) is ©(In(1/5)/€?).

Proof. Upper bound comes from any ERM algorithm. Let
h = 1(—00,0] and ¢ = 1(—00,1] so D(hAg) = 1. Set
v = € as in Lemma 12. O

Definition 14. The triple (X, H, D) is b-shatterable if there

exists disjoint sets C1,Csy,...,Cy with D(C;) = 1/b for
each i, and for each S C {1,2,...,b}, there exists h € H

such that
b
hN (Ucy) =
i=1 i



Theorem 15. If (X, H, D) is b-shatterable and H contains
h, g with D(hAg) = 1 then a lower bound on the SSL sam-
ple complexity for 0 < €,0 < 1/64 is

b+ln%
Q( e )

Proof. The proof is similar to Theorem 5.2 in Anthony and
Bartlett [2]. Let G = {hq, ha, ..., hos } be the class of func-
tions that b-shatters D with respect to C' = {Cy,...,Cy}.
We construct noisy extensions of D, P = {Py, Py, ..., Py}
so that for each i, P;((x, hi(x))) (1 + 27v)/(2b). For
any h € H let snap(h) = argmin,, g D(RARL’). Suppose
P € P, let h* denote the optimal classifier which is some
g € G depending on the choice of P. If i # j and N (h;, h;)
is the number of sets in C' where h; and h; disagree, then
D(h;Ahj) > N(h;, h;)/b, and since G is a 1/b-packing,

%N(snap(h), h*)

= % (Err” (snap(h)) + Err” (h*)) .

Err” (h) > Err? (R*) +

1

Modifying the proof of Anthony and Bartlett with the use of
Lemma 12 rather than Lemma 11 we get that there exists a
P € P such that whenever m < b/(320¢?),

sfzgm [Errp(snap(A(D,S))) — Err?(h*) > 2¢| > 6.

Whenever A fails, we get from (11)
Err” (A(D, S)) — Err”’ (h*)

> % (Errp(snap(h)) + ErrP(h*)) >e.

To get Q(In(1/6)/€?), apply Lemma 12 with hand g. [0

We will now apply the above theorem to give the sample
complexity for learning union of intervals on the real line.
Recall that by the rescaling trick, we only need to consider
the sample complexity with respect to the uniform distribu-
tion on (0, 1).

Corollary 16. The SSL sample complexity for learning the
class of union of at most d intervals UI; = {[a1,a2)U---U
lagi—1,a91) : 1 <d,0 <a; <ag <--- < ay < 1} over
uniform distribution on (0, 1) is

2d+ln%
@(62 )

Proof. We have VC(UI,;) = 2d, thus the upper bound fol-
lows immediately. Construct 2d-shatterable sets by letting
C; = [(i —1)/2d,i/2d) for i = 1,...,2d. For any S C
{1,...,2d} define hs = J;cgCi- Now if |S| < d then
clearly hg € Uly, if | S| > d then hg € Ul since |S| < d.
But then [0, 1)\ g can be covered by at most d intervals, so
hs € Uly. Thus the set {hg : S C {1,...,2d}} 2d-shatters
D on [0,1]. Also let h = [0,0) = 0 and g = [0,1). Now
apply Theorem 15 for the bound. O
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6.4 No Optimal Semi-Supervised Algorithm

One could imagine a different formulation of the compar-
ison between SL and SSL paradigms. For example, one
might ask naively whether, for given class H, there is a semi-
supervised algorithm A, such that for any supervised algo-
rithm B, and any ¢, §, on any probability distribution P the
sample complexity of A is no higher than the sample com-
plexity of B. The answer to the question is easily seen to be
negative, because for any P there exists a supervised learn-
ing algorithm Bp that ignores the labeled examples and sim-
ply outputs hypothesis € H with minimum error Err” (h)
(or even Bayes optimal classifier for P). On P the sample
complexity of Bp is zero, unfortunately, on P’, sufficiently
different from P, the sample complexity of Bp is infinite.

One might disregard algorithms such as Bp and ask the
same question as above, except that one quantifies over only
the subset of algorithms that on any distribution over X x
{0, 1} have sample complexity that is polynomial in 1/e and
In(1/4). Such algorithms are often called PAC (Probably
Approximately Correct). The following theorem demonstrates
that such restriction does not help and the answer to the ques-
tion is still negative.

Theorem 17. Let H = {1(—o0,t] : t € R} be the class of
thresholds over the real line. For any absolutely continuous
distribution D (with respect to Lebesgue measure on R), any
semi-supervised algorithm A, any ¢ > 0 and § € (0, 3),
there exists a distribution P € Ext(D) and a supervised
PAC learning algorithm B such that

m(A, H, P,e,0) > m(B, H, P,e,d) .
Proof. Fix any A, D and m. Let L be the algorithm that
chooses the left most empirical error minimizer, that is, on a
sample S, L outputs 1(—o0, £], where

—; . S _ — Syt
¢ = inf {tGR ¢ Err’ (1(—o0,t]) g/nel%Err (h)} .

For any h € H we also define algorithm L, which outputs h
if Err®(h) = 0, and otherwise L, outputs L(S). First, note
that L = Lqy. Second, for any h, L;, outputs a hypothesis
that minimizes empirical error, and since VC(H) = 1, itisa
PAC algorithm. Third, clearly the sample complexity of Lj
on Dy, is zero (regardless of € and 6).

Theorem 10 shows that there exists h € H such that
the sample complexity of A on Dy, is positive, in fact, it is
increasing as € and § approach zero. Thus there exists super-
vised algorithm B = Lj with lower sample complexity than
A. O

7 Conclusion

We provide a formal analysis of the sample complexity of
semi-supervised learning compared to that of learning from
labeled data only. We focus on bounds that do not depend on
assumptions concerning the relationship between the labels
and unlabeled data distribution.

Our main conclusion is that in such a setting semi-supervised
learning has limited advantage. Formally, we show that for
basic concept classes over the real line this advantage is never
more than a constant factor of the sample size. We believe
that this phenomena applies much more widely.



We also briefly address the error bounds under common
assumptions on the relationship between unlabeled data and
the labels. We demonstrate that even when such assumptions
apply common SSL paradigms may be inferior to standard
empirical risk minimization. We conclude that prior beliefs
like the cluster assumption should be formulated more pre-
cisely to reflect the known practical merits of SSL. This dis-
cussion highlights a dire deficiency in current approach to
semi-supervised learning; common assumptions about these

labels-unlabeled structure relationships do not offer any method

for reliably checking if they hold (in any given learning prob-
lem).

The paper calls attention to, and formalizes, some natural
fundamental questions about the theory-practice gap con-
cerning semi-supervised learning. The major open question
we raise is whether any semi-supervised learning algorithm
can achieve sample size guarantees that are unattainable with-
out access to unlabeled data. This is formalized in Conjec-
tures 5 and 4.
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Abstract In particular, the most concrete noteworthy positive result
for when active learning helps is that of learning homo-
We describe and explore a new perspective onthe ~ geneous (i.e., through the origin) linear separators, when
sample complexity of active learning. In many sit- the data is linearly separable and distributed uniformly over
uations where it was generally believed that ac- the unit sphere, and this example has been ex_tt_answely an-
tive learning does not help, we show that active alyzed [8, 2, 10, 4, 9]. However, few other positive results
|earning does he|p in the limit, often with expo- are knOWn, and there are SImple (almOSt trIVIaI) examples,
nential improvements in Samp|e Comp|exity_ This such as |eal’nlng |nFerValS -Or -non.'homogeneous-“near Sepa-
contrasts with the traditional analysis of active rators under the unn‘orr_r! dlstrlbut_|0n_, where previous analy-
learning problems such as non-homogeneous lin- ses of sample complexities have indicated that perhaps active
ear separators or depth-limited decision trees, in learning does not help at all [8]. _ _
which Q(1/€) lower bounds are common. Such ~n th|§ work, we ap_proach the anaIyS|s_ _of active Iea.rn—
lower bounds should be interpreted carefully; in- ing algorithms from a different angle. Specifically, we point
deed, we prove that it is always possible to learn an out that traditional analyses have studied the number of label
e-good classifier with a number of samples asymp- requests required before an algorithm can both produee an
totically smaller than this. These new insights arise good classifieandprove that the classifier’s error is no more
from a subtle variation on the traditional definition thane. These studies have turned up simple examples where
of Samp|e Comp]exity, not previous|y recognized this number is no smaller than the number of random labeled
in the active learning literature. examples required for passive learning. This is the case for

learning certain nonhomogeneous linear separators and in-

tervals on the real line, and generally seems to be a common
1 Introduction problem for many learning scenarios. As such, it has led

some to conclude that active learnidges not helor most
Machine learning research has often focused on the problemlearning problems. One of the goals of our present analysis
of learning a classifier from labeled examples sampled inde-is to dispel this misconception. Specifically, we study the
pendent from the particular learning algorithm that is used. number of labels an algorithm needs to request before it can
However, for many contemporary practical problems such produce are-good classifier, even if there is no accessible
as classifying web pages or detecting spam, there is oftenconfidence bound available to verify the quality of the clas-
an abundance afnlabeleddata available, from which arel-  sifier. With this type of analysis, we prove that active learn-
atively small subset is selected to be labeled and used foring can essentially always achieve asymptotically superior
learning. In such scenarios, the question arises of how tosample complexity compared to passive learning when the
select that subset of examples to be labeled. VC dimension is finite. Furthermore, we find that for most

One possibility, which has recently been generating sub- natural learning problems, including the negative examples

stantial interest, i@ctive learning In active learning, the  given in the previous literature, active learning can achieve
learning algorithm itself is allowed to select the subset of un- exponentidl improvements over passive learning with re-
labeled examples to be labeled. It does this sequentially (i.e.,spect to dependence en This situation is characterized in
interactively), using the requested label information from Figure 1.1.
previously selected examples to inform its decision of which
example to select next. The hope is that by only requestingl.1 A Simple Example: Unions of Intervals

the labels of informative examples, the algorithm can learn 14 get some intuition about when these types of sample com-
a good classifier using significantly fewer labels than would pjexity are different, consider the following example. Sup-

be required if the labeled set were sampled at random. pose thatC is the class of all intervals ovéd, 1] and D is
A number of active learning analyses have recently been

proposed in a PAC-style setting, both for the realizable and 1w slightly abuse the term “exponential” throughout the paper.
for the agnostic cases, resulting in a sequence of importantin particular, we refer to anyolylog(1/€) as being an exponential
positive and negative results [6, 7, 8, 2, 10, 4, 9, 13, 12]. improvement ovet /e.
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butions are as follows:

Best accessible confiden

bound on the error o We distinguish between two different variations on the
/ definition of sample complexity. The traditional defi-
True errorrate of nition, which we refer to aserifiable sample complex-

the leames hypothesis ity, focuses on the number of label requests needed to

obtain a confidence bound indicating an algorithm has
achieved at most error. The newer definition, which
we refer to simply asample complexityocuses on the
number of label requests before an algorithm actually

. . labels achieves at mosterror. We point out that the latter is
v polylog(1/e) 1/e often significantly smaller than the former, in contrast
to passive learning where they are often equivalent up
Figure 1.1: Active learning can often achieve exponential to constants for most nontrivial learning problems.

improvements, though in many cases the amount of improve-

ment cannot be detected from information available to the e We prove thaanydistribution and finite VC dimension

learning algorithm. Here may be a target-dependent con- concept class has active learning sample complexity

stant. asymptotically smaller than the sample complexity of
passive learning for nontrivial targets. A simple corol-

. . o lary of this is that finite VC dimension implieg(1/¢)
a uniform distribution over0, 1]. If the target function is active learning sample complexity.

the empty interval, then for any sufficiently smaliin order
to verify with high confidence that this (or any) interval has e We show itis possible to actively learn with arponen-
error < ¢, we need to request labels in at least a constant tial rate a variety of concept classes and distributions,

fraction of theQ(1/e) intervals|0, €], [, 2¢], . . ., requiring many of which are known to require a linear rate in the
Q(1/e) total label requests. traditional analysis of active learning: for example, in-
However, no matter what the target function is, we can tervals on0, 1] and non-homogeneous linear separators
findane-good classifier with only a logarithmic sample com- under the uniform distribution.
plexity via the following extremely simple 2-phase learning
algorithm. We start with a largéX(1/¢)) set of unlabeled ex- e We show that even in this new perspective, there do
amples. In the first phase, on each round we choose a point ~ exist lower bounds; it is possible to exhibit somewhat
2 uniformly at random from the unlabeled sample and query contrived distributions where exponential rates are not
its label. We repeat this until we observe the firdtlabel, at achievable even for some simple concept spaces (see
which point we enter the second phase. In the second phase, = Theorem 12). The learning problems for which these
we alternate between running one binary search on the ex-  lower bounds hold are much more intricate than the
amples betweefi and thatz and a second on the examples lower bounds from the traditional analysis, and intu-
between that: and1 to approximate the end-points of the itively seem to represent the core of what makes a hard
interval. At the end, we output a smallest interval consistent active learning problem.

with the observed positive labels.

If the targeth* labels every point as-1 (the so-called 2 Background and Notation
all-negativefunction), the algorithm described above would
output a hypothesis with error even aftep label requests.  Let X’ be an instance space apd= {—1,1} be the set of
On the other hand, if the target is an inter{@lb] C [0, 1], possible labels. Let’ be the hypothesis class, a set of mea-
whereb — a = w > 0, then after roughlyO(1/w) queries surable functions mapping frodi to ), and assume that
(a constant number that depends only on the target), a posihas VC dimensionl. We consider here the realizable set-
tive example will be found. Since onty(log(1/¢)) queries  ting in which it is assumed that the instances are labeled by
are required to run the binary search to reach errore;ates a target functiorh* in the classC'. Theerror rate of a hy-
sample complexity is at worst logarithmic ife. Thus, we pothesish with respect to a distributiof overX is defined
see a sharp distinction between the sample complexity re-aser(h) = Pp(h(z) # h*(x)).
quired tofind a good classifier (logarithmic) and the sample We assume the existence of an infinite sequence
complexity needed to both find a good classifiad verify x1,T2,... of examples sampled i.i.d. accordingfo The
that it is good. learning algorithm may access any finite initial segment

This example is particularly simple, since there is effec- =1, %2, ..., 7. Essentially, this means we allow the algo-
tively only one“hard” target function (the all-negative tar- rithm access to an arbitrarily large, but finite, sequence of
get). However, most of the spaces we study are significantly random unlabeled examples. In active learning, the algo-
more complex than this, and there are generally many targetdithm can select any examplig, and request the labgf (x;)
for which it is difficult to achieve good verifiable complexity. that the target assigns to that example, observing the labels

of all previous requests before selecting the next example to

Our Results: We show that in many situations where it query. The goalis to find a hypothegisvith small error with
was previously believed that active learning cannot help, ac- respect taD, while simultaneously minimizing the number
tive learning does help in the limit. Our main specific contri- of label requests that the learning algorithm makes.
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2.1 Two Definitions of Sample Complexity
The following definitions present a subtle but significant dis-

tinction we refer to throughout the paper. Several of the re-

sults that follow highlight situations where these two defini-
tions of sample complexity can have dramatically different
dependence on

Definition 1 A function S(e, d, h*) is a verifiable sample
complexityfor a pair (C, D) if there exists an active learn-
ing algorithm A(t, §) that outputs both a classifiér, anda

easy to obtain for any learning problem, by requesting the
labels of random examples. As such, there has been much
interest in determining when it is possible to achieve verifi-
able sample complexitgmallerthan this, and in particular,
when the verifiable sample complexity is a polylogarithmic
function of1/e (representing exponential improvements over
passive learning).

One of the earliest active learning algorithms in this
model is the selective sampling algorithm of Cohn, Atlas,
and Ladner [6], henceforth referred to as CAL. This algo-

rithm keeps track of two spaces—the curreatsion space
C;, defined as the set of hypothesegiitonsistent with all
labels revealed so far, and the curresgion of uncertainty
R, = {ZZT € X : dhy,he € C; st hl(x) 75 hg(x)} In
each round, the algorithm picks a random unlabeled exam-
ple fromR; and requests its label, eliminating all hypotheses
in C; inconsistent with the received label to make the next
version spac€’;, ;. The algorithm then defineR;,; as the
region of uncertainty for the new version spaCg.; and
continues. lIts final hypothesis can then be taken arbitrarily
from Cy, the final version space, and we use the diameter of
C, for theé¢, error bound.

While there are a small number of cases in which this

Note that both types of sample complexity can be target- algorithm and others have been shown to achieve exponen-
dependent and distribution-dependent. The only distinction tja| improvements in the verifiable sample complexity for all
is whether or not there is an accessible guarantee on the errofargets (most notably, the case of homogeneous linear sepa-
of the chosen hypothesis that is also at mosThis confi- ~  rators under the uniform distribution), there exist extremely
dence bound can only depend on quantities accessible to th&imple concept classes for whi€h(1/¢) labels are needed
learning algorithm, such as theequested labels. Thus, any  for some targets. For example, consider the class of intervals
verifiable sample complexity function is also a sample com- in [0, 1] under the uniform distribution. In order to distin-
plexity function, but we study a variety of cases where the guish the all-negative target from the set of hypotheses that
reverse is not true. In situations where there are sample comagre positive on a region of weightand make a high proba-
plexity functions significantly smaller than any achievable bility guarantee2(1/¢) labeled examples are needed [8].
verifiable sample complexities, we sometimes refer to the Recently, there have been a few quantities proposed to
smaller quantity as thieue sample complexity distinguish  measure the verifiable sample complexity of active learning
it from the verifiable sample complexity. on any given concept class and distribution. Dasgupfais

A common alternative formulation of verifiable sample  ting index[8], which is dependent on the concept class, data
complexity is to letd takee as an argument and allow itto  distribution, target function, and a parameterquantifies
choose online how many label requests it needs in order tohow easy it is to make progress toward reducing the diam-
guarantee error at most[8]. This alternative definition is eter of the version space by Choosing an examp|e to query.
essentially equivalent (either definition can be reduced to the Another quantity to which we will frequently refer is Han-

other without significant loss), as the algorithm must be able neke’sdisagreement coefficiefit2], defined as follows.
to produce a confidence bound of size at nash the error

of its hypothesis in order to decide when to stop requesting Definition 3 Foranyh € C andr > 0, let B(h, r) be a ball
labels anyway. of radiusr aroundh in C. That s,

B(h,7) ={h € C :Pp(h(z) # 1 (z)) <r}.
For any hypothesis class', define theregion of disagree-

valueé; € R after making at mostlabel requests, such that
for any target functioh* € C.e € (0,1/2),§ € (0,1/4),
foranyt > S(e, 6, h*),

Ppler(hy) <& <e)>1-—4.

Definition 2 A functionS(e, 4, h*) is a sample complexity
for a pair (C, D) if there exists an active learning algorithm
A(t,0) that outputs a classifieh; after making at most
label requests, such that for any target functiohe C, e €
(0,1/2),0 € (0,1/4), for anyt > S(e, d, h*),

Pp(er(hy) <e)>1-0.

2.2 The Verifiable Sample Complexity

To date, there has been a significant amount of work study-r.nentas
ing the verifiable sample complexity (though typically un-
der the aforementioned alternative formulation). Itis clear ~ PIS(C) ={z € X' : 3hy, hy € C': ha(x) # ha(2)} .
from standard results in passive learning that verifiable sam- Additionally, letC' denote any countable dense subsef' of
ple complexities of) ((d/e€)log(1/€) + (1/¢)log(1/6)) are For our purposes, thdisagreement coefficient of a hypothe-
e _ _ sish, denoted},, is defined as

There is some question as to what the “right” formal model _
of active learning is in general. For instance, we could instead let P(DIS(B(h,1)))
A generate an infinite sequence /of hypotheses (ofh, é) in >0 r ’
the verifiable case), where: can depend only on the firstlabel -
requests made by the algorithm along with some initial segment  3That is, C' is countable an&/h € C,Ve > 0,3h' € C :
of unlabeled examples (as in [5]), representing the case where weP(h(X) # h'(X)) < e. Such a subset exists, for example, in
are not sure a-priori of when we will stop the algorithm. However, any C' with finite VC dimension. We introduce this countable
for our present purposes, such alternative models are equivalent indense subset to avoid certain degenerate behaviors, such as when
sample complexity up to constants. DIS(B(h,0)) = X.

0, = sup
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The disagreement coefficient focancept spacé€’ is de-
fined as) = sup,,cc On-

The disagreement coefficient is often a useful quan-
tity for analyzing the verifiable sample complexity of ac-
tive learning algorithms. For example, it has been shown
that the algorithm of Cohn, Atlas, and Ladner described
above achieves a verifiable sample complexity at réipst -
polylog(1/(ed)) when run with concept class for target
functionh* € C [12]. We will see that both the disagree-
ment coefficient and splitting index are also useful quantities
for analyzing true sample complexities, though their use in
that case is less direct.

2.3 The True Sample Complexity

Theorem 6 SupposeC' has finite VC dimension, and let
D be any distribution onX. For any passive learning
sample complexitys, (e, d, h) for (C, D), there exists an
active learning algorithm achieving a sample complexity
Sa(e,6,h) such that, for all targetsh € C for which
Sp(e,6,h) =w(1),*

Sa(€,8,h) = 0(Sp(€/4,6,h)).
In particular, this implies the following simple corollary.

Corollary 7 For any C' with finite VC dimension, and any
distribution D over X, there is an active learning algorithm
that achieves a sample complexitye, J, i) such that

S(e,d,h) =o0(1/e)

This paper focuses on situations where true sample complex-

ities are significantly smaller than verifiable sample com-
plexities. In particular, we show that many common pairs
(C, D) have sample complexity that is polylogarithmic in
both 1/e and 1/§ and linear only in some finite target-
dependent constany,-. This contrasts sharply with the infa-
mousl/e lower bounds mentioned above, which have been
identified for verifiable sample complexity. The implication
is that, for any fixed target*, such lower bounds vanish as
e approache$. This also contrasts with passive learning,
wherel /e lower bounds are typically unavoidable [1].

Definition 4 We say tha{C, D) is actively learnable at an
exponential rate if there exists an active learning algorithm
achieving sample complexity

S(€,0,h")="n~ - polylog (1/(€d))
for some finitey,- = v(h*, D) independent of andJ.

3 Strict Improvements of Active Over Passive

In this section, we describe conditions under which active
learning can achieve a sample complexity asymptotically su-
perior to passive learning. The results are surprisingly gen-
eral, indicating that whenever the VC dimension is finite,
essentiallyany passive learning algorithm is asymptotically
dominatedoy an active learning algorithm @il targets.

Definition 5 A function S(e, 6, h*) is a passive learning
sample complexity for a paiiC, D) if there exists an algo-
rithm  A(((x1, h*(x1)), (x2, h*(x2)), ..., (xt, h*(x1))),0)
that outputs a classifieli;, such that for any target function
h* e C,e € (0,1/2),6 € (0,1/4), for anyt > S(e, d, h*),

Pp(er(hy) <€) >1-0.

Thus, a passive learning sample complexity corresponds
to a restriction of an active learning sample complexity to
algorithms that specifically request the fitslabels in the
sequence and ignore the rest. In particular, it is known tha
for any finite VC dimension class, there is alwayafl /¢)
passive learning sample complexity [14]. Furthermore, this
is often tight (though not always), in the sense that for an
passive algorithm, there exist targets for which the corre-
sponding passive learning sample complexit@id /¢) [1].

The following theorem states that for any passive learning
sample complexity, there exists an achievable active learn-
ing sample complexity with a strictly slower asymptotic rate
of growth. Its proof is included in Appendix D.

t
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for all targetsh € C.

Proof: Let d be the VC dimension of”. The passive
learning algorithm of Haussler, Littlestone & Warmuth [14]
is known to achieve a sample complexity no more than
(kd/€)log(1/6), for some universal constaht< 200 [14].
Applying Theorem 6 now implies the result. [ |

Note the interesting contrast, not only to passive learning,
but also to the known results on therifiablesample com-
plexity of active learning. This theorem definitively states
that the2 (1/¢) lower bounds common in the literature on
verifiable samples complexity careverarise in the anal-
ysis of the true sample complexity of finite VC dimension
classes.

4 Composing Hypothesis Classes

Recall the simple example of learning the class of inter-
vals over[0, 1] under the uniform distribution. It is well
known that the verifiable sample complexity of the “all-
negative” classifier in this class {3(1/¢). However, con-
sider the more limited clas§;, C C containing only the
intervals b with w(h) = P(h(X) = +1) > 0. Using

the simple algorithm described in Section 1.1, this restricted
class can be learned with a (verifiable) sample complexity
of only O(1/w(h) + log(1/€)). Furthermore, the remain-
ing set of classifiers’s = C \ ¢’ (which consists of only
the all-negative classifier) has sample complegityThus,

C = C1 U (s, and both(Cy, D) and(Cs, D) are learnable

at an exponential rate.

It turns out that it is often convenient to view concept
classes in terms of such well-constructed, possibly infinite
sequences of subsets. Generally, given a distribufiand
a function class”, suppose we can construct a sequence
of subclasses(’;, Cs, ..., whereC = U2, C;, such that
it is possible to actively learn any subclags with only

“Recall that we say a non-negative functipfe) = o (1/e) iff
Pi% o(e)/(1/e) = 0. Similarly, ¢(€) = w(1) iff lli% 1/¢(e) = 0.
Here and below, the(-), w(-), ©(-) andO(-) notation should be
interpreted ag — 0 (from the+ direction), treating all other pa-
rameters (e.gd andh™) as fixed constants. Note that any algorithm
achieving a sample complexity, (¢, §, h) # w(1) is guaranteed,
with probability > 1 — 4, to achieve error zero using a finite num-
ber of samples, and therefore we cannot hope to achieve a slower
asymptotic growth in sample complexity.



Si(e, 8, h) sample complexity. Thus, if we know that the tar-
geth* is in C;, it is straightforward to guaranteg (e, J, h*)
sample complexity. However, it turns out it is also possible
to learn with sample complexit®)(S;(e/2,/2,h*)) even
without this information. This can be accomplished by using
an aggregation algorithm.

We describe a simple algorithm for aggregation below
in which multiple algorithms are run on different subclasses
C; in parallel and we select among their outputs by com-
parisons. Within each subclag$ we run an active learning
algorithm A;, such as Dasgupta’s splitting algorithm [8] or
CAL, with some sample complexity; (e, d, h).

Algorithm 1 The Aggregation Procedure. Here it is assumed
thatC' = U2, C;, and that for eachi, A; is an algorithm
achieving sample complexity at maSi(e, ¢, k) for the pair
(Ci, D). The procedure takésando as parameters.

Let k be the largest integer sk? [721n(4k/8)] < t/2
fori=1,...,kdo
Let h; be the output of runningl;(|¢/(4i%)],5/2) on
the sequencéra, 1},
end for
fori,j € {1,2,...,k} do
if P(h;(X) # h;(X)) > 0then
Let R;; be the first{721In(4k/J)] elements in the se-
quence{wxa, 22, for which h;(z) # h;(x)
Request the labels of all examples/t;
Let m;; be the number of elements i®;; on which
h; makes a mistake
else
Let mi; = 0
end if
end for_
Returnh; = h; wherei =

argmin max

. My
ie{1,2,....k} J€{1,2,....k}

Using this algorithm, we can show the following sample
complexity bound. The proof appears in Appendix A.

Theorem 8 For any distributionD, let Cy, Cs, ... be a se-
quence of classes such that for edckhe pair(C;, D) has
sample complexity at mos$f;(¢, 0, h) for all h € C;. Let
C = U2, C;. Then(C, D) has a sample complexity at most

{42'2 [Si(e/2,6/2,h)], 24 {72 In %l } :

foranyh € C. In particular, Algorithm 1 achieves this, when
used with thed; algorithms that each achieve tt$(e, 0, h)
sample complexity.

min max
i:heC;

A particularly interesting implication of Theorem 8 is
that, if we can decompogg into a sequence of classé€s
such that eacliC;, D) is learnable at an exponential rate,

an algorithm with a known bound on iteerifiable sample
complexity. As the following theorem states, at least for the
case of exponential rates, this approach of constructing al-
gorithms with good true sample complexity by reduction to
algorithms with known verifiable complexity on subspaces
loses nothing in generality. The proof is included in Ap-
pendix B.

Theorem 9 For any (C, D) learnable at an exponential
rate, there exists a sequenc€g, Cs, ... with C' = U2, C;,
and a sequence of active learning algorithms, Ao, . ..
such that the algorithmi; achievesserifiablesample com-
plexity at mosty;polylog; (1/(ed)) for the pair (C;, D).
Thus, the aggregation algorithm (Algorithm 1) achieves ex-
ponential rates when used with these algorithms.

Note that decomposing a givéninto a sequence af’;
subsets that have good verifiable sample complexities is not
always a simple task. One might be tempted to think a simple
decomposition based on increasing values of verifiable sam-
ple complexity with respect t¢C, D) would be sufficient.
However, this is not always the case, and generally we need
to use information more detailed than verifiable complexity
with respect to(C, D) to construct a good decomposition.
We have included in Appendix C a simple heuristic approach
that can be quite effective, and in particular yields good sam-
ple complexities for everyC, D) described in Section 5.

5 Exponential Rates

The results in Section 3 tell us that the sample complexity
of active learning can be made strictly superior to any pas-
sive learning sample complexity when the VC dimension is
finite. We now ask how much better that sample complex-
ity can be. In particular, we describe a number of concept
classes and distributions that are learnable a&gmonential
rate, many of which are known to requite1/¢) verifiable
sample complexity.

5.1 Exponential rates for simple classes

We begin with a few simple observations, to point out situ-
ations in which exponential rates are trivially achievable; in
fact, in each of the cases mentioned in this subsection, the
sample complexity is actuall§(1).

Clearly if |X| < oo or |C] < oo, we can always achieve
exponential rates. In the former case, we may simply re-
quest the label of every in the support ofD, and thereby
perfectly identify the target. The corresponding= |X'|.

In the latter case, for every pair;,ho € C such that
P(h1(X) # ho(X)) > 0, we may request the label of any
x; such thaty (z;) # ha(z;), and there will be only one (up

to measure zero differences) C that gets all of these ex-
amples correct: namely, the target function. So in this case,

then this procedure achieves exponential rates. Since it iswe learn with an exponential rate with= |C|?.

more abstract and it allows us to use known active learning

Less obvious is the fact that this argument extends to any

algorithms as a black box, we often use this compositional countably infinitehypothesis clas§’. In particular, in this

view throughout the remainder of the paper. In particular,
since the verifiable sample complexity of active learning is

presently much better understood in the existing literature,

it will often be useful to use this result in combination with
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case we can list the classifiers @ft hq, ho,.... Then we
define the sequene& = {h;}, and simply use Algorithm 1.
By Theorem 8, this gives an algorithm with sample complex-
ity S(e, 8, h;) = 2i? [721n(4i/6)] = O(1).



5.2 Geometric Concepts, Uniform Distribution Proof: (Sketch) There are multiple ways to achieve this. We

Many interesting geometric conceptslit are learnable at ~ describe here a simple proof that uses a decomposition as
an exponential rate if the underlying distribution is uniform follows. LetA(h) be the probability mass of the minority
on some subset dk". Here we provide some examples: class under hypothesis (' contains only the separators

interestingly, every example in this subsection has some tar-?» With A(h) = 0, andC; = C'\ Cy. As before, we can

gets for which theverifiablesample complexity i$2 (1/¢). use a black box active learning algorithm such as CAL to
As we see in Section 5.3, all of the results in this section can €& within each class;. To prove that we indeed get the
be extended to many other types of distributions as well. desired exponential rate of active learning, we show that the
disagreement coefficient of any separdiowith respect to
Unions of k intervals under arbitrary distributions: Let (C, D) is atmostx /n/A(h). Hanneke's results concerning

X be the interval0, 1) and letC'*) denote the class of the CAL algorithm [12] then imply thaf’; is learnable at an
unions of at mosk intervals. In other word('® contains ~ €XPOnential rate. Since trivially has sample complexity
functions described by a sequengg, ai, - - - , az), where 1, combined with Theorem 8, this would imply the result. -
ao = 0,ar = 1,0 < 2k + 1, andag, - - - , as is the (nonde- We describe the key steps involved in computing the dis-
creasing) sequence of transition points between negative an pgreement coefficient. F|r§t we can show that )‘or any two
positive segments (sois labeled+1 iff = € [a;, a;11) for near /separal;t/or&(m) ol Slgn(g’ ' md—;hb) d"?mtd h (xk)) o
someodd:). For any distribution, this class is learnable at an :;]ger;gués @ +b'), we can lower bound the distance between
exponential rate, by the following decomposition argument.

First, let

C1={heC® PhX)=+1)=0}.
That is,C; contains the all-negative function, or any func- wherea = arccos(w-w") is the angle between andw’, A is

P(h(X) # h'(X)) > max {|)\ -, 276“ min{\, X}} ,

tion that is equivalent given the distributioR. Fori = the probability mass of the minority class undernd)’ is
2,3,...,k+ 1, inductively define the probability mass of the minority class undér Assume
%) , (i-1) for now thath andh’ are close enough together to have the
Ci = {h eCW:3n el same minority class; it's not necessary, but simplifies things.
stP(h(X) # 1 (X)) = o} \ Uj<iCy We are now ready to compute the disagreement coeffi-

. . cient. Assume < \/+/n. From the previous claim we have
In other words,C; contains all of the functions that can be [V P

represented as unionsof- 1 intervals but cannot be repre- , 5 2a0 ,

sented as unions of fewer intervals. Cleattyhas verifiable B(h,r) < {h : max{|/\ =N, . min{A, A }} = 7"}
sample complexity). Fori > 1, within each subclas§';,

the disagreement coefficient is bounded by something pro-whereB(h, ) is the ball of radius: aroundh in the hypoth-
portional tok + 1/w(h), where esis space. The region of disagreement of the set on the left

. ) is contained within
w(h) = min{P([a;,a;41)) : 0 < j < £, P([aj,a;41)) >0}

is the weight of the smallest positive or negative intervaland ~ DIS ({1 : w’ = w A [N = X[ <7})

(ag,a1,--+ ,ag) is the sequence of transition points corre- 20

N . . . =, . li /
sponding to thish. Thus, running CAL withC; achieves U DIS ({h : 7()\ —r)<rAX=N|= r}) .
polylogarithmic (verifiable) sample complexity for ahye
C;. SinceC™) = UL, by Theorem 8C(*) is learnable By some trigonometry, we can show this region is con-
at an exponential rate. tained within

/ / /
Ordinary Binary Classification Trees: Let X be the cube DIS({h": w' =w A X = Al <7})
[0,1]", D be the uniform distribution o', andC' be the U {x wez by < cf} U {x w -z bo| < cf}
class of binary decision trees using a finite number of axis- A A
parallel splits (see e.g., Devroye et al. [11], Chapter 20). In for some constants;, b», c. Using previous results [2, 12], it

this case, (similarly to the previous example) wedgtbe s possible to show that the measure of this region is at most
the set of decision trees i@l distance zero from a tree with 9, 4 d(yn/N)r = ' (y/n/N)r. This finally implies that for

i leaf nodes, not contained in ady; for j < i. For anyi, any target function, the disagreement coefficient is at most
the disagreement coefficient for ahye C; (with respectto  ¢(,/n/)), where)\ is the probability of the minority class
(Ci, D)) is a finite constant, and we can chod@sgeto have of the target function. ]

finite VC dimension, so eactC;, D) is learnable at an ex-
ponential rate (by running CAL with;), and thus by Theo-

rem 8,(C, D) is learnable at an exponential rate. 53 Composition results

) We can also extend the results from the previous subsection
5.2.1 Linear Separators to other types of distributions and concept classes in a variety
Theorem 10 LetC be the hypothesis class of linear separa- of ways. Here we include a few results to this end.
tors inn dimensions, and leb be the uniform distribution
over the surface of the unit sphere. The pd@it D) is learn- Close distributions: If (C, D) is learnable at an exponential
able at an exponential rate. rate, then for any distributio®’ such that for all measurable
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Figure 5.1: lllustration of the proof of Theorem 11. The dark
gray regions represe¥p, (h1,2r) and Bp, (hz2,2r). The func-
tion h that gets returned is in the intersection of these. The light
gray regions represet®p, (h1,¢/3) and Bp, (h2,€/3). The tar-

get functionh™ is in the intersection of these. We therefore must
haver < ¢/3, and by the triangle inequalit(h) < e.

AC X, /\PD(A) < PD/(A) < (1//\)PD(A) for some\ €
(0,1], (C,D") is also learnable at an exponential rate. In
particular, we can simply use the algorithm fé¥, D), filter
the examples fron®’ so that they appear like examples from
D, and then any large enough to find ae\-good classifier
with respect taD is large enough to find arrgood classifier
with respect taD’.

A composition theorem for mixtures of distributions:
Suppose there exist algorithro$, and A; for learning a
classC at an exponential rate under distributiohs and

and runA, on the remaining examples, allowing each to
make an equal number of label requests.

Let hy and hy be the classifiers output byt; and As.
Because of the filtering, the examples thht sees are dis-
tributed according tdD;, so aftert/2 queries, the current
error of hy with respect taD; is, with probabilityl — §/2,
at mostinf{e’ : Sy(¢/,d/2,h*) < t/2}. A similar argument
applies to the error df, with respect taD.

Finally, let

r=inf{r: Bp,(h1,7) N Bp,(he,r) # 0} .

Define the output of the algorithm to be any €

.BD1 (hl, 27‘) n BD2 (h2727°). If a total of t >

2 [max{S;(e/3,8/2,h*), S2(e/3,6/2,h*)}] queries have
been madet(2 by A; andt/2 by As), then by a union
bound, with probability at least — 4, A* is in the intersec-
tion of thee/3-balls, and so is in the intersection of the
2¢/3-balls. By the triangle inequality, is within ¢ of A* un-

der both distributions, and thus also under the mixture. (See
Figure 5.1 for an illustration of these ideas.) [ |

5.4 Lower Bounds

Given the previous discussion, one might suspect aimat
pair (C, D) is learnable at an exponential rate, under some
mild condition such as finite VC dimension. However, we
show in the following that this inotthe case, even for some
simple geometric concept classes when the distribution is es-
pecially nasty.

Theorem 12 There exists a paifC, D), with the VC dimen-

D- respectively. It turns out we can also learn under any sion ofC' equall, that is not learnable at an exponential rate

mixture of D; and D- at an exponential rate, by usind,
and.A, as black boxes. In particular, the following theorem

(in the sense of Definition 4).

relates the sample complexity under a mixture to the sampleProof: (Sketch) Letl" be a fixed infinite tree in which each

complexities under the mixing components.

Theorem 11 Let C' be an arbitrary hypothesis class. As-
sume that the pairs(C,D;) and (C,D,) have sam-
ple complexitiesS; (e, d, h*) and Sa(e, 0, h*) respectively,
where D, and Dy have density function®p, and Pp,
respectively.  Then for anyx € [0,1], the pair
(C,aD; 4+ (1 — «)D2) has sample complexity at most
2 [maX{Sl(e/:ga 6/27 h*)a S2(6/3a 6/27 h*)}‘| .

Proof: If « = 0 or 1 then the theorem statement holds triv-
ially. Assume instead that € (0,1). We describe an algo-
rithm in terms ofa, D, andD-, which achieves this sample
complexity bound.

Suppose algorithmd; and.A; achieve the stated sample
complexities undeb; and D, respectively. At a high level,
the algorithm we define works by “filtering” the distribution

over input so that it appears to come from two streams, one

distributed according t®,, and one distributed according to
D-, and feeding these filtered streams4pand.A; respec-
tively. To do so, we define a random sequencgus, - - - of
independent uniform random variablegin1]. We then run
A; on the sequence of examplesfrom the unlabeled data
sequence satisfying

a]P)Dl (xl)
aPp, (x;) + (1 — @)Pp, (z;)’

Uq <

51

node at depth hasc; children; ¢; is defined shortly. We
consider learning the hypothesis cl@$svhere eacth € C
corresponds to a path down the tree starting at the root; every
node along this path is labelédwhile the remaining nodes
are labeled-1. Clearly for eachh € C there is precisely
one node on each level of the tree labeleby A (i.e. one
node at each deptl). C has VC dimension 1 since knowing
the identity of the node labeled on leveli is enough to
determine the labels of all nodes on levels. . , i perfectly.
This learning problem is depicted in Figure 5.2.

Now we defineD, a “bad” distribution forC. Let ¢;
be the total probability of all nodes on leviehccording to
D. Assume all nodes on levélhave the same probability
according taD, and call thigp;. By definition, we have;
i/ =g 5.

We show that it is possible to define the parameters above
in such a way that for angy > 0, there exists some < ¢
such that for some level p; = e andc;_1 > (1/p;)}/? =
(1/€)*/2. This implies that2(1/e/?) labels are needed to
learn with error less than, for the following reason. We
know that there is exactly one node on leyéhat has label 1,
and that any successful algorithm must identify this node (or
have a lucky guess at which one it is) since it has probability
e. By the usual probabilistic method trick (picking the target
at random by choosing the positive node at each level
uniformly from the children of the positive at levé), we



Figure 5.2: A learning problem where exponential rates are

not achievable. The instance space is an infinite-depth tree. The

target labels nodes along a single infinite path-dsand labels all other nodesl. When the number of children and probability
mass of each node at each subsequent level are set in a certain way, sample compleXitieg@fare not achievable.

can argue that in order to label that node positive with at

6 Discussion and Open Questions

least some constant probability, we need to query at least a o o ) ) )
constant fraction of the node’s siblings, so we need to query The implication of our analysis is that in many interesting

on the order of;;_; nodes on levej.

Thus it is enough to show that we can define the values
above such that for all ¢;_; > (1/p;)'/?, and such tha;
gets arbitrarily small asgets big.

To start, notice that if we recursively define the values of

i

c; asc; = HJ;IO Cj/gi—&-l then

i—2
2 szo Cj
Ci—1 = CGi—1

; ;

) oo
andc;_; > (1/p;)'/? as desired.

To enforce thap; gets arbitrarily small asgets big, we
simply need to sef; appropriately. In particular, we need
lim; o0 4/ H;;t ¢; = 0. Since the denominator is increas-
ing in 4, it suffices to showim,; .., ¢; = 0. Defining the
values of¢; to be any positive probability distribution over
that goes to 0 in the limit completes the proof. [ |

For essentially any functioh = o (1/¢), the tree exam-
ple in the proof can be modified to construct a p@it D)
with the VC dimension ofC' equal to1 such that no al-
gorithm achieves(¢(¢)) sample complexity for all targets:
simply choose:; = |¢(pit+1)], where{p;} is any sequence
strictly decreasing t0 s.t. p;11¢(pi+1) ]'[KZ. ¢j <Vt and
#(pi+1) > 1, where as befor¢/;} is any sequence of pos-
itive values summing td; we can (arbitrarily) assign any
left-over probability mass to the root node= o(1/¢) guar-
antees that such gp;} sequence exists for any = w(1).
Thus, theo (1/¢) guarantee of Corollary 7 is in some sense

cases where it was previously believed that active learning
could not help, it turns out that active learnidges help
asymptotically We have formalized this idea and illustrated
it with a number of examples and general theorems through-
out the paper. This realization dramatically shifts our under-
standing of the usefulness of active learning: while previ-
ously it was thought that active learning couldt provably
help in any but a few contrived and unrealistic learning prob-
lems, in this alternative perspective we now see that active
learning essentiallpalwayshelps, and does so significantly
in all buta few contrived and unrealistic problems.

The use of decompositions 6fin our analysis also gen-
erates another interpretation of these results. Specifically,
Dasgupta [8] posed the question of whether it would be use-
ful to develop active learning techniques for looking at un-
labeled data and “placing bets” on certain hypotheses. One
might interpret this work as an answer to this question; that
is, some of the decompositions used in this paper can be in-
terpreted as reflecting a preference partial-ordering of the hy-
potheses, similar to ideas explored in the passive learning lit-
erature [16, 15, 3]. However, the construction of a good de-
composition in active learning seems more subtle and quite
different from previous work in the context of supervised or
semi-supervised learning.

It is interesting to examine the role of target- and
distribution-dependent constants in this analysis. As defined,
both the verifiable and true sample complexities may de-
pend heavily on the particular target function and distribu-
tion. Thus, in both cases, we have interpreted these quanti-
ties as fixed when studying the asymptotic growth of these
sample complexities asapproache$. It has been known
for some time that, with only a few unusual exceptions, any

the tightest guarantee we can make at that level of generalitytarget- and distribution-independent bound on the verifiable

without using a more detailed description of the structure of
the problem beyond the finite VC dimension assumption.

This type of example can be realized by certain nasty dis-
tributions, even for a variety of simple hypothesis classes: for
example, linear separators R? or axis-aligned rectangles
in R2. We remark that this example can also be modified to

sample complexity could typically be no better than the sam-
ple complexity of passive learning; in particular, this obser-

vation lead Dasgupta to formulate his splitting index bounds
as both target- and distribution-dependent [8]. This fact also
applies to bounds on the true sample complexity as well. In-
deed, the entire distinction between verifiable and true sam-

show that we cannot expect intersections of classifiers to pre-ple complexities collapses_ i_f we remove the dependence on
serve exponential rates. That is, the proof can be extendedhese unobservable quantities.

to show that there exist class€s and Cs, such that both
(C1, D) and(Cs, D) are learnable at an exponential rate, but
(C, D) is not, where” = {hy Nhg : hy € C1,he € Ca}.
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There are many interesting open problems within
this framework. Perhaps two of the most interesting are
formulating general necessary and sufficient conditions for



learnability at an exponential rate, and determining whether Appendix
Theorem 6 can be extended to the agnostic case.
A Proof of Theorem 8
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C Heuristic Approaches to Decomposition overlapping boundary regions and shatterable sets to show
that we can decompose any finite VC dimension class into
a countable number of subsets satisfying these special con-
ditions. This, combined with the aggregation algorithm, ex-
tends Lemma 13 to the general conditions of Theorem 6.

As mentioned, decomposing purely based on verifiable
complexity with respect tdC, D) typically cannot yield a

good decomposition even for very simple problems, such as
unions of intervals. The reason is that the set of classifiers

with high verifiable sample complexity may itself have high | emma 13 SupposéC, D) is such thatC' has finite VC di-

verifiable complexity. mensiond, andvh € C,P(ch) = 0. Then for any pas-
Although we do not yet have a general method that can sjye learning sample complexisi (¢, 8, 1) for (C, D), there

provably always find a good decomposition when one exists exists an active learning algorithm achieving a sample com-

(other than the trivial method in the proof of Theorem 9), we pjexity S, (¢, 6, k) such that, for any target functiol* € C
often find that a heuristic recursive technique can be quite wheres,,(c, §, h*) = w(1),

effective. That is, we can defingé, = C. Then fori > 1,

we recursively defin€; as the set of alh € C;_; such that Sa(€,6/2,h") = o(Sp(e/2,0,h™)) .
0, = ith ttaCi—1,D). S that f . . .
J\}; CNoflvi Q).r??l%?ﬁ‘orot(he dlecoznpogii)t?c%slecga. . .org](\jme Proof:We perform the learning in two phases. The first

is a passive phase: we simply request the labels of

everyh € C hasf, < oo with respect to at least one of
., x|¢/3], and let

the sets in which it is contained. Thus, the verifiable sample %1, %2 - -

complexity ofh with respect to that set i8(polylog(1/ed)), _ Ay < N (e
and the aggregation algorithm can be used to achieve polylog Vi={heC:Vis [t/3] hw:) = (@)}
sample complexity. In other words,V is the set of all hypotheses that correctly

We could alternatively perform a similar decomposition label the first|¢/3| examples. By standard consistency re-
using a suitable definition of splitting index [8], or more gen- sults [11], with probability at least— 6/8, there is a univer-

erally using sal constant > 0 such that
SC? (6753 h) 1
limsup% (dlnt+1ng>
sup Pp(hi(x ho(z)) <c| ——= ) .
0 (log (L)) WS p(h1(z) # ha(x)) < ;

for some fixed constarit > 0.

While this procedure does not always generate a good
decomposition, certainly iV < oo exists, then this creates _ (. dlnt+ 1n%
a decomposition for which the aggregation algorithm, com- P(DIS(V)) <P (DIS (B (h ,cf>)> :
bined with an appropriate sequence of algoritHms}, can
achieve exponential rates. In particular, this is the case for allLet us denote this latter quantity ky,. Note thatA; goes
of the(C, D) described in Section 5. In fact, everNf = oo, to 0 ast grows.
as long as every € C does end up isomesetC; for finite If ever we haveP(DIS(V)) = 0 for some finitet, then

i, this decomposition would still provide exponential rates. ~ clearly we can return anky € V, so this case is easy.
Otherwise, leth, = |[t/(36P(DIS(V))In(8/4))], and

In particular, on this event, we have

D Proof of Theorem 6 supposet > 3. By a Chernoff bound, with prob-
) ) o ability at leastl — §/8, in the sequence of examples
We now finally prove Theorem 6. This section is mostly T(1/3] 415 T(1/3] 425 - - -+ T{1/3] +ne» AL MOSH /3 Of the exam-
self-contained, though we do make use of Theorem 8 from pjas are iDIS(V). If this is not the case, we fail and output
Section 4 in the final step of the proof. an arbitraryh; otherwise, we request the labels of every one
ForanyV C C'andh  C, define of thesen; examples that are iIS(V). Now construct
By (h,r) = {h' € V : Pp(h(z) # h'(z)) <7}, a sequenc& = {(z1,41), (¥2,43), -, (2, y,,)} of la-

o _ beled examples such thaf = x|,/3);, andy; is either
whereV is, as before, a countable dense subsét.dbefine the label agreed upon by all the elementd/for it is the

theboundaryof / with respect taD andV/, denoted)y h, as h*(z,/3);) label value we explicitly requested. Note that
T D becauseénf,cy er(h) = 0 with probability 1, we also have
Oy h = lim DIS(By (h . ; heV 74
v b (By (h, ) that with probabilityl everyy; = h*(z;). We may there-
The proof will proceed according to the following out- fore use thes_at exam_ples as iid training examples for the
line. We begin in Lemma 13 by describing special conditions Passive learning algorithm. ,
under which a CAL-like algorithm has the property that the Specifically, let us split up the sequenceinto k = 4

more unlabeled examples it processes, the smaller the fracS€quences s, Lo, ..., L, where

tion of them it requests the labels of. Since CAL always L = {(x/_ ) ity Wi i),
identifies the target’s true label on any example it processes, ) (=D lne/k]+ ) (=Dlne/k]+
we end up with a set of labeled examples growing strictly (:C(i—l)Lnt/kJ-i-Qa y(i—l)\_n,/k]+2)a

faster than the number of label requests used to obtain it;
we can use this as a training set in any passive learning al-
gorithm. However, the special conditions under which this SupposeA is the passive learning algorithm that guaran-
happens are rather limiting, so we require an additional step,teesS, (¢, ¢, h) passive sample complexities. Then foe
in Lemma 14; there, we exploit a subtle relation between {1,2,...,k—1}, leth, be the classifier returned by(L;, ¢).

"’(mgLnt/kjvygLnt/kJ)} .
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Additionally, leth;, be any classifier iV’ consistent with the
labels ins,..

Finally, for eachi,; € {1,2,...,k}, request the
labels of the first|t/(3k?)| examples in the sequence
{th/3J+nt+1, Tt/3]4+ne4+21 - } that satisfyhi(a:) # hj (I)
and letR;; denote thesgt/(3k?) | labeled examples;; =
0 if Pp(hi(z) # hj(z)) = 0). Letm,;; denote the number of
mistakesh; makes on the s&t;;. Finally, leth, = h; where

1 = argmin max m;;.
[ J
This will be the classifier we return.

It is known (see, e.g., [11]) that ifln:/k] >
d((d/e)log(1/e) + (1/€)log(1/d)) for some finite univer-
sal constant’, then with probability at least— ¢ /8 over the
draw of Ly, er(hy) < e. Define

,dlog(l/e)+log(1/5)}

- :

We have choserk large enough so that, ifn;/k] >
Sp(€, 9, h*), then with probability at least — ¢/8 over the
draw of £, min; er(h;) < e. Furthermore, by a Hoeffding
bound argument (similar to the proof of Theorem 8), for any
t > to = 3k? [721In(16k/5)], we have that with probability
atleastl — §/8, er(hy) < 2min; er(h;). Define

Sp(e, 6, h*)—min{Sp(e, 0,h*), ¢

Sa(2¢,6/2,h%)

1+ inf {5 >ty :s > 144k1n %gp(e,& h*)As} .

Note that ift > S,(2¢,6/2, h*), then (with probability>
1-4/8)

S,(e,0,h*) < <

— k.
S Tikmsa, - /k

is 1, or when the support ob is at most countably infi-
nite. However, for more complex learning problems, this
condition will typically not be satisfied, and as such we re-
quire some additional work in order to use this lemma to-
ward a proof of the general result in Theorem 6. Toward this
end, we again turn to the idea of a decompositiof'othis
time decomposing it into subsets satisfying the condition in
Lemma 13.

Lemma 14 For any (C, D) whereC' has finite VC dimen-
siond, there exists a countably infinite sequenige Co, . . .
such thatC' = U2, C; andVi, Yh € C;,P(0¢,h) = 0.

Proof: The case ofl = 0 is clear, so assumé > 0. A
decomposition procedure is given in Algorithm 2. We will
show that, if we letl = Decomposg”'), then the maximum
recursion depth is at mogt(counting the initial call as depth
0). Note that if this is true, then the lemma is proved, since
it implies thatH can be uniquely indexed by @&tuple of
integers, of which there are at most countably many.

Algorithm 2 DecomposgH)
LetHo = {h € H : P(dyh) = 0}

if Hoo = H then
Return{H}
else

Forie {1,2,...},letH; =
{heH : P(Oyh) € (142743~ (1427 (@)1=}

U Decomposé;)U {H}
i€{1,2,...}

Return

end if

For the sake of contradiction, suppose that the maximum
recursion depth of Decompog#) is more thani (or is infi-

So, by a union bound over the possible failure events listed nite). Thus, based on the firgtt 1 recursive calls in one of

above (/8 for P(DIS(V)) > A, §/8 for more thart/3 ex-
amples off in DIS(V'), § /8 for min; er(h;) > ¢, ands/8 for
er(hy) > 2min, er(h;)), if t > S4(2¢,6/2, h*), then with
probability at least — §/2, er(h;) < 2e. S0S, (e, 0, h*) is a
valid sample complexity function, achieved by the describe
algorithm. Furthermore,

Sa(€,0/2,h") <1

8 _
+ max {to, 144k In —Sp(E/Q, 6, h*)ASa(e,é/Q,h*)Q}-

]
Sp(e,0,h*) = w(l) implies S,(e,6/2,h*) = w(l), so we
know thatAg, (e 5/2,n+)—2 = o(1). Thus,S,(e,0/2,h*)
0(Sp(e/2,6,h*)), and thus we haveS,(e,d/2, h*)
o(Sp(e/2,0,h")).

As an interesting aside, it is also true (by essentially the In particular,

those deepest paths in the recursion tree, there is a sequence

of sets
C=HODO>HD D>H®D ...+ vy

d and a corresponding sequence of finite positive integers

i1,12,.-.,1q+1 Such that for each € {1, 2, ..
eryh € HY) has

., d+ 1}, ev-

P(Oyi-nh) € ((1 4+ 27 (@3 =i (4 2_(d+3))1_ij} .
Take anyhq 1 € H(*t1), There must exist some> 0
suchthavj € {1,2,...,d+ 1},
P(DIS(Byy- (hat1,7)))
c ((1 4 27(d+3))7ij; (1 4 27((14*2))(1 4 27((14*3))71']‘] .

any set of< 24*! classifiers T C

same argument) that under the conditions of Lemma 13, the By, ;) (ha+1,7/2) must haveP(Nperdp -1 h) > 0.

verifiable sample complexity of active learning is strictly
smaller than theverifiable sample complexity of passive

We now construct a shattered set of points of gize1.
Consider constructing a binary tree with*! leaves as fol-

learning in this same sense. In particular, this implies a ver- lows. The root node contairts; 1 (call this level 0). Let

ifiable sample complexity that is(1/¢) under these con-

ha € By (hay1,7/4) be some classifier witB(hq(X) #

ditions. For instance, with some effort one can show that h,1(X)) > 0. Let the left child of the root bé,,, and

these conditions are satisfied when the VC dimensiofi of
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the right child beh, (call this level 1). Defined; = {z :



ha(z) # hayi(z)}, and letA; = 27@H+2P(4;), Now
for eachj € {d — 1,d — 2,...,0} in decreasing order,
we define thel — j + 1 level of the tree as follows. Let
T,+1 denote the nodes at thile— j level in the tree, and let

i—j+1 = Nher,,, Onwh. We iterate over the elements
of T4 in left-to-right order, and for each ortg we find
h e BH(J') (h, Ad,j) with

Pp(h(x) # R (z) Ax € Ay_;1,) >0.

We then define the left child df to beh and the right child
to behn/, and we update

a-jr1 — Ag_jo N {z h(z) # W (2)}

After iterating through all the elements ©f.; in this man-
ner, defined,_;1, to be the final value of4; . , and

Ag_jy1 = 27@F2DP(A, ;). The key is that, because
every h in the tree is withinr/2 of hyyq, the setA;ﬂ.+1
always has nonzero measure, and is containéy,in » for
anyh € Tj;1, so there always exists & arbitrarily close
to h with Pp(h(z) # h'(z) Az € Ay ;) > 0.

Note that fori € {1,2,...,d+ 1}, every node in the left
subtree of any: at leveli — 1 is strictly within distancA;
of h, and every node in the right subtree of @ngt leveli — 1
is strictly within distanceA; of the right child ofh. Since
2A,29+1 = P(4;), there must be some sdt C A; with
P(Af) > 0 such that for every. at leveli — 1, every node
in its left subtree agrees witlh on everyz € A} and every
node in its right subtree disagrees witlon everyz € A}.
Therefore, taking anyx1, xo, ..., x4, xq4+1} Such that each
x; € Af creates a shatterable set (shattered by the set of leaf
nodes in the tree). This contradicts VC dimensibrso we
must have that the maximum recursion depth is at niclk

Proof:[Theorem 6] Theorem 6 now follows by a sim-
ple combination of Lemmas 13 and 14, along with Theo-
rem 8. That is, the passive learning algorithm achieving
passive learning sample complexisy (e, d, h) on (C, D)
also achieves, (¢, d, h) on any(C;, D), whereCq, Cs, . ..

is the decomposition from Lemma 14. So Lemma 13 guar-
antees the existence of active learning algoritbinsA,, . . .
such that4; achieves a sample complexiy(e, §/2, h)
o(Sp(e/2,0,h)) on (C;, D) forall h € C; s.t. Sp(e,6,h) =
w(1). Finally, Theorem 8 tells us that this implies the ex-
istence of an active learning algorithm based on thése
combined with Algorithm 1, achieving sample complexity
o(Sp(e/4,0,h)) on(C, D). |

Note there is nothing special abauin Theorem 6. Using a
similar argument, it can be made arbitrarily closd to
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Abstract

Prediction from expert advice is a fundamental prob-
lem in machine learning. A major pillar of the field
is the existence of learning algorithms whose aver-
age loss approaches that of the best expert in hind-
sight (in other words, whose average regret ap-
proaches zero). Traditionally the regret of online
algorithms was bounded in terms of the number of
prediction rounds.

Cesa-Bianchi, Mansour and Stoltz [4] posed the
question whether it is be possible to bound the re-
gret of an online algorithm by the variation of the
observed costs. In this paper we resolve this ques-
tion, and prove such bounds in the fully adversar-
ial setting, in two important online learning sce-
narios: prediction from expert advice, and online
linear optimization.

1 Introduction

A cornerstone of modern machine learning are algorithms
for prediction from expert advice. The seminal work of Lit-
tlestone and Warmuth [12], Vovk [13] and Freund and Schapire
[6] gave algorithms which, under fully adversarial cost se-
quences, attain average cost approaching that of the best ex-
pert in hindsight.

To be more precise, consider a prediction setting in which
an online learner has access to n experts. Iteratively, the
learner may chose the advice of any expert deterministically
or randomly. After choosing a course of action, an adversary
reveals the cost of following the advice of the different ex-
perts, from which the expected cost of the online learner is
derived. The classic results mentioned above give algorithms
which sequentially produce randomized decisions, such that
the difference between the (expected) cost of the algorithm
and the best expert in hindsight grows like O(y/T logn),
where T is the number of prediction iterations. This extra
additive cost is known as the regret of the online learning
algorithm.

However, a priori it is not clear why online learning algo-
rithms should have high regret (growing with the number of
iterations) in an unchanging environment. As an extreme ex-
ample, consider a setting in which there are only two experts.
Suppose that the first expert always incurs cost 1, whereas
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the second expert always incurs cost % One would expect to
“figure out” this pattern quickly, and focus on the second ex-
pert, thus incurring a total cost that is at most % plus at most
a constant extra cost (irrespective of the number of rounds
T), thus having only constant regret. However, any straight-
forward application of previously known analyses of expert
learning algorithms only gives a regret bound of @(\/T) in
this simple case (or very simple variations of it).

More generally, the natural bound on the regret of a “good”
learning algorithm should depend on variation in the sequence
of costs, rather than purely on the number of iterations. If the
cost sequence has low variation, we expect our algorithm to
be able to perform better.

This intuition has a direct analog in the stochastic setting:
here, the sequence of experts’ costs are independently sam-
pled from a distribution. In this situation, a natural bound on
the rate of convergence to the optimal expert is controlled by
the variance of the distribution (low variance should imply
faster convergence). This was formalized by Cesa-Bianchi,
Mansour and Stoltz [4], who assert that “proving such a rate
in the fully adversarial setting would be a fundamental re-
sult”.

In this paper we prove the first such regret bounds on
online learning algorithms in two important scenarios: pre-
diction from expert advice, and the more general framework
of online linear optimization. Our algorithms have regret
bounded by the variation of the cost sequence, in a man-
ner that is made precise in the following sections. Thus, our
bounds are tighter than all previous bounds, and hence yield
better bounds on the applications of previous bounds (see,
for example, the applications in [4]).

1.1 Online linear optimization

Online linear optimization [10] is a general framework for
online learning which has received much attention recently.
In this framework the decision set is an arbitrary bounded,
closed, convex set in Euclidean space K C R™ rather than a
fixed set of experts, and the costs are determined by adver-
sarially constructed vectors, f1, fo,... € R", such that the
cost of point z € K is given by f; - . The online learner it-
eratively chooses a point in the convex set z; € K, and then
the cost vector f; is revealed and the cost f; - z; is occurred.
The performance of online learning algorithms is measured
by the regret, which is defined as the difference in the total
cost of the sequence of points chosen by the algorithm, viz.



Zthl f+ -+, and the total cost of the least cost fixed point in

hindsight, viz. min,¢ i Zthl fi-x

Several decision problems fit very naturally in this frame-
work. For example, in the online shortest path problem the
online learner has to repeatedly choose a path in a given
graph from a source node to a destination node. Her cost
is the total length of the path according to weights which are
chosen by an adversary. This problem can be cast as an on-
line linear optimization problem, where the decision space is
the set of all distributions over paths in the graph connect-
ing the source to the destination. Even though this set sits in
exponential dimensional Euclidean space, by thinking of a
distribution over paths as a flow in the graph, it is possible to
efficiently represent the decision space as a polytope in R/
(E denotes the set of edges in the given graph), described
by O(|E|) constraints, and translate the cost functions to this
new domain as well.

The general online linear optimization framework allows
for efficient and natural algorithms based on the gradient de-
scent update rule coupled with Euclidean projections [8, 14].
Specifically, we consider Zinkevich’s Lazy Projection algo-
rithm [14]. This algorithm runs online gradient descent on
an auxiliary sequence of points and chooses the projections
of these auxiliary points on the convex set in every iteration.
This algorithm was shown to have regret O(v/T).

The crucial geometric intuition which allows us to prove
regret bounds based on the variation of the cost sequence can
be summarized by the following intuitive fact: the distance
between successive projections for the Lazy Projection algo-
rithm is directly related to the variation of the cost sequence.

We now describe our bounds. Define the variation of the
sequence of cost functions to be VAR = Zthl | fe — |2,

where p} = % Zthl ft is the mean of the sequence. Our
analysis of the Lazy Projection algorithm yields the follow-
ing regret bound:

Regret < O(y/VAR7).

1.2 Prediction from expert advice

Prediction from expert advice can be cast as a special case of
online linear optimization: the decision space is the simplex
of all distributions on n experts. The expectation operator
provides a linear cost function on the simplex via the costs
of the experts. Hence, our result for online linear optimiza-
tion already implies variation bounds for regret in the case of
prediction from expert advice.

However, this bound is suboptimal, as it depends on the
variation of all experts rather than, say, the maximum vari-
ation of a single expert. This issue is familiar to learning
theorists: “Euclidean algorithms” such as gradient descent
attain performance which relates to the Euclidean norm of
the cost functions (or variations in our case). While this Eu-
clidean flavor is optimal in certain cases (i.e. when the under-
lying convex set is the hyper-cube), for certain convex bodies
such as the simplex, better performance can be achieved. The
multiplicative update algorithms such as EG [11] and FPL*
[10] attain regret which is proportional to O(R+/T logn)
where R is a bound on the /., norm of the cost functions.

By analogy with the online linear optimization case, for
a sequence of cost vectors f1, fa, ..., fr € R™, where f;(7)
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is the cost of expert i in the ¢ round, we would expect to
be able to bound the regret of online linear optimization over

the simplex by something like O(y/VART logn), where

VART = max 2
F = may ;w i)~ (i)
is the maximum variation in costs amongst the different ex-
perts (as before, pi (i) = 7 Zle f1(i) is the mean cost of
the 7 expert). In fact, our bound is even a bit stronger,

Regret(T) = O (\/VAR?a" log n) .
Here VART® < VARZT’, and is defined to be
VARF™ = max {VAR;(£:)}

where VAR, (1) is the variation in costs of expert i up to the
" round, and /; is the best expert till the ' round.

Whereas for the general online linear optimization we
consider the well-known Lazy Projection algorithms and our
results are novel by tighter analysis, for the case of prediction
from expert advice we need to consider a new algorithm. We
can prove that existing variants of the multiplicative weights
algorithms do not attain the performance above, and instead
consider a different variant of update rule, in which the dis-
tribution at time ¢, denoted Ty 1S deﬁned to be

xt()ocexp< UZfT 47722 f‘r M‘r ))2>a

where 7 is a learning rate parameter and pi; % Zt;:ll fr
is the (approximate) mean cost vector at iteration ¢. That is,
the distribution over experts explicitly takes into account the
variation in their costs. As far as we know this is a new
variant of the multiplicative update algorithms family, and it
is necessary to include this feature to prove variation bounds
on the regret.

1.3 Discussion of the results

Cesa-Bianchi, Mansour and Stoltz [4] discussed desiderata
for fundamental regret bounds for the expert prediction prob-
lem: invariance under translation and rescaling of costs vec-
tors. Invariance under translation implies that the bounds de-
pend only on the effective ranges of the cost vectors in each
round, rather than the absolute ranges (by effective range,
we mean the maximum difference between the costs in any
given round). This is because if any round, the cost vectors
are all changed by the same amount, the difference between
the expected cost of the algorithm in that round and the cost
of any given expert remains the same as without the trans-
lation. Our regret bounds enjoy this translation invariance
property: this is a direct consequence of the variation bound.
This implies, for instance, that it doesn’t matter what sign the
costs are, and in fact our bounds are robust enough to handle
mixed signs in costs.

Rescaling invariance implies that the bound continues to
hold even if all the cost vectors are scaled by the same factor.
Again, our regret bounds enjoy rescaling invariance since the
regret and the square-root variation scale by the same factors.

We make crucial use of these invariance properties in our
analysis; the invariance allows us to normalize the cost vec-
tors in ways that make them easier to reason about.



1.4 The stationary stochastic setting vs. an adversary

A point made by [4] is that the variation bounds on the regret
essentially match the performance of a natural algorithm in
the stochastic setting in which the payoffs are generated by
a stationary stochastic process. Let us give a rough sketch
of why this is true. Consider a setting of online linear opti-
mization over the unit ball. Suppose that the cost functions
are generated by a stationary stochastic process, such that
in each iteration the cost function is independently sampled
from a fixed distribution with some mean vector y. For a
long enough sequence of cost functions drawn from this dis-
tribution, the best point in hindsight is essentially the least
cost point with respect to the cost vector .

Let 1 be the observed mean of samples. The natural al-
gorithm uses fi as proxy for the actual mean and chooses
its point with i as a cost vector, and this can be shown to
be optimal. It is a standard fact that the variance of z de-
creases inversely with the number of samples. Thus, if o2
is the variance of the distribution, then the variance of j af-

. . . 2 . . .
ter ¢ iterations is %-. The expected regret on iteration ¢ is
proportional to the standard deviation %, and thus the total

regret of the optimal predictor is on the order of Zle % =

O(Va?T) = O(v/VARY).

Hence, the optimal achievable regret in this simple set-
ting is proportional to square root of the total variation. In
the sequel we prove that the same regret (up to constant fac-
tors) can be achieved in the fully adversarial setting, i.e. in
a setting in which the cost functions are chosen completely
adversarially. In the stationary stochastic setting, the average
cost converges to the average optimum cost at a speed that
depends on the variance of the distribution: lower variance
implies faster convergence. Hence, by proving the variation
bounds on the regret, we give strong indication that online
linear optimization in the adversarial setting is as efficient
as in the stationary stochastic setting.

1.5 A brief history of prediction

It is incredible that as early as the late fifties, Hannan [7]
devised an efficient algorithm for online decision making.
Hannan’s algorithm proceeds by adding a perturbation to the
costs of actions seen so far, and choosing the action with
least cost (taking into account the perturbations). He proves
that the regret of an online player using his algorithm grows
like O(v/T) where T is the number of prediction iterations.

Since then much water has flown under the bridge and
many experts have predicted: this includes the aforemen-
tioned influential multiplicative update family of algorithms
[12, 13, 6], Cover’s universal portfolio prediction problem
[5] and the extensions of Follow-The-Perturbed-Leader [10]
to online optimization and complex decision problems such
as online shortest paths. The machine learning community
has extended these fundamental results into a beautiful the-
ory of general prediction using Bregman divergences and
generalized projections (in order to do justice to the numer-
ous contributors we refer to the credits in the comprehensive
book of [3]). This work refined upon the basic regret bound
of O(\/T). This refinement, however, deals with the con-

stants multiplying the /7" term.
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Freund and Schapire [6] showed that a Multiplicative
Weights algorithm based on the Weighted Majority algorithm

attains regret bounds of O (\/ R Zthl fi(i*) log n) , where

itis assumed that all costs are in the range [0, R], and i* is the
best expert in hindsight. In the case when the costs lie in the
range [— R, R], Allenberg-Neeman and Neeman [1] showed
that there is an expert 7 such that the regret can be bounded by

O <\/ R Zthl | f:(2)] log n) Most recently Cesa-Bianchi,

Mansour and Stoltz [4] gave the first second-order regret
bounds: they proved a bound of O (\/AR*logn) where

AR = maXtST{ZtT:1 f+(£;)?} is the maximum, over all
the time periods ¢, of the sum of squares of losses up to time
t of the best expert at time ¢. They suggest, and indeed as we
argue in the previous section it makes intuitive sense, that the
it should be possible to get a bound that scales as / VART?*.

In this paper we prove their conjecture to be correct, in
effect providing the optimal regret bounds up to constant fac-
tors.

2 Notation and background

The following definitions and derivations may be familiar to
experts in learning theory, who may wish to proceed directly
to the next section.

In the online linear optimization problem, the decision
space is a closed, bounded, convex set K € R", and we
are sequentially given a series of linear cost functions f; :
K — Rfort = 1,2,.... With some abuse of notation, we
also write the functions as f;(z) = f; -  for some vector
ft € R"™,

The algorithm iteratively produces a point z; € K in
every round ¢, without knowledge of f; (but using the past
sequence of cost functions), and incurs the cost fi(x:). The
regret at time 7' is defined to be

T T
Regret(f1, fa,..., fr) = Z fe(xy) — ;IéIII%th(x)
t=1 t=1

Usually, we will drop the cost vectors from the regret nota-
tion when they are clear from context. For convenience, we
define fo = 0, and let F;, = Zt;:lo .

We proceed to describe a widely used algorithmic tech-
nique in online learning, on the basis of which we will derive
our algorithms.

Since our goal is to get regret bounded by the variation
in the cost sequence, intuitively, a Follow-The-Leader (FTL)
type algorithm, which always chooses the best point so far to
use in the next round, should perform well if the variation is
low. The FTL algorithm by itself doesn’t usually guarantee
low regret, mainly because it is inherently unstable: it may
swing wildly from one point to another from one iteration
to the next at very little provocation (for example, consider
the case of expert prediction with 2 experts for the following
sequence of cost vectors: (1/2,0),(0,1),(1,0),(0,1),...).
To make it stable, we add a strictly convex regularization
function R(z) before computing the leader. The generic al-
gorithm which results is shown below, and is called Follow
The Regularized Leader (FTRL):



Algorithm 1 FTRL

1: Let K be a convex set
: Input: parameter 7 > 0, regularization function R(x).
:fort=1toT do

2
3
4:  Usez; = mingeg (Ft -x+ %R(T))
5
6

Receive f;
. end for

A crucial observation regarding the FTRL algorithm which
we use in the analysis is its equivalence to the following al-
gorithm, which we call Follow the Lazy Projected Leader
(FLPL). This algorithm maintains an auxiliary sequence of
points which are updated using a gradient descent type algo-
rithm, which are then projected into the convex set using the
Bregman divergence Bt defined by R:

Bf(z,y) = R(z) — R(y) — VR(y) - (x — ).

The algorithm as it is given has an implicit update, whose
implementation we ignore for now (in this paper we are only
concerned with the Euclidean and Relative Entropy diver-
gences, in which case the updates are efficient).

Algorithm 2 FLPL

1: Let K be a convex set

2: Input: parameter 7 > 0, regularizer function R(z).

3: fort =1toT do

4: Ift =1, choose y; such that VR(y;) = 0.

5 Ift > 1, choose y; such that VR(y;) = VR(ys—1) —
nfi-1.

Project according to BF:

6:
x; = arg min B%(z, ;)
reK

end for

In fact, the two algorithms above are identical. This is
perhaps not surprising, given what is known about the so
called “mirror-descent” algorithm (e.g. [3]). Nevertheless
this fact is crucial for our later derivations, and we did not
find this precise statement elsewhere, hence we include a
short proof.

Lemma 1 The two algorithms above produce identical pre-
dictions, i.e.

F, - = in BT .
argnéln( A R( )) arg min (x,yt)

Proof: First, let us observe that the unconstrained optimum
x* = arg mingegn (Ft -~z + %}R(x)) satisfies

1
F,+ HVR(x*) =0

By induction, the above equation is also satisfied for ;.
Since R(z) is assumed to be strictly convex, there is only one
solution for the above equation and thus y, = x*. Hence,

Br(z,y1) = R(z) = R(y)) = VR(yt) - (z — yt)
= R(z) — R(y) + 0k - (x — ye).-

60

Since R(y:) and F} - y; are constants (i.e. independent of x),
Bgr(z,y;) is minimized at the point x that minimizes R(x)+
nF; - x, which implies that

argmiII%BR(x,yt) = argmm <Ft x+ R( ))
kS

One important property which follows from the first char-
acterization of x, is the following standard bound on the re-
gret, due to Kalai and Vempala [10], called the Follow-The-
Leader/Be-The-Leader (FTL-BTL) inequality:

Lemma 2 The regret of the FTRL (or equivalently, the FLPL)
algorithm is bounded as:

T
Regret < th (2 — mpy1) + %[R(xT) — R(x0)].

t=1
3 Algorithms and main results

In this section we describe the algorithms for which we prove
variation bounds, and state formally their performance guar-
antees.

3.1 Online linear optimization

We start by describing our result for online linear optimiza-
tion. Following the notation defined in the previous section,
we assume that K C B,,, where B,, is the unit ball in R™, and
that 0 € K. This is without loss of generality, and can be as-
sumed by a suitable scaling and translation of K. Scaling K
down by its diameter D makes the diameter 1 and scales the
regret down by D as well, and changing the coordinate sys-
tem so that K contains the origin doesn’t change the regret
bound. Here, we are making use of the translation invariance
of our regret bounds.

|| < 1. If we have some
other bound R on || f¢||, then we scale down the f;’s by R
to get new cost vectors f{ such that || f/|| < 1. We can then
run the algorithm pretending as if f; is the sequence of cost
vectors.

Define the variation of sequence of cost vectors f1, ..., fr
to be

VART(flana"

T
'afT) = Z ||ft - ,LLHQa
t=1

where 1 = % 23:1 f 1s the vector that minimizes the above
expression. Usually, we will drop the cost vectors from the
notation for the variation, refer to it simply as VAR7, when
the cost vectors are clear from context. To see that scaling
has no effect on the regret bound, note

VART(f1,..s fr) = VART(fl,...,fT),
and

Regret(fy,..., fr) = lRegret(fl, ces fT)-
Thus, if Regret(f7, .. ., fT O(\/VAR7(f{,..., fF)). then
Regret(f1,..., fr) = O(\/VARy(f1,..., fr)). This is ex-

actly the rescaling invariance discussed earlier.



For ease of notation, we define fy = 0, and for any ¢ > 0,
let F, = S04 frand py = 1F, = 13070 £, We in-
stantiate the FTRL/FLPL algorithm with the regularization
function R(z) = £||||%. This regularization was considered
many times before, and the only change hereby is to choose
a different “learning rate” 7, which will enable us to prove
the novel regret bounds. Since VR(z) = « for this regular-
ization, the algorithm that results is:

Algorithm 3 Lazy Projection
1: Let K be a convex set
2: Input: parameter > 0.
3: fort =1to7 do
4 Ift =1, choose y; = 0.
5: Ift >1,lety, =y 1 — n,ft—l-
6
7

Use z; = arg mingex || — ye|-
: end for

Our main theorem with respect to online linear optimiza-
tion is:

Theorem 3 Let f;, fort = 1,2,...,T, be a sequence of
cost vectors to the experts so that || f;]| < 1. Setting n =
min{2/+/VARr,1/6}, the regret of the Lazy Projection al-
gorithm is bounded by

Regret < 16/ VART.

Of course, an upper bound on the total variation VAR
may not be known in advance. Even so, standard n-halving
tricks (start with » = 1/6, and halve 7 as soon as the varia-
tion quadruples, and restart the algorithm) immediately give
an O(+/VAR7) regret bound. The formal application of this
standard trick is omitted from this extended abstract.

3.2 Prediction from expert advice

In the expert learning problem, we assume that we have ac-
cess to n experts. In each round ¢, we choose a distribution
x, over the experts and choose an expert from it. Then, we
obtain a cost vector f; which specifies a cost f;() for ev-
ery expert, and we incur the cost of the chosen expert. Our
goal is to bound the total expected cost of the algorithm (i.e.

Zthl ft - x¢) relative to the total cost of the expert with min-

imum total cost in hindsight (i.e. min; Zthl fe(@)).

For simplicity, we assume that all costs f;(i) € [0,1].
This can be assumed without loss of generality from the
rescaling and translation invariance of our final regret bounds.
In general, all we need is bound R on the maximum value of
f:(3) — f+() over all rounds and all pairs of experts , j. In
each round, the algorithm can be run by scaling the costs
of all experts down by R, and then subtracting out the min-
imum cost in each round. As in the case of online linear
optimization, this scaling and translation doesn’t affect the
square-root variation bound on the regret.

As mentioned before, this setting is a special case of the
online linear optimization where the domain K is the sim-
plex (denoted A) of distributions over the experts. To design
an algorithm for this special case, we need a different regu-
larization function, ne(z) = >, z; Inx; — 2;.The Bregman
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divergence which arises from this is the un-normalized rela-
tive entropy (c.f Herbster and Warmuth [9]), defined on R} ,
called as follows:

Yi
Die(z,y) = E yi'lﬂfml_ +Yi — .
- i
1

Note that when x,y € A, Dye(x,y) is the relative entropy
between z and y, and ne(x) is the negative entropy of . The
Bregman projection on the simplex with the un-normalized
relative entropy divergence is implemented simply by scal-
ing all the coordinates so that they sum to 1.

A significant twist on the usual multiplicative weights al-
gorithm is that we modify the cost functions to explicitly take
into account the variation: we actually run the FTRL/FLPL

algorithm on the sequence of cost vectors f1, fa, ... where

Fold) = [fe(@) + an(fo(0) — e (0))?]

1

where p; = 3
that f@ =0.

For ease of notation, for a vector =, we define the vector
22 as 22(i) = z(i)%2. Thus, we can write f; compactly as
fit = fi +4n(fi — ue)?. The algorithm which results is
given below:

t—1 .
> _o fr- As before, we use the convention

Algorithm 4 Variation MW
1: Input: parameter n > 0.
2: fort =1to T do .
3: Ift =1, choose y; = 1, the all 1’s vector.
4: Ittt > 1, let ye(4) = yr—1(3) exp(—nfi—1(i)), where
fe—1(i) = fe1 (i) +An(feor (i) — pe—1(i))%.
Use Ty = yt/Zt» where Zt = Zi yt(7)
end for

AN

Define

VARE™ = max{VAR((,)},

where /; is the best expert till the #" round, and VAR (i)
S (fuld) — g (0))? where i (1) = 1320, £, (i) s the

mean cost of the i expert till the ¢ round. Our main result
concerning prediction from expert advice is

Theorem 4 Let f;, for t = 1,2,...,T, be a sequence of
cost vectors to the experts so that fi(i) € [0,1]. Setting n =

log(n)/4VART™, 1/10}, the regret of the Variation
MW algorithm is bounded by

Regret < 8+/VAR}™log(n) + 10log(n).

Again, n-halving tricks can be used to obtain this re-
sult in the case when VARZT®* is not known ahead of time.
The additive log(n) term is inherent in all expert learning
algorithms and also appears in all previously known regret
bounds.



4 Analysis of the Lazy Projection algorithm

In this section we prove Theorem 3. The proof uses the dual
characterization of the FTRL type algorithms introduced pre-
viously: on one hand we follow the standard methodology of
the Follow-The-Leader type algorithms, bounding the regret
by distance between consecutive predictions. On the other
hand we use the fact that these predictions are projections of
aggregate cost functions, and analyze the distance between
successive projections. In fact, this latter analysis is the main
crux of the proof - we refine previous approaches by giving
a tighter bound on this distance which is based on simple
geometrical intuition.

Proof: (Theorem 3)

In order to aid understanding, we present the proof as a series
of lemmas. We defer the proofs of the lemmas to after the
present proof. We start by invoking the FTL-BTL inequality
(Lemma 2) to obtain the following bound:

Lemma 5

T
Regret < Z(ft
t=1

We proceed to relate the distance between successive projec-
tions to the variation in the cost vectors. This lemma is the
main crux of the proof, and is based on the geometric intu-
ition depicted in Figure 1. The idea in the proof is that if the
sequence of cost vectors has low variation, then the cumu-
lative cost vector Fy is far away from the convex body, and
in such a case, the distance between successive projections
can be bounded in terms of the length of the component of
fi orthogonal to F}, which can in turn be bounded in terms
Of [ fi — pull. since juy = 1 Fy.

Ty — Tpy1) + —

Lemma 6 For all t, we have:

3n
< —
=5 ||ft

2
|zt — 2| — el + e

Figure 1: The distance between successive projections, viz.
||zt — @¢y1]], is bounded by the length of the component of
—n fy orthogonal to the y; — x;.

For ease of notation, we define a parameter of the cost
vectors which will be further used in the analysis:

T

o(T) o= 3" 2~ pll

t=1

This parameter measures the variation of the cost vectors.
Using the Cauchy-Schwartz inequality and Lemma 6 we get

(ft - Mt) : (9Ct - 9Ct+1)
.fe — pell - F;nft — || + 2

3n 20| fe — pell Mt”
ap t

IN

— pel® +

Plugging this into the regret bound of Lemma 5 gives us the
following bound:

T
3 1
Regret < =13 |[fy = pull® + 2p(T) + PO
t=1

To proceed from here, we use the following Lemma (which,
curiously enough, is proved using the analysis of an online
learning algorithm that has nothing to do with the present
setting!):

Lemma 7 For any vector p, we have:
T T
STUfe = el < SN~ il + 40(T).
t=1 t=1

Plugging into equation (1) we get that, for any vector x (and
. . * 1 T
in particular, for u = p% == £ >, fo),
2, 1
Regret < —ant P+ 2+ 6mp(T) +

We can bound on p(T') as follows:

Lemma 8 For any vector i, we have:

T
p(T) < 34D Ilfe — nll2.
t=1

Finally, by setting n = min{2/v/VARr, 1/6}, the proof is
complete. |

We now give the omitted proofs of Lemmas used in the
above proof.

Proof: (Lemma 5)
By definition of x;, we know that

1 1
F, - — 2 < F- — 2,
t T+ 277||3f3t|| S Ly Ty 2n\|33t+1||



Recall that 1, = F}/t. Hence,
T T
F;
Zﬂt : (It - It+1) = Z Tt : (l"t - $t+1)
t=1 t=1
T
1 1
< e 2
< 35 gylleenll = )
T
1 1 (e
< = 2 - = L1l
= 9 tz:; ]l ( 1 t) T
1
< —.
= 9,

Here, we use the fact that ||x;|| < 1. The stated bound then
follows from Lemma 2. |

Proof: (Lemma 6)
We split up the analysis in two cases:

1. |Fi|| <2/n: Assume that || Fy|| > 0. Since z; and 2441
are the projections of y; and ¥, respectively on K, by
the Projection Lemma 9 we have

2t — 21l < llye — v

= |l fill

< nllfe — pell 4 nll el
2|t

< ol fe — gl +
|l
2

= nllfe — pell + i

If | Fy|| = 0, then the Projection Lemma 9 implies that
e —ze1ll < mlfoll = mlfu— sl s0 the stated bound
still holds.

2. ||Ft|| = 2/n: we first show the following bound:
nllfe = pall + £l /E -

Consider two unit vectors: u in the direction y; —x¢, and
v in the direction y;. We claim that the sine of the angle
6 between these vectors is at most 1 /7| Fy||. To see this,
consider the triangle formed by the points 0, ¢, y:. We
are interested in the angle 6 at vertex y; (see Figure 1).
Let ¢ be the angle at x;. By the law of sines, we have

||| sin(«F) < 1
el gl mllEel

where the inequality follows because ||z:]] < 1 and
sin(9) < 1.

Now, we consider the components of f; along u and v:
define f} = (ft - w)u and f? = (f: - v)v. Consider the
point y; — n f;*. Since it lies on the line joining y; to x¢,
its projection on K is also x;. Here, we use the fact that
ye — nf{ is outside K: this is because

nfill = Nyell =l 7= ol £l =n = 1.

By the Projection Lemma 9, we have

< Nyerr—e—nfi)ll = nll fi=fll- 3)

2

[#¢ — 2]l <

sin(6) =

Hyt -

lZt41—]
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Let x be the projection of f; on the subspace spanned
by u (i.e. * = (f{ - u)u). Then, since f}* is the projec-
tion of f; in the subspace spanned by w, it is the closest
point to f; in the subspace, and since z is also in the
subspace, we have

Ilfe = fill < |Ife — |
< fe=FEN+ I — =
= [lfe = £ + 1121 sin(0)
< fe = SN+ el /nllEl
< [ fe = well + [ fell /nll E2ll-

The last inequality follows because f; is the closest
point to f; in the subspace spanned by v, and i is a
point in this subspace. Plugging this bound into (3), we
get (2).

Now, we have the following bound on || f¢|| /|| F¢||:

Lfell o Wfe = el + e
(727 [

Plugging (4) into (2), we get the required bound.

n 1
< —||f: — +-. 4
< 2Hft o ; “)

Proof: (Lemma 7)
We may assume that ||p|| < 1, since the right hand side is

minimized at yu = Zthl f¢. The statement of the lemma is
essentially bounding the regret of the FTL algorithm played
on the sequence of cost functions ¢;(x) = ||z — f;
t=0,1,2,...,T, with the convex domain the unit ball B,,.
This is because the leader in round ¢ is

t—1 t—1
. 1
arg min { O lz = £:17} = 5 EOfT =
- =

We assume here that the first point played by the algorithm
is 0. Then by the FTL-BTL inequality (Lemma 2), the regret
of the FTL algorithm can be bounded as (here, the regular-
ization function R(x) is null):

T
Regret < co(0) — co(pn) + Y ci(pue) — crlprsn)
t=1
T
< Z Ve(pe) - (e — pep1) (0 ¢ is convex)
t=1
T
< IVerlpa) e = el

~
—

Mﬂ

12(ft — pe)ll - [1pee — e |-
t=1
Now, we have
ot — el = || — 2t St
t t+1 t t+1
1
< o (Ilut|\+||ft\|)
2
< —.
-t



Thus, the regret is bounded by 4p(T). |

Proof: (Lemma 8) We may assume without loss of general-
ity that ;¢ = 0: using the vectors f; — p instead of f; doesn’t
change the value of p(T"). We have

T

o(T) = 3 Slf - Bt
< S0 1+ 1]

~
I
A

INA
M=
|—| ~ | =

*IlftH + ZIIfTII]

= (

lz IIftIIQ] li

t=1

~
I

>

IA
M=
[N}

11
GS;

] (Cauchy-Schwarz)

t=1

IA
|

T
< 3, SR,
t=1

as required. |

The projection lemma which follows is a well-known
fact from convex optimization theory. We include the proof
for completeness.

Lemma 9 (Projection lemma) Let K be a convex set, and
let x and vy be any two points. Let x' and y' be their respec-
tive projections on K. Then

=" =yl < lle =yl

Proof: Assume that 2’ # 3, otherwise the inequality is triv-
ial. By the properties of projections on convex sets, we have

(x—a")-(y —2') < Oand (y—7)- (2 —7') < 0. (5

Consider the line ¢ passing through 2’ and y’, and con-
sider the projections z’" and y” of x and y respectively on
this line. The inequalities (5) imply that along ¢, the order of
the points is (2", 2’,y',y"’). Thus, we have

//||

" =y < 2" =" < llz = yll,

where the last inequality follows because the projection of
any line segment on any line is no longer than the segment
itself. u

5 Analysis of the Variation MW algorithm

The analysis of the Variation MW is straightforward, though
complicated somewhat due to heavy algebraic manipulations.
We outline the main ideas in the analysis now. Our starting
point is Lemma 10, a well-known bound which relates the
regret of the Multiplicative Weights algorithm with the ex-
pected squared losses of the experts (the expectation being
taken under the distributions generated by the algorithm).
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Next, we make crucial use of the fact that the Multiplica-
tive Weighs algorithm puts exponentially higher weight on
experts with lower cost than those with higher costs. Since
we explicitly factor in the variation in the costs of each ex-
pert before computing their exponential weights, eventually
the algorithm starts to concentrate all the weight on experts
with lower cost and lower variation. This yields the desired
regret bound.

We now describe a regret bound on the performance of
the Multiplicative Weights algorithm. This bound is well-
known (see, for e.g. [4, 2]), we include the short proof for
completeness.

Lemma 10 Suppose in roundt of the expert prediction prob-
lem, expert i incurs cost g:(1), where |g+(i)| < M. Consider
the Multiplicative Weights algorithm, that in r()und t chooses
expert i with probability x+(i) x exp(—n ZT 19+ (2)). Then,
ifn <1/M,

logn

Regret < nth Ty +
t=1

Proof: Let w:(i) = exp(— nZtT_ll g-(1)), and let Z; =
>, we(i). Then the distribution on the experts at time ¢ is
exactly wy/Z;. We think of Z; as a potential function, and
track how it changes over time. Initially, Z; = n. We have

- Z wy (i) exp(—ngq (7))
St

Zt(l — (gt
Zy exp(—n(g:

Zt+1

IN

(1= nge(i) + n’g:(4)%) (6)

cxy) + 0297 - m))
cxe) + 0797 - 1))

In (6), we used the fact that for |x| < 1, we have exp(z) <
1+ x + 22. Thus, by induction, we have

T
Zr41 < nexp <—77 Z(gt -xe) + 1
=1

Also, for any expert ¢ we have the bound

Zry1 2 wria(i) —exp< nZgT )

Putting these two inequalities together, taking logarithms and
simplifying, we get the desired bound on the regret. |

IN

T
Z(Q? xt)) :

t=1

For our analysis, we use a slightly different notion of
variation of the experts’ costs: for any round ¢ and any expert

1, define
t—1

= Z(f‘r(l) -

T=1

Q1 (i) e (3))?.

Recall that the usual definition of variation of an experts cost
up to the t" round is simply

S (4 00)

T=1

VAR (i) = — u; ()%,



where p} (i) = ZT 1 f(2). But it is easily seen from (the
1 dimensional verswn of) Lemmas 7 and 8 that

Q.(i) < VAR,(i) + 121/VAR, (i) )

and thus Q; () can serve as a proxy for the true variation (up
to constant factors).
Recall that ¢, is the best expert till time ¢, and VART™ =

maxt<T{VARt(€t)} Define Qmax = maxi<T Qt (ét) Then,

we have that
QIH'I.X < 4VAR?aX7

assuming that VART** > 16. Then, the following Lemma
combined with inequality (7) implies Theorem 4.

Lemma 11 Let fy, fort =1,2,...,T, be a sequence of cost
vectors to the experts so that fi(i) € [0, 1]. Let ¢ be the best
expert at time t, and let () be an upper bound on Q** =

max¢{Q¢(¢;)}. Then settingn = min{+/log(n)/4Q,1/10},

the regret of the Variation MW algorithm is bounded by

Regret < 44/Qlog(n) + 10log(n)

= fi— = pe(£e)
and 1 is the all 1’s vector. Note that for any ¢,

eXP(-??Z%(Z’)) exr>< anT )

where Z is a scaling constant independent of 7. Hence, scal-
ing either the weights exp(—n Zt;:ll g-(1)) or the weights
exp(—n Zi_:ll f+(4)) to sum up to 1 yields the same distri-
bution, viz. x;.

Since we assumed that the f;(i) € [0,1], we conclude
that g;(i) € [—2, 2] (since 4y < 1). Applying Lemma 10 to
the sequence of cost vectors g;, we get the following regret
bound, where /7 is the final best expert:

T B T ~ T
Doferme=) fillr) <) gf-wm+
t=1 t=1 t=1

Here, we used the fact that the Zle al -z = Zthl .
Simplifying using the definition of f;, we get

T T
D fi-ae=)_ fillr)
t=1 -1

Proof: Define g; a1, where oy + 4T”Qt (4),

logn

logn

‘If/+

T T

—4n Z(ft — ) -+ 40 Y (fillr) — pe(er))?
t=1

logn

T
< 0 97 — 4 — m)?] @+ An(Q +1) + .

=1
®)

since 3 (fu(lr) — m(0r))? < Qr(lr) +1 < Q + 1.

The following lemma bounds the first term in (8). The
proof is a straightforward calculation, and so we defer its
proof to after the present proof.
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Lemma 12 [fn < 1/10, then for any i, we have

g¢ (1) = A(fe(0) = pue(0))® < 2(pe(i) — o).
Plugging this bound into (8), we get that

; 1
Regret < 2nZ(Mt—at1)2-act—i—%—kéln(Q—&—l). )

t=1
We now proceed to bound ZtT=1(Mt - Oztf)z . We
bound each term in the summation separately. For any ¢ <
loen "we simply bound |1 (i) — c;| < 2 and hence we have
(e — a1)? -y < 2.
Now let ¢ > 198" For convenience of notation, we drop
the subscript ¢ from 2(¢) and refer to them as x(i).

(e — Oétf)2 - x

Z (e (i) — o) (i) + Z (pa (i) — o) ?(i)

G (1) <o i (3) >0
2
< X [Paw| s X Gut - ael
Gipe (1) <o i (3) >0
(10)
477 ) 2 . 2 4.
Yaw] + X o ay

i (1) >

Here, (10) follows because when p;(i) < ar = pe(4y) +
%Qt(ft), we have |,Ut - Oét| < %Qt(gt) since /J,t(l) >
pe (€r)-

We now bound each term of (11) separately. The proof
of the following lemma is a straightforward calculation and
we defer it to after the present proof.

Lemma 13 The first term of (11), summed over all t, can be
bounded as:

D

t=1

4 2
[:Qt(et)] < 32°Q.

The hard part is to bound the second term of (11). We
now proceed to do so. The intuition in the following analy-
sis is that the Variation MW algorithm tends to concentrate
exponentially high weight on the experts that have low cost.

Let I be the index set of all ¢ such that pu:(i) > oy.
Note that ¢, ¢ I. Now, we have x(i) o exp(—ntu:(i) —

4n%Q4 (7)), and thus z(¢;) o exp(—ntay). Thus, (i) can be
written as:

(i) exp(—ntpe(i) — 40*Q¢(4))
exp(—ntaw) + 324, exp(—ntp(j) —
A(#) exp(=nt (pu (i) — o))
L3250, M) exp(=nt(pe(§) — o))’
where \(i) = exp(—4n?Q;(i)). Note that all A\(4) € (0, 1].
Define, for all 4, d(i) = (u¢(i) — o). Note that for i € I,

4n?Q4 (7))

d(i) € [0,1]. Thus, we have
N2 A(i)d(i)® exp(—ntd(i))
210D = 2 TS A0 )



To upper bound ", d(i)?x (i), we can neglect the factors
in the denominator which depend on ¢ ¢ I U {/;}; this only
increases the value. Let d/ and ! be the vectors d and A
restricted to the index set I. Define the function 7 : (0, 1]!1x
(0,11 — R as

21t 21 X0 explnid)

This maximum value of this function on its domain gives an
upper bound on the expression above.

Lemma 14 Fort > loin, and for any (A1, d!)
[0, 1]11, we have

€ (0, 1] x

2log?
KM, dl) < %.
Ui
Putting Lemmas 13 and 14 together, we have that
T
Z(ﬂf—at )?my < Z 2+Z{ Q¢ (L) ]
t=1 t<oen 10?;”"
21log*n
+ Z 2t2
> logn
41
< 322Q + —281
Plugging this bound into (9), we get
1
Regret < e 641°Q + 8log(n) + 4n(Q + 1).
n

Now, if we set n = {4/logn/4Q,1/10}, we get that the
regret is bounded by
Regret < 44/Q -logn + 10log(n)
]
Again, it may not be possible to get an upper bound on
QP a priori, but we can use the same n-halving idea (start
with 7 = 1/10, and halve 7 as soon as this maximum quadru-

ples, and restart the algorithm) and get regret that bounded
by

Regret < O ( QP log(n) +log(Q$a")log(n)> .

The details of this bound are standard and are hence omitted
from this extended abstract.

We now give the omitted proofs of Lemmas 12, 13, and 14.
Proof: (Lemma 12)
We have:

9:()* = (fe(4) — s + 4n(f2 (i) —
= (fi(i) — or)? + 8 f1 (i) —

+ 1607 (fi(i) — pe(i))?
< (fild) — ) + (160 + 160°) (f: (i) — pe(i))?

pe(i)*)?

(i
) (feli) — pue(3))®

(12)
< 2(pe(i) — o) 4 (2 + 160 + 1607) (fo (i) — pe(i))?

(13)
< 2(pe(i) — o) 4+ 4(f2 (i) — pae (i) (14)

Here, inequality (12) follows because |f:(¢) — p:(5)] < 1
for any 4, j, and |f:(i) — ay| < 2, inequality (13) follows
from the fact that (a + b)? < 2a? + 2b? for any real numbers
a,b, and inequality (14) follows since 161 + 16n% < 2 if
n < 1/10. The lemma follows. |

Proof: (Lemma 13)

Note that for t < Q, Q;(£:) = S2°2) (f,(6) — pr ()2 < t,
and for t > @, Q+(¢;) < Q. Thus we have
T 2
4n 2 2 Q* 2
> LQt(&)} < 16| Y 1Y | < 32°Q.
t=1 t<Q t>Q
]

Proof: Lemma 14)
Let S ={i: d(i) < longt"}, and let S’ = '\ S. We upper
bound h(\!, d?) as follows:

I oI A§)d(i)* exp(—rtd(i))
M, dY) < Zﬁ A(j) exp(—ntd(j))

€S
+ Z 2 exp(—ntd(i))
€S’
A(2)d(i)* exp(—ntd(i))
= eaSX{ (i) exp(—ntd(i)) } (15)
log®n
+ Z W exp (—

€S’

logn) (16)

2log*n
772t2

In (15) we use the inequality %fl Z < max;<n, % for pos-
i—=1 Yi - i

itive reals a; and b;. In (16), Welﬁsed the following facts (a)

A(i) < 1, and (b) the function 22 exp(—ntz) has a negative
derivative (and is thus decreasing) when x > i >, and thus its

, 1] is obtalned at log" |

maximum over the range [ Og n

6 Conclusions and Future Work

In this paper, we investigated the possibility of bounding the
regret of online learning algorithms by terms which depend
on the variation of the cost sequence, rather than the number
of prediction rounds. We analyzed two algorithms, Lazy Pro-
jection and Variation MW, and showed that these algorithms
obtain variation-bounded regret. Such bounds are significant
not only because they show that it is possible to suffer much
less regret than previously believed when the cost sequence
is particularly benign, but also because they match the re-
gret bounds of natural regret minimizing algorithms in the
stochastic setting of independent cost functions from a fixed
distribution.

We believe that this work opens up many new directions
for future research, all related to bounding the regret in terms
of the variation of the cost sequence in the various different
scenarios in which regret minimizing algorithms have been
devised: bandit settings, strictly convex cost functions, on-
line convex optimization and so on. We conjecture in all
such scenarios, it is possible to get variation-bounded regret.



Specifically, we conjecture that any dependence on T, the
number of prediction rounds, in the regret bound can be re-
placed by the same dependence on the variation of the cost
sequence. In other scenarios, the variation needs to be de-
fined carefully in settings in which it is not natural or obvi-
ous, such as in the case of online convex optimization.
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Abstract

We propose anew online learning algorithm which
provably approximates maximum margin classifiers
with bias, where the margin is defined in terms of
p-norm distance. Although learning of linear clas-
sifierswith bias can be reduced to learning of those
without bias, the known reduction might lose the
margin and slow down the convergence of online
learning agorithms. Our agorithm, unlike pre-
vious online learning agorithms, implicitly uses
a new reduction which preserves the margin and
avoids such possible deficiencies. Our preliminary
experiments show that our agorithm runs much
faster than previous a gorithms especially when the
underlying linear classifier has large bias.

1 Introduction

Large margin classification methods are quite popular among
Machine Learning and related research areas. Various gen-
eralization bounds (e.g., [32, 34, 10]) guarantee that linear
classifiers with large margin over training data have small
generalization error with high probability. The Support Vec-
tor Machine (SVM) [5] is one of the most powerful among
such methods. The central idea of SVM is to find the maxi-
mum 2-norm margin hyperplane over linearly separable data.
Further, by using kernelsand soft margin formulations, it can
learn large margin hyperplane over linearly inseparable data
aswell. The problem of finding the maximum 2-norm mar-
gin hyperplane over data is formulated as a quadratic pro-
gramming problem. So the task of SVM can be solved in
polynomial time by using standard opti mization methods.
On the other hand, solving quadratic programming prob-
lems is time-consuming, especialy for huge data which is
now common in many applications. This motivates many
researches for making SVM more scalable. One of major
approaches is to decompose the original quadratic program-
ming problem into smaller problems which are to solve [28,
29, 16, 8, 17]. Ancther popular approach is to apply on-
line learning agorithms. Online learning agorithms such
as Perceptron [31, 27, 26] and its variants [1, 11, 22, 13]
work in iterations, where at each iteration, they process only
one instance and update their hypotheses successively. On-
line learning algorithms use less memory, and are easy to
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implement. Many online learning algorithms that find large
margin classifiers have been proposed, including, e.g., Ker-
nel Adatron [12], Voted Perceptron [11], Max Margin Per-
ceptron [21], ROMMA [22], ALMA [13], NORMA [19],
LASVM [4], MICRA [35], and Pegasos[33].

However, most of these onlinelearning algorithms do not
fully exploit the linear separability of data. More precisely,
they are designed to learn homogeneous hyperplanes, i.e.,
hyperplanes that lie on the origin, and they cannot learn lin-
ear classifiers with bias directly. So, in order to learn lin-
ear classifiers with bias, typical online learning algorithms
map instances from the origina space R™ to an augmented
space R™+! with an extra dimension by using the mapping
¢ : x — & = (z,—R), where R is the maximum 2-norm
of instances [10]. Then, a hyperplane with bias (w,b) in
the origina space correspondsto the hyperplane without bias
w = (w,—b/R) inthe augmented spacesincew - « + b =
w - &. S0, by using this mapping, learning linear classifiers
with bias can be reduced to learning those without bias. But,
this mapping weakens the guarantee of margin. Suppose that
for a sequence of labeled examples (x1,y1), .- ., (7T, yr)
(z e R"andy, € {—1,+1}fort =1,...,T), thereisa
hyperplane with bias (u, b) that has margin

yt(u -y + b)
[[ull2R

where instances are normalized by R so asto limit the max-
imum 2-norm of instances to be one. Then, the correspond-
ing hyperplane @ = (u, —b/R) over the augmented space,
in which the maximum norm of instances is bounded by R,
has margin

. ylu-x) < y(u-x+0) 1

" albk T 2wRR 2
since [|a3 = [lul® + b?/R? < 2||ull?, and ||Z||3 < 2R.
Even though the loss of margin is at most by a constant fac-
tor, it might cause significant differencein prediction perfor-
mance over practical applications.

In this paper, we propose a new online learning ago-
rithm that approximately maximizes the margin. Our algo-
rithm, PUMMA (P-norm Utilizing Maximum Margin Algo-
rithm), is an extension of ROMMA [22] in two ways. First,
PUMMA can optimize the bias directly by using an implicit
reduction from learning of linear classifierswith biasto learn-
ing those without bias, instead of using the mapping ¢.

7



Second, PUMMA can provably approximate the max-
imum p-norm margin classifier for p > 2. A benefit of
maximizing p-norm margin is that we can find sparse lin-
ear classifiers quickly. Technicaly speaking, PUMMA is a
variant of p-norm algorithm [15, 14]. It is known that, if
weset p = oo or p = O(lnn), the p-norm algorithm be-
haves like online multiplicative update algorithms such as
Winnow [23], which can converge exponentially faster than
Perceptron, when the underlying linear classifier is sparse.
For example, if the target concept is a k-digunction over n
boolean variables, Winnow can find a consistent hypothesis
in O(kInn) mistakes, while Perceptron needs 2(kn) mis-
takes [20].

We show that PUMMA, given aparameter § (0 < 6 < 1)
and p > 2, finds alinear classifier which has p-norm mar-

ginatleast (1 — d)vyin O(%) updates, when there ex-
ists a hyperplane with p-norm margin ~ that separates the
given sequence of data. The worst-case iteration bound of
PUMMA is as the same as those of typical Perceptron-like
algorithms when p=2 and that of ALMA [13] for p > 2,
PUMMA is potentially faster than these previous algorithms

especially whenthe underlying linear classifier haslargebias.

For linearly inseparable data, PUMMA can use kernels
and the 2-norm soft margin formulation [9] for p = 2, as
well as previous Perceptron-like online learning algorithms.
Further, we extend PUMMA to deal with 2-norm soft mar-
gin formulation for p > 2. Note that in standard implemen-
tations of the SVM [16, 8, 17], the 1-norm soft margin for-
mulation (see, e.g., [10]) is preferred since it often requires
less computation time. However, in general, both soft mar-
gin formulations are incomparable in terms of generalization
ability, which depends on data and choices of kernels. For
online-based implementations of the SVM with 1-norm soft
margin see LASVM [4] and Pegasos [33].

There are other related works. For p = 2, previous al-
gorithms such as Kernel Adatron [12], NPA [18], SMO al-
gorithm [29], Max Margin Perceptron [21], and LASVM [4]
can find bias directly as well. However, the first three algo-
rithms are not suitable for the online setting since they need
to store past examples to compute the bias. Max Margin
Perceptron finds the same solution of our algorithm, but its
upperbound of updates is In(R/~) times worse than that of
PUMMA . For LASVM, there is no theoretical analysis of
its convergence rate. For p = oo, ROME agorithm [24] is
also similar to our present work. It isan onlinelearning algo-
rithm that finds an accurate linear classifier quickly when the
margin of the underlying classifier is defined as co-norm dis-
tance. On the other hand, ROME requires prior knowledge
of the margin and bias. For amore general convex optimiza-
tion technique which includes ROMMA as a special case,
see[3].

Inour preliminary experiments, PUMMA convergesfaster
than previous online algorithms over artificial dataset, espe-
cially when the underlying linear classifier haslargebias. In
particular, for p = O(Inn), PUMMA isfrom 2 to 10 times
faster than ALMA. Over real datasets, PUMMA often out-
performs previous online algorithms.
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2 Préiminaries

21 Norm

For any vector x € R™ andp > 0, p-norm |||/, of  isgiven
as(dr, |xi|1’)%. In particular, ||z« isgiven as || x|«
max; |z;|. It can be shown that, for any fixed x € R", the
p-norm ||xz||,, is decreasing with respect to p, i.e., ||z|, <
lz||, forany 0 < p < p’. Forp > 1, g-norm is dual to
p-normif 1/¢g=1—1/p. Forp > 1 and ¢ suchthat 1/p +
1/q = 1, itisknown that

lZlloo < llzllp < 2]l < n'/?|la]|o.

2.2 Onlinelearning

We consider the standard setting of online learning of linear
classifiers, in which learning proceedsin trials. At each trial
t, the learner receives an instance x; € R"”, and it predicts
alabel g € {—1,+1}. Then the learner receives the true
label y; € {—1,+1} and then it possibly updatesits current
hypothesis depending on the received label. In this paper,
we assume that labels are determined by a linear classifier
f(x) = sign(w -  + b) for some weight vector w € R"
and biasb € R, wheresign(a) = +1 if a > 0, otherwise
sign(a) = —1. In particular, if y; # 4, we say that the
learner makes a mistake. A typical goal of online learning
is to minimize the number of mistakes as small as possible.
Most of known online algorithms are mistake-driven, that is,
they update their hypotheses when they make a mistake.

The p-norm distance between a hyperplaneand apoint is
computed as follows:

Lemmal([25]) LetV ={v e R"|w-v+b=0}. Then,
for any x € R"™,

min ||z — o], =

whereq =1/(1—1/p) L.

Based on Lemma 1, the p-norm (geometric) margin of a hy-
perplane (w, b) over an example (x, y) is defined as

y(w -z +0b)
wllq
For any sequenceof examples S = ((z1,v1), - - -, (T, y7))

(T > 1), themargin of ahyperplane (w, b) over S is defined
as the minimum margin of examplesin S. The algorithms
we consider update their hypotheses if not only they make a
mistake, but also their hypotheses have insufficient margin.
In this paper, the learner’s goal is to minimize the number
of updates in order to obtain alinear classifier with approxi-
mately maximum p-norm margin over the given sequence of
examples.

2.3 Convex duality

We review the basic results on convex anaysis. Let F' :
R™ — R be a strictly convex differentiable function. The
Legendre dual of F', denoted as F'*, is defined by

F*(0) (0-w— Flw)).

su
WeRn

'More generally, thislemma holds for an arbitrary norm and its
dual norm.



It can be verified that £'* isa so strictly convex and differen-
tiable. Then the following lemma holds:

Lemma2([30,7]) 1. F**=F.
2. Flw)+ F*(0) =60 -wifandonly if 8 = VF(w).
3. VF*= (VF)~L

In particular, we use F(w)
paper. Let f = VF, thatis,

sign(w; ) |w; |91
) = Sl
[wllg

By Lemma 2 and some cal cul ations, we obtain the following
property.

Lemma 3 ([14])

= %|jw||2 throughout this

1. Theinverse f ! of f isgivenas
FH(w)i =

wherel/p+1/qg=1.
2. |[f(w)llp = llwllg-
3. w- f(w) = || f(w)|; = [wl3.
Finally, we will use the following bound |ater.

Proposition 1([15, 14]) Let G(6) = 3|62 withp > 2

andlet g = VG. Thenit holdsfor any « and a that

(p—1)
2

sign(w; )|w;|P~1
T —
Jwllp

G(0+a)<G(0) +9(0)-a+ lal3-

3 PUMMA

We consider the learning of maximum p-norm margin classi-
fiersin the onlinelearning setting. By Lemmal, the problem
of finding the maximum p-norm margin hyperplane over a
sequence of labeled examples S = ((x1,41),. - - (T, y7))
isformulated as follows:

oy

1
%{ggllwllq,

subject to:

ye(w-xe+0)>1 (1<t <T),

where ¢ is such that 1/p + 1/¢ = 1. Since the problem
(1) is a convex optimization problem with linear inequality
constraints, it can be solved by optimization methods such as
interior-point methods [6]. However, in the context of online
learning, it is time-consuming to solve the problem (1) at
each trial. Further, it is necessary to store all the past given
examples.

For p = 2, Li and Long proposed an elegant solution of
the problem (1) in the online learning setting [22]. Their al-
gorithm, ROMMA,, is an onlinelearning algorithm that finds
approximate 2-norm maximum margin hyperplanes without
bias. At each trial ¢, given an instance x;, ROMMA predicts
:l)t = sign('wt . act) such that
@)

1 2
w; =argmin = w3,
subject to

Yroaw -z > landw - wyq > w13
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It can be shown that the constraints of the problem (2) is
relaxed, that is, the constraints of the problem (2) is wesaker
than those of the problem (1) whenp = 2 and b, isfixed with
0. In fact, the second constraint in (2) corresponds to the
hyperspace that contains the polyhedron which representing
theconstraintsy,; (w - x;) > 1(j =1,...,t — 2).

Our algorithm, PUMMA, generalizes ROMMA in two
folds: (i) PUMMA can maximize any p-norm margin with
p > 2. (ii) PUMMA can directly learns non-homogeneous
hyperplanes. PUMMA takesd (0 < §d < 1)andp (p > 2) as
parameters. For initialization, it requires initial weight vec-
tor wy = 0 € R™ and positive and negative instances = }°*
and x1“Y, respectively. These two examples are easily ob-
tained by keep predicting —1 until the first positive example
appears and predicting +1 until the first negative example
comes. If either a positive or negative example cannot be
obtained, then the number of updatesis at most 1.

Then, givenasequence S =((x1,y1), - - -+ (®t—1,Yt—1))
of examples and an instance x;, PUMMA predicts 3,
sign(wy - ¢ + b;), where w; and b, is given asfollows:

©)

1
b)) = in = 2
(w¢, by) argmmin QI\wIIq,

subject to :
+b>1, w9 +b< -1

w - waS

w- f(wi—1) > H’wt71||3;
pos neg

whereq = 1/(1 — 1/p), =;”° and =;"*? arethelast positive
and negative examples which incur updates, respectively. If
Yt (wt - Ty + bt) < 1-4,PUM MAp((S) updat% (wfﬁ, ZC?_T:‘({)
= (x4, ), if yo = +1, and (777, 2{]) = (27, @),
otherwise.

3.1 Solution of the optimization problem (3)

Now we show the solution of the optimization problem (3).
In this subsection, for simplicity, we denotev = w,_1, 0 =
flwiq), zP5 = 2V and "9 = x;°?. Let L be the
Lagrangian, that is,

1
L(w,b, o, B) = 5 |wl

>

Le{pos,neg}
+B([vll7 — 0 - w), (4)

where y?P°¢ = +1 and y™9 = —1. Then the partial deriva-
tiveof L w.r.t. w; and b is given respectively as

0L

+ o {1 —of (w2’ +b)}

ow. (w); — Z y'o'z) = 30;, and  (5)
w; £e{pos,neg}
L

Since the solution (w*, b*) must enforce the partial deriva-
tives (5) and (6) to be zero, the vector w * is specified as

w* = f ' (az + 30),

where o = aP?% = "%, z = xP°% — ™9 and
_ sign(6;)0;P~*
FH0)i = = —.
edlfs



PUMMA ,(6)

begin

1. (Initidization) Get examples (x!”°,+1)
and (7, —1). Let wy = (0,...,0) €
Rn

2. Fort=1toT,
(d) Receive aninstance ;.
(b) Let

(w0, b0) = arg yin 2 w2,
subject to:

(w - x{™ +b)

(w -z +b)

w- fwe—1) > ||wf 1l2-
(c) Predict g, = sign(wy - & + by).

(d) Receive the label y;. If yi(w;
b:) < 1— 4, update

>1
< -

.wt+

(xpos wneg) _ {(wfv ZC? g) 7(yt = +1)
) T\ @2 (= 1)
Otherwise, let
(xry1 i) = (@™, =).

end.

Figure 1: The description of PUMMA .

Further, by KKT conditions, the parameters oo and g satisfy
that

a(l —w* - xP? —b") =0, (7
a(l+w* -9 +b") =0, (8
1—w* xP® —bp* <0, (9)
14+ w*-x™9 +b* <0, (20)
a >0, (11)
B(lvlg —w*-68) =0, (12
o]l — w* -6 <0, (13

and 3 > 0. (14

We show that o > 0 by contradiction. Assuming that o = 0,
we have w* = f(560) = (v. Then the conditions (12), (13)
and (14) implies 8 = 1 and thus w* = v. However, the
conditions (9) or (10) cannot be satisfied for w* = v, which
is acontradiction.

Now we consider two cases. (i) Suppose that 5 = 0.
Then, since & > 0 and the conditions (7) and (8) hold, the
vector w* isgiven as

(2), (15)

where a = 2/|z|12. (i) Otherwise, i.e., if 3 > 0, by the
conditions (7), (8), and (12),

w' = f~

w* =af”

H(az + Bv), (16)
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where o and 3 where o and 3 satisfies the following equa-
(az + 80) -z =2,

tions
f71
{fl(az +60) -6 = |[v]]2.

That is, the optimal solution w* satisfies the constraints of
the problem(3) with equdity. In this case, the solution can
be obtained by maximizing its Lagrange dual L* which is
defined as

(17)

L*(a,f) =
Further, with some calculations, L* is computed as

L*(a, )
Then, Note that the partial derivatives of L* are
oL* _
da -f
oL* _

o5 - !
Since L* is concave, the equations (17) is satisfied if and
only if L* is maximized. So, given an initial assignment

(e, Bo), we can approximate («, 3) by repeating the New-
ton update

2)- () vt

Brt1

mln L(w b, a, 3).

1
= —5laz+80I5 + 20+ BlOIF. (18

Yoz +30) - z+2

"z +50)-0+ 0.

for sufficiently many steps, where

%ZL* = Z Ffl(az +36);2

g;g; —Zf (az + (36);z:6;,

gig; —Zf (az + 6);zi0;,

%22%* Z f (az +£6):0
and

, -1
o= 2L

- - 2)% Fp-1) l'f;';i
In our implementation, we set initial values as oy = 0 and
. Tnlp;articular, for p = 2, it holdsthat f(z) = f ! = .

So, we have the following analytical solution for equations
an:

[v[*(2 —v - 2)
[vl[[|z]]> = (v - 2)?
[v]?]lz]]* — 2(v - 2)
[vll2l|z]? = (v-2)*

o =

and

g = (19)



Figure 2: Illustration of the implicit reduction which pre-
serves the margin. Each pair of positive and negative ex-
amples in the original space (left) corresponds to a positive
example in the new space (right).

\7

- o ’

bias A
. . . e

A origin origin

A

Asasummary, in order to obtain the solution w *, wefirst
assumethe case (i) and check whether the condition w*-6 >
|[v]|2 holds or not. If it does, the solution is given as (15).
Otherwise, the case (ii) holds and the solution is (19) for
p = 2, or we apply Newton method for p > 2.

In either case (i) or (ii), thebias b* is given as

w* . prS + w* . wneg
2

b= — (20)

3.2 Implicit reduction to learning classifier s without

bias

We show an interpretation of PUMMA from the viewpoint of
reduction. Let usfix p = 2. Then, itiseasily verified that the
update of PUMMA is identical to that of ROMMA for the
instance z = (x}”® — x;*?) /2 whose |abel is positive. This
observation implies a reduction from learning linear classi-
fiers with bias to learning of those without bias. Let X =
XPos U X9 be a subset of R™, where XP°¢ and X9 are
positive and negative set of instances and X' P°% N X9 = ().
Assume that there exists (u, b) such that w - x?°* +b > 1
for each xP%° € AP°%, and u - ™9 + b < —1 for each
x™%9 € X™%9. Then we consider the set

xPos _ gpneg
— pos pos neg neg
Z = {72 ‘ xPo% e XPoS "9 e X } )

That is, from a set of positive and negative instances, we de-
fine the set of positive instances. Then, the following prop-
erty holds for Z.

Theorem 2 Fix any p satisfying 2 < p < oo. Let (u,bd)
be the maximum p-norm hyperplane over X. Then, u is
the maximum p-norm hyperplane over Z aswell. Also, the
opposite holds for some b.

Proof: Let w’ be the maximum p-norm hyperplane over Z.
Note that w - z > 1 for each z € Z (See Figure 2). So,
we have [|u2 > [|o/||2 for g st. 1/p+1/q = 1. Now let
b =o' - (2P° + ") /2, where 2P°° and £ sdtisfies
u' - (2P — &™) = 2, forany «P°° € AP°°. Notethat such
apair (2%, ") dways exists since »’ is the maximum
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p-norm margin hyperplane. Then, we have

u/ . pPos 4 b/ _ u/ . ppos + b/ + u/ . (wpos _ ipoS)

u' - (BPOS — Zned ] .
= ( 5 ) +u' - (2P — 2P%)
=14+ u/ . (wpUS _ pneg _ zpos + d:neg)
>142-2=1.

Similarly, it holdsfor any ™9 € X9 that u' - ™9 + b’ <
—1. So, weget [|u'||2 > [lu2. Finally, since the function
Il - ||3 (1 < g < 2)isgtrictly convex, the minimum is unique.
Thereforewe obtainu = u'. ]

This theorem ensures that finding the maximum margin
hyperplane with bias can be reduced to finding those without
bias over pairs of positive and negative instances. Observe
that this reduction does not reduce the margin.

PUMMA can be viewed as a “wrapper” algorithm of
ROMMA equipped with this reduction. Given positive and
negative instances x?°¢ and "9, PUMMA constructs apos-
itiveinstance z = (x?°° — x™9) /2 and train ROMMA with
z for atrial. Then PUMMA receives aweight vector w and
setbiasbashb = —(w- (xP°° +x™9))/2. If PUMMA makes
amistake (or does not have enough margin) over a new in-
stance, it updates z and train ROMMA again.

It is possible to use any online learning algorithm that
finds maximum margin linear classifier without bias as sub-
routines if it satisfies the following requirement: such an al-
gorithm must output a weight vector whose support vector is
z. However, most of known online algorithms maximizing
the margin does not satisfy this requirement and ROMMA
seems to be the only one satisfying the requirement so far.

3.3 Convergence proof

We prove an upperbound of updates made by PUMMA. First
of al, by the KKT conditions for equations (7) and (8), the
following property holds:

Lemma4 Fort > 1, it holdsthat
wy -+ ZCi)OS +bt =1 and wy -w?eg +bt = —1.

Then we prove that the optimal solution of the offline op-
timization problem (1) isafeasible solution of the PUMMA's
optimization problem (3).

Lemmab5 Let (u,b) € R™ x R be a hyperplane such that
yij(u-x; +0b) > 1forj = 1,...,¢t. Then, it holds that
w- f(we) > [lwe; and Jullg > [wellg.

Proof: For convenience of the proof, wedenoted; = f(w,).
Without loss of generality, we can assume that an update is
made at each trial t > 1. The proof for the first inequality is
done by induction on ¢. For ¢t = 1, the vector is written as
w; = f1(60,), where 8, = a(x?** — %) for somea >
0. By the definition of w and b, it holdsthat w - }° +b > 1

andu - 1 + b < —1, respectively. So, we obtain
u-0, =a(u- i —u-xiY)

>a(l-b+1+b) =2a.



On the other hand, by Lemma 4, we have

lewnll; = w101 = aws - (24" — @) = 20,

which showsu - 61 > [Jw 2.

Suppose that for ¢t < t/, the statement is true. Then,
there are two cases: (i) wy - 0y—1 = [Jwy 1|7, and wy
£ (0y), where@, = a(x!?* —x) + 56,1 for somea
and 3, or (||)’LUtl 2O > ||wt1_1|\3, and wy = fﬁl(Bt/),
where 0, = a(xl*® — x;“9). For the case (ii), the proof
follows the same argument for ¢ = 1, so we only consider
the case (i). By the inductive assumption, we have
—u-z,) + fu- Oy
> 2a+ BHwt’—ng

By Lemma 4,

0S8
u-0y =a(u-xh

[we |7 = wer - Oy

wy - afx}”®

200 + B||wt/_1||§.
So, we get u - 8, > [lwy||2 and thus we prove the first
inequality. The second inequality holds immediately since

both (u,b) and (w:, b;) satisfy the same constraints in (3)
and (wy, by) minimizes the norm by definition. [ |

neg

=)+ Pwy Oy

Next, prove the following lemma:

Lemma6 For each trial ¢ > 1 in which an update is in-
curred,

62

2 2

w — |lw >
|| ¢ 1Hq || t”q - 2(1) - 1)R2,

where R = max;=1.___ |[|Z;]p-

Proof: By the weak duality theorem (see, e.g.,[6]), the opti-
mum of the problem (3) is bounded below by the Lagrangian
dua L*(a, 3) in (18) for any o > 0 and 8 > 0. Therefore,
using the notations in the derivation of update,

1, . 1 . 1
SlwlZ = SIl2 > (e, 8) = S o2
So, by using Proposition 1 and letting 5 = 1, we have
N 1
L*(a,1) = 5]
- G0+ az)+ G(0) + 2«

>—g(0)-az— (p—;l)a?nzng + 20
(r—1 5 2
=-ovz-—o—a 2], + 2a.
Theright hand side of the inequality above is maximized if
2—v-z
o= (22)
(p = Dll=[I3
Notethat « is positivesincev - z < 2 — §. Subsisting (21),
1 (2—v-2)? 52
L*(a,1) — =||v (22 > .
@) =30l = 56— = -
|

Now we are ready to prove our main result.
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Theorem 3 Supposethat for asequence S = ((x1,91), .- .,
(wr,yr)), there exists a hyperplane (u, b) € R™ x R such
that y¢(u - @ +b) > 1fort = 1,...,T and the hyper-
plane (u, b) has p-norm margin v over S. Further, let R =
max;=1, .7 ||Z¢||p. (i) Thenthe number of updates made by
PUMMA,,(0) is a most

(0~ DB ul?
0 ( ! ) |

(i) PUMMA,,(4) outputs a hypothesis with p-norm margin
at least (1 — &)~y after at most the updates above.

Proof: Asin Lemma 5, without loss of generality, we as-
sume that PUMMA updatesfor¢t =1,..., M(M < T). By
Lemma 5, we have ||lw||, < ||ull, for ¢ > 1. Further, by
Lemmas, it holdsthat after M updates

52M
2 2
ully > lwrll; > DR

2| u||;R? 2| u|;R?
2 2

whichimplies M < . Further, after at most
updates, we have y,(w; + b;) > 1 — ¢ for¢t > T. Then the
achieved marginis at least

1-— 1-
lwllg — llullq

(%)
(o)

>

=(1-190)y.

Sinceit holdsthat ||z||, < ||x||1 forp > 1 and ||z| o <
||, < n'/?||z|, we obtain the following corollary (A
similar result was shownin [13]).

Corollary 4 Assumethat for asequence S = ((x1,y1), - - -,
(wr, yr)), there exists a hyperplane (u, b) € R™ x R such
that ys(u - @ +b) > 1fort = 1,...,T and the hyper-
plane (u, b) has co-norm margin v over S. Further, let R =
maxi—1,..7 ||Zt]|co. Then, by setting p = clnn (¢ > 0), (i)
the number of updates made by PUMMA ,,(9) is a most

R?||lul|?Inn
o).
(if) PUMMA () outputs a hypothesis with co-norm margin
at least 152 after at most the updates above.

4 Kerne and Soft Margin Extensions

4.1 Kernel Extension

Aswell as SYM, ROMMA and other Perceptron-like online
algorithms, PUMMA can use kernel functions for p = 2.
Notethat, at tria ¢, the weight vector w, iswritten as

5

j=1

t—1

H an) ﬂjzjv

n=j+1

thus an inner product w, - x; is given as a weighted sum
of inner products x; - «; between instances since z;
x?® — x“. Therefore, we can apply kernel methods by
replacing each inner product x; - ;» with K (x;, ;) for
some kernel K. More practically, we can compute the in-
ner products between w; and a mapped instance using the

recurrence w; = oy (2} — x}) + Brw;_1.



4.2 2-norm Soft Margin Extension

In order to apply PUMMA to linearly inseparable data, as
in [21, 22], we employ the 2-norm soft margin minimiza-
tion [9, 10], which is formulated as follows: Given a se-
quence S = ((®1,91),...,(xr,yr)) and letting S be the
set of examplesin S,

1an—nwnu— > &, (22)

(T,y)es
subject to

yw-z+b) =1Lz ((=,y) €),

where the constant C' > 0 is given as a parameter. Here, we
implicitly assume that labels are consistent, i.e., if ¢; = x4
then y, = y-. So we drop y from the subscript of &.

Forp = 2, itiswell known that thisformulation is equiv-
aent to the 2-norm minimization problem over linearly sep-
arable examples in an augmented space:

N
min ||,
b,

subject to:
ylw-z+b)>1(xes),

where w = (w,/C¢), & = (=, “heq) for each (z,y) €
S, and each e isaunit vector in R!S! whose element corre-
sponding to « is 1 and other elements are set to 0. Touse a

kernel function K with this soft margin formulation, we just
modify K asfollows:

Ajj

= K(x:. x: 2

(zi, ;) + c
where A;; = 1if i = j, otherwise A;; = 0.

For p > 2, we modify PUMMA so that, given S =

f((xjawj)

(23)

((x1,11), .-+, (xt—1,y:—1)) and an instance x,, it predicts
J¢ = sign(wy - & + by), where (wy, by, &,) is specified as
follows:
b = in L2 + & ; 24
(wi b, &) =arg min Slwli+5 > & @9
(w:y)EMt
subject to:
w- x4+ b>1— P, (25)
w -z +b< -1+,
w-flw 1) +C Y Cabiix >
(wry)eMtfl
lweallf+C Y. &
(T,y)eEM:_1

where M, denotes the set of examplesin S which have in-
curred updates of PUMMA int — 1 trids, £ = {gre- and
) = Egres. Thenthe modified PUMMA update scffl or
7 if yt+1(’_lvt+1 Tip1 +biy1) <1 -6 — &g, ,, Where
fa)t+1 = fa‘;; if LTiy1 = Ty such that (mt/, yt’) S Mt- Oth-
erwise, g, , = 0.
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Solution The Lagrangian function is given as

L(w7b,£,a7/8)
1 C
:§||w|\3+5 Z &
(T,y)eM:
+ Y dfA-¢ - yiw-x)

Le{pos,neg}

+ 5<||wt—1|3 —w- f(w1)

+C Z & x’—C Z fwft1,a:>~

TeMi TeMi

To simplify descriptions, without loss of generality, we
assumethat x; isapositiveinstance. Note that every solution
is as same as when x; is a negative one. As done in the
separable case, by using KKT conditions, we consider the
following two cases:

(iYSuppose that 3 = 0, « > 0. Then the optimal solution
(w*, b*, &%) isgiven as

&+ =13
(0%

=5
=0 (xeM\{zl”,

posx __ gnegk __
t — St

),

where z = z!°° — z*?. (ii)Otherwise, 8 # 0, a > 0.
0= f(w;_ 1) Thenwe have

Let
w* = ' (az + 36),

if (xtayt) ¢ M,
if (x4, y:) € My,

¢ & + 66,
PO = 2+ B,
fo =BGz (@€ M\, z{}),
where o and ( are the maximizers of the Lagrange dual
L*(a, ) = minw, b, EL(w, b, &, v, B)

1
sllaz + 58]

2

_9 =
a—i—c

— Blle|2 -

+ ﬁgneg
6 =

Z 5330

reMi_,

Again, we can approximate («
update

, 3) by repeating the Newton

Br41



for sufficiently many steps, where

82L* 71’ 2 2
%—Z:f (az—i—ﬁ@)izi—l—a
aQL* _ aQL*
dB0a  Dadp

— Z f_l/(az =+ 50)12292 —+ fllf‘l{
O?L* Y ) )
szjf (az+80)07 +C > &)

i XreM; 1

Asin the case without soft margin, in order to acquire the
solution w* and ¢*, we first assume the case (i) and check
whether the third constraint of the problem (24) holds with
strict inequality or not. If it does, then the case (i) is true.
Otherwise, the case (ii) holds. Finaly, the biasb* is given as

'lU* . Pos + ’IU* . pned + ( fos _ Zleg)

2

By the same argument as Section 3, we obtain the fol-
lowing:

b= —

Theorem 5 For asequence S = ((x1,41), - - -, (w7, y7)),
let (u,b, &) € R™ x R x RIS bethe optimal solution of the
problem (22). Further, let R = max;—, .. 7 ||x:|/p. (i) Then
the number of updates made by PUMMA ,,(4) is at most

(- DR+ 2} (Jull2 + S yes )
52

(i) PUMMA ,(9) outputs a hypothesis with p-norm margin
whose objective value for the problem (22) is at most
times the optimum after at most the updates above.

1
(1-9)?

5 Experiments

5.1 Experimentsover artificial datasets

We examine PUMMA , ALMA and ROMMA over artificia
datasets generated by sparse linear classifiers. Each artificial
dataset consists of n-dimensional {—1, +1}-valued vectors
with n = 100. Each vector islabeled with ar-of-% threshold
function f, whichisrepresented as f () = sign(x;, +---+
x;, +k—2r+1)forsomeiy,...,ip st 1 < i3 <ig <
- < i < n, and it outputs +1 if at least r of k£ relevant
features have value +1, and outputs —1, otherwise.
For k = 16 and r € {1,4,8} (equivalently, the bias
b € {15,9,1}, respectively), we generate random 1000 ex-
ampleslabeled by the r-of -k threshold function, so that pos-
itive and negative examples are equally likely. For ALMA
and ROMMA, we add an extra dimension with value — R
to each vector to learn linear classifiers with bias, where
R = max||z||,. Note that one can choose different values
other than — R, say, 1. However, as remarked in [10], such
a choice for the value in the extra dimension increases the
number of iterations by O(R?) times when the underlying
hyperplane has large bias. So our choice seemsto be fair.
We set parameters so that each algorithm is guaranteed
to achieve at least 0.9 times the maximum p-norm margin.
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Figure 3: Number of updates and margin over artificial data
set in the case p = 2 (upper) and p = 21n(n) (lower). We
set x-axes log scale since the numbers of updates of ALMA
are quite larger than PUMMA ’s. And we hide the result of
thecasep = 2 and b = 9 since we make the figure easy to
view. The parenthetical digits denote the value of bias.

That is, we set « 0.1 (note the parameter « is defined
differently in [13]) for ALMA and 6 = 0.1 for ROMMA an
PUMMA . Weexaminep € {2,21nn}.

We train each algorithm until its hypothesis converges
by running it in epochs, where, in one epoch, we make each
algorithm go through the whole training data once. At end
of each epoch, for each algorithm, we record number of up-
dates, margin incurred during the training and real computa-
tion time. Note that we measure the margin of each hypoth-
esis over the original space. We execute these operations 10
times, changing the randomly generated data, and we aver-
age theresults over 10 executions. The experiments are con-
ducted on a 3.8 GHz Intel Xeon processor with 8 GB RAM
running Linux. We use MATLAB for the experiments.

The results are represented in Figure 3 and 4. We ob-
serve that PUMMA converges faster. PUMMA ’s computa:
tion timeis quite shorter than that of ALMA, although it uses
Newton method in each update, Note that we omit the result
of ALMA inthe case p = 2 since the result is worse than the
others. For p = 2, we don't use Newton method in the ex-
ecution of PUMMA because we have the analytical solution
of the optimal value of o and 3 by solving the optimization
problem directly.



Table 1: Computation time (sec.) and obtained margin (denoted as ') on some UCI datasets.

SVMbight PUMMA ROMMA MICRA

dataset sec.  10%9/ sec.  10%9/ sec.  10%9/ sec.  10%9/
ionosphere 0.06 10.55 0.54 1049 3.12 10.50 0.48 10.04
house-votes 0.03 1742 026 1731 0.62 17.36 0.09 16,51
adult-1k 0.47 4.95 540 450 15.83 491 234 4.03
adult-2k 2.13 3.40 25.38 3.37 82.70 3.38 5.61 2.81
adult-4k 9.33 2.40 159.54 2.38 496.52 2.38 55.91 2.00
adult-8k 23242 1.69 807.46 1.67 | 2167.40 1.67 189.13 1.46
adult-16k 1271.06 120 | 3365.47 1.18 | 12503.62 1.18 | 2050.84 1.13
adult-full 5893.20 0.83 | 44480.59 0.82 | 71296.34 0.82 | 12394.86 0.79

5.2 Experimentsover some UCI datasets

We compare PUMMA with some other learning agorithms
over the real datasets. The agorithms are SYM 9%t [16],
MICRA [35], and ROMMA [22]. We used the following
datasets of UCI Machine Learning Repository [2]. (i) The
ionosphere dataset consists of 351 instances which have 34
continuous attributes. (ii) The house-vote dataset consists of
435 instanceswhich have 16 discrete attributes {y, n, 7}. We
change these attributesto {1, —1,0}. (iii) The adult dataset
consistsof 32561 instanceswhich have 14 attributes. Among
the attributes, 6 of them are discrete and the others are con-
tinuous. We changethis 14 attributesto 123 binary attributes
as Platt did in [29]. The name of dataset 'adult-mk’ in Ta-
ble 1 denotes a subset of the adult dataset which contains
1000 x m instances. Note that all the datasets have binary
class and we change the range of labelswith {1, —1}.

To optimize the 2-norm soft margin for this linearly in-
separable dataset, we use the following modified inner prod-
uct
Agj

C
We added a dimension which denotes the bias as in Section
1 when we run MICRA and ROMMA which can’t deal with
bias directly.

We modify SVM¥9"t 5o as not to optimize 1-norm soft
margin, and we change the inner product so that it optimizes
2-norm soft margin. We set 6 = 0.01 for PUMMA and
ROMMA to achieve 99% of the maximum margin. The pa-
rameters of MICRA are changed for each dataset asin [35].
But, parameters might not be completely the same as them
because some datasets are different from those they used.
Finally we set 2-norm soft margin parameter C = 1 for al
algorithms. In order to converge faster, we use the following
heuristics for each online algorithm.

IP(CCZ',QJJ') =T; Ty +

Active Set  We try to improve the order of given examples
to feed for each online agorithm. First, we giveall the exam-
ples to each online learning algorithm once. Then, we make
a new dataset called “active set” , containing the examples
which causes updates. After that, we give each example in
the active set to the algorithm. If the example doesn't cause
any updates, we remove the example from the active set, and
we repeat this procedure until the active set becomes empty.
Finally, we give all the examples again and check if the al-
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gorithm makes any updates. If some updates occur, we con-
struct an active set again and repeat the whole procedure.

We run each algorithm and we measure its real computa-
tion time as well asits obtained margin. The experiments on
real datasets are conducted on a 3.0 GHz Intel Xeon proces-
sor with 16 GB RAM running Linux. We implemented each
algorithmin C.

Table 1 shows the real computation time and obtained
margin. Ascan be seen, PUMMA converges quite faster than
ROMMA. On the other hand, PUMMA converges slower
than MICRA. However, the parameters of MICRA are quite
sensitive to datasets and nontrivial to tune appropriately. The
results on all the rea data set show that SYM! 9"t is the
fastest, whereas MICRA is reported to be faster than SV M 197
over somedatasets and with tuned parameters[35]. Notethat
this might be due to our selection of active sets which is dif-
ferent from theirs.

5.3 Experimentsover MNIST dataset

Next, we compare these algorithms over MNIST dataset.
Since the dataset is not linearly separable, we use polyno-
mial kernel and 2-norm soft margin as follows.

;- %‘)d Aij

s + C
Since computing kernds is time-consuming, we use some
extraheuristics in addition to our active set selection.

K(x;,z;) = (1 +

Kernel Cache Since we have to compute kernel values of
the same examples repeatedly, we memorize them in a cache
matrix. In the cache matrix, each row memorizes the kernel
values of asupport vector and al the examples, where a sup-
port vector is an instance which causes an update. Thelength
of each row equals to the number of training instances. The
number of rows depends on the memory size. When the new
kernel value of a support vector and an instance is required,
we search the cached value in the cache matrix. If we fails,
we calculate the value and storeit in the cache matrix. To do
this, we search the row of the corresponding support vector.
We store the value if we succeed, or we make the new row
otherwise. If the matrix is full, we replace the least refer-
enced row by the new row.

Inner Product Cache In our experiments, we keep giv-
ing examples to each online leaning agorithms until they



Table 2: Computation time (sec.) and obtained margin (denoted as~y’) on MNIST datasets.

SVMIight SVMP 9% wio bias PUMMA ROMMA

class SEC. ~' SEC. ~' SEC. ~' SEC. ~'
0 25651 1.339 | 164.83 1155 | 37348 1.330 | 21897 1.150
1 15210 0.712 | 119.62 0.712 | 29154 0.706 | 231.82 0.708
2 41343 0.810 | 309.77 0.765 | 1674.08 0.804 | 87058 0.761
3 566.84 0.763 | 384.17 0.722 | 265419 0.757 |2296.34 0.719
4 333.04 0.650 | 267.65 0.629 | 90516 0.645 | 505.11 0.626
5 42836 0.672 | 301.99 0.664 | 148044 0.667 |1007.91 0.661
6 246.47 0.941 | 184.39 0.880 | 534.80 0934 | 308.18 0.876
7 32290 0.621 | 304.54 0.611 | 860.89 0.616 | 584.36 0.608
8 694.17 0.810 | 437.48 0.727 | 564812 0.804 |5074.51 0.723
9 599.78 0.558 | 399.08 0.541 | 5290.33 0.554 |6057.92 0.538

| avg. [ 401.36 0.788 | 287.35 0.741 | 1971.30 0.782 [171557 0.737

make no update on all the examples. Assume that at trial
t = t1,t2(t1 < ta), the weight vector w, is updated by the
same example z;, . The weight vector w., iswritten as

to—1

to—1
> ( II ak) Biz;
j=1 \k=j+1

to—1 to—1
= (H %) w + )
k=t1 j=t1
So, if we memorize the inner product w, - «,, we can cal-

culate w,, - ;, easier. Thistechnique is efficient when we
use kernel.

Halving § Itis reported that by decreasing § in a dynam-
ical way, ROMMA converges faster [22]. Similar to their
approach, we shrink the parameter ¢ by halving repeatedly.
More precisely, we set 6 = 1 at first, and halve § when the
algorithm makes no update for al the examples. We repeat
this procedure until ¢ is as small as we require. Note that if
¢ issmaller than the required value dtarget, WE SEt 0 = Jtarget.
When we use kernel's, this halving heuristics can reduce sup-
port vectorsin the early stage of learning, which contributes
faster convergence.

MNIST dataset contains 60, 000 matrix and labels. Each
(28 x 28) matrix represents the image of the hand written
digit. The value of each element isin {0, --- ,255}, which
denotes the density. Each label takes the vaue {0, - - -, 9}.
MNIST dataset has 10 classes. Since each algorithm can
deal with only binary class, we change each label so that one
classis positive and the others are negative. Then we get 10
binary labeled datasets.

We run three learning agorithms, SVM 9", ROMMA
and PUMMA on these datasets until they converge. We omit
the evaluation of MICRA since it needs careful tuning of
parameters to converge fast. We record the real computa-
tion time and margin. Note that we use our heuristics for
ROMMA and PUMMA . And we set some kernel param-
eters, s = 11002, d = 5and C = 1/30 asin [22]. We
set Srager = 0.01 and use 1 GB kernel cache. We also run
SVMUight with the same size of cache memory, but its caching

we, =

to—1

H an) Biz;.

n=j+1
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strategy is different from ours. The experiments on MNIST
dataset are conducted on the same machine as the experi-
ments on UCI dataset.

The results are shown in Table 2. PUMMA gains higher
margin than ROMMA over aimost al of the datasets. On
the other hand, PUMMA reguires more computation time.
This seems to be due to the fact that ROMMA solves the
different optimization problem, i.e., maximization of mar-
gin without bias. We observe the same tendency between
SVMUight with and without bias. Further, computation times
of PUMMA are worse than SVM'9"t But, PUMMA and
ROMMA might be improved if we employ a different strat-
egy for active set selection.

6 Conclusion and Futurework

In this paper, we propose PUMMA which obtains the maxi-
mum p-norm margin classifier with bias approximately. Our
algorithm often runs faster than previous online learning al-
gorithms when the underlying linear classifier haslarge bias,
by taking advantage of finding bias directly.

Although the worst case upperbound on iterations of our
agorithm is the same as those of previous agorithms, our
experiments over artificial datasets suggest that our iteration
bound might be better. For example, when thetarget function
isar-of-k threshold function, iteration bound of PUMMA is
O(k? Inn) withp = O(In n). However, in our experiments,
PUMMA seems to converge in O(rk Inn) iterations, which
isthe best upperbound obtained by Winnow when & and r are
known a priori. Unfortunately, we have not yet succeeded in
proving better iteration bounds. It is still open if there ex-
ists an online learning algorithms that learns r-of-k thresh-
old functionsin O(rk Inn) updates without knowing & and
r [23].

So far PUMMA or ALMA approximates oo-norm mar-
ginindirectly by setting p = O(Inn). Developing an adap-
tive online algorithm that directly maximizes co-norm mar-
gin is also an open problem. One of the future work is to
extend our algorithm to handle 1-norm soft margin which is
commonly used in SVM. Further, we would like to apply
PUMMA to learning sparse classifiers in practical applica
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Abstract The most basic regret studied ésternal regret, which

) L . is the difference between the loss incurred by the algorithm
We consider the problem of minimizing regret with and the loss incurred by the best action in hindsight. An-
respect to a given set of pairs of time selection other kind of regret commonly studied is calliediernal re-
functions and modifications rules. We give an on- gret. This was introduced by Foster and Vohra [FV98]. Here,
line algorithm that ha®)(\/7 log |S|) regret with we consider the set of modification rules where for each pair
respect taS when the algorithm is run fof” time (a,b) of actions we have a rule of the kind: Every time the
steps and there a®¥ actions allowed. This im- algorithm suggests picking, pick b instead. The internal
proves the upper bound 6f(/TN log(|Z||F|)) regret of the algorithm is the regret of not having applied
given by Blum and Mansour [BM07a] for the case one of these modification rules. Each rule here can be con-
whenS = 7 x F for a setZ of time selection sidered as a functiorf, ;, that maps every action to itself,
functions and a sef of modification rules. We do except actioru which gets mapped tb. If we consider the
so by giving a simple reduction that uses an online set of modification rules corresponding to all functions map-
algorithm for external regret as a black box. ping the set of actions into itself, we get the notiorsafap

regret. Finally, we can allow any subset of these mappings as

. the set of allowed modification rules which gives the notion
1 Introduction of wide range regret. This was defined by Lehrer [Leh03].
We consider the following online optimization problem. At Lehrer also associatéisne selectiorfunction with each rule
the beginning of each day (a time step), we have to choosethat indicates whether a rule is “active” at a give time or not.
one of theN allowed actions. Instead of picking one ac- A related model is that of “sleeping experts” or “specialists”
tion deterministically, we may come up with a distribution defined in Freund et al. [FSSW97]. Here, at the beginning of
over the actions. At the end of the day, an adversary, with timet, each specialist can decide whether are not the current
the knowledge of the distribution we picked, fixes a loss for situation is her area of speciality and make a prediction only
each action. We give a concrete example from Cesa-Bianchiif it does. In addition, Blum and Mansour [BM07a] con-
et al. [CBFH97]. Suppose we want to predict the proba- sider the case where the experts can be “partially awake”.
bility that it rains on a day based on the predictionshof ~ One way to interpret the activeness function is that it mea-
weather forecasting websites. But we don’t know which of sures degree of confidence that the corresponding rule will
these “experts” give good forecasts. We come up with some perform well at a given time. In this case, we weigh the loss
weights on the websites using an online algorithm and useincurred by the algorithm and the modified action with the
the weighted prediction as our guess for the probability of time selection function to calculate the regret.
raining. At the end of the day, based on whether or not it The first algorithm with external regret sublinearih
rained, everyone is incurs a loss depending on how inaccu-was developed by Hannan [Han57]. An algorithm whose
rate their prediction was. Usually it is assumed that the loss external regret has only logarithmic dependenceN\owas
for each action is picked from a fixed interval, like, 1]. given by Littlestone and Warmuth [LW94] and Cesa-Bianchi
For example, we could charge a person who predicés et al. [CBFH97].
the probability of rainl — p if it rains andp if does not.
After T' days, we compare the loss incurred by the online
algorithm we used to the loss incurred if we had followed a : A S
simple strategy (like just picking the same action each day). %re picked fronj—1, +1]. The running time is polynomial in

; T : andN.

Our goal is to minimize ouregretfor not following one of
the simple strategies. One may also compare the algorithm’sThe number of time steg$ for which it will be run need
performance to the performance if the distribution over ac- not be provided as an input to the above algorithm. Stoltz
tions at each time step were modified using a certain set ofand Lugosi [SLO5] give a general method to convert any
rules. We consider the problem of designing algorithms with “weighted average predictor” algorithm for external regret
low regret with respect to a given set of strategies or modifi- to a low internal or swap regret algorithm. At a high level,
cation rules. they pretend there is an expert for each modification rule

Lemma 1 ([CBFH*97]) There exists an online algorithm
with external regret at mosb (/T log N) when the losses
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who always suggests using that rule. At each time step,
the expert is charged the loss that would be incurred if his

modification rule were actually used. The weighted aver-

age predictor would give a distribution over the experts. The

distribution over the actual actions is found by computing
the fixed point of the expected modification rule picked from
the distribution over the experts. This gives algorithms with

O(v/Tlog N) internal regret and (/TN log N) swap re-

gret. Our approach for wide range regret with time selec-

regretof H to be

Ry eat = max Ry q.
a€[N]

We now define the model with time selection functions
from Blum and Mansour [BMQ7a]. A time selection function
is a function : N — [0,1]. LetZ be the set of time
selection functions. At the beginning of timghe adversary
sets the values aof(t) for eachl € Z. The algorithm then

tion functions is based on the same idea. A drawback of apicks p* after which the adversary now picksas before.
swap regret algorithm constructed this way is that it needs Given a modification rul¢f : [N] — [N], defineM to be

to maintainN " weights. Blum and Mansour [BM07a] give
an algorithm that ha®(v/T N log N) swap regret and runs
in time polynomial inN too. They also give an algorithm
that hasO (/T N log(K M)) regret with respect t& modi-
fication rules and/ time selection functions. Here, for each
modification rule and time selection function, the regret of
not having modified the algorithms action by the rule with

the losses weighed by the time selection function is consid-

ered. In this case, we can think of there beldgpeople who
are interested in following an algorithm’s predictions. They

the matrix with al in column(7) of row for all  and zeros
everywhere else. Define the regretfiwith respect to time
selection functiorl and a modification rulg to be

ZI > phll — 1)

aE[N]
_Z[ It —

Informally, we first weigh all the losses at timdy I(t), the

Ry =

tTMfl )

have varying degrees of importance associated with each daysignificance attached to time Then we look at the differ-

(given by their corresponding time selection function) and
want to minimize regret with respect to all the modification
rules. The algorithm’s goal is to minimize the maximum re-
gret of a person. This is a bit different from the model consid-
ered in Lehrer [Leh03]. But with some effort, one can check
that the result of Blum and Mansour [BMOQ7a] can be gener-
alized to the model of Lehrer [Leh03]. We refer the reader to
[BMO7b]for other bounds on the regret minimization and the
relation of various kinds of regret to equilibriums in games.
The paper is organized as follows. In the next section,
we define the model we work with formally and state our

ence between the expected losstbfand the expected loss
if the output of H were modified every time by applyinf}
That is, we measure the regret of not having played action
f(a) every time we played. Given a setS of pairs(Z, f),
wherel is a time selection function anflis a modification
rule, thewide range regrebf H with respect taS is defined
as
Ry s = max

(I,f)es
Let1 : N — [0, 1] be the function that always outputs 1,
i.e., 1(¢) = 1. For simplicity of notation, we will us¢ to

Rp,p¢.

main result. We state the ideas we use from related results inalso denote the paff, f) when we are not concerned with
Section 3. We prove our main result of an improved upper time selection functions, in which case we assume that the

bound for wide range regret in Section 4. We conclude with
a “first-order” upper bound in Section 5.

2 Our Model and Result

Let the set of actions bgV] = {1,2,..., N}. Consider the
following 7" round game between an online algorittifrand
an adversary. At the beginning of time= 1,2,...,T, the
algorithm picks a probability vectdtp’ = (p, ps, ..., pY).
The adversary then picks the loss vedtor (14,15, ..., 1%)
for time t. The entries of’ are picked from a fixed interval.

adversary always seigt) to 1. Itis easy to check that exter-
nal regret is the samBy; 7,,, whereFe,; = { fa}aeqny and
Vb € [N] : fo(b) = a. Theinternal regretof H is defined
to be Ry #,,,, whereF;,; = {fap}apein) @andfap(a) = b
while f,5(c) = cfor ¢ # a. Theswap regretof H is de-
fined to beRy 7, ., WhereF,q, is the set of all functions

We prove the following theorem for minimizing wide
range regret.

Theorem 2 There exists an online algorithid that for any

In this paper, we assume the losses are either picked fromgiven setS satisfies

[0,1] or from[—1, +1].
Define the regret off with respect to action € [N] to
be

Rya= Z Z Pt —11)

t=1 be[N

T
=303 oy 1.

t=1 be[N]

This can be mterpreted as the difference between the ex-

pected loss off and the loss of action. Define theexternal

A probability vector is a vector in which the entries are non-
negative and sum to 1.

2All vectors we consider are column vectors. We will Us¢o
denote the transpose.
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e Rus O(y/Tlog |S]) when the losses are picked
from the[0, 1].

e The running time off is polynomial inT’, N and|S].

Note that this matches (upto a constant) the results for ex-
ternal, internal and swap regret if we are not concerned with
time selection functions. A drawback of our apporoach is
that if the size of the sef is large, the running time is high.
For example, for swap regret with time selection functions,
we may need time polynomial it and NV, But for this
case, the result of Blum and Mansour already gives a more
efficient algorithm with the same regret (upto a constant).



3 Previous Results show that this achieves a low external regret with respect to
all time selection functions.

To generalize this idea for wide range regret, where
T x F, they introduce an expert for eaghe [N], I € Z and
f € F. Thereisa weighmg_l,f for each such expert. Note
that this does not simplify to the reduction in the previous
paragraph for the case whénh= F..;. Instead, in the next
section we obtain a reduction where there are experts only
for each(1, f) € S. Intuitively, this is where we remove
the polynomial dependence of wide range regret\band
obtain a slightly simpler reduction.

We use ideas from Stoltz and Lugosi [SL0O5] and Blum and
Mansour [BMO7a].

We first describe the approach of Stoltz and Lugosi [SL0O5]
for internal regret. The idea is to simulate a low external re-
gret algorithm forN (N — 1) imaginary experts. Start with
any “weighted average predictoH.,; with low external re-
gret. There aréV(N — 1) imaginary experts, one for each
modification rulef, ;. The expert corresponding ¥ , al-
ways suggests playinginstead ofa. We will specify how
the probability weights over the actual actions are calculated
IL%T,;ZZ%?R,UQQF%% i;f;_"w the losses are generated for 4 A Reduction from Wide Range Regret to

At time ¢, supposeH.,.; outputs probability;’ , for the External Regret
expert corresponding tfi, ,. Then compute the probability
vectorp® = (p!,ph, ..., p%) on the actual actions as a fixed

point of
pt = Z qfl,bp(t],—J)’

a,be[N] Theorem 3 Given an algorithmH.,,, with external regret
wherep!, _, denotes the probability vector obtained frglm (7', V) when the losses are frofa-1, +1], one can con-
by changing the weight of actiomto zero at putting it on  Struct an algorithm/7 that when given losses froj, 1] sat-

We will prove Theorem 2 in this section. We first give an
algorithm that when given a low external regret algorithm as
a black box uses it to guarantee low wide range regret.

actiond. This can also be expressed as isfies:
P =D aP My, =P Y My, o Rus = R(T,|S])
a,b a,b

e The running time off is polynomial in the running time

Let the adversary return batkas the loss vector at time of Heys, T, N, @nd|S|.

The loss incurred at timeby each of the imaginary experts

for f, , is calculated as Idea: H will basically simulate an instance éf.,; with the
@ elements ofS being the actions. Figure 1 shows the inputs
l}a , = It. pf_v, — PtTMfa,b”- and outputs off and H.,; at timet. Attimet, H.,; pro-

) . . ] duces somej; , for each(, f) € S, where they; ; form a
;[)rllllgvx?eu da?rgletzyei%grgg ;chi]l:;gezttig; "’(‘)Sf :Jrl‘aeyli%zi é?g;g%‘? if we propability distribution overS. H will then use this to come
a. up with a probability vectop’ = (pi,ps,...,p% ) on the
Stoltz and Lugosi [SLO5] showed that this achieves low in- agtual actigns.H wiI>I/ basiczgly pic(lflapr%mdon?y)f) with
e have an expert for each modifcation e and the  PrOPaDIIY proportional tal(t)qf . After his, it picks
probability and loss vectors are now calculated as vectorp’ over the actual actions such tpitis a fixed point
of such a randony, i.e., modifyingp’ by f in expectation
pt =p'T Z v just yieldspt. Intuitively, the loss passed to the black box
f H., for (I, f) is such that;f,’f measures the regret with re-

i spect to time selection functiahof not having modified the
and output of H using functionf. Multiplying this by I (¢) takes
lt — ptTM It. . A ]
f f care of the relevance ¢f, f) at timet. Basically, the algo
We now discuss the ideas we use from Blum and Man- rithm makes sure that if the regret with respectfpf) was
sour [BMO7a]. We start with the case whefe= 7 x F..; large so far, then that regret doesn't increase at the current
for someZ. In this case, there is an expert for ed¢hf,,) € step.
S. There is a weighty! , associated with this expert at the  Proof: We first specify how compute’ andl”" at timet.
end of timet where To computep?, getq’ from H,,;. If > (1f)es I(t)g; ¢ =0,
wh, = ﬁfﬁz},a then output any probability vectgr. Otherwise defing’ to

be any vector satisfying
and

~ i ’ ’ I(t qt M

i1 Z(I,f)es I(t)q},f

for some parametes € (0, 1). Above,l; is the actual 10ss  Thjs is well defined Sinc® ;.4 I(t)g} ; # 0. Such avector
incurred at time. The quantityR} , is called a “less-strict” p’ exists since every row of ’

external regret. The probabilip}, associated with the action .
a at timet is then proportional t({j?ez I(t)w} . By op- 2 Lt)ag My
timizing for the parametef, Blum and Mansour [BMO07a] Z(I P I(t)qt ;

@)
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Figure 1: The reduction from wide range to external regret.

is a probability vector becaudé; has exactly oné in each
row. That is, (2) defines the transition matrix of a Markov
chain. WhenH gets back loss vectdf, it computes

f_I Zpa lf(a) lt _I( )ptT(Mf_I)It
a€EN
wherel is the identity matrix. This yields

Sl => 1P T (Mg -l

Thatis,l} ; is exactly the decrease at timef the regret with
respecttd/, f). Itis easy to check thaf , € [-1,+1].

From the low external regret guaranteerdf,;, for all
(I,f)eS:

3)

—Rp,1¢.

S0 L, <Zz S+ R(TS). @)
t (J,9)€S
We will next show that
> iyl =0 (5)

(J,9)eS
Together with (3) and (4), this will show that for &lf, f) €

0 < —Rprys+ R(T,[S]),
or Ry 1y < R(T,|S|) which proves the theorem.
We now proceed to prove (5)

Z ngg Zng g_l)lt
(J.g)es (7,9)
_ Zng tTM It _ Z ng tT t
(J,9)
- p” (Z It M1 = (3 qs,gm)) (1),

(J,9) (4,9)
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(Case 1:)Suppose_;

use (1) to get
> diglhy = (D db, It
(J,9)

(J,9)eS
(Z ng

(J,9)

J(t)q, # 0. In this case we can

ICHE

) 1)
=0.

(Case 2:)Assumey_ ; v J(t)q5, = 0. ThenJ(t)q5, =0
for all pairs(J, g) since J(t) andq}; , are all non-negative,

which implies
Z q'tf»glfft,g =
(J,9)€S
|

It can be seen easily that Theorem 3 and Lemma 1 imply
Theorem 2.

5 A First-Order Bound for Wide Range
Regret

If we are only concerned with regret bounds as a function
of T and N (called “zero-order” bounds in Cesa-Bianchi
et al. [CBMSO05]), Theorem 2 matches (up to a constant)
the known upper bounds for external, internal and swap re-
gret. One can also try to obtain “first-order” bounds, bounds
that depend on the sum of payoffs of actions instead of the
time. For example, Blum and Mansour [BM07a] show a
Lynin log(NM) + log(NM)) upper bound for mini-
mizing external regret with respect to a §evf M time se-
lection functions, wheré,,,;,, = maxymin, L , andL; , =
>, I(t)l%. For the case when there is at least one “real” ex-
pert that does well most of the time, such a bound will be
much tighter than a zero-order bound. One can hope to use
external regret algorithms with good first-order bounds like
the following to come up with good first-order bounds for
wide range regret.

Lemma 4 (Cesa-Bianchi et al. [CBFF97]) There exists an
algorithm with running time polynomial i and N and ex-
ternal regretO(/Lyin log N + log N) when the losses are
picked from[0, 1].

We need an algorithm that can handle losses from the in-
terval[—1, +1] in Theorem 3. One way to use the algorithm
from Lemma 4 is to map the lossgs; to the interval0, 1]
by a linear transformation. But th|s also changes the loss
of best action and makes the first order bound obtained very
weak. Another alternative is to tinker with the quantity that
Ut 77 signifies. If we are concerned only with modification

rules (and not time selection functions), we can redell?‘ne

as
_ t 7t
= vl
aeN

But for technical reasons, this can’'t be done if we are also

working with time selection functions. Note that the only
term in (4) that depends ahand f is I/} s»and hence it must



capture all the terms that dependaither I or f in the defi-
nition of R ; r. S0 we give a method based on the approach
of Blum and Mansour [BM07a]. The main idea is to define
areduced regrefor each pair(/, f).

Theorem 5 There exists an online algorithm that for asy
satisfies:

e The wide range regret with respect &is at mostO(

Linin log |S| + log|S]), where

Lypin = Max min I(t)p "M I

I (I.fles 4
e The running time is polynomial i, N, and|S]|.

Proof: Define the loss oH with respect td till time ¢ as

t

Ligs = S 1000 1

t'=1
and the loss off with respecttd, f) till time ¢ as

t

Liyr;=Y_It)p Ml

t'=1

gives

Z wi =

(I,f)es

<D

(L,f)

Z wt 1ﬁ[(t)(ptTMf|t psp*1Y)
(L.f)

lwl f ( (1- ﬂ)I(t)ptTMflt)

X (1 (1= BI)p - |t)

S Z w§}1 _ Wf 1 Z qI tTMfIt
(1,f) (I,f)
+ BYW'ES " qf (I(t)p" -1

=2 vl -

(L.f)

(=W T (S g T (eMy )1
(L,1)

+ (=W (3 a 1) (1)
(1,f)
=2 wif

(1.f)

Above the second inequality follows from the definition of

We assume that at any tintenot all I(t) are zero. This is and the last equality follows from (2). m

without loss of generality since in this case, the losses de- ar f

fined above don't change at tinte For somes € (0, 1) We now get back to the proof of the theorem. The claim
to be fixed later, we basically run a exponentially weighted implies that for al(Z, f) € S,

predictor with a weight for each pa@rf f). The weight of

(I, f) atthe end of time is w} , = 5~ Riurs, where Bl Ling) = g Ry = wi ;< Z wyy = IS|

(J,9) €S
Ry s =BLps— Ly which gives
That is,R@I,Lf is a regret offf with respect td/, f) where (BLY; 1 — L1 ;) log(1/8) < log|S|
the incurred loss is reduced by a factbrWe defineq}f = or
t—1 t—1 t t i
W=+ whereW® = is the sum of the log |S
wry/ 2o (r.pes Wiy Ligs+ p8l5ls

weights.
At time t, the algorithm does the following. It computes
qﬁ, s as above. The probability vectpt over the actual ac-

tions is picked as in (2). This is well defined sirwé’f (and

Since for a given/, the statement is true for afl such that
(I, f) € 8, we can rewrite it as:

henceq§7f) are all non-zero and at least one of thg) is I oy logls|
also non-zero (by assumption). Then the algorithm updates Ly < H.L,min T Tog(1/5)
all the losses and weights when it gets b#{ckom the ad- T B
versary. We firs'g show that the sum of the weights can not where
increase at any time. .
Litmin= miN Lgry.
f:(I,f)eS
Claim 6 Settings so that
Z wy < Z wyy 1 . log | S|
(I.f)eS (I.f)eS f7" =1+ min I 2

Proof: We will use the fact that for ang € (0,1) andx €
0,1, <1—-(1—-B)xandf~* <1+ (1 - p)x/B. This
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gives the theorem.
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Abstract

This paper describes an efficient reduction of the
learning problem of ranking to binary classifica-
tion. The reduction is randomized and guarantees
a pairwise misranking regret bounded by that of
the binary classifier, improving on a recent result
of Balcan et al. (2007) which ensures only twice
that upper-bound. Moreover, our reduction applies
to a broader class of ranking loss functions, admits
a simple proof, and the expected time complexity
of our algorithm in terms of number of calls to a
classifier or preference function is also improved
from Q(n?) to O(nlogn). In addition, when the
top k ranked elements only are required (k < n),
as in many applications in information extraction
or search engine design, the time complexity of our
algorithm can be further reduced to O(k log k+n).
Our reduction and algorithm are thus practical for
realistic applications where the number of points
to rank exceeds several thousands. Much of our
results also extend beyond the bipartite case pre-
viously studied. To further complement them, we
also derive lower bounds for any deterministic re-
duction of ranking to binary classification, proving
that randomization is necessary to achieve our re-
duction guarantees.

1 Introduction

The learning problem of ranking arises in many modern ap-
plications, including the design of search engines, informa-
tion extraction, and movie recommendation systems. In these
applications, the ordering of the documents or movies re-
turned is a critical aspect of the system.

The problem has been formulated within two distinct set-
tings. In the score-based setting, the learning algorithm re-
ceives a labeled sample of pairwise preferences and returns a
scoring function f:U — R which induces a linear ordering
of the points in the set U. Test points are simply ranked ac-
cording to the values of f for those points. Several ranking
algorithms, including RankBoost (Freund et al., 2003; Rudin
et al., 2005), SVM-type ranking (Joachims, 2002), and other
algorithms such as PRank (Crammer & Singer, 2001; Agar-
wal & Niyogi, 2005), were designed for this setting. Gener-
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alization bounds have been given in this setting for the pair-
wise misranking error (Freund et al., 2003; Agarwal et al.,
2005), including margin-based bounds (Rudin et al., 2005).
Stability-based generalization bounds have also been given
in this setting for wide classes of ranking algorithms both in
the case of bipartite ranking (Agarwal & Niyogi, 2005) and
the general case (Cortes et al.2007b; 2007a).

A somewhat different two-stage scenario was considered
in other publications starting with (Cohen et al., 1999), and
later (Balcan et al., 2007), which we will refer to as the
preference-based setting. In the first stage of that setting, a
preference function i : U x U +— [0, 1] is learned, where val-
ues of h(u,v) closer to one indicate that  is ranked above
v and values closer to zero the opposite. h is typically as-
sumed to be the output of a classification algorithm trained
on a sample of labeled pairs, and can be for example a con-
vex combination of simpler preference functions as in (Co-
hen et al., 1999). A crucial difference with the score-based
setting is that, in general, the preference function A may
not induce a linear ordering. The relation it induces may
be non-transitive, thus we may have for example h(u, v)
h(v,w) = h(w,u) = 1 for three distinct points u, v, and w.
To rank a test subset V' C U, in the second stage, the algo-
rithm orders the points in V by making use of the preference
function & learned in the first stage. The subset ranking set-
up examined by Cossock and Zhang (2006), though distinct,
also bears some resemblance with this setting.

This paper deals with the preference-based ranking set-
ting just described. The advantage of this setting is that the
learning algorithm is not required to return a linear ordering
of all points in U, which may be impossible to achieve fault-
lessly in accordance with a general possibly non-transitive
pairwise preference labeling. This is more likely to be achiev-
able exactly or with a better approximation when the algo-
rithm is requested instead, to supply a linear ordering, only
for limited subsets V' C U.

When the preference function is obtained as the output
of a binary classification algorithm, the preference-based set-
ting can be viewed as a reduction of ranking to classification.
The second stage specifies how the ranking is obtained using
the preference function.

Cohen et al. (1999) showed that in the second stage of
the preference-based setting, the general problem of finding
a linear ordering with as few pairwise misrankings as possi-
ble with respect to the preference function A is NP-complete.
The authors presented a greedy algorithm based on the tour-



nament degree, that is, for a given element u, the difference
between the number of elements it is preferred to versus the
number of those preferred to u. The bound proven by the au-
thors, formulated in terms of the pairwise disagreement loss
I with respect to the preference function h, can be written as
Wogreedy: h) < 1/2 4+ U(ooptimal, R)/2, where [(0grecdy, 1)
is the loss achieved by the permutation 0 y,ccqy returned by
their algorithm and [(0ptimai, ) the one achieved by the
optimal permutation oop¢imar With respect to the preference
function h. This bound was given for the general case of
ranking, but, in the particular case of bipartite ranking, a
random ordering can achieve a pairwise disagreement loss
of 1/2 and thus the bound is not informative. Note that the
algorithm can be viewed as a derandomization technique.

More recently, Balcan et al. (2007) studied the bipartite
ranking problem. In this particular case, the loss of an output
ranking is measured by counting pairs of ranked elements,
one of which is positive and the other negative (based on
some ground truth). They showed that sorting the elements
of V according to the same tournament degree used by Co-
hen et al. (1999) guarantees a regret of at most 2r using a
binary classifier with regret . (The regret is defined as a
calibration of the loss function that aligns a theoretical op-
timum with 0.) However, due to the quadratic nature of the
definition of the tournament degree, their algorithm requires
Q(n?) calls to the preference function h, where n = |V| is
the number of objects to rank.

We describe an efficient randomized algorithm for the
second stage of preference-based setting and thus for reduc-
ing the learning problem of ranking to binary classification.
We improve on the recent result of Balcan et al. (2007), by
guaranteeing a pairwise misranking regret of at most r using
a binary classifier with regret r, thereby improving the bound
by a factor of 2. Our reduction applies, with different con-
stants, to a broader class of ranking loss functions, admits a
simple proof, and the expected running time complexity of
our algorithm in terms of number of calls to a classifier or
preference function is improved from 2(n?) to O(nlogn).
Furthermore, when the top k ranked elements only are re-
quired (k < n), as in many applications in information ex-
traction or search engines, the time complexity of our algo-
rithm can be further reduced to O(k log k + n). Our reduc-
tion and algorithm are thus practical for realistic applications
where the number of points to rank exceeds several thou-
sands. The price paid for this improvement is in resorting
to nondeterminism. Indeed, our algorithms are randomized,
but this turns our to be necessary. We give a simple proof
of a lower bound of 2r for any deterministic reduction of
ranking to binary classification with classification regret r,
thereby generalizing to all deterministic reductions a lower
bound result of Balcan et al. (2007).

To appreciate our improvement of the reduction bound
from a factor of 2 to 1, consider the case of a binary classi-
fier with an error rate of just 25%, which is quite reasonable
in many applications. Assume that the Bayes error is close to
zero for the classification problem and similarly that for the
ranking problem that the regret and loss approximately coin-
cide. Then, the bound of Balcan et al.(2007) guarantees for
the ranking algorithm a pairwise misranking error of at most
50%. But, since a random ranking can achieve 50% pairwise
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misranking error, the bound turns out not to be informative
in that case. Instead, with a factor of 1, the bound ensures a
pairwise misranking of at most 25%.

Much of our results also extend beyond the bipartite case
previously studied by Balcan et al.(2007) to the general case
of ranking. A by-product of our proofs is a bound on the pair-
wise disagreement loss with respect to the preference func-
tion A that we will compare to the result given by Cohen et al.
(1999).

The algorithm used by Balcan et al. (2007) to produce a
ranking based on the preference function is known as sort-
by-degree and has been recently used in the context of mini-
mizing the feedback arcset in tournaments (Coppersmith et al.
2006). Here, we use a different algorithm, QuickSort, which
has also been recently used for minimizing the feedback arc-
set in tournaments (Ailon et al.2005; 2007). The techniques
presented build upon earlier work by Ailon et al.(2005; 2007)
on combinatorial optimization problems over rankings and
clustering.

The remainder of the paper is structured as follows. In
Section 2, we introduce the definitions and notation used in
future sections and introduce a general family of loss func-
tions for ranking. Section 3 describes a simple and effi-
cient algorithm for reducing ranking to binary classification,
proves several bounds guaranteeing the quality of the rank-
ing produced by the algorithm, and analyzes the running-
time complexity of our algorithm. In Section 4, we derive
a lower bound for any deterministic reduction of ranking to
binary classification. In Section 5, we discuss the relation-
ship of the algorithm and its proof with previous related work
in combinatorial optimization, and discuss key assumptions
related to the notion of regret in this context.

2 Preliminaries

This section introduces several preliminary definitions nec-
essary for the presentation of our results. In what follows,
U will denote a universe of elements, e.g., the collection of
all possible query-result pairs returned by a web search task,
and V' C U will denote a small subset thereof, e.g., a prelim-
inary list of relevant results for a given query. For simplicity
of notation we will assume that U is a set of integers, so that
we are always able to choose a minimal canonical element
in a finite subset, as we do in (9) below. This arbitrary order-
ing should not be confused with the ranking problem we are
considering.

2.1 General Definitions and Notation

We first briefly discuss the learning setting and assumptions
made here and compare them with those of Balcan et al.
(2007) and Cohen et al.(1999).

In what follows, V' C U represents a finite subset ex-
tracted from some arbitrary universe U, which is the set we
wish to rank at each round. The notation S(V') denotes the
set of rankings on V, that is the set of injections from V' to
[n] = {1,...,n}, where n = |V|. If 0 € S(V) is such a
ranking, then o(u) is the rank of an element u € V, where
lower ranks are interpreted as preferable ones. More pre-
cisely, we say that u is preferred over v with respect to ¢ if
o(u) < o(v). For convenience, and abusing notation, we



also write o (u,v) = 1if o(u) < o(v) and o(u,v) = 0 oth-
erwise. We let (‘2) denote the collection of all subsets of size
exactly k of V. To distinguish between functions taking or-
dered vs. unordered arguments in what follows, we will use

the notation F,, .. ., to denote k unordered arguments for

afunction F defined on (}) and F/(u1,us, .. ., uy) to denote

k ordered arguments for a function F' definedon V' x --- x V.
————

k
2.2 Ground truth

As in standard learning scenarios, at each round, there is an
underlying unknown ground truth which we wish the output
of the learning algorithm to agree with as much as possible.
The ground truth is a ranking that we denote by o* € S(V),
equipped with a function w assigning different importance
weight to pairs of positions. The combination (¢*,w) is ex-
tremely expressive, as we shall see below in Section 2.5. It
can encode in particular the standard average pairwise mis-
ranking or AUC loss assumed by Balcan et al. (2007) in a
bipartite setting, but also more sophisticated ones capturing
misrankings among the top k, and other losses that are close
but distinct from those considered by Clémencon and Vayatis
(2007).

2.3 Preference function

As with both (Cohen et al., 1999) and (Balcan et al., 2007),
we assume that a preference function h: U x U — [0, 1]
is learned in a first learning stage. The convention is that
the higher h(u,v) is, the more our belief that u should be
preferred to v. The function h satisfies pairwise consistency:
h(u,v) 4+ h(v,u) = 1, but need not even be transitive on 3-
tuples (cycles may be induced). The second stage uses & to
output a proper ranking o, as we shall further discuss below.
The running time complexity of the second stage is measured
with respect to the number of calls to h.

2.4 Output of Learning Algorithm

The final output of the second stage of the algorithm, o, is a
proper ranking of V. Its cost is measured differently in (Bal-
can et al., 2007) and (Cohen et al., 1999). In the former, it is
measured against the unknown ground truth and compared to
the cost of h against the ground truth. The rationale is that the
information encoded in & contains all pairwise preference in-
formation using the state-of-the-art binary classification. In
(Cohen et al., 1999), ¢ is measured against the given prefer-
ence function h, and compared to the theoretically best one
can obtain. Thus, there h plays the role of a known ground
truth.

2.5 Loss Functions

We are now ready to define the loss functions used to mea-
sure the quality of an output ranking o either with respect
to o, as in (Balcan et al., 2007), or with respect to h, as in
(Cohen et al., 1999).

The following general loss function L, measures the qual-
ity of a ranking o with respect to a desired one ¢* using a
weight function w (described below):

Lo(o,0%) = (;L>_1§)a(u,v)a*(v,u)w(a*(u),0*(11)).
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The sum is over all pairs u, v in the domain V' of the rank-
ings o,0". It counts the number of inverted pairs u,v €
V' weighed by w, which assigns importance coefficients to
pairs, based on their positions in the ground truth o*. The
function w must satisfy the following three natural axioms,
which will be necessary in our analysis:

(P1) Symmetry: w(i, j) = w(j, ) for all 4, j;

(P2) Monotonicity: w(i,j) < w(i, k) if eitheri < j < k or
i>7>k;

(P3) Triangle inequality: w(i, j) < w(i, k) + w(k, ).

This definition is very general and encompasses many useful,
well studied distance functions. Setting w(é,j) = 1 for all
i # j yields the unweighted pairwise misranking measure or
the so-called Kemeny distance function.

For a fixed integer k, the following function

oo U (< k) V(I <k) A F# )
w(Z’J)_{O otherwise,

ey

can be used to emphasize ranking at the top k elements. Mis-
ranking of pairs with one element ranked among the top k is
penalized by this function. This can be of interest in applica-
tions such as information extraction or search engines where
the ranking of the top documents matters more. For this em-
phasis function, all elements ranked below £ are in a tie. In
fact, it is possible to encode any tie relation using w.

Bipartite Ranking. In a bipartite ranking scenario, V'
is partitioned into a positive and negative set V™ and V~ of
sizes m™* and m™ respectively, where m*+m~ = |V| = n.
For this scenario (Balcan et al., 2007; Hanley & McNeil,
1982; Lehmann, 1975), we are often interested in the AUC
score of o € S(V') defined as follows:

_ 1
1- AUC(V+7V 70) = m Z l(u,v)EV‘FxV_O'(U,u)'
u,veEV

This expression measures the probability given a random
crucial pair of elements, one of which is positive and the
other negative, that the pair is misordered in o. It is immedi-
ate to verify that this is equal to L (o, c*), where o* is any
ranking placing V+ ahead of ¥V ~, and

n 1
-]

(i < m*) A (G > mt)
(j <m*)A (i >mT)
0 otherwise.

2

Simplified notation. To avoid carrying ¢* and w, we
will define for convenience

T (u,v) = o*(u, v)w(c*(u), o™ (v))
Za(u,v)T*(U,u) .

-1
. n
uFv

We will formally call 7* a generalized ranking, and it will
take the role of the ground truth. If w is obtained as in (2) for
some integers m™*, m™ satisfying m*™ + m~ = n then we
will say that the corresponding 7* is bipartite.



It is immediate to verify from the properties of the weight
function w that for all u,v,w € V,

T (u,v) < 77 (u, w) + 7 (w,v) . 3)

If 7 is bipartite, then additionally,

T (u,v) + 7 (v, w) + 7 (w,u) =

(v, u) + 7 (w,v) + 7 (u,w) . @)

2.6 Preference Loss Function

We need to extend the definition to measure the loss of a
preference function h with respect to o*. In contrast with
the loss function just defined, we need to define a preference
loss measuring a generalized ranking’s disagreements with
respect to a preference function h when measured against
7*. We can readily extend the loss definitions defined above
as follows:

L(h,7) = Ly(h,0") = Y h(u,v)7" (v,u) .
uFv

As explained above, L(h,7*) is the ideal loss the learning
algorithm will aim to achieve with the output ranking hy-
pothesis o.

2.7 Input Distribution

The set V' we wish to rank together with the ground truth 7*
are drawn as pair from a distribution we denote by D. In
other words, 7" may be a random function of V. For our
analysis of the loss though, it is convenient to think of V'
and 7* as fixed, because our bounds will be conditioned on
fixed V, 7* and will easily generalize to the stochastic set-
ting. Finally, we say that D is bipartite if 7* is bipartite with
probability 1.

2.8 Regret Functions

The notion of regret is commonly used to measure the dif-
ference between the loss incurred by a learning algorithm
and that of some best alternative. This section introduces
the definitions of regret that we will be using to quantify the
quality of a ranking algorithm in this context. We will de-
fine a notion of weak and strong regret for both ranking and
classification losses as follows.

To define a strong ranking regret, we subtract from the
loss function the minimal loss that could have been obtained
from a global ranking ¢ of U. More precisely, we define:

Rrank (A7 D) = EV,T* .S [L<As (V)v 7_* )]

&énSl(I}J) EV,T* [L(U\Va T )] )
where G|y, € S(V) is defined by restricting the ranking & €
S(U) to V in a natural way, and A is a possibly randomized
algorithm using a stream of random bits s (and a pre-learned
preference function h) to output a ranking A, (V') in S(V).

As for the strong preference loss, it is natural to subtract
the minimal loss over all, possibly cyclic, preference func-
tions on U.

More precisely, we define:

Rclass(h7 D) = EV,T* [L(h\V7 T*)] - m}%n EV,T* [L(FL|V5 T*)] )
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where the minimum is over h, a preference function over
U, and -y is a restriction operator on preference functions
defined in the natural way.

The weak ranking and classification regret functions R

and R, are defined as follows:

/
rank

Ryank(4, D) = By, o[L(As(V), 77)]

rank
&ESI(V) Tl [ ( ’ )] ( )

. (h7D) :EV,T*[L(h\V7T*)]

class

—Ev Hl}nET*\V[L(hﬂT*” ) (6)
h

where 7*|V is the random variable 7* conditioned on fixed
V. The difference between R and R’ for both ranking and
classification is that in their definition the min operator and
the E'y operator are permuted.
The following inequalities follow from the concavity of
min and Jensen’s inequality:
F k(A D) > Rpank(A, D) and

I7'a’rLk: (7)
R (A,D) > Rclass(AaD)'

class
For a fixed V and any u,v € V, let
e(u7v) = ET*\V[T* (U‘?U)] . (8)

The reason we work with R, .. is because the preference

function h over U obtaining the min in the definition of

R.,.ss can be determined locally for any u,v € U by
1 e(u,v) > e(v,u)
h(u,v) =<0 e(v,u) > e(u,v) 9
1,>, otherwise .

Also, equation (3) holds true with e replacing 7*, and sim-
ilarly for (4) if D is bipartite (by linearity of expectation).
We cannot do a similar thing when working with the strong
regret function Rejqss-

The reason we work with weak ranking regret is for com-
patibility with our choice of weak classification regret, al-
though our upper bounds on R..,.,. trivially apply to R, qnk
in virtue of (7).

In Section 5.4, we will discuss certain assumptions under
which our results work for the notion of strong regret as well.
Note that Balcan et al.(2007) also implicitly use such an as-
sumption in deriving their regret bounds. Our regret bounds
(second part of Theorem 2) hold under the same assumption.
Our result is thus exactly comparable with theirs.

3 Algorithm for Ranking Using a Preference
Function

This section describes and analyzes an algorithm for obtain-
ing a global ranking of a subset using a prelearned prefer-
ence function h, which corresponds to the second stage of
the preference-based setting. Our bound on the loss will be
derived using conditional expectation on the preference loss
assuming a fixed subset V' C U, and fixed ground truth 7*.

To further simplify the analysis, we assume that A is bi-
nary, that is h(u, v) € {0,1} forall u,v € U.



3.1 Description

One simple idea to obtain a global ranking of the points in V'
consists of using a standard comparison-based sorting algo-
rithm where the comparison operation is based on the pref-
erence function. However, since in general the preference
function is not transitive, the property of the resulting per-
mutation obtained is unclear.

This section shows however that the permutation gener-
ated by the standard QuickSort algorithm provides excellent
guarantees.! Thus, the algorithm we suggest is the following.
Pick a random pivot element v uniformly at random from V.
For each v # wu, place v on the left® of u if h(v,u) = 1, and
to its right otherwise. Proceed recursively with the array to
the left of u and the one to its right and return the concatena-
tion of the permutation returned by the left recursion, u, and
the permutation returned by the right recursion.

We will denote by Q" (V) the permutation resulting in
running QuickSort on V' using preference function h, where
s is the random stream of bits used by QuickSort for the se-
lection of the pivots. As we shall see in the next two sec-
tions, this algorithm produces high-quality global rankings
in a time-efficient manner.

3.2 Ranking Quality Guarantees

The following theorems bound the ranking quality of the al-
gorithm described, for both loss and regret, in the general
and bipartite cases.

Theorem 1 (Loss bounds in general case) For any fixed sub-
set V. C U, preference function h on V, and generalized
ranking 7* on 'V, the following bound holds:

BIL(QI(V), 7)) < 2L(h, ") . (10)
Taking the expectation of both sides, this implies immedi-
ately that

E [L(Q?(V),T*)] < 2EV,T*[L(haT*)]a (1)

V,T*,s

where h could depend on V.

Theorem 2 (Loss and regret bounds in bipartite case) For
any fixed V. C U, preference function h over V, and bipar-
tite generalized ranking 7%, the following bound holds:

EL(QL(V), "] = L(h, ) (12)

;‘ank(QZ()’D) < R/class(h7D) . (13)

Taking the expectation of both sides of Equation 12, this im-
plies immediately that if (V,7*) is drawn from a bipartite
distribution D, then

LB L@QS(V), )] = By [L(h, 7], (14)
where h can depend on V.

To present the proof of these theorems, we need some
tools helpful in the analysis of QuickSort, similar to those
originally developed by Ailon et al.(2005). The next section
introduces these tools.

"'We are not assuming here transitivity as in standard textbook
presentations of QuickSort.

*We will use the convention that ranked items are written from
left to right, starting with the most preferred ones.
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3.3 Analysis of QuickSort

Assume V is fixed, and let Q, = Q" (V') be the (random)
ranking output by QuickSort on V' using the preference func-
tion h. During the execution of QuickSort, the order between
two elements u, v € V is determined in one of two ways:

e Directly: u (or v) was selected as the pivot with v (resp.
u) present in the same sub-array in a recursive call to
QuickSort. We denote by p,, = P, the probability of
that event. In that case, the algorithm orders u and v
according to the preference function h.

e Indirectly: a third element w € V is selected as pivot
with w, u, v all present in the same sub-array in a recur-
sive call to QuickSort, u is assigned to the left sub-array
and v to the right (or vice-versa).

Let p,.,w denote the probability of the event that u, v,
and w are present in the same array in a recursive call
to QuickSort and that one of them is selected as pivot.
Note that conditioned on that event, each of these three
elements is equally likely to be selected as a pivot since
the pivot selection is based on a uniform distribution.

If (say) w is selected among the three, then u will be
placed on the left of v if h(u,w) = h(w,v) = 1, and
to its right if h(v,w) = h(w,u) = 1. In all other
cases, the order between u,v will be determined only
in a deeper nested call to QuickSort.

Let X,Y:V xV — R be any two functions on ordered
pairs u,v € V, and let Z: (%) — R be a function on un-
ordered pairs. We define three functions a[X,Y]: (}) — R,

B1X]: (%) — Rand~[Z]: (%) — Ras follows:

alX, Y]y = X(u,0)Y (v,u) + X (v,u)Y (u,v),

B[X}uvw =

%(h(u, v)h(v, w) X (w, u) + h(w, v)h(v, u) X (u, w))+
%(h(v, w)h(u, w) X (w,v) + h(w, u)h(u,v) X (v,w))+
%(h(u, w)h(w,v) X (v,u) + h(v, w)h(w,u) X (u,v)),

’Y[Z]uvw =

%(h(u, v)h(v,w) + h(w, v)h(v,u)) Zyw~+
%(h(v, WA, w) + h(w, w)h(, ©)) Zow+
%(h(u, w)h(w, v) + A(v, w)h(w, 1)) Zuy -

Lemma 3 (QuickSort Decomposition)
1. Forany Z: (‘2/) — R,

Z Zuw = Zpuvzuu + Z puvw’Y[Z]uvw .

u<v u<<v u<v<w
2. Forany X: V xV — R,
ES[ZQ[Q& X]uv] =
u<v
me,oz[h,X]m, + Z pumuﬂ[X]umu .
u<v u<v<w



Proof: To see the first part, notice that for every unordered
pair u < v the expression 7, is accounted for on the RHS
of the equation with total coefficient:

e e{z } P (B, 0w, 0) + B, w)hw, )

Now, py, is the probability that the order of (u,v) is deter-
mined directly (by definition), and

%puvw(h(u, w)h(w,v) + h(v, w)h(w,u))

is the probability that their order is determined indirectly via
w as pivot. Since each pair’s ordering is accounted for ex-
actly once, these probabilities are for pairwise disjoint events
that cover the probability space. Thus, the total coefficient of
Zuw on the RHS is 1, as is on the LHS. The second part is
proved similarly. u

3.4 Loss Bounds

This section proves Theorem 1 and the first part of Theo-
rem 2. For a fixed 7%, the loss incurred by QuickSort is

L(Qs, 7)) = (3)71 > uew @[Qs, Ty, By the second part
of Lemma 3, the expected loss is therefore

BIL(Qe. )]

u<v<w

Also, the following holds by definition of L:

(Z)l S alhy T -

u<v

L(h,7")

Thus, by the first part of Lemma 3,
L(h,7) =
—1
n X *
(2) (Z puclh s+ Y Alalhr nww>
u<v u<v<w

To complete the proof, it suffices to show that for all u, v, w,

Bl Juvw < 27[afh, T Juvw (15)
and that if 7 is bipartite, then

B[T*}uvw == V[O‘[hv T*]]uvw .

Up to symmetry, there are two cases to consider. The first
case assumes that h induces a cycle on u, v, w, the second
assumes that it doesn’t.

(16)

1. Without loss of generality, assume h(u, v) = h(v,w) =
h(w,w) = 1. Plugging in the definitions leads to
Bl Juwvw = %(T* (u,v) + 7" (v,w) + 7" (w,u)), and (17)
1 * * *
(" (v,u) + 7" (w,v) + 77 (u, w)) .

ofh v = 3
(18)
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If 7* is bipartite, then by (4) the right hand sides of (17)
and (18) are equal, giving (16). Otherwise we use (3) to

derive
T (u,v) < T(u,w) + 7" (w,v)
™ (v,w) < T(v,u) + 77 (u,w)
) < 7(w,0) +7(0,0)

Summing up the three equations, this implies (15).

2. Without loss of generality, assume h(u, v) = h(v,w) =
h(u,w) = 1. Plugging in the definitions gives

Bl luvw = vlalh, T uvw = 7" (w, u)

as required. ]

We now examine a consequence of Theorem 1 for QuickSort
that can be compared with the bound given by Cohen et al.
(1999) for a greedy algorithm based on the tournament de-
gree. Let o,ptimar be the ranking with the least amount of
pairwise disagreement with h:

Ooptimal = argmin L(h, o) .
Then, the following corollary bounds the expected pairwise

disagreement of QuickSort with respect to ooptimar by twice
that of the preference function with respect to ooptimai-

Corollary 4 ForanyV C U and preference function h over
V, the following bound holds:

]?[L(QQ(V>7 Uoptimal)} S 2 L(h, Uoptimal) .

The corollary is immediate since technically any ranking, in
particular oop¢imai, can be taken as o* in the proof of Theo-
rem 1.

(19)

Corollary 5 Let V C U be an arbitrary subset of U and let
Ooptimal be as above. Then, the following bound holds for
the pairwise disagreement of the ranking Q" (V') with respect
to h:

E[L(h, Q¢ (V)] < 3 L(h, Ooptimar)- (20)
Proof: The result follows directly Corollary 4 and the appli-
cation of the triangle inequality. |

This result is in fact known from previous work (Ailon
et al.2005; 2007) where it is proven directly without resort-
ing to the intermediate inequality (19). In fact, a better factor
of 2.5 is known to be achievable using a more complicated
algorithm, which gives hope for a 1.5 bound improving The-
orem 1.

3.5 Regret Bounds for Bipartite case

This section proves the second part of Theorem 2, that is the
regret bound. Since in the definition of R.._,,; and R.;, ..
the expectation over V' is outside the min operator, we may
continue to fix V. Let Dy denote the distribution over the

bipartite 7* conditioned on V. By the definitions of R/

rank

and R, it is now sufficient to prove that
h . ~
T*F‘)/7S[L( sla T*>] - In&ln T’:fE|)V[L(O—’ T*)]

< E [L(h,7*)] —min E [L(h,7)].

< 2L
TV

|V h



We let e(u,v) denote E -y [7*(u,v)], then by the linear- (i) Without loss of generality, assume h(u, v) = h(v, w) =

ity of expectation, E«|y[L(7,7*)] = L(&, e) and similarly h(w,u) = 1. But this implies that e(u,v) > e(v,u),
Er«jv[L(h,7*)] = L(h, e). Thus, inequality 21 can be rewrit- e(v,w) = e(w,v) and e(w,u) > e(u,w). Together
ten as with (27) and (28), this implies that e(u,v) = e(v, u),

N ) . ) . e(v,w) = e(w,v), and e(w,u) = e(u,w). Conse-
BIL(Q!. )] ~ min L(3¢) < L(he) — min L(Fe). (22 quenly.
Now let & and  be the minimizers of the min operators on Bleluww =705, eluvw
the left and right sides, respectively. Recall that for all u,v € = v[alh, €]]uvw = fy[a[i% €] uvw
V, h(u, v) can be taken greedily as a function of e(u, v) and 1
e(v,u), as in (9): = g(e(u,v) + e(v,w) + e(w,u))

~ 1 e(u,v) > e(v,u) and F,,,, = 0, as required.

h(u,v) =<0 e(u,v) < e(v,u) (23) B -

1,5, otherwise (equality) . (i) Withoutloss of generality, assume h(u, v) = h(v,w) =

. L ) h(u,w) = 1. This implies that
Using Lemma 3 and linearity, the LHS of (22) can be rewrit-

ten as: e(u,v) > e(v,u)

Nl e(v,w) > e(w,v) (29)

<2> Zpuv alh — &, eluy e(u,w) > e(w,u) .
u<v ~

Let P C P denote the polytope defined by (29) and

+ Z Puvw(Ble] = [alF, €)uwow | (26)-(28). Clearly, I is linear in the 6 e variables when
all the other variables are fixed. Since F' is also ho-

mogenous in the e Variables,jt sufﬁces to prove that
F < 0 for e taking values in P’ C P, which is defined

(n —1 < by adding the constraint, say,
)

u<<v<w

and the RHS of (22) as:

uv h—;L, uv
uz@p ol ‘! Z e(a,b) =2 .

a,be{u,v,w}
+ Z Puvwylalh =, eH“”w) ‘ It is now enough to prove that ' < 0 for 7* being a

s ~ vertex of of P’. This finite set of cases can be easily
Now, clearly, for all (u,v) by construction of h, we must checked to be:
have alh — &, €]yy < alh — h, €]y,. To conclude the proof
of the theorem, we define F': (};) — R as follows: (e(u,v), e(v,u), e(u, w),

- e(w,u),e(w,v),e(v,w AUB ,
F = Ble] = Afalz el] (b, el — vfalhuel]) . @4) (0,5), e, ), el w)) €

where
It now suffices to prove that F),,,, < 0 for all u,v,w € V.
Clearly F is a function of the values of A={(0,0,1,0,0,1),(1,0,1,0,0,0)}
B ={(5,.5,.5,.5,0,0),(.5,.5,0,0,.5,.5),
e(a,b) : {a,b} C {u,v,w} (0,0,.5,.5,.5,.5)} .

}j(a’ b) : {a,b} € {u,v,w} (25 The points in B were already checked in case (i), which
(a,b) : {a,b} C {u,v,w}. is, geometrically, a boundary of case (ii). It remains to

~ . heck the t ints in A.
Recall that h depends on e. By (3) and (4), the e-variables check the two points m

can take values satisfying the following constraints for all e case (0,0,1,0,0,1): plugging in the definitions,
u,v,w € V: one checks that:
= 1
v{a,b,¢} = {u,v,w}, ela,¢) < e(a,b) +e(be) (20 Bleluvw = = (h(w,v)h(v,u) + h(w, u)h(u,v))
e(u,v) + e(v,w) + e(w,u) = e(v,u)+ (27) 3
6(’[1),’()) —|—e(u,w) ’Y[a[hye]]uvw =
1
Va,b € {u,v,w}, e(a,b) >0 . (28) 5 ((h(u, 0)h(v,w) + h(w, v)h(v, u))h(w, u)
Let P C RS denote the polytope defined by (26-28) in the + (h(v, u)h(u, w) + h(w, u)h(u,v))h(w,v))
variables e(a, b) for {a, b} C {u,v,w}. We subdivide P into -
smaller subpolytopes on which the / variables are constant. lafh, elluvw =0
Up to symmetries, we can consider only two cases: (i) h Clearly F could be positive only of Bypw = 1,
induces a cycle on u, v, w and (ii) h is cycle-free on u, v, w. which happens if and only if either h(w, v)h(v,u) =
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1 or h(w,u)h(u,v) = 1. In the former case, we
obtain that

either h(w,v)h(v,u)h(w,u) =1 (30)

h(v,u)h(u, w)h(w,v) =1, 31
both implying that y[c[h, €]]yuw > 1, thus F' < 0.
In the latter case,

h(w, w)h(u, v)h(w,v) =1
h(u,v)h(v,w)h(w,u) =1 ,

or

either (32)

or (33)

both implying again that vy[a[h, €]]yvw > 1 and
thus ' < 0.

e case (1,0,1,0,0,0): plugging in the definitions,
one checks that:

1
ﬂ[e]uvw = §
’Y[a[}% EHumu -

é((h(u, Ao, w) + h(w, v)h(v, u))h(w, )

(h(w, v)h(v,u) + h(v, w)h(w, u))

+ (h(u,w)h(w,v) + h(v,w)h(w,u))h(v,u)) .

’Y[Oé[il, e”uv’w =0.
Now F’ could be positive if and only if

either h(w,v)h(v,u) =1 34)
or h(v,w)h(w,u)=1 . (35)
In the former case, we obtain that
either A(w,v)h(v,u)h(w,u) =1 (36)
or h(v,u)h(u,w)h(w,v) =1, (37

both implying that y[a[h, €]]ypw > 1, and thus
F < 0. In the latter case,

h(v, w)h(w,uw)h(v,u) =1
h(u, v)h(v,w)h(w,u) =1 ,

either (38)

or (39)

both implying again that y[a[h, €]]yvw > 1 and
thus F' < 0.

This concludes the proof of the second part of Theorem 2. l

3.6 Time Complexity

Running QuickSort does not entail Q(|V|?) accesses to fy .
The following bound on the running time is proven in Sec-
tion 3.6.

Theorem 6 The expected number of times QuickSort accesses
to the preference function h is at most O(nlogn). More-
over, if only the top k elements are sought then the bound is
reduced to O(klog k + n) by pruning the recursion.

It is well known that QuickSort on cycle-free tournaments
runs in time O(nlogn), where n is the size of the set we
wish to sort. That this holds for QuickSort on general tourna-
ments is a simple extension (communicated by Heikki Man-
nila) which we present it here to keep this presentation self-
contained. The second part of the theorem requires some
more work.
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Proof: Let T'(n) be the maximum expected running time of
QuickSort on a possibly cyclic tournament on n vertices in
terms of number of comparisons. Let G = (V, A) denote a
tournament. The main observation is that each vertex v €
V' is assigned to the left recursion with probability exactly
outdeg(v)/n and to the right with probability indeg(v)/n,
over the choice of the pivot. Therefore, the expected size
of both the left and right recursions is exactly (n — 1)/2.
The separation itself costs n — 1 comparisons. The resulting
recursion formula T'(n) < n — 14 2T((n — 1)/2) clearly
solves to T'(n) = O(nlogn).

Assume now that only the k first elements of the output
are sought, that is, we are interested in outputting only ele-
ments in positions 1, ..., k. The algorithm which we denote
by k-QuickSort is clear: recurse with min {k, ny, }-QuickSort
on the left side and max {0,k — nz, — 1}-QuickSort on the
right side, where ny,np are the sizes of the left and right
recursions respectively and 0-QuickSort takes 0 steps by as-
sumption. To make the analysis simpler, we will assume
that whenever k& > n /8, k-QuickSort simply returns the out-
put of the standard QuickSort, which runs in expected time
O(nlogn) = O(n + klog k), within the sought bound. Fix
a tournament G on n vertices, and let ¢, (G) denote the run-
ning time of k-QuickSort on G, where k < n/8. Denote the
(random) left and right sub-tournaments by G, and Gy re-
spectively, and let n, = |G|, ng = |G r| denote their sizes
in terms of number of vertices. Then, clearly,

tk(G) =n-—1 +tmin{k,nL}(GL) +tmax{0,k—nL—l} (GR) (40)

Assume by structural induction that for all {k¥',n’: k¥’ <
n’ < n} and for all tournaments G’ on n’ vertices,

Elti (G")] < en’ + K log K’
for some global ¢, ¢’ > 0. Then, by conditioning on G, G,
taking expectations on both sides of (40) and by induction,
E[tk(G) | GL,GR] <n—1+ecenp+
d min{k,np}logmin{k,ny} + cngla, <k_1+
¢ max{k —ny, — 1,0} logmax{k — n;, — 1,0}

By convexity of the function x — x log z,

min{k, ny } logmin{k, ny }+
max{k —ng — 1,0} logmax{k —ny — 1,0}

< klogk. (41)

Thus,

Eftys(G) | GL,Gr] <n—1+cenp+

engly, <k—1+ cklogk. (42)

By conditional expectation,
Eltr(G)] < n—1+c(n—1)/2+klogk+cE[ngly, <x—1]-

To complete the inductive hypothesis, we need to bound the
quantity E[ngl,, <x—1], which is bounded by nPr[n; <
k—1]. Theevent {ny < k—1}, equivalentto {nr > n—=k},
occurs when a vertex of out-degree at least n — k > 7n/8 is
chosen as pivot. For a random pivot v € V, where V is the
vertex set of G, Eloutdeg(v)?] < n?/3 4+ n/2 < n?/2.9.



Indeed, each pair of edges (v,u1) € A and (v,uz2) € A for
u1 # ug gives rise to a triangle which is counted exactly
twice in the cross-terms, hence n?/3 which upper-bounds
2(%)/n; n/2 bounds the diagonal. Thus, Proutdeg(v) >
7n/8] = Pr[outdeg(v)? > 49n?/64] < 0.46 (by Markov).
Plugging in this value into our last estimate yields

Eltx(G)] <n—1+c(n—1)/2+ 'klogk + 0.46 x cn,

which is at most cn + ¢’k log k for ¢ > 30, as required. H

4 Lower Bounds

Let r denote the classification regret. Balcan et al. (2007)
proved a lower bound of 27 for the regret of the algorithm
MFAT defined as the solution to the minimum feedback arc-
set problem on the tournament V' with an edge (u, v) when
h(u,v) = 1. More precisely, they showed an example of
fixed V, h, and bipartite generalized ranking 7* on V, such
that the classification regret of A tends to 1/2 of the ranking
regret of MFAT on V, h. Note that in this case, since 7* is
a fixed function of V/, the regret and loss coincide both for
classification and for ranking.

Here we give a simple proof of a more general theorem
stating that same bound holds for any deterministic algo-
rithm, including of course MFAT.

Theorem 7 For any deterministic algorithm A taking as in-
put V. C U and a preference function h on'V and outputting
a ranking o € S(V'), there exists a bipartite distribution D
on (V,7*) such that

Rrank' (A7 D) > 2Rclass (h’a D) (43)

Note that the theorem implies that, in the bipartite case, no
deterministic algorithm converting a preference function into
a linear ranking can do better than a randomized algorithm,
on expectation. Thus, randomization is essentially necessary
in this setting.

The proof is based on an adversarial argument. In our

construction, the support of D is reduced to a single pair
(V, 7*) (deterministic input), thus the loss and both the weak
and strong regrets coincide and a similar argument applies to
the loss function and the weak regret functions.
Proof: Fix V = {u,v,w}, and let the support of D be
reduced to (V,7*), where the bipartite generalized ranking
7* is one that we will select adversarially. Assume a cycle:
h(u,v) = h(v,w) = h(w,u) = 1. Up to symmetry, there
are two options for the output o of Aon V., h.

1. o(u) < o(v) < o(w): in this case, the adversary can
choose 7* corresponding to the partition V* = {w}
and V— = {u,v}. Clearly, Rejqss(h, D) now equals
1/2 since h is penalized only for misranking the pair
(v,w), but Rpank(A, D) = 1 since o is misordering
both (u, w) and (v, w).

2. o(w) < o(v) < o(u): in this case, the adversary can
choose 7* corresponding to the partition V* = {u}
and V— = {v,w}. Similarly, R 4ss(h, D) now equals
1/2 since h is penalized only for misranking the pair
(u, w), while R;qnk (A, D) = 1 since o is misordering
both (u, v) and (u, w).
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5 Discussion

5.1 History of QuickSort

The textbook algorithm, by now standard, was originally
discovered by Hoare (1961). Montague and Aslam (Mon-
tague & Aslam, 2002) experimented with QuickSort for in-
formation retrieval (IR) by aggregating rankings from differ-
ent sources of retrieval. They claimed an O(nlogn) time
bound on the number of comparisons, although the proof
seemed to rely on the folklore QuickSort proof without ad-
dressing the non-transitivity problem. They proved certain
combinatorial bounds on the output of QuickSort and pro-
vided an empirical justification of its IR merits. Ailon et al.
(2005) also considered the rank aggregation problem and
proved theoretical cost bounds for many ranking problems
on weighted tournaments. They strengthened these bounds
by considering non-deterministic pivoting rules arising from
solutions to certain ranking LP’s. This work was later ex-
tended by Ailon (2007) to deal with rankings with ties, in
particular, top-k rankings. Hedge et al.(2007) and Williamson
and van Zuylen (2007) derandomized the random pivot se-
lection step in QuickSort for many of the combinatorial op-
timization problems studied by Ailon et al.

5.2 The decomposition technique

The technique developed in Lemma 3 is very general and can
be used for a wide variety of loss functions and variants of
QuickSort involving non-deterministic ordering rules (Ailon
et al. 2005; 2007). Such results would typically amount to
bounding 5[ X |yvw /Y[ Z]www for some carefully chosen func-
tions X, Z depending on the application.

5.3 Combinatorial Optimization vs. Learning of
Ranking

QuickSort, sometimes referred to as FAS-Pivot in that con-
text, was used by Ailon et al. (2005; 2007) to approximate
certain NP-Hard weighted instances of the problem of min-
imum feedback arcset in tournaments (Alon, 2006). There
is much similarity between the techniques used in that work
and those of the analyses of this work, but there is also a
significant difference that should be noted.

In the minimum feedback arc-set problem, we are given
a tournament GG and wish to find an acyclic tournament H on
the same vertex set minimizing A(G, H), where A counts
the number of edges pointing in opposite directions between
G, H (or a weighted version thereof). However, the cost we
are considering is A(G, H,,) for some fixed acyclic tourna-
ment H, induced by some permutation ¢ (the ground truth).
In this work, we showed in fact that if G’ is obtained from G
using QuickSort, then E[A(G’, H,)] < 2A(G, H,) for any
o (Theorem 1). If H is the optimal solution to the (weighted)
minimum feedback arc-set problem corresponding to GG, then
it is easy to see that A(H, H,) < A(G,H) + A(G, H,) <
2A(G, H,). However, recovering G is NP-Hard in general.
Approximating A(G, H) modulo a constant factor 1 + € us-
ing an acyclic tournament H’, as in the combinatorial opti-
mization world, only guarantees a constant factor of 2 + ¢:

A(H',H,) < A(G,H") + A(G,H,) <
(14e)A(G, H) + A(G, H,) < (24 ¢)A(G, H,) .



Thus, this work also adds a significant contribution to (Ailon
et al., 2005; Ailon, 2007; Kenyon-Mathieu & Schudy, 2007).
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For the proof of the regret bound of Theorem 2 we used the
fact that the minimizer h in the definition (5-6) of R/

class
could be determined independently for each pair u,v € U,
using (9). This could also be done for strong regrets if the
distribution D on V, 7 satisfied the following pairwise ITA

condition.

Weak vs. Strong Regret Functions

Definition 8 A distribution D on subsets V. C U and gener-
alized rankings 7" on V satisfies the pairwise independence
on irrelevant alternatives (pairwise IIA) if for all u,v € U
and for any two subsets V1, Vo 2 {u, v},

Erey, [T (u,v)] = Erepy, [T (u,v)] .

Note: We chose the terminology IIA to match that used in
Arrow’s seminal work (Arrow, 1950) to describe a similar
notion.

When pairwise IIA holds, the average ground truth rela-
tion between u and v, conditioned on u, v included in V/, is
independent of V.

Recall that a bipartite 7* is derived from a pair o™, w,
where w is defined using a term 1/m~m™, for compatibil-
ity with the definition of AUC. The numbers m™ and m~
depend on the underlying size of the positive and negative
sets partitioning of V' and therefore cannot be inferred from
(u,v) alone. Thus, in the standard bipartite case, the pair-
wise IIA assumption is not natural. If, however, we replaced
our definitions in the bipartite case and used the following:

1 G<mT)A(>mh)
w(i,j)=q1 (G <m")A®E>m")
0 otherwise,

(44)

instead of (2), then it would be reasonable to believe that
pairwise ITA does hold in the bipartite case. In fact, it would
be reasonable to make the stronger assumption that for any
fixed u,v € U and V;,V2 D {u,v} the distribution of the
random variables 7* (u, v)|V; and 7*(u, v)| V> are equal. This
corresponds to the intuition that when comparing a pair u, v
in a context of a set V' containing them, human labelers are
not as influenced by the irrelevant information V\{u, v} as
they would be by V'\ {u} if asked to evaluate single elements
u. The irrelevant information in V' is often referred to as
anchor in experimental psychology and economics (Ariely
et al., 2008).

Our regret bounds would still hold if we used (44), but
we chose (2) to present our results in terms of the familiar
average pairwise misranking error or AUC loss.

Another possible assumption allowing usage of strong
regrets is to let the preference function learned in the first
stage depend on V. This is the assumption implicitly made
by Balcan et al. (2007) (based on our private communica-
tion). We do not further elaborate on this assumption.

6 Conclusion

We described a reduction of the learning problem of rank-
ing to classification. The efficiency of this reduction makes
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it practical for large-scale information extraction and search
engine applications. A finer analysis of QuickSort is likely
to further improve our reduction bound by providing a con-
centration inequality for the algorithm’s deviation from its
expected behavior using the confidence scores output by the
classifier. Our reduction leads to a competitive ranking algo-
rithm that can be viewed as an alternative to the algorithms
previously designed for the score-based setting.
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Abstract population after observing their interactions during antra
ing phase of polynomial length. We assume that each agent

|nspired by |0ngstanding lines of research in soci- iina pOpUlation of sizeV acts aCCOfding to a fixed but un-
ology and related fields, and by more recent large- known strategy:; drawn from a known class. A strategy
population human subject experiments on the In- probabilistically maps the current population state tortévet
ternet and the Web, we initiate a study of the com- state or action for that agent, and each agent’s strategy may
putational issues in learning to model collective be different. As is common in much of the literature cited
behavior from observed data. We define formal above, there may also be a network structure governing the
models for efficient learning in such settings, and population interaction, in which case strategies may mep th
provide both general theory and specific learning local neighborhood state to next actions. N
algorithms for these models. Learning algorithms in our model are given training data

of the population behavior, either as repeated finite-lengt

trajectories from multiple initial states (apisodicmodel),
1 Introduction or in a single unbroken trajectory from a fixed start state (a

no-resetmodel). In either case, they must efficiently (poly-
Collective behavior in large populations has been a subjectnomially) learn to accurately predict or simulate (projsst
of enduring interest in sociology and economics, and a more of) the future behavior of the same population. Our frame-
recent topic in fields such as physics and computer sciencework may be viewed as a computational model for learning
There is consequently now an impressive literature on math-the dynamics of an unknown Markov process — more pre-
ematical models for collective behavior in settings as di- cisely, a dynamic Bayes net — in which our primary interest
verse as the diffusion of fads or innovation in social net- isin Markov processes inspired by simple models for social
works [10, 1, 2, 18], voting behavior [10], housing choices behavior.
and segregation [22], herding behaviors in financial mar- As a simple, concrete example of the kind of system we
kets [27, 8], Hollywood trends [25, 24], critical mass phe- have in mind, consider a population in which each agent
nomena in group activities [22], and many others. The ad- makes a series of choices from a fixed set over time (such as
vent of the Internet and the Web have greatly increased thewhat restaurant to go to, or what political party to vote for)
number of both controlled experiments [7, 17, 20, 21, 8] and Like many previously studied models, we consider agents
open-ended systems (such as Wikipedia and many other inwho have a desire to behave like the rest of the population
stances of “human peer-production”) that permit the loggin (because they want to visit the popular restaurants, or want
and analysis of detailed collective behavioral data. Itsis n  to vote for “electable” candidates). On the other hand, each
ural to ask if there are learning methods specifically taior ~ agent may also have different and unknown intrinsic prefer-
to such models and data. ences over the choices as well (based on cuisine and decor, or

The mathematical models of the collective behavior liter- the actual policies of the candidates). We consider models i
ature differ from one another in important details, sucthast which each agent balances or integrates these two forces in
extent to which individual agents are assumed to act accord-deciding how to behave at each step [12]. Our main question
ing to traditional notions of rationality, but they gendyal is: Can alearning algorithm watching the collective bebavi
share the significant underlying assumption that each agent of such a population for a short period produce an accurate
current behavior is entirely or largely determined by the re model of their future choices?
cent behavior of the other agents. Thus the collective behav ~ The assumptions of our model fit nicely with the litera-
ior is asocialphenomenon, and the population evolves over ture cited in the first paragraph, much of which indeed pro-
time according to its own internal dynamics — there is no poses simple stochastic models for how individual agents re
exogenous “Nature” being reacted to, or injecting shocks to act to the current population state. We emphasize from the
the collective. outset the difference between our interests and those com-
In this paper, we introduce a computational theory of mon in multiagent systems and learning in games. In those

learning from collective behavior, in which the goal is to fields, it is often the case that the agents themselves are
accurately model and predict the future behavior of a large acting according to complex and fairly general learning al-
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gorithms (such as Q-learning [26], no-regret learning [9], large) class, but is otherwise unknown. The learner’s ulti-
fictitious play [3], and so on), and the central question is mate goal is not to discover each individual agent strategy
whether and when the population converges to particular, per se, but rather to make accurate predictions ottillec-

“nice” states (such as Nash or correlated equilibria). Im-co
trast, while the agent strategies we consider are certainly

tive behavior in novel situations.

“adaptive” in a reactive sense, they are much simpler than2-1 Agent Strategies and Collective Trajectories
general-purpose learning algorithms, and we are inteteste We now describe the main components of our framework:

in learning algorithms thahodelthe full collective behavior
no matter what its properties; there is no special statuengiv
either to particular states nor to any notion of convergence
Thus our interest is not in learning by the agents themsglves
but at the higher level of an observer of the population.

Our primary contributions are:

e The introduction of a computational model for learning
from collective behavior.

e The development of some general theory for this model,
including a polynomial-time reduction of learning from
collective behavior to learning in more traditional,
single-target I.1.D. settings, and a separation between
efficient learnability in collective models in which the
learner does and does not see all intermediate popula-
tion states.

e The definition of specific classes of agent strategies,
including variants of the “crowd affinity” strategies
sketched above, and complementary “crowd aversion”
classes.

e Provably efficient algorithms for learning from collec-
tive behavior for these same classes.

The outline of the paper is as follows. In Section 2, we
introduce our main model for learning from collective be-
havior, and then discuss two natural variants. Section 3 in-
troduces and motivates a number of specific agent strategy
classes that are broadly inspired by earlier sociologiaal-m
els, and provides brief simulations of the collective bébes/

e State SpaceAt each time step, each agens in some

states; chosen from a known, finite s&t of size K.

We often think of K as being large, and thus want al-
gorithms whose running time scales polynomiallyidn
and other parameters. We viewas theactiontaken by
agenti in response to the recent population behavior.
The joint action vectos' € SV describes the current
global state of the collective.

Initial State Distribution. We assume that the initial
population states’® is drawn according to a fixed but
unknown distributionP over SY. During training, the
learner is able to see trajectories of the collective behav-
ior in which the initial state is drawn fror®?, and as in
many standard learning models, must generalize with
respect to this same distribution. (We also consider a
no-reset variant of our model in Section 2.3.)

Agent Strategy Class. We assume that each agent’s
strategy is drawn from a known clagsof (typically
probabilistic) mappings from the recent collective be-
havior into the agent’'s next state or actiondn We
mainly consider the case in whieh € C probabilisti-
cally maps the current global stafénto agenti’s next
state. However, much of the theory we develop ap-
plies equally well to more complex strategies that might
incorporate a longer history of the collective behavior
on the current trajectory, or might depend on summary
statistics of that history.

Given these components, we can now define what is meant

they can generate. Section 4 provides a general reduction oby acollective trajectory

learning from collective behavior to a generalized PAQesty

model for learning from I.I.D. data, which is used subse- Definition 1 Let& € C™ be the vector of strategies for the
quently in Section 5, where we give provably efficient algo- NV agentsP be the initial state distribution, an@ > 1 be an

rithms for learning some of the strategy classes introdirced  integer. AT-trajectory of ¢ with respect to P is a random

Section 3. Brief conclusions and topics for further researc Vvariable (3°,--- ,§7) in which the initial states® € SV

are given in Section 6. is drawn according taP, and for eacht € {1,--- ,T}, the
components! of the joint states'* is obtained by applying

2 The Model the strategyc; to 5¢~1. (Again, more generally we may
also allow the strategies; to depend on the full sequence

In this section we describe a learning model in which the 5°,... 5!, or on summary statistics of that history.)

observed data is generated from observations of trajestori

(defined shortly) of the collective behavior df interacting Thus, a collective trajectory in our model is simply a

agents. The key feature of the model is the fact that eachMarkovian sequence of states tliattorsaccording to the

agent’s next state or action is alwajetermined by the recent N agent strategies — that is, a dynamic Bayes net [19]. Our

actions of the other agentperhaps combined with some in- interest is in cases in which this Markov process is gendrate

trinsic “preferences” or behaviors of the particular agéys by particular models of social behavior, some of which are

we shall see, we can view our model as one for learning cer-discussed in Section 3.

tain kinds of factored Markov processes that are inspired by i

models common in sociology and related fields. 2.2 The Learning Model

Each agent may follow a different and possibly proba- We now formally define the learning model we study. In
bilistic strategy. We assume that the strategy followed by our model, learning algorithms are given access to an oracle
each agent is constrained to lie in a known (and possibly Ogxp (¢, P,T) that returns & -trajectory(5°°,--- ,57) of
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¢ with respect taP. This is thus arepisodicor resetmodel, behavior if there exists an algorithmd such that for any

in which the learner has the luxury of repeatedly observing population sizeN > 1, anyc € CV, any time horizoril’,

the population behavior from random initial conditions. It any distributionP overS", and anye > 0 andd > 0, given

is most applicable in (partially) controlled, experimédrstat- accessto the oracl@gxp (¢, P, T), algorithm A runs in time

tings [7, 17, 20, 21, 8] where such “population resets” can polynomial inN, T, dim(C), 1/¢, and1/4, and outputs a

be implemented or imposed. In Section 2.3 below we de- polynomial-time model/ such that with probability at least

fine a perhaps more broadly applicable variant of the model 1 — g, e(Qyy, Qz) < e

in which resets are not available; the algorithms we provide

can be adapted for this model as well (Section 5.3). We now discuss two reasonable variations on the model
The goal of the learner is to findgenerative modehat we have presented.

can efficiently produce trajectories from a distributiomtth

is arbitrarily close to that generated by the true popufatio 2.3 A No-Reset Variant

Thus, IetM(E’_O,T) be a (randomized) model output by @ The model above assumes that learning algorithms are given
learning algorithm that takes as input a start stéteand access to repeated, independent trajectories via theeoracl
time horizonT’, and outputs a randoffi-trajectory, and let . . \which is analogous to thepisodicsetting of rein-

Q y; denote the distribution over trajectories generatedby  forcement learning. As in that field, we may also wish to
when the start state is distributed according*oSimilarly, consider an alternative “no-reset” model in which the learn

let Q= denote the distribution over trajectories generated by has access only tosingle unbroken trajectory of states gen-
Ogrxp (¢, P,T). Then the goal of the learning algorithmisto  erated by the Markov process. To do so we must formulate
find a model)/ making thet, distance=(Q y,, Qz) between an alternative notion of generalization, since on the omelha

Q y; andQz small, where the (distribution of the) initial state may quickly beconme i
relevant as the collective behavior evolves, but on therpthe
(Qypy Qe) = the state space is exponentially large and thus it is usteali
Z 1Qu (3% ,8T)) = Qa((5°,--- ,5TY)|. to expect to model the dynamics from arbitrary state in

polynomial time.
One natural formulation allows the learner to observe any
A couple of remarks are in order here. First, note that polynomially long prefix of a trajectory of states for traigi
we have defined the output of the learning algorithm to be and then to announce its readiness for the test phasés If
a “black box” that simply produces trajectories from iritia  the final state of the training prefix, we can simply ask that
states. Of course, it would be natural to expect that thisbla  the learner output a modal that generates accurafestep
box operates by having good approximations to every agenttrajectorieorward from the current stat&. In other words,
strategy irr, and using collective simulations of these to pro-  yy should generate trajectories from a distribution close to
duce trajectories, but we choose to define the outplih a  the distribution ovefl-step trajectories that would be gener-
more general way since there may be other approaches. Secated if each agent continued choosing actions according to
ond, we note that our learning criteria is both strong (see hjs strategy. The length of the training prefix is allowedéo b
below for a discussion of weaker alternatives) and useful, polynomial in7" and the other parameters.
in the sense that (), Q=) is smaller thar, then we can While aspects of the general theory described below are
sample)M to obtainO(e)-good approximations to the expec- particular to our main (episodic) model, we note here that th
tation of any (bounded)nctionof trajectories. Thus, forin-  algorithms we give for specific classes can in fact be adapted
stance, we can usk to answer questions like “What is the  to work in the no-reset model as well. Such extensions are
expected number of agents playing the plurality actiorrafte discussed briefly in Section 5.3.
T steps?” or “What is the probability the entire population . .
is playing the same action aftérsteps?” (In Section 2.4 be- 2-4 Weaker Criteria for Learnability
low we discuss a weaker model in which we care only about We have chosen to formulate learnability in our model us-
onefixedoutcome function.) ing a rather strong success criterion — namely, the abiity t
Our algorithmic results consider cases in which the agent (approximately) simulate the full dynamics of the unknown
strategies may themselves already be rather rich, in whichMarkov process induced by the population strat&gin or-
case the learning algorithm should be permitted resourcesder to meet this strong criterion, we have also allowed the
commensurate with this complexity. For example, the crowd learner access to a rather strong oracle, which returrs-all
affinity models have a number of parameters that scales withtermediatestates of sampled trajectories.

8T

the number of action&’. More generally, we uséim(C) to There may be natural scenarios, however, in which we
denote the complexity or dimension@fin all of our imag- are interested only in speciffixed properties of collective
ined applicationslim(-) is either the VC dimension for de-  behavior, and thus a weaker data source may suffice. For in-
terministic classes, or one of its generalizations to podisa stance, suppose we have a fixed, real-valmedome func-
tic classes (such as pseudo-dimension [11], fat-shagteliin  tion F(5'7) of final states (for instance, the fraction of agents
mension [15], combinatorial dimension [11], etc.). playing the plurality action at tim&), with our goal being

We are now ready to define our learning model. to simply learn a functioi that maps initial states® and a

o ] time horizonT to real values, and approximately minimizes
Definition 2 LetC be an agent strategy class over actions

S. We say tha€ is polynomially learnable from collective Esoup [|G(5%,T) —Ez 2 [F(37)]|]
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wheres 7T is a random variable that is the final state of a gate ofh at timeT = D, pairs of the form(s°, F(5 7))
T-trajectory ofé from the initial states’©. Clearly in sucha  provide exactly the same data as the PAC modehfonder
model, while it certainly would suffice, there may be no need D, and thus must be equally hard.

to directly learn a full dynamical model. It may be feasible For the polynomial learnability of from collective be-

to satisfy this criterion without even observing interneadi havior, we note thaf is clearly PAC learnable, since it is
states, but only seeing initial state and final outcome pairs just Boolean combinations of 1 or 2 inputs. In Section 4

(8% F(5T)), closer to a traditional regression problem. we give a general reduction from collective learning of any
It is not difficult to define simple agent strategy classes agent strategy class to PAC learning the class, thus gitimg t
for which learning from only(5'°, F(37T)) pairs is provably  claimed result. u

intractable, yet efficient learning is possible in our model

This idea is formalized in Theorem 3 below. Here the popu-
lation forms a rather powerful computational device map-
ping initial states to final states. In particular, it can be
thought of as a circuit of depth with “gates” chosen from

C, with the only real constraint being that each layer of the
circuit is an identical sequence af gates which are applied

Conversely, it is also not difficult to concoct cases in
which learning the full dynamics in our sense is intractable
but we can learn to approximate a specific outcome func-
tion from only (5%, F(57)) pairs. Intuitively, if each agent
strategy is very complex but the outcome function applied to
final states is sufficiently simple (e.g., constant), we cann
to the outputs of the previous layer. Intuitively, if onlytial but do not need to model the full dynamics in order to learn
states and final outcomes are provided to the learner, learniC @PProximate the outcome.

ing should be as difficult as a corresponding PAC-style prob- e note that there is an analogy here to the distinc-
lem. On the other hand, by observing intermediate state vec-ltion betweerdirectandindirectapproaches to reinforcement

tors we can build arbitrarily accurate models for each agent '€aming [16]. In the former, one learns a policy that is spe-
which in turn allows us to accurately simulate the full dy- cific to a fixed reward function without learning a model of

namical model. next-state dynamics; in the latter, at possibly greatet, cos
one learns an accurate dynamical model, which can in turn
Theorem 3 LetC be the class of 2-inputND andoR gates, be used to compute good policies for any reward function.

and one-inpuNoT gates. Thert is polynomially learnable  For the remainder of this paper, we focus on the model as we
from collective behavior, but there exists a binary outcome formalized it in Definition 2, and leave for future work the
function F such that learning an accurate mapping from investigation of such alternatives.

start statess ° to outcomes”(5'7) without observing inter- .

mediate state data is intractable. 3 Social Strategy Classes

Proof: (Sketch) We first sketch the hardness construction, Before providing our general theory, including the redorti

Let H be any class of Boolean circuits (that is, with gates in 1o collective learning to 1.1.D. learning, we first illuste

C) that is not polynomially learnable in the standard PAC and motivate the definitions so far with some concrete exam-

model: under standard cryptographic assumptions, such Jles 'o.f souall strategy classes, some of which we analyze in

class exists. LeD be a hard distribution for PAC learning detail in Section 5.

‘H. Leth € 'H be a Boolean circuit withR inputs, S gates, TR ;

and depthD. To embed the computation bzyi?] a collgctive 3.1 Crowd Affinity: Mixture Strategies

problem, we letN = R + S andT = D. We introduce The first class of agent strategies we discuss are meant to

an agent for each of thg inputs toh’ whose value after the model Settings in which each individual wishes to balance

initial state is set according to an arbitrasMD, OR, or NOT their intrinsic personal preferences with a desire to tail

gate. We additionally introduce one agent for every gate the crowd.” We broadly refer to strategies of this type as

in k. If a gateg in h takes as its inputs the outputs of gates crowd affinitystrategies (in contrast to therowd aversion

¢’ andg”, then at each time step the agent corresponding to Strategies discussed shortly), and examine a couple afatatu

g computes the corresponding function of the states of the variants.

agents corresponding 6 andg” at the previous time step. As a motivating example, imagine that there dte

Finally, by convention we always have théh agent be the ~ restaurants, and each week, every member of a population

agent corresponding to the output gatehpfand define the ~ chooses one of the restaurants in which to dine. On the one

output function ag"(5) = sy. The distributionP over ini- hand, each agent has personal preferences over the restau-

tial states of theV agents is identical td® on the R agents rants based on the cuisine, service, ambiance, and so on. On

corresponding to the inputs & and arbitrary (e.g., inde-  the other, each agent has some desire to go to the currently

pendent and uniform) on the remainiScgagents. “hot” restaurants — that is, where many or most other agents
Despite the fact that this construction introduces a great have been recently. To model this setting Jete the set of

deal of spurious computation (for instance, at the first time K restaurants, and suppose= SV is the population state

step, many or most gates may simply be computing BooleanVector indicating where each agent dined last week. We can

functions of the random bits assigned to non-input ageitts), Summarize the population behavior by the vector or distribu

is clear that if gatey is at depthd in h, then at timed in the tion f € [0,1]%, wheref, is the fraction of agents dining

collective simulation of the agents, the correspondingitige in restaurant in 5. Similarly, we might represent the per-

has exactly the value computed byunder the inputs té sonal preferences of a specific agent by another distributio

(which are distributed according 19). Because the outcome & € [0, 1]¥ in whichw, represents the probability this agent

function is the value of the agent corresponding to the dutpu would attend restauramtin the absence of any information
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Figure 1: Sample simulations of the (a) crowd affinity mixture model; (b) crowd #ffimultiplicative model; (c) agent affinity model.
Horizontal axis is population state; vertical axis is simulation time. See texiehaiils.

about what the population is doing. One natural way for the havior. Broadly speaking, it is such properties we would lik
agent to balance their preferences with the populationbseha a learning algorithm to model and predict from sufficient ob-
ior would be to choose a restaurant according to the mixture servations.

distribution(1 — a)f+ aw for some agent-dependent mix-

ture coefficienta. Such models have been studied in the 3.2 Crowd Affinity: Multiplicative Strategies

sociology literature [12] in the context of belief formatio One possible objection to the crowd affinity mixture strate-
We are interested in collective systems in which every gies described above is that each agent can be viewed as
agent: has some unknown preferencgs and mixture co-  randomlychoosing whether tentirelyfollow the population
efficienta;, and in each week chooses its next restaurant  distribution (with probabilityl —«) or toentirelyfollow their
according to(1 — ;) f' + ay;, which thus probabilisti- personal preferences (with probability at each time step.

cally yields the next population distributiofi+'. How do A more realistic model might have each agent tredynbine
such systems behave? And how can we learn to model theirthe population behavior with their preferences at every.ste
macroscopic properties from only observed behavior, espe- ~ Consider, for instance, how an American citizen might
cially when the number of choicés is large? alter their anticipated presidential voting decision ocwere

An illustration of the rich collective behavior that can al- in response to recent primary or polling news. If their first

ready be generated from such simple strategies is shown inchoiceé of candidate — say, an Independent or Libertarian

Figure 1(a). Here we show a single but typical 1000-step candidate — appears over time tq_be unelectable” in the
simulation of collective behavior under this model, in whic general election _due to their |_nab|I|ty to sway large num-
N = 100 and each agent's individual preference veator ~ P€rs of Democratic and Republican voters, a natural and typ-
puts all of its weight on just one of 10 possible actions (rep- |ca! response is for the citizen to shift their intended Mote
resented as colors); this action was selected indepegasntl v_vhlchever of the front-runners they most pref_er or Ieast_ dis
random for each agent. All agents havecawalue of just like. In other wqrds, the low popularity of thglr first cho_|ce
0.01, and thus are selecting from the population distriouti causes that choice to be dampgneq or erad|c§1ted; unlike the
99% of the time. Each row shows the population state at a mixture model above, where weighis a'W?‘VS given to per-
given step, with time increasing down the horizontal axis of SOnal preferences, here there may remmainveight on this

the image. The initial state was chosen uniformly at random. c@ndidate.

o . S ne natural w f definin neral h cl f

It is interesting to note the dramatic difference between © © "’.‘t“ al way of defining a genera S;C cass o
a = 0 (in which rapid convergence to a common color strategies Is as follows. As apo_ve, !fete [0, 1], yvhere
is certain) and this small value far; despite the fact that e 1S the fraction of agents dining in restaurantin the

almost all agents play the population distribution at every cﬂurrent states. Similar to the mixture strategies above, let

step, revolving horizontal waves of near-consensus to dif- *i ? 0, 1) be]caveg'ctor OWei%htsrep[rehsent(ijn%thetirr:trinsi(t:)
ferent choices are present, with no final convergence in PF€T€rENCES Of agentover actions. Then denine the prob-

sight. The slight “personalization” of population-only-be ~ ability that agent plays actiona to be f,, - wia/Z( 1),
havior is enough to dramatically change the collective be- where the normalizing factor i8(f, ;) = > ,cs fo - Wi p-
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Thus, in suchmultiplicativecrowd affinity models, the prob-
ability the agent takes an action is always proportionahéo t
product of their preference for it and its current popujarit
Despite their similar motivation, the mixture and mul-
tiplicative crowd affinity strategies can lead to dramdtjca
different collective behavior. Perhaps the most obviots di
ference is that in the mixture case, if agéritas a strong
preference for action there isalwayssome minimum prob-
ability («;w; ) they take this action, whereas in the mul-

tiplicative case even a strong preference can be eradicated

from expression by small or zero values for the popularity
fa-

In Figure 1(b), we again show a single but typical 1000-
step, N = 100 simulation for the multiplicative model
in which agent’s individual preference distributionsare

chosen to be random normalized vectors over 10 actions.

The dynamics are now quite different than for the additive
crowd affinity model. In particular, now there is never near-

For a fixed agent, such a strategy can be modeled by a
weight vectorw € [0, 1]V, with one weight for eaclagent
in the population rather than each action. We define the prob-
ability that this agent takes actiarif the current global state
is § € SV to be proportional td_, . _ w;. In this class of
strategies, the strength of the agent's desire to take the sa
action as agentis determined by how large the weigtt
is. The overall behavior of this agent is then probabilatic
determined by summing over all agents in the fashion above.
In Figure 1(c), we show a single but typical simulation,
again withN = 100 but now with a much shorter time hori-
zon of 200 steps and a much larger set of 100 actions. All
agents have random distributions as their preferences over
other agents; this model is similar to traditional diffusitdy-
namics in a dense, random (weighted) network, and quickly
converges to global consensus.

We leave the analysis of this strategy class to future work,
but remark that in the simple case in whigh= 2, learning

consensus but a gradual dwindling of the colors representedthis class is closely related to the problem of learning per-

in the population — from the initial full diversity down to 3
colors remaining at approximatedy= 100, until by ¢ = 200
there is a stand-off in the population between red and light
green. Unlike the additive models, colors die outin the popu
lation permanently. There is also clear vertical structune

ceptrons under certain noise models in which the intensity o
the noise increases with proximity to the separator [5, 4] an
seems at least as difficult.

3.5 Incorporating Network Structure

responding to strong conditional preferences of the agentsMany of the social models inspiring this work involve a net-

once the stand-off emerges.

3.3 Crowd Aversion and Other Variants

It is easy to transform the mixture or multiplicative crowd
affinity strategies interowd aversiorstrategies — that is, in
which agents wish to balance or combine their personal pref-
erences with a desire to atifferentlythan the population at
large. This can be accomplished in a variety of simple ways.
For instance, iff'is the current distributions over actions in
the population, we can simply define a kind of “inverse” to
the distribution by lettingy, = (1 — f.)/(K — 1), where
K—1=73%,.5(1—fy)is the normalizing factor, and apply-
ing the strategies above gorather thanf. Now each agent

exhibits a tendency to “avoid the crowd”, moderated as be-
fore by their own preferences.

work structure that dictates or restricts the interactibas
tween agents [18]. It is natural to ask if the strategy classe
discussed here can be extended to the scenario in which each
agent is influenced only by his neighbors in a given network.
Indeed, it is straightforward to extend each of the strategy
classes introduced in this section to a network setting. For
example, to adapt the crowd affinity and aversion strategy
classes, it suffices to redefirfg for each agent to be the
fraction of agents in the local neighborhood of agestioos-

ing actiona. To adapt the agent affinity and aversion classes,
it is necessary only to require that = 0 for every agenj
outside the local neighborhood of agénBy making these
simple modifications, the learning algorithms discussed in
Section 5 can immediately be applied to settings in which a
network structure is given.

Of course, there is no reason to assume that the entire4 A Reduction to |.1.D. Learning

population is crowd-seeking, or crowd-avoiding; more gen-
erally we would allow there to be both types of individuals

present. Furthermore, we might entertain other transforms

of the population distribution than jugt, above. For in-
stance, we might wish to still consider crowd affinity, but to
first “sharpen” the distribution by replacing eaghwith f2

and normalizing, then applying the models discussed above

to the resulting vector. This has the effect of magnifying th
attraction to the most popular actions. In general our algo-
rithmic results are robust to a wide range of such variations
3.4 Agent Affinity and Aversion Strategies

In the two versions of crowd affinity strategies discussed

Since algorithms in our framework are attempting to learn to
model the dynamics of a factored Markov process in which
each component is known to lie in the cla&sit is natural

to investigate the relationship between learning just glsin
strategy inC and the entire Markovian dynamics. One main
concern might be effects of dynamic instability — that is,
that even small errors in models for each of fiecompo-
nents could be amplified exponentially in the overall popula
tion model.

In this section we show that this can be avoided. More
precisely, we prove that if the component errors are all kmal
compared td /(NT)?, the population model also has small
error. Thus fast rates of learning for individual compo-

above, an agent has personal preferences over actions, andents are polynomially preserved in the resulting popaoitati

also reacts to the current population behavior, but onlynin a
aggregate fashion. An alternative class of strategiesiwhbat

call agent affinitystrategies instead allows agents to prefer to
agree (or disagree) in their choice with specific other agent
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model.

To show this, we give a reduction showing that if a class
C of (possibly probabilistic) strategies is polynomiallate-
able (in a sense that we describe shortly) from 1.1.D. data,



thenC is also polynomially learnable from collective behav- 4.2 A General Reduction

ior. The key step in the reduction is the introduction of the \itiple analogs of the definition of learnability in the PAC
experimental distribution, defined below. Intuitivelygtx- — 5qel have been proposed for distribution learning setting
perimental distribution is meant to capture the distriiiti  The probabilistic concept model [15] presents a definition
over states that are encountered in the collective setiég 0 for jearning conditional distributions over binary outcesy
repeated trials. Polynomial I.1.D. leaming on this disti e |ater work [13] proposes a definition for learning un-
tion leads to polynomial learning from the collective. conditional distributions over larger outcome spaces. We
. S . combine the two into a single PAC-style model for learn-
4.1 A Reduction for Determinisiic Swrategies ing conditional distributions gver large gutcome spacemfr

In order to illustrate some of the key ideas we use in the I.1.D. data as follows.

more general reduction, we begin by examining the simple

case in which the number of actio®§ = 2 and and each  Definition 5 LetC be a class of probabilistic mappings from

strategyc € C is deterministic. We show that  is polyno- aninput? € X to an outputy € Y where) is a finite set. We
mially learnable in the (distribution-free) PAC model, i@ say thatC is polynomially learnable if there exists an algo-
is polynomially learnable from collective behavior. rithm A such that for any: € C and any distributionD over

In order to exploit the fact that is PAC learnable, itis &, if Ais given access to an oracle producing paifs ¢(7))
first necessary to define a single distribution over states onwith z distributed according td, then for anye, § > 0, al-
which we would like to learn. gorithm A runs in time polynomial il /¢, 1/5, and dim(C)

and outputs a functiof such that with probability — 4,

Definition 4 For any initial state distributionP, strategy
vectorc, and sequence lengih, theexperimental distribu- B P Lo
tion Dp 7 is the distribution over state vectossobtained Ez~p Z [Pr(c(Z) = y) — Pr(e(Z) = y)|| <e.
by queryingOexp (¢, P, T) to obtain(s°,--- ,37), choos- vey

ing ¢t uniformly at random fror{0, --- ,7 — 1}, and setting

o gt We could have chosen instead to require that the expected

KL divergence betweenand¢ be bounded. Using Jensen’s
e . . inequality and Lemma 12.6.1 of Cover and Thomas [6], it

We denote this distribution simply @whenP, ¢, andT’ is simple to show that if the expected KL divergence be-
are clear from context. Given access to the orédtilgr, We  tyeen two distributions is bounded lythen the expected
can sample pairss, c;(5)) wheres'is distributed according L distance is bounded by'2In(2)e. Thus any class that is
to D using the following procedure: polynomially learnable under this alternate definitionlgoa

1. QueryOgxp (G, P,T) to obtain(s°,---  57). polynomially learnable under ours.

Theorem 6 For any clas<C, if C is polynomially learnable
according to Definition 5, thed is polynomially learnable
from collective behavior.

2. Choose € {0,--- ,T — 1} uniformly at random.

3. Return(3't, s, 1),

Proof: This proof is very similar in spirit to the proof of the
L ; duction for the deterministic case. However, severeksri
definition, with access to the orad®:xp, for anyd, e > 0, re . X -
it is possible to learn a mode} such that with probability 2 needed to deal with the fact that trajectories are now ran
dom variables, even given a fixed start state. In particitlar,
1—(§/N), ; ! .
is no longer the case that we can argue that starting at a given
Propés(5) # ci(3)] < € start state and executing a set of strategies that are “tbse
Ta~DlC\S) 7 CGilS) = the true strategy vector usually yielthe saméull trajectory
L - . . we would have obtained by executing the true strategies of
in time polynomial inV, 7', 1/¢,1/6, and the VC dimension  gach agent. Instead, due to the inherent randomness in the
of C using the sampling procedure above; the dependencegi aiegies, we must argue that tistribution over trajecto-

on N andT' come from the fact that we are requesting a yjes js similar when the estimated strategies are suffigient
confidence ofl — (6/N) and an accuracy of/ (T N). We close to the true strategies.

can learn a set of such strategigsor all agents at the cost To make this argument, we begin by introducing the idea
of an additional factor ofv. o oy of sampling from a distributio; using a “filtered” version
Consider a new sequen¢e®, --- ,57) returned by the  f 5 second distributio, as follows. First, draw an out-
oracleOgxp. By the union bound, with probability — 4, comew € Q according toP,. If Py(w) > Py(w), output
the probability that thereAexﬂlsts any aigenand anyt € w. Otherwise, outpub with probabilityPl_(w)/Pg(w), and
{0,--- ,T — 1}, such thatt;(5'") # ¢;(57) is less thare. with probability1 — Py (w) /P (w), output an alternate action

If this is not the case (i.e., if;(5"") = c;(5") foralliand  grawn according to a third distributiaR;, where
t) then the same sequence of states would have been reached
P1 (W) — P2 (w)

if we had instead started at stat€ and generated each ad-

If C is polynomially learnable in the PAC model, then by

ditional state by letting s’ — ¢, (3 ~1). This implies that Pyw) =5 oo Prle) — Bo(a)
with probability 1 — &, £(Q ;. Q=) < €, andC is polynomi- o !
ally learnable from collective behavior. if Pi(w)> Py(w), andPs;(w) = 0 otherwise.
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It is easy to verify that the output of this filtering algo-
rithm is indeed distributed according . Additionally,
notice that the probability that the output is “filtered” is

> P (1 - hw)

w:Ps(w)>Py (w) P2(w)

As in the deterministic case, we make use of the experi-
mental distributionD as defined in Definition 4. I is poly-
nomially learnable as in Definition 5, then with access to the
oracleOgxp, for anyd, e > 0, it is possible to learn a model

¢; such that with probabilitg — (§/N),
€ \2
'] <(vp) @

in time polynomial inN, T', 1 /¢, 1/§, anddim(C) using the
three-step sampling procedure described in the detertiginis
case; as before, the dependenceNoandT” stem from the
fact that we are requesting a confidencé ef (§/N) and an
accuracy that is polynomial in botN andT'. It is possible
learn a set of such strategiésfor all agents at the cost of
an additional factor ofV.

If Equation 2 is satisfied for agentthen for anyr > 1,
the probability of drawing a statéfrom D such that

S Pr(a(®) = ) = Pr(as(s) = 9) = 7 (577)”

seS

) = %||P2 =Pl (1)

S IPr(ci(8) =s) — Pr(é(5) =)

sES

Eswp

3)

is no more tharl /7.

Consider a new sequen¢g’, - -- ,57T) returned by the
oracleOgxp. For eachs'?, consider the actio?rl chosen
by agenti. This action was chosen according to the distribu-
tion ¢;. Suppose instead we would like to choose this action
according to the distributiofy; using a filtered version af;

in which each agent has an intrinsic set of preferences over
actions, but simultaneously would prefer to choose the same
actions chosen by other agents. Similar techniques can be
applied to learn the crowd aversion strategies.

Formally, let f be a vector representing the distribution
over current states of the agentsgif the current state, then
for each actiom, f, = |{i : s; = a}|/N is the fraction of the
population currently choosing actian (Alternately, if there
is a network structure governing interaction among agents,
f. can be defined as the fraction of nodes in an agent’s local
neighborhood choosing actian) We denote byD? the dis-
tribution over vectorg?induced by the experimental distri-
bution D over state vectors. In other words, the probability
of a vectorf under D/ is the sum over all state vectos
mapping tofof the probability ofs underD.

We focus on the problem of learning the parameters of
the strategy of a single agenin each of the models. We as-
sume that we are presented with a set of sampiesvhere

each instanc€,, € M consists of a pai(fm,am>. Here

fm is the distribution over states of the agents apdis the
next action chosen by agentWe assume that the state dis-

tributionsﬁn of these samples are distributed according to
D'. Given access to the oradgxp, such samples could
be collected, for example, using a three-step proceduee lik
the one in Section 4.1. We show that each class is polyno-
mially learnable with respect to the distributi@® induced

by anydistribution D over states, and so by Theorem 6, also
polynomially learnable from collective behavior.

While it may seem wasteful to gather only one data in-
stance for each agemtfrom eachT-trajectory, we remark
that only small, isolated pieces of the analysis presemted i
this section rely on the assumption that the state distabat
of the samples are distributed according?é. In practice,
the entire trajectories could be used for learning with ne im

as described above. By Equation 1, the probability that the pact on the structure of the algorithms. Additionally, wehil

action choice of; is “filtered” (and thus not equal tsij“)
is half the £, distance between;(5*) and¢;(s"). From
Equation 3, we know that for any > 1, with probability at
leastl — 1/, this probability is less than(e¢/(NT))?, so
the probability of the new action being different frostﬁrl
is less thanr(e¢/(NT))? + 1/7. This is minimized when
7 =2NT/e, giving us a bound of/(NT).

By the union bound, with probability — §, the proba-
bility that there exists any agentand anyt € {1,--- ,T},
such thats;'™! is not equal to the action we get by sampling
¢;(3'") using the filtered version af must then be less than
e. As in the deterministic version, if this it the case, then

the analysis here is geared towards learning under theiexper
mental distribution, the algorithms we present can be edpli
without modification in the no-reset variant of the model in-
troduced in Section 2.3. We briefly discuss how to extend
the analysis to the no-reset variant in Section 5.3.

5.1 Learning Crowd Affinity Mixture Models

In Section 3.1, we introduced the class of crowd affinity mix-
ture model strategies. Such strategies are parametenzed b
(normalized) weight vectofi and parametes € [0,1]. The
probability that agent chooses action given that the cur-

rent state distribution ifis thenaf, + (1 — a)w,. In this

the same sequence of states would have been reached if weection, we show that this class of strategies is polyndynial

had instead started at staté and generated each additional
states'? by letting st = ¢;(5t~!) filtered usinge;. This im-
plies that with probabilityl — 6, £(Q;, Qz) < €, andC is

polynomially learnable from collective behavior. |

5 Learning Social Strategy Classes

We now turn our attention to efficient algorithms for learn-
ing some of the specific social strategy classes introduced i
Section 3. We focus on the two crowd affinity model classes.

Recall that these classes are designed to model the scenario
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learnable from collective behavior and sketch an algorithm
for learning estimates of the parametarand«w.

LetI(x) be the indicator function that is 1ifis true and
0 otherwise. From the definition of the model it is easy to
see that for anyn such thatZ,,, € M, for any actions € S,
E[l(am = a)] = af, + (1 — a)w,, where the expectation is
over the randomness in the agent’s strategy. By linearity of
expectation,

Z La, = a)]

m:Ly, €M

E =a ) frat(l—a)waM|. (4)

m:Ly, €M




Standard results from uniform convergence theory say We estimate this weight using

that we can approximate the left-hand side of this equation

arbitrarily well given a sufficiently large data s&{. Replac-
ing the expectation with this approximation in Equation 4
yields a single equation with two unknown variablesand
w,. TO solve for these variables, we must construgai of
equations with two unknown variables. We do so by splitting
the data into instances whefg, ,, is “high” and instances
where it is “low.”

Specifically, letM = | M|. For convenience of notation,
assume without loss of generality th&f is even; if M is
odd, simply discard an instance at random. Defiig’
to be the set containing th&//2 instances inM with the
lowest values off,, .. Similarly, defineM”#9" to be the
set containing thé//2 instances with the highest values of
fm.a- ReplacingM with Mlew and Mgt respectively in

Equation 4 gives us two linear equations with two unknowns.
As long as these two equations are linearly independent, we

can solve the system of equations fgrgiving us

B[ iz, earorlam=0) =z, e o llam =a)

Zm:ImEMgigh fm,a -

o=
Zm:l—mEMf{’“’ fm,a

We can approximate from data in the natural way, using

~ Zm:lm e Mhigh I(Cbm: a)_Zm:Im eMlow I(am: CL)
a= : S . (5)

Zm;l'mej\/lgigh fmﬁa - ZnL:ImEMff“’ fm,a

By Hoeffding’s inequality and the union bound, for any
0 > 0, with probabilityl — ¢

. In(4/6)M
la—é| <
Zm:ImeMgigh fm,a - Zm;ImeMéow fm,a
= (1/Z.)VIn(4/8)/M , (6)
where
Zimsts X e X
a — M/2 N m,a M/2 m,a -
ML, MM m:Z,, EMlow

The quantityZ, measures the difference between the
mean value off,,, , among instances with “high” values of
fm,« @and the mean value gf,, , among instances with “low”

values. While this quantity is data-dependent, standard uni

form convergence theory tells us that it is stable once thee da

setis large. From Equation 6, we know that if there is an ac-

tion a for which this difference is sufficiently high, then it
is possible to obtain an accurate estimate @fiven enough
data. If, on the other hand, no suelexists, it follows that
there is very little variance in the population distributiaver

the sample. We argue below that it is not necessary to learn

« in order to mimic the behavior of an agenif this is the
case.

For now, assume th&t, is sufficiently large for at least
one value oh and call this value*. ‘Wecanuse the estimate

W = Zm:ImeM I(am = a) —a Zm:fm eM fm,a
¢ (1—a)M '
The following lemma shows that given sufficient data,

the error in these estimates is small whgn is large.

(7

Lemma 7 Leta*™ = argmax,s Z,, and let& be calculated
as in Equation 5 witha = a*. For eacha € S, letw, be
calculated as in Equation 7. For sufficiently lardéd, for
anyd > 0, with probabilityl — ¢

loo — &) < (1/Zg+)/In((4 + 2K)/6) /M

and for all actionsa,

|wa — Wal

(1= &) Zo-/V2 +2)y/In((4 + 2K) /5)
Za-(1—a)2VM — (1 — &)y/In((4 4 2K)/6)

The proof of this lemma, which is in the appendi,
relies heavily on the following technical lemma for bound-

ing the error of estimated ratios, which is used frequently
throughout the remainder of the paper.

Lemma 8 For any positiveu, 4, v, 9, k, and e such that
ek < v, if |lu — 4| < eand|v — 9] < ke, then

e(v + uk)
~u(v—c¢k)

u U
D

Now that we have bounds on the error of the estimated
parameters, we can bound the expediedlistance between
the estimated model and the real model.

Lemma 9 For sufficiently largeM,

Erops Y l(@fa+ (1= a)ws) = (@fa+ (1 — @)ib,)|
a€S
_ In((4 + 2K)/9)
- Za*\/M
I /f + 2) In((4 + 2K)/0)
Zge (1 — —VIn((4 +2K)/5)’
201 — a)} .

In this proof of this lemma, which appears in the appendix,
the quantity

Z |(afa +(

a€S

1—a)w,) —

is boundeduniformly for all fusing the error bounds. The
bound on the expectation follows immediately.
It remains to show that we can still bound the error when

Equation 4, it is clear that for any,

E [Zm:ImEM I(a"” = Cl)} —a Zm:ImGM fm,a
(1-a)M '

Wq =
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of the argument here; more detalls appear in the appendix.

1An appendix containing omitted proofs can be found in the
long version of this paper available on the authors’ websites.



Let n, and i, be the true median and mean of the dis-
tribution from which the random variables, , are drawn.
Let fri9h pe the mean value of the distribution ovgr, ,
conditioned onf,,, > 7n.. Let f9" pe the empirical
average off,, , conditioned onf,, , > n,. Finally, let
fhish = (2/M)Y, 7 caqnion fm.a be the empirical av-
erage off,, , conditioned onf,, , being greater than the
empiricalmedian. We can calculatgis” from data.

We can apply standard arguments from uniform conver-

gence theory to show thgf*9" is close tof9", and in turn
that f9" is close tof*9" . Similar statements can be made
for the analogous quantitigd”, flov, andfl°*. By noting
thatZ, = fhish — flow this implies that ifZ, is small, then
the probability that a random value @f, ,, is far from the

where the expectation is over the randomness in the agent’s
strategy. Notice that this expression is the product of two
terms. The firstw,, is precisely the value we would like

to calculate. The second term is something that depends on
the set of instancedA, but does notdepend on actiof.

This leads to the key observation at the core of our algorithm
Specifically, if we have a second actibsuch thatf,, ;, > 0

for all m such thatz,,, € M, then

E [Zm:Im eM XZL}

E [Zm:ImE/\/l ng} .

Although we do not know the values of these expec-
tations, we can approximate them arbitrarily well given
enough data. Since we have assumed (so far)fthat> 0
for all m € M, and we know thaf,,, ., represents a fraction

Wq

Wy

meany, is small. When this is the case, it is not necessary of the population, it must be the case tifat, > 1/N and

to estimatex directly. Instead, we sét = 0 and

1
wa = M E I((lm = (l) .
m:Z,, EM

Applying Hoeffding’s inequality again, it is easy to show
that for eachu, 4, is very close tovu, + (1 — a)w,, and
from here it can be argued that tlide distance between the
estimated model and the real model is small.

Thus for any distributiorD over state vectors, regardless
of the corresponding value &f,-, it is possible to build an
accurate model for the strategy of ageimt polynomial time.
By Theorem 6, this implies that the class is polynomially
learnable from collective behavior.

Theorem 10 The class of crowd affinity mixture model
strategies is polynomially learnable from collective beha
ior.

5.2 Learning Crowd Affinity Multiplicative Models

In Section 3.2, we introduced the crowd affinity multiplica-
tive model. In this model, strategies are parameterizeg onl
by a weight vectors. The probability that agentchooses

actiona is simply fowa />y c s fows.
Although the motivation for this model is similar to that

X € [0,N] for all m. By a standard application of Ho-
effding’s inequality and the union bound, we see that for any

0 > 0, with probability1 — 6,
N 1n(2/6)
R R — A
S\ oy - @

> oxr-E| Y xll”]

m:L,, €M m:L,, EM
This leads to the following lemma. We note that the role of
£ in this lemma may appear somewhat mysterious. It comes
the fact that we are bounding the error of a ratio of two terms;
an application of Lemma 8 using the bound in Equation 8
gives us a factor of, » + x». in the numerator and a factor
of x4, in the denominator. This is problematic only when
Xa,b IS Significantly larger thary; ,. The full proof appears
in the appendix.

Lemma 11 Suppose thaf,, , > 0 and f,,, > 0 for all m
such thatZ,, € M. Then for anyy > 0, with probability
1—4,foranys > 0, if xap < BXb,e andxp,q > 1, then if
M| > Nl1n(2/§)/2, then

m

2omZmem Xa (1+8)v/NIn(2/6)
Zm,:ImEM X;)n - \/2|M| - \/Nln(2/§) .

If we are fortunate enough to have a sufficient number of

for the mixture model, the dynamics of the system are quite 45t instances for whicli,, , > 0 foralla € S, then this

different (see the simulations and discussion in Section 3)
and a very different algorithm is necessary to learn individ
ual strategies. In this section, we show that this classlis po
nomially learnable from collective behavior, and sketch th
corresponding learning algorithm. The algorithm we présen
is based on a simple but powerful observation. In partigular
consider the following random variable:

{1/fm,a
0

Suppose that for ath such thatZ,, € M, itis the case that
fm.a > 0. Then by the definition of the strategy class and
linearity of expectation,

> x';”]

m:Ly, €M

if fr.o > 0anda, =a,
otherwise.

m

Xa =

< fm@wa
L ZSES fm,sws
1

m:ZL, EM ZsGS fm,sws

E

)
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lemma supplies us with a way of approximating the ratios
between all pairs of weights and subsequently approximatin
the weights themselves. In general, however, this may not be
the case. Luckily, it is possible to estimate the ratio of the
weights of each pair of actionsandb that are used together
frequently by the population using only those data instance
in which at least one agent is choosing each. Formally, define

Ma,,b = {Zm eEM: fm,a > Oa fm,b > 0} .

Lemma 11 tells us that iM, ; is sufficiently large, and there
is at least one instang,, € M, ; for whicha,, = b, then
we can approximate the ratio betweep andw, well.

What if one of these assumptions does not hold? If we
are not able to collect sufficiently many instances in which
fm.a > 0andf,,; > 0, then standard uniform convergence
results can be used to show that it is very unlikely that we
see a new instance for whigly > 0 and f, > 0. This idea
is formalized in the following lemma, the proof of which is
in the appendix.



Lemma 12 For any M < |M], for anyd € (0,1), with Theorem 13 The class of crowd affinity multiplicative

probability 1 — 4, model strategies is polynomially learnable from colleetiv
Pry b [3a,0 €S8 : fo>0,f, > 0,[May| < M] behavior.
2 (M m(K?/(20)) 5.3 Learning Without Resets | - .
< o5 W + W . Although the analyses in the previous subsections are tai-
lored to learnability in the sense of Definition 2, they can

Similarly, if xo» = Ys.« = 0, then a standard uniform  €asily be adapted to hold in the alternate setting in which
convergence argument can be used to show that it is unlikelyth® learner has access only to a single, unbroken trajectory

that agent would ever select actionm or b when f,,, » > 0 of states. In this alternate model, the learning algorithom o
andf,, » > 0. We will see that in this case, itis notimportant Serves a polynomially long prefix of a trajectory of states fo
to learn the ratio between these two weights. training, and then must produce a generative model which

Using these observations, we can accurately model theresults in a distribution over the values of the subseqiient
behavior of agent. The model consists of two phases. First, States close to the true distribution.

as a preprocessing step, we calculate a quantity When Igarning individual .crowd affinity models for each
agent in this setting, we again assume that we are presented
Xa,b = Z Xa' with a set of samplesVi, where each instancg,, € M
m: Ly €May consists of a paif f,,, a.,). However, instead of assuming

for each paira,b € S. Then, each time we are presented that the state distributiong,, are distributed according to

with a statef, we calculate a set of weights for all actioms D7, we now assume that the state and action pairs represent

with f, > 0 on the fly. a single trajectory. As previously noted, the majority a# th
For a fixedf, letS’ be the set of actions € S such that analysis for both the mixture and multiplicative varianfs o

f. > 0. By Lemma 12, if the data set is sufficiently large, the c_rowd _affinity mo_del_ do_es not depend on th_e particular

then we know that with high probability, it is the case that Way in which state distribution vectors are distributedd an

foralla,b € ', |Mq,| > M for some threshold/. thus carries over to this setting as is. Here we briefly discus
Now, leta* = arémaXaES, Hb:be S Xab > Xoall- the few modifications that are necessary.
Intuitively, if there is sufficient datay* should be the action The only change required in the analysis of the crowd

in &’ with the highest weight, or have a weight arbitrarily affinity mixture model relates to handling the case in which
close to the h|ghest Thus for any € S/, Lemma 11 can Za is small for alla. PreViOUSly we al’gued that when this is

be used to bound our estimatewf /w,- with a value of the case, the d.isyributioﬁf must be concentrated so that for
arbitrarily close to 1. Noting that all a, f, falls within a very small range with high probability.
w Wa /War Thusitis not necessary to estimate the pa_rametdlrectly, _
a = al 4 , and we can instead learn a single probability for each action
Dses Ws  Dses Ws/War that is used regardless gf A similar argument holds in
we approximate theelative weight of actiona € S’ with the no-reset variant. If it is the case ttat is small for all
respect to the other actionsdi using a, then it must be the case that for eaghthe value off,
R Xa.a*/Xa* .a has fallen into the same small range for the entire observed
Wq = > /’ ) trajectory. A standard uniform convergence argument says
ses’ Xs,ax/ Xa*,s that the probability thaf, suddenly changes dramatically is
and simply let, = 0 for anya ¢ S’. Applying Lemma 8,  very small, and thus again it is sufficient to learn a single
we find that for alla € S', with high probability, probability for each action that is used regardlesg.of

To adapt the analysis of the crowd affinity multiplicative
model, it is first necessary to replace Lemma 12. Recall that
the purpose of this lemma was to show that when the data

(1+B)Ky/NIn(2K?/4) ) set does not contain sufficient samples in whigh> 0 and
V2M — (14 B)K+/N In(2K2/0) ’ f» > 0 for a pair of actions: andb, the chance of observing

wherelM is the lower bound ohM,, ,| foralla,b € ', and & new state distributiof with f, > 0 and f, > 0 is small.
3is close to 1. With this bound in |6Iace, it is straightforward This argument is actually much more straightforward in the

to show that we can apply Lemma 8 once more to bound the 0-Téset case. By the definition of the model, it is easy to
see that iff, > 0 for some actior at timet in a trajectory,

— W,

D
ZSES’ Ws

expected’,, ) . .
P ! then it must be the case that > 0 at all previous points
o Z Wafa  Wafa in the trajectory. Thus iff, > 0 on any test instance, then
f~Df <Y esWsfs  Does Wsls ’ fa must have been non-negative everytraining instance,
ac

and we do not have to worry about the case in which there is
and that the bound goes to O at a rate(dft /+/M) as the insufficient data to compare the weights of a particular pair
thresholdM grows. More details are given in the appendix. of actions.

Since itis possible to build an accurate model of the strat- One additional, possibly more subtle, modification is
egy of agent in polynomial time under any distributioP necessary in the analysis of the multiplicative model to-han
over state vectors, we can again apply Theorem 6 to see thatle the case in whicly, » = x5, = 0 for all “active” pairs
this class is polynomially learnable from collective belbav of actionsa,b € &’. This can happen only if agenthas
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extremely small weights for every actiondti, and had pre-

viously been choosing an alternate action that is no longer

available, i.e., an action for which f, had previously been
non-negative but suddenly is not. However, in order for
to becomed), it must be the case that agentimself chooses
an alternate action (say, actia) instead ofs, which can-
not happen since the estimated weight of actionsed by

the model is0. Thus this situation can never occur in the

no-reset variant.

6 Conclusions and Future Work

We have introduced a computational model for learning from
collective behavior, and populated it with some initial gen

eral theory and algorithmic results for crowd affinity malel

In addition to positive or negative results for further agen
strategy classes, there are a number of other general direc-
tions of interest for future research. These include exten- [1°
sion of our model to agnostic [14] settings, in which we re-
lax the assumption that every agent strategy falls in a known
class, and to reinforcement learning [23] settings, in Whic
the learning algorithm may itself be a member of the popu-
lation being modeled, and wishes to learn an optimal policy

with respect to some reward function.
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Abstract

A Hilbert space embedding for probability mea-
sures has recently been proposed, with applications
including dimensionality reduction, homogeneity
testing and independence testing. This embedding
represents any probability measure as a mean ele-
ment in a reproducing kernel Hilbert space (RKHS).
The embedding function has been proven to be in-
jective when the reproducing kernel is universal.
In this case, the embedding induces a metric on the
space of probability distributions defined on com-
pact metric spaces.

In the present work, we consider more broadly the
problem of specifying characteristic kernels, de-
fined as kernels for which the RKHS embedding
of probability measures is injective. In particular,
characteristic kernels can include non-universal ker-
nels. We restrict ourselves to translation-invariant
kernels on Euclidean space, and define the asso-
ciated metric on probability measures in terms of
the Fourier spectrum of the kernel and characteris-
tic functions of these measures. The support of the
kernel spectrum is important in finding whether a
kernel is characteristic: in particular, the embed-
ding is injective if and only if the kernel spectrum
has the entire domain as its support. Characteristic
kernels may nonetheless have difficulty in distin-
guishing certain distributions on the basis of finite
samples, again due to the interaction of the ker-
nel spectrum and the characteristic functions of the
measures.

1

The concept of distance between probability measures is a
fundamental one and has many applications in probability
theory and statistics. In probability theory, this notion is
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used to metrize the weak convergence (convergence in dis-
tribution) of probability measures defined on a metric space.
Formally, let G be the set of all Borel probability measures
defined on a metric measurable space (M, p, M) and let
be its metric, i.e., (&, ) is a metric space. Then P, is said to

n—oo

converge weakly to P if and only if (P, P) — 0, where
P,{P,}n>1 € 6. When M is separable, examples for ~y in-
clude the Lévy-Prohorov distance and the dual-bounded Lip-
schitz distance (Dudley metric) [Dud02, Chapter 11]. Other
popular examples for vy include the Monge-Wasserstein dis-
tance, total variation distance and the Hellinger distance,
which yield a stronger notion of convergence of probability
measures [Sho00, Chapter 19].

In statistics, the notion of distance between probability
measures is used in a variety of applications, including ho-
mogeneity tests (the two-sample problem), independence te-
sts, and goodness-of-fit tests. The two-sample problem in-
volves testing the null hypothesis Hy : P = @ versus the
alternative H; : P # @, using random samples {X;}/",
and {Y;}}", drawn i.i.d. from distributions P and @ on a
measurable space (M, M). If v is a metric (or more gener-
ally a semi-metric') on &, then v(P, ) can be used as a test
statistic to address the two-sample problem. This is because
~v(P, Q) takes the unique and distinctive value of zero only
when P = Q. Thus, the two-sample problem can be reduced
to testing Hy : v(P,Q) = O versus Hy : v(P,Q) > 0. The
problems of testing independence and goodness-of-fit can be
posed in an analogous form.

Several recent studies on kernel methods have focused on
applications in distribution comparison: the advantage being
that kernels represent a linear way of dealing with higher
order statistics. For instance, in homogeneity testing, dif-
ferences in higher order moments are encoded in mean dif-
ferences computed in the right reproducing kernel Hilbert
space (RKHS) [GBR'07]; in kernel ICA [BJ02, GHS'05],
general nonlinear dependencies show up as linear correla-
tions once they are computed in a suitable RKHS. Instru-
mental to these studies is the notion of a Hilbert space em-
bedding for probability measures [SGSS07], which involves
representing any probability measure as a mean element in
an RKHS (H, k), where k is the reproducing kernel [Aro50,

LGiven a set M, a metric for M is a function p : M x M — R,
such that (i) Vz, p(z,x) = 0, (i)) Va,y, p(z,y) = p(y, ), (i)
Vx,y,2, p(z,2) < p(z,y)+p(y, 2), and (iv) p(z,y) = 0= = =
y [Dud02, Chapter 2]. A semi-metric only satisfies (i), (ii) and (iv).



SS02]. For this reason, the RKHSs used have to be “suffi-
ciently large” to capture all nonlinearities that are relevant to
the problem at hand, so that differences in embeddings cor-
respond to differences of interest in the distributions. The
question of how to choose such RKHSs is the central focus
of the present paper.

Recently, Fukumizu et al. [FGSSO08] introduced the con-
cept of a characteristic kernel, this being an RKHS kernel
for which the mapping II : & — H from the space of Borel
probability measures S to the associated RKHS H is injec-
tive (H is denoted as a characteristic RKHS). Clearly, a char-
acteristic RKHS is sufficiently large in the sense we have de-
scribed: in this case (P, Q) = 0 implies P = @, where 7 is
the induced metric on & by II, defined as the RKHS distance
between the mappings of P and ). Under what conditions,
then, is II injective? As discussed in [GBRT07, SGSS07],
when M is compact, the RKHS is characteristic when its ker-
nel is universal in the sense of Steinwart [Ste02, Definition
4]: the induced RKHS should be dense in the Banach space
of bounded continuous functions with respect to the supre-
mum norm (examples include the Gaussian and Laplacian
kernels). Fukumizu et al. [FGSS08, Lemma 1] considered
injectivity for non-compact M, and showed II to be injective
if the direct sum of H and R is dense in the Banach space
of p-power (p > 1) integrable functions (we denote RKHSs
satisfying this criterion as F-characteristic). In addition, for
M = R?, Fukumizu et al. provide sufficient conditions on
the Fourier spectrum of a translation-invariant kernel for it
to be characteristic [FGSS08, Theorem 2]. Using this result,
popular kernels like Gaussian and Laplacian can be shown to
be characteristic on all of R¢.

In the present study, we provide an alternative means of
determining whether kernels are characteristic, for the case
of translation-invariant kernels on R?. This addresses sev-
eral limitations of the previous work: in particular, it can
be difficult to verify the conditions that a universal or F-
characteristic kernel must satisfy; and universality is in any
case an overly restrictive condition because universal kernels
assume M to be compact. In other words, they induce a met-
ric only on the space of probability measures that are com-
pactly supported on M. In addition, there are compactly sup-
ported kernels which are not universal, e.g. Ba,1-splines,
which can be shown to be characteristic. We provide simple
verifiable rules in terms of the Fourier spectrum of the ker-
nel that characterize the injective behavior of 11, and derive a
relationship between the family of kernels and the family of
probability measures for which v(P, Q) = 0 implies P = Q.
In particular, we show that a translation-invariant kernel on
R? is characteristic if and only if its Fourier spectrum has the
entire domain as its support.

We begin our presentation in §2 with an overview of ter-
minology and notation. In §3, we briefly describe the ap-
proach of Hilbert space embedding of probability measures.
Assuming the kernel to be translation-invariant in R?, in §4,
we deduce conditions on the kernel and the set of probabil-
ity measures for which the RKHS is characteristic. We show
that the support of the kernel spectrum is crucial: H is char-
acteristic if and only if the kernel spectrum has the entire do-
main as its support. We note, however, that even using such a
kernel does not guarantee that one can easily distinguish dis-
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tributions based on finite samples. In particular, we provide
two illustrations in §5 where interactions between the kernel
spectrum and the characteristic functions of the probability
measures can result in an arbitrarily small v(P,Q) =€ > 0
for non-trivial differences in distributions P # Q. Proofs of
the main theorems and related lemmas are provided in §6.
The results presented in this paper use tools from distribu-
tion theory and Fourier analysis: the related technical results
are collected in Appendix A.

2 Notation

For M C R? and p a Borel measure on M, LP(M, p1) de-
notes the Banach space of p-power (p > 1) p-integrable
functions. We will also use L? (M) for LP(M, p) and dzx for
du(x) if p is the Lebesgue measure on M. Cy(M) denotes
the space of all bounded, continuous functions on M. The
space of all g-continuously differentiable functions on M is
denoted by C4(M), 0 < q < oco. For z € C, T represents
the complex conjugate of x. We denote as ¢ the complex
number /—1.

The set of all compactly supported functions in C>°(R?)
is denoted by Z; and the space of rapidly decreasing func-
tions in R? is denoted by .#;. For an open set U C R,
24(U) denotes the subspace of 9, consisting of the func-
tions with support contained in U. The space of linear con-
tinuous functionals on Z; (resp. %) is denoted by 2}, (resp.
&) and an element of such a space is called as a distribu-
tion (resp. tempered distribution). mg denotes the normal-
ized Lebesgue measure defined by dmg(z) = (27)~ % da.
f and f represent the Fourier transform and inverse Fourier
transform of f respectively.

For a measurable function f and a signed measure P,
Pf:= [fdP = [,, f(x)dP(z). d, represents the Dirac
measure at . The symbol § is overloaded to represent the
Dirac measure, the Dirac-delta function, and the Kronocker-
delta, which should be distinguishable from the context.

3 Maximum Mean Discrepancy

We briefly review the theory of RKHS embedding of prob-
ability measures proposed by Smola et al. [SGSS07]. We
lead to these embeddings by first introducing the maximum
mean discrepancy (MMD), which is based on the following
result [Dud02, Lemma 9.3.2], related to the weak conver-
gence of probability measures on metric spaces.

Lemma 1 ([Dud02]) Let (M, p) be a metric space with Borel
probability measures P and Q) defined on M. Then P = @
ifand only if Pf = Qf, ¥V f € Cy,(M).

Originally, Gretton et al. [GBRT07] defined the maximum
mean discrepancy as follows.

Definition 2 (Maximum Mean Discrepancy) Let F = {f |
f+ M — R} and let P, Q be Borel probability measures
defined on (M, p). Then the maximum mean discrepancy is

defined as

17 (P,Q) = sup [Pf—Qf|. (1)
feF



With this definition, one can derive various metrics (men-
tioned in §1) that are used to define the weak convergence
of probability measures on metric spaces. To start with, it
is easy to verify that, independent of F, v+ in Eq. (1) is a
pseudometlric2 on &. Therefore, the choice of F determines
whether or not v#(P,Q) = 0 implies P = Q. In other
words, F determines the metric property of yvr on &. By
Lemma 1, vz is a metric on & when F = Cy,(M). When F
is the set of bounded, p-uniformly continuous functions on
M, by the Portmanteau theorem [Sho0O, Chapter 19, The-
orem 1.1], v is not only a metric on & but also metrizes
the weak topology on S. £ is a Dudley metric [Sho00,
Chapter 19, Definition 2.2] when F = {f : ||fllzr < 1}
where || f[|pL = || flloo + [f[| £ With || f]lo := sup{[f ()] :
v € My and ||| = sup{|f(x) — F(y)l/p(x.y) = @ #

y in M}. ||f]|L is called the Lipschitz seminorm of a real-
valued function f on M. By the Kantorovich-Rubinstein
theorem [Dud02, Theorem 11.8.2], when (M, p) is sepa-
rable, v equals the Monge-Wasserstein distance for F =
{f : IfllL < 1}. ~£ is the total variation metric when
F =Af : IIflle < 1} while it is the Kolmogorov distance
when F = {L_ooy : t € R} I F = {ei@) 1w e
R4}, then (P, Q) reduces to finding the maximal differ-
ence between the characteristic functions of P and ). By
the uniqueness theorem for characteristic functions [Dud02,
Theorem 9.5.1], we have v£(P,Q) = 0 & ¢p = ¢pg <
P = Q, where ¢p and ¢q represent the characteristic func-
tions of P and Q, respectively.3 Therefore, the function class
F = {e*) . w € RY} induces a metric on &. Gretton et
al. [GBRT07, Theorem 3] showed ~# to be a metric on &
when F is chosen to be a unit ball in a universal RKHS H.
This choice of F yields an injective map, Il : & — 'H, as
proposed by Smola ez al. [SGSS07]. A similar injective map
can also be obtained by choosing F to be a unit ball in an
RKHS induced by kernels satisfying the criteria in [FGSSO0S,
Lemma 1, Theorem 2] (which we denote F-characteristic
kernels).

We henceforth assume F to be a unit ball in an RKHS
(H, k) (not necessarily universal or F-characteristic) defined
on (M, M) withk : M x M — R,ie,F ={f € H:
|[fll7 < 1}. The following result provides a different repre-
sentation for v defined in Eq. (1) by exploiting the repro-
ducing property of H, and will be used later in deriving our
main results.

Theorem 3 Let F be a unit ball in an RKHS (H, k) defined
on a measurable space (M, M) with k measurable and bou-
nded. Then

where ||.|| represents the RKHS norm.

Proof: Let Tp : H — R be a linear functional defined as
| == [y f(z)dP(x) with | Tp|| := [Telf]

= SUPser il
2A pseudometric only satisfies (i)-(iii) of the properties of a
metric (see footnote 1). Unlike a metric space (M, p), points in
a pseudometric space need not be distinguishable: one may have
p(z,y) = 0 for z # y [Dud02, Chapter 2].

3The characterlstlc functlon of a probability measure, P on R?
is defined as p(w) := [La eiw’e dP(z), Vw € R

@
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Consider

Tp[f]]

’/f ) dP(x /|f )| dP(
| 4k 0l aP(a) < VEI Sl

where we have exploited the reproducing property and bound-
edness of the kernel to show T'p is a bounded linear func-
tional on H. Here, C' > 0 is the bound on k, i.e., |k(z,y)| <
C < o0, Va,y € M. Therefore, by the Riesz representation
theorem [RS72, Theorem I1.4], there exists a unique Ap € H

such that Tp[f] = (f, Ap)n, Vf € H. Let f = k(-,u) for
some u € M. Then, Tp[k(-,u)] = (k(-,u), >\P>H = Ap(u),
which implies A\p = Tplk] = Pk = [, k(-,x)dP(z).
Therefore, with |Pf — Qf| = |{f,Ap — Ag)x|, we have
v£7(P, Q) = SUDP| il <1 IPf=Qf = [[Ap — Aglln =
1Pk — QF|l. |

The representation of v£ in Eq. (2) yields the embedding,

= fM k P(z) as proposed in [SGSS07, FGSS08],
which is injective when k is characteristic. While the repre-
sentation of v~ in Eq. (2) holds irrespective of the charac-
teristic property of £ , it need not be a metric on &, as II is
not guaranteed to be injective. The obvious question to ask
is “For what class of kernels is II injective?”. To understand
this in detail, we are interested in the following questions
which we address in this paper.

Ql. Let ® C G be a set of Borel probability measures de-
fined on (M, M). Let K be a family of positive definite
kernels defined on M. What are the conditions on ®
and K for whichII : © — Hy, P — [, k(-,z) dP(z)
is injective, i.e., v£#(P,Q) =0 & P = QforP Qe
©7? Here, H, represents the RKHS induced by £ € K.

Q2.

What are the conditions on C so that II is injective on
&?

Note that Q1 is a restriction of Q2 to ®. The idea is that
the kernels that do not make v as a metric on & may make
it as a metric on some restricted class of probability mea-
sures, ® C &. Our next step, therefore, is to characterize
the relationship between classes of kernels and probability
measures, which is addressed in the following section.

4 Characteristic Kernels & Main Theorems

In this section, we present main results related to the behav-
ior of MMD. We start with the following definition of char-
acteristic kernels, which was recently introduced by Fuku-
mizu et al. [FGSS08] in the context of measuring conditional
(in)dependence using positive definite kernels.

Definition 4 (Characteristic kernel) A positive definite ker-
nel k is characteristic to a set ® of probability measures de-

finedon (M, M) ify7z(P,Q) =0 < P =QforP,Q €.

Remark 5 Equivalently, k is said to be characteristic to®
if the map, I1 : ® — H, P — jM x) dP(x), is in-
jective. When M = RY, the notion of characterzstlc kernel
is a generalization of the characteristic function, ¢p(w) =

Jga i’ dP(z), Yw € RY, which is the expectation of the



complex-valued positive definite kernel, k(w,z) = e’
Thus, the definition of a characteristic kernel generalizes the
well-known property of the characteristic function that ¢p
uniquely determines a Borel probability measure P on R,
See [FGSSO8] for more details.

It is obvious from Definition 4 that universal kernels defined
on a compact M and F-characteristic kernels on M are char-
acteristic to the family of all probability measures defined
on (M, M). The characteristic property of the kernel re-
lates the family of positive definite kernels and the family
of probability measures. We would like to characterize the
positive definite kernels that are characteristic to G. Among
the kernels that are not characteristic to &, we would like to
determine those kernels that are characteristic to some appro-
priately chosen subset ®, of &. Intuitively, the smaller the
set ®, larger is the family of kernels that are characteristic to
®. To this end, we make the following assumption.

Assumption 1 k(x,y) = (x — y) where 1 is a bounded
continuous real-valued positive definite function* on M =

RY,

The above assumption means that & is translation-invariant
in R%. A whole family of such kernels can be generated as
the Fourier transform of a finite non-negative Borel measure,
given by the following result due to Bochner, which we quote
from [Wen05, Theorem 6.6].

Theorem 6 (Bochner) A continuous function 1) : R¢ — C
is positive definite if and only if it is the Fourier transform of
a finite nonnegative Borel measure A on RY, i.e.

¥(z) 3

/ etz w dA(w), Yz eR?
Rd

Since the translation-invariant kernels in R are character-
ized by the Bochner’s theorem, it is theoretically interesting
to ask which subset in the Fourier images gives characteristic
kernels. Before we describe such kernels % that are charac-
teristic to G, in the following example, we show that there
exist kernels that are not characteristic to &. Here, & repre-
sents the family of all Borel probability measures defined on
(R4, B(RY)), where B(R?) represents the Borel o-algebra
defined by open sets in R? (see Assumption 1).

Example 1 (Trivial kernel) Ler k(z,y) = v(z —y) = C,
Va,y € R with C > 0. It can be shown that 1) is the
Fourier transform of A = Cdq with support {0}.

Consider Pk = [, k(-,x)dP(z) = C [pq dP(z) =
C. Since Pk = C irrespective of P € &, the map 11 is
not injective. In addition, vr(P,Q) = 0 for any P,Q € &.
Therefore, the trivial kernel, k is not characteristic to S.

4.1 Main theorems
The following theorem characterizes all translation-invariant

kernels in R? that are characteristic to &.

*Let M be a nonempty set. A function t) : M — R is called
positive definite if and only if Y27, c;ap(z; —21) > 0, V; €
M,Vec; eR, VneN
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Theorem 7 Let F be a unit ball in an RKHS (H, k) defined
on R?. Suppose k satisfies Assumption 1. Then k is a char-
acteristic kernel to the family, S, of all probability measures
defined on R? if and only if supp(A) = R%.

We provide a sketch of the proof of the above theorem, which
is proved in §6.2.1 using a number of intermediate lemmas.
The first step is to derive an alternate representation for £ in
Eq. (2) under Assumption 1. Lemma 13 provides the Fourier
representation of v in terms of the kernel spectrum, A and
the characteristic functions of P and ). The advantage of
this representation over the one in Eq. (2) is that it is easy to
obtain necessary and sufficient conditions for the existence
of P # Q, P,Q € G such that v+(P,Q) = 0, which are
captured in Lemma 15. We then show that if supp(A) = R<,
the conditions mentioned in Lemma 15 are violated, mean-
ing AP # Q such that v£(P, Q) = 0, thereby proving the
sufficient condition in Theorem 7. Proving the converse is
equivalent to proving that k is not characteristic to S when
supp(A) € R, So, when supp(A) C R, the result is proved
using Lemma 19, which shows the existence of P # () such
that v#(P, Q) = 0.

Theorem 7 shows that the embedding function II, asso-
ciated with a positive definite translation-invariant kernel in
R? is injective if and only if the kernel spectrum has the en-
tire domain as its support. Therefore, this result provides
a simple verifiable rule for II to be injective, unlike the re-
sults in [SGSS07, FGSS08] where the universality and F-
characteristic properties of a given kernel are not easy to ver-
ify. In addition, the universality and F-characteristic proper-
ties are sufficient conditions for a kernel to induce an injec-
tive map I1, whereas Theorem 7 provides supp(A) = R? as
the necessary and sufficient condition. Therefore, we have
answered question Q2 posed in §3. Examples of kernels that
are characteristic to & include the Gaussian, Laplacian and
By, +1-splines. In fact, the whole family of compactly sup-
ported translation-invariant kernels on R? are characteristic
to G, as shown by the following corollary of Theorem 7.

Corollary 8 Let F be a unit ball in an RKHS (H, k) defined
on R, Suppose k satisfies Assumption 1 and supp(v)) is
compact. Then k is a characteristic kernel to S.

Proof: Since supp(t) is compact in RY, by Lemma 25,
which is a corollary of the Paley-Wiener theorem (see also
[GW99, Theorem 31.5.2, Proposition 31.5.4]), we deduce
that supp(A) = R?. Therefore, the result follows from The-
orem 7. ]

The above result is interesting in practice because of the
computational advantage in dealing with compactly supported
kernels. By Theorem 7, it is clear that kernels with supp(A) C
R? are not characteristic to &. However, they can be charac-
teristic to some ® C S (see Q1 in §3). The following result
addresses this setting.

Theorem 9 Let F be a unit ball in an RKHS (H, k) de-
fined on R, Let ® be the set of all compactly supported
probability measures on R with characteristic functions in
LY(R%) U L*(R?). Suppose k satisfies Assumption 1 and
supp(A) € R? has a non-empty interior. Then k is a char-
acteristic kernel to ©.



P(x), Q = supp(A) D Characteristic vF Reference
QO =R? ] Yes Metric Theorem 7
supp(¢)) is compact G} Yes Metric Corollary 8
QCR%hasa {P : supp(P)is compact .
- ’ Y Met Th 9
non-empty interior  ¢p € L1 (R?) U L2(R9)} ° etre corem
QCR? G No Pseudometric  Theorem 7

Table 1: k satisfies Assumption 1 and is the Fourier transform of a finite nonnegative Borel measure A on R, & is the set of all
probability measures defined on (R¢, B(R?)). P represents a probability measure in R? and ¢p is its characteristic function. If
k is characteristic to &, then (&, v#) is a metric space, where F is a unit ball in an RKHS (H, k).

The proof is given in §6.2.2 and the strategy is similar to
that of Theorem 7, where the Fourier representation of v~
(see Lemma 13) is used to derive necessary and sufficient
conditions for the existence of P # @, P,Q € ® such
that v7(P,Q) = 0 (see Lemma 17). We then show that
if supp(A) € R? has a non-empty interior, the conditions
mentioned in Lemma 17 are violated, which means 3 P =+
Q, P,Q € D such that y£(P, Q) = 0, thereby proving the
result.

Although, by Theorem 7, the kernels with supp(A) € R?
are not characteristic to &, Theorem 9 shows that there ex-
ists ® C & to which a subset of these kernels are charac-
teristic. This type of result is not available for the meth-
ods studied in [SGSS07, FGSSO08]. An example of a kernel
that satisfies the conditions in Theorem 9 is the Sinc kernel,

W(z) = w which has supp(A) = [~0,0]. The condi-
tion that supp(A) C R? has a non-empty interior is impor-
tant for Theorem 9 to hold. If supp(A) has an empty interior
(examples include periodic kernels), then one can construct
P # @, P,Q € D such that v£(P, Q) = 0. See §6.2.2 for

the related discussion and an example.

We have shown that the support of the Fourier spectrum
of a positive definite translation-invariant kernel in R¢ char-
acterizes the injective or non-injective behavior of II. In par-
ticular, supp(A) = R? is the necessary and sufficient con-
dition for the map II to be injective on &, which answers
question Q2 posed in §3. We also showed that kernels with
supp(A) € R? can be characteristic to some ® C & even
though they are not characteristic to &, which in turn an-
swers question Q1 in §3. A summary of these results is given
in Table 1.

4.2 A result on periodic kernels and discrete
probability measures

Proposition 10 Ler F be a unit ball in an RKHS (H, k) de-
fined on R where k satisfies Assumption 1. Let ® = {P :
P = 22021 ﬂndxnv ZZO:1 Bn =1, Bn > 0, VTL} be the
set of probability measures defined on M' = {x1, x5 ...}
C R Then AP # Q, P,Q € D such that vx(P,Q) = 0 if
the following conditions hold:
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(i) 1 is T-periodic® in R%, i.e., Y(x) = Y(z +neT), n €
z¢, T e RY,

(ii) w5 — @ =lsp o 7, Ly € 2%, V5,1,
where e represents the Hadamard multiplication.

Proof: Let 1) be 7-periodic in R? and z, — x; st ®
7,lg € Z% Vs,t. Consider P, Q € © given by P =
> 1 Pnds, and Q@ = Y 0° | Gn0,, such that p,, G,
0,Vn; Y0 1 Pn =1, 2021 Gn = 1. Then v£(P,Q)
| Pk=Qkll = || [ga ¥(-—2) d(P=Q) (@)%t = || 22521 (Bn
_(jn)w( - xn)”H = || Z;.zo:l(ﬁn - qvn)'(b( — 1 —Ip1 ®
# = 19— 21) > 0”1 (Bn — Gn)|l# = 0. This holds for
any P,Q € ©. |

The converse of Proposition 10, if true, would make the re-
sult more interesting. This is because any non-periodic trans-
lation invariant kernel on R? would then be characteristic
to the set of discrete probability measures on R?. In or-
der to prove the converse, we would need to show that (i)
and (ii) in Proposition 10 hold when v+(P,Q) = 0 for
P # Q, P,Q € ©. However, this is not true as the triv-
ial kernel yields v+(P,Q) = 0 for any P,QQ € & and not
just P,Q € 9.

Let us consider v£(P,Q) = 0 for P,Q € ©. This is
equivalent to || | (Pn — Gn)¥(. — 2p)ll,, = 0. Squaring
on both sides and using the reproducing property of k, we
get Yooy Tefsih(s — a4) = 0 where {7, = Pp — Gn iy
satisfy > o2 | 7y = 0 and {7,}32, € [-1,1]. So, to prove
the converse, we need to characterize all ¥, {7,}52; and
{zn}py that satisfy R = {3705 7i7stp(zs — 24) = 0
Yoo 7s = 0,{7s}32, € [—1,1]}, which is not easy. How-
ever, choosing some ¢, {7,}52; and {z,}22, is easy, as
shown in Proposition 10. Suppose there exists a class,
of positive definite translation-invariant kernels in R? with
supp(A) € R? and a class, ¢ C D of probability measures
that jointly violate R, then any k& € K is characteristic to €.

v

SA 7-periodic ) in R is the Fourier transform of A
Y 0wl 2mn where 627?7” is the Dirac measure at 22, n € Z
with a, > 0and 377 an < oo. Thus, supp(A) = {222 :
an > 0,n € Z} € R. {on}> are called the Fourier series
coefficients of 1.
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Figure 1: Behavior of the empirical estimate of 7% (P, Q) w.r.t. v for the (a) B;-spline kernel and (b) Gaussian kernel. P is
constructed from @ as defined in Eq. (4). “Uniform” corresponds to @ = U[—1, 1] and “Gaussian” corresponds to @ = N(0, 2).
m = 1000 samples are generated from P and @ to estimate v% (P, Q) through yi,u(m, m). See Example 2 for details.

5 Dissimilar Distributions with Small Mean
Discrepancy

So far, we have studied the behavior of v+ and have shown
that it depends on the support of the spectrum of the ker-
nel. As mentioned in §1, applications like homogeneity test-
ing exploit the metric property of v~ to distinguish between
probability distributions. Since the metric nature of v£ is
guaranteed only for kernels with supp(A) = RY, tests based
on other kernels can fail to distinguish between different prob-
ability distributions. However, in the following, we show
that the characteristic kernels, while guaranteeing .+ to be a
metric on G, may nonetheless have difficulty in distinguish-
ing certain distributions on the basis of finite samples. Be-
fore proving the result, we motivate it through the following
example.

Example 2 Let P be defined as
p(z) = q(x) + ag(x) sin(vrz), 4)

where q is a symmetric probability density function with o €
R, v € R\{0}. Consider a By-spline kernel on R given by

k(z,y) = ¢¥(z — y) where

A e e A
U(z) = { 0, otherwise ’ ©)
with its Fourier transform given by ¥(w) = 2—\*//5 Sir;ﬁ (see

footnote 10 for the definition of V). Since 1) is characteristic
to S, vx(P,Q) > 0 (see Theorem 7). However, it would be
of interest to study the behavior of vx(P, Q) as a function of
v. We do this through an unbiased, consistent estimator® of
v2(P,Q) as proposed by Gretton et al. [GBRT07, Lemma
7].

SStarting from the expression for vz in Eq. (2), we get
V7 (P,Q) Ex x/~pk(X,X') — 2Ex~py~k(X,Y) +
Eyyok(Y,Y"), where X, X' are independent random vari-
ables with distribution P and Y, Y’ are independent random
variables with distribution ). An unbiased empirical estimate
of 77, denoted as v%,(m,m) is given by ~%,(m,m)
ﬁ > 1w; M(Z1, Zj), which is a one-sample U-statistic with
h(ZlaZj) = k(XhXj) + k(lfl71/3) - k(Xl7}/}) - k(Xj7}[l)’
where Z1,...,Z,;, are m iid. random variables with Z;
(X;,Y;) (see [GBRT 07, Lemma 7]).
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Figure 1(a) shows the behavior of the empirical estimate
of v2(P, Q) as a function of v for ¢ = U[—1,1] and q =
N(0,2) using the Bi-spline kernel in Eq. (5). Since the
Gaussian kernel, k(z,y) = e~ (@9 is also a characteristic
kernel, its effect on the behavior of Wi-yu(m, m) is shown in
Figure 1(b) in comparison to that of the B1-spline kernel.

From Figure 1, we observe two circumstances under whi-
ch the mean discrepancy may be small. First, 'y%u(m, m)
decays with increasing |v|, and can be made as small as de-
sired by choosing a sufficiently large |v|. Second, in Fig-
ure 1(a), 'yg_-yu(m,m) has troughs at v = <2 where wy
{w : ¥(w) = 0}. Since v%,,(m,m) is a consistent esti-
mate of ’yg_-(P, Q), one would expect similar behavior from
Y¥2(P, Q). This means that though the Bi-spline kernel is
characteristic to G, in practice, it becomes harder to distin-
guish between P and Q) with finite samples, when P is con-
structed as in Eq. (4) with v = “2. In fact, one can observe
from a straightforward spectral argument that the troughs in
'y%_—(P, Q) can be made arbitrarily deep by widening q, when
q is Gaussian.

For characteristic kernels, although v#(P,Q) > 0 when
P # (@, Example 2 demonstrates that one can construct
distributions such that W%U(m, m) is indistinguishable from
zero with high probability, for a given sample size m. Below,
in Theorem 12, we investigate the decay mode of MMD for
large |v| (see Example 2) by explicitly constructing P # @
such that | Py; — Q| is large for some large I, but v£(P, Q)
is arbitrarily small, making it hard to detect a non-zero value
of the population MMD on the basis of a finite sample. Here,
@1 € L?(M) represents the bounded orthonormal eigenfunc-
tions of a positive definite integral operator’ associated with
k.

Consider the formulation of MMD in Eq. (1). The con-
struction of P for a given @ such that v+(P, Q) is small,
though not zero, can be intuitively seen by re-writing Eq. (1)
as

Pf—Qf]

P.O) =
77 (P, Q) = sup T

fEH

(6)

’See [SS02, Theorem 2.10] for definition of positive definite
integral operator and its corresponding eigenfunctions.



When P # Q, |Pf — Qf] can be large for some f € H.
However, 7£(P, Q) can be made small by selecting P such

that the maximization o PH e over ‘H requires an f with

large || f||7¢. More specifically, higher order eigenfunctions
of the kernel (p; for large /) have large RKHS norms, and
so if they are prominent in P, @ (i.e., highly non-smooth
distributions), one can expect y£(P, Q) to be small even
when there exists an [ for which |Py; — Q| is large. To
this end, we need the following lemma, which we quote
from [GSBT04, Lemma 6].

Lemma 11 ((GSB104]) Let F be a unit ball in an RKHS
(H, k) defined on compact M. Let o, € L?>(M) be or-
thonormal eigenfunctions (assumed to be absolutely bounded),
and \; be the corresponding eigenvalues (arranged in a de-
creasing order for increasing l) of a positive definite integral
operator associated with k. Assume )\_1 increases superlin-
early with l. Then for f € F where f( )= ZJ 1 fjtpj( ),
we have {|f]\} °, € {1 and for every € > 0, 31y € N such

that|fl| < e€ifl >l

Theorem 12 (P # () can give small MMD) Assume the con-

ditions in Lemma 11 hold. Then there exists a probability
distribution P # Q) defined on M for which |Py; — Q| >
B — € for some non-trivial 3 and arbitrarily small € > 0, yet
Sor which vz(P, Q) < n for an arbitrarily small 1 > 0.

Proof: Let us construct p(z) = q(x) + aie(z) + Bpi(z)
where e(x) = 1) (). For P to be a probability distribution,
the following conditions need to be satisfied:

/M [aze(x) + By (z)] dx = 0, @)
min [¢(z) + are(z) + Br(z)] 2 0. ®)

Expanding e(z) and f(z) in the orthonormal basis {¢; }7°,
we get e(a) = Y, épile) and f(x) = 5%, fupi(a)
where €, := (e, gol>L2(M) and f; := (f,1)r2(amr). There-
fore, Pf — Qf = [, f(x)[ave(x) + Byi(x)] dx reduces to

Pf—Qf =y &f;+Bfi )
j=1
where we used the fact that® (¢, 1) 12(ar) = 0;¢. Rewriting
Eq. (7) and substituting for e(x) gives [, [ove(x)+B¢i(x)] dx

= [y, e(x)[oue( )—l—ﬂw(m)]dmzalz] 1 ]—|—ﬁel—0
which 1mphes
Bé

S
Qr = a1é;+ Bdy. Substituting

ap = — (10)
Now, let us consider Py, —
for oy gives
€€,
Py — Qpr = By — =5
Zj:l ej
Z}é?'iléﬁ' By Lemma 11, {|&]|}°, € {1 =
S22, €2 < oo, and choosing large enough [ gives |74| <

= B0y — By, (11)

where 14 =

j=1"J

8Here § is used in the Kronecker sense.
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€, Vt, for any arbitrary € > 0. Therefore, |Po; — Qo:| >
B —efort =1and |Py; — Qg:| < efort # . By appealing
to Lemma 1, we therefore establish that P # (). In the
following we prove that vz (P, Q) can be arbitrarily small,
though non-zero.

Recall that 77 (P, Q) = sup) ,,<1 |[Pf — Qf]. Substi-

tuting for oy in Eq. (9), we have
o0

E)wﬂ §21<1 ., (12

where we used the definition of RKHS norm as || f|j» =

~v#7(P, Q) = sup

Z;O 1 i and vj; := §;; — 7j. Eq. (12) is a convex quadratic

program in {fj 521 Solving the Lagrangian yields fj =

21y}
ﬁ, Therefore, v£(P, Q) = 5m -

ﬁ\/Az —2mN + 3052, THA — 0as | — oo because
(i) by choosing sufficiently large I, |7;;| < €, Vj, for any

arbitrary € > 0,
(ii) \; — 0 as [ — oo [SS02, Theorem 2.10]. |

6 Proofs of the Main Theorems

In this section, we prove the main theorems in Section 4.

6.1 Preliminary lemmas

Using the Fourier characterization of ) given by Eq. (3), un-
der Assumption 1, we derive the following result that pro-
vides the Fourier representation of MMD. This result re-
quires tools from distribution theory related to the Fourier
transforms of distributions.” We refer the reader to [Rud91,
Chapters 6,7] for the detailed treatment of distribution the-
ory. Another good and basic reference on distribution theory
is [StrO3].

Lemma 13 (Fourier representation of MMD) Let F be a
unit ball in an RKHS (H, k) defined on R with k satisfying
Assumption 1. Let ¢ p and ¢ ¢ be the characteristic functions
of probability measures P and Q defined on R?. Then

7 (P, Q) = [(6p — dg) Al 1%, (13)

where — represents complex conjugation, \ represents the
inverse Fourier transform and A represents the finite non-
negative Borel measure on R? as defined in Eq. (3). (¢p —
EQ)A represents a finite Borel measure defined by Eq. (26).

Proof: From Theorem 3 we have 7; (P, Q = ||Pk: Qk||x.
Consider Pk = [, k( fRd -—x) dP(zx). By
Eq. (23), [pa (- —2) dP( ) represents the convolution of ¢
and P, denoted as ¥x P. By appealing to the convolution the-

orem (Theorem 22), we have (1) P)" = PA, where P(w) =

Here, the term distribution should not be confused with proba-
bility distributions. In short, distributions refer to generalized func-
tions which cannot be treated as functions in the Lebesgue sense.
Classical examples of distributions are the Dirac-delta function and
Heaviside’s function, for which derivatives and Fourier transforms
do not exist in the usual sense.



Jga e~ " dP(z),Vw € R? (by Lemma 20). Note that
P = Gp. Therefore, vr(P,Q) = [ P — b Qll
[(@pA)Y — (dqA)Y| 5, Using the linearity of the Fourier
inverse, we get the desired result. [ |

Remark 14 (a) If U is the distributional derivative'® of A,
then Eq. (13) can also be written as

7 (P,Q) = [(¢p — 00)¥]" |1, (14)

where the term inside the RKHS norm is the Fourier inverse
of a tempered distribution.

(b) By Assumption 1, 1 is real-valued and symmetric in R?.
Therefore, by (ii) in Lemma 20, A and ¥V are real-valued,
symmetric tempered distributions.

The representation of MMD in terms of the kernel spectrum
as in Eq. (13) will be central to deriving our main theorems.
It is easy to see that characteristic kernels can be described
indirectly by deriving conditions for the existence of P # @
such that v£(P, Q) = 0. Using the Fourier representation
of v, the following result provides necessary and sufficient
conditions for the existence of P # @ such that v#(P, Q) =
0.

Lemma 15 Let F be a unit ball in an RKHS (H, k) defined
on R4, and let P,Q be probability distributions on R? such
that P # Q. Suppose that k satisfies Assumption 1 and
supp(A) C R Then vx(P,Q) = 0 if and only if there
exists 0 € Z that satisfies the following conditions:

(i) p—q =9,
(ii) OA = 0,

where p and q represent the distributional derivatives of P
and Q) respectively, and O\ represents a finite Borel measure

defined by Eq. (26).

Proof: The proof follows directly from the formulation of
~v£ in Eq. (13).

(=) Let 0 € .7 satisfy (i) and (ii). Since 6 € .¥;, we have
0 —6— (p—q)" =P — G = ¢p — dg. Therefore, by (ii),
we have y7(P, Q) = [|[(6p — dq) A" I3 = |[0A]Y |2 = 0.

(<) Let 7£(P, Q) = [[[(@p — 6g)A]Y[l2¢ = 0, which im-
plies [(¢p —¢g)A]Y = 0. Since (¢p —pg)A is a finite Borel
measure as defined by Eq. (26), it is therefore a tempered dis-
tribution and so (¢p — dg)A = [[(¢p — qSQ)A]V]A = 0. Let
0:=¢p— aQ. Clearly 6 € .7, as by Lemma 20, ap,iQ €
fjé- So,p—q= (¢P)v - (¢Q)V = (¢p — ¢Q)v =6. N
0 = 0 trivially satisfies (ii) in Lemma 15. However, it vio-
lates our assumption of P # Q) when it is used in condition

OTf A is absolutely continuous w.r.t. the Lebesgue measure,
then W represents the Radon-Nikodym derivative of A w.r.t. the
Lebesgue measure. In such a case, ¢ is the Fourier transform of
W in the usual sense; i.e., P(x) = [pq e~ W (w) dmg(w). On
the other hand, if W is the distributional derivative of A, then W is a
symbolic representation of the derivative of A and will make sense
only under the integral sign.
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(i). If we relax this assumption, then the result is trivial as
P =@ = v#(P,Q) = 0. For the results we derive later,
it is important to understand the properties of 6, which we
present in the following proposition.

Proposition 16 (Properties of ) 0 in Lemma 15 satisfies the
following properties:

(a) 0 is a conjugate symmetric, bounded and uniformly con-
tinuous function on R?.

(b) 6(0) = 0.

(c) supp(0) C RINQ where Q := supp(A). In addition, if
Q= {ay,aq,...}, then0(a;) =0, Va; € Q.

Proof: (a) From Lemma 15, we have § = ¢p — ¢,. There-
fore, the result in (a) follows from Lemma 20, which shows
that ¢p, ¢g are conjugate symmetric, bounded, and uni-

formly continuous functions on R,
(b) By Lemma 20, ¢p(0) = ¢q(0) = 1. Therefore, 6(0) =
¢P(0) - ¢Q(0) =0.

(c) Let W := {x € R|0(z) # 0}. It suffices to show

that W C RI\Q. Suppose W is not contained in R¥\Q.
Then there is a non-empty open subset U such that U C
W N (22U 09Q). Fix further a non-empty open subset V/

with V. C U. Since V. C Q, there is p € Z4(V) with
A(p) # 0. Take h € Z4(U) such that h = 1 on V, and

define a continuous function o = %“’ on R?, which is well-
defined from supp(h) C U and 6 # 0 on U. By (ii) of
Lemma 15, A = 0, where 0A is a finite Borel measure on
R? as defined by Eq. (26). Therefore,

/Rd o(z)0(x) dA(z) = 0.

The left hand side of Eq. (15) simplifies to

_ h(x)p(z)
/R o)0(r) dA(z) = /U e

/U () dA(z) = A(p) £ 0,

15)

(z) dA(x)

resulting in a contradiction. So, supp(#) C RI\Q.

IfQ = {al,ag, .. .}, then A = Zajeﬂ ﬂjéaj, ﬂj >0
and 3, B < co. OA = 0 implies [y, x(2)0(x) dA(z) =
>_; Bix(a;)0(a;) = 0 for any continuous function y in R
This implies f(a;) =0, Va,; € Q. |

Lemma 15 provides conditions under which vx=(P, Q) = 0
when P # Q). It shows that the kernel £ cannot distinguish
between P and @ if P is related to @) by condition (i). Con-
dition (ii) in Lemma 15 says that 6 has to be chosen such
that its support is disjoint with that of the kernel spectrum.
This is what is precisely captured by (c) in Proposition 16.
So, for a given (), one can construct P such that P # () and
~vx7(P,Q) = 0 by choosing 6 that satisfies the properties in
Proposition 16. However, P should be a positive distribution
so that it corresponds to a positive measure.!! Therefore,

A positive distribution is defined to be as the one that takes
nonnegative values on nonnegative test functions. So, D € 2;(M)



0 should also be such that ¢ + 6 is a positive distribution.
Imposing such a constraint on 6 is not straightforward, and
therefore Lemma 15 does not provide a procedure to con-
struct P # () given (). However, by imposing some condi-
tions on P and @), we obtain the following result wherein the
conditions on # can be explicitly specified, yielding a proce-
dure to construct P # () such that yz(P, Q) = 0.

Lemma 17 Let F be a unit ball in an RKHS (H, k) de-
fined on R%. Let ® be the set of probability measures on
R® with characteristic functions either absolutely integrable
or square integrable, i.e., for any P € ®, ¢p € L'(R?) U
L?(RY). Suppose that k satisfies Assumption 1 and supp(A)
R®. Then for any Q € ®, 3P # Q, P € ® given by

p:q+9 (16)

such that vz (P, Q) = 0 if and only if there exists a non-zero
function 0 : R® — C that satisfies the following conditions:

(i) 6 € (L*(RY)UL*(RY))NCy(RY) is conjugate symmet-

ric,
(ii) 6 € L' (RY) N (L?(RY) U Cy(R?)),
(iii) OA =0,
(iv) 0(0) =0,

(v) infrepa{f(z) +q(2)} > 0.

Proof: (=-) Suppose there exists a non-zero function 6 sat-
isfying (i) — (v). We need to show that p = ¢ + 6 is in D for
g € ®and v£(P,Q) =0.

Forany Q € ®, ¢g € (L'(RY) U L3(R%)) N Cy(RY).
When ¢g € L' (RY)NCy(RY), the Riemann-Lebesgue lemma
(Lemma 23) implies that ¢ = [po]Y € L'(R?) N Cy(R?).
When ¢g € L?(R?) N C,(RY), the Fourier transform in the
L? sense'? implies that ¢ = [¢]Y € L'(R?) N L*(RY).
Therefore, ¢ € L*(R%) N (L*(R%) U Cy(RY)). Define p :=
q+0. Clearly p € L*(RY) N (L?*(RY)UC,(RY)). In addition,
bp=p=G+0=0dg+0 € (L*(RY)UL*(R?)) N Cy(RY).
Since 6 is conjugate symmetric, 6 is real valued and so is
p. Consider [p.p(z)dz = [pq(z)dz + [ 0(z)dz =
1+46(0) = 1. (v) implies that p is non-negative. Therefore, P
represents a probability measure such that P # Q) and P €
. Since P, () are probability measures, v#(P, Q) is com-

puted as 77 (P, Q) = [[[(¢p — ¢q)A]" [l = | [0A]V]|7 = 0.

(<) Suppose that P, Q € ® and p = ¢+40 gives 77 (P, Q) =
0. We need to show that @ satisfies (i) — (v).

is a positive distribution if D(¢) > 0for 0 < ¢ € Zg(M). If pis
a positive measure that is locally finite, then Dy, () = [,, ¢ du de-
fines a positive distribution. Conversely, every positive distribution
comes from a locally finite positive measure [Str03, §6.4].

21f f e L*(R?), the Fourier transform [ [f] := f of f is
defined to be the limit, in the L?-norm, of the sequence {f,} of
Fourier transforms of any sequence { f,, } of functions belonging to
%y, such that f,, converges in the L*-norm to the given function
f € L*(R%), as . — co. The function f is defined almost every-
where on R and belongs to L?(R%). Thus, f is a linear operator,
mapping L*(R?) into L*(R?).
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P.Q € D implies ¢p,dg € (L'(RY) U L2(RY) N
Cy(RY) and p,q € L*(RY) N (L?(R?) U Cp(RY)). There-
fore, § = ¢p — ¢y € (L'(R?) U L2(RY)) N Cy(R?) and
0=p—qe L*(RY) N (L2(RY) U Cy(RY)). By Lemma 20,
¢p and ¢g are conjugate symmetric and so is 6. Therefore
6 satisfies (i) and 6 satisfies (ii). 6 satisfies (iv) as 6(0) =
Jpa 0(z) dz = [o.(p(z) — q(z)) dz = 0. Non-negativity of
pyields (v). v#(P, Q) = 0 implies (iii), with a proof similar
to that of Lemma 15. |

Remark 18 Conditions (iii) and (iv) in Lemma 17 are the
same as those of Proposition 16. Conditions (i) and (ii) are
required to satisfy our assumption P,QQ € ® and Eq. (16).
Condition (v) ensures that P is a positive measure, which
was the condition difficult to impose in Lemma 15.

In the above result, we restricted ourselves to probability
measures P with characteristic functions ¢p in L'(R?) U
L?(R9). This ensures that the inverse Fourier transform of
¢p exists in the L' or L? sense. Without this assumption, ¢ p
is not guaranteed to have a Fourier transform in the L' or L?
sense, and therefore has to be treated as a tempered distribu-
tion for the purpose of computing its Fourier transform. This
implies § = ¢p —aQ has to be treated as a tempered distribu-
tion, which is the setting in Lemma 15. Since we wanted to
avoid dealing with distributions where the required positiv-
ity constraint is difficult to impose, we restricted ourselves to
©.!3 Though this result explicitly captures the conditions on
0, it is a very restricted result as it only deals with continuous
(a.e.) probability measures. However, we use this result in
Lemma 19 to construct P # @ such that y£(P, Q) = 0.

Lemmas 15 and 17 are the main results that provide con-
ditions for the existence of P # @ such that y#(P, Q) = 0.
This means that if there exists a 6 satisfying these condi-
tions, then k cannot distinguish between P and () where P
is defined as in Eq. (16). Thus, the existence (resp. non-
existence) of € results in a non-injective (resp. injective)
map II. It is clear from Lemmas 15 and 17 that the de-
pendence of vx on the kernel appears in the form of the
support of the kernel spectrum. Therefore, two scenarios
exist: (a) supp(A) = R? and (b) supp(A) € RY. The
case of supp(A) = R? is addressed by Theorem 7 while
that of supp(A) € R? is addressed by Theorem 9. Us-
ing Lemma 17, the following result proves the existence of
P # @ such that v£(P, Q) = 0 while using a kernel with
supp(A) G RY.

Lemma 19 Let F be a unit ball in an RKHS (H, k) de-
fined on R%. Let ® be the set of all non-compactly sup-
ported probability measures on R with characteristic func-
tions in L' (R?) U L2(RY). Suppose k satisfies Assumption I
and supp(A) C R% Then 3P # Q, P,Q € ® such that
v#(P,Q) = 0,

3Choosing D to be the set of all probability measures with char-
acteristic functions in L' (R%) U L?(R?) is the best possible restric-
tion that avoids treating 6 as a tempered distribution. The classi-
cal Fourier transforms on R? are defined for functions in L? (R?),
1 < p < 2. For p > 2, the only reasonable way to define Fourier
transforms on L? (R?) is through distribution theory.



Proof: We claim that there exists a non-zero function, 6 sat-
isfying (i) — (v) in Lemma 17 which therefore proves the
result. Consider the following function, gg ., € C*(R%)
supported in [wy — 3, wo + 3],

d B3
gs, wo H g]’ﬁ] —wo,j e B2 (wj—w ;)2 , (17)
where w = (w1,...,wq), wo = (wo,1,...,wo,q) and B =

(B1,...,Bq). Since supp(A) € R? there exists an open
set U C R? on which A is null. So, there exists 3 and
wo # 0 with wg > 3 such that [wg — B,we + B] C U.
Choose 0 = a(gg,w, + 98,—wo)s & € R\{0}, which im-
plies supp(0) = [~wo — B3, —wo + 0] U [wo — B,wo + /]
is compact. Therefore, by the Paley-Wiener theorem (The-
orem 24), 6 is a rapidly decaying function, i.e., § € ..
Since #(0) = 0 (by construction), 6 will take negative val-
ues. However, 0§ decays faster than some @ € © of the
form ¢(z) H;'l:1 lel““ VIl € N, e > 0 where
(21,...,24). It can be verified that 6 satisfies conditions (i)
— (v) in Lemma 17. We conclude, there exists a non-zero 6
as claimed earlier, which completes the proof. |

The above result shows that k& with supp(A) € R? is not
characteristic to the class of non-compactly supported prob-

ability measures on R? with characteristic functions in either
LY(RY) or L%(RY).

6.2 Main theorems: Proofs

We are now in a position to prove Theorems 7 and 9.

6.2.1 Proof of Theorem 7

(=) Let supp(A) = R? k is a characteristic kernel to & if
v7(P,Q) =0 & P = Q for P,Q € &. We only need to
show the implication y£(P, Q) =0 = P = (@ as the other
direction is trivial.

Assume that 3P # @ such that y£(P,Q) = 0. Then
by Lemma 15, 36 satisfying (i) and (ii) given in Lemma 15.
By Proposition 16, #A = 0 implies supp(§) C R¥\supp(A).
Since supp(A) = R? and 6 is a uniformly continuous func-
tion in R%, we have supp(f) = () which means 6 = 0 a.e.
Therefore, by (i) of Theorem 15, we have P = @), leading to
a contradiction. Thus, A P # @Q such that vz (P, Q) = 0.

(<) Suppose k is characteristic to &. We then need to show
that supp(A) = R?. This is equivalent to proving that  is not
characteristic to & when supp(A) € R?. Let supp(A) € R
Choose ©® C & as the set of all non-compactly supported
probability measures on R¢ with characteristic functions in
LY(RY)UL?(RY). By Lemma 19, 3P #Q, P,Q €D C &
such that y£(P, Q) = 0. Therefore, k is not characteristic to
6. ]

6.2.2 Proof of Theorem 9

Suppose 3P # Q, P,Q € ® C & such that y#(P, Q) = 0.
Then by Lemma 15, there exists a @ € .% such that 0=p—gq
where p and q are the distributional derivatives of P and (),
respectively. Since P, Q) € D, we can apply Lemma 17 and
so @ is a non-zero function that satisfies conditions (i) — (v)
in Lemma 17. The condition A = 0 implies supp(f) C

120

R4\supp(A). Since supp(A) has a non-empty interior, we
have supp(#) C RY. Thus, there exists an open set, U C R¢
such that §(z) = 0, V2 € U. By Lemma 25, this means that
0 is not compactly supported in R?. Condition (iv) implies
Jga 0(x) dz = 0, which means that 0 takes negative values.

Since ¢ is compactly supported in R?, ¢(z) + 6(z) < 0
for some x € R%\supp(Q), which violates condition (v) in
Lemma 17. In other words, there does not exist a non-zero 6
that satisfies conditions (i) — (v) in Lemma 17, thereby lead-
ing to a contradiction. |

As discussed in §4.1, the condition that supp(A) has a non-
empty interior is important for Theorem 9 to hold. This is be-
cause if supp(A) has an empty interior, then supp(f) = R,
In principle, one can construct such a 6 by selecting § € .7,
so that it satisfies conditions (i) — (iv) of Lemma 17 while sat-
isfying the decay conditions (Eq. (29) and Eq. (30)) given in
the Paley-Wiener theorem (see Theorem 24). Therefore, by
the Paley-Wiener theorem, 6 is a C° function with compact
support. If @ is chosen such that supp(d) C supp(Q), then
condition (v) of Theorem 17 will be satisfied. Thus, one can
construct P # @, P, Q € D (D being defined in Theorem 9)
such that v=(P, Q) = 0. Note that conditions (i) and (ii) of
Lemma 17 are automatically satisfied (except for conjugate
symmetry) by choosing 6 € .#;. However, choosing 6 such
that it is also an entire function (so that the Paley-Wiener the-
orem can be applied) is not straightforward. In the following,
we provide a simple example to show that P # @, P,Q € ©
can be constructed such that v+ (P, Q) = 0, where F corre-
sponds to a unit ball in an RKHS (M, k) induced by a pe-
riodic translation-invariant kernel for which supp(A) € R?
has an empty interior.

Example 3 Let Q) be a uniform distribution on [—(3, 3] C R,

Le, q(z) = 216 11—, (x) with its characteristic function,
bo(w) = 5\}5 Smf“’) in L2(R). Let 1) be the Dirichlet ker-
. (2l max
nel with period T, where 7 < 3, i.e., ¥(x) = Smsin ; and
U(w) = Zé-:flé(w— 211 with supp(¥) = {2’” Jj €
{0,%1,...,£l}}. Clearly, supp(V) has an empty interior.
Let 0 be
in2 (wWT
0(w) = 8v2a . (cm') sin (24 )7 as)
T Tw

with a < iﬂ It is easy to verify that € L'(R) N L*(R) N

Cy(R) and so 0 satisfies (i) in Lemma 17. Since 0(w) = 0 at
21l | € 7, 0 also satisfies (iii) and (iv) in Lemma 17.
0 is given by

20(|I+%|

3 — - a, —Trm<zx<0
0@) =9 a-2k=El gcr<r (19)
0, otherwise,

where § € L*(R)NL?(R)NCy(R) satisfies (ii) in Lemma 17.
Now, consider p = q + 6 which is given as

‘ |£B, e [-8,—7]U][r,[]
2a|x+5 1
pa) =4 7 +35 — @, x € [-T7,0]
1 2a|m77|
at 55— — x €10,7]
0, otherwise.



Clearly, p(x) > 0,V and [, p(x)de =1. ¢pp = po+0 =
bq + i0r where 0 = Im[0] and ¢p € L*(R). We have
therefore constructed P # Q such that vz (P, Q) = 0, where

P and Q) are compactly supported in R with characteristic
functions in L*(R).

The condition of the compact support for probability mea-
sures mentioned in Theorem 9 is also critical for the result to
hold. If this condition is relaxed, then k& with supp(A) C R¢
is no longer characteristic to ®, as shown in Lemma 19.

7 Concluding Remarks

Previous works have studied the Hilbert space embedding for
probability measures using universal kernels, which form a
restricted family of positive definite kernels. These works
showed that if the kernel is universal, then the embedding
function from the space of probability measures to a repro-
ducing kernel Hilbert space is injective. In this paper, we
extended this approach to a larger family of kernels which
are translation-invariant on R?. We showed that the support
of the Fourier spectrum of the kernel determines whether the
embedding is injective. In particular, the necessary and suf-
ficient condition for the embedding to be injective is that the
Fourier spectrum of the kernel should have the entire domain
as its support. Our study in this paper was limited to ker-
nels and probability measures that are defined on R¢, and
the results have been derived using Fourier analysis in R?.
Since Fourier theory is available for more general groups
apart from R<, one direction for future work is to extend the
analysis to positive definite kernels defined on other groups.

Appendix A Supplementary Results

We show five supplementary results used to prove the re-
sults in §4 and §6. The first two are basic, and deal with
the Fourier transform of a measure and the convolution the-
orem. The remaining three (the Riemann-Lebesgue lemma,
the Paley-Wiener theorem, and its corollary) are stated with-
out proof.

Lemma 20 (Fourier transform of a measure) Let i be a fi-
nite Borel measure on R®. The Fourier transform of p is a
tempered distribution given by

fi(w) / e~ du(z), Yw e RY (20)
Rd

which is a bounded, uniformly continuous function on R%. In
addition, [i satisfies the following properties:

(i) fw) = p(~w), Yw € RY,

(ii) fiw) = fi(~w), Voo € RY if and only if D,,(¢) =
D, (), V¢ € Sy where D,, is the tempered distribu-

tion defined by ji and $(z) := o(—x), VY € R

Proof: Let D,, denote a tempered distribution defined by f.
For ¢ € .74, wehave D, (¢) = D, ($) = f]Rd Plw) dp(w) =
Ja Jpae —iw"@ (1) dmg(z) dp(w). From Fubini’s theorem,

/Rd [/Rde_m% du(w)} o(z) dmg(z), (21)

DM(SD)
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which proves Eq. (20). Clearly i is bounded as |fi(w )<L
By Lebesgue’s dominated convergence theorem, [ is uni-
formly continuous on RY as limy, ¢ |(w + h) — f(w)] <

limy, 0 fRd le=3""® — 1| dp(z) = 0, for any w € R
= Jpa €% dp(z) = i(~w).

(mcﬁmmwefaDszD

Jpa (@) (x
Ve € S, wehave D, (p) = D,
Substituting for ¢(—x), we get

D,9) = [ =)o) dma(z) =

(i) fr(w)

for every ¢ € %, which implies ji(x

(<=)F0r<p€,5”d, ehaveD ( )

fRd la ( )dmd f]Rd ‘U )@
1ng Fubini’s theorem after substituting fo

gives
/]Rd /Rd (y +w)e(y) dma(y) du(w)

/ o(~w) du(w) = Du(9),
Rd

D“(Cp)

for every p € 7. |

Remark 21 (a) Property (i) in Lemma 20 shows that the
Fourier transform of a finite Borel measure on R? is “conju-
gate symmetric”, which means that Rel[i] is an even function
and I'm|[f1] is an odd function.

(b) Property (ii) shows that real symmetric tempered distri-
butions have real symmetric Fourier transforms. This can be
easily understood when p is absolutely continuous w.r.t. the
Lebesgue measure. Suppose du = VU dmg. Then property
(ii) implies that [i is real and symmetric if and only if U is
real and symmetric.

The following result is popularly known as the convolution
theorem. Before providing the result, we first define convo-
lution: if f and g are complex functions in R, their convo-

lution f *x g is
)= [ 1w

provided that the integral exists for almost all 2 € R?, in the
Lebesgue sense. Let y be a finite Borel measure on R? and
f be a bounded measurable function on R?. The convolution
of f and u, f * u, which is a bounded measurable function,

is defined by
/ £z — ) du(y).

Theorem 22 (Convolution Theorem) Let 1 be a finite Borel
measure and f be a bounded function on R%. Suppose f is

written as
. T
/ e Y dA(w),
Rd

—y)dy, (22)

(f*g)(x

(F = 1)( (23)

f(z) (24)



with a finite Borel measure A on R%. Then
(f* )" = fid,

where the right hand side is a finite Borel measure'* and the
equality holds as a tempered distribution.

(25)

Proof: Since the Fourier and inverse Fourier transform give
one-to-one correspondence of .77, it suffices to show

[ =(an)Y. 27
For an arbitrary ¢ € .7,
(1)) = (iA)(@) = [ et are).  @8)

Substituting for fi in Eq. (28) and applying Fubini’s theorem,
we have (1A)Y (o)

/Rd /Rd [/Rd eilem’s dA(x)} p(w) dmq(w) du(y),

which reduces t0 [pu[[pa flw — ) du(y)]p(w) dmg(w) =
(f * p) () and therefore proves Eq. (27). |

The following result, called the Riemann-Lebesgue lemma,
is quoted from [Rud91, Theorem 7.5].

Lemma 23 (Riemann-Lebesgue) If f € L'(R?), then fe
Cy(RY), and || fllos < || fll1-

The following theorem is a version of the Paley-Wiener the-
orem for C'*° functions, and is proved in [Str03, Theorem
7.2.2].

Theorem 24 (Paley-Wiener) Let f be a C*™ function sup-

ported in [—(3,5]. Then f(w + ic) is a entire function of
exponential type (3, i.e., 3C such that

Flo+ ia)‘ < ceflol, (29)
and f(w) is rapidly decreasing, i.e., 3¢, such that
A c
f(w)‘ < vnen. (30)
‘ (L + [w])m

Conversely, if F(w + i0) is an entire function of exponential
type 8, and F(w) is rapidly decaying, then F' = [ for some
such function f.

The following lemma is a corollary of the Paley-Wiener the-
orem, and is proved in [Mal98, Theorem 2.6].

Lemma 25 ([Mal98]) If g # 0 has compact support, then
its Fourier transform § cannot be zero on a whole interval.
Similarly, if § # 0 has compact support, then g cannot be
zero on a whole interval.

'“Let  be a finite Borel measure and f be a bounded measurable
function on R?. We then define a finite Borel measure fu by

[, 1@ (@) duta),

(fu)(E) (26)

where F is an arbitrary Borel set and [ is its indicator function.
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Abstract

A pseudo-Boolean function is a real-valued func-
tion defined on{0,1}". A k-bounded function is

a pseudo-Boolean function that can be expressed
as a sum of subfunctions each of which depends
on at mostk input bits. Thek-bounded functions
for constantt play an important role in a number
of research areas including molecular biology, bio-
physics, and evolutionary computation. In this pa-
per, we consider the problem of finding the Fourier
coefficients ofk-bounded functions with a series
of function evaluations at any input strings. Sup-
pose that &-bounded functiorf with m non-zero
Fourier coefficients is given. Our main result is to
present an adaptive randomized algorithm to find
the Fourier coefficients of with high probabil-

ity in O (mlogn) function evaluations for con-
stantk. Up to date, the best known upper bound
is O (a(n, m)mlogn), wherea(n, m) is between
nz andn depending onn. Thus, our bound im-
proves the previous bound by a factorﬂ)(n% .
Also, it is almost tight with respect to the known

lower bound() ( 2292 )  To obtain the main re-

logm
sult, we first show that the problem of finding the
Fourier coefficients of &-bounded function is re-
duced to the problem of finding fabounded hy-
pergraph with a certain type of queries under an
oracle with one-sided error. For this, we devise a
method to test with one-sided error whether there
is a dependency within some set of input bits among
a collection of sets of input bits. Then, we give a
randomized algorithm for the hypergraph finding
problem and obtain the desired bound by analyz-
ing the algorithm based on a large deviation result
for a sum of independent random variables.

*This work was supported by the Korea Science and Engineer-
ing Foundation (KOSEF) grant funded by the Korea government
(MOST) (No. R16-2007-075-01000-0).
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Jeong Han Kimf
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1 Introduction

A pseudo-Booleafunction is a real-valued function defined
on the set of binary strings of fixed length. If a pseudo-
Boolean function can be expressed as a sum of subfunctions
each of which depends on at mdstnput bits, it is called
k-bounded. Given &-SAT formula, for example, the num-
ber of clauses an assignment satisfies2sbaunded pseudo-
Boolean function of the assignment. Note that-bounded
pseudo-Boolean function is a polynomial of Boolean vari-
ables of degreé: or less, and vice versa. In this paper,
we consider the problem of finding the Fourier coefficients
of k-bounded pseudo-Boolean functions. In the problem,
we assume the oracle that, given any binary string, returns
the function value at the string. Our main concern is the
guery complexity to solve the problem, i.e., the number of
function evaluations required to find the Fourier coefficients
of k-bounded pseudo-Boolean functions. (Unless otherwise
specified, &-bounded function meanskabounded pseudo-
Boolean function in this paper.)

The k-bounded functions have played an important role
in molecular biology and biophysics. In those areas, a num-
ber of mathematical models have been proposed to study
the evolution of a population of organisms (or biological ob-
jects) [Ewe79, FL70, KL87, Lew74, MP89]. In many of the
models including the NK model [Kau89%-bounded func-
tions have been used to measure the fithness of an organism
in an environment. In the NK model [Kau89], each sub-
function represents the contribution of a gene of the organ-
ism to the overall fitness, interacting with a fixed number
of other genes. Hence, /abounded function may be re-
garded as a sum of subfunctions each of which depends on
at mostk genes. Thek-bounded functions with small in
the NK model induce the fithess landscapes of reasonable
evolvability and complexity, which were used for describ-
ing the evolution of living systems [Kau93]. They were also
used as a benchmark for comparing the landscapes arising in
RNA folding [FSBB"93]. In this regardk-bounded func-
tions with smallk have been paid attention.

The k-bounded functions have been also used as testbed
problems for comparing the performance of heuristic algo-
rithms in the area of evolutionary computation [CC06, HG97,

search Funds 2006-1-0078 and 2007-1-0025, and by the second/M99, MG99, PGO00]. The problem of maximizing arbi-

stage of the Brain Korea 21 Project in 2007, and by the Korea

trary k-bounded functions is NP-hard even fore= 2 as itis

Research Foundation Grant funded by the Korean Governmentat least as hard as the MAX-2-SAT problem [GJS76]. The

(MOEHRD) (KRF-2006-312-C00455).
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larger the value of is, the higher is the degree of the depen-



dency among the input bits inkabounded function. By con-
trolling the degree of the dependency (the valuk)pin gen-
eral, we may control the difficulty of the problem of maxi-
mizing thek-bounded functions. There are good heuristic al-
gorithms to approximate the maximum of&ounded func-

tion when the dependency among the input bits are known complexity ofQ (r

[dBIV97, Gol89, MM99, PGCPO0O0, Str04].

Fourier transform is a formal approach to define the de-
pendency among the input bits of a pseudo-Boolean func-
tion. There have been a number of papers addressing th

problem of finding the Fourier coefficients ofkabounded
function f : {0,1}" — R with constantt. Kargupta and
Park [KPO1] presented a deterministic algorithm usiig*)
function evaluations. Later, Heckendorn and Wright [HWO03,
HWO04] proposed a randomized algorithm for the problem.
They analyzed the algorithm to show that, with negligible er-
ror probability, it finds the Fourier coefficients@(n? log n)
function evaluations on average for thdounded functions
with O(n) non-zero Fourier coefficients generated from a
random model. For thé-bounded functions withn non-
zero Fourier coefficients, Choi, Jung, and Moon [CIMO08]

proved that any randomized algorithm requiﬂaé ”folgf’f)

function evaluations to find the Fourier coefficients with er-
ror probability at most a given constant. By analyzing the
algorithm of Heckendorn and Wright, they also proved that
O(a(n, m)mlogn) function evaluations, where(n, m) is
betweennz andn depending onn, are enough to find the
Fourier coefficients. Recently, f@-bounded functions of
which non-zero Fourier coefficients are betweert andn®

in absolute value for some positive constam@ndb, Choi
and Kim [CKO08] showed that there exists a deterministic

algorithm using® (mlog”> function evaluations, provided

logm
thatm > n® for any constant¢ > 0. This algorithm is non-
adaptive while the previous algorithms are adaptivéow-
ever, an explicit construction of the algorithm is unknown.
Our main result is

Theorem 1 Suppose thaf is a k-bounded function defined
on {0, 1}" for constantt and thatf hasm non-zero Fourier

give a good bound fak-bounded pseudo-Boolean functions.
One of the main reasons is that their query complexities de-
pend on the values of the target function. For example, for
a k-bounded functiory, (to the best of our knowledge) the
most efficient extension [BJT04] among those has the query

(%)2), wherer is the number of input

bits on whichf dependspB is the maximum absolute value
of f, and@ is the minimum absolute value of the non-zero
ourier coefficients off. Thus, the query complexity may
e made arbitrarily large depending Brandé.? The query
complexity of our algorithm is independent of the values of
the target function.

To prove Theorem 1, we first show that the problem of
finding the Fourier coefficients of A&-bounded function is
reduced to the problem of findingkabounded hypergragh
(with a certain type of queries under a probabilistic oracle).
For a pseudo-Boolean functigidefined on{0, 1}", we con-
sider the hypergraph representing the dependency among the
input bits as follows. Suppose thétis a subset ofin], where
[n] is the set of the integers frointo n. We say that there is
alinkageamong the input bits iff if, for any additive ex-
pression off, f = 3. f;, there isj such thatH is included
in the support set of;.* The linkage graphof f is a hy-
pergraphG; = ([n], ), where each bit ifn] represents a
vertex and a subséf of [n] belongs to the edge sétif and
only if there is a linkage among the bits H.

For example, consider the following function:

f(x1, 22,23, 24, 05) = bx122 — 3222374.

If we |etf1 (1}1, ZEQ) = dHx1x2 ande(.TQ, xs3, 1}4) = —3x213%4,
f can be represented as an additive expresgien,f; + fa.

In this expression, each subfunctionfofias a support set of
which size is at most three and gas 3-bounded. It can be
shown that the support sets fifand f», {1, 2} and{2, 3, 4},
are hyperedges af’;. By definition of linkage, the non-
empty subsets of1, 2} and{2, 3,4} are also hyperedges of
Gy. Generally, if a set of vertices is a hyperedgesgf, then
any non-empty subset of the set is also a hypereddeof
We call this property thaierarchical propertyamong hyper-

coefficients. Then, there exists an adaptive algorithm to find edges. The linkage gragh; has nine hyperedge$i}, {2},

the Fourier coefficients of in O (mlogn) function evalua-
tions with probabilityl — O (1).

We prove Theorem 1 by showing an explicit construction of

{3}, {4}, {1,2}, {2,3}, {2,4}, {3,4}, and{2,3,4}. There
is no hyperedge containirigsince f does not depend ory.

It is known that, for ak-bounded function with constant
k, the problem of finding the Fourier coefficients is asymp-

the desired algorithm. This result improves the best known totically equivalent to the problem of finding the linkage graph

upper bound (a(n, m)mlogn) by a factor of2 (n%) and

mlogn
logm

it is almost tight with respect to the lower bouﬂo(

We should note that there have been a number of papers,
addressing the problem of finding the Fourier coefficients of

Boolean functions [BJT04, BT96, Jac97, KM93, Man94].
The KM algorithm [KM93] is one of the most famous al-

gorithms for the problem and most of the subsequent algo-

in terms of the number of function evaluations [HWO03, HWO04].

2To see a typical behavior of the complexity, we may consider
the NK model [Kau89]. The NK model with paramete¥s = n
nd K = k — 1 generates a class &fbounded functions that are
expressed as a sum ofsubfunctions. Wherf is a function ran-
domly generated from the NK model with parametdfs= n and
K = k — 1 for constant, it is not difficult to show that = ©(n),
B = Q(n), andd = O(1) with high probability. Thus, the query

rithms have been based on the algorithm. These algorithmscomplexity of the algorithm [BJT04] fof is (2 (n?) ‘with high
for Boolean functions can be extended to pseudo-Booleanprobability while the query complexity of our algorithm fgr is
functions. However, the extensions of the algorithms do not O (10gn).

*An algorithm is calledadaptiveif the algorithm uses a se-

quence of queries in which some queries depend on the previous

queries. Otherwise, it is callawbn-adaptive.
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3A hypergraph ige-bounded if the order of each hyperedge is at
mostk.

“The term linkage is from genetics and it means the interaction
among the genes.



(The description of the asymptotic equivalence is provided in finding problem with edge-counting (or additive) quefies.
Section 2.) In a hypergraph, we say that a hyperexigsses On the other hand, since the answers of the oracle may con-
amongcertain disjoint sets of vertices if the number of the tain errors in our situation, we need to handle the error bound
sets is equal to the order of the hyperedge and each of thanore carefully, which is the main task in proving Theorem
sets contains exactly one vertex in the hyperedge. (By def-3. A large deviation result for a sum of independent random
inition, a hyperedge of order one crosses among any set ofvariables with geometric distribution is crucially used for the
vertices including the hyperedge.) Our main contribution is task. (There have been a number of papers addressing the
to show that, given a collection of disjoint sets of vertices, problem of finding a graph or a hypergraph by using various

the existence of a hyperedge of the linkage graph crossingtypes of queries. For example, see [AA04, AA05, ABBR,
among those sets is testable with one-sided error by using aABK 04, AC06, BAA01, BGK05, CK08, GK00].)

constant number of function evaluations.

Theorem 2 Suppose thaf is a k-bounded function defined
on{0,1}™andS,, ..., S; arej disjoint subsets dh]. Then,
we can us&’ function evaluations of to test the existence
of a hyperedge in the linkage gragly crossing among;’s,
where the test result is correct with probability at Iegé%

if such a hyperedge exists and it is correct with probability
otherwise.

Theorem 2 is an extension of a previous theorem of Heck-
endorn and Wright [HWO04] (Proposition 1 in Section 2),
which holds only for the case when each %fs is a sin-
gleton set of vertices. To prove Theorem 2, we devise a
random perturbation method for testing the existence of a

hyperedge. It tests the existence of a hyperedge by flipping
a randomly generated string at certain bit positions and eval-

uating the function values at the flipped strings. We obtain

the desired result by analyzing the method. The analysis ex-

Theorem 1 is obtained from Theorems 2 and 3 and the
equivalence between the problems of finding the Fourier co-
efficients and the linkage graph.

The remainder of the paper is organized as follows. In
Section 2, we review some basic facts and previous results
for the problem of finding the Fourier coefficientsiebounded
functions. In Section 3, we prove Theorem 2, which states
the linkage testability of a linkage graph, by proving rele-
vant lemmas. Section 4 deals with the graph finding prob-
lem with cross-membership queries under the probabilistic
oracle as an independent problem. In the section, we give a
randomized algorithm for the problem and analyze it to ob-
tain Theorem 3. In Section 5, some remarks on the query
and time complexity of the proposed algorithm are provided
along with a factor of improving the complexity. Finally,
concluding remarks closes the paper in Section 6.

2 Preliminaries

tensively uses the properties of basis functions in the Fourier2.1  Linkage Test Function

transform of a-bounded function.

Theorem 2 implies that the problem of finding the link-
age graph of &-bounded function is reduced to the follow-
ing graph finding problem. Suppose that a hypergréph
hasn vertices andn hyperedges and the hyperedgedf
are unknown. Across-membership queasks the existence
of a hyperedge crossing among certain disjoint sets of ver-
tices. We assume theracle with one-sided erroé as fol-
lows. Given a cross-membership query, the oracle correctly
answers with probability at least— § if the true answer for
the query is YES and it correctly answers with probability
otherwise. The problem is to find the hyperedgeg-oby
using as few queries to the oracle as possible.

In fact, itis enough for our purpose to consider the hyper-
graph finding problem for thé-bounded hypergraphs with
the hierarchical property. Since we think that the problem is
of self interest, however, we consider the problem for arbi-

trary k-bounded hypergraphs. We present an adaptive ran-

domized algorithm for the problem to show

Theorem 3 Suppose thafF is an unknowrk-bounded hy-
pergraph withn vertices andn edges for constarit. Then,
for any constant) < § < 1, the hyperedges af can be
found with probabilityl —O (1) by using® (m log n) cross-
membership queries under the oracle with one-sided error
(The number of cross-membership queriezds in k.)

Our algorithm for Theorem 3 iteratively uses binary search to

Munetomo and Goldberg [MG99] proposed a perturbation
method to test for the existence of linkage iR-subset of
[n]. Given a2-subsetS and a stringe, it checks the non-
linearity between the two bits ifil by flipping the two bits

of z individually and simultaneously and adding/subtracting
the function values at the flipped strings. Heckendorn and
Wright [HWO04] generalized the method to detect linkage for
subsets of any order. Suppose tifails a pseudo-Boolean
function defined o{0,1}", S is a subset ofn], andz is a
string in{0,1}"™. They considered thiénkage test function

£ depending ory, S, andx as follows:

L(f,8,x) =Y (DA f(z@1a).

ACS

Here, 14 represents the string consisting of ones in the bit
positions ofA and zeros in the rest. For two stringsy €
{0,1}", = &y means the bitwise addition modu®f » and

y. The linkage test functio® performs a series of function
evaluations at: and the strings obtained by flippingin or-

der to detect the existence of the linkage among the bifs in
Heckendorn and Wright [HWO04] proved the following theo-
rem, which shows the usefulness of the linkage test function
in finding hyperedges af ;.

find the hyperedges. In this sense, it is analogous to the algo-

rithm of Angluin and Chen [AC04, AC05, AC06] for the hy-
pergraph finding problem with edge-detecting queries or to
the algorithm of Reyzin and Srivastava [RS07] for the graph
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5An edge-detecting query asks the existence of an edge (or a
hyperedge) in a set of vertices while an edge-counting query asks
the number of edges (or hyperedges) in a set of vertices.



Proposition 1 Suppose thaf is a k-bounded function de- Heckendorn and Wright [HWO04] provided a number of

fined on{0, 1}". Then, the followings hold: results to show the relation between the linkage test function
(a) A subsetS of [n] is a hyperedge of7; if and only if and the Fourier coefficients. Some of them are summarized
£(f,S,x) # 0 for some stringe € {0, 1}"™. in the following proposition.

b) For a hyperedges of orderj in G, the probability that . . .
g:()f, S, z) gép 0 forga string = ghoserJ: unifoF;me at r;ndom Proposition 2 Suppose thaf is a pseudo-Baolean function
from {0, 1}" is at least; . defined on{0, 1}". ThenLthe followmgs hold: _

(a)For asubsefd of [n], f(H) is a maximal non-zero Fourier

Proposition 1 indicates that the linkage test function de- coefficient off if and only if H is a maximal hyperedge of
termines the existence of a hyperedge with one-sided error.GG ;.
Thus, by repeatedly evaluating the linkage test function for (b) For a maximal hyperedg&l C [n],
randomly chosen strings, we can make the error arbitrarily o
small. In particular, wherk is a constant, this implies that f(H) _ £(f,H,0 ).
a constant number of linkage tests (consequently, a constant 241
number of function evaluations) is enough for determining (c) For a subset of [n],
the existence of a hyperedge with error probability at most a N
given constant. The hierarchical property among hyperedges f(H) _ £(f,H,0m) _ Z f(H’).
implies that, forj > 2, a j-subsetH can be a hyperedge 21H]
only if every (j — 1)-subset ofH is a hyperedge. Based on
this observation, Heckendorn and Wright [HW04] proposed (d) For subsetsd and H' of [n] with H C H’,
a randomized algorithm that performs linkage test only for P Al
such a hyperedge candidate: The algorithm first detects the S(LHL0M) = > (—)L(f, H 1a).
hyperedges of order one by investigating all the singleton ACH'\H
subsets ofn]. Then, forj from 2 to k, it detects the hyper-
edges of ordej by performing linkage test for the hyperedge
candidates of ordef that have been identified from the in-
formation of the hyperedges of lower order. Recently, the
performance of the algorithm was fully analyzed by Céabi
al. [CIMO08]. Given ak-bounded functiory with m hyper-
edges and a constant> 0, they showed that the algorithm
finds the linkage grapli' in O (a(n, m)mlogn) function
evaluations with error probability at mostwherea(n, m)

HCH'

Proposition 2 (a) says that the subset$rdfwith maxi-

mal non-zero Fourier coefficients gfare the maximal hy-
peredges in the linkage graph ¢f Thus, from Proposi-
tion 2 (b), the maximal non-zero Fourier coefficients fof
are found by evaluating the linkage test function at the zero
string for each maximal hyperedge. Once the maximal non-
zero Fourier coefficients are found, the Fourier coefficients
corresponding to the subsets of lower orders can be found
) 1 ) by successively applying Proposition 2 (c). Proposition 2 (d)
is betweem 2 andn depending omn. implies that no additional function evaluations are required
22 A Fourier Transform for finding the Fourier coefficients corresponding to the sub-

) ) sets of lower orders. Hence, ffis k-bounded for constant
Walsh transform is a Fourier transform for the space of pseudq: and , is the number of hyperedges @, O(m) addi-

Boolean functions in which a pseudo-Boolean function is tjona| function evaluations are enough to find the Fourier

represented as a linear combination28f basis functions - mlogn .

called Walsh function§Wal23]. For each subséi of [n], coefficients off. On the other hand]) (logiéfn) function

the Walsh function corresponding 8, 5 : {0,1}" — R, evaluations are required for finding the linkage graph of a

is defined as k-bounded function for constarit as shown in [CIMO8].
Yp(x) = (—1)2ien ol Thus, the problem of finding the Fourier coefficients of a

wherez|i] represents thé" bit value inz. If we define an k-bounded function for constahtis equivalent to the prob-

inner product of two pseudo-Boolean functiohandg as lem of finding the linkage graph in terms of the number of

function evaluations required up to a constant factor.

()= > M

ze{0,1}n

the set of Walsh functiongg; | H C [n]}, becomes anor-  3-1 Generalized Linkage Test Function

thonormal basis of the space of pseudo-Boolean functions.Let f be a pseudo-Boolean function defined {dh1}", S

Hence, a pseudo-Boolean functifrcan be represented as  be a collection of disjoint subsets pf], andz be a string in
{0,1}™. We define theyeneralized linkage test functiatr

3 Generalized Linkage Test

f=> FH) -, depending orf, S, andz as follows:
HC[n]
wheref(H) = (f,vn) is called theFourier coefficientor- (S =D (~)Ff (76 ® (@ 1A>> :
responding ta. Specifically, if f(H) # 0 and f(H') = 0 §'es Aes’

foranyH' 2 H, f(H) is called anaximal non-zero Fourier  Ifwe letSy = {{a} | a € H} for a subsef of [n], we see
coefficienof f. We refer to [HW99] for surveys of the prop-  thatL*(f, Su,z) = £(f, H, z) foranyz € {0,1}".

erties of Walsh functions and Walsh transform in the space  The following lemmas describes the basic properties of
of pseudo-Boolean functions. the generalized linkage test function.
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Lemma 4 Suppose tha$ is a collection of disjoint subsets
of [n]. Then, the followings hold:

(a) (Linearity) If fq,..., f, are pseudo-Boolean functions
defined on{0,1}"™ andcy, .. ., ¢, are constants,

¢
£ (Zcifi,S,x> ch (fi,S,x)

i=1
forall z € {0,1}".

(b) (Recursion)f f is a pseudo-Boolean function defined on

{0,1}"™,

L(f, S, 2) = £5(f, S\ {4}, 2) = £(f, S\ {A}, 2 & 1a)
forany A € S and anyz € {0,1}".

Proof: Omitted. |

Lemma 5 Suppose thaf is a pseudo-Boolean function de-
fined on{0,1}™ and S is a collection of disjoint subsets of
[n]. If the support set off is disjoint with somed € S,
£5(f,S,z) =0forall z € {0,1}".

Proof: Omitted. |

3.2 Linkage Test Theorem

A collection of disjoint subsets dh], R = {R1,...,R;},

is called asetwise subcollectioaf S if R; C S; forall 1 <

i < j. Inthis case, we denote [y € S. Note that a setwise
subcollectionR of S is allowed to contain multiple empty
sets from the definition. We consider a random madde)
that generates a setwise subcollectiorSadis follows: For
eachS; € S, we select each element #} independently
and with probability% and put it intoR;. Then, we build a
setwise subcollectio® of S by lettingR = {R; | 1 <i <
j}. In the following, str(R) denotes the set of the strings,

2’s, such thatr has the same bit value in the bit positions in

R;foralll <i<yj:
str(R) = {z € {0,1}" | z[a] = z[b] for all a, b
such that, b € R; for somei with 1 < i < j}.

Theorem 6 Suppose thaf is a k-bounded function and
is a collection of disjoint subsets pf]. Then, the followings
hold:

crossing among@R. This implies thatf(H) = 0 forall H
such thatd N A # () for all A € R, by definition ofG; and
Proposition 2. Thus, by Lemma 4 (a),

Zf

fRf ﬂ* QZJH,R :E)

where the summation is over the subséts, such thatd N
A = () forsomeA € R. Since the support set gfy is H for
anyH C [n], £* (¥, R,z) = 0for H's in the summation
by Lemma 5 and s&*(f,R,z) = 0.

Now, consider the proof of (b). Le§ = {S1,...,5;}.
For a setwise subcollectidR of S, letR = {Rs,...,R;},
whereR; C S; foral1 < i < j. Letr; = |R;| and
r = j . ri- For eachR;, set a distinct bit position; <
[n — r + j] and, for each’ € [n] \ (U, R:), set a distinct
bit positiond;; € [n — r + j]. For eachH C [n], define
err :{0,1}"~ " — R as follows: If|H N R;| is odd for
alll <i<j,

onr(y) = (—1)y = Ve Eremu, ry vibr]

for anyy € {0,1}"~"+J. Otherwisey x is the zero func-
tion that assigns zero value to all input strings {0, 1}"~"+4.
For eachr € str(R), assign the string, r € {0,1}"~ "+
such thaty, [a;] = z[a] for somea € R; forall1 <i <j
andy, r[by] = z[i'] forall ¢ € [n] \ (U, R:). Note that
{yz =|z € str(R)} = {0,1}"~"+J and the setstr(R) and
{yw,RkL' € Stl’(
tingSg = {{a;} | 1 <i < j}, we have

Claim7 ForanyH C [n],
£ Wu,R,z) = £(vuRr, SR, Y2,R)

forall « € str(R).

(a) The linkage grapty ; contains a hyperedge crossing among

S if and only if there exisiR € S andz € str(R) such that
£(f,R,x) # 0.

(b) If G ¢ contains a hyperedge crossing amahghe proba-
bility that £*(f, R, =) # 0 for arandomly generate® from
I'(S) and a string: chosen uniformly at random frostr(R)
is at least;3; .

Theorem 6 implies Theorem 2 and provides an efficient method ¢y (z) =
to test for the existence of a hyperedge crossing among a

given collection of sets of vertices in the linkage graph.

Proof: Since (b) implies the only-if part of (a), we first prove
the if part of (a) and then prove (b).

Suppose thaty; does not contain any hyperedge cross-

ing amongS. LetR be a setwise subcollection 8fand letx:
be a string in{0, 1}". SinceG y does not contain any hyper-

edge crossing among, G does not contain any hyperedge zg: €
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Proof: Suppose thdt? N R;| is odd foralll < i < j. Letu;
be a bit position ifF N R, for 1 < i < j. Forallz € str(R),

wEHNR, zlu] = |H N Ry| - z[u;] = z[u;] (mod 2) for all
1<i<jandso

1)21 wernr; T e m\ (U, ry) 2l 1
1) 2 ol e o, ry) o]

i Yo, Rl el (U, By) Yoo R [0i7]

(=
= (-
(-1)>
= ouRYs,R)-

Letzr = 2@ (Pyer 1a) for R C R. If z € str(R),

str(R) and Yo R = Yz,R D (eai:RieR’ 1{(”})_

R)} are in one-to-one correspondence. Let-



Hence, for allz € str(R),

2*(¢H7R7 I)
_ Z leH(x@(® 1A>>
RICR AER’
= > (- D)™y (vrr)
RICR
= Z )Ry r (Yo R)
R'CR
- Z (_1)\{ai|RieR’}\(pH,R (yz,R@ < @ 1{%}))
R'CR iR, €R/
= Z (_1)‘8/“;‘9H,R (y:(:,R D (@ 13))
S'CSr Bes’

= £ (PR, SR+ Y2, R)-

Now, suppose that/ N R;| is even for some. Forallz €
{0,137, £(¢u, R\{Ri}, ) = £ (Ym, R\{R; },2&1g,)
and sof* (v, R,x) = 0 by Lemma 4 (b). Sincey  is
the zero function, on the other hargf; (¢ =, Sr,y) = 0
forally € {0,1}"~"*J. Hence,

£ (WYu,R,x) = £ (pr.Rr, SR, Yz,R)
for all z € str(R). u

Define the pseudo-Boolean functignr : {0,1}"~"* —
R by

grR= > FH) - onr-

HCln]

Claim 8 Forall z € str(R),
£ (f. R x) =

Proof: By Lemma 4 (a) and Claim 7,

£5(95,Rs SRy Yz, R)-

= Z FUH) - £ (enRr, SR, Ys,R)
= 2*(9f72 SRy Yz, R):
forall z € str(R). |

Suppose that; contains a hyperedge crossing among

Claim 9 Suppose that a setwise subcollectidis randomly

generated fron1'(S). Then, the probability that the linkage

graph ofg; » has the hyperedge crossing amafig is at
least .

Proof: SinceG contains a hyperedge crossing amdng
there exist subset®'s such thatf(H) # 0andH N S; #

forall S; € S. Among those subsets, we choose a maximal

subsetH* in viewpoint of the size of intersection with;’s:
Foreachl <i < j, |H*NS;| > |H NS;| for any H such

that f(H) # 0, HNS; # 0 forall S; € S, and|H N S| =
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|[H*N S| forall1 <1 <i—1. Let A; be a set consisting
of an elementinH* N S; and letB; = (H* N S;) \ A;. Let
R ={Ri1,...,R;}, whereR; C S;forall1 <i < j. Since
|H*| < k, the probability thal?; O A; andR; 2 B for all
1 <i<jisatleasty.

Consider the condition thd; > A; andR; 2 B; for all
1 <i < j. Denote

H*={H C [n]| f(H) #0,
H 2 (UiB;) U (H"\ (UiSi)),
and|H N S;| = |H* N S| for all 7}.

It is clear thatH* € H*. Given the condition, ifpyr =
wm- =, H should be iri{*. Thus, in the Walsh transform of
gr,r, the Walsh coefficient corresponding to the Walsh func-

tion pp- = is equal toy_ f(H), where the summation is
overH's suchthatd € H* and(H N S, \ B;) C R, for all

1. SinceH* was chosen in a maximal sense as mentioned, for
anyH € H*,|[HNS;\B;| = 1forall1 < i < j. Thus, when

we choose each elementjh\ (A; U B;) independently and
with probability 2 and put it intoR;, the conditional proba-

bility that >~ ;; f(H) # 0, where the summation is ovéf's
such thatd € H* and(H N S;\ B;) C R; for all ¢, is at
IeastQ%. In this casepr- z may be expressed as; for
H' C[n—r+ j] such that

H = {ai, ‘ 1< < ]}U{bﬂ | i’ e (UZB7)U(H* \ (UZSZ))}
and the Walsh coefficient corresponding/tg in the Walsh
transform ofy  is non-zero. At this time, the linkage graph
of g = has thej-hyperedge crossing amostk = {{a;} |
1<i<j}.

Therefore, the probability that the linkage graphyefz
has the hyperedge crossing amdhg for a setwise subcol-
lectionR randomly generated froi(S) is at Ieastﬁ and
the proof is completed. |

Since f is a k-bounded functiong; » is alsok-bounded.
Thus, when the linkage graph gf = has the hyperedge
crossing amongr , the probability thatt* (g =, Sr,y) #

0 for a stringy chosen uniformly at random frof®, 1}7~"+

is at Ieastﬁ by Proposition 1 (b). Hence, by Claim 9, the
probability thatC* (9=, Sr,y) # 0 for a setwise subcollec-
tion R randomly generated fromi(S) and a stringy chosen
uniformly at random fron{0, 1}"~"*7 is at leasty; . Since
the setsstr(R) and {0,1}" " = {y, » | = € str(R)}
are in one-to-one correspondence, we have the part (b) of the
theorem by Claim 8. |

4 Finding Graphs with Cross-Membership
Queries

In this section, we focus on the problem to find an unknown
hypergraph with cross-membership queries under the oracle
with one-sided errof. Recall that, given a cross-membership
query, the oracle with one-sided errércorrectly answers
with probability at least — ¢ if the true answer for the query

is YES and it correctly answers with probabilitytherwise.
Section 4.1 presents a randomized algorithm for the graph
finding problem. The algorithm is analyzed in Section 4.2,
which induces Theorem 3.



GRAPHFINDINGALGORITHM(n,k,0)
Il E; - the set of the hyperedges of ordefiound so far

Il Q : the set of the vertices in the hyperedges of ogdieund so far
II'W : the set of the verticessuch that all the hyperedges of ordecontainingv have been found by the algorithm

forjfrom1tok
Q«—0,W 0
Ej —0;
repeat
(S;)]_, «— CHECKEXISTENCE(®,Wj);
if (S;)7_; = NULL, break;
v« BINARY SEARCH((S;)7_;,1);
Q — QU {v};
while Q \ W # ()
choose a vertexin Q \ W;
E, ; — FINDHYPEREDGES{v},W,j);
Ej — E] U Ev,j;

Q= QU (Unce., H):
W — WU {v};
returnE;

Figure 1: Main procedure of the algorithm GFA (The output of GFA is the set of the hyperedges of the input graph that have

been found. For the subprocedures{iECKEXISTENCE, BINARY SEARCH, and ANDHYPEREDGES see Figures 2, 3, and 4,

respectively.)

4.1 Algorithm for Finding Graphs

algorithm. The variablds; contains the hyperedges of order
j found so far. To check the existence of a new connected

In this section_, we present the algprithm to find an unknown component of two or more vertices in the subgraph consist-
hypergraph with cross-membership queries under the oracle;ng of the hyperedges of ordg; GRAPHFINDINGALGO-

with one-sided errof, theGraph Finding Algorithm(GFA).

The algorithm GFA takes three arguments: The number of

vertices of the unknown hypergraph the order of the hy-

pergraphk, and the error bound for the answer of the ora-
cle0 < § < 1. It returns the set of the hyperedges of the
hypergraph that have found. The algorithm GFA consists

of the main procedure @APHFINDINGALGORITHM (Fig-
ure 1) and the three subproceduressCKEXISTENCE (Fig-
ure 2), BNARY SEARCH (Figure 3), and NDHYPEREDGES
(Figure 4). In the pseudocode, the valuespk, andd can

RITHM calls the subprocedureHE CKEXISTENCE.

Given sets of vertice§/ and W and a positive integer
j, the procedure GECKEXISTENCE performs a randomized
test for whether there is a hyperedge of orglénat contains
all the vertices i/ and does not contain the verticesin.
For the purpose, it iteratively generates a collection of dis-
joint sets of verticegS,)7_, for a cross-membership query
as follows. Lettingl' = {vy,..., vy}, the setS; is fixed
with SZ = {1}7} for 1 <1< |U‘ The SetSS‘UHl, .. .S]

be accessed by any procedure. All other variables are localare generated as a uniform random partition of vertices in

to the given procedure.

Suppose thafr is an unknown hypergraph given to GFA
and letG; be the induced subgraph@fconsisting of the hy-
peredges of ordetfor 1 < j < k. The algorithm GFA suc-
cessively finds the hyperedges@f, G2, and so on. After
the algorithm finally finds the hyperedges®f, it returns all
the hyperedges found so far. To find the hyperedgés; ¢br

[n] \ (UUW). If the oracle answers YES for the cross-
membership query with som;)I_;, there is a hyperedge
of order; crossing among;’s, which contains the vertices
in U and does not contain the verticesTii. In this case,
CHECKEXISTENCETeturns the generated séf)]_, . If the
oracle answers NO for all the generated collections of dis-
joint sets, GIECKEXISTENCE returns NULL regarding that

j =1,...,k, the algorithm iteratively checks whether there there is no such a hyperedge.

is a hyperedge of ordgrthat has not been found and, if such

If CHECKEXISTENCE returns NULL, GRAPHFINDIN -

a hyperedge exists, the algorithm finds all the hyperedges inGALGORITHM regards that there is no hyperedge of order
the connected component that the hyperedge belongs to. Itj and continues to find the hyperedges of orger 1. If
continues this process until there is no more hyperedge thatCHECKEXISTENCE returns a (non-NULL) collection of dis-

can be found.
In the main procedure RAPHFINDINGALGORITHM, the

joint sets of vertices, this implies that there is a hyperedge
of orderj. To find a vertex in the hyperedge RGPHFIND -

variable contains the vertices in the hyperedges found so INGALGORITHM calls the subprocedurel@ARY SEARCH.

far. The variabld?” contains the vertices such that all the
hyperedges of order containingv have been found by the
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Given a collection of disjoint sets of verticés;)’_, and a
positive integen betweenl andj, the procedure BIARY-



CHECKEXISTENCEU,W,j)
label the vertices it/ asvy, ..., vjy|;
for i from 1 to |U|
Si — {vi};
fori from |U| 4+ 1toj
Si 0
repeat] “2 L log n] times
for eachw € [n] \ (UU W)
choose uniformly at random from{|U| + 1, ...,j};
S; — S; U {1}},
if CMQ(S1, . .., S;) = YES
return(S;)7_;;
return NULL;

Figure 2: Procedure to check the existence of a hyperedge of ptdat contains all the vertices it and does not contain the
vertices inl¥ (Here, CMQ((.9)]_,) is the answer of the oracle for the cross-membership gi&ny_;.)

BINARY SEARCH((S;)7_,.7)
if |.S,.| = 1, return the vertex irf,;
repeat] *"1 log n] times
choose a subsét. of S, uniformly at random among the subsets of orp@t‘j ;
if CMQ(Sl, ey S,,A_l, S;n, S,,-+1, cuey SJ) = YES,
Sy — SI;
if |S,-| = 1, return the vertex irf,.;
return a vertex irf,.;

Figure 3: Procedure to search a vertexSinthat is contained in a hyperedge of orgecrossing among, ..., S; (Here,
CMQ((S;)J_,) is the answer of the oracle for the cross-membership gi&ny._;.)

SEARCH returns a vertex that is i, and in one of the hy-  have been found. Initially4 is set to be empty. IfU| = j,
peredges crossing amorsg's. Among the subsets &, of U is the only hyperedge of ordgrcontaining the vertices

order| %z!|, it chooses a subssf uniformly atrandom. For ~ in U and ANDHYPEREDGESTeturns the set consisting of

the sets of vertice&S;)7_, in which S, is replaced withs’ U. Otherwise, it recursively finds the desired hyperedges of
1)i=1 T r . f .

it asks the cross-membership query to check whether theregrr]deiws fh(fecmg\;vtsﬁeﬁeyiszurl]ng é';": dCEES}'(S)T.ENCtE’C(l)tngiS;S

is a hyperedge crossing among the sets. If the answer of th yp 9 pitiTa)

oracle is YES, i.e., if it turns out that there is a hyperedgeethe vertices in and does not contain the verticeslif. If

. . . CHECKEXISTENCE returns NULL, RNDHYPEREDGESre-
crossing among the sets, it replacgswith S’.. The proce- . '
dure BgARY SEgARCH repeats %isc%rocess "ot mos?a speci- gards that there is no such a hyperedge and returns the set

fied number of times until there remains one verte,in If of the_ hyperedges found so fa_r. Otherwise, it chooses a ver-
there remains one vertex fi) before the specified number of _te;g v in ;hehhyperedge b%’ Ca”.'nﬁ IBARY S.EAECH' Then,
iterations, BNARY SEARCH returns the vertex. Otherwise, it it finds the hyperedges of ordgthat contain the vertices in

fails to exactly search the desired vertex and returns an arbi-U Y {v} and does not contain the verticedifiJ A by calling
trary vertex inS FINDHYPEREDGESrecursively. After that, it puts into A

and continues to find the desired hyperedges of ofdest

Once a vertex in the new connected component is found containing the vertices id. o
by BINARY SEARCH, GRAPHFINDING ALGORITHM puts the After all the hyperedges of ordgicontainingv are found,
vertex intoQ and repeats the following process while\ they are put intaE);. The vertices contained in the hyper-
W # . It chooses a vertex in Q \ W and finds all the ~ €dges are put intQ) to mark that they are in the connected
hyperedges of ordef containingv by calling the subproce- ~ component being searched. The verteis put into | to
dure ANDHYPEREDGES Given two sets of vertice§ and prevent the hyperedges of ordgcontainingv from being
W and a positive integef, FINDHYPEREDGESreturns the ~ Searched again.
set of the hyperedges of ordgthat contain the vertices it . .
and do not )c”co)ntaingthe verticeslifi. In the procedure iRD- 4.2 Algorithm Analysis
HYPEREDGES the variableAd contains the vertices such that In this section, we analyze the algorithm GFA to obtain The-
the desired hyperedges of orgerontaining the vertices id orem 3. We first analyze the number of cross-membership
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FINDHYPEREDGERU,W,j)
if |U| = j,return{U};
Ey,; —0,A 0
repeat
(S;)]_, «— CHECKEXISTENCE(U,W U A,j);
if (S;)7_, = NULL, break;
v« BINARY SEARCH((S;)/_,,|U| + 1);

Ey,; «— Ey ;U FINDHYPEREDGESU U {v}, W U A,j);

A— AU {v};
returnEy ;;

Figure 4: Procedure to find the hyperedges of ofdiat contain all the vertices iti and do not contain the vertices i

gueries used in GFA.

Lemma 10 Suppose tha& is an unknowrk-bounded hy-
pergraph withn vertices andn hyperedges for constat
Then, for any constart < § < 1, GFA usesO (mlogn)
cross-membership queries f6r under the oracle with one-
sided errord.

Proof: Omitted. |

To analyze the error probability of GFA, we need a large
deviation result for a sum of independent random variables

following geometric distributions. A random variablefol-

Proof: We will show that the probability that GFA does not
find all the hyperedges a¥, is O (1) for eachj with 1 <
j < k. Then, the lemma follows by the union bound.

We first consider the probability that{&E CKEXISTENCE
performs incorrectly for given argumerts W, andj. Sup-
pose that there is no hyperedge of orgein G that con-

tains the vertices iV and does not contain the vertices in

W. In this case, BECKEXISTENCE returns NULL and the
probability of CHECKEXISTENCE being incorrect is zero.
Suppose that there is a hyperedge of orgder G that con-

tain the vertices i/ and does not contain the vertices in

W. LetU = {vy,...,vy} and let the hyperedge of or-

lows the geometric distribution with parametef, foracoin €7 be{vi,-.. v v, -+, ;). The proba'bility that
of which HEAD appears with probability, X is the number  vjy|41, ..., v; are putinto differens;;’s is % When
of coin tosses until the first HEAD appears. Itis easy to show V|41, - - -, v; @re putinto differens;’s, the probability that

that the expectation ok is % We obtain the desired result
by using the Chernoff bound as follows [Che52, MR95].

Proposition 3 Suppose that, forsonfe< p < 1, X1,..., X,
are independent random variables such tRatX; = 1] = p

andPr[X; =0 =1—-pforalll < i < ¢ LetX =
S X;. Then, forany < o < 1,
E[X]a?
Pr{X < (1 - «a)E[X]] <exp (— [ ;a ) .

the oracle answers YES for the cross-membership qu&y._,
is at leastl — 0. Thus, for each iteration of the repeat loop in
CHECKEXISTENCE, the probability that the hyperedge is not

detected is at modt— %(1 —0). Hence, the prob-

ability that the hyperedge is not detected f6r/L™ log 7]
iterations of the repeat loop is at most

I VFET
G - ]! 5

(-5 tmpmu )

logn

Now, we present the result for a sum of independent randomBY using the fact that — = < e~* for any realz, this value

variables following geometric distributions.

Lemma 11 Suppose that, for sonte< p < 1, X4,..., X,

are independent random variables each of which follows the

geometric distribution with parameter LetX = Zle X;.
Then, for anyn > 0,

Pr(X > (14 a)E[X]] <ex oot
=P\ o0 1) )
Proof: Omitted. |

Lemma 12 Suppose tha& is an unknownk-bounded hy-
pergraph withn vertices andn hyperedges for constat

Then, for any0 < § < 1, GFA correctly finds the hyper-
edges of with probability1 — O (1) under the oracle with
one-sided errop.
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is at most

G~ 0D TFT
o (=2 gyt ).

After some calcula.tion using the facts t J_]i(_]“gfl,)!‘[,‘ > j—,’
andj! > /277 (1)’ eTHF, we have
< (G —UDeVi+T, >
exp | — ogn

(G — (O]
< exp (=(j + 1) logn)
_ 1
il

Thus, the probability of BECKEXISTENCE being incorrect
is at most_.
Now, we bound the probability thatiBARY SEARCH per-

forms incorrectly for given argumentss;)/_, andr. To



this end, we consider an imaginary procedure BS’ that is somev ¢ U U W U A. Thus, it must be found by a recursive

the same as BIARY SEARCH except that, in the procedure
BS’, the repeat loop continues until the sizeS)fbecomes
one. In the repeat loop of BSS, is iteratively halved and
updated. Suppose that the sizeShfbecomes one aftes,.

is halved and updatedtimes. Forl < i < ¢, let X; be the
number of iterations of the repeat loop between(the 1)*?
update and thé'™ update ofS,.. Letv be a vertex of a hy-
peredge crossing amortg’s that is in the initialS,.. When
visinthe(: — 1) times updated,, the probability thav is
chosen as an element§f is at least.. (The extreme case is
when the order of. is three.) ThusX; follows a geometric
distribution with the parameter at leaStl — 4). If we let

X = Zle X, by linearity of expectation,

Thus,
6(j+1)

Pr {X > log n}

e (20 )

<Pr [x - () E[X}} ‘

t

SinceX;’s are independent, letting+ o = M

apply Lemma 11 to the above inequality to obtaln

6(j +1) logn} exp (‘2(10[_2‘_1504)>

1-6
< exp(=(j+1)logn)
1
nitl’

, We

IN

Pr {X>

Thus, the probability of BVARY SEARCH performing incor-
rectly is at most_'+ as it is at most the probability ok

being more tharri(s(“r1 log n].

The number of BECKEXISTENCEand BNARY SEARCH
being called for GFA to find the hyperedges @f are at
most j2m, respectively. Thus, in the process of GFA find-
ing the hyperedges af;, the probability that @ECKEX-
ISTENCE or BINARY SEARCH incorrectly perform once or

more times is at mos?l% < Zgﬁ"f = which isO (1)
sincej < k for constant. This means 'Fhat with probaglhty
1 — O (1), CHECKEXISTENCE and BNARY SEARCH per-
forms correctly throughout the process of GFA finding the
hyperedges of7;.

Suppose the condition thatHE CKEXISTENCE and B-
NARY SEARCH correctly perform throughout the process of
GFA finding the hyperedges a¥;. We show that, given
U, W, andj, FINDHYPEREDGEScorrectly return the set
of the hyperedges of order containing the vertices it/
and not containing the vertices Y. Suppose that, for any
u € A, the hyperedges of ordercontaining the vertices
in U U {u} and not containing the vertices i have been
found by AINDHYPEREDGES At this time, any hyperedge

call of INDHYPEREDGESlater.

Returning to the main procedureRGPHFINDINGAL-
GORITHM, for each vertew € [n], the hyperedges of order
j containingv are found by FNDHYPEREDGESIn the while
loop and so all the hyperedges @f are found by GFA. It
is clear that the set of the hyperedges of ordesturned by
GFA is included in the set of the hyperedges(df. Thus,
GFA finds the hyperedges d6f; correctly, given the condi-
tion that GHECKEXISTENCEand BNARY SEARCH correctly
perform Therefore, GFA correctly finds the hyperedges of

G, with probabilityl — O (1).

Theorem 3 follows from Lemmas 10 and 12. Here, we
mention that itis more straightforward to obta(m log® n)
algorithm for the hypergraph finding problem (and hence
O (mlog® n) algorithm for finding the Fourier coefficients)
by querying the oracl® (logn) times for each cross-mem-
bership query to make the error probabil®(1/poly(n)).

For thek-bounded hypergraph finding problem, it is not
difficult to show that any randomized algorithm requires
Q (mlogn) cross-membership queries for constatd make
the error probability at most a given constant, provided that
m < n*~¢ for any constant > 0. (To obtain the lower
bound, we may use Yao’s minimax principle [Yao77] and
the information-theoretic arguments based on the fact that,
for a cross-membership query, the oracle returns one of two
values.) Thus, GFA is optimal up to a constant factor, pro-
vided thatm < n*~¢ for any constant > 0. Note that
this does not mean the optimality of the proposed algorithm
for the problem of finding Fourier coefficients. While the
oracle for the hypergraph finding problem gives binary val-
ues, function evaluations for the problem of finding Fourier
coefficients give real values that may give more information
about the Fourier coefficients.

5 Remarks on Query and Time Complexity

Suppose that we are givenkabounded functionf defined
on {0, 1}" with m non-zero Fourier coefficients. To find the
Fourier coefficients of, we first find the hyperedges of the
linkage graph off. From Theorem 6, we have the oracle with
one-sided errof = 1 — 53; that gives the answer for a cross-
membership query by usir#f function evaluations. Since
f hasm non-zero Fourier coefficients, the linkage graph of
f has at mos2*m hyperedges. Given k-bounded hyper-
graph withn vertices and at mo&tm hyperedges, GFA uses

Nk 1.3.5 . i
@) (%m logn ) cross-membership queries as shown

in the proof of Lemma 10. Thus, we can find the hyper-
edges of the linkage graph g¢f (with high probability) by
using© ((16€)*k*-*mlogn) function evaluations.

Once the linkage graph gf is obtained, the Fourier co-
efficients can be found by using (2*m) additional func-
tion evaluations from Proposition 2. Thus, the overall query
complexity of finding the Fourier coefficients gf(with high
probability) isO ((16e)*k3-*mlogn). This isO (mlogn)
for constantt and Theorem 1 follows. Another important
issue in practical applications is the time complexity of the

that has not been found is a hyperedge containing the ver-algorithm. From the pseudocode of the proposed algorithm,

tices inU U {v} and not containing the vertices W U A for
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we can check that the time complexity of the algorithm is



O (nmlogn) for constant. (Itis exponential irk.)

We should note that GFA does not assume the hierarchi-
cal property among the hyperedges. The query complexity [AC05]
of GFA can be improved for the restricted class of the
bounded hypergraphs with the hierarchical property. Thus,
the query complexity of finding the Fourier coefficients of
a k-bounded function can be improved for generalMore
concretely, to find the hyperedges of orderwe consider
only the subsets of ordgrthat contain some hyperedge of
orderj — 1 that have been already found. This reduces it [BAA T01]

to O (1]?5 log n) the number of iterations of the repeat loop

in CHECKEXISTENCE for checking the existence of a hy-
peredge of ordej. (It also reduces the number oHECK-
EXISTENCE and BNARY SEARCH being called taD (km).)
By this modification, the query complexity of GFA for find-
ing a k-bounded hypergraph with vertices and at most

2Fm hyperedges is reduced m(ﬁ’%“;mlogn . If we use
this modified version of GFA, the query complexity of find-
ing the Fourier coefficients is to i@ ((16)*k?mlog n) for

a k-bounded function defined of0, 1}"™ with m non-zero
Fourier coefficients.

[AC06]

[BGKO5]

[BJTO4]
6 Conclusion

In this paper, we showed that the Fourier coefficients bf a
bounded function withn non-zero Fourier coefficients can
be found inO (mlogn) function evaluations for constaht
To this end, we first showed that the problem of finding the
Fourier coefficients of &-bounded function is reduced to
the problem of finding &-bounded hypergraph with cross-
membership queries under the oracle with one-sided error.
Then, we gave a randomized algorithm for the hypergraph
finding problem and analyzed it to obtain the desired bound.
As shown in the previous section, the query (and time)
complexity of the proposed algorithm is exponentialkin
Although the main concern of this paper is the case when
k is constant, it would be worth trying to find an algorithm
with better query (and time) complexity for genetal

[BT96]

[CCO6]

[Cheb2]

[CIMO8]
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Abstract

The problem of how a teacher and a learner can
cooperate in the process of learning concepts from
examples in order to minimize the required sample
size without “coding tricks” has been widely ad-
dressed, yet without achieving teaching and learn-
ing protocols that meet what seems intuitively an
optimal choice for selecting samples in teaching.

We introduce the model of subset teaching sets,
based on the idea that both teacher and learner can
exploit the assumption that the partner is cooper-
ative. We show how this can reduce the sample
size drastically without using coding tricks. For
instance, monomials can be taught with only two
examples independent of the number of variables.

The corresponding variant of the teaching dimen-
sion (STD) turns out to be nonmonotonic with re-
spect to subclasses of concept classes. We dis-
cuss why this nonmonotonicity might be inherent
in optimal cooperative teaching scenarios. Never-
theless, trying to overcome nonmonotonicity, we
introduce a second variant, the recursive teaching
dimension (RTD), which is monotonic and yields
the same positive results for some concept classes,
such as the class of all monomials, yet can be arbi-
trarily worse than the STD.

1

1.1 Motivation and approach

Introduction

One major branch of learning theory and machine learning is
the theory and practice of learning concepts from examples.
Considering a finite instance space and a class of (thus fi-
nite) concepts over that space, it is obvious that each concept
can be uniquely determined if enough examples are known.
Much less obvious is how to minimize the number of exam-
ples required to identify a concept, and with this aim in mind
models of cooperative learning and learning from good ex-
amples were designed and analyzed. The selection of good
examples to be presented to a learner is often modeled using
a teaching device (teacher) that is assumed to be benevolent
by selecting examples expediting the learning process (see
for instance [AK97, JT92, GM96, Mat97]).
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Throughout this paper we assume that teaching/learning
proceeds stepwise; in each step the teacher presents an exam-
ple (that is, an instance paired with a label 1 or 0, according
to whether or not the instance belongs to the target concept)
to the learner and the learner returns a concept it believes
to be the target concept. If the learner’s conjecture is right
the process ends, otherwise both proceed to the next step.
This process will terminate successfully for any concept ¢
in a given concept class C' if the following three conditions
hold: (1) the teacher never presents any example twice, (2)
the teacher labels the examples correctly according to the
current target concept, and (3) the learner always returns a
concept consistent with the examples seen so far. The sam-
ple size, i.e., the number of examples the teacher presents
to the learner enroute to termination, is the object of opti-
mization; in particular we are concerned with the worst case
sample size measured over all concepts in C. Other than
that, computational complexity issues are not the focus of
this paper.

A typical question is How can a teacher and a learner
cooperatively minimize the worst case sample size without
using coding tricks?—a coding trick being, e.g., any a pri-
ori agreement on encoding concepts in examples, depending
on the concept class C. For instance, if teacher and learner
agreed on a specific order for the concept representations and
the instances and agreed to use the j*” instance in this order-
ing to teach the j** concept, that would be a coding trick.'

A considerable amount of the learning theory literature
deals with the teaching dimension of concept classes (and
variants thereof, see, e.g., [SM91, GK95, ABCS92]). The
teaching dimension of a concept ¢ € C'is the size of the
minimum sample that is consistent with ¢ but not with any
other concept in C'. Obviously teacher and learner can suc-
ceed with such a sample without coding tricks.

The teaching dimension however does not always seem
to capture the intuitive idea of cooperation in teaching and
learning. Consider the following simple example. Let Cy
consist of the empty concept and all singleton concepts over
a given instance space X = {z1,...,z,}. Each single-
ton concept {x;} has a teaching dimension of 1, since the
single positive example (z;, 1) is sufficient for determining

IThere is so far no generally accepted definition of what a cod-
ing trick (sometimes also called “collusion”) in general is. The
reader is referred to [AK97, OS02, GM96] for a treatment of this
question in different learning models.



{z;}. In contrast to that, the empty concept has a teaching
dimension of n—every example has to be presented. How-
ever, if the learner assumed the teacher was cooperative—
and would therefore present a positive example if the target
concept was non-empty—the learner could confidently con-
jecture the empty concept upon seeing just one negative ex-
ample.

Let us extend this reasoning to a slightly more complex
example, the class of all boolean functions that can be rep-
resented as a monomial over m variables (m = 4 in this
example). Imagine yourself in the role of a learner knowing
your teacher will present helpful examples. If the teacher
sent you the examples

(0100, 1), (0111, 1),

what would be your conjecture? Presumably most people
would conjecture the monomial M = o7 A ve, as does for
instance the algorithm proposed in [Val84]. Note that this
choice is not uniquely determined by the data: the empty
monomial and the monomials 77 and vy are also consistent
with these examples. And yet M seems the best choice, be-
cause we’d think the teacher would not have kept any bit in
the two examples constant if it was not in the position of a
relevant variable. In this example, the natural conjecture is
the most specific concept consistent with the sample, but that
does not, in general, capture the intuitive idea of cooperative
learning. For example, consider the concept class consisting
of just the three concepts {5}, {«, 5}, {«,~}. If the teacher
presented («, 1) as an example, there would be two most
specific consistent concepts. But a learner that assumed the
teacher was cooperative could confidently guess {«, 5} to be
the target concept, because a cooperative teacher would have
presented the unambiguous (7, 1) if {a, v} was the target
concept.

Could the learner’s reasoning about the teacher’s behav-
ior in these examples be implemented without a coding trick?
We will show below that no coding trick is necessary to
achieve exactly this behavior of teacher and learner; there
is a general principle that teachers and learners can indepen-
dently implement to cooperatively learn any finite concept
class. When applied to the class of monomials this principle
enables any monomial to be learned from just two examples,
regardless of the number m of variables.

Our approach is to define a new model of cooperation
in learning, based on the idea that each partner in the co-
operation tries to reduce the sample size by exploiting the
assumption that the other partner does so. If this idea is iter-
atively propagated by both partners, one can refine teaching
sets iteratively ending up with a framework for highly effi-
cient teaching and learning without any coding tricks. It is
important to note that teacher and learner do not agree on any
order of the concept class or any order of the instances. All
they know about each others’ strategies is a general assump-
tion about how cooperation should work independent of the
concept class or its representation.

We show that the resulting variant of the teaching dimen-
sion—called the subset teaching dimension (STD)—is not
only a uniform lower bound of the teaching dimension but
can be constant where the original teaching dimension is ex-
ponential, even in cases where only one iteration is needed.
For example, as illustrated above, the STD of the class of
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monomials over m variables is 2, in contrast to its original
teaching dimension of 2™.

Some examples however will reveal a nonmonotonicity
of the subset teaching dimension: some classes possess sub-
classes with a higher subset teaching dimension, which is at
first glance not very intuitive. We will explain below why in
a cooperative model such a nonmonotonicity does not have
to contradict intuition; additionally we introduce a second
model of cooperative teaching and learning, that results in a
monotonic dimension, called the recursive teaching dimen-
sion (RTD). Comparing our complexity notions in terms of
the sample size required for teaching and learning shows that
achieving monotonicity here results in a loss in terms of sam-
ple efficiency; however, even though the RTD has some defi-
ciencies compared to the STD, it still significantly improves
on previously studied variants of the teaching dimension.

1.2 Related work

The problem of defining good or helpful examples in learn-
ing has been studied in different fields of learning theory.
Various learning models that involve one particular teacher
can be found in [AK97, JT92, GM96, Mat97]; these mostly
focus on learning boolean functions.

The teaching dimension has been analyzed in the context
of online learning [BE98, RY95] and in the model of learn-
ing from queries, e.g., in [Heg95] and in [Han(07], with a
focus on active learning in the PAC framework. In contrast
to these models, in inductive inference the learning process is
not necessarily considered to be finite. Approaches to defin-
ing learning infinite concepts from good examples [FKW93,
LNW9S] do not focus on the size of a finite sample of good
examples, but rather on characterizing the cases in which
learners can identify concepts from only finitely many ex-
amples.

The approach we present in this paper is mainly based
on an idea by Balbach [Bal08]. He defined and analyzed
a model in which, under the premise that the teacher uses
a minimal teaching set as a sample, a learner can reduce the
size of a required sample by eliminating concepts which pos-
sess a teaching set smaller than the number of examples pro-
vided by the teacher so far. Iterating this idea, the size of
the teaching sets might be gradually reduced significantly.
Though our approach is syntactically quite similar to Bal-
bach’s, the underlying idea is a different one (we do not con-
sider elimination by the sample size but elimination by the
sample content as compared to all possible teaching sets).
The resulting variant of the teaching dimension in general
yields a much better performance in terms of sample size
than Balbach’s model does.

2 Preliminaries

Let N denote the set of all non-negative integers, () denote
the empty set, and |A| denote the cardinality of a finite set A.
Concerning the teaching framework, we will mostly follow
the notation used in [BalO8].

In the models of teaching and learning to be defined be-
low, we will always assume that the goal in an interaction
between a teacher and a learner is to make the learner iden-
tify a (finite) concept c over a (finite) instance space X. To
formalize this, let n > 0 be a natural number and let X =



{z1,...,x,} be an instance space. A concept c is a subset of
X and a concept class C'is a set of concepts. Consequently,
concepts and concept classes considered below will always
be finite. As a special case we sometimes consider boolean
functions over variables vy, ..., v,, as concepts, which just
means to represent the instance space X by {0, 1}™.

We identify every concept ¢ with its membership func-
tion given by c(z;) = 1if z; € ¢, and ¢(x;) = 0if ; ¢
c, where 1 < ¢ < n. Given a sample, i.e., a set S =
{(y1,b1),...,(y;,b;)} € X x {0,1} of labeled examples,
we say that ¢ is consistent with S if ¢(y;) = b; for all i €
{1,...,4}. If C is a concept class then we define

Cons(S,C) = {c € C | cis consistent with S} .

The sample S is called a teaching set for ¢ with respect to
C if Cons(S,C) = {c}. A teaching set allows a learning
algorithm to uniquely identify a concept in the concept class
C. Striving for sample efficiency, one is particularly inter-
ested in teaching sets of minimal size, called minimal teach-
ing sets. The teaching dimension of c in C is the size of
such a minimal teaching set, i.e., TD(¢,C') = min{|S| |
Cons(S,C) = {c}}, the worst case of which defines the
teaching dimension of C, i.e., TD(C) = max{TD(c,C) |
¢ € C}. To refer to the set of all minimal teaching sets of ¢
with respect to C, we use

TS(c,C) ={S | Cons(S,C)={c} and |S|=TD(c,C)}.

The reader is referred to [GK95, SM91] for original stud-
ies on teaching sets.

Recall our assumptions concerning the learning process:
it proceeds stepwise; in each step the teacher presents a sin-
gle example to the learner and the learner returns a conjec-
ture about the target concept. The process stops when and
only when a correct conjecture is made by the learner. Our
minimal requirements on cooperative partners here is that
teachers never present any example twice and always label
the examples correctly according to the target concept, and
that every conjecture a learner returns is consistent with the
information seen up to that step.

The teaching dimension [GK95] then gives a measure of
the worst case sample size needed by a learner if the teacher
uses only minimal teaching sets for teaching. The reason is
that a teaching set eliminates all but one concept due to in-
consistency. However, if the learner knows 7D (¢, C') for ev-
ery ¢ € C then sometimes concepts could also be eliminated
by the mere number of examples presented to the learner. For
instance, assume a learner knows that all but one concept
¢ € C have a teaching set of size one and that the teacher
will teach using teaching sets. After having seen 2 exam-
ples, no matter what they are, the learner could eliminate all
concepts but c. This idea, referred to as elimination by sam-
ple size, was introduced in [Bal08]. If a teacher knew that a
learner eliminates by consistency and by sample size then the
teacher could consequently reduce some teaching sets (e.g,
here, if TD(c,C) > 3, a new “teaching set” for ¢ could be
built consisting of only 2 examples).

More than that—this idea is iterated by Balbach [Bal08]:
if the learner knew that the teacher uses such reduced “teach-
ing sets” then the learner could adapt his assumption on the
size of the samples to be expected for each concept, which
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could in turn result in a further reduction of the “teaching
sets” by the teacher and so on. The following definition cap-
tures this idea formally.

Definition 1 (Balbach teaching dimension [Bal08])

Let C be a concept class, ¢ € C, and S a sample. Let
BTD(¢,C) = TD(c,C). We define iterated dimensions
forall k € N as follows.

o Consgize(S,CL k)
= {c € Cons(S,C) | BTD"(¢,C) > |S|}.

e BTD"(c, )
= min{|S| | Conssire(S,C, k) = {c}}

Let z be minimal such that BTD***(c,C) = BTD*(c,C)
for all ¢ € C. The iterated Balbach teaching dimension
of ¢ in C is defined by BTD(¢,C') = BTD*(c¢,C) and
the iterated Balbach teaching dimension of the class C' is
BTD(C) = max{BTD(c,C) | c € C}.2

Obviously, BTD(C') < TD(C) for every concept class
C. How much the sample complexity can actually be re-
duced by a cooperative teacher/learner pair according to this
“elimination by sample size” principle, is illustrated by the
concept class C consisting of the empty concept and all sin-
gleton concepts over X . The teaching dimension of this class
is n, whereas the BTD is 2. A more interesting example is
the class of monomials, which contains only one concept for
which the BT D-iteration yields an improvement.

Theorem 2 (Balbach [Bal08]) Ler m € N and C' the class
of all boolean functions over m > 2 variables that can be
represented by a monomial. Let ¢y = () be the concept rep-
resented by a contradictory monomial.

1. BTD(CO7C) =m+2<2™= TD(CQ,C).
2. BTD(c¢,C) = TD(c,C) forall c € C with ¢ # cy.

The intuitive reason why BTD(cq, C) = m+2 in Theo-
rem 2 is that samples for ¢y of size m + 1 or smaller are con-
sistent also with monomials different from cy. These other
monomials hence cannot be eliminated—neither by size nor
by inconsistency.

3 Teaching and learning using subset
teaching sets

3.1 The model

The approach studied by Balbach [Bal08] does not fully meet
the intuitive idea of teacher and learner exploiting the knowl-
edge that either partner behaves cooperatively. Consider for
instance one more time the class Cy containing the empty
concept and all singletons over X = {z1,...,2,}. Each
concept {x;} has the unique minimal teaching set {(z;, 1)}
in this class, whereas the empty concept only has a teach-
ing set of size n, namely {(x1,0),..., (z5,0)}. The idea of
elimination by size allows a learner to conjecture the empty

2 [Bal08] denotes this by JOTTD, called iterated optimal teacher
teaching dimension; we deviate from this notation for the sake of
convenience.



concept as soon as two examples have been provided, due to
the fact that all other concepts possess a teaching set of size
one. This is why the empty concept has an BTD equal to 2
in this example.

However, as we have argued in the introduction, it would
also make sense to devise a learner in a way to conjecture
the empty concept as soon as a first example for that concept
is provided—knowing that the teacher would not use a neg-
ative example for any other concept in the class. In terms of
teaching sets this means to reduce the teaching sets to their
minimal subsets that are not contained in minimal teaching
sets for other concepts in the given concept class.

Formally, we define this refinement operator and its iter-
ation as follows.

Definition 3 Ler C be a concept class, c € C, and S a sam-
ple. Let STD(c,C) = TD(c,C), STS®(¢c,C) = TS(c, O).
We define iterated sets for all k € N as follows.

o Consgyy(S,C k) ={ce C|S C Y forsomeS €
STS* (¢, C)}.

e STD*(c,C) = min{|S| | Conseu(S,C, k) = {c}}

o STS" (¢, C) = {S | Conssu(S,C, k) = {c}, |S| =
STD* (¢, C)}.

Let z be minimal such that STS* (¢, C) = STS*(c, O)
forallce C.3

A sample S with Consg,,(S,C, z) = {c} is called a
subset teaching set for c in C. The subset teaching dimen-
sion of ¢ in C is defined as STD(c,C) = STD?*(¢,C) and
we denote by STS(c,C) = STS*(c,C) the set of all min-
imal subset teaching sets for c in C. The subset teaching
dimension of C'is STD(C) = max{STD(c,C) | c € C}.

For illustration, consider again the concept class Cy, i.e.,
Co ={c; | 0 <i < n}, where ¢cg = 0 and ¢; = {x;} for all
i€{1,...,n}. Obviously, for k > 1,

STS*(¢;) = {{(xs,1)}} foralli e {1,...,n}

and
STS*(co) = {{(2:,0)} | 1 <i <n}.

Hence STD(Cy) = 1.

The definition of ST'S (¢, C') induces a protocol for teach-
ing and learning: for a target concept c, a teacher presents
the examples in a subset teaching set for c to the learner. The
learner will also be able to pre-compute all subset teaching
sets for all concepts and determine the target concept from
the sample provided by the teacher.*

Protocol 4 Let C' be a concept class.

0. Teacher and learner both compute STS(c,C) for all
ceC.

Let ¢ € C be a target concept known to the teacher.

*Such a z exists because STD?(c, C) is finite and can hence be
reduced only finitely often.

“Note that we focus on sample size here, but neglect efficiency
issues arising from the pre-computation of all subset teaching sets.
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The teacher chooses a set S € STS(c,C) at random.
The teacher presents S to the learner (stepwise/batch).

The learner looks up and identifies the unique concept
¢ € C for which S € STS(c,C).

It is important to note at this point that Definition 3 as
such is independent of the particular shape or structure of the
concept class. It does not presume any special order of the
concept representations or of the instances, i.e., teacher and
learner do not have to agree on any such order to make use
of the teaching and learning protocol. That means, given a
special concept class C, the computation of its subset teach-
ing sets does not involve any special coding trick depending
on C'—it just follows a general rule.

3.2 Comparison to the Balbach teaching dimension

Obviously, Protocol 4 based on the subset teaching dimen-
sion never requires a sample larger than a teaching set; often
a smaller sample is sufficient. Similarly, the subset teaching
dimension compares to the Balbach teaching dimension as
follows.

Proposition 5
class C.

2. There is a concept class C with STD(C) < BTD(C).

1. STD(C) < BTD(C) for every concept

Proof. Assertion (1) immediately follows from the defini-
tions. Informally, if a (Balbach) teaching set S in one itera-
tion for a concept c is going to be reduced according to the
BTD-rule (see Definition 1), then |S| > |S’| + 2 for ev-
ery (Balbach) teaching set S’ on the current state of iteration
for some concept ¢’ # c consistent with S. In particular,
if the Balbach teaching dimension of ¢ is reduced to some
value u < |S|, then S has got a subset of size u (or even
smaller) that is not contained in any teaching set for any con-
cept ¢’ # cin C. The minimal such subset has cardinality at
most u and is at least as big as a minimal subset teaching set
for c.

Assertion (2) is witnessed by the class Cy containing the
empty concept and all singletons over X. ]

The second assertion of this proposition even holds in a
stronger form, see Theorem 6.

Theorem 6 For each u € N there is a concept class C' such
that STD(C) =1 and BTD(C) = u.

Proof. Let n = 2" 4 u be the number of instances in X.
Define a concept class C' = C’é‘/l as follows. For every s =
(s1,...,54) € {0,1}*, C contains the concepts c; o = {z; |
1 <i<wuands; = 1} and c51 = €50 U {Tuq1+ine(s) }-
Here int(s) € N is defined by int(s) = S0 5,41 - 2°. We
claim that STD(C) = 1 and BTD(C) = w.

Let s = (s1,...,84) € {0,1}*. Then
TS(cs0,C) = {{(ws,8)|1<i<u}
U {(xu—O—l—O—int(S)a 0)}}
T5(cs1,C) = {{(Tutr4ine(s)s D}

Since for each ¢ € C' the minimal teaching set for ¢ with
respect to C' contains an example that does not occur in the



minimal teaching set for any other concept ¢’ € C, one ob-
tains STD(C) = 1 in just one iteration. See Table 1 for the
case u = 2.

In contrast to that, we obtain BTDO(CS,(), C)=u+1,
BTD'(cs,C) = u, and BTD (¢, 1,C) = 1 forall s €
{0,1}*. Consider any s € {0,1}* and any sample S C
{(z,cs0(x)) | x € X} with |S] = u — 1. Clearly there is
some s’ € {0,1}* with s’ # s such that ¢y o € Cons(S,C).
So |Cons(S,C,1)| > 1 and in particular Cons(S,C,1) #
{cs0}. Hence BTD?(cs,C) = BTD(cs,,C), which fi-
nally implies BTD(C') = . ]

| concept H STS® [ STS?T ‘

0 {(x170)7 (‘r270)7 (:EJ’O)} {(1’3,0)}

{as} {(xs, 1)} {(zs, 1)}

{xQ} {(ml,O),(xQ,l),(x4,0)} {(1’4,0)}

{w2, x4} {(za, 1)} {(za, 1)}

{xl} {(xl’l)v(x270)7(x570)} {(]J5,0)}

{z1, 25} {(zs,1)} {(zs,1)}

{xhx?} {(‘Tlvl)’(m%l)?(:pﬁ’o)} {(1’6,0)}

{z1, 22,26} {(ws, 1)} {(z6,1)}
Table 1: Iterated subset teaching sets for the class Cg/l with
u = 2, where C(q)t/l = {Coo,o, €00,1 - - - ,61170,61171} with

C00,0 = 97 C00,1 = {903}, Co1,0 = {JUQ}, Co1,1 = {I2,$4},
10,0 = {$1} C10,1 = {iﬂl,ws}, C11,0 = {11,152}, C11,1 =
{xl,xz,mﬁ}-

3.3 Teaching monomials

This section provides an analysis of the ST'D for a more nat-
ural example, the monomials, showing that the very intuitive
example given in the introduction is indeed what a cooper-
ative teacher and learner in our model would come up with.
The main result is that the STD of the class of all monomi-
als is 2, independent on the number m of variables, whereas
its teaching dimension is exponential in m and its BTD is
linear in m, cf. [Bal08].

Theorem 7 Let m € N and C the class of all boolean func-
tions over m variables that can be represented by a mono-
mial. Then STD(C) = 2.

Proof. Letm € Nand s = ($1,...,8m), 8 = (s),...,80,)
elements in {0,1}™. Let A(s, s’) denote the Hamming dis-
tance of s and s, i.e., A(s, ') = > 1<, <, [5(4) — 8" (7).

We distinguish the following types of monomials M over
m variables.

Type 1: M is the empty monomial.

Type 2: M has got m variables, M # vy A 77.

Type 3: M has got k variables, 1 < k < m, M # v A\v7.

Type 4: M is contradictory, i.e., M = v; A 7.

The following facts state some properties of the corre-
sponding minimal teaching sets.

Fact 1: If M is of type 1 and S € STS°(M, C), then S
contains two positive examples of Hamming distance m.

Fact 2: If M is of type 2 and S € STS°(M,C), then
S contains (i) one positive example and (ii) m negative ex-
amples, where the Hamming distance between two negative
examples is less than m.
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Fact 3: If M is of type 3 and S € STS®(M,C), then
S contains (i) two positive examples of Hamming distance
m — k and (ii) k negative examples, where the Hamming
distance between each two negative examples is less than m.

Fact 4: If M is of type 4 and S € STS°(M, C), then
S={(s,0) | s€{0,1}™}.

Fact 5: For every s € {0,1}™ there are two different
monomials M, M’ of type 3 such that (s,1) € SN .S’ for
some S € STS(M,C) and some S’ € STS®(M’,C).

Fact 6: For every s € {0,1}™ there are two different
monomials M, M’ of type 3 such that (s,0) € SN .S for
some S € STS®(M,C) and some S’ € STS®(M’,C).

Fact 7: For every s € {0,1}™ there are two different
monomials M, M’ of type 2 such that (s,0) € SN S’ for
some S € STS(M, C) and some S’ € STS°(M’, C).

Fact 8: If M is of type 2, S € STS®(M.C)and S’ C S,
then there is a monomial M3 of type 3 such that S” C S for
some S3 € STS(Ms, C).

After the first iteration we obtain the following facts.

Fact 9: If M is of type 1 and S € STS'(M,C), then
S e 8TS°(M,0).

Fact 10: If M is of type 2 and S € STS* (M, C), then
S e STS°(M,C).

Fact 11: If M is of type 3 and S € STS' (M, C), then S
contains two positive examples.

Fact 12: If M is of type 4 and S € STS' (M, C), then S
contains two negative examples of Hamming distance m.

After the second iteration we obtain the following facts.

Fact 13: If M is of type 1 and S € STS?*(M, C), then
S e STSY(M,O).

Fact 14: If M is of type 2 and S € STS*(M, C), then S
contains one positive and one negative example. Moreover,
for every s € {0,1}™, there is a monomial M of type 2 such
that (s,0) € S for some S € STS?(M,C).

Fact 15: If M is of type 3 and S € STS* (M, C), then
S € STS*(M,C).

Fact 16: If M is of type 4 and S € STS?*(M,C), then
S e 8TS*(M,C).

Combining the insights achieved so far, it is easily seen
that STD?*(M, C) = STD*(M,C) =2 forall M € C. R

For illustration of this proof in case m = 2 see Table 2.

A further simple example showing that the S7'D can be
constant as compared to an exponential teaching dimension,
this time with an STD of 1, is the following.

Let CU',yp contain all boolean functions over m vari-
ables that can be represented by a 2-term DNF of the form
vy V M, where M is a monomial that contains, for each
with 2 < ¢ < m, either the literal v; or the literal v;. More-
over, CJ' v contains the boolean function that can be rep-
resented by the monomial M’ = v;.

Theorem 8 Let m € N.

1. TD(CTyp) = 2m L,
2. STD(CTypp) = 1.



STS® [ STS! |

V1 {(10,1),(11,1),(00,0)} {(10,1),(11,1)}
{(10,1),(11,1),(01,0)}
U1 {(00,1),(01,1),(10,0)} {(00,1),(01,1)}
{(00,1),(01,1),(11,0)}
V2 {(01,1),(11,1),(00,0)} {(01,1),(11,1)}
{(01,1),(11,1),(10,0)}
U2 {(00.,1),(10,1),(01,0)} {(00,1),(10,1)}
{(00,1),(10,1),(11,0)}
v1 A U2 {(11,1),(01,0),(10,0)} {(11,1),(01,0),(10,0)}
v1 A\ U2 {(10.1),(00,0),(11,0)} {(10,1),(00,0),(11,0)}
U1 A\ vz {(01,1),(00,0),(11,0)} {(01,1),(00,0),(11,0)}
U1 A\ U2 {(00,1),(01,0),(10,0)} {(00,1),(01,0),(10,0)}
v1 Atr |[{(00,0),(01,0),(10,0),(11,0)} {(00,0),(01,0)}
{(00,0),(10,0)}
{(01,0),(11,0)}
{(10,0),(11,0)}
A {(00,1),(11,1)} {(00,1),(11,1)}
{(01,1),(10,1)} {(01,1),(10,1)}

| [ 575" |  S75° |

V1 {(10,1),(11,D)} | {(10,1),(11,1)}
U1 {(00,1),(01,1)} | {(00,1),(01,1)}
V2 {(01,1),11,1D} | {(01,1),(11,1)}
V2 {(00,1),(10,1)} | {(00,1),(10,1)}
vi Avz || {(11L,1),01,0)} | {(11,1),(01,0)}
{(11,1),(10,00} | {(11,1),(10,0)}
v Avz || {(10,1),(00,0)} | {(10,1),(00,0)}
{(10,1),(11,0)} | {(10,1),(11,0)}
1 Ave || {(01,1),(00,0)} | {(01,1),(00,0)}
{(01,1),(11,00} | {(01,1),(11,0)}
1 ATz || {(00,1),(01,00} | {(00,1),(01,0)}
{(00,1),(10,0)} | {(00,1),(10,0)}
v1 Aot || {(00,0),(01,0)} | {(00,0),(01,0)}
{(00,0),(10,0)} | {(00,0),(10,0)}
{(01,0),(11,0)} | {(01,0),(11,0)}
{(10,0),(11,0)} | {(10,0),(11,0)}
A {(00,1),(11,1)} | {(00,1),(11,1)}
{(01,1),(10,1)} | {(01,1),(10,1)}

Table 2: Iterated subset teaching sets for the class of all
monomials over m = 2 variables. Here A\ denotes the empty
monomial.

Proof. The straightforward details concerning the proof of
Assertion (2) are omitted; Assertion (1) can be verified as
follows.

Let S be a sample that is consistent with M’. Assume
that for some s € {0, 1}, the sample .S does not contain the
negative example (s,0). Obviously, there is a 2-term DNF
D = v; V M such that D is consistent with S U {(s,1)}.
Hence S is not a teaching set for M’. Since there are exactly
2m—=1 9_term DNFs that represent different functions in C, a
teaching set for M’ must contain at least 2™~ ! examples. Bl

4 Nonmonotonicity and the recursive
teaching dimension
4.1 Nonmonotonicity versus redundancy of variables

Interpreting the subset teaching dimension as a measure of
complexity of a concept class in terms of cooperative teach-
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ing and learning, we observe a fact that is worth discussing,
namely the nonmonotonicity of this complexity notion, as
stated by the following theorem.

Theorem 9 There is a concept class C with STD(C") >
STD(C) for some subclass C' C C.

Sketch of proof. This is witnessed by the concept classes
C = (), and their subclasses C" = {cs,0 | s € {0,1}"}
used in the proof of Theorem 6 (see Table 1 foru =2). W

Note that this nonmonotonicity result holds with a fixed
number of instances n. In fact, if n was not considered fixed
then every concept class C’ would have a superset C' (via
addition of instances) of lower subset teaching dimension.
However, the same even holds for the teaching dimension
itself which we yet consider monotonic since it is monotonic
given fixed n. So whenever we speak of monotonicity we
assume a fixed instance space X.

Of course such an instance space X might contain re-
dundant instances the removal of which would not affect the
subset teaching dimension and would retain a non-redundant
subset of the set of all subset teaching sets. In the follow-
ing subsection, where we discuss a possible intuition behind
the nonmonotonicity of the STD, redundancy conditions on
instances will actually play an important role and show the
usefulness of the following technical discussion. However, it
is not straightforward to impose a suitable redundancy con-
dition characterizing when an instance can be removed.

We derive such a condition starting with a redundancy
condition for the original variant of teaching sets. For that
purpose we introduce the notion C~* for the concept class
resulting from C after removing the instance = from the in-
stance space X. Here C is any concept class over X and
x € X is any instance. For example, if X = {z1, 22,23}
and C = {{1‘1}, {1‘1, 1‘2}, {l‘g, 1‘3}} then

C™" = {{z1}, {z1, 22}, {z2}}

considered over the instance space {x1, z2}.

Lemma 10 Let C be a concept class over X and x € X. If
forall c € C and forall S € TS(c,C)

(x,c(x)) € S =

Fy # = [(S\ {(z, c(2))}) U{(y,c(y)} € TS(c,C)],
then for all ¢ € C and for all samples S
SeTS(c,C™%) «— [SeTS(,C) A (z,¢(z)) ¢ 95].

Proof. Note that |C~*| = |C|. Let ¢ € C be an arbitrary
concept and let .S be any sample over X.

First assume S € TS(c,C) and (z,c(x)) ¢ S. Since
obviously TD(c,C~%) > TD(ec,C) we immediately obtain
S e TS(c,C™7).

Second assume S' € T'S(c, C~%). By definition, we have
(x,c(x)) ¢ S. Hence it remains to prove that S € TS(c, C).
If S ¢ TS(c,C) then there exists some 7' € TS(c,C) with
|T| < |S]. We distinguish two cases.

Case 1. (z,c(x)) ¢ T.

Then T € T'S(c,C~?) in contradiction to the facts S €
TS(c,C~*) and |S| # |T).



Case 2. (z,c(x)) € T.
Then by the premise of the lemma there exists a y # x
such that

AZ (S\ {(z,¢(@)}) U{(y, e(y)} € TS(c,C).

Since (z,c(x)) ¢ A we have A € TS(¢,C™%) and |A| =
|T| # |S|. This again contradicts S € T'S(c,C~%).

Since both cases reveal a contradiction, we obtain S €
TS(c,C). |

For illustration see Table 3. In this example the instances
x4 and x5 meet the redundancy condition. After eliminating
x5, T4 still meets the condition and can be removed as well.
The new representation of the concept class then involves
only the instances =1, 2, x3.

[ conceptin C | TS ]
0 {(1'1,0),(1'3,0)},{(£E1,0),($4,0)},
{(1’170),(135,0)}
{1'1} {(1‘171),($270)},{(32'1,1),(I570)}
{$3,$4,$5} {(xg,o),($3,1)},{(iL‘Q,O),(ZB;L,].)},
{ Z,270)7(33571)}
{$27$3,[L‘4,$5} {($1,0)7(CE’271)},{($2,1),($4,1)}
{$1,$27I5} {(1‘2,1),(:[’370)},{(1‘3,0)7(I571)}
{$1,$2,$3,$5} {(1’1,1),(233,1)},{(373,1),(1'4,1)}
[ conceptin (C—*7)~™ || TS ‘
0 {(ZB1,0),({E3,0)}
{xl} {($1,1),($2,0)}
{3;‘3} {(w2,0),($3,1)}
{‘T27$3} {($1,0),(m2,1)}
{mhx?} {(56271),(I3,0)}
{z1, 22,23} {(z1,1), (23, 1)}

Table 3: Teaching sets for a class C' before and after elimi-
nation of two redundant instances.

Lemma 10 provides a condition on an instance z. If that
instance is eliminated from the instance space then the result-
ing concept class C'~* does not only have the same teaching
dimension as C but, even more, for each of its concepts ¢ the
teaching sets are exactly those that are teaching sets for c in
C and do not contain an example involving the eliminated
instance x. Note that even though several instances might
meet that condition at the same time, only one at a time may
be removed. For the remaining instances it has to be checked
whether the condition still holds after elimination of the first
redundant instance.

So one legitimate redundancy condition for instances—
considering teaching sets—is the one given in the premise of
Lemma 10.

This condition can be extended to a redundancy condi-
tion with respect to subset teaching sets.

Theorem 11 Let C be a concept class over X and x € X.
Ifforall k € N, for all ¢ € C, and for all S € STS*(c, C)

(z,c(x)) € S=
3y # 2 [(S\ {(z,e(@)}) U{(y, c(y)} € STS" (e, C)].
then for all k € N, for all ¢ € C, and for all samples S
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S € STS*(c,C—™)
=
[S € 8STS*(c,C) A (z,¢(x)) ¢ S].

Proof. Note that |C~*| = |C|. We prove the theorem by
induction on k.

For k = 0 this follows immediately from Lemma 10.
So assume that the claim is proven for some % (induction
hypothesis). It remains to show that it then also holds for
E+1.

For that purpose note that

Ve e CVA e STS*(e,C) 3B € STS*(¢,C™™)
(1Al = [B] A A\{(z,c(x))} € B] (%)
by combination of the induction hypothesis with the premise

of the theorem.
Choose an arbitrary ¢ € C.

First assume S € STS*™(c,C) and (z,c(x)) ¢ S.
By the definition of subset teaching sets, there is an S’ €
STS* (¢, C') with

Scgs. (1)

Using (*) we can assume without loss of generality that
S e STS*(¢,C™™). 2)

Moreover, again by the definition of subset teaching sets,
one obtains S ¢ S” for every S” € STS*(¢/,C) with ¢/ #
c. The induction hypothesis then implies

S ¢ 8" forevery S” € STS*(¢/,C™*) with ¢/ #¢. (3)

Due to (1), (2), (3) we get either S € STS*1(c,C—7)
or |S| > STD* (¢, C~*). In the latter case there would be
aset T € STS* ' (c,C~*) with |T| < |S|. T is a subset
of some set in STS* (¢, C~*) and thus also of some set in
STSk (¢, C) by induction hypothesis. If T was contained in

some T" € STS* (¢!, C) for some ¢/ # ¢ then we could again
assume without loss of generality, using (x) and (x, c¢(z)) ¢

T, that T is contained in some set in STS*(¢/,C~*)—in
contradiction to 7 € STS*"'(¢,C~*). Therefore T €
STS* (¢, C) and so |T| = |S|—a contradiction. This im-
plies S € STS* (¢, C—2).

Second assume that S € STS*™!(¢,C—*). Obviously,
(z,c(x)) ¢ S, so that it remains to show S € STS* ! (¢, C).

Because of S € STS**!(¢,0~7) there exists some set
S’ € STS*(c,C~*) such that

ScCs. 4
The induction hypothesis implies
S e STS*(c,C). (5)

Moreover, by the definition of subset teaching sets, one
obtains S ¢ S” for every S” € STS*(¢/,C~*) with ¢/ #
c. If there was a set S” € STS*(¢/,C) with ¢ # ¢ and
S C S” then (*) would imply that without loss of generality
S € STS*(¢/,C—*). So we have

S ¢ 8" forevery S” € STS*(¢/,C) with ¢ #¢.  (6)



Combining (4), (5), (6) we get either S € STS**1(c, C)
or |S| > STD" (¢, C). In the latter case there would be
aset T € STS* (¢, C) with |T| < |S|. T is a subset of
some set 7" € STS* (¢, C'). We can assume without loss of
generality, using (%), that 7/ € STS*(¢c,C~*). If T was
contained in some set in STS*(¢/, C~*) for some ¢ # ¢
then by induction hypothesis T would be contained in some
set in STS*(¢/, C) for some ¢ # c. This is a contradiction
toT € STS*(c,C). So T € STS*™ (¢, C~*) and hence
|T| = |S|—a contradiction. Thus S € STS*"!(¢,C). W

4.2 The reason for nonmonotonicity

The idea about why the teaching dimension can decrease
when a concept class increases is best illustrated by an ex-
ample in which the addition of a single concept has this ef-
fect. In a simple such example, the instance space consists
of three elements «, 3,~. First, consider the four distinct
concepts that all contain v, coo1 = {7}, con1 = {5,7},
c101 = {a,7}, c111 = {a, B,7}. When these four concepts
are the only ones in the class the teaching sets for them all
are necessarily size two—elements « and 3 and their respec-
tive labels—because v is a member of all of them, it cannot
be part of any teaching set. If one more concept is added to
the class the subset teaching sets all become size 1. Table 4
shows the computation when cggg = () is added.

l concept H STS" [ STS? ‘
0 {(v,0)} {(7,0)}
{} {(,0),(8,0), (v, D} {(. D}
{87} {(,0), (B, 1)} {(2,0), (8, 1)}
{a,7} {(a,1),(8,0)} {(,1),(8,0)}
{a, 8,7} {(a,1), (B, 1)} {(a,1),(8,1)}

[ concept || STS? | STS® ]
0 {(,0)} {(+,0)}
{} {(v, D} {(v, D}
{B,} {(,0)} {(,0)}
{a,7} {(3,0)} {(3,0)}
{a, 8,9} [ {(en 1), (B, 1)} | {(B: 1)}

Table 4: Illustration of the nonmonotonicity of STD.

From a more general point of view, it is not obvious how
to explain why a teaching dimension resulting from a coop-
erative model should be nonmonotonic.

First of all, this is a counter-intuitive observation when
considering ST'D as a notion of complexity—intuitively any
subclass of C' should be at most as complex for teaching and
learning as C.

However, there is in fact an intuitive explanation for the
nonmonotonicity of the complexity in cooperative teaching
and learning: when teaching ¢ € C, instead of providing
examples that eliminate all concepts in C' \ {c} (as is the
idea underlying minimal teaching sets) cooperative teach-
ers would rather pick only those examples that distinguish
¢ from its “most similar” concepts in C'. Similarity here is
measured by the number of instances on which two concepts
agree (i.e., dissimilarity is given by the Hamming distance
between the concepts, where a concept c is represented as a

bit vector (¢(z1), . .., c(xy,))). This is reflected in the subset
teaching sets in all illustrative examples considered above.
Considering a class C' = Cg/l, one observes that a subset

teaching set for a concept c, o contains only the negative ex-
ample (T4 14int(s), 0) distinguishing it from c, ; (its nearest
neighbor in terms of Hamming distance). A learner will rec-
ognize this example as the one that separates only that one
pair (cs,0,¢s,1) of nearest neighbors. In contrast to that, if
we consider only the subclass C' = {cs0 | s € {0,1}"},
the nearest neighbors of each c; o are different ones, and ev-
ery single example separating one nearest neighbor pair also
separates other nearest neighbor pairs. Thus no single exam-
ple can be recognized by the learner as a separating example
for one unique pair of concepts.

This intuitive idea of subset teaching sets being used for
distinguishing a concept from its nearest neighbors has to
be treated with care though. The reason is that the concept
class may contain “redundant” instances, i.e., instances that
could be removed from the instance space according to The-
orem 11.

Such redundant instances might on the other hand affect
Hamming distances and nearest neighbor relations. Only af-
ter their elimination the notion of nearest neighbors in terms
of Hamming distance becomes well-defined. Consider for
instance Table 3. In the concept class C' over 5 instances the
only nearest neighbor of () is {x1} and an example distin-
guishing @ from {x1} would be (z1,0). Moreover, no other
concept is distinguished from its nearest neighbors by the
instance x1. According to the intuition explained here, this
would suggest {(x1, 0)} being a subset teaching set for ) al-
though the subset teaching sets here equal the teaching sets
and are all of cardinality 2.

After instance elimination of x4, x5 there is only one sub-
set teaching set for (), namely {(z1,0), (x3,0)}. This is still
of cardinality 2 but note that now @) has two nearest neigh-
bors, namely {z;} and {z3}. The two examples in the sub-
set teaching set are those that distinguish () from its nearest
neighbors. Note that either one of these two examples is not
unique as an example used for distinguishing a concept from
its nearest neighbors: (z1,0) would be used by {x3, x3} for
distinguishing itself from its nearest neighbor {x1, z2, x3};
(x3,0) would be used by {x1,z2} for distinguishing itself
from its nearest neighbor {x1,x2,x3}. So the subset teach-
ing set for () has to contain both examples.

This shows that in general a subclass of a class C' can
have a higher complexity than C'if crucial nearest neighbors
of some concepts are missing.

To summarize,

e nonmonotonicity has an intuitive reason and is not an
indication for an ill-defined version of the teaching di-
mension,

e nonmonotonicity is in fact required if we want to cap-
ture the idea that the existence of specific concepts to
distinguish a target concept from is beneficial for teach-
ing and learning.

So, the STD captures certain intuitions about teaching
and learning that monotonic dimensions cannot capture; at
the same time monotonicity might in other respects itself be



an intuitive property of teaching and learning which then the
STD cannot capture.

In particular there are two underlying intuitive proper-
ties that seem to not be satisfiable by a single variant of the
teaching dimension.

So in contrast one may wish to have a cooperative teach-
ing and learning model going along with a monotonic com-
plexity measure. It is not hard to show that BTD in fact is
monotonic, see Theorem 12.

Theorem 12 [f C is a concept class and C' C C a subclass
of C, then BTD(C") < BTD(C).

Proof. Fix C and C' C C. We will prove by induction on k
that

BTD*(c,C") < BTD*(c,C) forall c € C
forall K € N.
k = 0: Property (7) holds because of BTD’(c,C")
TD(c,C") < TD(c,C) = BTD (¢, C) forall ¢ € C.
Induction hypothesis: assume (7) holds for a fixed k.
k ~ k + 1: First, observe that

(N

Conssize (S, C' k)

{c € Cons(S,C") | BTD*(c,C") > |S|}

{c e Cons(S,C") | BTD*(c,C) > |S|} (ind. hyp.)
{c € Cons(S,C) | BTD*(c,C) > |S|}
Conssize (S, C, k)

Second, for all ¢ € C' we obtain

-
c

BTD**(c,C")

min{|S| | Consy.e(S,C’, k) = {c} }
min{|S| | Consgi..(S,C, k) = {c} }
BTD*1(c,0)

<
<

This completes the proof. ]

So, on the one hand, we have the teaching framework
based on the subset teaching dimension which results in a
nonmonotonic dimension, and on the other hand we have a
monotonic dimension in the BTD framework, which unfor-
tunately does not always meet our idea of a best possible
cooperative teaching and learning protocol. That raises the
question whether nonmonotonicity is necessary to achieve
certain positive results. In fact, the nonmonotonicity con-
cerning the class C’é‘/l is not counter-intuitive, but would a
dimension that is monotonic also result in a worse sample
complexity than the STD in general, such as, e.g., for the
monomials?

In other words, is there a teaching/learning framework

e resulting in a monotonic variant of a teaching dimen-
sion and

e achieving similarly good results as the subset teaching
dimension?

At this point of course it is difficult to define what “similarly
good” means. However, we would like to have a constant
dimension for the class of all monomials, as well as, e.g., a

143

teaching set of size 1 for the empty concept in our often used
concept class Cj.

We will now via several steps introduce at least a mono-
tonic variant of the teaching dimension and show that for
most of the examples studied above, it is as low as the subset
teaching dimension. General comparisons will be made in
Section 5, in particular in order to show that this new frame-
work is uniformly at least as efficient as the BT'D frame-
work (or better), while sometimes being less efficient than
the STD framework. This reflects to a certain extent that
monotonicity constraints might affect sample efficiency.

4.3 The teaching plan model

We will first define the notion for our variant of teaching di-
mension and show its monotonicity. The nonmonotonicity
of STD is caused by considering every STS*-set for every
concept when computing an STS F+1_set for a single con-
cept. Hence the idea in the following approach is to impose
an order onto the concept class, in terms of the “teaching
complexity” of the concepts. This is what the teaching di-
mension does as well, but our design principle is a recursive
one. After selecting a concept which is “easy to teach” be-
cause of possessing a small minimal teaching set, we elim-
inate this concept from our concept class and consider only
the remaining concepts. Again we determine the one with
the lowest teaching dimension, now however measured with
respect to the class of remaining concepts, and so on. The re-
sulting notion of dimension is therefore called the recursive
teaching dimension.

Definition 13 Ler C be a concept class, |C| = N. A teach-
ing plan for C is a sequence p = ((c1,51), ..., (cn,SN)) €
(C x 240NN such that

1. C={e1,...,en}
2. Sj S TS(cj,{cj,...,cN})forl <j<N-1L
3. Sy ={(z,1-0b)| (z,b) € SNy_1}.>
The order of p is given by ord(p) = max{|S;| | 1 < j <

N}. The recursive teaching dimension of C' is defined by
RTD(C) = min{ord(p) | p is a teaching plan for C'}.

The desired monotonicity property, see Proposition 14,
follows immediately from the definition.

Proposition 14 If C is a concept class and C' C C is a
subclass of C, then RTD(C") < RTD(C).

We can define a set of canonical teaching plans for any
finite concept class C'. As it will turn out, their order always
equals RTD(C).

Definition 15 Let C be a concept class, p = ((¢1,51), - ..,
(en, SN)) a teaching plan for C. p is called a canonical
teaching plan for C, if foranyi,j € {1,...,N}:

1< j = TD(Ci7{Ci7...,CN}) < TD(Cj,{Ci,..

.,CN}) .

Theorem 16 Let C be a concept class and p a canonical
teaching plan for C. Then ord(p) = RTD(C).

>Note that the cardinality of both Sy_1 and Sy must be 1.



Proof. Let C and p as in the theorem be given, p = ((c1, S1),

.., (en,Sn)). Letp’ = ((c},57), ..., (cy,Sy)) be any
teaching plan for C. It remains to prove that ord(p) <
ord(p').

For that purpose choose the minimal j € {1,...,N}
such that |S;| = ord(p). By definition of a teaching plan,
TD(cj,{¢cj,...,en}) = ord(p). Leti € {1,...,N} be
minimal such that ¢} € {¢;,...,en}. Letk € {1,...,N}
fulfill ¢, = ¢. By definition of a canonical teaching plan,
TD(ck,{¢j,...,en}) > TD(cj,{cj,...,en}) = ord(p).
This obviously yields ord(p’) > TD(c,,{c,...,cN}) >
TD(cx,{cj,...,en}) = ord(p).

To summarize briefly, the recursive teaching dimension
is a monotonic complexity notion which in fact has got some
of the properties we desired; e.g., it is easily verified that
RTD(Cy) = 1 (by any teaching plan in which the empty
concept occurs last) and that the RTD of the class of all
monomials equals 2 (see below). Thus the RT'D overcomes
some of the weaknesses of BTD, while at the same time
preserving monotonicity.

As it will turn out later, there are some interesting rela-
tions between BTD, STD, and RTD.

A property that might be relevant for establishing these
relations is based on the following definition.

Definition 17 Let C be a concept class, |C| = N. A TS-
teaching plan for C' is a sequence
p=((c1,81), - (en, ST, SN))
such that
1. C=Ac1,...,en}

2. 8] € TS(cj,{ck,-..,en}) for1 <k <j<N.
3.8, C8 [ forl<k<j<N.

The order of p is given by ord(p) = max{|5§| |1 <5<
N}. The recursive TS-teaching dimension of C'is defined by
RTTD(C)=min{ord(p) | pis a TS-teaching plan for C'}.

T'S-teaching plans differ from original teaching plans in
that they require their sets being built up in stages as subsets
of those in previous stages, starting from teaching sets.

However, as it turns out, concerning the RT'D it suffices
to consider this restricted form of teaching plans.

Lemma 18 Let C be a concept class. Then RTTD(C) =
RTD(C). In particular, there is a TS-teaching plan p =
((c1,81), ..., (en, SN, ..., SX)) for C such that ord(p) =
RTD(C)and ((c1,5%),. .., (cn, SY)) is a canonical teach-
ing plan for C.

The proof is omitted.

4.4 Monomials revisited

In this subsection, we will pick up the two examples from
Subsection 3.3 again, this time to determine the recursive
teaching dimension.

Theorem 19 Let m € Nand C the class of all boolean func-
tions over m variables that can be represented by a mono-
mial. Then RTD(C') = 2.
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Proof. Fix m and C. For all i € {0,...,m} let C? be the
subclass of all ¢ € C that can be represented by a non-
contradictory monomial M that has got ¢ variables. There
is exactly one concept in C' not belonging to any subclass C*
of C', namely the concept c* representable by a contradictory
monomial.

The proof is based on the following observation.

Observation. For any i € {0,...,m} and any ¢ € C*:
TD(c,C"U{c"}) <2, where C' = ;< <, ol

Now it is easily seen that ord(p) < 2 for every teach-
ing plan p = ((¢1,51), ..., (cn, Sn)) for C that meets the
following requirements:

(@) ¢1 € C%and ey = c*.

(b) Forany k,k’ € {0,...,N—1}: Ifk < k', thenc;, € C*
and ¢ € CY for some i,j € {0,...,m} withi < j.

Since obviously T'D (¢, C') > 2 for all ¢ € C, we obtain
RTD(C) = 2.

For illustration of the case m = 2 see Table 5. [ |
l | TS |
A C" T {(00,1),(11,1)}
U1 ct 1 {ao,n,aLn}
o1 C* [ {(00,1),(01,1)}
Vo ct ] {oL,D,aLDn}
Ty Ct 1 {00,1),(10,1)}
v Avg || CZ {(11,1)}
v ATz || CF {(10,1)}
TiAve || C? {(01,1)}
T AT || C° {(00,1)}
01 A U1 {(00,0)}

Table 5: Recursive teaching sets in a teaching plan of order
2 for the class of all monomials over m = 2 variables. A
denotes the empty monomial.

For the sake of completeness, note RTD(CV'pyp) = 1
where CU; v 18 the class of boolean functions over m vari-
ables as defined in Subsection 3.3.

Theorem 20 RTD(CJyyp) = 1 forallm € N.

Sketch of proof. This follows straightforwardly from the fact
that TD(c, C'pyp) = 1 for every concept ¢ corresponding
to a 2-term DNF of form v, V M.

For illustration see Table 2. ]

5 Comparison of teaching dimension notions

This section provides an analysis of the relationships be-
tween RTD, BTD, and STD.

Theorem 21
BTD(C).

2. There is a concept class C with RTD(C') < BTD(C).

1. If C is a concept class then RTD(C) <

Proof. Assertion (2) is witnessed by the concept class Cy
containing the empty concept and all singletons. Obviously,
RTD(Cy) = 1and BTD(Cy) = 2.



To prove Assertion (1), let C' be a concept class with
RTD(C) = u. By Theorem 16 there is a canonical teaching
plan p = ((c1,51),..., (cn, Sn)) for C with ord(p) = wu.
Fix j < N minimal such that |S;| = u and define C' =
{¢j ...,en}. Obviously, RTD(C') = u. Moreover, us-
ing Theorem 12, BTD(C") < BTD(C). Thus it suffices to
prove u < BTD(C").

To achieve this, we will prove by induction on & that u <
BTD*(c,C") forall k € Nforall ¢ € C".

k=0: BTD (c,C") = TD(c,C") > uforall c € C".

Induction hypothesis: assume u < BTD* (¢, C") for all
¢ € C" holds for a fixed k.

k ~» k + 1: Suppose by way of contradiction that there
is a concept ¢* € C’ with u > BTD"™'(¢*,C"). In par-
ticular, there exists a sample S* such that |[S*| < w and
Conssize(S*,C" k) = {c*}.

By induction hypothesis, the set Cons;..(S*,C’, k) de-
fined by {¢ € Cons(S*,C") | BTD*(c,C") > |S*|} is
equal to Cons(S*,C"). Note that TD(c,C’) > uforall ¢ €
C’ implies either | Cons(S*, C")| > 2 or Cons(S*,C") = 0.
We obtain a contradiction to Cons;..(S*,C', k) = {c*}.

This completes the proof.

Comparing the STD to the RTD turns out to be a bit
more complex. We can show that the recursive teaching di-
mension can be arbitrarily larger than the subset teaching di-
mension; it can even be larger than the maximal STD com-
puted over all subsets of the concept class.

Theorem 22 . For each u € N there is a concept class
C such that STD(C) = 1 and RTD(C) = u.

2. There is a concept class C' such that max{STD(C") |
C" C C} < RTD(C).

Sketch of proof. Assertion (1) is witnessed by the classes
Cg/l defined in the proof of Theorem 6.

To verify Assertion (2), consider the concept class C' =
{c1,...,c6} givenby c1 = 0, co = {z1}, c3 = {1, 22},
Cq4 = {IQ,I‘g}, Cy = {$271‘4}, Ceg = {$27I3,I4}. It is
not hard to verify that TD(c,C) = 2 for all ¢ € C and
thus ord(p) = 2 for every teaching plan p for C. Therefore
RTD(C) = 2. Moreover STD(C") =1 for all ¢’ C C (the
computation of STD(C) is shown in Table 6; further details

are omitted). |

| concept H STS° [ STS! [ STS? ‘
0 {(21,0), (w2,0)}[  {(x1,0)} {(z1,0)}
{I1} {(1’1,1),(332,0)} {($1,1),($2,0)} {(3;‘1,1)}
{(z2,0)}
fry, ey [[{(w1,1), (w2, 1)} {(w2, 1)} {(z2, 1)}
{wo,x3} [[{(23,1), (x4,0)}]  {(24,0)} {(24,0)}
{mz,;l’;;} {(1’3,0), (3:471)} {(33370)} {(33370)}
{$27x37m4} {(1’3,1),(134,1)} {($3,1),(x471)} {{:Ex&}g{

Table 6: Iterated subset teaching sets for the class C' =
{c1,...,¢c6} given by ¢ = 0, co = {x1}, c3 = {z1, 22},
ca = {x2, w3}, e5 = {x2, 74}, 6 = {2, T3, 74}

We conjecture moreover that STD(C) < RTD(C') for
all concept classes C', however, we cannot prove that at the

time of writing. However, we can provide a general proof
idea that solely relies on a lemma that we conjecture.

Lemma 23 (Conjecture) Let C be a concept class and p =
((e1,51),. .., (en, Sn)) a teaching plan for C. Let j fulfill
ord(p) = |S;| and STD(c;,C) > ord(p). Then there is a
teaching plan

p= ((01751)3 BERE) (CNaS;V))
for C and a sample S € STS(cj, C) such that S, C S.

The proof of the following theorem, which helps to sum-
marize the relations between our different variants of teach-
ing dimensions, relies on this lemma—hence in fact the the-
orem is also a conjecture at the time of writing. Note that
its correctness, together with Theorem 21 and Lemma 18,
would imply

STD(C) < RTD(C) = RTTD(C) < BTD(C)

for all concept classes C'. Here all inequalities are necessary
since proven to not be equalities.

Theorem 24 (Based on conjecture Lemma 23) Ler C' be a
concept class. Then STD(C) < RTD(C).

Sketch of proof (relying on Lemma 23). Prove property (P;)
by induction for all j > 1.

(P)):

If C'is a concept class of at least j concepts and p
is any teaching plan for C' (not necessarily canon-
ical), then STD(c;,C) < ord(p) where c; is the

4" concept in the teaching plan p.

For j = 1 this is obvious, because
STD(c1,C) < TD(c1,C) < ord(p) .

The induction hypothesis is that (P;) holds for all i < j,
j fixed.

To prove (Pj41), choose a concept class C' and a teach-
ing plan p = ((¢1,51),...,(en,Sn)) for C. Consider the
J + 1% concept ¢;4+1 in p.

Case 1. |Sj11] < ord(p).

If |Sj41] < ord(p), then we swap ¢; and ¢j41 and get a
new teaching plan

((Cl, 51)7 ey (ijl, ijl),
(Cj+1,T), (CjaT/)v RS (Cna SN))

for C. Note that [7”] < |S;|. Now c¢;1 is in j** posi-
tion and its corresponding set 7', due to the swap, fulfills
|T| <|Sj41] +1 < ord(p). By induction hypothesis we get
STD(cj4+1,C) < ord(p).

Case 2. |Sj11| = ord(p).

This is the more difficult case. Using Lemma 18 we can
prove that S, is a subset of a teaching set of c;1; with
respect to any of the classes {c¢;,...,cy} wherei < j + 1.

But in fact we would need Lemma 23 to tell us that S 1
is a subset of a subset teaching set of ¢;; with respect to C.

Assume that STD(cj+1,C) > ord(p). This implies that
Sj41 is a subset of some subset teaching set for ¢;; with-
out being contained in any other subset teaching set for any

p =



other concept. Then S;1 would itself be a subset teaching
set for ¢;11 in contradiction to its size being smaller than
STD(Cj+1, C)

To see why S;41 couldn’t be contained in any subset
teaching set for any ¢ # c;41, ¢ € C, note that ¢cj4o, ...,
cn are not consistent with S; 11 and the concepts c, ..., ¢;
by induction hypothesis have a too low subset teaching di-
mension in C'. ]

6 Conclusions and open problems

We have introduced a new model of teaching and learning,
based on what we call subset teaching sets. This model cap-
tures the idea of a teacher and a learner cooperating in order
to learn concepts in finite classes from small samples.

This model avoids coding tricks and provides a generally
applicable procedure for a uniform protocol of cooperative
learning. It achieves results that are, for a specific concept
class, such as the monomials, no less efficient than known
algorithms that are designed especially for that one concept
class (and perform inefficiently in terms of sample size on
others).

The resulting subset teaching dimension turns out to be
nonmonotonic—a fact that is illustrated and explained by the
nature of the underlying definition.

In order to compare this subset teaching dimension to
monotonic variants of teaching dimensions related to coop-
eration in learning, we introduced two equivalent notions of
“recursive teaching dimensions”, being monotonic by defi-
nition. They turn out to be very helpful in providing bounds
for previous notions (they are significantly better than the
original teaching dimension and variants thereof). However,
even though they behave so well, the nonmonotonic subset
teaching dimension in general seems to be better.

Examples have shown that even the recursive teaching
dimensions cannot always compete with the subset teaching
dimension, though our conjecture that the recursive teach-
ing dimension can never be lower than the subset teaching
dimension is still open.

We plan to close this gap in our proof, to find character-
izations for these teaching dimensions, and to provide evi-
dence to another conjecture, namely that, for reasonable def-
initions of the term “coding trick™, there is no teaching and
learning model that avoids coding tricks and is better than
the model based on the subset teaching dimension.
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Abstract

We study the properties of the agnostic learning
framework of Haussler [Hau92] and Kearns, Schapire
and Sellie [KSS94]. In particular, we address the
question: is there any situation in which member-
ship queries are useful in agnostic learning?

Our results show that the answer is negative for
distribution-independent agnostic learning and pos-
itive for agnostic learning with respect to a specific
marginal distribution. Namely, we give a simple
proof that any concept class learnable agnostically
by a distribution-independent algorithm with ac-
cess to membership queries is also learnable ag-
nostically without membership queries. This re-
solves an open problem posed by Kearns ef al.
[KSS94]. For agnostic learning with respect to
the uniform distribution over {0,1}" we show a
concept class that is learnable with membership
queries but computationally hard to learn from ran-
dom examples alone (assuming that one-way func-
tions exist).

1

The agnostic framework [Hau92, KSS94] is a natural gen-
eralization of Valiant’s PAC learning model [Val84]. In this
model no assumptions are made on the labels of the exam-
ples given to the learning algorithm, in other words, the learn-
ing algorithm has no prior beliefs about the target concept
(and hence the name of the model). The goal of the agnos-
tic learning algorithm for a concept class C is to produce a
hypothesis & whose error on the target concept is close to
the best possible by a concept from C. This model reflects
a common empirical approach to learning, where few or no
assumptions are made on the process that generates the ex-
amples and a limited space of candidate hypothesis functions
is searched in an attempt to find the best approximation to the
given data.

Designing algorithms that learn efficiently in this model
is notoriously hard and very few positive results are known

Introduction
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[KSS94, LBW95, GKS01, KKMS05, GKKO08, KMVO0S]. Fur-
thermore, strong computational hardness results are known
for agnostic learning of even the simplest classes of functions
such as parities, monomials and halfspaces [Has01, Fel06,
FGKPO06, GRO6] (albeit only for proper learning). Reduc-
tions from long-standing open problems for PAC learning to
agnostic learning of simple classes of functions provide an-
other indication of the hardness of agnostic learning [KSS94,
KKMSO05, FGKP06].

A membership oracle allows a learning algorithm to ob-
tain the value of the unknown target function f on any point
in the domain. It can be thought of as modeling the access
to an expert or ability to conduct experiments. Learning
with membership queries in both PAC and Angluin’s exact
models [Ang88] was studied in numerous works. For ex-
ample monotone DNF formulas, finite automata and deci-
sion trees are only known to be learnable with membership
queries [Val84, Ang88, Bsh95]. It is well-known and easy to
prove that the PAC model with membership queries is strictly
stronger than the PAC model without membership queries (if
one-way functions exist).

Membership queries are also used in several agnostic learn-
ing algorithms. The first one is the famous algorithm of Gol-
dreich and Levin introduced in a cryptographic context (even
before the definition of the agnostic learning model) [GL89].
Their algorithm learns parities agnostically with respect to
the uniform distribution using membership queries. Kushile-
vitz and Mansour used this algorithm to PAC learn decision
trees [KM93] and it has since found numerous other signif-
icant applications. More efficient versions of this algorithm
were also given by Levin [Lev93], Bshouty, Jackson and
Tamon [BJT99] and Feldman [Fel07]. Recently, Gopalan,
Kalai and Klivans gave an elegant algorithm that learns deci-
sion trees agnostically over the uniform distribution and uses
membership queries [GKKOS].

1.1 Our Contribution

In this work we study the power of membership queries in
the agnostic learning model. This question was posed by
Kearns et al. [KSS94] and, to the best of our knowledge,
has not been addressed prior to our work. In this work we
present two results on this question. In the first result we
prove that every concept class learnable agnostically with
membership queries is also learnable agnostically without
membership queries (see Theorem 6 for a formal statement).
This proves the conjecture of Kearns er al. [KSS94]. The



reduction we give modifies the distribution of examples and
therefore is only valid for distribution-independent learning,
that is, when a single learning algorithm is used for every dis-
tribution over the examples. The simple proof of this result
explains why the known distribution-independent agnostic
learning algorithm do not use membership queries [KSS94,
KKMSO05, KMVO08].

The proof of this result also shows equivalence of two
standard agnostic models: the one in which examples are
labeled by an unrestricted function and the one in which ex-
amples come from a joint distribution over the domain and
the labels.

Our second result is a proof that there exists a concept
class that is agnostically learnable with membership queries
over the uniform distribution on {0, 1}™ but hard to learn in
the same setting without membership queries. This result is
based on the most basic cryptographic assumption, namely
the existence of one-way functions. Note that an uncondi-
tional separation of these two models would imply NP # P.
Cryptographic assumptions are essential for numerous other
hardness results in learning theory (¢f: [KV94, Kha95]). Our
construction is based on the use of pseudorandom function
families, list-decodable codes and a variant of an idea from
the work of Elbaz, Lee, Servedio and Wan [ELSWO07]. Sec-
tions 4.1 and 4.2 describe the technique and its relation to
prior work in more detail.

This results is, perhaps, unsurprising since agnostic learn-
ing of parities with respect to the uniform distribution from
random examples only is commonly considered hard and is
known to be equivalent to decoding of random linear codes,
a long-standing open problem in coding theory. The best
known algorithm for this problem runs in time O(2"/1°8™)
[FGKPO6]. It is therefore natural to expect that membership
queries are provably helpful for uniform distribution agnos-
tic learning. The proof of this result however is substan-
tially less straightforward than one might expect (and than
the analogous separation for PAC learning). Here the main
obstacle is the same as in proving positive results for agnos-
tic learning: the requirements of the model impose severe
limits on concept classes for which the agnostic guarantees
can be provably satisfied.

1.2 Organization

Following the preliminaries, our first result is described in
Section 3. The second result appears in Section 4.

2 Preliminaries

Let X denote the domain or the input space of a learning
problem. The domain of the problems that we study is {0, 1}"
or the n-dimensional Boolean hypercube. A concept over X
isa {—1, 1} function over the domain and a concept class C
is a set of concepts over X. The unknown function f € C
that a learning algorithm is trying to learn is referred to as
the target concept.

A parity function is a function equal to the XOR of some
subset of variables. For a Boolean vector a € {0,1}" we
define the parity function x,(x) as xq(xz) = (-1)** =
(—1)®isnai®i  We denote the concept class of parity func-
tions {xq | @ € {0,1}"} by PAR. A k-junta is a function
that depends only on k variables.

’

148

A representation class is a concept class defined by pro-
viding a specific way to represent each function in the con-
cept class. All of the above concept classes are in fact rep-
resentation classes. For a representation class F we say that
an algorithm outputs f € F if the algorithm outputs f in the
representation associated with F.

2.1 PAC Learning Model

The learning models discussed in this work are based on
Valiant’s well-known PAC model [Val84]. In this model, for
a concept f and distribution D over X, an example oracle
EX(D, f) is the oracle that, upon request, returns an exam-
ple (x, f(z)) where x is chosen randomly with respect to D.
For € > 0 we say that function g e-approximates a function f
with respect to distribution D if Prp[f(z) = g(x)] > 1 —e.
In the PAC learning model the learner is given access to
EX(D, f) where f is assumed to belong to a fixed concept
class C.

Definition 1 For a concept class C, we say that an algorithm
Alg PAC learns C, if for every e > 0, 6 > 0, f € C, and
distribution D over X, Alg, given access to EX(D, f), out-
puts, with probability at least 1 — §, a hypothesis h that e-
approximates f.

The learning algorithm is efficient if its running time and the
time to compute h are polynomial in 1/¢,1/§ and the size
o of the learning problem. Here by the size we refer to the
maximum description length of an element in X (e.g. n when
X = {0,1}™) plus a bound on the length of the description
of a concept in C in the representation associated with C.

An algorithm is said to weakly learn C if it produces a
hypothesis A that ( L )-approximates f for some poly-

1 _ 1
2
nomial p.

p(o)

2.2 Agnostic Learning Model

The agnostic learning model was introduced by Haussler
[Hau92] and Kearns et al. [KSS94] in order to model sit-
uations in which the assumption that examples are labeled
by some f € C does not hold. In its least restricted ver-
sion the examples are generated from some unknown distri-
bution A over X x {—1,1}. The goal of an agnostic learn-
ing algorithm for a concept class C is to produce a hypoth-
esis whose error on examples generated from A is close to
the best possible by a concept from C. Class C is referred
to as the touchstone class in this setting. More generally,
the model allows specification of the assumptions made by a
learning algorithm by describing a set A of distributions over
X x {—1, 1} that restricts the distributions over X x {—1,1}
seen by a learning algorithm. Such A is referred to as the as-
sumption class. Any distribution A over X x {—1,1} can
be described uniquely by its marginal distribution D over
X and the expectation of b given z. That is, we refer to a
distribution A over X x {—1,1} by a pair (D4, ¢4) where
Da(z) = Prpy~alz = 2] and

¢a(z) = Egpyalb] z = 2]

Formally, for a Boolean function h and a distribution
A= (D,¢)over X x {—1,1}, we define

A(A; h) = iy @) # 8] = Epllg(z) — h(z)|/2] .

)



Similarly, for a concept class C, define

A(A,€) = inf {A(4, )}

Kearns et al. define agnostic learning as follows [KSS94].

Definition 2 An algorithm Alg agnostically learns a con-
cept class C by a representation class H assuming A if for
everye > 0,0 > 0, A € A, Alg given access to examples
drawn randomly from A, outputs, with probability at least
1—46, a hypothesis h € H such that A(A,h) < A(A,C) +e.

The learning algorithm is efficient if it runs in time poly-
nomial 1/€,1og (1/6) and o (the size of the learning prob-
lem). If H = C then, by analogy with the PAC model, the
learning is referred to as proper. We drop the reference to H
to indicate that C is learnable for some H.

A number of versions of the agnostic model are com-
monly considered (and often referred to as the agnostic learn-
ing model). In fully agnostic learning A is the set of all
distributions over X x {—1,1}. Another version assumes
that examples are labeled by an unrestricted function. That
is, the set A contains distribution A = (D, f) for every
Boolean function f and distribution D. Note that access to
random examples from A = (D, f) is equivalent to access
to EX(D, f). Following Kearns et al. , we refer to this ver-
sion as agnostic PAC learning [KSS94] (they also require
that H = C but this constraint is unrelated and is now gener-
ally referred to as properness). Theorem 6 implies that these
versions are essentially equivalent. In distribution-specific
versions of this model for every (D,$) € A, D equals to
some fixed distribution known in advance.

We also note that the agnostic PAC learning model can
also be thought of as a model of adversarial classification
noise. By definition, a Boolean function g differs from some
function f € C on A(g, C) fraction of the domain. Therefore
g can be thought of as f corrupted by noise of rate Ap (f, C).
Unlike in the random classification noise model the points
on which a concept can be corrupted are unrestricted and
therefore we refer to it as adversarial noise.

Uniform Convergence

A natural approach to agnostic learning is to first draw a sam-
ple of fixed size and then choose a hypothesis that best fits
the observed labels. The conditions in which this approach
is successful were studied in works of Dudley [Dud78], Pol-
lard [Pol84], Haussler [Hau92], Vapnik [Vap98] and others.
They give a number of conditions on the hypothesis class H
that guarantee uniform convergence of empirical error to the
true error. That is, existence of a function m4 (¢, 0) such that
for every distribution A over examples, every b € H, € > 0,
d > 0, the empirical error of h on sample of my (€, ) ex-
amples randomly chosen from A is, with probability at least
1 — 6, within € of A(A, h). We denote the empirical error of
h on sample S by A(S, h). In the Boolean case, the follow-
ing result of Vapnik and Chervonenkis will be sufficient for
our purposes [VC71].

Theorem 3 Let H be a concept class over X of VC dimen-
sion d. Then for every distribution A over X x {—1,1},
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every h € H, ¢ > 0, § > 0, and sample S of size m
O(d/€% -log (1/6)) randomly drawn with respect to A,

Pr[|A(A,h) — A(S,h)| > €] <.

In fact a simple uniform convergence result based on the car-
dinality of the function class follows easily from Chernoff
bounds (cf. [Hau92]). That is Theorem 3 holds for m
O(log |H|/e?-log (1/4)). This result would also be sufficient
for our purposes but might give somewhat weaker bounds.

2.3

A membership oracle for a function f is the oracle that,
given any point z € {0, 1}", returns the value f(z) [Val84].
We denote it by MEM( f). We refer to agnostic PAC learn-
ing with access to MEM( f) where f is the unknown func-
tion that labels the examples as agnostic PAC+MQ learning.
Similarly, one can extend the definition of a membership or-
acle to fully agnostic learning. For a distribution A over
X x {-=1,1}, let MEM(A) be the oracle that, upon query
z,returns b € {—1,1} with probability Pr4[(x,b) | x = z].
We say that MEM(A) is persistent if given the same query
the oracle responds with the same label.

Membership Queries

2.4 Fourier Transform

Our separation result uses Fourier-analytic techniques intro-

duced to learning theory by Linial, Mansour and Nisan [LMN93].

It is used primarily in the context of learning with respect to
the uniform distribution and therefore in the discussion be-
low all probabilities and expectations are taken with respect
to the uniform distribution U unless specifically stated oth-
erwise.

Define an inner product of two real-valued functions over
{0,1}" tobe (f,g9) = E.[f(x)g(x)]. The technique is based
on the fact that the set of all parity functions { x4 (%) }ac 0,1}~
forms an orthonormal basis of the linear space of real-valued
functions over {0,1}™ with the above inner product. This
fact implies that any real-valued function f over {0, 1}" can
be uniquely represented as a linear combination of parities,

thatis f(z) = 3> ci013n f(a)xa(z). The coefficient f(a)

is called Fourier coefficient of f on a and equals E[f(z)x.(2)];

a is called the index of f(a). We say that a Fourier coefficient
f(a) is 0-heavy if |f(a)| > 0. Let Lo(f) = E.[(f(z))?]"/2.
Parseval’s identity states that

(Lo(f))? = Bu[(f(2))°] = D fP(a) -

Let A = (U, ¢) be a distribution over {0,1}" x {-1,1}
with uniform marginal distribution over {0, 1}". Fourier co-

efficient ¢(a) can be easily related to the error of x, () on
A. That is,

Prafb # xa(2)] = (1 - ¢(a))/2. ()
Therefore, agnostic learning of parities amounts to finding
the largest (within €) Fourier coefficient of ¢(x). The first
algorithm for this task was given by Goldreich and Levin
[GL89]. Given access to membership oracle, for every € > 0
their algorithm can efficiently find all e-heavy Fourier coef-
ficients.



Theorem 4 ([GL89]) There exists an algorithm GL that for
every distribution A = (U, ¢) and every €,0 > 0, given ac-
cess to MEM(A), GL(¢, 0) returns, with probability at least
1 — 0, a set of indices T C {0, 1}" that contains all a such
that |§(a)| > € and for all a € T, |$(a)| > €/2. Further-

more, the algorithm runs in time polynomial in n,1/e and
log (1/46).

Note that by Parseval’s identity, the condition |¢(a)| > €/2
implies that there are at most 4 /¢ elements in 7.

2.5 Pseudo-random Function Families

A key part of our construction in Section 4 will be based
on the use of pseudorandom functions families defined by
Goldreich, Goldwasser and Micali [GGMS86].

Definition 5 A function family F = {F}32, where F,, =
{m.}.e¢0,1}» is a pseudorandom function family if

e Foreverynand z € {0,1}™, 7, is an efficiently evalu-
atable Boolean function on {0, 1}™.

e Any adversary M whose resources are bounded by a
polynomial in n can distinguish between a function 7,
(wWhere z € {0,1}" is chosen randomly and kept secret)
and a totally random function from {0,1}™ to {—1,1}
only with negligible probability. That is, for every prob-
abilistic polynomial time M with an oracle access to a
Sfunction from {0,1}™ to {—1, 1} and a negligible func-
tion v(n),

[Pe[M™=(17) = 1] = Pr(M(1") = 1]| < v(k),
where T, is a function randomly and uniformly cho-
sen from F,, and p is a randomly chosen function from
{0,1}"™ to {—1,1}. The probability is taken over the
random choice of 7, or p and the coin flips of M.

Hastad et al. give a construction of pseudorandom func-
tion families based on the existence of one-way functions
[HILL99].

3 Distribution-Independent Agnostic
Learning

In this section we show that in distribution-independent ag-
nostic learning membership queries do not help. In addi-
tion, we prove that fully agnostic learning is equivalent to
agnostic PAC learning. Our proof is based on two simple
observations about agnostic learning via empirical error min-
imization. Values of the unknown function on points outside
of the sample can be set to any value without changing the
best fit by a function from the touchstone class. Therefore
membership queries do not make empirical error minimiza-
tion easier. In addition, points with contradicting labels do
not influence the complexity of empirical error minimization
since any function has the same error on pairs of contradict-
ing labels. We will now provide the formal statement of this
result.

Theorem 6 Let Alg be an algorithm that agnostically PAC+MQ

learns a concept class C by a representation class H in time
T(o,€,8) and outputs a hypothesis from a class H of VC di-
mension d(o,€). Then C is (fully) agnostically learnable by
H in time T(0,€/2,5/2) + O(d(o,€/2) - e ?log (1/6)).

Proof: Let A = (D, ¢) be a distribution over X x {—1,1}.
Our reduction works as follows. Start by drawing m exam-
ples from A for m to be defined later. Denote this sample by
S. Let S’ be S with all contradicting pairs of examples re-
moved, that is for each example (x, 1) we remove it together
with one example (x, —1). Every function has the same er-
ror rate of 1/2 with examples in S\ S’. Therefore for every
function A,

/ ! !
A1y _AE IS +15\ 8172
S|
1 Q!
_as, i m =15 )
m 2m
and hence
S om =15
A — A(S' |7 =i
(5,¢) = A(s',0) 0 4 )

Let f(x) denote the function equal to b if (z,b) € S’
and equal to 1 otherwise. Let Dgs denote the uniform dis-
tribution over S’. Given the sample S’ we can easily simu-
late the example oracle EX(Dg/, f) and MEM( f). We run
Alg(e/2,6/2) with theses oracles and denote its output by h.
Note, that this simulates 4 in the agnostic PAC+MQ setting
over distribution (Dg, f).

By the definition of Dg, for any Boolean function g(x),

Prp, [f(z) # g(2)] :ﬁ {z e8| f(z) # g()}|

=A(S, 9).
That is, the error of any function g on Dg: is exactly the
empirical error of g on sample S’. Thus A((Dg:, f),h) =
A(S',h) and A((Dg/, f),C) = A(S’,C). By the correct-
ness of Alg, with probability at least 1 — 6/2, A(S’,h) <
A(S’,C) + ¢/2. By equations (2) and (3) we thus obtain
that

Coanrar IS m =Y

A(S,h) = A(S JL)—m +

S om—|Y e 9|

< / E |7 — 1 = —_ 1
_(A(S,C)+2)m + o A(S,C)+2 -

Therefore A(S, h) < A(S,C) + €/2. We can apply the VC
dimension-based uniform convergence results for H [VC71]
(Theorem 3) to conclude that for

m(e/4,6/4) = O (d@% ¢/2)log <1/6>> |

2
with probability at least 1—6/2, A(A, h) < A(S,h)+§ and
A(S,C)+ ¢ < A(A,C) (we can always assume that C C H.
Finally, we obtain that with probability at least 1 — 9,

3e
4
It easy to verify that the running time and hypothesis space
of this algorithm are as claimed. |

A(A,h) < A(S,h) + i <A(S,C)+ 25 < A(AC) + .

Note that if Alg is efficient then d(o, €/2) is polynomial
in o and 1/€ and, in particular, the obtained algorithm is ef-
ficient. In addition, in place of VC-dim one can the uniform
convergence result based on the cardinality of the hypothesis
space. The description length of a hypothesis output by Alg
is polynomial in o and 1/¢ and hence in this case a polyno-
mial number of samples will be required to simulate Alg.



Remark 7 We note that while this proof is given for the

strongest version of agnostic learning in which the error of
an agnostic algorithm is bounded by A(A,C) + ¢, it can be

easily extended to weaker forms of agnostic learning, such as

algorithms that only guarantee error bounded by a- A(A, C)+
B+€forsome o > 1 and 3 > 0. This is true since the reduc-

tion adds at most €/2 to the error of the original algorithm

(and the additional time required is polynomial in 1/e).

4 Learning with Respect to the Uniform
Distribution

In this section we show that when learning with respect to
the uniform distribution over {0, 1}", membership queries
are helpful. Specifically, we show that if one-way functions
exist, then there exists a concept class C that is not agnosti-
cally PAC learnable (even weakly) with respect to the uni-
form distribution but is agnostically learnable over the uni-
form distribution given membership queries. Our agnostic
learning algorithm is successful only when € > 1/p(n) for
a polynomial p fixed in advance (the definition of C depends
on p). While this is slightly weaker than required by the
definition of the model it still exhibits the gap between ag-
nostic learning with and without membership queries. We
remark that a number of known PAC and agnostic learning
algorithms are efficient only for restricted values of € (cf.
[KKMSO05, 0OS06, GKKOS]).

4.1 Background

We first show why some of the known separation results will
not work in the agnostic setting. It is well-known that the
PAC model with membership queries is strictly stronger than
the PAC model without membership queries (under the same
cryptographic assumption). The separation result is obtained
by using a concept class C that is not PAC learnable and
augmenting each concept f € C with the encoding of f in
a fixed part of the domain. This encoding is readable us-
ing membership queries and therefore an MQ algorithm can
“learn” the augmented C by querying the points that contain
the encoding. On the other hand, with overwhelming proba-
bility this encoding will not be observed in random examples
and therefore does not help learning from random examples.
This simple approach would fail in the agnostic setting. The
unknown function might be random on the part of the do-
main that contains the encoding and equal to a concept from
C elsewhere. The agreement of the unknown function with
a concept from C is almost 1 but membership queries on the
points of encoding will not yield any useful information.

A similar problem arises with encoding schemes used in
the separation results of Elbaz et al. [ELSWO07] and Feldman,
Shah and Wadhwa [FSWO07]. There too the secret encoding
can be rendered unusable by a function that agrees with a
concept in C on a significant fraction of the domain.

4.2 Outline

We start by presenting some of the intuition behind our con-
struction. As in most other separation results our goal is to
create a concept class that is not learnable from uniform ex-
amples but includes an encoding of the unknown function
that is readable using membership queries. We first note that
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in order for this approach to work in the agnostic setting the
secret encoding has to be “spread” over at least 1 —2¢ fraction
of {0, 1}™. To see this let f be a concept and let S C {0,1}"
be the subset of the domain where the encoding of f is con-
tained. Assume, for simplicity, that without the encoding the
learning algorithm cannot predict f on .S = {0,1}™\ S with
any significant advantage over random guessing. Let f’ be a
function equal to f on S and truly random on S. Then

5]

Pr(f = f1=(ISI+151/2)/2" =1/2+ 5555 -

On the other hand, f’ does not contain any information about
the encoding of f and therefore, by our assumption, no ef-
ficient algorithm can produce a hypothesis with advantage
significantly higher than 1/2 on both S and S. This means
that the error of any efficient algorithm will be higher by at
least |S]/2"*! than the best possible. To ensure that this
difference is at most €, we need |.S| > (1 — 2¢)2™.

Another requirement that the construction has to satisfy
is that the encoding of the secret has to be resilient to almost
any amount of noise. In particular, since the encoding is a
part of the function, we also need to be able to reconstruct
an encoding that is close to the best possible. An encod-
ing with this property is in essence a list-decodable binary
code. In order to achieve the strongest separation result we
will use the code of Guruswami and Sudan that is the con-
catenation of Reed-Solomon code with the binary Hadamard
code [GS00]. However, to simplify the presentation, we will
use the more familiar binary Hadamard code in our construc-
tion. In Section 4.6 we provide the details on the use of the
Guruswami-Sudan code in place of the Hadamard code.

The Hadamard code is equivalent to encoding a vector
a € {0,1}" as the values of the parity function x, on all
points in {0, 1}™. That is, n bit vector a is encoded into 2"
bits given by x, () forevery x € {0, 1}™. This might appear
quite inefficient since a learning algorithm will not be able
to read all the bits of the encoding. However the Goldreich-
Levin algorithm provides an efficient way to recover the in-
dices of all the parities that agree with a given function with
probability significantly higher than 1/2 [GL89]. Therefore
the Hadamard code can be decoded by reading the code in
only a polynomial number of (randomly-chosen) locations.

The next problem that arises is that the encoding should
not be readable from random examples. As we have ob-
served earlier, we cannot simply “hide” it on a negligible
fraction of the domain. Specifically, we need to make sure
that our Hadamard encoding is not recoverable from ran-
dom examples. While it is not known how to learn parities
with noise from random examples alone and this problem
is conjectured to be very hard, for all we know, it is possi-
ble that one-way functions exist whereas learning of parities
with noise is tractable. It is known however that if learn-
ing of parities with noise is hard then one-way functions
exist [BFKL93]. Our solution to this problem is to use a
pseudo-random function to make values on random exam-
ples indistinguishable from random coin flips. Specifically,
let a € {0,1}™ be the vector we want to encode and let
b:{0,1}" — {—1,1} be a pseudo-random function. We
define a function g : {0,1}" x {0,1}" — {—1,1} as

9(2,2) = b(2) ® Xa(@) -



(¢ is simply the product in {—1, 1}). The label of a random
example (z,x) € {0,1}?" is a XOR of a pseudorandom bit
with an independent bit and therefore is pseudorandom. Val-
ues of a pseudorandom function b on any polynomial set of
distinct points are pseudorandom and therefore random ex-
amples will have pseudorandom labels as long as their z parts
are distinct. In a sample of polynomial in n size of random
and uniform points from {0, 1}?" this happens with over-
whelming probability and therefore g(z, ) is not learnable
from random examples. On the other hand, for a fixed z,
b(z) ® xq(x) gives a Hadamard encoding of a or its nega-
tion. Hence it is possible to find a using membership queries
with the same prefix. A construction based on a similar idea
was used by Elbaz et al. in their separation result [ELSWO07].

Finally, the problem with the construction we have so
far is that while a membership query learning algorithm can
find the secret, it cannot predict the encoding of the secret
g(z, x) without knowing b(z). This means that we also need
to provide a description of b(z) to the learning algorithm. It
is tempting to use the Hadamard code to encode the descrip-
tion of b(z) together with a. However, a bit of the encoding
of b is no longer independent of b(z), and therefore the pre-
vious argument does not hold. We refer to the vector that de-
scribes b(z) by d(b). We are unaware of any constructions of
pseudorandom functions that would remain pseudorandom
when the value of the function is “mixed” with the descrip-
tion of the function. An identical problem also arises in the
construction of Elbaz et al. [ELSWO07]. They used another
pseudorandom function b; to encode d(b), then used another
pseudorandom function by to encode d(b;) and so on. The
fraction of the domain used up for the encoding of d(b;) is
becoming progressively smaller as ¢ grows. In their construc-
tion a PAC learning algorithm can recover as many of the
encodings as is required to reach accuracy e. This method
would not be effective in our case. First, in the agnostic set-
ting all the encodings but the one using the largest fraction of
the domain can be corrupted. This makes the largest encod-
ing unrecoverable and implies that the best € achievable is at
most half of the fraction of the domain used by the largest
encoding. In addition, in the agnostic setting the encoding of
d(b;) for every odd ¢ can be completely corrupted making all
the other encodings unrecoverable. To solve this problem in
our construction we use a pseudorandom function b; to en-
code d(b;) for all j < i. We also use encodings of the same
size. In this construction at most one of the encodings that
are not completely corrupted cannot be recovered. It is the
encoding with b;(z) such that the encodings with b;(z) are
completely corrupted for all j > 4 (since those are the ones
that contain the encoding of d(b;)). Therefore by making the
number of encodings larger than 1 /¢, we can make sure that
there exists an efficient algorithm that finds a hypothesis with
the error within € of the optimum.

4.3 The Construction

We will now describe the construction formally and give a
brief proof of its correctness. Let p = p(n) be a polynomial,
let £ = logp(n) (we assume for simplicity that p(n) is a
power of 2) and let m = £ + n - p. We refer to an element of
{0,1}™ by triple (k, z, Z) where k € [p], z € {0,1}", and

La?, o aP~h) e {0,1)mx b,

T=(z,2°,.
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Here k indexes the encodings, z is the input to the k-th pseu-
dorandom function and Z is the input to a parity function on
n(p — 1) variables that encodes the secret keys for all pseu-
dorandom functions used for encodings 1 through k£ — 1. For-
mally, let

d=(d*,d? ... """

be a vector in {0, 1}"*®~1) (where each d* € {0,1}") and
for k € [p] let

d(k) = (d*,d?,...,d"710",...,0").

Let F = {my}ye{0,1}- be a pseudorandom function family
(Definition 5). We define gz : {0,1}™ — {—1,1} as fol-
lows:

gJ(k’Zvj) = de(z) EBXJ(I@)(E) 4
Denote

cn ={galde {010}

4.4 Hardness of Learning C? From Random Examples

We start by showing that C? is not agnostically learnable
from random and uniform examples only. In fact, we will
show that it is not even weakly PAC learnable. Our proof
is analogous to the proof by Elbaz et al. who show that the
same holds for the concept class they define [ELSWO07].

Theorem 8 There exists no efficient algorithm that weakly
PAC learns CE with respect to the uniform distribution over

{0,1}™.

Proof: In order to prove the claim we show that a weak PAC
learning algorithm for C? can be used to distinguish a pseu-
dorandom function family from a truly random function. A
weak learning algorithm for C? implies that every function
in C? can be distinguished from a truly random function
on {0,1}™. If, on the other hand, in the computation of
93(k, z,T) we used a truly random function in place of each
mqr (2) then the resulting labels would be truly random and,
in particular, unpredictable.

Formally, let A1g be a weak learning algorithm for C?
that, with probability at least 1/2, produces a hypothesis with
error of at most 1/2 — 1/¢(m) and runs in time polynomial
in t(m) for some polynomials ¢ and ¢. Our concept class C?
uses numerous pseudorandom functions from F}, and there-
fore we use a so-called “hybrid” argument to show that one
can replace a single 74 (2z) with a truly random function to
cause Alg to fail.

For 0 < i < p, let O(¢) denote an oracle randomly
chosen according to the following procedure. First choose
randomly and uniformly 741,742, ..., mg: € F,, and then
choose randomly and uniformly p;41, pit2, - - ., px from the
set of all Boolean functions over {0, 1}"™. Upon request such
an oracle returns an example ((k, z, Z), b) where (k, z, Z) is
chosen randomly and uniformly from {0, 1}™ and

b— mar(2) © Xy (T) k<
pr(2) k>i

We note that in order to simulate such an oracle it is not
needed to explicitly choose p;41, pit+2,- - ., px. Instead their
values can be generated upon request by flipping a fair coin.



This means that for every 7, O(7) can be chosen and then sim-
ulated in time polynomial in m and the number of examples
requested. We denote by J; the probability of the follow-
ing event: Alg with oracle O(%) outputs a hypothesis that
has error of at most 1/2 — 2/(3g(m)) relative to O(i). We
refer to this condition as success. The error is obtained by
estimating it on new random examples from O(¢) to within
1/(3g(m)) and with probability at least 7/8. The probability
is taken over the random choice and simulation of O(4) and
the coin flips of Alg. The bounds on the running time of Alg
and Chernoff bounds imply that this test can be performed in
time polynomial in m.

Claim 9 6, — & > 1/4.

Proof: To see this we first observe that Q(0) is a truly ran-
dom oracle and therefore the error of the hypothesis pro-
duced by Alg is at least 1/2 — v(m) for some negligible
v. This means that the error estimate can be lower than
1/2 — 2/(3¢q(m)) only if the estimation fails. By the defini-
tion of our error estimation procedure this implies that §p <
1/8. On the other hand, O(p) is equivalent to EX(U, g4) for
a randomly chosen d. This implies that with probability at
least 1/2, Alg outputs a hypothesis with error of at most
1/2 — 1/q(m). With probability at least 7/8 the estimate of
the error is correct and therefore 6, > 3/8. H(ClL9)

We now describe our distinguisher M. Let 7(x) denote
the function given to M as an oracle. Our distinguisher
chooses a random 7 € p and a random oracle O(¢) as de-
scribed above but using the oracle 7 in place of 7. That is
it generates examples ((k, z, ), b) where (k, z, ) is chosen
randomly and uniformly from {0, 1} and

T gk (Z) &) Xd(k) ("f) k<1

Pr(2) k>
Denote this oracle by O™ (7). The distinguisher simulates
Alg with examples from O7 (%) and outputs 1 whenever the
test of the output of Alg is successful.

We first observe that if 7 is chosen randomly from F),
then choosing and simulating a random Q7 (%) is equivalent
to choosing and simulating a random O(i). Therefore M
will output 1 with probability

1
—— > b
=
On the other hand, if 7 is a truly random function then O™ (%)
is equivalent to Q(7 — 1) and hence the simulator will output

1 with probability
1
— 0i—1-
p(n) 2.8

i€[p]
Therefore, by Claim 9 this implies that M distinguishes F},
from a truly random function with probability at least

s | b | 2 o0 ) > 1),
i€[p]

The efficiency of M follows readily from the efficiency of

the test we demonstrated above and gives us the contradic-

tion to the properties of F. B(Th.8)

4.5 Agnostic Learning of C2 with Membership Queries

We now describe a (fully) agnostic learning algorithm for
CP that uses membership queries and is successful for any

€= 1/p(n).

Theorem 10 There exists a randomized algorithm AgnLearn
that for every distribution A = (U, ¢) over {0,1}™ and ev-
erye > 1/p(n),d > 0, given access to MEM(A), with prob-
ability at least 1—34, finds h such that A(A, h) < A(A,CP)+

€. The probability is taken over the coin flips of MEM(A)
and AgnLearn. AgnLearn runs in time polynomial in m
and log (1/9).

Proof: Let g; for e = (e',e?,...,eP™ 1) € {0,1}(P~xn
be the function for which A(A4, gz) = A(A,CE). The goal
of our algorithm is to find the largest j such that on random
examples from the j-th encoding A agrees with the encoding
of e(j) = (el,e?,...,e71,0m,...,0") with probability at
least 1/2+¢/4. Such ] can be used to find €(7) and therefore
allows us to reconstruct gz on all points (k, z, %) for k < j.
For points with £ > j our hypothesis is either constant 1
or constant -1, whichever has the higher agreement with A.
This guarantees that the error on this part is at most 1/2. By
the definition of j, gz has error of at least

1/2—¢/4—-1/(2p) > 1/2—¢

on this part of the domain and therefore the hypothesis has
error close to that of gs.

We now describe AgnLearn formally. For every ¢ €
[p], AgnLearn chooses y € {0,1}" randomly and uni-
formly. Then AgnLearn runs Goldreich-Levin algorithm
over {0, 1}(P=1)>" using MEM(4, ,,). When queried on a
point 7 € {0,1}P~1)xn MEM(4;,, ) returns the value of
MEM(A) on query (i, y, Z). That is MEM(A y) is a restric-
tion of A to points in {0, 1} with prefix %, y. Let T denote
the set of indices of heavy Fourier coefﬁcients returned by
GL(e/4,1/2). For each vector d € T and b € {—1,1}, let
hg ; » be defined as

_ Tk (2) © Xq) () k<1
hJu,(ka):{ bdk() Xa(k) (T) b

(Here g« is an element of the pseudorandom function fam-
ily F used in the construction.) Next AgnLearn approx-
imates A(A, hg, ;) to within accuracy ¢/8 with confidence
1 — ¢/t using random samples from A (for ¢ to be defined
later). We denote the estimate obtained by A 7 dip- AgnLearn
repeats this 7 times (generating new y each time) and returns
hg ; , for which Ad ;b 18 the smallest. For ¢ = 1 and any d,
hd 15 =0 Therefore for i = 1 instead of the above proce-
dure AgnLearn tests two constant hypotheses i1 = 1 and
h_1 =—1.

Claim 11 Fort = O(p-log (1/68)/€3) andr = O(log (1/8)/e),
with probability at least 1 — 0, AgnLearn returns h such
that A(A,h) < A(A,CE) + ¢

Proof: We show that among the hypotheses considered by
AgnLearn there will be a hypothesis A’ such that A(A, h') <
A(A, gs) + 3e/4 (with sufficiently high probability). The es-
timates of the error of each hypothesis are within ¢/8 of the



true error and therefore the hypothesis i with the smallest
estimated error will satisfy

A(Ah) <A(A ) +e/4 < A(A,ge) +€.
For i € [p], denote

A; = Pr((k7z7j)7b)NA[b 7A gg(k’, Z,f) ‘ k= ’L] .
By the definition,

1
i€(p]

Let j be the largest ¢ such that A;; < 1/2 — ¢/4 and for
all ¢/ > 4, Ay > 1/2 — /4. If such j does not exist then
A(A, gs) > 1/2 —¢/4. Either hy or h_; has error of at most
1/2 on A and therefore for ¢ = 1 AgnLearn will find a
hypothesis 4’ such that A(A4, h') < A(A, gz) + 3¢/4.

We can now assume that j as above exists. Denote

Aiy =Pri .z 0)~alb # ge(k,2,7) | k=i, z=1y].
By the definition,
Eye{071}nAi7y - Ai.

This implies that for a randomly and uniformly chosen y,
with probability at least €/4, A; , < 1/2 — ¢/8. This is true
since otherwise

e 1 € 1 €
AR
contradicting the choice of j. We now note that by the defi-
nition of A

Aj>(1

1,y
Ai’y = Pr(:ﬁ,b)NAi,,y [b 7& gé(i7 Y, j)}

The function ge (7, y, T) equals 745 (y) @ X&) (7), and there-
fore if A; , < 1/2 — €/8 then by equation (1),

el = e/4.
This implies that GL(e/4, 1/2) with MEM(4, ,) will return
€(j) (possibly, among other vectors). Let
bj = Sign(E((k7z7f)7b)NA[b | k> ]])

be the constant with the lowest error on examples from A
for which k& > j. Clearly, this error is at most 1/2. The
hypothesis he(j) j.», €quals gz on points for which & < j and
equals b; on the rest of the points. Therefore

1 p—j+1
A(Avhé(j),j,bj) < Z; ZAi + Y

1<J

On the other hand, by the properties of j, for all i > j, A; >
1/2 — €/4 and thus

A(Aagé) :% Z A

i€[p]
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By combining these equations we obtain that

1 € _ 3e
< — 4+ <
=92 4~ 14

All that is left to show now are the choices of r and ¢ for
which the desired h will be found with probability at least
1 — 4. As we have observed, for a randomly and uniformly
chosen y, with probability at least e/4, A; , < 1/2—¢/8 and
in this case GL(e/4,1/2) will find &(j) with probability at
least 1/2. By repeating this procedure O(log (1/6)/¢) times
we can ensure that &(j) is found with probability at least
1 — /2. By Parseval’s identity there are O(1/€?) elements
in each set of vectors returned by GL. Hence the number of
error estimations performed by AgnLearn is O(p - r/€?).
This means that for t = O(p - log (1/8)/€?) all estimations
will be within /8 with probability 1 — §/2. H(CL11)

A(A7 hé(j)vj7bj) - A(A’ gé)

Given Claim 11, we only need to check that the running
time of AgnLearn is polynomial in m and log (1/9). This
follows easily from the polynomial bound on the running
time of GL and computation of each m € Fj,, and polyno-
mial number of samples required to estimate the errors of
the candidate hypotheses. B(Th.10)

4.6 Boundson ¢

Theorem 10 shows that C? is defined over {0, 1} for m =
n - p(n) + log p(n) and is learnable agnostically for any € >
1/p(n). This means that this construction cannot achieve
dependence on € beyond 1/m. To improve this dependence
we can use a more efficient encoding scheme in place of
Hadamard code. Let C : {0,1}* — {0,1}" be a binary
code of message length k and block length v. The following
properties of the code are required by our construction:

e Efficient encoding algorithm. For any z € {0, 1}* and
j < v, C(z); (the j*" bit of C(z)) is computable in
time polynomial in k and log v.

o Efficient local list decoding from (1/2 — «)v errors in
time polynomial in & and 1/~ for any v > €/8. That is,
an algorithm that given oracle access to the bits of string
y € {0, 1} produces the list of all messages z such that
Prjc,1[C(2); # y;] < 1/2—~ (in time polynomial in
kand 1/7).

Guruswami and Sudan gave a list decoding algorithm for
Reed-Solomon code concatenated with Hadamard code that
has the desired properties for v = O(k?/e*) [GSO0] (see
also [Tre05, Lecture 14] for a simplified presentation). Note
that this is exponentially more efficient than Hadamard code
for which v = 2*_ In fact for this code we can afford to read
the whole codeword in polynomial time. This means that we
can assume that the output of the list-decoding algorithm is
exact (and not approximate as in the case of list decoding
using Goldreich-Levin algorithm).

In our construction k n(p(n) — 1). To apply the
above code we index a position in the code using logv =
O(log(n/¢) bits. Further we can use pseudorandom func-
tions over {0,1}"/2 instead of {0,1}" in the definition of
CP. We would then obtain that the dimension of C is m =
n/2 + logv + logp(n) < n for any polynomial p(n) and



€ > 1/p(n). This implies that our learning algorithm is suc-
cessful for every € > 1/p(n) > 1/p(m). It is easy to verify
that Theorems 8 and 10 still hold for this variant of the con-
struction.

5 Discussion

Our results clarify the role of membership queries in agnostic
learning. They imply that in order to extract any meaning-
ful information from membership queries the learner needs
to have significant prior knowledge about the distribution of
examples. Specifically, either the set of possible classifica-
tion functions has to be restricted (as in the PAC model) or
the set of possible marginal distributions (as in distribution-
specific agnostic learning).

A interesting result in this direction would be a demon-
stration that membership queries are useful for distribution-
specific agnostic learning of a natural concept class such as
halfspaces.
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Abstract

A kernel over the Boolean domain is said
to be reflection-invariant, if its value does
not change when we flip the same bit in
both arguments. (Many popular kernels
have this property.) We study the geo-
metric margins that can be achieved when
we represent a specific Boolean function f
by a classifier that employs a reflection-
invariant kernel. It turns out || f]|e is an
upper bound on the average margin. Fur-
thermore, ||f]|=! is a lower bound on the
smallest dimension of a feature space as-
sociated with a reflection-invariant kernel
that allows for a correct representation of
f. This is, to the best of our knowledge,
the first paper that exhibits margin and
dimension bounds for specific functions (as
opposed to function families). Several gen-
eralizations are considered as well. The
main mathematical results are presented
in a setting with arbitrary finite domains
and a quite general notion of invariance.

1 Introduction

There has been much interest in margin and di-
mension bounds during the last decade. The sim-
plest way to cast (most of) the existing results in
this direction is offered by the notion of margin
and dimension complexity associated with a given
sign matrix A € {—1,1}"*". A linear arrange-
ment, given by unit vectors ui, ..., Um;v1,...,Un
(taken from an inner product space), is said to rep-
resent A if, for alli = 1,...,mand j = 1,...,n,
A; ; = sign((u;,v;)). The dimension complexity of

*This work was supported in part by the IST Pro-
gramme of the European Community, under the PAS-
CAL Network of Excellence, IST-2002-506778. This
publication only reflects the authors’ views. This work
was furthermore supported by the Deutsche Forschungs-
gemeinschaft Grant SI 498/8-1.
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A is the smallest dimension of an inner product
space that allows for such a representation. The
margin complexity is obtained similarly by look-
ing for the linear arrangement that leads to the
maximum average margin (or, alternatively, to the
maximum margin that can be guaranteed for all
choices of 7 and j). Applying counting arguments,
Ben-David, Eiron, and Simon [1] have shown that,
loosely speaking, an overwhelming majority of sign
matrices of small VC-dimension do not allow for a
linear arrangement whose margin or dimension is
significantly better than what can be guaranteed in
a trivial fashion. Starting with Forster’s celebrated
exponential lower bound on the dimension complex-
ity of the Walsh-Hadamard matrix [4], there has
been a series of papers [5, 6, 10, 7, 13, 15] present-
ing (increasingly powerful) techniques for deriving
upper margin bounds or lower dimension bounds on
the complexity of sign matrices.

Note that a sign matrix represents a family of
Boolean functions, one Boolean function per col-
umn say. The lack of non-trivial margin or dimen-
sion bounds for a specific Boolean function has a
simple explanation: a specific function f(z) can
always trivially be represented in a 1-dimensional
space with geometric margin 1 by mapping an in-
stance ©z € {—1,1}" to f(z) € {—1,1}. The cor-
responding kernel would map a pair (z,z’) of in-
stances to 1 if f(x) = f(2'), and to —1 otherwise.
Clearly, the 1-dimensional “linear arrangement” for
f does not say much about the ability of kernel-
based large margin classifier systems to “learn” f
because we would need to know f perfectly prior
to the choice of the kernel. (If we had this knowl-
edge, there would be nothing to learn anymore.)
Nevertheless, this discussion shows that one cannot
expect non-trivial margin or dimension bounds for
specific functions that hold wuniformly for all ker-
nels.

In this paper, we introduce the concept of dis-
tributed functions that are invariant under a group
G of transformations. We present the mathemati-
cal results about invariant distributed functions in
a quite general setting (because it does not make



sense to impose unnecessary restrictions). In par-
ticular, we derive non-trivial margin and dimen-
sion bounds for specific Boolean functions that are
valid for all linear arrangements resulting from G-
invariant kernels. If the domain of the distributed
function can be cast as a finite Abelian group, the
margin and dimension bounds for a function f can
be nicely expressed in terms of f’s Fourier-spectrum.
As always, || f|lco denotes the largest absolute value
found in the spectrum of f’s Fourier-coefficients.
We show that || f|| o is an upper bound on the largest
possible average margin, and || f|| is a lower bound
on the smallest possible dimension. Our general re-
sults easily apply to a special case of high learning-
theoretic relevance, namely the reflection-invariant
kernels. Their relevance comes from the fact that,
as demonstrated in the paper, many popular kernels
actually happen to be reflection-invariant.

The remainder of the paper is structured as fol-
lows. In Section 2, we fix some notation and re-
call some facts about Fourier-expansions over finite
Abelian groups and kernel-based classification. In
Section 3, we present our results for arbitrary fi-
nite domains and a quite general notion of invari-
ance. In Section 4, we introduce the concept of
rotation-invariance and mention some connections
between the Fourier-expansion over an arbitrary fi-
nite Abelian group and the spectral decomposition
of such functions. In Section 5, we consider dis-
tributed functions over the Boolean domain and
the concept of reflection-invariance, which is simply
rotation-invariance over a Boolean domain. Sec-
tion 6 presents the margin and dimension bounds
that are valid for reflection-invariant kernels. Sec-
tion 7 offers a possible interpretation of our results,
and mentions a connection to a recent paper by
Haasdonk and Burkhardt [8] along with some open
problems.

2 Definitions and Notations

We assume familiarity with basics in matrix and
learning theory. For example, notions like

e singular values, eigenvalues, spectral norm

e kernels, feature map, Reproducing Kernel Hil-
bert Space

are assumed as known (although we shall occasion-
ally refresh the readers memory). Some central def-
initions and facts concerning

e linear arrangements representing a given sign
matrix,

e margin and dimension associated with such a
linear arrangement,

will be given later in the paper at the place where
it is required. In the following we fix some notation
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and recall the Fourier-expansion over finite Abelian
groups as well as the notion of margin in kernel-
based classification.

2.1 Preliminaries

Throughout the paper, § denotes the Kronecker-
symbol, ie., d(a,b) = 1 if @ = b and d(a,b) = 0
otherwise. For two n-dimensional vectors z,y, we
define z oy to be the vector obtained by multiplying

x and y componentwise, i.e., (x oy); := z;y; for
i =1,...,n. The n-dimensional “all-ones vector” is
given by

e=(@1,...,1) .

The vector with 1 in component k and zeros else-
where is denoted as €;,. We consider functions over
a finite domain D with values in R (or in C, resp.).
These functions form a | D|-dimensional vector space.
A distributed function over D is a function over the
domain D x D. We will occasionally identify a dis-
tributed function f over D with the (D x D)-matrix
F given by F, , = f(z,y).

2.2 Fourier-expansions over Finite Abelian
Groups
Let (D, +) be a finite Abelian group of size d = | D).
A function x : D — C is called a character over D
if, for every z,y € D,
x(x +y) = x(x) - x(y) -
It is well-known that there are exactly d characters,

and they form an orthonormal basis of the vector
space CP with respect to the inner product

1 -
{(f9) =7 > @) -gla) . 1)
xzeD
We may fix a bijection between D and the set of
characters and write x, for the character that cor-
responds to z € D. Every function f : D — C can
be written in the form

fl@)=>" f(2) xz(2) (2)
z€D
where
fe) = (Fxh =5+ 3 ) )
yeD

Equation (2) is referred to as the Fourier expansion
of f, and f(z) is called the Fourier-coefficient of f
at z.

According to the “Fundamental Theorem for Fi-

nitely Generated Abelian Groups”, every finite Abelian

group is, up to isomorphism, of the form
D ="7g x - X1, (3)

for some sequence ¢, . . . , ¢, of prime powers. Equa-
tion (3) is assumed henceforth so that

n
d=D| =] & -
k=1



It is well-known that the characters over Z,, are
given by

X G) = wik

271
Wm = eXp F

is a primitive root of unity of order m. The charac-
ters over D are then given by

where

xa(2) = TT i () -
k=1

Consider now the matrix H = (Hy,.)s,2ep given
by
Hz,z = Xz(w) . (4)
It is obvious that H is symmetric. By the orthonor-
mality of the characters with respect to the inner
product in (1), it follows that

H*-H=H-H* =d-1I,
where I denotes the identity matrix.

2.3 Kernel-based Classification

Let K : D x D — R be a valid kernel over a fi-
nite domain D. In other words, K(x,y) is a real-
valued distributed function over D which, consid-
ered as matrix, is symmetric and positive semidef-
inite. Let®g be the feature map and (:,-), the
inner product that represent K in the Reproducing
Kernel Hilbert Space, and let || - ||k be the norm
induced by (-, ) .! Then ® satisfies

Ve,y € D: K(z,y) = (®(x), P(y)) .

With every “dual vector” a: D — R, we associate
the “weight vector”

w(a) = Z a(x)®(z) . (5)

xzeD

In the context of “large margin classification”, «
is considered as a classifier that assigns the label
sign({w(a), ®(x))) to input . Consider a target
function f: D — {—1,1} for a binary classification
task. Then, a negative sign of f(x) - (w(a), ®(z))
indicates a “classification error” on x. So this ex-
pression should be positive and it is intuitively even
better when it leads to a large positive value. Thus,
the following number, called the (geometric) mar-
gin achieved by o on x w.r.t. target function f and
kernel K, is of interest:

[w(e)l - [| ()]
By averaging over all x € D, we obtain the function

fr(fla) =273 p(flaa) -

xzeD

pux (flo, @) =

'In the sequel, we drop index K unless we would like
to stress the dependence on K.
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Focusing on the margin that is guaranteed for every
x € D, we should consider the function

pxc (fle) = min g (fle, )

By taking the supremum over all o : D — R, we get
the respective parameters of a large margin classifier
employing kernel function K:

fg(f) = sup Tg(flo)
a:D—R

pr(f) = sup pug(fla)
a:D—R

Finally, taking the supremum ranging over all K
from a given kernel class C, we get the respective
parameters of a best possible large margin classifier
among those that employ a kernel from C:

Te(f) = supZig(f)
Kec

pe(f) = sup px(f)
Kec

We briefly note that, obviously, the guaranteed mar-
gin is upper bounded by the average margin:

pr(fle) < Tg(fle)
pr(f) < wx(f)
pe(f) < Tie(f)

3 A General Notion of Invariance

Throughout this section, D denotes an arbitrary
finite domain, S(D) is the group of permutations
over D, and G < S§(D) is an arbitrary but fixed
subgroup. A distributed function over D with val-
ues in V C C is said to be G-invariant if, for all
z,y € D and every o € G, the following holds:

flo(z),0(y)) = f(z,y)
We clearly have the

Pointwise Closure Property: The pointwise limit
of G-invariant functions is a G-invariant func-
tion. Furthermore, if f1,..., f4 are G-invariant
functions and g : V¥ — W is an arbitrary func-
tion with values in W C C, then

g(fl(x7y)7 - '>fd($7y))

is G-invariant too.
More interesting is the the following result:

Lemma 1 G-invariant distributed functions over a
finite domain D are closed under the usual ma-
trix product and under the tensor-product of ma-
trices. More precisely, let F(x,y) and G(x,y) be
two G-invariant distributed functions (here viewed
as matrices). Then, the functions (F-G)(x,y) is G-
invariant and the function (F ® G)[(u,z), (v,y)] is
invariant over G X G (as subgroup of S(D)x S(D)).



Proof: Consider first the function (F - G)(z,y).
Let z,y € D and o € G be arbitrary but fixed. The
following calculation shows that it is G-invariant:

(F@otyowy = »_F

zeD

= > Foo(5G

zeD

= Z Et,z . Gz,y

z€D
= (F-Q)ay
Now consider the tensor-product (FQG)[(u, z), (v,y)],
which is a distributed function over D x D, i.e., a

function over domain (D x D) x (D x D). The fol-
lowing calculation shows that it is (G x G)-invariant:

o).z Gzo)

o=1(z),y

(F @ G)(a(u),7(x)), (0(v), 7(y))] =
Flo(u),a(v)) - G(7(2),7(y)) =
Flu,v) - Gla,y) =
(F' @ G)[(u, ), (v,y)]

In this section, we shall show the following. If
f:D — {—1,1} is a function on domain D and G
is a subgroup of S(D), then the largest average (or
largest guaranteed, resp.) margin that can be ob-
tained when f is represented by a G-invariant kernel
is upper-bounded by the largest average (or largest
guaranteed, resp.) margin that can be obtained for

the family
gf = {fcr :

fo(z) := flo(z)) .

Since there are classical margin bounds that apply
to the family Gy, we obtain corresponding bounds
that apply to the single function f. An analogous
remark holds for dimension bounds. Details follow.

Assume that K (x,y) is a G-invariant kernel and
consider the feature map ® = &y that represents
K in the Reproducing Kernel Hilbert Space. Then,
for all x,y € D and every o € G, ® satisfies

(B(o(2), 2(0(y)) = (D(z), 2(y)) - (7)

Lemma 2 If kernel K is G-invariant, then the fol-
lowing holds for every x € D and every o € G:

[Px(o(@)lx = [®x(@)lx
lw(@lx = Jlwle)llx

In other words, the norm ||-||x is constant on feature
vectors of instances taken from the same orbit

9:={o(x):0€G}

and it assigns the same wvalue to all dual vectors
from the set

o€g}

where

{w(ay): ce€gG} .
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Proof: Let ¢ = (I)Kf HH = HHK7 and <'a > = <'7 '>K'
Clearly, |[|®(o(2))]| = ||®(x)|| because of
[2(e@)II* = (@

(o(2)), ®(o(x)))
D (@), o))
= |0 .

As for the second statement, see the following cal-
culation:

[w(as)lI?

(w(ag), w(ag))

S

Rt ))(‘P(x),@(y»

Y
Yy

—
ot

D

z,yeD

Z a(x)a <‘I>

@ > al@)a(y)(®(z), 2(y))

z,yeD

= [lw(e)]?*

(0™ (@), (07 (1))

Lemma 3 For every G-invariant kernel K, and ev-
ery choice of f : D — {-1,1}, z € D, 0 € G, and
a: D — R, the following holds:

px(folae, r) = pr(flo, o(x))

Proof: The proof starts as follows:

Fol) - (w(ag), o)) 2
x><2ag<y>¢

yeD

f(U(ﬂE))< > aly)@(y), ¢(0($))> =
yeD

flo())(w(a), ®(o(x)))
Using this calculation in combination with Lemma 2,
the proof is easy to accomplish:

©  Lo(x)- {wlog), B
x(folas, o) (@) - [o@)]
J(o()) - {w(a), Bo()))
Ta(@] - 12 @]
(6)

= px(fle,o(x))

z))

e




Corollary 4 For every G-invariant kernel K, and
every choice of f : D — {=1,1}, 0 € G, and « :
D — R, the following holds:

P (folao) = Tg(fla)
pr(folae) = pr(fla)
fx(fo) = Tg(f)
MK(fcr) = MK(f)
ag(fs) = ng(f)

g (fo) g (f)

Note that the last two equations in Corollary 4 ba-
sically say that the largest (average or guaranteed)
margin that can be achieved for a function f by a
large margin classifier is invariant under G (provided
that the underlying kernel is G -invariant).

Let M € {—1,1}"*° be a sign matrix. Con-
sider a linear arrangement 4 given by unit vectors
UL, .oy Ups VL, ..., 0s € RE  The average margin
achieved by this arrangement for sign matriz M is
defined as follows:

1 T S
AM]A) = > M, vp)
i=1 j=1

The largest average margin that can be achieved for
sign matriz M by any linear arrangement is then
given by

(M) = Sljpﬁ(MlA) ;

where the supremum ranges over all linear arrange-
ments A for M. Forster and Simon [7] have shown
that, for every M € R™ % every d > 1, and every
choice of unit vectors uq, ..., u,;v1,...,0s in a real
inner-product space, the following holds:

ZZMi7j<ui7'Uj> < \/EHMH :

i=1 j=1
From that, we conclude that
_ [ M]]
M) < .
i(M) < Jrs
Consider the sign matrix M9 given by
M7 = fo(@) - (8)

In combination with Corollary 4, we arrive at the
following

Theorem 5 Let D be a finite domain, and let G be
a subgroup of S(D). Then, every function f: D —
{—1,1} satisfies

|279]

VIDI- 16l

In other words, no large margin classifier that em-

ploys a G-invariant kernel can achieve an average
M9

VIDIgl’

Ag(f) <

margin for f which exceeds
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As our input space D is finite, we can assume
without loss of generality that the Reproducing Ker-
nel Hilbert Space for a kernel K on D coincides with
R4K) for some suitable 1 < d(K) < |D|. We say
that a : D — R represents target function f cor-
rectly w.r.t. kernel K if

Ve € D: pur(flo,z) >0 .

Corollary 6 Let dg(f) denote the smallest dimen-
sion of a feature space associated with a G-invariant
kernel K that allows for a correct representation of

f- Then,

dg(r) = YIDL Bl
P
Proof: According to Lemma 3, a kernel that al-
lows for a correct representation of f allows also for
a correct representation of all f,. According to a re-
sult by Forster [4], the corresponding feature space

must have dimension at least \/|D| - |G|/||M¥9]. B
Corollary 6 can be strengthened slightly:

Corollary 7 Let o; denote the i-th singular value
of M19, where 01,0, ... are in decreasing order.
Then, dg(f) satisfies the following lower bound:

dg(f)

do(f)- Y o? =1 ©)

Proof: Let A € {—1,1}"*® be a matrix whose
columns are viewed as binary functions fi,..., fs.
It has been shown by Forster and Simon [7] that
the dimension d of a feature space which allows for
a correct representation of f1,..., fs satisfies

This trivially implies (9). ]

4 Rotation-invariant Functions

In Section 4.1 we will derive some facts about dis-
tributed functions over a finite Abelian group via
the Fourier-expansion. Section 4.2 ties everything
together and presents the resulting margin and di-
mension bounds obtained in this restricted setting.

4.1 Distributed Functions over Finite
Abelian Groups

We apply the results of the preceding section to the
case where D is a Abelian group of finite size d,
and G, is the subgroup of S(D) consisting of all
permutations of the form = — x + a. Note that
d= |D| = |gr0t‘-



We are interested in distributed functions f :
D x D — C and arrange the d? Fourier-coefficients
of such a function as a matrix as follows:

~ ~

Fop = fla,—b) (10)
= d2 Z F&, )X (-0 (2, y) (11)

(z,y)eDxD

A3 fayxa@)x)  (12)

zeD yeD

In matrix notation, this reads as
F=d? H*-F-H, (13)

where H is the matrix from (4).

A distributed function f(z,y) over D is said to
be rotation-invariant if, for all x,y,a € D, the fol-
lowing holds:

flx+a,y+a) = f(x,y)

In the sense of the previous section, f is meant to
be G,oi-invariant.

Here are some examples for rotation-invariant
functions:

e A distributed function of the form f(z,y) =
g(z — y) is obviously rotation-invariant. Con-
versely, any rotation-invariant function f(z,y)
can be written in this form by setting g(x) :=
f(z,0) because rotation-invariance implies that

flx,y) = f(x —y,0) =g(z—y) .

e Because of the obvious identity

Xz(T —y) = x:(2) - x2(y)

the distributed function x.(z)-x.(y) is rotation-
invariant too.

The fact that f(z,y) = g(x — y) is a rotation-
invariant function can be restated as follows: any
function f(x,y) that can be cast as a function in
r1 —yy mod q1,...,Ty — Yn mod g, is rotation-in-
variant. .

In terms of the matrix of Fourier-coefficients, F,
rotation-invariant functions over D can be charac-
terized as follows:

Lemma 8 A distributed function f(x,y) over D is
rotation-invariant iff F' is a diagonal matriz.

Proof: Assume first that f(z,y) is rotation-invariant.

Consider a Fourier-coefficient in F outside the main
diagonal, say Fy ; so that aj # by. Every pair (z,y)
can be put into the equivalence class

{(x+jéi,y+jéi): j=0,...
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We show that every equivalence class contributes 0
to (12):

qr—1
N f@+ 56y + jéi)Xa(@ + 56k) - xo(y + jéi) =
j=0
qr—1 _
F@ ) xa@) - xo(y) D X )™ ()
Jj=0

The latter sum vanishes because it equals

qr—1

(br.—az)j
> W
j=0

Recall that § denotes the Kronecker symbol and it
is well-known that

m—1

Z ‘*’7(}1/71)]’ =m-o .

=0

This shows that ﬁ%b =0.

Now assume that F is a diagonal matrix. We con-
clude from (13) that

F=H-F-H", (14)
which implies that

Fpy = Z ﬁz,z Xa(2) Xy (2) -
z€D

Rotation-invariance is now easily obtained:

Z F, .- Xz+a(z) ’ Xy+a(z)
zeD

= Zﬁz,z'XZ(x_'_a’)'XZ(y_'_a)
zeD

= Z F\z,z “Xz(T) - Xx=(y)

zeD
= f(z,y)
In the second-last equation, we used the rotation-
invariance of x.(x) - xz(y). |

flz+a,y+a) =

Corollary 9 Assume that f(x,y) is a rotation-in-
variant distributed function over D and let Fy , =
f(z,y) denote the corresponding matriz. Then the
(complez) eigenvalues of d=* - F are found on the

main diagonal of F'.
Proof: Rewrite (14) as
d7'F = (d7'?H) - F - (d'?H)

and observe that this is nothing but the spectral
decomposition of "1 F' (since F' is a diagonal matrix
and d~Y/?H is unitary). |

We briefly note the following result:



Lemma 10 Let F be the (diagonal) matriz that
contains the Fourier-coefficients of the (rotation-
invariant) distributed function f(x —y). Then, for

every z € D, f(z) =F,,.

Proof: Consider the function fy(z) := f(z — y).
We shall show below that the Fourier coefficients of
f and f, are related as follows:

Fo(2) = f(2) Xy (2) - (15)

The proof is now obtained by the following calcula-
tion:

F.. = d2 Y fla—y) x:(2) x:(v)

z,yeD

Y (dl > fy(x)xz—(x)> X=(y)
yeD zeD

= Z fy Z
yeED

(15) A 1

= -d” XylZ)X=

g;);,_/
= f(2)

The following calculation verifies (15):

fz) = A7) fle—y) - xe(2)

zeD

=YY fw) vule—y) @)
zeD weD

= dat- Z Z f X (®) - X (y) - X=(7)
ze€D weD

= d_l' Z <Z Xw z >f(w)Xw(y)
weD \ze€D

:d‘(sw,z

= Jx:0)
|
Corollary 9 and Lemma 10 yield the following.?

Corollary 11 Let F denote the matrix with entries
Foy = f(z —y). Then the spectrum of (complex)
eigenvalues of d=' - F coincides with the spectrum
of (complex) Fourier-coefficients of f.

Consider the sign matrix Mf9rt. From (8) and
the definition of G,..¢, we conclude that

MG = (ot y)

It follows that M /-9t is a symmetric matrix. If f is
real-valued, then M 797t has real eigenvalues. Note

2This result might be known, but we are not aware
of an appropriate pointer to the literature.
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that M79o¢ coincides with matrix F, , = f(z —y)
up to a permutation of columns (where the column
indexed y is exchanged with the column indexed
—y). Since the spectrum of eigenvalues (or singular
values, resp.) of a matrix is left invariant under a
permutation of columns, we obtain the following

Corollary 12 Let f(x —y) be real-valued, and let
F' be the matriz with entries Fy , = f(x—y). Then,
the following holds:

1. F coincides with the symmetric matriz M¥:9rot
up to a permutation of columns.

2. The spectrum of eigenvalues of d=' - F coin-
cides with the spectrum of (real) eigenvalues of
d=' - M5t qnd with the spectrum of Fourier-

coefficients of f.

4.2 Margin and Dimension Bounds for
Rotation-invariant Kernels

For every function f: D — {—1,1},
ﬁrot (f) = ﬁgmt (f)

denotes the largest possible average margin that can
be achieved by a linear arrangement for f resulting
from a rotation-invariant kernel. As for the smallest
possible dimension, parameter d,»;(f) is understood
analogously.

Corollary 13 Let D be a finite Abelian group of
size d. Every function f: D — {—1,1} satisfies
Frot(f) < [[flloo (16)

In other words, no large margin classifier that em-
ploys a rotation-invariant kernel can achieve an av-
erage margin for f which exceeds || f]|oo-
Proof: According to Theorem 5,
HMf,thH _ HMf,th”
|D | : |grot‘ d
We conclude from Corollary 12 that

M7t = |[Fl| = d- | flloo
which leads us to inequality (16). |

ﬁrot (f) S

Corollary 6 and 7 combined with Corollary 11
lead us to the following results:

Corollary 14 Let d,.t(f) denote the smallest di-
mension of a feature space associated with a rotation-
imvariant kernel K that allows for a correct repre-

sentation of f. Then, dyot(f) = || fIl L.

Proof: According to Corollary 6, the corresponding
feature space for the kernel must have dimension at
teast. v/[D][Grorl /| M9 | = d|[MFr . Ac-
cording to Corollary 12, the latter expression eval-
uates to || f|| =t |



Corollary 15 Let ﬁ denote the i-th Fourier-coefficient

of f, where |f/’\1|,7|fA‘d| are in decreasing order.
Then,
dratlf) |y
drot(f) : Z fz 2 1

i=1
Proof: From (9), we obtain

drot (f)
drot(f)' Z 0'1'2 >1
=1

where o; denotes the i-th largest singular value of
Mot We conclude from Corollary 12, that o;

coincides with |f;]. |

5 Reflection-invariant Functions

In this section, we consider real-valued functions
only. A distributed function f(z,y) over {—1,1}"
is said to be reflection-invariant if, for all z,y,a €
{—1,1}", the following holds:

f(roa,yoa)= f(x,y) (17)

Note that reflection-invariance corresponds to
rotation-invariance with (Z%,+) as the underlying
(additive) Abelian group is or, equivalently, with
({—1,1}",-) as the underlying (multiplicative) Abelian
group. This is because the subgroup G, of S(D)
that we have used for rotation-invariant distributed
functions collapses for D = {—1,1}" (with a multi-
plicative group structure) to the following subgroup

of S({—1,1}"):
Gref ={z—zoa: ae{-1,1}"}

Thus, reflection-invariant functions inherit all
closure properties that hold, in general, for G-invariant
distributed functions (see the Pointwise Closure Prop-
erty and Lemma 1 in Section 3):

Corollary 16 1. The pointwise limit of reflection-
mwvariant functions is a reflection-invariant func-
tion. Furthermore, if f1,..., fq are reflection-
invariant functions and g : R — R is an ar-
bitrary function, then

g(fl(xv y)v L) fd(xv y))
is reflection-invariant too.

2. Reflection-invariant distributed functions over
{—1,1}" are closed under the usual matriz prod-
uct and under the tensor-product of matrices.

Furthermore, reflection-invariant functions inherit
all properties that hold, in general, for distributed
functions over a finite Abelian group:

e A reflection-invariant function f(z,y) can be
decomposed according to (2). Since D = {—1,1}",
the character . coincides with the parity func-
tion induced by z, i.e., x.(x) =[], __; ®i.
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e The matrix £ whose entries are the Fourier co-
efficients of f satisfies (13) where H is the ma-
trix from (4). Since D = {—1,1}", H equals
the well-known (2™ x 2™)-Walsh-Hadamard ma-
trix.

Distributed functions f(z,y) over R™ that satisfy (17)
for all x,y € R™ and every a € {—1,1}" are said to
be reflection-invariant in the Euclidean space. Here
are some examples (with some overlap to our ex-
emplification of rotation-invariant functions in Sec-
tion 4):

e A distributed function of the form f(z,y) =
g(zoy) is reflection-invariant (in the Euclidean
space provided that the domain is R"™):

g((zoa)o(yoa) = glroyo(aoa) = g(zoy)

Conversely, any reflection-invariant function f(x,y)
(over domain {—1,1}") can be written in this
form by setting g(x) := f(z, €) because reflection-
invariance implies that

f(@,y) = fwoy,yoy) = f(zoy,é) = g(zoy) .
e Because of the obvious identity

Xz(zoy) = xz(2) - x=(v) ,

the distributed function y . (z)-x.(y) is reflection-
invariant too.

o The metric

n 1/p
Lp(z —y) = (Z |z — yz'p)
i=1

induced by the Ly-norm is clearly reflection-
invariant in the Euclidean space.

In Section 6, we shall see that many popular kernel
functions happen to be reflection-invariant.

The fact that f(x,y) = g(x oy) is a reflection-
invariant function can be restated as follows: any
function f(x,y) that can be cast as a function in
T1 YLy .-, Ty - Yn is reflection-invariant. Similarly,
any function f(z,y) that can be cast as a function in
L,(x—y) (or, more generally, in |z1 —y1],. .., |2n —
Ynl) is reflection-invariant.

6 Reflection-invariant Kernels

In this section, we consider kernel functions K (x,y)
over the Boolean or over the Euclidean domain. In
other words, K(z,y) is a distributed function over
{=1,1}" or over R"™ with the additional property
that every finite principal sub-matrix of K is sym-
metric and positive semidefinite. In Section 6.1, we
demonstrate that the family of reflection-invariant
kernels is quite rich and contains many popular ker-
nels. In Section 6.2, we derive margin and dimen-
sion bounds for reflection-invariant kernels.



6.1 Examples and Closure Properties

Let us start with some examples. The following
(quite popular) kernels (over R™ except for the DNF-
Kernel that has a Boolean domain) can be cast as
functions in x1 - y1,...,%y - Yn Or as functions in
||z — y||2 and are therefore reflection-invariant:

Polynomial Kernels: K(z,y) = p(z'y) for an

arbitrary polynomial p with positive coefficients.

All-subsets Kernel: K(z,y) = [[i—, (1 4+ z:y;).
ANOVA Kernel: Let 1 < s <n and define

K(z,y) = Z Hxhyh :

1< < <ig<n j=1
DNF-Kernel: K(z,y) = —14+2""[[", (z;y; +3).

Exponential Kernels: K(z,y) = e?@Y) for an

arbitrary polynomial p with positive coefficients.

Gaussian Kernel: K(z,y) = e~le=vll3/* for an
arbitrary o > 0.

These kernels have the usual nice properties like be-
ing efficiently evaluable although the number of (im-
plicitly represented) features is exponentially large
(or even infinite). Polynomial, Exponential, and
Gaussian Kernels (first used in [2]) are found in al-
most any basic text-book that is relevant to the
subject (e.g. [3]). The All-subsets Kernel is found
in [18], and the ANOVA Kernel is found in [19]. As
for the latter two kernels, see also [17]. The DNF-
Kernel has been proposed in [16].3 The reader inter-
ested in more information about these (and other)
kernels may consult the relevant literature. Here,
we simply point to the fact that all kernels men-
tioned above are reflection-invariant.

We move on and consider the possibility of mak-
ing new reflection-invariant kernels from kernels that
are already known to be reflection-invariant. To this
end, we briefly call into mind some basic closure
properties of kernels:

Lemma 17 Let K, K1, K5 be kernels, and let ¢ > 0
be a positive constant. Then, the distributed func-
tions

Kl(I,y)—l-Kg(l’,y) ) CK(lvy)
Ki(z,y) Ka(z,y) , (K1 © Ky)[(u, ), (v, y)]

are kernels too. Moreover, the pointwise limit of
kernels yields a kernel.

5In [16], the kernel is defined over the Boolean do-
main {0,1}". Our formula above is obtained from the
formula in [16] by plugging in the affine transformation
that identifies 1 with —1 and 0 with 1. A similar remark
applies to the Monotone DNF-Kernel discussed at the
end of this section.
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The proof of Lemma 17 can be looked-up in [3], for
example.

Corollary 18 If Ki,...,K; are kernels and P :
R¢ — R is a polynomial (or a converging power
series) with positive coefficients, then

P(Ki(z,y),..., Ka(z,y))

is a kernel too.

Note that closure properties of reflection-invariant
functions (see Corollary 16) are comparably strong
so that Lemma 17 and Corollary 18 remain valid
(mutatis mutandis) for reflection-invariant kernels.

The following kernels (proposed in [11] and [9],
respectively) define a new kernel-matrix K in terms
of a given symmetric matrix B (called “similarity
matrix” in this context):

Exponential Diffusion Kernel: For A\ € R, de-
fine

K== "-.pF.

von Neumann Diffusion Kernel: For 0 < \ <
| B||~t, define

K=(I-X-B)'=Y \.BF.
k>0

It follows from the closure properties of reflection-
invariant functions that both diffusion kernels would
inherit reflection-invariance from the underlying sim-
ilarity matrix B.

The family of reflection-invariant kernels is quite
rich. But here are two kernels (the first-one from [16],
and the second-one from [12]) which are counterex-
amples:

Monotone DNF-Kernel:

n

K(z,y)=—-1+272" H(:Ejyj —z;—y;+5) .
i=1

Spectrum Kernel: Here, z,y € {—1,1}" are con-
sidered as binary strings. For 1 < p < n and
for every substring u € {—1,1}?,

2(2) = [{(w,w) : @ = www)

counts how often v occurs as a substring of x.
The p-Spectrum Kernel is then given by

K($7y): Z

ve{—1,1}»

oY () - PU(y) -

It is easy to see that both kernels are not reflection-
invariant. More generally, string kernels (measuring
similarity between strings) often violate reflection-
invariance.



6.2 Margin and Dimension Bounds for
Reflection-invariant Kernels

For every function f: {-1,1}" — {—1,1},
ﬁref(f) = ﬁgref (f)

denotes the largest possible average margin that
can be achieved by a linear arrangement for f re-
sulting from a reflection-invariant kernel. Because
reflection-invariance is a special case of rotation-
invariance, the following result immediately follows
from Corollaries 13, 14, and 15:

Corollary 19
isfies

1. Every Boolean function f sat-

ﬁref(f) < Hf”oo .
In other words, no large margin classifier that
employs a reflection-invariant kernel can achieve
an average margin for f which exceeds || f |

2. Let dyes(f) denote the smallest dimension of a

feature space associated with a reflection-invariant

kernel K that allows for a correct representa-
tion of f. Then, dres(f) > | fI-

3. Let ﬁ denote the i-th Fourier-coefficient of f,

where | f1 L., |‘]?2n‘ are in decreasing order. Then,

dres(f) satisfies the following lower bound:
drey(f)

dre(f) - Y

i=1

2
>1

~

fi

7 Conclusions and Open Problems

We start with some remarks which offer a possible
interpretation of our results. Finally, some open
problems are mentioned.

7.1 Discussion of our Results

Ideally the invariance-properties of a kernel reflect
symmetries in the data. For example, assume that
there exists a set of transformations, say T', so that,
for every instance x € D and every transformation
t € T, the label assigned to x by target function
f equals the label assigned to t(x) by f. Then,
it looks desirable to apply a kernel that is invari-
ant under the transformations from 7. It would
be surprising if our results implied that such ker-
nels (that sort of perfectly model the symmetries
in the data) would inherently lead to small mar-
gins or high-dimensional feature spaces. It is, how-
ever, easy to argue that (as expected) the contrary
is true and our margin and dimension bounds trivi-
alize whenever the invariance of the kernel perfectly
matches with symmetries in the data. To see this,
consider again (compare with the introduction) the
“super-kernel”

K(x,y):{ +1 if f(x) = f(y)

—1 otherwise
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that allows for a 1-dimensional halfspace represen-
tation of f with margin 1, and note that K actually
is invariant under all transformations from 7". Thus,
no upper margin bound that holds uniformly for all
T-invariant kernels can be smaller than 1. Simi-
larly, no lower dimension bound can be larger than
1. Note that this is no contradiction to the main re-
sults in this paper because the family {f;: t € T}
of functions fi(z) = f(¢t(x)) collapses to the sin-
gleton {f}. Thus Forster’s margin and dimension
bounds applied to this family do not lead to non-
trivial values.

Viewed from this perspective, our results can be
interpreted as follows: one should not use a kernel
that is invariant under a set T of transformations if
T does not reflect symmetries in the data. The ker-
nel becomes very poor especially when the family
{ft: t € T} contains much “orthogonality” (which
is sort of the opposite of collapsing to a singleton or
to a family of highly correlated functions) because
Forster’s bounds, applied to pairwise (almost) or-
thogonal functions, are extremely strong.

This interpretation makes clear that our results
are not particularly surprising but, on the other
hand, quantify (in terms of small margin and large
dimension bounds) in a meaningful and rigorous
fashion an existing mismatch between a kernel and
the (missing or existing) symmetries in the data.

7.2 Open Problems

Haasdonk and Burkhardt [8] consider two notions
of invariance: “simultaneous invariance” and “to-
tal invariance”. Simultaneous invariance very much
corresponds to the notion of invariance that we dis-
cussed in Section 3 so that our margin and dimen-
sion bounds apply. Total invariance is a stronger
notion so that our bounds apply more than ever.
But the obvious challenge is to find stronger margin
and dimension bounds for totally invariant kernels.

The basic idea behind our paper is roughly as
follows. For a family of kernels (e.g., polynomial
kernels), we argue that the existence a “good rep-
resentation” for a particular target function implies
the existence of a “good representation” for a whole
family of target functions (so that classical margin
and dimension bounds can be brought into play).
We think that invariance under a group operation
(the notion considered in this paper) is just the first
obvious thing one should consider. We would like
to develop more versatile techniques that, while fol-
lowing the same basic idea, lead to strong margin
and dimension bounds for a wider class of kernels.
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Abstract

We define a model of learning probabilistic acyclic
circuits using value injection queries, in which an
arbitrary subset of wires is set to fixed values, and
the value on the single output wire is observed.
We adapt the approach of using test paths from
the Circuit Builder algorithm [AACWO06] to show
that there is a polynomial time algorithm that uses
value injection queries to learn Boolean probabilis-
tic circuits of constant fan-in and log depth. In
the process, we discover that test paths fail utterly
for circuits over alphabets of size greater than two
and establish upper and lower bounds on the atten-
uation factor for general and transitively reduced
Boolean probabilistic circuits of test paths versus
general experiments. To overcome the limitations
of test paths for non-Boolean alphabets, we intro-
duce function injection queries, which allow the
symbols on a wire to be mapped to other symbols
rather than just to themselves or constants.

1 Introduction

Probabilistic networks are used as models in a variety of do-
mains, for example, gene interaction networks, social net-
works and causal reasoning. In a binary model of gene in-
teraction, the state of each gene is either active or inactive,
and the state of each gene is determined as a function of the
states of some number of other genes, its inputs. In a proba-
bilistic variant of the model, the activation function specifies,
for each possible combination of the states of the inputs, the
probability that the gene will be active. In the independent
cascade model of social networks, the state of each agent is
active or inactive and for each pair (u,v) of agents, there is
a probability that the activation of u will cause v to become
active. Kempe, Kleinberg and Tardos study the problem of
maximizing influence in this and related models of social
networks [KKETO03, KKTO05]. In a Bayesian network there

*Supported in part by NSF grant CNS-0435201.

TSupported in part by a research contract from Consolidated
Edison.

This material is based upon work supported under a National
Science Foundation Graduate Research Fellowship.
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is an acyclic directed graph and a joint probability distribu-
tion over the node values such that the joint distribution is
simply the product of each of the marginal distributions for
each node given the values of the parents (in-neighbors) of
the node.

A fundamental question is how much we can infer about
the properties and structure of such networks from observ-
ing and experimenting with their behaviors. Prior research
suggests that there is no polynomial time algorithm to learn
Boolean functions represented by acyclic circuits of constant
fan-in and depth O(logn) when we can set only the inputs
of the circuit and observe only the output [AK95]. In this pa-
per we consider a different setting, value injection queries,
in which we can fix the values on any subset of wires in the
target circuit, but still only observe the output of the circuit.

The idea of value injection queries was inspired by mod-
els of gene suppression and gene overexpression in the study
of gene interaction networks [AKMMO98, ITK00] and was
proposed in [AACWO06]. They show that with value injec-
tion queries, acyclic deterministic circuits with constant-size
alphabets, constant fan-in and depth O(logn) are learnable
up to behavioral equivalence in polynomial time. To extend
these results to analog circuits, Angluin et al. [AACRO07]
consider circuits with polynomial-size alphabets. Larger al-
phabets make the learning problem significantly harder, ne-
cessitating structural restrictions on the graphs of the circuits
to achieve polynomial time learnability. They show that with
value injection queries, acyclic deterministic circuits that are
transitively reduced (or in general, have constant shortcut
width) and have polynomial-size alphabets, constant fan-in
and unbounded depth are learnable up to behavioral equiva-
lence in polynomial time.

In this paper we investigate how well the above positive
results can be extended to the case of acyclic probabilistic
circuits. The key technique in the previous work has been
the idea of a test path for an arbitrary wire w in the circuit.
Informally speaking, a test path is a directed path of wires
from w to the output wire in which each wire is an input of
the next wire on the path, and the other (non-path) inputs of
wires on the path are fixed to constant values, thus isolating
the wires along the path from the rest of the circuit. Ideally,
the choice of constant values is made in such a way as to
maximize the effect on the output of the circuit of changing
w from one value to another. A test path thus functions as a
kind of “microscope” for viewing the effects of different val-
ues on the wire w. The primary focus of this paper is to un-



derstand the properties of test paths in probabilistic circuits,
and the extent to which they can be used to give polynomial
time algorithms for learning probabilistic acyclic circuits.

In Section 2 we formally define our model of acyclic
probabilistic circuits, value injection queries and distribution
injection queries, behavioral equivalence, and the learning
problem that we consider. In Section 3 we establish some
basic results about probabilistic circuits and value and distri-
bution injection experiments. In Section 4 we review the test
path lemma used in previous work and show that it fails ut-
terly in probabilistic circuits with alphabet size greater than
two. However, for Boolean probabilistic circuits, we show
that the test path lemma holds with an attenuation factor
that depends on the structure of the circuit. (Lemma 10
treats general acyclic circuits and Corollary 11 specializes
the bound to transitively reduced circuits.) In Section 5 we
apply the test path lemma in the Boolean case to adapt the
Circuit Builder algorithm [AACWO06] to find using value in-
jection queries, with high probability, in time polynomial in
n and 1/¢, a circuit that is e-behaviorally equivalent to a tar-
get acyclic Boolean probabilistic circuit of size n with con-
stant fan-in and depth bounded by a constant times log n. In
Section 6, we consider lower bounds on the attenuation of
paths; Lemma 15 shows that our bound is tight for transi-
tively reduced circuits and Lemma 17 gives a lower bound
for the case of general acyclic circuits. In Section 7 we in-
troduce a stronger kind of query, a function injection query,
and show that test paths with function injections overcome
the limitations of test paths for circuits with alphabets of size
greater than two.

2 Model

2.1 Probabilistic Circuits

We extend the circuit learning model studied in [AACRO7,
AACWO6]. to probabilistic gates. An unusual feature of this
model is that circuits do not have distinguished inputs—since
the learning algorithm seeks to predict the output behavior
of value injection experiments that override the values on an
arbitrary subset of wires, each wire is a potential input. Prob-
abilistic circuits are closely related to Bayesian networks as
well; we have chosen, however, to retain the conventions of
the previous works.

A probabilistic circuit C' of size n > 1 has n wires,
of which one is the distinguished output wire. We call the
set of C’s wires W/, and these wires take values in a finite
alphabet ¥ with |X| > 2. If ¥ = {0, 1}, then C is Boolean.
The value on a wire is ordinarily determined by the output
of an associated probabilistic gate, whose distribution is a
function of the values on other wires.

Formally, an value distribution D is a probability distri-
bution over ¥, that is, a map from X to the real interval [0, 1]
such that } s, D(0) = 1. The support of D is the set of
values o € ¥ such that D(o) > 0, and when this set is a sin-
gleton {c} for some o € ¥, we say D is deterministic. For
nonempty sets of values S C 3, the uniform distribution
U (S) is the distribution such that U (S) (o) = [0 € S]/|X].

A k-ary probabilistic gate function f maps each k-tuple
(01,...,0k) € XF of values to a value distribution. When
C is Boolean, we can specify f by a truth table giving the
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expected value for each Boolean vector of inputs. A proba-
bilistic gate function is deterministic if it maps k-tuples to
deterministic value distributions only.

A probabilistic gate g of fan-in & pairs a k-ary proba-
bilistic gate function f with a k-tuple (wy, . .., wy) € W* of
input wires. g is deterministic if f is deterministic. When
k = 0, the gate g has no inputs, and we can regard it as a
value distribution, or, when C' is Boolean, a biased coin flip.

A probabilistic circuit C' maps wires to probabilistic
gates. C' is deterministic if all of its gates are determinis-
tic. The fan-in of C' is the maximum fan-in over C’s gates.
The circuit graph of C' has nodes W and a directed edge
(w,u) if w is one of the input wires of the gate associated
with . It is important to distinguish between wires in the
circuit and edges in the circuit graph. For example, if wire w
is an input of wires v and v, then there will be two directed
edges, (w, u) and (w, v), in the circuit graph.

Wire u is reachable from wire w if there is a directed
path from w to u in the circuit graph. A wire is relevant if
the output wire is reachable from it. The depth of a wire w is
the number of edges in the longest simple path from w to the
output wire in the circuit graph. The depth of the circuit is
maximum depth of any relevant wire. The circuit is acyclic
if the circuit graph contains no directed cycles. The circuit
is transitively reduced if its circuit graph is transitively re-
duced, that is, if it contains no edge (w, u) such that there
is a directed path of length at least two from w to u. In this
paper we assume all circuits are acyclic.

2.2 Experiments

In an experiment some wires are constrained to be particular
symbols or value distributions and the other wires are left
free. The behavior of a circuit consists of its responses to all
possible experiments. For probabilistic circuits we consider
both value injection experiments and distribution injection
experiments.

A distribution injection experiment e is a function with
domain W that maps each wire w to a special symbol * or
to a value distribution. A value injection experiment ¢ is a
distribution injection experiment for which every value dis-
tribution assigned is deterministic — that is, always generates
the same symbol. To simplify notation, we think of a value
injection experiment as a mapping from W to (X U {x}). If
e is either kind of experiment, we say that e leaves w free if
e(w) = *; otherwise we say that e constrains w to e(w). If
e(w) is a single symbol, then we say e fixes w to e(w).

We define a partial ordering < on the set containing * and
all value distributions D as follows: D < x for every value
distribution D, and for two value distributions, D7 < Ds
if the support of D; is a subset of the support of Ds. This
ordering is extended to experiments on the same set of wires
W as follows: e; < ey if forevery w € W, eg(w) < ex(w)
The intuitive meaning of e; < es is that e; is at least as
constraining as e for every wire.

If e is any experiment, w is a wire, and a is * or an ele-
ment of ¥ or a value distribution, then the experiment e|,,—,
is defined to be the experiment €’ such that e’(w) = a and
€'(u) = e(u) for all w € W such that u # w.



2.3 Behavior

Let C' be a probabilistic circuit. Then a distribution injec-
tion experiment e determines a joint distribution over assign-
ments of elements of > to all of the wires of the circuit, as
follows. If wire w is constrained then w is randomly and
independently assigned a value in ¥ drawn according to the
value distribution e(w); in the case of a value injection ex-
periment, this just assigns a fixed element of ¢ to w. If wire
w is free, has probabilistic gate function f and its inputs
u1,...,Uur have been assigned the values o1, ..., ok, then
w is randomly and independently assigned a value from ¥
according to the value distribution f(o1,...,0%).

Constrained gates and gates of fan-in zero give the base
cases for the above recursive definition, which assigns an el-
ement of X to every wire because the circuit is acyclic. Let
C(e,w) denote the (marginal) value distribution of the as-
signments of values to w for the above process. The output
distribution of the circuit, denoted C(e), is the distribution
C'(e, z), where z is the output wire of the circuit. The behav-
ior of a circuit C' is the function that maps value injection
experiments e to output distributions C'(e).

24 Example: C

We give an example of a simple Boolean probabilistic circuit,
which we will also refer to later. The 2-input averaging gate
A(by, be) outputs 1 with probability (b1 +by)/2. We define a
circuit C; of 4 wires as follows: wy = A(we, ws), ws = w1,
wg = wy, and wy; = U({0,1}). The output wire is wy. C}
is depicted in Figure 1.
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Figure 1: The circuit Cy; wy is the output wire.

To illustrate the behavior of this circuit, we consider two
value injection experiments. Define the experiment e; to
leave every wire in C free, that is, e (w;) = *x for 1 < i <
4. Given e, we construct one random outcome as follows.
The wire wy is assigned a value as the result of an unbiased
coin flip — say it is assigned 0. Then the values assigned to
wy and ws are determined because they are each the output
of an identity gate with w; as input: both are 0. Finally, be-
cause both its input wires have been assigned values, w,4 can
be assigned a value according to A(0, 0), which is determin-
istically 0. It is easy to see that this is one of two possible
outcomes for experiment e;; either all wires are assigned 0
or all wires are assigned 1, and these each occur with proba-
bility 1/2. The output distribution C1 (e7 ) is just an unbiased
coin flip.
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Now consider experiment e = eq]y,—1 that fixes ws
to 1 and leaves the other wires free. Once again, the value
of w; is determined by a coin flip — say it is assigned 0.
Since wy is fixed to 1, that is its assignment. Wire ws is
free, and is therefore assigned the value of w;, that is 0.
Now the inputs of w4 have been assigned values, so we con-
sider A(1,0), which randomly and equiprobably selects 0 or
1. If, instead, the coin flip for w; had returned 1, all wires
would be assigned 1. There are three possible assignments
to (w1, wa, w3, wy) for experiment e5: (1,1, 1, 1) with prob-
ability 1/2, (0,1,0,0) with probability 1/4 and (0,1,0,1)
with probability 1/4. The output distribution C (e2) is a bi-
ased coin flip that is 1 with probability 3/4.

2.5 Behavioral Equivalence

Two circuits C' and C’ are behaviorally equivalent if they
have the same set of wires, the same output wire and the
same behavior, that is, for every value injection experiment
e, C(e) = C’(e). We also need a concept of approximate
equivalence. The (statistical) distance between value distri-
butions D and D' is d(D, D’) = (1/2) 3" |D(c) — D'(0)|,
which takes values in [0, 1]. Note that when D and D’ are
deterministic, d(D, D') is 0 if D = D’ and 1 otherwise. For
e > 0, C is e-behaviorally equivalent to C’ if they contain
the same wires and the same output wire, and for every value
injection experiment e, d(C(e), C’(e)) < e, where d is the
distance between value distributions defined above.

In Lemma 2 we show that the behavioral equivalence of
C and C" implies C(e) = C’(e) for all distribution injection
experiments as well. Note that even when all the gates are
Boolean, deterministic and relevant, the circuit graph of the
target circuit may not be uniquely determined by its behav-
ior [AACWO06].

2.6 Queries

The learning algorithm gets information about the target cir-
cuit by specifying a value injection experiment e and observ-
ing the element of X assigned to the output wire. Such an ac-
tion is termed a value injection query, abbreviated VIQ. A
value injection query does not return complete information
about the value distribution C'(e), but instead returns an ele-
ment of 3 selected according to the distribution C'(e). Thus,
in order to approximate the distribution C'(e), the learner
must repeatedly make value injection queries with experi-
ment e. In this case, the goal of learning is approximate be-
havioral equivalence.

2.7 The Learning Problem

The learning problem is e-approximate learning: by mak-
ing value injection queries to a target circuit C' drawn from
a known class of probabilistic circuits, find a circuit C” that
is e-behaviorally equivalent to C'. The inputs to the learning
algorithm are the names of the wires in C, the name of the
output wire and positive numbers € and §, where the learn-
ing algorithm is required to succeed with probability at least
(1-=19).

3 Preliminary Results

In this section we establish some basic results about proba-
bilistic circuits. We first note that if C' is a probabilistic cir-



cuit, e is a distribution injection experiment and either e(w)
is a value distribution or e deterministically fixes all the in-
put wires of w, then there is a value distribution D such that
the value of w in C'(e) is determined by a random choice ac-
cording to D, independent of the values chosen for any other
wires. We make systematic use of this observation to reduce
the number of experiments under consideration.

Lemma 1 Let Cy and Cs be probabilistic circuits on wires
W with the same output wire, let w € W be a wire, let
D be a value distribution, and let e; and es be distribution
injection experiments such that eq(w) = ea(w) = D. Then
there exists a value o € support(D) such that

d(C1(e1|w=c), Ca(e2|w=0)) > d(Ci(e1), Ca(ez)).
Proof: We have

d(Ci(e1), Ca(e2))
% Z ‘01(61)(7') - 02(62)(7—)

TEYD

% Z Z O1(€1|w=p)(T)D(p)

TEY |pEX

- Z Ca(e2lw=p)(T)D(p)

pEX

% Z D(p) Z ’Ol(el‘wzp)(7>

peEX TEX

IN

— Ca(e2|w=p)(7)
> D(p)d(C(erlw=p), Cle2lw=p))
peEX

by the triangle inequality. Let
argmax d(C(ei1]w=p), C(e2luw=p)),

pEsupport(D)

o =

so that
d(C(e1]w=0),C(e2lw=0s)) > d(C(e1), C(e2))

by an averaging argument. ]

Lemma 2 Let Cy and Cy be probabilistic circuits on wires
W with the same output wire and let e be a distribution in-
Jection experiment. Then there exists a value injection exper-
iment €' < e such that

d(C1(€"), Ca(e")) > d(Ci(e), Ca(e)).

Proof: By induction on |V, where V' C W is the set of
wires that e constrains to nonconstant distributions. If |V| >
0, then let w € V. By Lemma 1, there exists a value o €
such that

d(Cr(ew=c), C2(elw=0)) = d(Ci(e), Ca(e))-

Since e|,=, constrains one fewer wire to a nonconstant dis-
tribution, the existence of ¢’ follows from the inductive hy-
pothesis.
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Corollary 3 If circuits Cy and Cy are e-behaviorally equiv-
alent with respect to value injection experiments, then C
and Cy are e-behaviorally equivalent with respect to distri-
bution injection experiments.

Suppose that C' is a probabilistic circuit and e; and e5 are
distribution injection experiments. For each wire w, we say
that e; and e agree on w if either

e ¢y and e, constrain w to the same distribution, or

e wis free in e and ey, and e; and es agree on all of w’s
inputs.

If e; and e5 agree on a wire w, then the marginal distributions
of win e; and e, are identical, that is, C(e1, w) = C(eq, w).

Lemma 4 Let C be a probabilistic circuit on wires W and
let eq and eq be distribution injection experiments that agree
on wires V. C W. Then there exist distribution injection ex-
periments €] < ey and e}y < ey such that for each wire w €
V, there exists a value o € X such that e (w) = eh(w) = o,
and

d(C(e1), Clez)) = d(C(er), Clez)).

Proof: By induction on the number of unfixed wires w €
V. If there is such a wire, choose v to be one that is not
reachable from the others. If e1(v) = e2(v) = *, then e;
and e agree on all of v’s inputs, and by the choice of v, all
of v’s inputs are fixed. As such, we may assume without
loss of generality that e; and ey in fact constrain v to the
distribution D = C(ey,v) = C(ez,v). By Lemma 1, there
exists a value ¢ € support(D) such that

d(C(e1]v=0), Clezlv=s)) = d(C(e1), Clez)).

The existence of €] and e, follows from the inductive hy-
pothesis. ]

Lemma 5 Let C be a probabilistic circuit on wires W, let
e be a distribution injection experiment, let w € W be a
wire free in e, and let D be a value distribution. Then e and
elw=p agree on all wires w € W to which there is no path
on free wires from w.

Proof: If u is constrained, then the conclusion follows. Oth-
erwise, since u is free and has no free path from w, none of
u’s inputs have free paths from w. We proceed by induction
on the length of the longest path to w. If this length is zero,
then u does not have any inputs. Otherwise, the inductive hy-
pothesis applies to all of u’s inputs, on which e and e|,=p
then must agree. It follows that they also agree on w. |

Lemma 6 Let C be a probabilistic circuit on wires W, let
w € W be a wire, and let Dy, Dy be value distributions.
There exist value distributions D', D}, with support(D}) N
support(D%) = () such that for all experiments e,

d(C(elw=p,), C(elw=p,))
= d(D1, D2)d(C(elw=p;), C(€lw=p3))-



Proof: We have
d(C(elw=p,),C(elw=D,))
53" [Clelu=p,)(0) ~ Clelump,)(0)]

ocex
_ % ST Clelumr) (0)(Di(7) - DQ(T))‘ .
oceX |tex
If we let
Di(7) = Dy(r) — min(Ds (1), Da(7))
Dy(7) = Da(7) — min(D; (1), Da(7)),
then

d(C(ew=p,), C(elw=D,))

= 1 Z C(e‘w:T)(U)(l/)\l(T) - B\Q(T))

2
TEY

Since ) .+, 5\1(7) =1->  cxymin(D;(7), Da(7)) and
likewise for Do,

oED

A(D1, D) = 5 3 [Di(r) = Da(r)|
TEY
=3 3 D) - Do)
TED
=Y Ditr) = Y. Dalr).
TEYD TEYD

If d(D1, D2) > 0, then the distributions D} and D), where
D (7) = Dy(7)/d(D1, Ds)
Di(r) = Da(r)/d(Di, D»)

satisfy the requisite properties. Otherwise, any two distribu-
tions with disjoint support will do. |

4 Test Paths

The concept of a test path has been central in previous work
on learning deterministic circuits by means of value injec-
tion queries [AACR07, AACWO06]. A test path for a wire w
is a value injection experiment in which the free gates form a
directed path in the circuit graph from w to the output wire.
All the other wires in the circuit are fixed; this includes the
inputs of w. A side wire with respect to a test path p is a
wire fixed by p that is input to a free wire in p. A test path
may help the learning algorithm determine the effects of as-
signing different values to the wire w. The test-path lemmas
from [AACRO7, AACWO06] may be re-stated as follows.

Lemma 7 Let C be a deterministic circuit. If for some value
injection experiment e, wire w and alphabet symbols o and
T it is the case that

O(p|wza) = O(p|w:‘r)
for every test path p < e then also

C(elw=c) = C(€lw=r)-
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Nontrivial complications arise in attempting to carry over
this test path lemma to general probabilistic circuits, as we
now show. The following lemma shows that for alphabets
of size at least four, there are transitively reduced probabilis-
tic circuits for which the test-path lemma fails completely.
(A less intuitive version of this construction shows that this
phenomenon occurs also at alphabet size three.)

Lemma 8 If |X| = 4, there exists a probabilistic circuit C,
value injection experiment e, wire w and alphabet symbols
o and T such that although for every test path p < e for w,
d(C(plw=0), C(plw=r)) = 0, it is nevertheless the case that
d(C(elw=s),Clelw=r)) = 1.

Proof: Assume > = {00,01, 10,11}, and define probabilis-
tic gate functions 7, L, R, and X as follows.

T(00) =T'(11) = U{00,11}),
T(01) =T(10) = U{01,10}),
L(00) =L(01) = 00,
L(10) =L(11) = 01,
R(00) =R(10) = 00,
R(01) =R(11) 01,

and X (ab, ed) = 0(b & d), where @ is sum modulo 2.
The circuit C' has 5 wires, connected as in Figure 2. The
output wire is ws; note that C' is transitively reduced.

wil=U({00,01})

Figure 2: The circuit C; ws is the output wire.

Consider the experiment e that leaves all the wires free.
We have C'(€|y,=00) = 00 and C(e|w,=01) = 01, and thus
d(C(elw,=00); C(€|lw,=01)) = 1. However, the only test
paths for w; fix w3 and leave all other wires free or fix wy
and leave all other wires free. Calculation verifies that fixing
w3 or wy to any value and leaving the other wires free yields
the output distribution U ({00, 01}) regardless of whether w;
is fixed to 00 or 01. Thus, for every test path p for w;, we
have d(C'(plw,=00), C (Plw,=01)) = 0. u

4.1 A Bound for Boolean Probabilistic Circuits

Surprisingly, for Boolean probabilistic circuits there is a use-
ful quantitative relationship between the differences exposed
by test paths and the differences exposed by arbitrary exper-
iments.



Let e be an experiment and w a wire. Define TI(e, w) to
be the set of all directed paths from w to the output wire on
free wires in e. Let S(e) be the set of wires that originate a
free shortcut, that is, the set of free wires w such that there
exists a path p € TI(e, w) with two free wires to which w is
an input. Define

ke, w) = Z glpnSie)l,

pEIl(e,w)

Lemma 9 Let C be a probabilistic circuit, e be a distribu-
tion injection experiment, w and u be free wires where w is
an input to u, and Dqy be a value distribution. Let 3 = 2 if
w € S(e) and = 1 otherwise. Then

k(e,w) = k(e|lu=py, W) + K(€|w=1,u) - 5.

Proof: The first term of the sum counts paths that don’t con-
tain u, and the second counts paths that do. Let e’ = e|,—p,
and e’ = e|,,—1. We have

ke, w) = Z 9lpNS(e)]
pell(e,w)
— Z glpPNS(e)l | Z 9lpnS(e)l
pEll(e,w) p€ell(e,w)
uép u€p
— Z olpnS(el 4 Z 2\pﬂS(e”)|ﬁ
pell(e’ ,w) pell(e’ u)

= k(e,w) + k(e", u) - B,

since each path p 3 w from w corresponds to the path p\ {w}
from wu. ]

Lemma 10 Let C' be a Boolean probabilistic circuit, e be a
distribution injection experiment, w be a wire, and D1, Dy
be value distributions. If there exists € > 0 such that for all
w-test paths p < e,

d(c(p|w:D1)a C(p‘w:Dz)) <g,
then

d(C(elw=p,),C(€elw=D,)) < K(e,w) - .

Proof: By induction on ¢(e), the number of free wires in e.

By Lemma 6, assume that support (D7) Nsupport(Dz) = .

The critical feature of the Boolean case is that it follows that

D; = 0and Dy = 1 without loss of generality—it is impor-

tant to the following proof that Dy and D5 be deterministic.
If ¢(e) = 1, then either

d(C(efw=0), Clew=1)) = 0,

or w is the output, e is a w-test path, and k(e, w) = 1. Oth-
erwise, the inductive hypothesis is that the lemma holds for
all experiments e’ with ¢(e’) < ¢(e).

Except for w, the experiments e|,,—¢ and e|,,—; agree on
all constrained wires, so by Lemmas 4 and 5, assume without
loss of generality that every wire with no free path from w is
in fact fixed. Since C'is acyclic, there exists a free wire u #
w whose only unfixed input is w. Let g be the gate assigned
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by C to u and let By = g(e|w=0) and By = g(e|y=1), SO
that

C(e|w:0) = C(e‘wzo,u:Bo)

C(efw=1) = O(e‘w=1,u=B1)-
By the triangle inequality,

d(C(efw=0), Clefw=1))
S d(C(e‘wzo,u:BO)a C(e|w:1,u:Bo))
+ d(Clew=1,u=B,), C(€lw=1,u=B,))-

The inductive hypothesis bounds the first term of the sum by
k(e/,w) - €, where ¢/ = e|,—p,. We now derive a bound
on u-test paths so that the inductive hypothesis applies to the
second term as well. Let § = 2ifw € S(e) and § = 1
otherwise. Let ¢’/ = e|,=1 and suppose p < e is a u-test
path. Then

d(C(plu=5,), C(Plu=5,))
< d(C(plw=1,u=Bo): C(plw=0,u=B,))
+ d(C(mw:O,u:Bo)v C(plwzl,u:Bl ))
d(C(p|w:O,u:Bo)a C(p|w:1,u:Bo )
+ d(c(p|w:0,u:*)v C(p|w:1,u:*))
< Pe,

since both terms of the sum are bounded by ¢, and the first
is nonzero only if w is an input to some free wire in p other
than u. Thus

d(C(e"|lu=0), C(e"[u=1)) < k(" u) - Be,

and,
d(C(elw=0), C(e|w=1))
< k(e w) e+ k(e u)- Be
= k(e w) - ¢,
by Lemma 9. |

In the case of transitively reduced circuits, S(e) = ), and
k(e,w) = m(e,w), where (e, w) = |I(e, w)|, the number
of directed paths on free wires in e from w to the output wire.

Corollary 11 Let C be a transitively reduced Boolean prob-
abilistic circuit, e be a distribution injection experiment, and
w be a wire. If there exists € > 0 such that for all w-test
paths p < e,

d(c(p‘w:o)7 C(p|w:1)) S g,

then
d(C(elw=0), C(elw=1)) < m(e,w) - €.

5 Learning Boolean Probabilistic Circuits

The amount of attenuation given by Lemma 10 allows us
to adapt the CircuitBuilder algorithm [AACWO06] to learn
Boolean probabilistic circuits with constant fan-in and log
depth in polynomial time.

Theorem 12 Given constants c and k there is a nonadap-
tive learning algorithm that with probability at least (1 — §)
successfully e-approximately learns any Boolean probabilis-
tic circuit with n wires, gates of fan-in at most k and depth
at most clogn using value injection queries in time bounded
by a polynomial inn, 1/¢ and log(1/9).



We adapt the Circuit Builder algorithm from [AACWO06]
to prove Theorem 12 and call the resulting algorithm Prob-
abilistic Circuit Builder (PCB). The algorithm constructs a
set U of experiments such that every test path is equivalent
to some experiment in U, obtains a sufficiently good estimate
of the output distribution for each experiment in U, and then
builds a circuit approximately behaviorally equivalent to the
target circuit by repeatedly adding sufficiently accurate gates
all of whose inputs are in the partially constructed circuit.

Let the target circuit be C' and let positive constants 9, ,
k and c be given such that the fan-in of C' is bounded by &
and the depth of C is bounded by clog n. For such a circuit,
(e, w) is bounded above by k¢1°8™, so the quantity x(e, w)
is bounded above by

H(n) _ k,clogn . 2clog n _ nc(log k+1) _ nO(l).

The PCB algorithm is nonadaptive: it computes a set
U of value injection experiments, repeats each value injec-
tion query for e € U sufficiently many times to estimate
the expected value of C'(e) with enough accuracy, and then
uses the results of the queries to build a circuit C” that is
e-behaviorally equivalent to C'.

In choosing the experiments U, the goal is that for every
potential test path, U includes an equivalent experiment. The
structure of the circuit, however, is not known a priori, a dif-
ficulty that we overcome by the same method as [AACWO06].
Let U. be a universal set of value injection experiments such
that for every set of kclogn wires and every assignment
of symbols from ¥ U {x} to those wires, some experiment
e € U, agrees with the values assigned to those wires. As
in [AACWO06], it is possible to construct such a set U of size

QO(kc logn) O(kc)

logn =n
in time polynomial in its size.

For every wire w and test path p for w, there is an exper-
iment in U, that leaves the path wires of p free and fixes the
side wires of p to their values in p. Consequently, p and this
experiment agree on the output wire. Although it is tempting
now to set U = U,, there is no easy way to determine which
experiment a test path corresponds to, making it difficult for
PCB to perform comparisons where w is fixed to different
values. For b = 0, 1, then, let U, contain every experiment
€|w=p such that e € U, and w is free in e. Now we can take
U=U,UUyul,.

For each e € U, PCB repeatedly makes a value injec-
tion query with e to estimate the distribution of C'(¢). By
Hoeffding’s bound, we have that

m = O((nr(n)/e)*log(|U|/6))

trials per experiment e suffice to guarantee that with proba-
bility at least 1 — ¢, forall e € U,

d(C(e),C(e)) < &/ (5nr(n)). (D

If (1) holds, then we can compute good estimates for a class
of distribution experiments. Let e € U, be a value injection
experiment, w be a wire that e leaves free, and D be a value
distribution. Then let

=) Dl

oEXD

e|w D €|w o)
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We have
d(C(elw=n),C A(elw—D))
< ZD €|w O') é\((e|w=0))
ceX

< ¢e/(bnk(n)).

From this point on, we assume that the estimates are cor-
rect and show that PCB successfully builds a circuit C’ that
is e-behaviorally equivalent to C.

PCB builds the circuit C” one gate at a time. Initially C”
has no gates assigned to wires. The algorithm tries repeat-
edly to find a wire w and a gate g such that g is £ /n-correct
for w in C and all of ¢’s inputs are in C’. When this is no
longer possible, PCB outputs C’ and halts.

To prove the correctness of PCB, we first establish two
lemmas connecting gates, paths and experiments. Given a
Boolean probabilistic circuit C' and a probabilistic gate g, g
is n-correct for wire w with respect to C' if for every value
injection experiment e that fixes the input wires for g we have
d(C(e), Clelw=g(e))) < n, where g(e) denotes the coin flip
determined by g when its inputs are fixed as in e. Recall that
¢(e) denotes the number of free wires in experiment e.

Lemma 13 Ler C and C' be probabilistic circuits on wires
W, and let e be a distribution injection experiment. If for
every wire w, the gate g for w in C' is n-correct for w with
respect to C, then

d(C(e),C'(e)) < ¢(e) - m

Proof: By induction on ¢(e), the number of free wires in e.
If ¢(e) = 0, then e constrains the output wire, and trivially,
d(C(e),C’(e)) = 0. Otherwise, the inductive hypothesis is
that C' and C’ are n-behaviorally equivalent with respect to
all experiments with fewer free gates.

By Lemma 2, assume that e is in fact a value injection
experiment. Since C” is acyclic, there exists a free wire w
in e such that the inputs to w in C” are fixed in e to some k-
tuple (oq,...,0%) € XK. Letting f be the probabilistic gate
function for w in C’, we have C’(e) = C’(elw=f(oy,....00))-
and

(C(e),C'(e))
< d(C’(e) (6|w—f(017 ~~a0k))

+ d( ( |w TG nk))vCl(€|w:f(01,...,ak)))
<n+(dle) =1)-n=g¢(e) -n

by the fact that f is 7-correct and the inductive hypothesis.
]

Next we show that test paths are sufficient to determine
whether a gate is n)-correct for a wire in C.

Lemma 14 Let C be a Boolean probabilistic circuit, w a
wire and g' a probabilistic gate. If for every test path p for
w that fixes all the inputs of g', d(C(p), C(plw=g'(p))) <
1/k(C), where k(C) is the maximum value of k¢ (e, w)
over all circuits C' with the same set of wires, all experi-
ments e, and all wires w, then g’ is n-correct for w with
respect to C.



Proof: Let g be the actual gate that C' assigns to w. Let e
be a value injection experiment that fixes every input of ¢'. e
may not fix all of ¢g’s inputs, but since C' is acyclic, ¢’s inputs
are not reachable from w. By Lemmas 4 and 5, there exists
an experiment e’ < e that fixes ¢’s inputs, with

d(c(el)v C(el|w:g’(e’))) > d(C’(e), C(6|w:g’(e)))'
Since ¢’ fixes all of g’s inputs, C'(e’) = C(€'|y=g(er))- Itis

given that for all test paths p that fix all inputs of g and ¢’
that

d(C(p‘w=g(p))a C(p|w=g'(p))) < ﬁ/”(c)a

so it follows by Lemma 10 that
A(C(€'lw=g(e)) C(€ =g (er)))

< r(e',w) - n/K(C)

<,
]

To prove the correctness of PCB, we argue as follows.

Let V be the set of wires to which C” does not assign a gate.
Then since C'is acyclic, there is some wire w € V' such that
none of w’s inputs in C belong to V. PCB looks for a gate g’

such that for each experiment e € U, that leaves w free and
fixes all inputs of ¢/,

d(C(e), Clelu=gi(e))) < 32/ (5nri(n)).

and ¢’ is n-correct for w.

2)
Then
d(C(e),C(e))

< ¢/(5nk(n))
d(a(e‘w:g’(e))7C(e|w:9'(€))) < /5 k

< e/(5nk(n)),

and

d(c(e|w:g’(e))v C(e|w:g(e))) < 6/(”“(”))
by (1) and the triangle inequality. It follows by Lemma 14
that ¢’ is €/n-correct for w in C. Let g be the gate that C
assigns to w and suppose that d(g(e), g'(e)) < e/(5nk(n))
for all experiments e that fix g’s inputs. Then

d(C(e),C(e)) < 6/(5%(”))

d(C(e), Clelw=g(e))) =
d(c(e‘w:g(e)) ( |w =g'( e))) /(571’@( ))
d(c(€|w:g’(e)) ( |w g’ ( e))) 6/(5’””6( ))

and ¢’ satisfies (2). Therefore, PCB will continue to make
progress.

To bound the running time of PCB we argue as follows.
The set U of experiments is of cardinality n®*¢) and can be
constructed in time polynomial in its size. Each experiment
in U is repeated

O((nri(n)/e)*log(|U|/6))

times; recall that x(n) = O(n°(°8k+1))  PCB chooses a
gate for a wire n times. Each gate it tests must be subjected
to a polynomial number of experiments; in order to be as-
sured of a sufficiently good approximation, it must iterate
over O(n*) sets of inputs times £ |* entries times a poly-
nomial number of points in [0, 1] to be assured of finding
a sufficiently good approx1mat10n to a true gate. Thus the
running time of PCB is polynomial in n, 1/¢ and 1/4.
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6 Lower Bounds

We consider lower bounds on the path attenuation factors for
Boolean probabilistic circuits. The following lemma shows
that the bound of (e, w) for transitively reduced Boolean
probabilistic circuits in Corollary 11 is tight infinitely often.

Lemma 15 There is an infinite set of transitively reduced
probabilistic Boolean circuits such that for each circuit C'in
the family, there exists a value injection experiment e and a
wire w such that

d(C(elw=0), Clew=1)) =1
and for every test path p for w we have

d(c(p|w:0)v C(p|w:1)) = 1/7T(67 w)

Proof: For each positive integer ¢, define the circuit Cy to be
a chain of ¢ copies of the circuit C; in Figure 1 with wire w4
of one copy identified with wire w; of the next copy. More
formally, the 3d + 1 wires are wg 4 and w; j fori =1,...,d
and j = 2,3,4. The output wire is wq 4. The wire wg 4
has no inputs and is determined by an unbiased coin flip,
that is, U({0,1}). The wires w; » and w; 3 are the outputs
of deterministic identity gates with input w;_; 4. The wire
w; 4 = A(w; 2,w; 3) is the result of applying the two-input
averaging gate A to the wires w; » and w; 3.

The experiment e leaves all of the wires free. Let w de-
note the wire wg 4. Clearly there are 2° paths on free gates
in e from w to the output gate, that is, 7w(w,e) = 2¢. For
experiment e we have C(e|,—o) = 0 and C(e|p=1) = 1,
so d(C(elw=0),C(elw=1) = 1. However, any test path p
for w must fix one of the wires w; > or w; 3 for each ¢ =
1,...,d. As the signal proceeds through each level, it is at-
tenuated by 1/2, so the final result for any test path p for w
is d(C(pl=o), C(plu-1)) = 1/2 = 1/7(e, w). u

A generalization of this construction shows that for any
transitively reduced circuit graph, there is an assignment of
Boolean probabilistic functions that matches the attenuation
factor of 7 (e, w).

Lemma 16 Let G be a transitively reduced directed graph
with a designated output node in which there is a path from
every node to the output node. There is a Boolean proba-
bilistic circuit C whose circuit graph is G such that for every
value injection experiment e and for every test path p < e
and every wire w,

d(C(ew=1);

> m(e,w) -

C(efw=0))
d(c(p‘w=1)7 C(p|w=0))-

Proof: (Proof omitted in this abstract.) |

Can the general bound in Lemma 10 be improved to the
bound for transitively reduced circuits in Corollary 11? The
following example shows that the better bound is in general
not attainable if the circuit is not transitively reduced. It gives
a family of circuits of depth 2d for which the worst-case ratio
of the differences shown for w by an experiment e and the
best path for w is (5/4)%7 (e, w).



Lemma 17 There exists an infinite set of Boolean proba-
bilistic circuits D1, Do, ... such that for each { there ex-
ists a value injection experiment e and a wire w such that

n(e,w) = 4° and
d(De(elw=0), De(elw=1)) = (5/7)",
but for any test path p for w,

d(D¢(plw=0), De(plw=1)) = (1/7)2.

Proof: We first define a Boolean probabilistic circuit D1 and
then connect ¢ copies of it in series to get D,. The wires of
D, are wy,...,ws. They are connected as in Figure 3; the
output wire is ws. Note that the edge (w1, ws) means that the
circuit graph is not transitively reduced. The gate function G

%_%@

Figure 3: The circuit D1; ws is the output wire.
is defined by giving its expected value as a function of its
inputs:
E[G(w1,ws,ws,wy)] = (1 —w1) + 2ws + 2ws + 2wy) /7.

Let e be the experiment that leaves all five wires free. It is
clear that

d(D1 (elw=o), D1 (€luzr)) = 5/7.
We now show that for any test path p for w1,

d(Dl(pw:O)v Dl(p|w:1)) = 1/7

The possible test paths p for w; either fix all of wq, w3, wy
or all but one of them. Thus, as we change from w; = 0
to wq 1 in such a test path, the assignments to wires
(w1, wa, w3, wy) change in one of four possible ways:

(0, b2, b3,b4) to (1,ba,b3,bs)
(0,0,b3,b4) to (1,1,b3,b4)
(0,b2,0,b4) to (1,b2,1,b4)
(0, b2, b3,0) to (1, bz,b3,1)

Checking each of these possible changes against the defini-
tion of G, we see that each change produces a difference of
1/7, as claimed. (This example can be modified to give a dif-
ference of 1 versus 1/5; details are omitted in this abstract.)
Thus, D, gives the base case of the claim in the lemma.

To construct Dy, we take ¢ copies of D; and identify
wire ws in one copy with wire w; in the next copy, making
the wire ws of the final copy the output wire of the whole
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circuit. Let w denote the wire w in the first such copy. Then
7(e,w) = 4° and

d(Dy(elw=0), Delew=1)) = (5/7)".

For any test path p, the signal is attenuated by a factor of 1/7
for each level, and we have

d(D¢(plw=0), De(plw=1)) = 1/75.
|

The construction can be generalized to k+1 wires for any
odd &£+ 1, which increases the attenuation. In the base circuit
there are k paths and an attenuation factor of 1/(2k — 3), and
the worst-case ratio of differences for an experiment and its
test paths in D, approaches 2‘ (e, w) as k goes to infinity.

7 Non-Boolean Circuits Revisited

The sharp contrast in results for transitively reduced circuits
with alphabet size at least three, for which test paths may
show no difference (Lemma 8) and those with alphabet size
two, for which test paths must show a significant difference
(Lemma 10) motivate us to consider a generalization of the
kinds of experiments we consider, to function injection ex-
periments. This generalization allows us to extend the results
of Lemma 10 to non-Boolean alphabets.

In a value injection experiment, each wire is either fixed
to a constant value or left free. In a function injection ex-
periment, these possibilities are expanded to permit a trans-
formation of the value that the wire would take if it were
left free. As an example, consider a transformation in which
the values are linearly ordered and all values below a certain
threshold are mapped to the minimum value and all other
values are mapped to the maximum value. It is conceivable
that this kind of transformation could be feasible in some do-
mains; in any case, the theoretical consequences are quite in-
teresting. We first give a general definition of function injec-
tion, but in the results below we are primarily concerned with
2-partitions, that is, transformations that are like the above
example in that they partition the values into two blocks and
map each block to a fixed element of the block.

An alphabet transformation is a function f that maps
symbols to distributions over symbols. An alphabet transfor-
mation is deterministic if it assigns only deterministic dis-
tributions, in which case we think of it as a map from sym-
bols to symbols. A deterministic alphabet transformation f
is a k-partition if there exists a partition of ¥ into at most
k disjoint nonempty sets >; such that for each ¢ there exists
o; € 3; such that f(X;) = {o;}. We use 2-partitions to re-
duce the case of larger alphabets to the binary case. Note that
the 2-partitions of a binary alphabet include the identity and
the two constant functions, but not the negation function.

If D is a value distribution and f is an alphabet transfor-
mation, then f(D) is the value distribution in which

(f(D)(o) = Y D(r)(f(7))(0).

TEY

A function injection experiment is a mapping e with do-
main W that assigns to each wire the symbol * or a symbol
from ¥ or an alphabet transformation f. Then e leaves w
free if e(w) = x, fixes w if e(w) € X, and transforms



w if e(w) is an alphabet transformation f. We extend the
ordering < on experiments by stipulating that each alpha-
bet transformation f < *. A 2-partition experiment is a
function injection experiment in which every alphabet trans-
formation is a 2-partition.

We now define the joint probability distribution on as-
signments of symbols from ¥ to wires determined by a func-
tion injection experiment e. If e fixes w, then w is just as-
signed e(w). Otherwise, if the inputs of w have been as-
signed the values o1, ...,0, and f is the gate function for
w, we randomly and independently choose a symbol ¢ ac-
cording to the value distribution f(o1,...,0k). If w is free
in e, then o is the symbol assigned to w; however, if e(w) is
an alphabet transformation, then a symbol 7 is chosen ran-
domly and independently according to the value distribution
e(o) and assigned to w. That is, when e(w) is an alphabet
transformation, we generate the symbol for w as though it
were free, and then use the distribution e(w) to transform
that symbol. Because C' is acyclic, this process assigns a
symbol to every wire of C'.

In a function injection query (FIQ), the learning algo-
rithm gives a function injection experiment e and receives a
symbol o assigned to the output wire of C' by the probabil-
ity distribution defined above. A functional test path for a
wire w is a function injection experiment in which the free
and transformed wires are a directed path in the circuit graph
from w to the output wire, and all other wires are fixed.

As an example of how functional test paths help in learn-
ing non-Boolean probabilistic circuits, consider the circuit in
the proof of Lemma 8. We specify a functional test path p
by p(w1) = p(ws) = p(ws) = *, p(ws) = 00 and p(w2) is
the alphabet transformation 00 — 00, 01 — 01, 10 — 01,
and 11 — 00. Note that the alphabet transformation is a
2-partition. Then C(p|y,=00) = 00 but C(p|y,=01) = 01
deterministically, so this functional test path witnesses a dif-
ference of 1, as large as the experiment that leaves all the
wires free. Test paths with functions allow us to carry over
the results of Lemma 10 to non-Boolean alphabets.

Lemma 18 Let C' be a probabilistic circuit, e be a function
injection experiment, w be a wire, and D1, Dy be value dis-
tributions. If there exists € > 0 such that for all functional
w-test paths p < e,

d(C(plw=D,), C(plw=D,)) < €,
then

d(c(6|w=D1)7 C(e|w=D2)) < Fﬂ(e,UJ) - E.

Proof: The obstacle in Lemma 10 is that when the alpha-
bet is non-Boolean, we may assume only that Dy and D,
have disjoint support, not that they are deterministic. This
obstacle can be overcome by injecting a 2-partition at w. Let
31 = support(Dy) and Yo support(Ds) and assume
21 n 22 = @ Then

d(C(e|w=p,), C(elw=D,))
< Y Di(p1)D2(p2)d(Celw=p, ) Clelu=ps))

pP1EX
p2E€X,
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by the triangle inequality. Let

(0,7) = argmax d(C(e|w=p, ), C(€|w=p,))
pP1EY,
p2EX2

so that

d(C(elw=p,), C(€lw=D,))
< d(Dla D2)d(c(e|w:0)a C(e|w:‘r))-

Let f be an alphabet transformation that maps ¥; to o and
3o to 7 and all other symbols to either o or 7. Then f is a
2-partition, and

d(C(elw=p,),C(elw=D,))
< d(Clelw=f(py)), Clelw=r(D,)))-

Since f(D1) = o and f(D2) = T, the rest of the proof goes
through. |

Corollary 19 Let C be a transitively reduced probabilistic
circuit, e be a function injection experiment, w be a wire,
and D1, Dy be value distributions. If there exists € > 0 such
that for all functional w-test paths p < e,

d(C(plw:Dl)v C(p|w:D2)) <e,
then
d(C(elw:D1)7 C(e‘w:Dz)) < 71-(67 w) "€

Certain natural questions arise in response to the intro-
duction of function injection experiments. We can define
circuits C' and C’ to be strongly behaviorally equivalent
if C(e) = C’(e) for every function injection query e. Does
behavioral equivalence imply strong behavioral equivalence?
Once again, alphabet size determines the answer: no for al-
phabet size greater than two, yes for alphabet size two.

Lemma 20 For ¥ = {0, 1,2}, there exist deterministic cir-
cuits Cy and Cy that are behaviorally equivalent but not
strongly behaviorally equivalent.

Proof: In both C; and C5 there are two wires w; and ws,
where wo is the output wire. In both circuits the gate for
wy has input w; and deterministically maps O to 0 and maps
1 and 2 to 1. In Cq, w; is the constant 1 and Cs it is the
constant 2.

Then if e is the value injection experiment that leaves
both wires free, Ci(e) = 1 = Ca(e). If e fixes either w;
or woy, then also Cy(e) = Cs(e). Thus C is behaviorally
equivalent to Cf.

However, the 2-partition function injection experiment e
that leaves wo free and maps the output of w; according to
the transformation 0 — 0,1 — 0, 2 — 2 yields Cy(e) = 0
and Cs(e) = 1. Thus (1 is not strongly behaviorally equiv-
alent to Cs. [ |

However, 2-partition function experiments suffice to es-
tablish strong behavioral equivalence.

Lemma 21 Let C and C' be probabilistic circuits with the
same alphabet 3., the same set of wires and the same output
wire. If C(e) = C'(e) for every 2-partition function experi-
ment e then C and C" are strongly behaviorally equivalent.



Proof: By another modification of the proof of Lemma 10.
]

Because in the Boolean case every 2-partition function
injection query is a value injection query, we have the fol-
lowing.

Corollary 22 For Boolean probabilistic circuits C' and C',
if C is behaviorally equivalent to C then C' is strongly be-
haviorally equivalent to C'.

8 Discussion and Open Problems

These results concern general probabilistic acyclic circuits,
with no restriction other than fan-in on the kinds of prob-
abilistic gates considered. Particular domains may warrant
specific assumptions about the gates, which may make the
learning problems more tractable. For example, for the prob-
lem of learning the structure of an independent cascade so-
cial network using exact value injection queries, a query-
optimal algorithm is presented in [AAR]. Note that the net-
works in this domain may contain cycles, which complicates
their analysis.

Initial work suggests that Corollary 11 allows us to adapt
the Distinguishing Paths algorithm [AACRO7] to learn tran-
sitively reduced Boolean probabilistic circuits, given a bound
on the number of paths in the circuit graph. We would like
to adapt Circuit Builder to use functional test paths to learn
non-Boolean circuits; in this case the universal set must map
wires to the set containing all alphabet symbols from 3 and
all 2-partitions of X, of which there are fewer than |%|?2/%].
Thus, the universal set will still be of size n®!), suggesting
that a polynomial time algorithm may be attainable in this
case. An open question is whether not-injection reduces the
maximum path attenuation to just the number of paths for
general Boolean probabilistic circuits. A very interesting di-
rection of future work is whether there are computationally
feasible approaches to learning probabilistic circuits that use
experiments more general than paths and thereby avoid the
problem of path attenuation.
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Abstract

We show that randomly generated monotone
clog(n)-DNF formula can be learned exactly in
probabilistic polynomial time. Our notion of ran-
domly generated is with respect to a uniform dis-
tribution. To prove this we identify the class of
well behaved monotone clog(n)-DNF formulae,
and show that almost every monotone DNF for-
mula is well-behaved, and that there exists a prob-
abilistic Turing machine that exactly learns all well
behaved monotone c¢log(n)-DNF formula.

1

Intuitively, a monotone clog(n)-DNF, f, is well behaved if it
satisfies three smoothness criteria—the “small”, “medium,”
and “large” z properties—that collectively rule out having an
unexpectedly large number of terms having a common subset
of the variables. Thus by removing terms we maintain our
well-behaved criteria and we have:

Introduction

Theorem (Subset property of the set of well-behaved func-
tions). If f is well-behaved and ' contains a subset of the
terms of f then [’ is also well-behaved.

The question of what is meant by “a randomly generated
monotone ¢log(n)-DNF formula” is somewhat application
specific, but because of the subset property of the set of well-
behaved functions, our learning algorithm and proof of cor-
rectness is quite robust. We imagine a process that randomly
selects m terms of size clog(n); we show that such a func-
tion will be well behaved with high probability as long as
m < 2loglog(n)n® (where roughly @ of the exam-

ples will be false when m 2loglog(n)nc.) This sub-
sumes standard notions of randomness that are intended to
generate formula which are expected to be true with fixed
probability less than one. For functions with the small and
medium smoothness properties and for a set of variables,
s, of bounded size, we can efficiently determine by sam-
pling whether or not there exists a term ¢ € f such that
s C t with high probability. Our algorithm considers all
subsets of variables, s, of a given, fixed size. To extend s
we make multiple trials of random extension of s, through

*Computer Science Department, University of Chicago.
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|s| = B(n) = loglog ¢/n. The medium and small subset
properties guarantee that with high probability, if s’ O s has
size at most §(n) and there exists a term ¢ € f such that
s’ C t, then s’ is generated by this process. At this point, the
large smoothness property comes into play and guarantees
that the previous ¢ is unique, and therefore can be efficiently
found. In this way, we find all terms ¢ of f in polynomial
time.

1.1 Motivation and Past Work
Mentioning DNF, Valiant [12] states:

The possible importance of disjunctions of con-
junctions as a knowledge representation stems from
the observations that on the one hand humans ap-
pear to like using it, and, on the other, that there
is circumstantial evidence that significantly larger
classes may not be learnable in polynomial time.

Many learning theorist have considered learning mono-
tone DNF formula. Angluin [2] completely solved this prob-
lem for the case of exact learning using membership queries
— all monotone DNF are learnable in polynomial time in
this model for all distributions. This problem has proven
more difficult if the learner is restricted to sampling, i.e.
learning by example. The obstacle seems to be “cluster struc-
ture” within the formula, specifically a relatively large set of
variables common to a relatively large number of clauses.
Existing results in the literature tackle this obstacle in two
different ways. (1) allow the running time of the learner
to explode in the face of such clusters, e.g. Verbeurgt [13]
learns any poly(n)-size DNF in time n°U°&(") from uni-
form examples. Or (2) consider classes of formula that do
not contain such clusters, specifically by random generation
and limited number of terms, e.g. Servedio [9] learns any

2V1°8(")_term DNF in polynomial time from a product dis-
tribution. Other researchers have used similar approaches to
other problems, [10], [8], and [6].

The results of this paper belong to group (2). Our result
is distinguished from Servedio [9] in that our definition of
well behaved represents an initial attempt to formalize the
obstacle, and to obtain the best possible result based on that
formalization. From this, we obtain conditions of greater
generality.

Despite the difficulty of learning monotone DNF with
random examples drawn from the uniform distribution, the



naturalness of the class suggests in some restricted form, it
must be possible to learn. In their 1994 paper, Aizenstein and
Pitt proposed learning most DNF instead of all DNF. They
defined “most” as the DNF generated randomly with certain
parameters set, one parameter is choosing the variables in a
term with probability % They left as an open question a more
natural setting of those parameters. Jackson and Servedio
in 2006 started answering the open question of Aizenstein
and Pitt in their paper [7]. They learned “most” monotone
DNF where the number of terms is bounded by O(n?~7)
with fixed term size, log m, where m is the number of terms.
We continue this work left open by Aizenstein and Pitt, and
Jackson and Servedio.

We expand the approach used by Jackson and Servedio
in their paper [7]. To learn random monotone DNF with
O(n?~7) number of terms, they use a clustering algorithm
after using an inclusion/exclusion pair finding algorithm. In
our paper, we learn O(n®) number of terms in polynomial
time for any constant ¢, and fixed term size, clog(n).

Similar results are independently obtained by Jackson,
Lee, Servedio and Wan [5] but are slightly weaker. They
use a similar algorithm but significantly different underlying
proofs.

Theorem 1. Given a random monotone DNF, f, Algorithm
Learn Random Monotone DNF finds f in polynomial time
with high probability.

1.2 Our Model and Random Functions

Continuing the work of Aizenstein and Pitt [1] and Jackson
and Servedio [7], we explore learning a function chosen ran-
domly from a large class of functions. Jackson and Servedio
learn a monotone DNF formula chosen randomly from a sub-
class of monotone DNF; we do the same except we choose a
larger subclass of monotone DNF. As in Jackson and Serve-
dio, we randomly choose the terms for our function from (Z)
possible terms of size k. We differ from Jackson and Serve-
dio’s choice of a class of functions in two ways. The most
important is that we learn functions with n¢ terms for any c,
while they learn only for ¢ < 2 — « for v > 0. The second
way we differ is by loosening Jackson and Servedio’s restric-
tion which bounds the function away from 0 and 1 by a con-
stant; we restrict our attention to functions that are bounded
away from one by a slow growing function in n, and without
restriction on how close the function is to zero. Even in the
case of ¢ < 2, for large n, the set of functions they learn is
a subset of the functions we learn. They allow the number
of terms, m, to be a2k < m < 2k+1 ln% for a constant «,
(0 < a < 0.09). Instead, we restrict the number of terms,
m, to be m < 2+ 1cloglog(n).

As Jackson and Servedio in [7]; we learn in the uniform
distribution model; where each example is chosen uniformly
at random and labeled according to the unknown function.

Our goal is stronger than theirs, in that we exactly learn
with probability 1 — §. (They learn a function which is
close with probability 1 — 4.) We run in time polynomial
in the probability of an example satisfying a term, (i.e. time
polynomial in 2F.)

The model for our class of random monotone DNF for-
mulas is as follows, let F™%™ be the set of monotone DNF
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over n variables, with terms of size k£, and m terms. Or in-
terest is when with m < 28*1cloglog(n) where ¢ = %.
Each term is selected independently and uniformly from the
set of all k-variable terms.

2 Notation and Definitions

Our function will be defined on n variables; we let X =
{x1,%2,...,2,} be the set of variables. For s C X we
define X\s = {x € X | € s}. Lett C X be a term,
and k = |t| = clog(n) be the size of a term. Let m be the
number of terms; where m < mpya, = 2Fcloglog(n) =
2ncloglog(n). Let f = Ut We define f\t = {t' €

e #t}.

Let E = {0,1}" be the set of all examples, and B+ =
{e € E'| f(e)} be the set of all positive examples. Let s C
X, and let a4 be a partial assignment of the variables in s.
For x € s, and as a partial assignment, then by an abuse of
notation, we define z(as) = 1 iff the assignment to z is 1
and 0 otherwise. Let X, = {x € s | xz(as)} be the set of
variables in s that a, satisfies.

We use a, to partition the set of examples, ET, and the
set terms in f. We then explore the relationship between
these sets in the paper with an inclusion/exclusion algorithm
that allows us to find subsets of terms in f. Let E,_
{e € E|Vx € s,x(as) = z(e)} be the set of assignments
who agree with as on all the variables s. Let Ej =FE, N
E7 be the set of positive assignments who agree with a, on
all the variables s. Let T,, = {t € f | tNs = X,,}.

Let T, = {t € f|t(e)} be the set of terms satisfying
an example e. Let #¢(as) = |{x € s | z(as) =0}, e.g.
#0(10110) = 2.

Let 5(n) = loglog(¥/n). We use 3(n) throughout the
paper as a bound that is not constant — and not too large. For
technical ease we chose this value of 5(n), we could have
chosen other values for 3(n), such as 5(n) = loglog(n).

For ease of notation, we define 72 = ﬁ

For e and a,, we define a transformation, €’ = ez, to
be Vz & s,x(e’) = z(e) and Vx € s,z(e’) = z(as). For e
and z’ we define €’ = eg;p(,1) tobe Vo € (X\ {2'}), z(e’)
xz(e) and 2’ (e) = 1 — 2/(e).

Our algorithm discovers f by finding subsets of terms in
f- We use the knowledge that a set of variables, s, is a subset
of a term iff there is a positive example, e, which becomes
false for eqjp () for any x € s.

Definition 2. e is s-minimal for f iff
e cc ET, and
eV e€s,e, g ET.
We define the set of s-minimal examples:
Definition 3. Let T, = {e € E™ | eis s-minimal}.

Thus, given any e € Ty and t € f, if t(e) = 1 then
s Ct.

The idea behind our proof is that we can determine if T
is non-empty for any s of cardinality greater than ¢ 4+ 1 and
less than or equal to 3(n) 4+ 1, thus finding a subset of a term.



Function Distinguishing Subsets

o Sz{sCX||s|:c—|—2, and I, > 2" - L+

e Fori= (c+3)tofB(n)
-5 =0
— Forse Sandzx € X
# If Iyugey > 2" - —L then add (s U {z}) to
n 5
S/
-S5S=9

e Return S

Figure 1: Function Distinguishing Subsets

From this knowledge we build the rest of the term. Our goal
is to exactly learn f with probability 1 — 4.

Unfortunately we don’t know how to compute the size of
T ;. Instead we estimate | Y.

Definition 4. Let I, = 3", (—1)#0(%)|E}|.

Our paper focuses on proving that most monotone k-
DNF are well behaved, that for well behaved functions I ap-
proximates | Y| forc+2 < |s| < B(n)+1,andifsCt e f
then Y is sufficiently large.

The organization of our paper is as follows: in Section
3 we present a simple algorithm that exploits the knowledge
that we can find a subset of at term. In Subsection 4.1 we
partition the set of positive examples and use this partition to
define how I, miscounts the size of Y. In Subsection 4.2
we prove most f € F™*™ are well behaved. In Subsection
4.3 we bound by how much I misclassifies | Y| for well
behaved functions. In Subsection 4.4 we prove that for well-
behaved f €r F™*™ if s C t € f then YT is sufficiently
large enabling us to discover if s C ¢.

We put some of the technical details into the appendix.
In Appendix 1A, we provide some observations and sim-
plifications of algebraic expressions used in our proofs. In
Appendix 1B, we prove that most f €r F™*™ are well
behaved. In Appendix 1C, we bound T, for well behaved
DNF. In Appendix 2A, we use standard sampling techniques
to prove we can approximate |E;" | sufficiently. In Appendix
2B, for the sake of completeness, we provide the details that
show our algorithm finds the unknown monotone DNF in
polynomial time with high probability.

3 The Algorithm for Finding f Using /,

Using I as our estimate for | Y|, our algorithm builds terms
in three stages. First our algorithm tests all subsets of size
¢ + 2, selecting those that are a subset of a term in f. Next,
it builds upon these subsets, variable by variable, till it has
found all subsets of terms of f of size 3(n). Finally, having a
subset unique to a single term in f (we prove the uniqueness
of terms of size 5(n) later in the paper in Corollary 46,) we
find the rest of variables for this term. The steps of the first
two stages are in Figure 1 and the steps for the third stage are
in Figure 2.

Algorithm Learn Random Monotone DNF
e S = Distinguishing Subsets
o f=10
e Forse S
—-t=0
— Forzx e X
* If Iyy(ey > 2" —-7 thenadd z to ¢
n '5
— addtto f
e Return f

Figure 2: Algorithm Learn Random Monotone DNF

4 Approximating T by /;

In this section, we show that with high probability I, ap-
proximates | | forc+2 < |s| < B(n)+1to Within

2n.4k10i£(r‘1n (le |I ‘TSH<2n'4kiOiL(llln )We

use Subsections 4.1 through 4.3 to prove this main theorem.
In Subsection 4.4, we prove that |Y,| > 2" - L if

1
8log®c(n) n°
andonlyif s Ct € f.

4.1 Observations about /,

To explore how I relates to the size of Y5, we partition the
set BT of positive examples We partition E+ by groupmg
examples that “map” under s to the same example in E
Observing the behavior of a partition during the calculation
of I, we bound how I misjudges the size of Y. (We bound
the size of the miscalculation in Subsection 4.3.)

Definition 5. For s C X, and e € Ef‘ we define a set
of partial assignments, A, s = {as | es—a, € E1}, which
map e to another positive example under s.

Next, using this partition of the set of positive examples,
we define a criteria for e € Ef‘ to be correctly counted.

Definition 6. For e € Ef we define

T, = Z (_1)#0(%).

as€Ac,s

Observation 7. I, =) . Bf 7.

Definition 8. Ane € E1 is correctly counted iff e € E1 \T,
thenZ, =0, and ife € Y, then T, = 1.

Note, if all examples in Efr are counted correctly then
I, = |Y|. We observe that e € Y is correctly counted.

Lemma9. Foralle € Y, then T, = 1.

Proof: A, , = {1,}. O

By characterizing examples which are correctly counted,
we restrict the number of examples that could be incorrectly
counted. We describe two ways examples are correctly counted.



Lemma 10. An example, e € Et, is correctly counted if
3x € s such thatVas € Ac s, (as)gip(z) € Ae,s.

Proof: Let = be such that Ya, € A, and (as)qip(z) €
A, then (—1)#0(@s) and (—1)#o((@s)ain) are included in
the sum, where the parity of #q(a,) and #o((as)gip(z)) are
opposite. Thus Z, = 0 and e is counted correctly. O

Corollary 11. An example, e € E+, is correctly counted if
At € f such that t(e) and t N s = .

Proof: The Corollary follows from Lemma 10 and the
definition of Z, since all partial assignments are contained in
Acs. O

If e is not known to be correctly counted by Lemma 10
and Corollary 11, it may or may not be correctly counted,
but our proof will not need to consider this option.

Definition 12. Let s C X, we define the set of miscounted
examples by

M, ={e€ Ef\T,|Z. #0}.

Partitioning M based on sets of partial assignments, we
simplify bounding the number of miscounted examples.

Definition 13. Ler s C X, and A C {0,1}II; we define
M&A = {6 S MS | Ae,s = A}

We define a partial order by a, < a! iff V& € s then
x(al) < xz(a?) and @), # a?. The smallest partial assign-
ments are very important to our proof; they determine if an

example e € By is miscounted.

Definition 14. Ler A C {0, 1}%], we define
L(A) ={as € A|Vd, € A,a, £ as}.

Lemma 15. Let ¢ € M, 4, then Vas € L(A),3t € T,
where t(e).

Proof: By definition 5, given any e € M, 4 and Va, €
L(A), 3¢’ € E} such that ¢/ maps under s to e (i.e. € =
e, 1.) which implies ¢/ = e,._,,. Because ¢’ is X, -mini-
mal, we know 3t € T, such that t(¢’) which implies ¢(e)
since f is monotone. O

We have now proved in Lemmas 10 and 15 that every
miscounted example is satisfied by a set of terms whose union
contains s. We will use this fact in Lemma 24 where we
bound the number of miscounted examples in M 4.

Knowing A is a subset of the partial assignments to s, we
calculate by how much an example has been miscounted.

Observation 16. Let ¢ € M, 4 then |T.| < |A| < 215l.
Definition 17. Let Ag = {A|A = A, ; forane € M}.

Observation 18.

I, — |1, = Zze: Z Z Z..

e€EM, AEA; eEM, 4

184

4.2 Properties of Well Behaved Functions

In this subsection, we describe the properties a function needs
for our proof to hold; our algorithm works for functions that
are not “clustered” together. We prove that with high prob-
ability these properties hold for f €r F™F™. We will call
DNF formulas that have this property “well behaved.”

Definition 19. A monotone DNF function, f € F™Fm™ is
well behaved iff for all s C t € f where |s| < 5(n) +1, and
Vas where z = #1(as) then

e Small z property:
if0 < z < cthen |T,,| < 3Mmaxk®/n%,

e Medium z property:
ifc <z < fB(n)then |T,,| < B(n), and

e Large z property:
if z > B(n) then |T, | < 1.

Using Chernoff bounds we prove random monotone DNF
are well behaved with high probability.

Theorem 20. For a fixed c and sufficiently large n, if f €r
Frkm for m < 2Flcloglog(n) then f is well behaved

with probability at least 1 — n*¢log(n) (%)’B(n).

Proof: This follows from Corollaries 42, 44,and 46 (found
in the appendix,) and noting that the probability of small,

medium and large z properties of being well behaved are not
satisfied with probability at most $n®*log(n) (1)

1\8(n)—1 +
c B(n)—1 c ﬁnn —1
%n2 log(n)/3 (%L) () +%n2 log(n)/3 (%) ™=1 con-

sequently f €x F™F™ is well behaved with probability at
least 1 — n¢log(n) (%)’B(n). O

4.3 Observations about well behaved Monotone DNF
Formulas

In this subsection, we derive some properties of well behaved
functions. First, we bound the number of variables that occur
in more than one term from a set of terms, T' C f for f €x
Frkm Next we bound the probability an example satisfies
every term in 7. Third, we bound the size of M, 4, using
the probability an example satisfies a term in 7}, for every
as € L(A). At the end of this subsection we bound |M,| and
Iy — | M.

Corollary 21. Let f be a well behaved monotone k-DNF
Sformula and T C f, then |{zx | x € (t Nt') for some t,t’ €
T} <|T[*B(n).

Proof: For f, a well behaved monotone k-DNF, we know
that a pair of terms ¢,t’ € f have in common at most 3(n)

variables. Since the number of pairs is (‘g‘), we bound the
total number of variables used by more that one term by
(‘?) B(n). Note that what we’ve proved is stronger than
what we’ve claimed. The form of our claim is for our subse-
quent technical convenience. O

Knowing an upper bound on the number of variables oc-
curring in a set of terms, we bound the probability an exam-
ple satisfies every term in this set of terms.



Lemma 22. Let f be a well behaved monotone k-DNF, and
T C f a subset of terms then

1

Proof: The T terms share at most |T'|23(n) variables out
|T'|k variables by Corollary 21. Thus the number of variables
that need to be satisfied is at least | T'|k — |T|>8(n). O

We note that if we restrict our examples to have the bits
in s set to one, we get the following corollary.

Corollary 23. For s C X and |{e € E |Vt € T,t(e)}]| <

n,__ 1
2" SmrmiTaey then

1

[{e€ By, [VEET,t(e)}] <2 (TR ITIZB(n)) -

Proof: The size of the set F;_ is 2"~ I5l. Given that
[{e€ BVt e T t(e)}| < 2" Symimmacyy the restric-
tion of the variables to be from the set E; reduces the num-
ber of variables that must be satisfied to at least (|T'|k —
IT123(n) — |s|). (i.e. at most |s| bits were forced to one.)
Thus |{e € By, |Vt € T, t(e)} | < 27715l 1

2(TTk—IT[ZB(n)—[s])

— 9n 1

=2 20T k=|TI26(n)) * ) =
We now bound the number of examples in M, 4.

Lemma 24. For fixed c and sufficiently large n, let f be a
well behaved monotone k-DNF, s C X where ¢+ 2 < |s| <
B(n)+1, and A € Ag then | M, 4| < 2" - 7k12§ign).

Proof: Let v = |L(A)].

Asnoted in Lemma 15, e € M;_4 are satisfied by at least
one term from every T, for every a; € L(A). From Corol-
lary 23, we know that the probability an example satisfies a
set of v terms in E_ is at most 2™ - m

Therefore we bound | M, 4| by bounding the number of
e € M, 4 which is satisfied by at least one term from every
T, for every a; € L(A). We create this bound by using a
Bonferroni type argument.

|Ms,A
|{e € M, |Vas € L(A),3t € T,_,t(e)}|

1
" 9uk—v?B(n) H |T..| (Lemma 15.)
a.€L(A)

(Def. 13.)

< 2"

In counting the number of possible ways an example e €
M 4 could be satisfied by one term from every Ty, , for ev-
ery as € L(A), we consider two cases.

In the first case, we assume that for all a; € L(A) that
#1(as) < c. Using the assumption that f is well defined,

#1(as)
we know that [Ty | < 3Mmax (}~C =

W) we compute the
probability as follows.

j#t(a)

1
|Ms,A <2". uk—v2B(n) l_l( )3mmax (n#l(a5)> ’
a;€L(A

By Lemma 10 and Corollary 11, s C < %
teT,

t) and Va, €
Ae,sv#l(as) > 1. Letw = ZaSEL(A) #1(as) >
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max {|L(A)|,|s|} (and since v = |L(A)|.) This implies that

3'm;, kv

IMoal < 2" e
2v*B(n) (6¢cloglog(n))’nc kv
< ™. -
- vk nw
= on.gv A (6cloglog(n))’— (n® = 2kv )
nw
n .3 c+2 kc+2
< 2" {/n(6cloglog(n)) e
(From Obs. 35, w > v, and w > |s| > ¢+ 2.)
1
< 2. o (From Observation 33.)

In the second case, there exists an a/, € L(A) such that
#1(al,) > c; by f being well behaved we know that [T | <
B(n). Letv' = |{a}, € L(A)|#1(a}) > c}|. If as € L(A)
where #1(as) < c then by f being well behaved we know
that |T,.] < 3Mmax (%) Using these bounds, we
compute an upper bound by again noting that ¢/ € M 4
is satisfied by one from each T, for all a; € L(A).

k#l(as)
3mmax T o)

#1(as)
as€L(A)#1(as)<c e
By Lemma 11, we know #1(as) > 1 forall as € L(A),

#1(as)
and (k#img ) < (%). we reduce the formula so that
n——=

|MS,A| SQ”M H

Quk—v26(n)

‘Ms,Al
. (ﬂ(n))v/ o [k (v—0")
S m. W(Zﬂmmax) E
n. (B0 by (BY
(since n°("=?") = 2k(v=v") )
v'zvzﬁ(n) , L (v—2")
< 2" —(ﬁ(n)év,k (6¢log log(n))=") <n>

We now break the calculations down into two sub-cases.
If v = 2 then the equation is largest if v’ = 1. In this case

we bound |M; 4| by 2™ - %;M(Gcloglog(n)) (%) <
on . Bn)log” (Vi) 1‘;%4(%) (6cloglog(n)) (%) < gn . log’ (k.

n2k
If v > 3, we note ! this equation is again largestif v’ = 1,

and using Observation 35, we reduce the formula to:

n Bn)dn won) (K (v—1) 1
2" = — (Bcloglog(n)) - <o
Therefore | M 4] < 2" - ’fl;fiig") L)

Having computed an upper bound on the number of mis-
counted examples in M, 4, we now bound |M]|.

' Argument here passes over a minor potential difficulty. i.e. if
v’ is large, Corollary 23 does not come into play — but the crucial
fact is the nevertheless true as we show in Observation 32.



Corollary 25. Let f be a well behaved monotone k-DNF,
and let s C X where c + 2 < |s| < B(n) + 1 then | M| <

on 4k log® (n)n?/3
: netl .

Proof: This follows from [Ms| = > ca [Msa| <
|Ag] (2” : M). We note that |Ag| is bounded by the

et

. |s (n
number of subsets of the subsets of s, i.e. 22 <92’ T

log log( ¥/m)+1
22 & o8 < 4n2/3

2/3
Thus | M,| < 2n . 4log” ()2 O

, we now compute the difference between
I and |Y4|. This bound is computed by multiplying | Mj|
and a bound of how large the misclassification is for an ex-
ample.

Theorem 26. Let f be a well behaved monotone k-DNF for-
mula, and s C X where ¢ +2 < |s| < B(n) + 1 then
I, — |1 < 27 - Ak log®(mn?/3

nc+1

Proof: As noted earlier, I, — Y cenr, Le

Ts| =
2
Using Corollary 25, we know | M| < 2™ - Aklog® (m)n®/?

nctl
From Observation 16, we know that that for all e, |Z.| <

log(/n).
Consequently,
. L 4klog®(n)n?/3
[Is — [Ys|| < [M[log(¥/n) < 27 - EErs p—

4.4 Bounding |Y |
Definition 27. Let By, = {e € E | 3’ € f\t,t'(e)}.

Next we prove that every term has a high probability of
being uniquely satisfied. Jackson and Servedio have a similar
lemma, Lemma (3.6).

Lemma 28. Let f € F™*™ be a well behaved monotone k-
1
DNF function, t € f then |Ef, — Ep\ 3] > 2" an
The proof of this lemma is found in Appendix 1 in Sub-
section C.
We note that if f is a monotone DNF and e € (E; —
Ef\{t}), thene € Y.

Corollary 29. Let f € F™*™ be a well behaved monotone
1

]C-DNE ands Ct € f then |Ts‘ > 2™ . W}L“(n)ﬁ'

The following theorem is crucial; it is the key compu-

tation we use in our algorithm Learn Random Monotone
DNF.

Theorem 30. Let f € F kM be ywell behaved, and let ¢ +
2<|s| < Bn)+1

2/3

ozfsCtefthenI > 2" mnc nctl

4k log® (n)n?/3

o ifsgte fthenl, <2".

_on, 4k log® (n)n

’
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The previous theorem shows there exists a large gap that
reliably determines if s C t € f forc+2 < |s| < B(n)+1by
computing I;. This means that given a small set s C t € f
and z € X\ s we can determine whether or not sUz C t € f,
and this is the key to our algorithm.

In this section, we proved we could determine if a set, s,
is a subset of a term if ¢ + 2 < |s| < B(n) + 1 by com-
puting /. Unfortunately, we cannot efficiently compute I
since we cannot compute |E;" | in polynomial time. Instead
we approximate [ using standard sampling techniques. We
estimate this value by sampling g, = n2¢t325%15| yniformly
chosen labeled examples from E. Thus we can effectively
estimate I, with high probability. Details can be seen in Ap-
pendix 2 in Subsection A. Our fairly straightforward algo-
rithm is easily adapted to use our sampled values of I, and
thus runs in polynomial time in n and 2*. Details can be
found in Appendix 2 in Subsection B.

5 Future Work

Extensions of the ideas presented here can also handle the
non-monotone case. We are currently writing up this case
and checking the proofs. We are also working on relaxing
the requirement that % is fixed.
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APPENDIX 1
A Useful Observations

We use the following observations and simplifications of al-
gebraic expressions in our proofs.

Observation 31. For f a well behaved monotone k-DNF,
T C f where |T| > 2loglog(n) then |{e € E1, | t(e)Vt €
TH < 2™ m for sufficiently large n.

Proof: First, we observe that if 77 C T then {e € E
tle),vteT'} D{e€ Eq, |tle),Vt €T},

Therefore, using Corollary 23 we know given any 7" C
T where |T’| = 2loglog(n), then |[{e € Fy, | t(e),Vt €
T/} S on . 1 < m 1

22 log log(n)k— (2 log log(n))28(n) " ploglog(n) *

Observation 32. For a well-behaved monotone k-DNF, given
A C {0,1}5l where |{as € A | #1(as) > c}| > 2loglog(n)

,,1)2 log log(n)

B(
then |Ms,A| < T legToatm

Proof: Let A’ = {as € A | #1(as) > c}. Using Obser-
vation 31, if |A’| > 2loglog(n) then |M; 4| < |{e € En, |
Vas € A’,3t € T, such that ¢(e)}|
S 2™ . m Ha;GA’ |Tas| S AL B(Zl)jgh;f;:i(n) . The last
inequality follows from noting that V#1(as) > ¢, |Ta,| <
B(n) by the large z property, and from noting that the prod-
uct is maximized for | A’| = 2loglog(n). O

Observation 33. For c a constant, then ntt = n(n —
1) (n—ec)>nctl — (7(0(0;1))) n® and n¢tL < netl —

2
<<c<c2+1>>)nc+ <<c<c2+1>>) iy

Observation 34. Let s C X, e € ET, and a, = e, if

(c+1)c

#1(as) < c,Vas € L(Aes) then |L(Acs)| < |s| = .

Proof: This follows from observing that (*!) < |s|.

(&

Observation 35. Let s C X where |s| < B(n) + 1, and e €
Et thenif #1(as) < ¢,Vas € L(A..s) then 9IL(Acs)I?B(n)
n for large enough n.

Proof: Let s C X where |s| < §(n) + 1, and A, s be
such that #1 (as) < ¢,Vas € L(A.,s). Then using Observa-

tion 34 we know |L(A. )| < |s (efhe
1 (c+21)c 2
9lL(Ac )PB(n) < 2(““”)* ) ) )

2(5(”)+1)(c+1)05(")
9(log log Yn+1)ctDe loglog ¥m

<
< (log ¢/m)loslos YT
< ¥n.
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Lemma 36. For a positive integer a > [3(n) and
¢ <log(n)/(3loglog(n)) then

m ket @ m kel atl
() (=) = (1) (=)

Proof: The proof follows from expanding the formulas:

m\ [ kSN m et At
() CG=) > () (=)

me 1
al

matl ketl
(nC+1>a> > @t ((n”l)aH)

m—a [ k&L
a+1 \netl /)’

=

O

k
Observation 37. For positive integer k, (1 — 2%)2 >1

Proof: The proof follows from expanding the formula
and noting that

G2 (5 ()
BICROIEI

and

Thus

1
=%

) - = ()

Y

Observation 38. For constant c and sufficiently

m petl B(n) m petl log(n)

ﬂ(n)) (n”*l) +m(log(n)) (E)

Proof: The proof follows from the following calcula-
m get1 A

1

o) () (1)

m et log(n)
i) ()

log(n)(2¢log log(n))P (M peBn) (c+1)5(n)

log(n)(

tions:

IN

(nc+1 _ (C+1)2(C+2) nc)ﬂ(n)

0,

large n,

< A=t

(26 IOg log(n))log(n)+1nc(log(n)+1)k(c+1) log(n)

(ncﬂ _ (c+1)2(c+2)nc>log(n)

log(n) (2¢log log(n)) () f(c+1Bm)

(- Lesnfern) B

N (2cloglog(n))'ee(m)+1pcf(ct1)log(n)

1

(n _ (C+1)2(C+2))10g(’ﬂ)

nﬁ(n)*l ’



The first inequality follows from Observation 33 and substi-
tution using m < 2cloglog(n)n® and ("7) < m’. The sec-
ond inequality can be seen by multiplying the first summand

A ¢log(n)
by 1§"Cﬁ(n) and the second summand by % The last

B(n)
inequality can be seen by: (n - %) > pfn) —

ﬂ(71,)((:+1)((:+2) A1 and ( _ (c+1)(c+2))log(n) S plos(n) _

M log(n)—1 g 108(n)(2clog log(n) "™ k(+DA()
LOIEDIEHY

(2¢log log(n))108(M +1pe (et log(n)

<n. O
nlog(n)—A(n) _ B (c+1) (c42)nlo8(m) —B(n) 1 )
2

B Proving Random Monotone Functions are
Well Behaved with High Probability

In this sections we prove that most monotone DNF in F™:%:m
are well behaved.

For the small z property of being well behaved, bounding
|Ts, | for #1(as) < ¢, we first find the expected value of
|T,, |- Next we use Chernoff bounds to give an upper bound
on how far |T,,
probability.

Observation 39. For s C X, as where z = #1(
|s| < k <log?(n) then
2z 4

k%
2 - < E¢c,rnpm {Ta.]} < mn—.
Proof: We first observe that
TV B

® nlsl

The upper bound follows by observing that
) e e ) =T §

nﬂ N ni(n — Z)ls‘;z nz

as), and

Efe,’a]:n,k,m, {‘Tas

(remember z < k,) and thus

z

k,
Ererpnm {[Ta |} <m-—.

The lower bound follows from

(n—k)l== 1
nﬂ N nz H

i=0...|s|—z—1

n—k—1

n—z—1t

[l
S P
- nz n—|s|
k ! k
By(l— Z) >1— |s|—=.
n—|s| |s|
1
> 1/2—,
j2
kZ 2 [s|—=
and thus mJ— <m%. O

Next, we state the snnphﬁed Chernoff upper bound from
Canny’s lecture notes [3]; we use this Chernoff bound to
bound the expected value.
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Lemma 40 (Chernoff). Let § < 2e — 1, p be the expected
value, and x be a series of independent Poisson trials, then

Pr{x > (1+8)u} < e=13"/9),

We now bound the number of terms in T, for #1 (as) <
¢, with high probability.

Lemma 41. Fix s C X, as where z = #4(
k< log2 (n), then

as) < ¢ and

zZ

—clogl k<
PI’fGR]:n,k,m {Ta5| > Smmaxnz} <e cloglog(n) .

Proof: We note that z < ¢ < clog(n) = k, thus we
know the bounds of Observation 39 hold. Let f/ be a random
extension of f to Mmy,ay terms.

Pric,porm {|Ta,| > 3mmaxk*/n*}

S Prf/GR]:"’k””m'dX {|Tés| 2 Bmmaxki/né}
< Prpc e {10 > (14 0)E{T}}
< e—u'52/4’

where 1/ = E{T,_} by Chernoff.
We can obtain an upper bound for this expression from a
lower bound for its unnegated exponent. Let § = 2.

/~L/52/4 _ /i’
> Mpaxk®/2n%
> 2nfc-loglog(n)k?®/2n*
> c¢-loglog(n)k¢  Since k%/2n* > k°/2n°.

Therefore

k= —cloglog(n)ke
Pryc,znkm {T . Tﬁ} < e cloglog(n)k=,

O

Corollary 42 (The Small z Property Holds with High Prob-
ability). Therefore for s C t € f where |s| < B(n) + 1
and z = #1(as) then Pryc znrm{3das, 0 < #1(as) <

¢ |Tu| > 3mmax 2} < n®log(n) (1)"™ 7"

nz

Proof: We assume ¢ > 1; if ¢ < 1 then there does not
exist a z since 0 < z < ¢ < 1 and z is an integer.
If ¢ > 1 then the number of s C ¢ and as where z =

#1(as) < cis bounded by
k |s]
() 2. (%)

mo)
|s|=1,...,8(n) +1
B(m)+1  9B(n)

< Mmax - B(n)k

1
< Zpctl
3

(i.e. For a given term, the number of different sets of size s
S (\’z’l)' The number of terms is m. For a given set, s, the

number of ways to choose z items from the set is (lj) )



Thus, by Lemma 41:

kz
Prfenf{aa-% #1(&5) S c, ‘Ta5| > Smmaxg}
< lnc—s—le—cloglog(n)kg
3
1 1
< §n2c log(n) <n

Therefore, with high probability, the small z property for
f €r F™Fm is proved. O

Next we prove the medium z property: that for #;(as)
where ¢ < #1(as) < f(n) then |T,,| < F(n) with high
probability.

Lemma 43. For fixed c, and sufficiently large n, let s C X,
and as with #1(as) > cthen
> B(n)—1
Proof: Let z = #1(as).
If z > k then |T,_| = 0, since there does not exist a term
with more that k variables.
If z < k then the probability a random term ¢ € T, is

e

1

n

PrfGR.'F”'k*"‘ {‘Tas

> B(n)} < (

. Consequently,

PI'feR]:n,k,nL {|Tab| Z ﬁ(n)}

m\ [ k=)’ 2\
< > (NG 6-%)
j=B(n)..m
m\ k=)’ k2\"77
A 1
< x o (O (-%)
j=pB(n)...log(n)—1
m z\J z\ m—J
- 2 (NG 6-%)
j=log(n)...m
< () (Gem)
m ki log(n)
+m(bym><¢“>

B(n)—1
< (1)

The third inequality follows from the observation that the
sum is maximized for z = ¢ + 1, and from Lemma 36. The
fourth inequality follows from Observation 38. O

1

n

Corollary 44 (The Medium z Property Holds with High Prob-
ability). Therefore for s C t € f where |s| < B(n) + 1,
Pric, F*™{Jas, e < #1(as) < B(n),|Ta,| > B(n)} <

in*log(n) (l)ﬁ(

p R for sufficiently large n.

Proof: The number of s C ¢ and as where ¢ < #1(as) <

)ﬂ(”)—l
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B(n) is bounded by

k 5]
") L2 ()
|s|=[cl,...,8(n)+1 z=c+1,...,|8(n)]
< Mumax - B(n)EBITL . 280

S nCJrl
1 2c
< 3" log(n).

(e Y jq=re],... 5041 (o) is the number of ways to find a
subset of t € f of size greater than c and less than or equal
t0 B(n) + 1. The sum 3>__ 1y 150, (2)) is the number
of ways to choose a set of size z from |s| elements.)
Therefore using Lemma 43, we know
Pr e oo {305, ¢ < #1(a0) < B(n). |Tu,| > B(n)} <
%nQC log(n) (%)ﬁ(”)—l )
Consequently, the medium z property is also satisfied by
arandom f € F™F™ with high probability. O
The large z property is that two terms in f overlap by at
most 3(n); we prove this with a counting argument. Jackson
and Servedio’s paper [7] has a similar lemma, Lemma (3.5).

Lemma 45. Let s,s" C X be sets of k < /n variables cho-
sen independently at random, then the Pr{|s N s'| > B(n)} <
1 ) pln)—1

(,

n

Proof
Pr{|sns’| > B(n)}

k
j=B(n)

k

(GG
(0
(k)2(n — k)t

%
j=B(n) J=

(The sum is maximized for j = 3(n).)
(k)2
ﬁ(n)!nM
1
O

N

A

O

Corollary 46 (The Large z Property Holds with High Proba-
bility). Therefore, Pr e, zns.m{3t,t" € f, [tNt'| > B(n)} <

1n2log(n) ()77,

Proof: The proof follows from noting that
Pric . men{3t,t € fltNt| > B(n)} < (7)) 55—

1 1 1 —
Mmax Mmax
("™5%) —soo=r < ("5") ;oo ERCDIEIDEY

2
< in*log(n) (%)g(n)_l .

The third inequality follows from Observation 33 and
pBm—1_B0)-DB[) 6(n)-2 _ ,6(n)—1 (1 _ (B(n)—l)ﬁ(n))
2 2n :

<

Since two terms in f €r F™k™ share less than 3(n)
variables with high probability, a random f € F™*™ sat-
isfies the large z property in being well behaved with high
probability. O



Recalling Corollaries 42, 44, and 46 and the definition of
“well behaved,” we note that f € F n.km s well behaved
with high probability.

C Bounding T,

Next we present the proof of Lemma 28 that for f a well

behaved monotone k- DNF function, m < 2k+1cloglogn
+ 1

andththen |E1t {t}| >2 WnL'

Proof: Divide f\ {t} into three disjoint sets,

o Tuisioint = {t' € f\{t} | tNt =0},
o Toman = {t' € AA\{t} |1 < | Nt|] <c}and

not small = f\(Tdisjoint U Tsmall)-

Looking only at examples in Ef: , we now calculate the prob-
ability that each of these sets is not satisfied. Remember-
ing that f is monotone, we note that if one set is not satis-
fied, it increases the chance another set is not satisfied. (i.e.
Procg {—t| —t'} > Pr.cg {-t} since if we know at least
one variable is set to zero that increases the odds of another
term to be set to zero if they share a variable.)
In the first case for Tyisjoint
(1- )"

PreeE1 {Vt/ S Tdisjointa _‘t/(e) ok
2cloglog (n)

> (1 _ )2k+1cloglog(n) _ ((1_2%)2’“)

= 10g4c W) by Observation 37.

In the second case, if ' € Tyman and r = ¢t N ¢’ with a,
such that X,, = r then by f being well behaved we know

that ‘Tar| S Smmax <%> . Therefore

42cloglog(n)

PreeElt {Vt/ S Tsmall> ﬁt/(e)}

)

9lrl 3mmx< Il

g rct,ll;llréc <1 . 2k>

olr] 2’“+3cloglog(")<:ﬁ>(\f\)
S ILEE)

ol 2<k—'rl>2"“+*cloglog<n>( - ')(\ 1)
- 1<1}<c <1 ) 2k>

17143 ¢ Tog log(n) ( £ ) (*
. H <i)2 log log( )<"|T>(T)By0bs.37

1<|r|<e

(3)

The last inequality follows from noticing the product is max-
imized for |r| = 1, thus

16¢2 log log(n)k2
n

)}>%.

We now bound the third case. Since f is well behaved,
we know that a term in f overlaps another term by at most

PreeE;ft {e er Ef | Vt' € Tyman, —t'(e
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B(n) variables, and the number of terms overlapping by a set
7 C tin Tyot sman is at most G(n). Therefore
PreGET {Vt/ € ,-Tnot small, _'t/(e)}
t
olrl

B(n)
> Ircte<iri<om) (1 - Tk)

(1 - )B (")(/f(n)) > 7(smce (| |) < (B(n)) )

Therefore (remembering 2k = no)

| {eer Ef, | Vt' € A\ {t},~t'(e)} |

25(”)

(1 1 1 . 11

> 20 Aol )\ 5) =2 e e

4/ \log“c(n)/) \2 8log™(n) n
APPENDIX 2

In the next two sections we present the standard arguments
for the sake of completeness. In Section A we prove that we
can sample to find a sufficient approximation to I;(E™). In
Section B we prove that our very straightforward algorithm
runs in polynomial time and produces f.

A Sampling and Approximating /;

In Section 4, we proved we could determine if a set, s, is a
subset of a term if ¢ + 2 < |s| < f(n) + 1 by computing
I,. Unfortunately, we cannot efficiently compute I, since
we cannot efficiently compute |E; |. Instead, we show how
to approximate I,. We estimate this value by sampling g;
uniformly chosen labeled examples from F.

Definition 47. For s C X, let Egample(g,) C E be a random
sample of g5 labeled examples drawn uniformly from E.

Definition 48. Given Egample(g,) C E, let ESample(gs) =
Esample(gs)ﬂE+ be the set of positive examples in Egample(g.)-
Similary, let Tsample_(g.) = Esample(g.) N Ls be the set of
positive examples from Egample(g.) Which satisfy only terms

in le,.

Observation 49. Let s C X, we note that E (|Tsamples(gs) |)

— .ITsl_L
_gs \E\ - 92

Using sampled labeled examples, we compute the fol-
lowing function to approximate I.

Definition 50. Let s C X, we define I sample(g.) =

ZeEE (_

Sample(gé)
where as(e) is e|.

1)#0(‘15(6)) to be our approximation of I,

L.

Observation 51. We note that the E (I sample(g.)) = 25

This observation follows since the expected value of

Bt
| Esample(g.) N Ef “|is gs |2 L and
IES|
E (Is,Sample(gs)) = Zas(i )(#O(as))gs |Ek| .
Next, we bound how different our sampled I, sample(g,)
is from the expected value, As we have not yet provided a
lower tail bound, we state it next, as it is described in Canny

[3].




Lemma 52 (Chernoff). Let § € (0,1], p be the expected
value, and x be a series of independent Poisson trials then

Pr{x < (1—8)u} < e #9°/2,

Applying the lower and upper Chernoff bounds from Lem-
mas 40 and 52, we prove that I, sample(g,) 1S Within %
fraction of E (IS,Sample(gs)).

Lemma 53. For g, = n2t3254ls| and given access to ex-
amples drawn from a well behaved monotone k-DNF then
|Is7Sample(gS) -E (Is,Sample(gs))| < gs- % with proba-
bility 1 — 4e~"/4,

Proof: To apply the Chernoff bounds, our main diffi-
culty is our sum has both positive and negative values, we
overcome this difficulty by bounding the positive and neg-
ative values separately. We define two indicator functions.
Let reven(e) = 1iff f(e) = 1 and #o(e|,) is even, and let
Todd(e) = Liff f(e) = 1 and #(ej,) is odd.

Let Egample(g) be a randomly generated set of g exam-
ples from E. Let Xeven = ). Esampre(95) Teven(€). (Simi-
larly for X,44.)

We observe that I, sample(g.) = Xeven — Xodd-

If Ja, such that E; # 0, then there is a term consis-
tent with at least one a,. This term satisfies the examples
in E,_, with probability at least 2% There are 2°! different
as, thus if #o(a,) is even, we expect at least o= frac-
tion of total examples are set to one by reven. Therefore in
gs = n2cH32k+lsl examples, the expected value of the indi-
cator function is either zero, or the expected value is at least
n2¢*t3_ (Similarly for the case where #¢(a,) is odd.)

Using the Chernoff bounds with § = —Lr, we bound
E(Xeven), in the cases where the expected value is not zero.

2¢+3
Pr{|Xeven — (1 £ 0)E(Xeven)} < 2e” 22 = 2¢77/4,
(Similarly for E(X,q4q).) Consequently, the indicator func-
tions will be # close to their respective expected value
functions.
Therefore we know |(Xeven—Xodd) —E(Is sample(g.))| <
1

W(E(XCVCH) + E(XOdd)) < gs%- Thus Is,Sample(gS)
differs from E (Is,Sample(gs)) by at most g, % with high
probability. O
Using the previous Lemma 53, Theorem 26, and Obser-
vation 49, we note that we can determine if s C X is a sub-
set of a term in a well behaved monotone k-DNF function by
sampling labeled examples from the uniform distribution.

Lemma 54. Let f be a well behaved monotone k-DNF for-
mula, s C X where c+2 < |s| < B(n) + 1, and g, =
n2c+32k+|s\’.

1

o ifs Ct € fthen I sample(g.) > 9s - —T With proba-
n '5
bility 1 — 4e~"/4,
o Ifsg te fthen I, sample(g.) < 9s % with proba-
n ' 5

bility 1 — 4e~"/4,
Proof: From Lemma 53 and Observation 51, we know

29

_29s
,Sample(gs) = netl

nc+1

Is 1

9s
—J; <1 s
+ = on

2n *
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Algorithm Learn Random Monotone DNF
1. S = Distinguishing Subsets
2. f=0
3. Forse S

(@ t=0
(b) Forz € X
o If I,u(e},Sample(gs) > s # then add x
tot
(c) addtto f

4. Return f

Figure 3:

Function Distinguishing Subsets

. S={sCcX||s|]=c+2,
:and Is,Sample(gS) > gs -+ n(%%}

2. Fori = (c+3)to5(n)

(@ S"=10
(b) Fors e Sandx € X
o If I, (z} Sample(g.) > Js* %% then add (sU
(z})to S "
) S=¢5

3. Return S

Figure 4:

with probability greater than 1 — 4e~"/%,
By Theorem 30, Observation 51, and Lemma 53 we know:

i n 1 1 n 4klog6(n)n2/3
o ifs cte fthen[s Z 2 WF—Q ETE

Thus, Is,Sample(gﬂ) > _gs'nc%_kgs'ls > _gs'”c%_F

k1 6 2/3 .
9o * Siogtgy e — 95 i > 9o+~ with
probability greater than 1 — 4e—"/4,
/
olfs ¢ t € fthen I, < 20 . 4RIt (™ ‘g

2 2
Is,Sample(gs) < gs- metT +9s-Is < gs- et + gs -
4k log® (n)n?/3
netl

1 —4e /4,

< gs- nc%% with probability greater than

O

B Learning Random Monotone DNF by
Finding Terms in Polynomial Time
Next, we restate our algorithm to use Isample(g, )-

Referring to our algorithm in Figures 3 and 4, the lem-
mas, and theorems in the previous sections, we prove our



algorithm discovers the unknown well behaved monotone k-
DNF from random examples drawn from the uniform dis-
tribution with high probability in polynomial time. We show
this by following the steps our algorithm takes; first our algo-
rithm finds all (c+2)-sized subsets of s in time O(g.,2n°"?)
with probability greater than 1—4n°t2e~"/4, Next, given all
(c+2)-sized subsets of terms in f, our algorithm grows those
subsets till they are of size §(n) with probability greater
than 1—4nmk?™e="/4 in time O (nmgg,)k*™). Finally,
given a subset of a term of size 3(n), our algorithm discovers
all the variables in that term in time mngﬂ(n)HkB (") with

probability at least 1 — mnk?(™) (4¢"/4).

Observation 55. For s C X, computing I sample(q.,) fakes
time O(gs).

In step 1, our algorithm finds all the (¢ + 2)-sized subsets
of terms in f.

Lemma 56. Given a well behaved f € F™*™, our function
Distinguishing Subsets finds {s | s C t € f,|s| = ¢+
2} in time O(gey2n®t?) with probability greater than 1 —
Anct2e=n/4 in step 1.

Proof: Let s C X where |s| = ¢ + 2. By Lemma 54, iff
s Ct € [ then I, sample(g.) = 9s - ﬁ with probability
n 5

greater than 1 — 4e~"/*. Function Distinguishing Subsets

tests all subsets of size ¢ + 2, thus our function has correctly
selected the sets which are subset of terms in f with proba-
bility greater than 1—4n°t2¢~"/4 in time O(g cront?). O

Having found all subsets of ¢ € f of size ¢ + 2 with high
probability, our algorithm builds these sets till all the subsets
of terms has size 3(n).

Lemma 57. Given a well behaved f € Frokm and T =
{s | s Cte fls| =c+ 2}, function Distinguishing
Subsets in step 2 returns {s | s Ct € f,|s| = B(n)} with
probability greater than 1 — 4mnkP(™ e="/* in time bound-
ed by O(nmgﬁ(n)kﬁ(")).

Proof: Using the result of Lemma 54, each iteration
of our loop is given aset S = {s|sCt e f,|s| =i} and
produces S’ = {s| s C t € f,|s| =i+ 1} with probability
more than 1— 4nm( Je™/4fori = c+2...H(n)—1in time
bounded by O(g;nmk?). Thus in 8(n)—1— (c+2) iterations
our algorithm produces S = {s | s C t € f,|s| = §(n)} with
probability greater than 1 — 45(n)nmk?(™~1e="/% in time
bounded by O(nmgpg(,)k?™~1). O

Given all 5(n)-sized subsets of ¢ € f, algorithm Learn
Random Monotone DNF finds all the terms of f.

Lemma 58. Given a well behaved f € F™*™, and S =
{s|sctef|s|=08(n )} our algorithm, Learn Random
Monotone DNF, (ﬁnds f in time bounded by

O(mngg( n)Hkﬂ with probability greater than

1 — nmkP™ (4e "/4) in step 3.

Proof: Algorithm Learn Random Monotone DNF uses
Corollary 46 and Lemma 54.

Corollary 46 states that, for a well behaved monotone k-
DNF, Vs € S where |s| > S(n) then |{t | s Ct € f}| < 1.
Thus every s € S is associated with at most one term ¢ € f.
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Lemma 54 states that for a given s C X and T € X
where |SU{J)}| = ( )+ 1iff Isu{w} Sample(gb) = Gs-

then s U {z} C ¢ € f with probability at least 1 —
Thus for |s| = B(n), !¢ such that s C ¢, we can determine
if x € t with high probability.

Combining these ideas, given s € .S we can find a term in
the inside loop of step 3 by testing every = € X to determine
if {z} Us C t € f, and thus find {2 | I,u{z},Sample(g,) >
Js - cfr%} =t € fintime O(gg(n)+1n) With probability

greater than 1 — 4ne"/%,

Together, the outside loop in step 3 selects every s € S
and the inside loop finds ¢ where s C ¢. Since Vt € f, there
exists s € S such that s C ¢, Algorithm Learn Random
Monotone DNF produces f.

The time it takes to do this is the time is bounded by
O(gp(n)+1nmkP™)) with probability bounded by

Je /4,

c+5
7n/4

1 — dnmkP
O

Theorem 59. Given a well behaved f € F™*™, Algorithm
Learn Random Monotone DNF finds f in time bounded
by O(mngg(n)+1kﬁ(")) with probability greater than 1 —
9mn kB e—n/4,

Proof: Using Lemmas 56, 57, 58 we have proven that
our algorithm finds all subsets of size ¢ + 2 of terms in f
in Lemma 56, and having found these subsets it builds upon
till our algorithm has found all subsets of terms of f of size
B(n) in Lemma 57; it then uses the uniqueness of terms of
size 3(n) to find all the variables of a term in f; thus finding
the entire function.

The algorithm runs in time bounded by

O(mngg(n)+1 RO

with probability greater than 1 — 9mnks(™e="/4,



Polynomial regression under arbitrary product distributions

Eric Blais*and Ryan O’'Donnell and Karl Wimmer
Carnegie Mellon University
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Abstract Given m examples of training data
(flvyl)v ey (fmvy’m) € X x {_17 1}'
In recent work, Kalai, Klivans, Mansour, and Serve-

dio [KKMS05] studied a variant of the “Low-Degree 1. Expand e?)‘;miﬂf&“?ﬁé into a vector
(Fourier) Algorithm” for learning under the uni- fro”l{oa 1} »! via the “one-out-
form probability distribution 00, 1}™. They showed of-£” encoding.

that theL, polynomial regression algorithm yields
agnostiq(tolerant to arbitrary noise) learning algo-
rithms with respect to the class of threshold func-

2. Consider “features” which are products qgf
up tod of the new0-1 attributes.

tions — under certain restricted instance distribu- 3. Find the linear functioftV in the feature

tions, including uniform o0, 1} and Gaussian space that best fits the training labels un-
onR". In this work we show hovell learning re- der some loss measufe e.g., squared

sults based on the Low-Degree Algorithm can be loss, hinge loss, oF; loss.

generalized to give almost identical agnostic guar-

antees undearbitrary product distributions on in- 4. Output the hypothesign(W — 6), where

stance spacek; x - - - x X,,. We also extend these 6 € [—1,1] is chosen to minimize the hy-
results to learning undenixturesof product distri- pothesis’ training error.

butions.

The main technical innovation is the use of (Ho- _ _ _ . _
effding) orthogonal decomposition and the exten- We will refer to this algorithm as “degreépolynomial
sion of the “noise sensitivity method” to arbitrary regression (with losg)”. When ¢ is the hinge loss, this
product spaces. In particular, we give a very sim- is equivalent to the soft margin SVM algorithm with the
ple proof that threshold functions over arbitrary degreed polynomial kernel and no regularization [CV95)].

When/ is the squared loss and the data is drawn i.i.d. from

the uniform distribution ot = {0, 1}", the algorithm is ef-

fectively equivalent to the Low-Degree Algorithm of Linial,

Mansour, and Nisan [LMN93] — see [KKMSO05]. Using

. techniques from convex optimization (indeed, linear program-

1 Introduction ming for L; or hinge loss, and just basic linear algebra for

In this paper we study binary classification learning prob- Squared loss), it is known that the algorithm can be per-

lems over arbitrary instance spacs= X; x - x X,,. In formed in timepoly(m,n). For all known proofs of good

other words, each instance ha‘categorical attributes”, the ~ generalization for the algorithmp = n®(@ /¢ training ex-

ith attribute taking values in the s&t. For now we assume  amples are necessary (and sufficient). Hence we will view

that eachX; has cardinality at mostoly(n).! the degreet polynomial regression algorithm as requiring
poly(n?/e) time and examples. (Because of this, whether or

Itis convenient for learning algorithms to encode instanced10t one uses the “kernel trick” is a moot point.)
from X as vectors if0, 1}1X11++1Xx»| via the “one-out-of-

product spaces havenoise sensitivityD(v/3), re-
solving an open problem suggested by Peres [Per04].

k encoding”; e.g., an attribute frofd; = {red, green, blug . Although SVM-baseo! algorithms are very popularin prac-
is replaced by one dft, 0,0), (0,1,0), or (0,0, 1). Consider  tice, the scenarios in which theyovablylearn successfully
now the following familiar learning algorithm: are relatively few (see Section 1.2 below) — especially when

there is errorin the labels. Our goal in this paper is to broaden
the class of scenarios in which learning with polynomial re-

“Supported in part by a scholarship from the Fonds québécois gression has provable, polynomial-time guarantees.
de recherche sur la nature et les technologies.

1Given real-valued attributes, the reader may think of bucketing 2Except for the minor difference of choosing an optitaither
them intopoly(n) buckets. than fixingé = 0.
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1.1 The learning framework function given by the intersection of two homogeneous lin-

We study binary classification learning in the natural “ag- ear threshold functions ova; i.e.,

nostic model” [KSS94] (sometimes described as the model ¢t : R® — {—1,1}, t(x) = sgn(w; - ) Asgn(ws - x).

with arbitrary classification noise). We assume access 10t known [MP69] that this target cannot be classified by the
training data drawn i.i.d. from some distributidnon X, = gjgn of a degreetpolynomial in the attributes faany finite
where the labels are provided by an arbitrary unknown “tar- ;. "his holds even when — 2. Alternatively, whery is the
get” functiont : X — {-1,1}. The task is t0 output  jyiersection of two linear threshold functions oyer 1}, it

a hypothesish : X — {-1,1} which is a 900(1 predic- s not currently known i can be classified by the sign of a
tor on future examples fror®. We define the “error of degreed polynomial for anyd < n — 1. [0S03]

h” to be err(h) = Prypl[h(x) # t(x)].> We compare
the error of an algorithm’s hypothesis with the best error
achievable among functions in a fixed cl@ssf functions

X — {—1,1}. DefineOpt = inf ¢ err(f). We say that an
algorithm.A “agnostically learns with respect ¥ if, given

e > 0 and access to training data, it outputs a hypothesis

h which satisfiest[err(h)] < Opt + ¢. Here the expecta-  efficiently, one must be able to show that simple target func-

tion is with respect to the training data dratithe running fions can at least bapproximatelyclassified by the sign of

time (an_d number of training examples) used are measure ow-degree polynomials. Of course, even stating any such

as functions of ande. result requires distributional assumptions. Let us make the
following definition:

Because of this problem, one usually considers the “soft
margin SVM algorithm” [CV95]. As mentioned, when this
is run with no “regularization”, the algorithm is essentially
equivalentto degredpolynomial regression with hinge loss.
To show that this algorithm even has a chance of learning

Instead of an instance distributi@on X and a target : o S
X — {—1,1}, one can more generally allow a distribution Definition 1.1 LetD be a probability distribution o0, 1}
D' onX'x{—1,1};inthis caseerr(h) = Pr(g o [h(z) # and lett : {0,1} — R. ‘We say that is e-concentrated
y]. Our learning results also hold in this model just as in UP to]\gegreei (underD) if there exists a polynomigh :
[KKMS05]; however we use the simpler definition for ease {0,1}" — R of degree at most which has squared loss at
of presentation, except in Section 5.3. moste underD; i.e., Ez . p[(p(x) — t(x))*] < e.

. ) ) ) Itis well known that under the above conditiohs= sgn(p)
~Inthe special case wheris promised to be i€ we are  has classification error at mostinderD. Further, it is rel-
in the scenario of PAC learning [Val84]. This corresponds to atively easy to show that i€ is a class of functions each
the caseéOpt = 0. SinceC is usually chosen (by necessity) of which ise-concentrated up to degrdethen the degreé-

to be a relatively simple class, the PAC model's assumption polynomial regression algorithm with squared loss will PAC-
that there is a perfect classifier his generally considered  |earnC to accuracyO(e) underD.

somewhat unrealistic. This is why we work in the agnostic

model. The first result along these lines was due to Linial, Man-
sour, and Nisan [LMN93] who introduced the “Low-Degree
Finally, since strong hardness results are known [KSS94, Algorithm” for PAC-learning under the uniform distribution

LBW95, KKMS05, GRO06] for agnostic learning under gen- on {0,1}". They showed that iff : {0,1}" — {-1,1}
eral distributionsD, we are forced to make some distribu- is computed by a circuit of size and depthc then it ise-
tional assumptions. The main assumption in this paper is concentrated up to degré@ (log(s/¢)))¢ under the uniform
thatD is aproduct probability distributioron X’; i.e., then distribution. Some generalizations of this result [FIS91, Has01]
attributes are independent. For a discussion of this assump-are discussed in Section 4.
tion and extensions, see Section 1.3.

) ) Another result using this idea was due to Klivans, O’'Donnell,
1.2 When polynomial regression works and Servedio [KOS04]. They introduced the “noise sensi-

Although the SVM algorithm is very popular in practice, the tivi_ty method.” fo_r showing concentratjon results under the
. . . . n
scenarios in which it provably learns successfully are rela- Uniform d'St“bUt'gn or{0,1}". In particular, they showed
tively few. Let us consider the SVM algorithm with degree- thatanyt : {0,1}" — {—1,1} expressible as a function of
d polynomial kernel. The traditional SVM analysis is pred- * I|n2ear2 threshold functions is-concentrated up to degree
icated on the assumption that the data is perfectly linearly O(k”/€”) under the uniform distribution.
separable in the polynomial feature space. Indeed, the heuris- _ )
tic arguments in support of good generalization are predi-  These works obtained PAC learning guarantees for the
cated on the data being separawith large margin Even polynomial regression algorithm —i.e., guarantees only hold-
just the assumption of perfect separation may well be unrea-ing under the somewhat unrealistic assumption @t =
sonable. For example, suppose the tatgethe very simple ~ 0- A significant step towards handling noise was taken in
[KKMSO05]. Therein it was observed that low-degréé-

3In this paper, boldface denotes random variables. approximability bounds implyZ;-approximability bounds

“The definition of agnostic learning is sometimes taken to re- (@nd hinge loss bounds), and further, such bounds imply that
quire error at mosOpt + ¢ with high probability, rather than in  the polynomial regression algorithm works in tagnostic
expectation. However this is known [KKMSO5] to require almost learning model. Specifically, their work contains the follow-
negligible additional overhead. ing theorem:
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Theorem 1.2 ([KKMSO05]) LetD be a distributiono{0, 1} | X;, x --- x X,,| is still at mostpoly(n), one can proceed
and letC be a class of function§0, 1}V — {—1,1} each to use the polynomial regression algorithm. Here we see the
of which ise2-concentrated up to degretunderD. Then usefulness of being able to handle arbitrary product distribu-
the degreei polynomial regression algorithm with; loss tions on arbitrary product sets.

(or hinge loss [Kal06]) usepoly(N?/¢) time and examples,

and agnostically learns with respectéounderD. In many reasonable cases our results can also tolerate
_ _ . . the attribute sets(; having superpolynomial size. What is
Thus one gets agnost|cnlea.rn|ng algorithms under the uni- o4y necessary is that the probability distribution on each
form distribution on{0, 1}" with respect to the class of AC v "i¢’ sty concentrated on polynomially many attributes.
circuits (timenP°"v'°&(*/9)) and the class of functions df  |ndeed, we can further handle the common case when at-
thresholds (time:°(**/<") — note that the latter is poly-  tributes are real-valued. As long as the probability distri-
nomial time assuming ande are constants. Kalai et al.  butions on real-valued attributes are not extremely skewed
also obtained related results for agnostically learning with (e.g., Gaussian, exponential, Laplace, Pareto, chi-square, . ..)
respect to single threshold functions under Gaussian and log-our learning results go through after doing a naive “bucket-
concave distributions oR™. ing” scheme.

1.3 Overview of our leaming results Finally, being able to learn under arbitrary product dis-
We view the work of [KKMSO05] as the first provable guaran-  tributions opens the door to learning undeixtures of prod-
tee that one can learn interesting, broad classes of functionsyct distributions Such mixtures — especially mixtures of
under the realistic noise model of agnostic learning (and in Gaussians — are widely used as data distribution models
particular, that SVM-type methods can have this guarantee).in learning theory. We show that agnostic learning under
One shortcoming of the present state of knowledge is that wemixtures can be reduced to agnostic learning under single
have good concentration bounds for classes essentially onlyproduct distributions. If the mixture distribution is precisely
with respect to the uniform distribution of90, 1}™ and the known to the algorithm, it can learn even under a mixture of
Gaussian distribution oR™.5 polynomially many product distributions. Otherwise, when
the mixture is unknown, we first need to use an algorithm
In this work we significantly broaden the class of distri- for learning (or clustering) a mixture of product distributions
butions for which we can prove good concentration bounds, from unlabeled examples. This is a difficult but well-studied
and hence for which we can prove the polynomial regres- problem. Using results of Feldman, O’Donnell, and Serve-
sion algorithm performs well. Roughly speaking, we show dio [FOS05, FOS06] we can extend all of our agnostic learn-
how to generalize any concentration result for the uniform ing results to learning under mixtures of constantly many
distribution on{0, 1}" into the same concentration result for product distributions with each¥;| < O(1) and constantly
arbitrary product distributionsD on instance space¥ = many (axis-aligned) Gaussian distributions.
X1 XX X,

. . I - 1.4 Outline of technical results
We believe this is a significant generalization for several

reasons. First, even just for the instance spgkéa}” the In Section 2 we recall the orthogonal decomposition of func-
class of arbitrary product distributions is much more reason- tions on product spaces, as well as the more recently-studied
able than the single distribution in which each attributeas notions of concentration and noise sensitivity on such spaces.

1 with probability exactlyl /2. Our results are even stronger In particular, we observe that if one can prove a good noise
than this, though: they give an algorithm that works simulta- sensitivity bound for a clas§ under a product distribution
neously for any product distribution ovanyinstance space II, then [KKMSO05] implies that the polynomial regression
X =X x -+ x X,, where eachX;| < poly(n). algorithm yields a good agnostic learner with respeaf to
underll.

Because we can handle non-binary attributes, the restric-
tion to product spaces becomes much less severe. A com- Section 3 contains the key reduction from noise sensi-
mon criticism of learning results under the uniform distri- tivity in general product spaces to noise sensitivity under the
bution or product distributions of0, 1}™ is that they make  uniform distribution on{0, 1}". Itis carried out in the model
the potentially unreasonable assumption that attributes arecase of linear threshold functions, which Peres [Per04] proved
independent. However with our results, one can somewhathaveg-noise sensitivity at mosb(v/3). We give a surpris-
circumvent this. Suppose one believes that the attributesingly simple proof of the following:
X4,..., X, are mostly independent, but some groups of them

(e.q., heig_ht and weight) have mutual dependenc!es. Onérneorem 3.2 Letf : X — {—1,1} be a linear threshold
can then simply group together any dependent attribute setSynction, where¥’ = X, x - -- x X,, has the product distri-

Xiy, ..., X, into a single “super-attribute” séf;, x - -- x . _
Xiz). Assuming that this eliminates dependenciles— i.e., the butionIl = m; x --- x m,. ThenNS;(f) < O(V9).

new (super-)attributes are all independent — and that each _ o . . e
(super-) P Proving this just in the case of @biased distribution on

5[FJS91] gives bounds for AQunder constant-bounded product {07_1}n was an open pr0b|em suggested in [P.er04]. This
distributions on{0, 1}"; [KKMSO05] gives inexplicit bounds for a ~ noise sensitivity bound thus gives us the following learning
single threshold function under log-concave distribution®38n result:
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Theorem 3.4 Letll = m; x --- x m, be any product dis-
tribution over an instance spacé = X; x --- x X, where
we assumeX;| < poly(n) for eachi. LetC denote the
class of functions of linear threshold functions ovei’'.
Takingd = O(k?/e*), the degreet polynomial regression
algorithm with L; loss (or hinge loss) uses®**/<") time
and examples and agnostically learns with respect.to

In Section 4 we discuss how to extend concentration re-

sults for other concept classes from uniform gh 1} to
arbitrary product distributions on product spadés- X; x

.- x X,. Of course, it's not immediately clear, given a con-
ceptclas€ of functions on{0, 1}", what it even means for it
to be generalized to functions dn We discuss a reasonable
such notion based on one-outfo&ncoding, and illustrate it
in the case ofAC? functions. The idea in this section is sim-
ple: any concentration result under uniform{fh 1}" eas-

2 Product probability spaces

In this section we consider functions: X — R, where

X = X; x---x X, is aproduct set. We will also assumie

is endowed with some product probability distributidn=

7 X -+ X m,. All occurrences ofPr[-] andE[-] are with
respect to this distribution unless otherwise noted, and we
usually writex for a random element ot drawn fromII.

For simplicity we assume that each €t is finite® The
vector spacé.?(X, IT) of all functionsf : X — R is viewed

as an inner product space under the inner prodficf) =
E[f(x)g(x)]. We will also use the notation

I£1l2 = V£, f) = VEIf(x)2].

2.1 Orthogonal decomposition

As eachX; is just an abstract set, there is not an inher-

ily implies a (slightly weaker) noise sensitivity bound; this €Nt notion of a degre€-polynomial onX'. Ultimately the
can be translated into the same noise sensitivity bound undeP0lynomial regression algorithm identifiés with a subset
any product distribution using the methods of Section 3. In 0f {0, 1}/¥1I*+1%-I via the“one-out-ofk encoding” and
turn, that implies a concentration bound in the general prod- Works with polynomials over this space. However to prove

uct space. As an example, we prove the following:

Theorem 4.2 LetC be the class of function¥; x --- x
X, — {-1,1} computed by unbounded fan-in circuit of
size at most and depth at most (under the one-out-of-
encoding). AssumeX;| < poly(n) for eachi. LetII be any
product distribution onX; x --- x X,. Then polynomial
regression agnostically learns with respectGainder arbi-

trary product distributions in time (©les(s/9)°™"/¢*

concentration results, we need to take a more abstract ap-
proach and consider the “(Hoeffding) orthogonal decompo-
sition” of functions on product spaces; see [vM47, Hoe48,
KR82, Ste86]. In this section we recall this notion with our
own notation.

Definition 2.1 We say a functiorf : X; x --- x X,, = R
is a simple function of orde#! if it depends on at most
coordinates.

Section 5 describes extensions of our learning algorithm Definition 2.2 We say a functiorf : X; x --- x X,, — R
to cases beyond those in which one has exactly a productis afunction of orderd if it is a linear combination of simple

distribution on an instance spage= X; x --- x X,, with
each| X;| < poly(n): these extensions include distributions
“bounded by” or “close to” product distributions, as well as
certain cases when th€;’s have superpolynomial cardinal-
ity or areR. We end Section 5 with a discussion of learning
under mixtures of product distributions. Here there is a dis-
tinction between learning when the mixture distribution is
knownto the algorithm and when it isnknown In the for-
mer case we prove, e.g.:

Theorem 5.16 Let D be anyknown mixture ofpoly(n)
product distributions over an instance spate= X x - - - x
X, where we assum&;| < poly(n) for eachi. Then there
is an©*/<")-time algorithm for agnostically learning with
respect to the class of functions lofinear threshold func-
tions overX’ underD.

In the latter case, by relying on algorithms for learning
mixture distributions from unlabeled data, we prove:

Theorem 5.18 Let D be anyunknownmixture of O(1)
product distributions over an instance spate= X; x - - - x
Xn, where we assume either: gY;| < O(1) for eachi; or

b) eachX; = R and each product distribution is a mixture of
axis-aligned poly(n)-bounded) Gaussians. Then there is a

nOk*/<) time algorithm for agnostically learning with re-
spect to the class of functions/ofinear threshold functions
over X underD.
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functions of ordel. The set of all such functions is a linear
subspace of.2(X, II) and we denote it b§=¢(x, 1I).

Definition 2.3 We say a functiorf : X; x --- x X,, = Ris

a function of order exactly! if it is a function of orderd and

it is orthogonal to all functions of ordef—1; i.e., (f,g) =0
for all g € H=4=1(X,II). This is again a linear subspace
of L2(X,II) and we denote it by(=¢(X, 11).

Proposition 2.4 The spacel.?(X, II) is the orthogonal di-
rect sum of thé{=¢(.x', 1) spaces,

LX) = é H=Y(X ).
d=0

Definition 2.5 By virtue of the previous proposition, every
functionf : X; x --- x X,, — R can be uniquely expressed
as

F= 2
wheref=%: X, x---x X,, — R denotes the projection ¢f
into H=4(X,II). We callf=¢ theorderd part of f. We will
also write

de:fZO-i-f:l—Ff:Q-l-"'—i—f:d.

8In fact, we will only need that each? (X;, 7;) has a countable
basis.



In the sequel we will write simpl§/=? in place ofH=% (X, IT),
etc. Although we will not need it, we recall a further refine-
ment of this decomposition:

Definition 2.6 For eachS C [n] we defineH=" to be the
subspace consisting of all functions depending only on the
coordinates inS. We defing{* to be the further subspace
consisting of those functions #<° that are orthogonal to

all functions inH=% for eachR C S.

Proposition 2.7 The spacel.?(X, 1) is the orthogonal di-
rect sum of thé{® spacesL?(X,11) = @gc(,) H°. Hence
every functionf : X; x --- x X,, — R can be uniquely ex-
pressed ag = > gc(, 7, wheref% : Xix - x X, = R
denotes the projection gf into #°. Denoting alsof<° =
Y rcg [T for the projection off into H=°, we have the
following interpretations:

fSS(ylv" ;yn) = E[f(wlv .

fS(xl, cey ) = Z(_l)‘s‘_‘R‘fSR.

RCS

) | =y VieS];

Finally, we connectthe orthogonal decomposition of func-
tions f : X — R with their analogue under the one-out/of-
encoding:

Proposition 2.8 A functionf : X — R is of orderd if and
only if its analoguef : {0, 1}/X:/++1XxI — R under the
one-out-ofk encoding is expressible as a polynomial of de-
gree at mostl.

2.2 Low-order concentration

As in the previous section we consider functighsX — R
under a product distributiofl. We will be especially inter-
ested in classifiers, functions: X — {—1,1}. Our goal

is to understand and develop conditions under which guch
can be approximated in squared loss by low-degree polyno-
mials.

By basic linear algebra, we have the following:

Proposition 2.9 Given f : X — R, the best orde# ap-
proximator tof under squared loss i=“. l.e.,

=IF=F=403= > 173

i=d+1

min  E[(f(z)—g(x))?]

g of orderd

Definition 2.10 Given f : X — R we say thatf is e-
concentrated up to orderif 7", [|f713 < e.

By Proposition 2.8 we conclude the following:

Proposition 2.11 Let f : X — R and identifyf with a func-
tion {0,1}"¥ — R under the one-out-of-encoding. Then
there exists a polynomial: {0,1}" — R of degree at most
d which e-approximatesf in squared loss undell if and
only if f is e-concentrated up to ordet.

Combining this with the KKMS Theorem 1.2, we get the
following learning result about polynomial regression:
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Theorem 2.12LetIl = 7 x --- x m, be a product dis-
tribution on X = X; x --- x X,,. Write N for the total
number of possible attribute values, = | X |+ - -+ | X,
LetC be a class of function® — {—1, 1} each of which is
e2-concentrated up to ordet underIl. Then the degred-
polynomial regression algorithm with; loss (or hinge loss)
usespoly(N?/¢) time and examples, and agnostically learns
with respect ta” underIl.

We will now show how to prove low-order concentration
results by extending the “noise sensitivity method” of [KOS04]
to general product spaces.

2.3 Noise sensitivity

We recall the generalization of noise sensitivity [BKS99] to
general product spaces, described in [MOOO05].

Definition 2.13 Givenx € X; x --- x X, and0 < p <1,
we define ap-noisy copy ofx to be a random variabley
with distribution N, (x), where this denotes that eagfj is
chosen to equat; with probability p and to be randomly
drawn fromm; with probability1l — p, independently across
1.

Definition 2.14 Thenoise operatdf, on functionsf : X —
R is given by

(Tof)(@) = Eyn, @f ()]
Thenoise stabilityof f at p is

Sp(f) = (£, Tof)-
Whenf : X — {—1,1} we also define throise sensitivity
of faté € [0,1] to be

NSs(f) =4 - 3815()= Pr

y~Ni_5(x)

[f (=) # f(y)].

The connection between noise stability, sensitivity, and
concentration comes from the following two facts:

Proposition 2.15 ([MOQO05]) Forany f : X — R,
Se(f)=D_rIlF=13.
=0

_Proposition 2.16 ([KOS04]) Suppos&Ss(f) < e. Thenf

is —2——e-concentrated up to ordeir/§.

1-1/e
For example, Peres proved the following theorem:
Theorem 2.17 ([Per04]) If f : {0,1}" — {-1,1}isalin-
ear threshold function then
NS5 (f) < O(1)Vs

(under the uniform distribution 0f0, 1}™). From [O’D03]
we have that th€)(1) can be taken to bé for every value
ofn andj.

It clearly follows that if f is any function ofk linear thresh-

old functions therlNS;(f) < %k\/g. Combining this with
Proposition 2.16:

Theorem 2.18 ([KOS04]) Letf : {0,1}" — {—1,1} be
any function ok linear threshold functions. Thefis (4% /+/d)-
concentrated up to orded under the uniform distribution,

for anyd > 1. In particular, f is e2-concentrated up to or-
derO(k?/e*).



3 Noise sensitivity of threshold functions in
product spaces

Theorem3.3Let f : X — {—1,1} be any function of
linear threshold functions, whe® = X; x - - - x X,, has the

product distributionll = 7, x - - - x 7,,. Thenf is (4k/v/d)-

In this section we show that Peres’s theorem can be extendedoncentrated up to ordet, for anyd > 1. In particular, f is

to hold for linear threshold functions in all product spaces.

Definition 3.1 We say a functiorf : X; x --- x X, —
{—1,1} is alinear threshold functionf its analoguef :
{0,1}" — {—1, 1} under one-out-of encoding is express-
ible as a linear threshold function. Equivalentfyis a linear
threshold function if there exist weight functions: X; —
R,7=1...n,and a numbeé € R such that

flx1,...,x,) =sgn (sz(%) —0) .

e2-concentrated up to ordeD(k?/e*).

By combining Theorem 3.3 with our main learning theo-
rem, Theorem 2.12, we conclude:

Theorem 3.4 Letll = 7 x --- x m, be any product distri-
bution over an instance spacé = X; x --- x X,,, where
we assumeX;| < poly(n) for eachi. LetC denote the
class of functions of linear threshold functions ovei'.
Takingd = O(k?/€*), the degreet polynomial regression
algorithm with L loss (or hinge loss) uses®**/<") time

No version of Peres’s Theorem 2.17 was previously knowrand examples and agnostically learns with respect.to

to hold even in the simple case of linear threshold func-
tions on{0, 1}™ under ap-biased product distribution with
p # 1/2. Understanding just this nonsymmetric case was

left as an open question in [Per04]. We now show that thresh-

old functions over general product spaces are no more nois
sensitive than threshold functions o@r 1}™ under the uni-
form distribution.

Theorem3.2Let f : X — {—1,1} be a linear threshold
function, where¥ = X; x --- x X, has the product distri-

butionIl = m; x -+ x m,. ThenNSs(f) < 2V/3.

Proof: For a pair of instancesy,z; € X and a vector
x € {0,1}", we introduce the notation, for the instance
whoseith attribute(z,); is theith attribute ofz,,. For any
fixed zo,z1 € X we can defing,, ,, : {0,1}" — {-1,1}
such thay,, ., (x) = f(z,). Note that this function is a lin-
ear threshold function in the traditional binary sense.

Let zg, z; now denote independent random draws from
I1, and letx denote a uniformly random vector froffi, 1}™.
We have thatz,, is distributed as a random draw fromh
Further picky € {0,1}" to be ad-noisy copy ofz, i.e.
y ~ Ns(x). Thenz, is distributed asVs(z,). We now
have

NS;(f) Pr

Z0,21,2,Y

B [Prlfza) # 1G22

[f(za) # f(zy)]

Z0,21 |2,y
= E |:Pr[920721 (.’1)) 7£ 9zo,21 (y)]:| :
Z0,21 |2,y

Oncezy andz; are fixed, the quantity in the expectation is
just the noise sensitivity at of the binary linear threshold
functiong,, .,, which we can bound b§\/5 using Theo-
rem2.17. So

NSs(f)

Z0,21 | XY

V6] =25,

which is what we wanted to show

B [Prfoue,(2) # 020, 0)]

IN

E [§

20,21

As with Theorem 2.18, we conclude:
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4 Concentration for other classes under
product distributions

8n this section we illustrate how essentially any result about

e-concentration of classes of functions under the uniform dis-
tribution on{0, 1}™ can be translated into a similar result for
general product distributions. Besides linear threshold func-
tions, the other main example of concentration comes from
the original application of the Low Degree Algorithm [LMN93]:
learning AC functions in quasipolynomial time. Recall that
AC? is the class of functions computed by unbounded fan-in
circuits of constant depth and polynomial size. We will use
this as a running example.

Suppos€ is a class of functiond — {—1,1}, where
X = X; x --- x X,,. As usual, under the one-out-gfen-
coding we can think of as a class of function®, 1}V —
{—1,1}. In our example, this gives a reasonable notion of
“ACO circuits on general product sets”. Suppose further
thatC D C is any class of function§0, 1}V — {-1,1}
which is closed under negation of inputs and closed under
fixing inputs to0 or 1. In our example, the class of AC
circuits indeed has this basic property (as does the more pre-
cisely specified class of all circuits with size at mesind
depth at most).

Now by repeating the proof of Theorem 3.2, it is easy
to see that any upper bound one can prove on the noise sen-
sitivity of functions inC under the uniform distribution on
{0,1}" immediately translates an identical bound on the
noise sensitivity of functions i€ on X under any product
distribution. The only thing to notice is that the functions
g=,.2, arising in that proof will be in the clasd. Thus we
are reduced to proving noise sensitivity bounds for functions
on {0, 1}™ under the uniform distribution.

Furthermore, any result orticoncentration of functions
on{0, 1}™ under the uniform distribution can be easily trans-
lated into a noise sensitivity bound which is not much worse:

Proposition 4.1 Suppose that : {0,1}" — {-1,1}ise-
concentrated up to degretunder the uniform distribution
on{0,1}". ThenNS, /4(f) < e.



Proof: Using traditional Fourier notation instead of orthog- 5 Extensions

onal decomposition notation, we have o .
P 5.1 Distributions close to or dominated by product

distributions

5| 2
Siocralf) = D (1—¢/d)¥f(9) We begin with some simple observations showing that the
SCn] underlying distribution need not Ipeeciselya product distri-
>(1—e€/d)i(1—e€) > (1—¢€)? bution. First, the following fact can be considered standard:
where the first inequality used the fact tifds e-concentrated ~ Proposition 5.1 Suppose that under distributioR, algo-
up to degreel. Thus rithm .4 agnostically learns with respect to claSsusingm
examples to achieve errer If D’ is any distribution satisfy-

(1—e?<e ing||D’—D|1 < ¢/m, thenA also agnostically learns under
D', usingm examples to achieve err@e + 2¢/m < 4e.

NS1—e/a(f) = 5 — 3S1-c/a(f) < 5 —

N[=

O
Proof: The key fact we use is that X is a random variable
, ) iy . with | X| < 1 always, thenEp [X] — Ep[X]| < ||D’ —
Finally, applying Proposition 2.16, we g@(e).—concentratlonD”l' This implies that for any hypothesig |errp: (h) —
up to orderd/¢ for the original clas€’ of functionst’ — errp(h)| < ¢/m. In particular, it follows thatOpty, <
{—1,1}, under any product distribution oki. This leadsto ¢ 1 ¢ /1. Further, leth be the random variable denoting

an agnostic learning result férunder arbitrary product dis- e hypothesist produces when given examples fr@™.
tributions which is the same as the one would getfander By assumption, we have

the uniform distribution o0, 1}™, except for an extra fac-
tor of € in the running time’s exponent. Dg)m[errp(h)] < Optp + €
For example, with regard to ACfunctions, [LMN93, which is at mosOptp, +e+¢/m. Since|D'C" —DE™ ||, <
Has01] proved the following: m(e/m) = ¢, the key fact applied terrp (h) implies
E h)] < Optp, .
Theorem4.2 Let f : {0,1}" — {—1,1} be computable D/®m[eer( )] < Optp, +ete/me
by an unbounded fan-in circuit of size at mestnd depth at

. (h) < )
most c.  Then f is e-concentrated up to degree Finally, as we sawerrp: (h) < errp(h)+¢/m always. Thus
d = (O(log(s/e€)))c L. E [errpr (R)] < Optp, + 2¢ + 2¢/m,
D/ m
We therefore may conclude: completing the proofl
Theorem 4.3 Let C be the class of function¥; x --- x We will use the above result later when learning under

X, — {—1,1} computed by unbounded fan-in circuit of Mixtures of product distributions.

size at most and depth at most (under the one-out-of- . ) o

encoding). Assumiex;| < poly(n) for eachi. LetIl be any A simple extension to the case when the distribution is
product distribution onX; x - - - x X,,. Then everyf € C is “dominated” by a product distribution was already pointed
157z €-concentrated up to order — (O(log(s/€)))*~" /. outin [KKMSO05]:

As a consequence, polynomial regression agnostically learnsgpservation 5.2 Let D be a distribution ont which is “C-
with respect toC u]ndzer arbitrary product distributions in  gominated” by a product probability distributiol = 7; x
timen(©Coa(s/€))* "/, co X i, forallz € X, D(x) < COT(z). If fis e
concentrated up to degrelunderll, thenf is C'e-concentrated
This result should be compared to the following theorem up to degreel underD.
from Furst, Jackson, and Smith [FJS91] for PAC- Iearnlng )
under bounded product distributions i 1}": ence.

Theorem 5.3 Suppose we are in the setting of Theorem 3.4
Theorem 4.4 ([F3S91]) The clas< of functions{0,1}" — except thafll is any distribution which igC-dominated by
{—1,1} computed by unbounded fan-in circuit of size at most a product probability distribution. Then the degrdepoly-
s and depth at mostcan be PAC-learned under any product nomial regression algorithm learns with respect@owith
distribution in timen(O((1/p)loa(s/N "™ "assuming the  d = O(C2k%/e!) and hencen®(C*#*/<") time and exam-
mean of each coordinate is in the rangel — p). ples.

The advantage of the result from [FJS91] is that it does °-2 Larger attribute domains
not pay the extrd /e in the exponent. The advantages of So far we have assumed that each attribute spade only
our resultis that it holds under arbitrary product distributions of polynomial cardinality. This can fairly easily be relaxed
on product sets. (Our result is in the agnostic model, but to the assumption that most of the probability mass in each
the result of [FIS91] could also be by applying the results (X;, m;) is concentrated on polynomially many atoms. Let
of [KKMSO05].) us begin with some basic preliminaries:
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Notation 5.4 Given a distributionr on a setX, as well as a
subsetX’ C X, we use the notatiom’ for the distribution on
X' given by conditioningr on this set. (We always assume

(X') #0.)

Fact5.5LetXY = X; x---x X, andletll =y x---x 7w,
be a product distribution otk’. Let X C X;,i =1...n,
and write IT' for the distributionII conditioned on the set
X' = X x---x X/. ThenIl' is the product distribution
T X e Xl

We now observe that it is a “large” subset oft’, then
any two functions which are close ir? (X, IT) are also close
in L2(X',1'):

Proposition 5.6 In the setting of Fact 5.5, suppose that
Prag,~r[®: ¢ X!] < 1/(2n) for all i. Then for any two
functionsf : X — Randg : X — R,

112 = glarll3 o < 2 [1f = g3 0

wheref|x/ : X’ — R denotes the restriction gfto X, and
similarly for g| .

Proof: Writing h = f — g, we have

a3 e = E [h(z)’]
x~I1
— n. 2 !
= mlilﬁ[meX] mIE]H[h(m) | x € X

+mf:%[sc ¢ X' En[h(ac)2 |z ¢ X'].

X~
UsingE,n[h(x) | ¢ ¢ X’] > 0, we have
Ihlin = Prlze] E [h@)? e

xr~

>

= wflrﬁ[w cX']- E [h(z)?).

x~I17

But by the union bound

Priz¢g X<} Prfe ¢ X[]<n-1/(2n)=1/2,
< il

SOPrg [z € X’] > 1/2. Thus

2[5 > B ()] = [ fle = gl 50,

/

completing the proofa

Corollary 5.7 In the setting of the previous proposition, if
f is e-concentrated up to ordef underIl, then f|/ is 2¢-
concentrated up to ordet underII’.

Proof: It suffices to observe thatif : X — R is a function
of orderd, theng|x- is also a function of ordei. O

We can now describe an extended learning algorithm which
works when the attribute spaces are mostly supported on sets

of polynomial cardinality:

Definition 5.8 We say that a finite probability spa¢&’, =)
is (n,)-boundedf there exists a subset’ C X of cardi-
nality at most X’| < r such thaPr,.[x ¢ X'] < n.
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Our algorithm will learn whenever all attribute sets are,
say,(e/n, poly(n))-bounded. The first step of the algorithm
will be to determine a set of attribute values which contain
almost all of the probability mass.

Lemma5.9 Let (X, ) be an(n,r)-bounded probability
space. LetZ be a set ofn = rlun(r/§)/n samples drawn
independently fromr. DefineY to be the sef{z € X :
x was sampled it€}. Then with probability at least — 4,
the setY” satisfiePr,..[x ¢ Y] < 2.

Proof: In fact, we will prove the slightly stronger state-
ment that with probability at leadt — § the setY” satisfies
Prox[z ¢ Y N X'] < 2n, whereX' is any set fulfilling the
(n,)-boundedness condition 6K, 7).

To prove the claim, we split the sampling procedure into
r epochs, where we dralt(r /) /n samples in each epoch.
LetY; be the set of all atoms iX sampled among the first
1 epochs, withY,, denoting the empty set. We will prove
that with probability at least — 4, the following holds for
all epochsi € [r]: eitherY;_; satisfiesPry [z ¢ Y;_1 N
X'l <2n,0or(Y;NX")\Y;_1 # 0 (i.e., we see a “new” atom
from X’ in the:th epoch).

Let's first note that satisfying the above conditions im-
plies that in the en®rp.[x ¢ Y N X'] < 2. This is
straightforward: if at any epoch;_; satisfiesPrz~.[x ¢
Y;_1NX'] < 2nthenwe're done becau3eD Y;_;. Other-
wise, in allr epochs we see a new atom frowi, and hence
at the end of the sampling we will have seedistinct atoms
of X’; then|X’| < r implies that our finat” 2> X'.

Now to complete the proof let us bound the probability
that for a giveni € [r] theY;_; does not satisfPr,. [z ¢
Y;—1 N X’] < 2 and we do not see a new elementdfin
theith epoch. Note that iPr,. [z ¢ Y; 1N X'] > 25, then
the fact thatPr, [z ¢ X’'] < 5 implies thatPrp.[x €
X"\ 'Y;_1] > n. So the probability that we do not observe
any element o’ \ Y;_; in In(r/d)/n samples is

Prz ¢ X'\ Y,_(]"0/9/m < (1 —p)nt/O/n

T~

< e~ nn(r/8)/n _ §/r.

By applying the union bound, we see that there is probability
at most) that any of the- epochs fails, so we're donél

We now give our extended learning algorithm:

. Draw a setZ; of m; unlabeled examples.
. Draw a setZ, of my labeled examples.

. Delete fromZ, any instance/label pair
where the instance contains an attribu
value not appearing i ;.

. Run the degreé-polynomial regression
algorithm onZs.




Theorem 5.10 LetIl = 7y x - - - x 7, be a product distribu-
tion on the seft = X; x --- x X,, and assume each prob-
ability space(X;, ;) is (¢/n,r)-bounded. WriteV = nr.
Let C be a class of function® — {—1,1} each of which
is e2-concentrated up to ordef. Setm; = poly(N/¢) and
mgy = poly(N9/¢). The above algorithm usesly(N?/e)
time and examples and agnostically learns with respe€t to
underII.

Proof: For simplicity we will equivalently prove that the al-
gorithm outputs a hypothesis with error at mosgit + O(e),
rather tharOpt + e.

We first want to establish that with probability at least
1 — ¢, the set of attributes observed in the samglecovers
almost all of the probability mass @f. For eachi € [n],
let X! be the set of attribute values frofj; observed in at
least one of the samples if;. Using the fact that each
(X;, ) is (e¢/n,r)-bounded, Lemma 5.9 implies that for
sufficiently largem; = poly(N/e)log(1/¢), eachX! will
satisfyPrg, ., [x; ¢ X!] < 2¢/n except with probability at
moste/n. Applying the union bound, alk/ simultaneously
satisfy the condition with probability at leakt¢. We hence-
forth assume this happens. Writidg = X{ x --- x X/,
we note that, by the union bourBly,[z & X’] < 2e.

The second thing we establish is that we do not throw
away too many examples in Step 3 of the algorithm. We
have just observed that the probability a given example in
Z, is deleted is at moste. We may assumge < 1/2, and
then a Chernoff bound (and, > log(1/¢)) easily implies
that with probability at least — ¢, at most, say, two-thirds

of all examples are deleted. Assuming this happens, we have

that even after deletioiZ, still contains at leagtoly (N ?/e)
many examples.

We now come to the main part of the proof, which is
based on the observation that the undeleted exampl&s in
are distributed as i.i.d. draws from the restricted product dis-
tribution II’ gotten by conditioningl on X’. Thus we are in
a position to apply our main learning result, Theorem 2.12.
The polynomial regression part of the above algorithm in-
deed usepoly(N?/¢) time and examples, and it remains to
analyze the error of the hypothesis it outputs.

First, we use the fact that each functignin C is €2-
concentrated up to ordet to conclude that each function
flar in “C|x" is 2¢2-concentrated up to order This uses
Proposition 5.6 and the fact that we may assi@me 1/2.
Next, the guarantee of Theorem 2.12 is that when learning
the target classifier (viewed as a functiodd — {—1,1} or
X’ — {-1,1}), the expected error undgf of the hypothe-
sish produced is at mogbpt’ + O(e), where

Pr [f(@) # t(@))
By definition, there is a functiofi € C satisfying
Pr[f(z) #t(x)] = Opt.

SincePrpnfxr ¢ X'] < 2¢, it is easy to see that| . has
error at mosOpt+2¢ ont underdl’. ThusOpt’ < Opt+2e,

Opt’ = min
P f'ec

(P
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and we conclude that the expected error uiflesf h ont is
at mostOpt + 2¢ + O(e) = Opt + O(¢). Finally, the same
observation implies that the expected error uridesf /4 on
tis at mostOpt + 2e + O(e) = Opt + O(e).

We have thus established that with probability at least
1—2¢, the polynomial regression part of the above algorithm
outputs a hypothesis with expected error at nayst+ O ().

It follows that the overall expected error is at méspt +
O(e), as desiredd

5.3 Real-valued attributes

We next consider the particular case of learning with re-
spect to linear threshold functions, but when some of the at-
tributes areeal-valued This case is relatively easily handled
by discretizing the ranges of the distributions and using the
previously discussed techniques. Our approach works for a
very wide variety of distributions ofR; these distributions
need not even be continuous. We only need the distributions
to satisfy “polynomial boundedness and anti-concentration”
bounds.

Definition 5.11 We say that a distributio® overR is B-
polynomially boundedf for all n > 0, there is an interval
of length at mospoly(B/n) such thaPryplx & I] < 1.

Definition 5.12 Given areal-valued random variabdewith
distributionD, recall that theLévy (anti-)concentration func-
tion Q(x; \) is defined by

Q(x;\) =sup Pr [z e[t —N/2,t+ \/2]].

teR @~D
We say thaD hasB-polynomial anti-concentratiahQ(D; \) <
poly(B) - A¢ for some positive > 0. Note thatifD is a con-
tinuous distribution with pdf everywhere at mdstthen it
has B-polynomial anti-concentration (with = 1 in fact).

Having polynomial boundedness and concentration is an
extremely mild condition; for example, the following famil-
iar continuous distributions are al-polynomial bounded
and haveB-polynomial anti-concentrationGaussiansith
1/B < o2 < B; exponentialdistributions with1/B <
A < B; Laplacedistributions with scale parameter with
1/B < b < B; Paretodistributions with shape param-
eter1/B < k < B; chi-squaredistributions with vari-
ancel/B < ¢% < B (for 1 degree of freedom, the anti-
concentration “¢needs to bd /2); etc.

(Furthermore, in most cases even the condition on the
parameter being ifil/ B, B] can be eliminated. For exam-
ple, suppose the first coordinate has a Gaussian distribution
with standard deviatios. With O(log(1/6)) examples, one
can with probability at least — ¢ estimates to within a
multiplicative factor of2. Having done so, one can multi-
ply all examples’ first coordinate by an appropriate constant
S0 as to get a Gaussian distribution with standard deviation
in [1/2,2]. Further, this does not change the underlying ag-
nostic learning problem, since the class of linear threshold
functions is closed under scaling a coordinate. For clarity of
exposition, we leave further considerations of this sort to the



reader.)

We now describe the effect that discretizing a real-valued

distribution can have with respect to functions of linear thresh-

old functions. It is convenient to switch from working with
a distribution onX” and target functiolt — {—1,1} to just
having a distributiorD on X’ x {—1, 1} — see the discussion
after definition of agnostic learning in Section 1.1. As usual,
assume that’ = X; x - -- x X,, is a product set and that the
marginal distribution of> on X is a product distribution.

Suppose we have one coordinate with a real-valued dis-

tribution; without loss of generality, say; = R, and write
D, for the marginal distribution ob on X;. When we re-
fer to a “linear threshold function” oA&’, we assume that the
“weight function” w; : X; — R for coordinatel is just
wy(x1) = c1z1 for some nonzero constant.

Lemma 5.13 LetC denote the class of functions ofinear
threshold functions ovet’. As usual, write

Pr

whereerr =
p(f) @l

[f(x) # yl.

Consider discretizing{; = R by mapping eachl:; € R to
rd,(z1), the nearest integer multiple efto z;. Write X| =
7Z and letD’ denote the distribution 0] x Xa x - - - X, X
{~1,1} induced fromD by the discretizatiori. Write Opt’
for the quantity analogous tOpt for D’. Then ifD; hasB-
polynomial anti-concentration, it holds th@tpt’ < Opt +
k- poly(B) - (),

t = inf
Op ;.gcerro(f),

Proof: It suffices to show that for any € C,
k- poly(B) - 7Y > Jerrp (f) — errp:(f)]
[f(z) # y] - [f(x) # yl|-

Writing II for the marginal ofD on X', we can prove the
above by proving

m]ZIl:I[f(m) # f(rdT(wl)v L2, ..

Since f is a function of some linear threshold functions,
by the union bound it suffices to show

mlitr‘l[h(:v) # h(rd;(x1), 22, ...,

Pr
(z,y)~D

Pr
(z,y)~D’

,2)] < k-poly(B)- 7Y,

)] < poly(B) - 7V

for any linear threshold functioh. We can do this by show-
ing
Pr [sgn(ciz,+Y) # sgn(cird, (z1)+Y)] < poly(B)-7Hb)

x1~Dq

whereY is the random variable distributed according to the

other part of the linear threshold functibnNote thaty” and

x; are independent becaudes a product distribution. Now

since|x; —rd. (x1)| is always at most/2, we can only have

sen(crx1 +Y) # sgu(cird, (1) + Y) if
|c1:131+Y|§|c1|T/2 =2 |$1+Y/01|§T/2.

"This can lead to inconsistent labels, which is why we switched
to D rather than have a target function.
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Itis an easy and well-known fact thatéfandy are indepen-
dent random variables theép(x + y; \) < Q(x; \); hence
Pr [|x1+Y /1| <7/2] < Q(x1;7/2).

mlel

ButD; hasB-polynomial anti-concentration, $@(x1; 7/t) <
poly(B) - 71, as needed:

By repeating this lemma up to times, it follows that
even if alln coordinate distributions are real-valued, so long
as they haveoly(n)-polynomial anti-concentration we will
suffer little error. Specifically (assuminig < poly(n) as
well), by takingT = poly(e/n) we get that discretization
only leads to an additional error ef

Finally, note that if a distributio®; is poly (n)-polynomially
boundedthen its discretized versioridgn, poly(n/e€))-bounded
in the sense of Section 5.2; this lets us apply Theorem 5.10.
Summarizing:

Theorem 5.14 Letll = 7y x - - - x 7, be a product distribu-
tion on the sety = X; x --- x X,,. For the finiteX;’s, as-
sume each ige/n, poly(n/e))-bounded. For the reak;’s,
assume the associated is poly(n)-polynomially bounded
and haspoly(n)-polynomial anti-concentration. L&t de-
note the class of functions of at madst< poly(n) linear

threshold functions ovet’. Then there is q;)oly(n/e)kz/54
time algorithm which agnostically learns with respectto
underTl.

5.4 Mixtures of product distributions

So far we have only considered learning under distributions
D that are product distributions. In this section we show how
to handle the commonly-studied case of mixtures of product
distributions.

The first step is to show a generic learning-theoretic re-
duction: Roughly speaking, if we can agnostically learn with
respect to any one of a family of distributions, then we can
agnostically learn with respect tokaownmixture of distri-
butions from this family — even a mixture of polynomially
many such distributions. (In our application the family of
distributions will be the product distributions, but our reduc-
tion does not rely on this.) Although the following theorem
uses relatively standard ideas, we do not know if it has ap-
peared previously in the literature:

Theorem 5.15Let © be a family of distributions over an
instance spacet. There is a generic reduction from the
problem of agnostically learning underkanown mixture of

¢ distributions from® to the problem of agnostically learn-
ing under a single known distribution fro®. The reduction
incurs a running time slowdown @bly(cT")/~ for an addi-
tional error ofy, whereT" denotes the maximum time needed
to computeD(z) for a mixture componer®.

Proof: Suppose we are agnostically learning (with respect to
some clasg) under the distributior® which is a mixture of

c distributionsDy, ..., D, with mixing weightsp, ..., p.

We make the assumption that the learning algorithm knows
each of the mixing weightg;, each of the distribution®;,



and can compute any of the probabiliti®s(x) in time T. We now take the expectation over the production of the sub-
We assume in the following that ti1¢;'s are discrete distri-  hypotheses and conclude

butions, but the case of absolutely continuous distributions
could be treated in essentially the same way. ¢ ¢

Elerrp(h)] = Z}piE[eeri ()] <Y pi(Opt; +¢)

First, we claim that the algorithm can simulate learn- i=1

ing under any of the single distributiof%, with slowdown ¢
poly(¢T))/p;. This is a standard proof based on rejection =Y piOpt; + €< Opt+e¢, (2)
sampling: given an example the algorithm retains it with i=1
probability as claimed.

r(:c) — p.IDi—(x) (1)

’ "D(x)’ It remains to deal with smalb;’s and analyze the run-

a quantity the algorithm can compute in tipely (¢T'). One ning time slowdown. We modify the overall algorithm so
can check that this leads to the correct distribufiron in- that it only simulates and learns under if p; > ~/c. Thus
stances. The probability of retaining an example is easy seerthe simulation slowdown we incur is onlyoly(c¢T') /v, as
to be preciselyl /p;, leading to the stated slowdown. desired. For anywith p; < «v/c we use an arbitrary hypoth-

esish; in the above analysis and assume anhby, (h;) < 1.
The main part of the proof now involves showing that Itis easy to see that this incurs an additional error in (2) of at
if the algorithm agnostically learns under edbk), it can mOStZZ—:pi@/Cpi < v, as necessaryl
combine the hypotheses produced into an overall hypothe-
sis which is good undeP. We will deal with the issue of
running time (in particular, very smadl’s) at the end of the
proof. LetOpt denote the minimal error achievable among

functions inC undgrD, and writeOpt; for the analogous  Theorem 5.16 LetD be anyknownmixture ofpoly(n) prod-
quantity unde;, 7 = 1...c. Since one could use the same ¢t distributions over an instance spate= X; x - - - x X,
f € C for eachD;, clearlyOpt > 3., p;Opt;. By reduc-  \where we assumé;| < poly(n) for eachi. Then there is a
tion, the algorithm produces hypothedes . .., h. satisfy- nO**/€")_time algorithm for agnostically learning with re-

ing Elerrp, (hi)] < Opt; +¢. spect to the class of functions/ofinear threshold functions
overX underD.

Combining Theorem 5.15 with, say, Theorem 3.4 (for
simplicity), we may conclude:

We allow our overall algorithm to outputr@ndomized

hypothesig:. We will then show thaE[errp ()] < Optte. When the mixture of product distributions is not known
where the expectation is over the subalgorithms’ production g prigri, we can first run an algorithm for learning mixtures
of theh,’s plus the “internal coins” oh. Having shown this,  of product distributions from unlabeled examples. For ex-

it follows that our algorithm could equally well produce a de- ample, Feldman, O’'Donnell, and Servedio [FOS05] proved
terministic hypothesis, just by (randomly) fixing a setting of he following:

h’s internal coins as its last step.

: , Theorem 5.17 ([FOSO05])Let D be an unknown mixture of
Assume for a moment that the subalgorithms’ hypothe- . _ (1) many product distributions over an instance space
ses are fixedy, . .., h.. The randomized overall hypothesis - _ X1 % - x Xn, where we assume;| < O(1) for
h: X — {—1,1}is defined by takingi(z) = h;(x) with eachi. There is an algorithm which, given i.i.d. examples
probability exactly; (), where the probabilities;(z) areas  fomp andn > 0, runs in timepoly (n/7) log(1/8) and with
defined in (1). (Note that they indeed sumitand are com-  opapility at leastl — & outputs the parameters of a mixture

putable in timepoly(cT').) Writing ¢ for the target function, ¢ . product distribution®’ satisfying||D’ — D, < 7.
we compute:

hyslg)oms[errp(h)] (The theorem was originally stated in terms of KL-divergence
but also holds withZ;-distance [FOS05].) In [FOS06] the
- wPD [h,ﬁgms[h(m) # t(z)] same authors gave an analogous result for the case when each
r X; = R and each product distribution is a product of Gaus-
_ B Z ri(@) sians with means and variancegifipoly(n), poly(n)].
x~D
Lizhi(z)#t(®) We conclude:
- E Z pi(x) Di() Theorem 5.18 LetD be anyunknownmixture ofO(1) prod-
x~D ieha ()t () D(x) uct distributions over an instance spate= X x - - - x X,,,
ol where we assume either: &X;| < O(1) for eachs; or b)
= Z Z pi(x)D;(z) eachX; = R and each product distribution is a mixture of
CEX ithy(z)£H(z) axis-aligned poly(n)-bounded) Gaussians. Then there is a
c c nO**/€")_time algorithm for agnostically learning with re-
= Y pi >, Di(z)=)_ pierrp,(hi). spect to the class of functionsiofinear threshold functions
=1 whi(o) (@) im1 overX underD.
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Proof: First use the results of [FOS05, FOS06] with= [Kal06]
¢/nO**/<) producing a known mixture distributid® with
|D' — Dy < e/n®**/<). Then run the algorithm from
Theorem 5.18. The conclusion now follows from Proposi- [KKMS05]
tion 5.1.0

[KOS04]

6 Conclusions

In this work, we have shown how to perform agnostic learn-

ing under arbitrary product distributions and even under lim-

ited mixtures of product distributions. The main technique [KR82]
was showing that noise sensitivity bounds under the uni-

form distribution on{0, 1}" yield the same noise sensitivity

bounds under arbitrary product distributions. The running

time and examples required by our algorithm are virtually

the same as those required for learning under the uniform[KSS94]
distribution on{0, 1}".

While we have established many interesting scenarios for [LBW95]
which polynomial regression works, there is still significant
room for extension. One direction is to seek out new concept
classes and/or distributions for which polynomial regression
achieves polynomial-time agnostic learning. Our work has
dealt mostly in the case where all the attributes are mutually [LMN93]
independent; it would be especially interesting to get learn-
ing under discrete distributions that are far removed from this
assumption.

[MOOO05]
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Abstract

We consider the question of why modern machine
learning methods like support vector machines out-
perform earlier nonparametric techniques like k-
NN. Our approach investigates the locality of learn-
ing methods, i.e., the tendency to focus mainly on
the close-by part of the training set when construct-
ing a new guess at a particular location. We show
that, on the one hand, we can expect all consis-
tent learning methods to be local in some sense;
hence if we consider consistency a desirable prop-
erty then a degree of locality is unavoidable. On
the other hand, we also claim that earlier meth-
ods like k-NN are local in a more strict manner
which implies performance limitations. Thus, we
argue that a degree of locality is necessary but that
this should not be overdone. Support vector ma-
chines and related techniques strike a good balance
in this matter, which we suggest may partially ex-
plain their good performance in practice.

1 Introduction

It is commonly seen in practice that modern methods in ma-
chine learning — such as kernel machines and more specifi-
cally support vector machines — outperform older techniques
in nonparametric statistics such as k-NN [for a concrete ex-
ample, see, e.g., Joa98]. The main approaches to explaining
this phenomenon are margin-based bounds on the general-
ization error and that margin maximization in effect mini-
mizes the VC dimension, again, arriving at a favorable bound
on the generalization error [Vap98, STCOO0]. In this work we
consider an alternative approach to investigating this matter,
in hopes of showing the underlying issues in a different light.

We will focus on local learning, i.e., the property of
a learning method that it uses mainly the close-by part of
the training set to construct new guesses. That is, when
an estimate is generated at a point x using a training set
Sn = {(%i,¥:i) }i=1..n (€., wWe are trying to guess a corre-
sponding value of y for x, using = and the training set), then
a local method is one that is influenced mostly by the points
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(2, y;) for which z; is close to . Many classical meth-
ods in nonparametric statistics are clearly of this sort, e.g.,
k-NN. This is often stated as a detriment of such methods,
in particular since local learning is susceptible to the curse
of dimensionality — in high-dimensional spaces, one needs a
great many points in the training set in order for a sufficient
amount to end up close-by to the point x currently being es-
timated. On the other hand, methods like support vector ma-
chines appear non-local in their definition — the separating
hyperplane is determined by the entire training set, and fur-
thermore does not depend on the particular point we intend
to estimate at — and thus one might suspect that the superior
performance of support vector machines and related tech-
niques is connected to this matter.

However, whether this is the case is not immediately ob-
vious. In fact, we might suspect that many kernel machines
behave locally: consider that a typical kernel machine can
be written as > ; a;y;k(x;, ), where k is a kernel function,
e.g., the RBF kernel krpr(z,2') = exp(—||z — 2'||?) (we
do not write the sign operation, which would appear here if
our goal is classification and not regression, but the issue is
the same in that case). This appears outwardly similar to

weighted k-NN, whose general form is %, where

the sum is taken over the K nearest neighbors of x and s is a
similarity measure; in fact, we can take s = kgrpp. Also sim-

ilar in form is another classical statistical technique, kernel

estimators, which can be written as w where
22 k([lzi—=l])

k : R — R has compact support. It appears that the main dif-
ference between kernel machines and the earlier techniques
lies in the coefficients; for kernel machines, «; is determined
in a manner based on the entire training set, and not just the
local subset of it. Perhaps, then, this might lead to non-local
behavior of some sort, and in conclusion it is not immedi-
ately obvious whether kernel machines behave locally or not.
We are therefore in need of an analysis to give us an answer.

For convenience, we will from now on refer to kernel ma-
chines as ‘modern methods’; we mean mainly support vec-
tor machines and related techniques, specifically, ones that
use both maximal-margin separation and the ‘kernel trick’
[Vap98], but to a lesser degree also boosting [FS99], which
similarly appears to have good performance due to margin
maximization [SFBL97]. By ‘classical methods’ we will
refer to older techniques studied in the statistical literature,
the prime examples of which are, as mentioned in the previ-
ous paragraph, k-NN and kernel estimators; another example



is local regression [CL95]. Using this terminology, our goal
is to explain, at least in part, the performance advantage of
modern methods over classical ones.

As we have seen, we are in need of an analysis to tell us
whether modern methods behave locally or not. One such
analysis was carried out in [BDRO06], with the conclusion
that kernel machines do in fact behave locally in some sense.
If so, then it might appear that being local cannot explain
the performance advantage of modern methods over classi-
cal ones, since apparently both approaches have that prop-
erty. We will argue against this notion, while at the same
time agreeing with the results in [BDRO6]. Specifically, we
will first show that indeed both modern and classical meth-
ods behave locally in some sense, but that the underlying
cause is the property of consistency, i.e., that the method is
able to successfully learn given any distribution (we leave a
formal definition to the next section). Importantly, however,
classical methods are local in a far stricter manner, and we
will show that such strict locality implies performance lim-
itations. Thus, a degree of locality is necessary for consis-
tency, but is detrimental if taken to excess. We hypothesize
that modern methods in fact strike a good balance in this mat-
ter, which may help to explain their superior performance.

In more general terms, based on our results we will argue
in the discussion (Section 7) that the challenge in devising
useful learning methods is to combine a local aspect, which
is necessary for consistency, with a global aspect, which is
useful for improving performance; the prime example of such
a performance-improving global aspect is of course maximal-
margin separation. To see this point, consider first that k-NN
is defined in a simple manner that immediately ensures it is
local (from its very definition), which allows it to be consis-
tent, as we will see, with little additional work. However,
it is hard to incorporate into such a local technique a non-
local regularization method like maximal-margin separation.
On the other hand, if we start with a method using maximal-
margin separation then it is not trivial to ensure that it be-
haves locally, which we will see is a precondition for con-
sistency. In other words, we want our learning methods to
(1) be local, so that they may be consistent, and (2) apply
a global regularization method, since this improves perfor-
mance in practice. Devising a method having both of these
properties at the same time is not trivial to achieve, but sup-
port vector machines and related methods do manage to do
so: on the one hand they utilize maximal-margin separation,
while on the other via the ‘kernel trick’ they end up having
sufficiently local behavior in order to be consistent (assum-
ing we choose an appropriate kernel and so forth). We will
discuss this argument more at length in the discussion at the
end of this work.

Technically speaking, the analysis that we conduct in or-
der to arrive at the conclusions just mentioned is based on
definitions inspired by those in [ZR07]. The main differ-
ence from that work is that local behavior was defined there
by comparing a method’s response on the entire training set
to the ‘local training set’, which contains only the close-by
points. This approach has the advantage of having practi-
cal applications in that it can answer what might occur if we
‘localize’, say, a support vector machine (i.e., show it only
close-by points, as done in k-NN). However, the comparison
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of a method’s response on two training sets of different size
(the local one is in all reasonable cases smaller) has the dis-
advantage that it is hard to talk about subtle degrees of local-
ity, since the change in the size of the training set introduces
a source of variability. Our goal in the present work is in
fact to speak about such differences of degree. We therefore
define locality differently, by considering changes to far-off
points instead of removing them from the training set, which
keeps the size of the training set fixed. Why this is helpful
will become clear later on.

The structure of the rest of this work is as follows. In
Section 2 we describe the formal setting of the problem and
lay out notation. In Section 3 we define locality and other
concepts and give an overview of our results. In Section 4
we present our results for consistency and its connection to
weak locality. In Section 5 we turn to strict locality and its
drawbacks. In Section 6 we deal with the application of our
results to classification. Finally, in Section 7 we summarize
and discuss our results.

2 Formal Setting

We now complete the formal description of the setting. We
are given an i.i.d sample S,, = {(z;,y;)}i=1.., from some
distribution P; then a new (independent) pair (x, y) is drawn
from the same P and our goal is to predict ¥ when shown
only z. Our prediction (also called estimate, or guess) of y
is written f(.S,,, x), some measurable function that depends
both on the training set and the point to be estimated (note
that this notation, where the training set and new observation
are of equal standing as inputs to f, is slightly atypical, but
is very convenient in our setting, as will become clear later).
We call f a learning method (sometimes method or estima-
tor); note that it can produce guesses for any size training
set and any x. One specific context is that of classification
(also called pattern recognition) where y € {—1,+1}; we
call learning methods in this context classifiers and call y the
class. While our results apply to classification, we will not
focus on it in most of this work, since a regression-type set-
ting is simpler to deal with. Later on, in Section 6, we will
show how to apply our results to classification.

Our goal is to estimate f*(x) = E(y|x), that is, the ex-
pected value of y conditioned on z, or the regression of y on
x. Our hope is that f(S,,, z) is close to f*(x). We say that f
is consistent on a distribution P iff

Lnp(f) = Es, wnp |f(Sn,2) = f*(2)] — 0

n—oo

where the expected value is taken over all training sets .S,
and observations z both distributed according to P. We will
omit P from L, p when the distribution is clear from the
context, and we will generally further shorten our notation
to write expressions of the form

Ln(f) = ES,L,CC ‘f(Smx) - f*(x)‘

when, again, the distribution is clear from the context. (Note
that the choice of the absolute value in the L,, loss —i.e., the
L1 norm — is only for convenience; our results hold in the
more typical Lo norm as well.)

If a method is consistent on all P then we call it con-
sistent (this is sometimes called universal consistency). Im-
portantly for us, methods like support vector machines and



boosting are consistent [Ste02, Zha04], or at least can be if
the parameters are chosen accordingly. In fact such choices
often turn out to lead to good performance in practice, and
therefore we are interested in consistent versions of modern
methods. We will return to this matter in the discussion.

The following notation will be used. Denote by pp (or
just p, if P is clear from the context) the marginal measure
on x of a distribution P. We denote random variables by, for
example, (x,y) ~ P and S,, ~ P where the latter indicates
arandom i.i.d sample of n elements from the distribution P.
We will often abbreviate and write  ~ P where we mean
x ~ pp. To prevent confusion we always use = and y to
indicate a pair (x,y) sampled from P.

As already implied, we write expected values in the form
E,v H(v) where v is a random variable distributed accord-
ing to V. We denote probabilities by, e.g., P,y (U(v)),
which is the probability of an event U(v) taken over a ran-
dom variable v. In both cases we will omit V' when it is clear
from the context.

For any set B C X, denote by Pp the conditioning of P
on B, that is, the conditioning of yp on B (and the limiting
of f*’s domain to B). We denote B, , = {2’ € R? :
||z — 2’|| < r}, the ball of radius r around z (using the
Euclidean norm). Let P, ,, = Pp_ ,.

Finally, we make the following assumptions which are
mainly for convenience. Our distributions P are on (X,Y)
where X € R% Y C R (i.e., we work in Euclidean spaces).
We assume that X, Y are bounded

sup ||z|| , sup |y| < M,
xeX yey

for some M; > 0 which is the same for all distributions.
Thus, when we say ‘all distributions’ we mean all distri-
butions bounded by the same value of M;. We also as-
sume that our learning methods return bounded responses,
|f(Sn,z)| < Ms for some My > 0.! Let M be a constant
fulfilling M > M, Ms.

3 Definitions and Overview

We will now define the main concepts that concern us, start-
ing first with some convenient notation. For any training set
Sp ={(z;,y;)} andvaluesz € X , r >0, {yg;} € Y", let

Sn(z,r,{yi}) =
{ (w2 Wlle =zl < o + Wlle =il > i) }

That is, S, (x, 7, {¥;}) does not change the locations z;, and
has the original y values y; close-by to = (up to distance 7),
while replacing far-off labels with g;. We can now define one
sense of locality: we call a method f local on a distribution
P iff there exists a sequence { R, }, R,, \, 0, for which

E{mi}w sup |f(Sna x) - f(Sn(SC, R,, {ﬁz})a I)‘ — 0
{yi}.{v:} nmee

'Note that this is a minor assumption since for essentially all
modern and classical methods we have sup, |f(Sn,2)] < C -
max; |y;| for some C' > 0, and the y; values are already assumed to
be bounded. Furthermore, we are concerned with consistent meth-
ods, i.e., that behave similarly to f* in the limit, and f™ is bounded.

207

(Here S,, = {(z4, i)}, following our usual notation, i.e., Sy,
is constructed from {z;} in the expectation and {y;} in the
sup.)

This definition is fairly straightforward: a method is lo-
cal if, asymptotically speaking, it returns very similar re-
sults when we change far-off labels. Thus, the method is
influenced mainly by the close-by part of the training set,
which is the intuition behind a local method. Note that, since
R,, — 0, in effect the method is influenced only by the lo-
cal part of the training set in a strong sense. Note also that
the definition speaks of locality on a single distribution P; as
with consistency, if a method f is local on all P then we say
that f is local (i.e., if P is not specified, we mean all P). We
will use this convention with other definitions as well.

It turns out that there are more useful ways to define lo-
cality, for reasons which we will see later. One such defini-
tion of locality is weaker than that given before, and one is
stronger. We start with the weaker:

Definition 1 Call a method f weakly local on a distribution

P iff, for every distribution ﬁfor which up = pp, there
exists a sequence { Ry, }, Ry, \, 0 for which

By aBlygnr | (a:), 5~P | {22}
‘f(sn7$) - f(Sn(van» {gl})v‘r)‘ njo)oo

(Here {y;} ~ P | {z;} means that each y; has distribution
P conditioned on x;.)

Thus, a weakly local method is one which, if we replace
far-off labels with labels from another distribution, is asymp-
totically not influenced by that change (note that we keep p,
the measure on z, fixed; we care only about changes to y
values). This definition is weaker than the one given before
in that instead of the supremum over all y, we sample alter-
nate y values from a fixed distribution. However, since we
require that this property occur for all distributions P, we
still have the essential behavior of being most influenced by
the close-by part of the training set.

In one of our main results we will see that all consistent
learnings methods are in fact very close to being weakly lo-
cal (we will require a minor technical relaxation of the defini-
tion given above). Hence this is true for, e.g., support vector
machines, assuming the kernel and parameters ensure con-
sistency.

It is obvious that classical methods like k-NN and kernel
estimators are weakly local, both because they are consistent
[see DGKL94, GKP84, respectively], and by direct inspec-
tion, see Section 5. However, they seem to be local in a
stronger sense than that appearing in weak locality. In fact
they have the following stronger property:

Definition 2 Call a method f strictly local on a distribution
P iff there exists a sequence {R,,}, R,, \, 0, for which

P{zz},z (v{yz}7 {gt} f(Snvz) = f(Sn(vanv {gz})v‘L))

— 1

n—oo
Thus, a strictly local estimator is one for which we can re-
place far-off labels and this, with probability going to 1,
will not affect our estimates at all (this is easily seen to be



stronger than the original definition of locality due to the
boundedness assumption on f). Note that we can consider
stricter notions of locality, however, this definition is strict
enough, since classical methods fulfill it.

We will see later in Section 5 that, unlike classical meth-
ods, many (if not all) modern methods are not strictly local,
and that this has potentially important consequences, since
strictly local methods have performance limitations.

In [ZRO07] similar definitions appeared. In that work, lo-
cal behavior was defined by comparing f’s response to the
response it would have given had far-off points been removed
from the training set, whereas in the definitions given above
we consider changes to their y values instead. As mentioned
in the introduction, the reason for this is the need to consider
varying degrees of locality. In our definitions, we can either
change the y values to values sampled from a fixed distribu-
tion (weak locality) or consider all possible changes (local-
ity, and, in a stronger sense, strict locality). We will see that
these differences can in fact be of importance. A further rea-
son for preferring our definitions over ones in which far-off
examples are removed is that the latter approach changes the
size of the training set, and in a data-dependent manner. This
introduces a source of variability which then makes it hard to
talk about concepts like strict locality, where we require that
with high probability there be no change in the response; if n
changes, this itself may cause an alteration (e.g., this occurs
in the common case where a regularization constant is used
whose value depends on n). Alternatively, we might have re-
moved a fixed number of far-off observations depending on
n (as in k-NN, in fact), but this causes other inconveniences
in that the radius in which the remaining observations lie is
now a random variable (which is, as before, a source of vari-
ability). Replacing far-off y values, as we have chosen to do,
therefore seems the most productive choice.

We now survey other related work. Research regarding
locality was done in the context of learning methods that
work by minimizing a loss function. Such loss functions can
be ‘localized’ by re-weighting them so that close-by points
are more influential; see [BV92], [VB93] for such an ap-
proach in the setting of Empirical Risk Minimization [ERM;
Vap98] and [CL95] and references therein for the specific
case of linear regression; see [AMS97] for a survey of appli-
cations in this area. The approach we follow differs from this
one in that we focus on consistency in the sense of asymptot-
ically arriving at the lowest possible loss achievable by any
measurable function — i.e., in the nonparametric sense — and
not in the sense of minimizing the loss within a set of finite
VC dimension. The nonparametric sense is, we believe, the
one most relevant to locality, and the best context in which
to compare modern and classical methods.

We now briefly summarize our two main results. First,
regarding the connection between consistency and weak lo-
cality, let us consider now a property weaker than consis-
tency. Define the means of f and f* by

E.(f) = Enp(f) = Es, 2 f(Sn, )
E(f*)=Ep(f*) = Eof"(2) = E.E(y|z) = By
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the latter expression which is just the global mean of y, and
define f, f*’s Mean Absolute Deviations (MADs) by

MAD,,(f) = MAD, p(f) = Es,, o |f(Sn, ) = En(f)]
MAD(f*) = MADp(f*) = E, |f*(z) — E(f*)|

(we prefer the MAD over the variance due to the choice of
the £1 norm). We define

Definition 3 Call a method f Weakly Consistent in Mean
(WCM) iff there exists a function H : R — R, H(0) = 0,
lim .0 H(t) = 0, for which, VP,

{ limsup,, o, |En(f) — E(f*)] } < H(MAD(f"))

limsup,, .. MAD,,(f)

(Note that the same H is used for all P.)

A WCM learning method is required only to do ‘reason-
ably’ well in estimating the global properties of the distri-
bution — the mean and MAD, which are two scalar values —
in a way that depends on the MAD, i.e., on the difficulty;
we only require that performance be good when the learn-
ing task is overall quite easy, in the sense of f*(x) being
almost constant. Note that when H(MAD(f*)) > 2M we
require nothing of f for such f* (since |f|,|f*| < M), and
that also for small MAD( f*) we may allow the MAD of f to
be significantly larger than that of f* (consider, for example,
H(t) = c- (vt +1t) for large ¢ > 0).

It is easy to see that WCM is weaker than consistency
and implied by it. Assuming consistency,

|En(f) = E(f)] = |Es, 2 (f(Sn,2) = f*(2))]
< |Bs, o |f(Sn,2) = ()] (D)
= [Ln(f)| =0
(note that here even H (t) = 0 would have worked), and
lim supMAD,,(f) = limsup Es,, , | f(Sn,z) — E,(f)]

< lim:up {ESn,z | f(Sn,x) — f*(z)]
+ By [f*(z) = E(f")]
+IEG) - Ea(hl

= MAD(f)

using the consistency of f and (1); thus, H(t) = ¢ shows
that the WCM property holds for all consistent methods.

We can now ask, what is missing in WCM that is present
in consistency? Since WCM is a ‘global’ property (con-
cerned only with two scalar values that are functions of the
entire space), it seems apparent that what is missing in WCM
is some ‘local’ aspect, i.e., of correctly learning in each small
area separately. We will see that in fact a property very sim-
ilar to weak locality can fill that role; we will call that def-
inition Uniform Approximate Weak Locality (UAWL). We
will then prove that consistency is logically equivalent to
the combination of UAWL and WCM. From our definitions
it will be easy to see that the UAWL and WCM properties
are ‘independent’ in the sense that neither implies the other.
Thus, we can see consistency as comprised of two indepen-
dent properties, which might be presented as

Consistency <= UAWL & WCM



Thus, our first conclusion is that a form of local behavior is
fundamental to consistency; any consistent method must be
in a sense local, no matter how it is defined. In fact, the dif-
ference between consistency and locality comes down to the
additional requirement in consistency that we also are not far
from estimating global properties of the distribution, as for-
malized by the WCM property.” This means that if we start
with a method defined in an explicitly local manner, like k-
NN, then we get ‘for free’ the property of UAWL. Then all
we need to do to get consistency is to ensure the WCM prop-
erty, which is relatively simple (we just need the scalar value
representing our global mean to converge to the accurate one,
and our MAD to not be too large). Since consistency is a de-
sirable property, this explains some of the attractiveness of
classical methods: achieving consistency with them is rela-
tively simple.

Our second main result will show the drawbacks of this
simplicity of classical methods, and will concern strict local-
ity. To show the limitations of strict locality, we define the
following property: call a method g preferable to another
method f, over a set of distributions P, iff, for every P € P,

Ln(g9) < Lu(f)

for large enough n (possibly depending on P). That is, no
matter what the true distribution is out of those in P, g is
eventually better than f. Our claim is then that, for ev-
ery strictly local method f, we can always construct a non-
strictly local g which is preferable to f. For convenience we
will show this on a specific example, but argue that the result
is a quite general one.

4 Weak Locality and Consistency

As hinted at before, it turns out that a slight complication
of our definition of weak locality is necessary. To present
the improved definition, we start with some preparatory no-
tation. For any ¢ > 0 and distribution P, let

f_q(s’n: (L‘) = E:L"NPz,qf(Sn: ml)

That is, f9 applies a ‘smoothing’ operation performed around
the = being estimated (recall that P, ; is P conditioned on
the ball of radius ¢ around x). Note that if ¢ = 0 then we
interpret the expected value as a delta function and we get
f% = f. Note also that we require the actual unknown dis-
tribution P in the definition of f9, i.e., f¢ cannot be directly
implemented in practice — f? is a construction for theoretical
purposes.
We define the following set of sequences:

7 ={Tn} : To\ 0}

and, for any sequence 7' = {T,,} € 7, we define the set of
its infinite subsequences and selection functions on them by

R(T)={{R.} : {R}CT, R, \,0}
AT) ={Q:T =T : Q(Tn) = o(Tn)}

Note that we need both the mean and the MAD to behave in an
appropriate way, as appearing in the definition of the WCM prop-
erty, because if only the mean is accurate then due to the variance
we may estimate the global properties very poorly.
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We now motivate these definitions. First, regarding 7:
instead of allowing any possible value in [0, co) for R,, and
(), we limit them to a countable set 7. The reason for this is
that due to [0, 00) being an uncountable set it is not clear to
the authors if additional conditions are not required to prove
our results in that case. In any event, a countable set of pos-
sible values is of sufficient interest for any practical learning-
theoretical purpose, since we end up using only a countable
number of R, values (since n € N). Note that the set
of possible values 7 can be chosen in whatever manner is
desired, so long as this is done in advance.

R(T) contains localizing sequences, sequences of radii
that determine how far off we alter the data shown when we
perform S,,(z, R,,, {y;}). We require that R,, \, 0, as we are
interested in learning methods that focus on the truly local
part of the training set, i.e., having radius 0 asymptotically.

Q(T) contains functions of the possible values 7' that
become negligibly small when 7, is small. We will use the
values Q(R,,) to determine radii on which to smooth, via
Q(R,,), which we might call the smoothing radius; note
that since Q(R,) = o(R,), we smooth on a radius much
smaller than R,,, hence this is a fairly minor operation.

Finally, we define

RH(T) = {{Rn} : {R.} C T}
QT (M) ={Q:T —T}

which are the same as before, but without the requirement
of converging to 0. We now arrive at our main definition for
this section, whose description is unavoidably technical:

Definition 4 Call a learning method f Uniformly Approxi-
mately Weakly Local (UAWL) iff

VP, P, up= Uy

YT eT

IQ € 9(T)

vQ' e QY(T), Q' >Q

HR,} € R(T)

V{R.} e R*(T), R, > R,
EloiyaBlyymr | (o), (5~P | {21}

£ (S @) = I (S, By, (Gi}),0)| — 0

o0
(Here the expression R/, > R,, simply implies an inequality
for the entire series, i.e., forall n. Q" > @ implies Q' (T%) >
Q(Ty,) for all k.)

Thus, a UAWL method returns similar values even when
we replace far-off data with different values of y; essentially
the same idea as with weak locality, but allowing for mi-
nor smoothing, and requiring uniformity in @, R,. With
a UAWL method, loosely speaking, for any large enough
@, R, we get local behavior. Note that the notion of R,
being large enough is a natural one since taking R?,, to 0 very
quickly is problematic (doing so may lead to us getting few
or no points in radius R,,, i.e., few or no points from the
important distribution).

The reason for including smoothing in this definition is
that, if all we assume is that learning methods are measurable



(and not smooth in some strong sense), then odd counterex-
amples exist to the connection between locality and consis-
tency; see [ZR07] for details. By incorporating smoothing
in our definition we remove the need to require it of the
learning methods we consider, which lets us apply our re-
sults to any method known to be consistent. The reason for
the second new aspect in this definition, that of allowing all
large-enough @', R!,, is that this leads to an exact equiva-
lence with consistency, as we will see in Theorem 5; further-
more, it would be odd for the locality of a method to depend
much on the specific @, R,, used for it. To make the mat-
ter concrete, note that the proof of Theorem 5 requires using
the same (), R,, over multiple distributions; without allow-
ing all large-enough @', R/, there exist odd counterexamples
in which each distribution has some appropriate @, R,, but
none exist that are appropriate for all of them simultaneously.
Our result for consistency is the following:

Theorem 5 A learning method f is consistent iff f is both
UAWL and WCM.

We prove the < direction, that UAWL and WCM im-
ply consistency, in Appendix A. Note that it is clear from
the proof that we can replace P in the definition of UAWL
with all distributions having y constant, but we believe the
definition given before is clearer.

For the = direction, that consistency implies UAWL and
WCM, it is immediately obvious that consistency implies
WCM. Regarding UAWL, a proof of a slightly simpler claim
(without uniformity in R,,, Q) appears in [ZR07]; using meth-
ods from other proofs in [ZR07], it is trivial to extend the
proof to showing uniformity as well. For completeness we
give a brief sketch of the proof appearing there: for fixed r, q
instead of R,,, ), we can use the consistency of f on the ef-
fective distributions seen (i.e., distributions that are altered
to P far away from z) to see that the appropriate loss con-
verges to 0, for every x separately. Since, again for every z,
the overall loss converges to 0, this also occurs in the area
with radius g, which is the one relevant to us. We then take
R,, Q to 0 slowly enough to complete the proof.

Theorem 5 can be summarized as follows:
<— UAWL & WCM

Here we use the symbol & because each of the two properties
UAWL and WCM can exist without the other: consider the
following two methods,

1 n
S = 23 0

fy (called thus because it considers only the y values) is
WCM, since E,(f,) — E(f*) and clearly f,’s MAD con-
verges to 0. (In fact, f, is WCM with H = 0, i.e., in the
strongest sense. That is, there are even ‘weaker’ methods that
are WCM.) On the other hand, f,, is clearly not UAWL (con-
sider, e.g., two distributions having f*(z) = —1, f*(z) =
+1). On the other hand, fj is trivially UAWL, but not WCM.

Consistency

fo(sn,.f) =0

5 Strict Locality

In this section we will deal with strict locality and its conse-
quences.
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It is immediately clear that kernel estimators are strictly
local (use R,, equal to the bandwidth, and recall that k£ has
compact support). For k-NN things are less obvious, but still
fairly simple: k-NN is consistent if the number of neighbors
k., fulfills k,, — oo, % — 0 [DGKL94]. From inspecting
the proof of consistency it is clear that these conditions en-
sure that the k,, neighbors will fall in an area of radius going
to zero, with probability going to 1. Thus (unsurprisingly) k-
NN is strictly local: just like kernel estimators, it completely
ignores far-off points, but it does so with very high probabil-
ity instead of certainty (since there is always a chance, even
though it becomes negligibly small, that we will need to look
far for the k,, nearest neighbors).

We have seen that any consistent method must be in some
sense local, specifically, UAWL. We can now ask, must a
consistent method also be strictly local? It turns out that the
answer is no. Consider, for example, kernel ridge regression
[SGV98], which can be written in the kernel-induced space
(via a transformation ¢) as

1 / 2 2

L{w) = Z(w P(@i) = yi)” + Al|wl] )
It is clear that under mild regularity conditions we will not
get strict locality, since any change to the y; values can cause
a change to the resulting w, as is obvious from looking at the
solution to (2); thus, kernel ridge regression is not strictly
local. It appears clear that a similar phenomenon occurs for
other types of kernel machines, as well as methods such as
boosting (but we do not supply a formal proof), simply be-
cause there is always the possibility of influence by far-off
points (as is also clear from these methods minimizing a
global loss function which is an average of losses at individ-
ual points; any change to a point influences the overall loss,
with potential consequences on the entire space). While the
influence of far-off points wanes as n converges to infinity —
which is necessary, as we have seen, in order for the method
to be consistent — the far-off points are not simply ignored as
with classical methods like k-NN. There is always the possi-
bility of being influenced by the farther points, even if this is
a rare occurrence.

We will now see that the property of potentially being
influenced by far-off points can, in fact, be important. The
reason is that strictly local methods have performance limi-
tations. As is well known, to talk in a meaningful way about
performance, we cannot make comparisons on the set of all
distributions [see, e.g., DGL96]. We therefore consider lim-
ited sets of distributions, as is done in the minimax setting in
statistics. We first begin with a brief reminder of the setting
and how minimax losses can be achieved.

Assume for simplicity a Lipschitz set of functions f* €
L(L) on [0,1]4,

[f* (1) = 7 (@) < L - [l — 22|
and take  uniformon X = [0,1]% lety = f*(z) + €, e ~
N(0,02). Consider a simple kernel estimator with radius r,
o oy Sitllle —all < v
f( "“I) - . || <
2 Hllwi — 2|l < r}

For every x(, we receive on average on the order of nrd
points in radius r to estimate f*(zg), so we can estimate




g
Ef*(z) differs from f*(x0) by up to Lr, giving us roughly
L,.(f) < \/% + Lr, an example of a bias-variance trade-
off (the bias is due to estimating E f*(z) on B, and not
f*(xo) directly, and the variance is due to having only the
order of nr? points). From this simple analysis it can be
concluded that a choice of r = r,, = O(n~/(4+2)) is appro-
priate, and that this will give us a loss of O(n~/(?+2))_ This
is in fact the minimax rate, i.e., the best-possible achievable
rate, as shown in [Sto80, Sto82].

Importantly, notice how we must consider close-by points
in order to arrive at the rate: if we look only at points at dis-
tance r or more, then f*(xg) may differ by up to Lr and
we would not be able to overcome this issue in a minimax
sense. Furthermore, it is also obvious from the analysis that
the close-by points are enough in order to achieve the rate,
i.e., to be up to a constant factor of the actual minimax loss.
This can be directly seen by the equality of the bias and vari-
ance factors when we minimize their sum.

Thus, even a strictly local method like kernel estimators
can achieve the minimax rate; in that sense, there is nothing
to improve upon. In the example above the rate is n—1/(¢+2),
and Kkernel estimators can achieve it, but we have no assur-
ance that they do so with a low constant factor; since such
constant factors are hard to analyze, they are for the most part
ignored in statistics. While this is reasonable in the sense that
the rate is arguably the most important aspect in an asymp-
totic analysis, in actual practice — i.e., when working with
some fixed finite n — the constant factor can be critical, since
for fixed finite n we do not care about the asymptotic rate but
only about the actual value of L,,. We will now make such a
comparison of the actual values of L,, and claim that strictly
local methods are limited in their ability to minimize it.

As defined previously, call a method g preferable to an-
other method f, over a set of distributions P, iff, for every
PecP,

E f*(z) in that area up to precision . Itis also clear that

Ln(g) < Ln(f)

for large enough n (possibly depending on P). We will now
see that in fact it is simple to construct a method preferable
to any strictly local method, thus showing that strict local-
ity brings with it performance limitations. The reason for
the limitation is easy to see: by completely ignoring far-
off points, there is no ability to adapt to rare occurrences in
which those far-off points are in fact necessary for good per-
formance. In statistical terms, while we have lower bias with
the close-by points, we have lower variance with the farther-
off ones due to their greater number. On average we prefer to
balance these two out, as shown above, but in specific cases
we can do better than such an average; consider, for exam-
ple, the unlikely but possible case where the close-by points
have bizarre values (e.g., their empirical variance is much
larger than o2 in the example above); in such a case, based
on the empirical sample we can tell that it would probably be
better to focus on slightly farther off points. That is, while
on average the close-by points are most relevant, there is a
minority of cases in which they are in fact misleading, and in
at least some of those cases we can tell when they occur, at
least with high probability. We will now formalize this no-
tion in a concrete result in a specific setting. While only one
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example, the underlying issue just mentioned should hold in
a wide range of cases.

The following definition will make our result easier to
state: call a method f reasonable iff, when all y; in S,, have
the same value, f returns that value. Note that practically
every existing learning method has this property, including
those of interest to us, and that in fact all consistent methods
must have this property in an asymptotic sense in order to
be consistent on distributions having a constant value of y.
Then we claim the following:

Proposition 6 Let L be the following set of distributions.
Assume X = [0,1] and that p is uniform on X. Let Y =
{—1,+1}, assume that all f*(x) are Lipschitz with constant
< L, and that

,u(f*(x) € {—1,0,+1}) -0 3)

Assume that f is a strictly local method and that f is reason-
able. Then there exists a reasonable method g for which, for
every P € L, for large enough n we have

Ln(9) < Ln(f)
That is, g is preferable to f.

(Note that the assumption (3) is for convenience, and leaves
us to deal with the most interesting cases.) The proof of the
proposition appears in Appendix B.

Thus, any strictly local method can be improved upon
due to its ignorance of far-off points. Given that support vec-
tor machines and other techniques used in machine learning
are in fact local but not strictly local, there is the possibility
(which we concede that we only argue towards, but do not
prove) that this helps to explain their performance advantage
over classical methods which are strictly local.

6 Classification

We will now show how our results apply to classification.
First, we note that many theoretical analyses of classifica-
tion methods such as support vector machines and boosting
in fact work on the real-valued response of such methods,
i.e., before the sign operation; see, e.g., [Zha04, BJIM06]. In
that sense these classification methods are treated similarly
to regression estimators, and our results are of relevance to
them. However, this connection is only an informal one, and
therefore in this section we will show how it can be formal-
ized.

In classification [see, e.g., DGL96] we deal with learning
methods ¢(.S,, ) which return values in {—1, +1}. The loss
of interest is the 0-1 loss,

RO*I(C) =P (C(S”,lL’) 7& y) = ESn,(I,y)l{C(Sn: (L') 7é y}
which is usually compared to the lowest possible loss (also
known as the Bayesian loss), giving the excess loss, which is
well-known to be equivalent to

Lo(¢) = Es, o|e(Sn, @) — ¢* ()] - [2n(x) — 1]

where n(z) = P(y = 1|x) and ¢*(z) = sign(f*(x)). This
differs from the loss L,, studied in the main part of this work,



but as shown in [ZR07], consistency-related results such as
Theorem 5 can be adapted to classification, using a method
that we now briefly summarize. The idea is to note that

Ln(c) = Bs, a|c(Sn,2) — ¢ ()| - [20(z) = 1|
= Bs, ale(Sn,x) = " (@)] - |1 (@)

(
= Es,2|c(Sn, @) - [[*(2)| = f* () @

= Es, ol fo(Sn,2) — [ (2)]

where we define f7(S,,z) = ¢(Sn,z) - |f*(z)]. Now, a
classifier ¢ can be seen as esumatmg sign(f*). For every
such ¢ we define a learning method f. that estimates f*, by

fe(Snsx) = c(Sny x) f |(Sn, )

where f| | is the absolute value of some pre-determined con-
sistent method, i.e., a consistent estimator of | f*| (that is, ¢
estimates the sign of f* and f| | estimates the absolute value;
together they estimate f*). It is then straightforward to show
that ¢ is consistent (as a classifier) on a set of distributions
precisely when f is consistent (as a regression-type estima-
tor) on that same set, since f. is asymptotically equivalent to

*, and using L, (c) = L, (f) from (4).

Regarding our result for strict locality, Proposition 6, the
proof can be modified to apply to classification as follows.
First, note that already Y = {—1,+1}, and that if we re-
place f with a classifier ¢ (i.e., a function into {—1,+1})
then g defined in the proof is also a classifier (in fact, the
setting was chosen for its relevance to classification). De-
note d = g to avoid confusion; thus, our goal is to show that
L, (d) — L,(c) < 0. Now, as shown in (4) we have L,,(c) =
L, (fZ), so our goal is to evaluate L, (f;) — L, (fS). Note
that, when event A occurs as defined in the proof, then in-
stead of a response of 1 for f* we now have a response of
1 for ¢, giving an overall response of f¥(S,,z) = |f*(z)|
(and vice versa for a response of —1), which leads to replac-

()| with [|*(@)| = f* (@) and of | =1 = f* ()|
with | = [f*(2)| = f*(x)

ing [1— f~
’. In (5) we then get

17 @)= 1@ = | = 17 @)= @) = 21 @)

and —2f*(x) happens to be the exact same result as in the
original proof. All the rest of the proof can remain as before,
thus proving the claim in the context of classification.

7 Discussion

We have argued that (1) some degree of locality is unavoid-
able in learning, but that (2) if this is taken to an extreme
then it brings with it performance limitations. We speculate
that the superior performance of modern methods over clas-
sical ones may, in part, be due to the former striking a proper
balance in this matter.

Regarding the unavoidability of local learning, this is a
direct result of locality being implied by consistency. In fact,
in consistency we require the ability to do well on all distri-
butions, which includes distributions that only differ in very
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small localized ways. Thus, a consistent method must end
up trusting only close-by points. The only way to avoid this
issue is to dismiss consistency as a useful property. While in
theory such an approach might make sense — say, if we know
in advance that the true distribution belongs to some limited
set — in practice many effective methods in machine learning
are useful precisely because they make as few as possible as-
sumptions on the distribution. In fact, this is the reason non-
parametric methods are often more effective on real-world
problems than parametric ones. Thus, generally speaking,
consistency appears to be a property that we cannot easily
discard. Since consistency implies a form of locality, local-
ity is unavoidable as well.

As we have seen, the difference between consistency and
the relevant form of locality, UAWL, turns out to be a fairly
minor property, WCM. This means that if one of our goals
is consistency then it makes sense to focus on achieving the
UAWL property, since it is generally more difficult to en-
sure than WCM (ensuring WCM amounts to checking that
two scalar values are within some reasonable bound). This
may explain the historical appearance of and focus on clas-
sical methods like k-NN and kernel estimators: by defining
them in an explicitly local manner, which is simple to do,
the UAWL property is easily taken care of. Consequently,
defining such local methods is convenient and proving their
consistency relatively easy as well.

Such definitions, however, make the resulting methods
not only local in the necessary sense, but also strictly local.
As we have seen, strict locality is not necessary for consis-
tency and in fact implies some limitations on performance.
Thus, being motivated by convenient definitions and proofs
may lead to deficits in practice.

On the other hand, we can start with improving real-
world performance. The primary method of doing so which
we intend here is maximal-margin separation, which turns
out to be very effective in practice, and has an appealing
geometric intuition (keeping the classes as far apart as pos-
sible). This approach is clearly not a local one, since the
maximal-margin hyperplane depends on the entire training
set. Furthermore, in some sense it is reasonable to expect
an effective regularization technique to in fact be non-local:
if, as in soft-margin support vector machines, we consider
the sum of deviations across the margin (i.e., of observations
on the wrong side of it), then it would be hard to do so in
a local manner. That is, if we expect to allow some total
amount of deviations based on some rationale, it is hard to
enforce this locally; if we do work locally, then we need to
apply the same approach in every area, instead of being able
to accept more deviations in some areas in return for smaller
deviations elsewhere as well as a larger overall margin.

Thus, techniques like maximal-margin separation are ef-
fective and desirable, but non-local in their definition. This
appears problematic if we also want the property of consis-
tency, which as we have seen requires a degree of locality.
Hence, in devising learning methods we come up against
a difficulty: we want our learning methods to (1) be local,
so that they may be consistent, but we also want to (2) ap-
ply some performance-improving technique like maximal-
margin separation, which is non-local.

We can now try to explain the success of modern ma-



chine learning methods by their combining these two prop-
erties in an effective manner: by using the ‘kernel trick’ and
choosing a universal kernel [Ste02] we can get sufficiently
local behavior for consistency, while at the same time we
are still applying the maximal-margin principle in a global
manner, thus improving performance. It is this combined
approach which may be missing from classical methods.?

A Proof of < in Theorem 5

Denote S, (z,7,a) = Sp(z,r,{a;}) where a; = a, ie.,
Sn(z,r,a) replaces the y values of all far-off points with a.

Fix some 7' € 7 and some r,q € T. For any o € R, we
have the trivial fact that

\f(Sm«’If)— *( )<
+|f n Z',77()£) x)—f*(m)’

Let A = {a;,} be a countable set and let m,, be a sequence.
Write

[ (Sns ) = ()]
< it (£(S2) = FUSule, 7 am),2)

m<mpy,

Sz, r, ), ac)|

+ [ (S 7 am),2) = f4(@)])
< sup ‘f Sp,x) — fq( (x,r,am),:r)‘
m<m.,
+ 2L 1Sl am), 7) = (@)
and thus
Eg, o |f(Sn,x) = f*(z)]

< ESn,w sup |f(5nax) - f_.q(Sn(‘th O‘m)ax”

m<m.,
By ol | F(Su(@.r,0m).2) — I (@)]
< Z EWSm ‘f Snvx fq( (.I',’I“,Oém),l‘)’
m<m.,

+ESn,w 1<nf ’f‘l(Sn(x,r,am),x) —f*((L')|
By the UAWL property, for any a,,, € A we have
Es,0 |[f(Snyx) = fOT (S (@, Ry ),

n] 0
for appropriate Q, R,,, since Sy, (z, R,,«) can be seen as

sampled from a situation where P in the definition of UAWL
has y constant and equal to «. This is then true in particu-
lar for Q = ¢, R, = r, since by keeping these values fixed
they necessarily eventually become appropriate in the sense
of the definition of UAWL (i.e., as constants, they eventu-
ally become larger than the sequences from the definition of
UAWL - both of which tend to 0 — that we compare them
with in order to check if they are appropriate). It is therefore
also clear that there exists a sequence m,, — oo for which

Z Es, o | f(Sn, @) — fI(S )| =0

m<my

(T, 7, ), T

3Note that an additional advantage of kernel machines is that we
can easily make them non-consistent, by choosing an appropriate
kernel, i.e., a non-universal one.
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(by taking m,, — oo slowly enough, e.g., by keeping m,, =
k fixed and raising it to k£ + 1 only when the sum of the first
k + 1 elements will, for all n’ > n, be smaller than k!,
which must eventually occur since the sum is of elements
converging to 0). For this m,, we therefore have

lim sup ES’n,:L' |f(5n7$) - f* (lﬂ)|
< limsupEg, 1nf {fq (z, 7, am), ) — f*(as)|

We now pick A = {a,,} to be dense in [—M, M] (recall
that M is a bound on f* and f), and turn to analyzing the
expression on the last line. Fix some z € supp(P), and
consider the expression corresponding to x in the expected
value. Then for large enough n we can find some m(z) €
{1,...,my} for which |, (o) — Ep, . (f*)] < €, forany e >
0 (due to A being dense). Then

Es, 1<Hrf% |f1(Sn (7, am), x) — f*(2)]
< Es, [fUSn (2,7, tn(a)), @) — f*(2)]
< Es, |Ewnp, , [[(Sn(2,7, am@)), 2") — f*(2")]]
+ |Evnp, @) = f*(2)]
< Es,Eynp,, f(Sn(z, am(x))7 m/) - f*(xl)|
+ Eprnp, , |7 (@) = f(2)]

The expression on the last line converges to O (for almost all
) when ¢ — 0, by the corollary to the following lemma:

Lemma 7 [ [Dev81]; Lemma 1.1] For any distribution P
and measurable g, if E,..p|g(z)| < oo then

liy By, 9(a') = 9(a)

for almost all x.
Corollary 8 For any distribution P and measurable g, if

E,..plg(z)| < oo then

lim By, l9(a') = g(2)| = 0

for almost all x.

Thus, we arrive at

inf ‘fq

m<mpy, x " am) m) B f*(x)‘

a’) = (@)

limsup Eg,,
n
< limsup Es, Eyinp, , |f(Sn(a:,r, ()
+ €1

where €; > 0 can be made arbitrarily small by picking ¢
small enough.

Note that we can see S, (z,r,«) as sampled from the
distribution P, ;. o, by which we mean a distribution having
the same j1 as P, equal to P on B, ,, and having constant y



equal to « elsewhere. Then

ES71 E. '~Pp g |f CE T, am(z)) /) - f*(ll/)|
1
N 1 (Baq) Fetrep
| F(Sn(@,7, (), ") = f*(2")| 1 {2’ € Bag}
< mES LNP|f 1 r, am(z)) /)—f*(l'/)|
1
= By o e 1 (Sm ) = (@)
1
= mES"’I/szvrv“‘m(z)
|f(Sn,a") = Bu(f) + En(f) = E(f)+
B(f*) = f*(a")]
1
< m {MADn Pa oty (H)+
’En,Pz,r,am(,) (F) = Epp e, (F)|
MADp, (f*)}

where the expected values F,, (f), E(f*) on the equation be-
fore last are w.r.t Py ;. o @ (the omission is for clarity).
Using the WCM property, we can therefore bound

limsup Eg,, lnf |fq (z,7, ), @) — f*(x)|
< # MAD (f*)-i—

2H (MADPN . )(f*))} te

We now turn to consider the MAD of P, . Notice

m(z) "
first that

MAD(Py s, ..) < MAD(P,.,.) + €

)

because |,y — Ep, . (f*)| < e. Consider now the effect
of changing r. First, by Lemma 7 we have, for almost every

€,
lim By, f*(@') = " (x)
r— ’

so, for almost every =,

lim MADp, , (f7)

= 1im Byrp, |f* (@) = Barnr,  f(2")]
< liH%)EerP,, @) — [ (2)+

|f l') ac”NPJ Tf ( )|
= lim Eyp, |f7(2) = f* ()]

=0
using Corollary 7 for the last equality, and thus
lim sup MAD(PZYT,%M)) <e

r—0
We can pick ¢ to make €; arbitrarily small, and then r to

make MAD(PLT,QWW) arbitrarily small as well (note that
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we thus counter the ﬁ factor), and therefore, for almost
every x, “

lim_ Bs, |f(Sn.2) ~ f*(2) =0
where we also use the continuity of H at 0. This in turn
implies, along with the dominated convergence theorem, that

lim L,(f)=0
thus proving that f is consistent.

B Proof of Proposition 6

Denote S, N B = {(z;,¥:) € Sn x; € B}. Fix some
P € L as in the statement of the proposition. Let R,, be the
radii from the definition of strict locality for f. Note that, by
the definition of strict locality, we can replace R,, with any
R > R,, R, ™\, 0 and strict locality will still hold. WLOG
we can therefore assume that nR,, — oo.

Define R(Sy,x,r) as the property that

V{yt}7{37l} f(Sn,(E) = f(S’Vl(x’h {ZJ;}),Z)
That is, R is the property that strict locality in fact occurs; by
the definition of strict locality we know that the probability
of R(S,,z, R,,) rises to 1.

We define the following additional properties. Denote by
Ax = Ax(xz,r) the property that x € (y/r,1 — /r) (which
makes sense for < 1/4, and is indeed the case concerning
us as the values replacing  will tend to 0). Denote by Ay =
Ao (Sp,x, 1) the property that

|Sn, N By r| € [nr, 3nr]
|Sn N (B, 7 \ Beir)| € Iny/r,3n/7]

and that R(S,,, z,r) holds. Note that Ay(S,,, z, R,,) occurs
with probability going to 1, due to the marginal distribution
1 being uniform on [0, 1] (and using Bernstein’s Inequality),
i.e., Ap implies that the number of observations in the re-
gions B r,, B, /& are in the ranges of values we would
expect them to be, up to a constant. The additional require-
ment that R(S,,, z, R,,) holds does not change the proba-
bility of Ag(Sn,x, R,) going to 1, since the probability of
R(Sn,z, Ry) goes to 1.

Define also A, (S, z, ) as the property where Ax (x, ),
Ao (Sp,x,7) hold, and in addition we have

(1'1" yi) €S, N Bm,r

(xi, y7) S Sn N (Br,ﬁ \ Bm_’,‘)

i.e., the majority of points in B, 5 have label +1, while the
minority in the smaller enclosed region B, ,- have label —1,
and strict locality occurs. Hence if f were applied to S,,, z,
its response would be —1 (due to f being reasonable), de-
spite the numerous slightly farther-off points with label +1.
Likewise define A_(S,,, z,r) as the same property with re-
versed signs. Finally, let A(S,,, z, ) be the property that ei-
ther A, (Sp,z,7) or A_(S,, z,r) holds. Note that for small
R,, we expect that the probability of A(S,,z, R,) be very
small, i.e., it is an odd occurrence.
We define a new method g as follows:

_ f(Sn:(E) ﬁAA(Sn:(EwR’n)
o) ={ TG00 asnra i

—  yi=-1

—  y=+1



(i.e., we return one value if the property A(S,,, x, R;,) holds,
and another otherwise). That is, on ‘normal’ training sets g
is the same as f; however, on odd training sets with property
A, g guesses the opposite of f: it trusts the large number
of points within radius (R, /R,) over the smaller num-
ber in radius (0, R,,); g also behaves the same as f for x
close to the boundaries 0, 1 and only changes f’s behavior
when g takes into account the points in radius R, and ig-
nores the rest. Note that g is strictly local, like f, albeit with
larger radius. This suffices to prove the proposition and thus
make the claim that strict locality has performance limita-
tions, since it shows that we would always want to raise R,
to improve performance. In fact we can continue to raise R,,
while the close-by points comprise an ‘odd’ training set in
a sense similar to that mentioned above, which will lead to
a non-strictly local method (since we may end up with large
R,,, even O(1), albeit with small probability).

We will now prove that g has the property described in
the proposition, i.e., that it is preferable to f. Consider some
fixed z € (0, 1), then the corresponding element for = from
the loss L,,(g) = Eg,, »|9(Sn, x) — f*(x)| obeys

Es, lg(Sn,z) — f*(z)| =
Es, 1{A(Sn, z, Bn)}g(Sn, x) — f*(2)]
+ Es, 1{~A(Sy. 2, R,)Hg(Sn.2) - [* ()]
The last expression is equal to
Eg, {=A(Sp, , Rp)} f(Sn, 2) — f*(2)]
so when comparing L,,(f) to L,(g) it cancels out. We are
left with evaluating

lﬂc(g) = Esul{A(Sm'r’ Rn)}'.g(smm) - f*(w)‘
which we compare to
lo(f) = Es, 1{A(Sn, z, Bn) } f(Sn, ) — f7(2)]

As mentioned before, when A, (S, z,r) holds then f
returns —1, because f considers only the points in radius
r, all of whom have label —1, and because f is reasonable.
Consequently in this case g returns +1, and vice versa for
A_. To consider the difference L, (g) — L, (f), which we
want to prove is negative, we can then write

lo(9) = Lo(f) )
= Eg, 1{A(Sn,z,R,)}
(I9(Sn, x) = f*(@)] = |f(Sn, x) = f*(2)])
= Es, 1{A;(Sn, 2, Rn)}
(T=f @) =1=1=f=)])
+ Eg, 1{A_(S,,z,Ry)}
(I=1= @) =1 = f(x)])
= Es, |1 = f*(2)]
(1{A+(Snvvan)} - 1{A—(Sn7x’Rn)})
—Es, | —1-f*(z)|
(1{A+(Sm €, Rﬂ)} - 1{A7(STL7 Z, Rn)})
= ES71 [1{A+(SR7I7RH)} - 1{A—(Sn7zvR")}]
(T=f @) =1=1=f=)])

= —2f*(2)| Ps, (A4 (Sn, 7, Ry))

— P, (A_(Sn, 7, Ry))
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Our goal is to show that the expected value over x of this
last expression is negative. For convenience we will write
A(Sn,z,Ry) = A, Ay (Sp,z, R,) = Ay and likewise for
A_. Note that, for any x fulfilling 1{ Ax }, we have that the
probability of A converges to 1 as mentioned before. Thus,
we are left to consider the sign of

— E.1{Ax}f"(2) | Ps, (A4|Ao) = Ps, (A-[Ao)

Denote
F,(K,k) = Ps, (Ay|Ao, K, k) — Ps, (A_|Ao, K, k)

where K is the number of observations in radius (R, v R,)
and k is the number in (0, R,), both around z; hence the
relevant set of values for K is [nv/R,,, 3nv/R,), and for k is
[nR,,, 3nR,]. Note that F}, depends on z, but we omit it for
clarity for reasons which will soon be obvious.

Let p,, (K, k) be the probability of the values K, k for any
z fulfilling 1{Ax }. Then

EA{Ax)} () [Psn<A+|Ao> ~ Py, (A_|Ad)

== pulK k) E1{Ax }f* (2) Fa (K, k)
K,k

where the sum is over the set of relevant values for K, k as
mentioned before.

We will now show that large enough n we have, for all
relevant K, k, that E,1{Ax } f*(x)F,(K, k) > 0; note that
this is enough to finish the proof.

Consider some fixed K,k and some fixed z fulfilling
1{Ax}. Assume WLOG that 0 < f*(z) < 1 (due to the
symmetry in the problem, the other case arrives at the same
result). Using the Lipschitz property of f*, and since P(y =
1|z) = (14 f*(z)), we can bound the conditional probabil-
ities on Ay, K, k (and assuming z fulfills 1{ A x }) in the fol-
lowing manner (note that the conditional probabilities only
depend on the behavior of y; values):

PSn (A+|A07K7 k) 2
(1+ f*(z) = VR.L)" (1 - f*(2) — R,L)"

2K+k

PSn, (A*|A0aKa k) <

(L+ (@) + RaD)* (1= f*(2) + VRLL)"
9K +k

Note that these bounds depend only on f*(z) and not x itself.
Note also that in particular

2+ R,L)* (1+ VR, L)
SRk ©)

F.(K,k) > —

Now, consider 25+*E 1{Ax} f*(2)F, (K, k). We claim
that according to the bounds above, for every z fulfilling
1{Ax} we have

inf 2K+5F (K k& 7
inf (K, k) — o0 @)

where the infimum is taken over all relevant K, k. To see
this, recall the assumption that 0 < f*(x) < 1, and consider



the behavior of the bound for 2K+ Pg (A |Ag, K, k): by
taking the logarithrn we get

Klog(1+ f*(z) — /R,L) + klog(1 — f*(z) — R,L)
which clearly converges to infinity, even when taking the in-
fimum over K, k, since R, — 0 and all relevant K con-
verge to infinity faster than all k& (recall the ranges of values
of K, k, and that nR,, — o0, so they all converge to in-
finity). Similarly we can see that 257 Pg (A_|Ag, K, k)
converges to 0, thus showing (7).

In a similar manner we can see that, for every x fulfilling
1{Ax}, for large enough n we have

}?£2K+’“F (K, k) >bup(2+R L)

F(1+ VE. L)

(®)
Note that the RHS is related to the lower bound of F,, (K, k)
as shown in (6).

Taken together, the facts just stated imply that the mea-
sure of points x fulfilling both (7) and (8) converges to 1
(formally, using the dominated convergence theorem on the
identifier function on that set). Due to (6), it is clear that the
values of the other points cannot overcome them from caus-
ing the overall integral to be positive, and we conclude that
E 1 {Ax}f*(z)F.(K,k) > 0 for large enough n in a man-
ner that does not depend upon K, k (since we have used the
sup, inf over relevant K, k values), proving the result.
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Abstract

Coordinate gradient learning is motivated by the
problem of variable selection and determining vari-
able covariation. In this paper we propose a novel
unifying framework for coordinate gradient learn-
ing (MGL) from the perspective of multi-task learn-
ing. Our approach relies on multi-task kernels to
simulate the structure of gradient learning. This
has several appealing properties. Firstly, it allows
us to introduce a novel algorithm which appropri-
ately captures the inherent structure of coordinate
gradient learning. Secondly, this approach gives
rise to a clear algorithmic process: a computational
optimization algorithm which is memory and time
efficient. Finally, a statistical error analysis en-
sures convergence of the estimated function and
its gradient to the true function and true gradient.
We report some preliminary experiments to vali-
date MGL for variable selection as well as deter-
mining variable covariation.

1 Introduction

Let X C R? be compact, Y C R, Z = X x Y, and
N, = {1,2...,n} for any n € N. A common theme in
machine learning is to learn a target function f, : X — Y
from a finite set of input/output samples z = {(z;,y;) : i €
N,.} C Z. However, in many applications, we not only wish
to learn the target function, but also want to find which vari-
ables are salient and how these variables interact with each
other. This problem has practical motivations: to facilitate
data visualization and dimensionality reduction, for exam-
ple. Such a motivation is important when there are many
redundant variables and we wish to find the salient features
among these. These problems can occur in many contexts.
For example, with gene expression array datasets, the vast
majority of features may be redundant to a classification task
and we need to find a small set of genuinely distinguishing
features. These motivations have driven the design of vari-
ous statistical and machine learning models [8, 11, 21, 22]
for variable (feature) selection.

Here, we build on previous contributions [15, 16, 17] by ad-
dressing coordinate gradient learning and its use for variable

*We acknowledge support from EPSRC grant EP/E027296/1.
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selection and covariation learning, the interaction between
variables. Specifically, for any z € X, we denote x by
(x',22,... 2%). The target is to learn the gradient of f,

(if it exists) denoted by a vector-valued function V f,(z) =

(gi e, g£ % ) The intuition behind gradient learning for
variable selection and coordinate covariation is the follow-
ing. The inner product between components of V £, indi-
cates the interaction between coordinate variables. Specific
norms of gg{ * can indicate the salience of the p-th variable:
the smaller the norm is, the less important this variable will

be.

In this paper we propose a novel unifying formulation of co-
ordinate gradient learning from the perspective of multi-task
learning. Learning multiple tasks together has been exten-
sively studied both theoretically and practically in several
papers [1, 2, 5, 7, 13, 14]. One way to frame this problem
is to learn a vector-valued function where each of its compo-
nents is a real-valued function and corresponds to a particu-
lar task. A key objective in this formulation is to capture an
appropriate structure among tasks so that common informa-
tion is shared across tasks. Here we follow, this methodol-
ogy and employ a vector-valued function f = (f1, f2) =
(f1, f25- -+ fasr1), where f; is used to simulate f,, and f;
is used to simulate its gradient V f.. We assume that 7
comes from a vector-valued reproducing kernel Hilbert space
(RKHS) associated with multi-task (matrix-valued) kernels,
see [14]. The rich structure of RKHS space reflects the latent
structure of multi-task gradient learning, i.e. the pooling of
information across components (tasks) of V f. using multi-
task kernels.

The paper is organized as follows. In Section 2, we first re-
view the definition of multi-task kernels and vector-valued
RKHS. Then, we propose a unifying formulation of coor-
dinate gradient learning from the perspective of multi-task
learning which is referred to as multi-task gradient learning
(MGL). The choices of multi-task kernels motivate different
learning models [11, 15, 16, 17]. This allows us to introduce
anovel choice of multi-task kernel which reveals the inherent
structure of gradient learning. Kernel methods [19, 20] usu-
ally enjoy the representer theorem which paves the way for
designing efficient optimization algorithms. In Section 3 we
explore a representer theorem for MGL algorithms. Subse-
quently, in Section 4 we discuss computational optimization
approaches for MGL algorithms, mainly focusing on least
square loss and the SVM counterpart for gradient learning.




A statistical error analysis in Section 5 ensures the conver-
gence of the estimated function and its gradient to the true
function and true gradient. Finally, in Section 6 preliminary
numerical experiments are reported to validate our proposed
approach.

1.1 Related work

A number of machine learning and statistical models have
been proposed for variable (feature) selection. Least abso-
lute shrinkage and selection operator (LASSO) [21] and ba-
sis pursuit denoising [8] suggest use of £! regularization to
remove redundant features. Weston et al [22] introduced a
method for selecting features by minimizing bounds on the
leave-one-out error.

Guyon et al [11] proposed recursive feature elimination (RFE)
which used a linear kernel SVM: variables with least influ-
ence on the weights ||w||? are considered least important.
Although these algorithms are promising, there remain un-
resolved issues. For example, they do not indicate variable
covariation and the extension of these algorithms to the non-
linear case was marginally discussed. Our method outlined
here covers variable covariation and nonlinear feature selec-
tion. As such, in Section 2, we show that RFE-SVM is a
special case of our multi-task formulation.

Motivated by the Taylor expansion of a function at samples
{z; : i € N,,}, Mukherjee er al [15, 16, 17] proposed an
algorithm for learning the gradient function. They used the
norm of its components for variable (feature) selection and
spectral decomposition of the covariance of the learned gra-
dient function for dimension reduction [16]. Specifically, let
‘H be a scalar RKHS (see e.g. [3]) and use f1 € H¢ to sim-
ulate f.. For any p € Ny, a function f,41 € Hc is used to
learn O f, /0zP. The results presented by Mukherjee et al are
quite promising both theoretically and practically, but there
is no pooling information shared across the components of
the gradient. This may lead to less accurate approximation
to the true gradient. We will address all these issues in our
unifying framework.

2 Multi-task kernels and learning gradients

In this section we formulate the gradient learning problem
from the perspective of multi-task learning. Specifically, we
employ a vector-valued RKHS to simulate the target func-
tion and its gradient. The abundant structure of vector-valued
RKHS enables us to couple information across components
of the gradient in terms of multi-task kernels.

2.1 Multi-task model for gradient learning

We begin with a review of the definition of multi-task kernels
and introduce vector-valued RKHS (see [14] and the refer-
ence therein). Throughout this paper, we use the notation
(+,+) and || - || to denote the standard Euclidean inner product
and norm respectively.

Definition 1 We say that a function IC : X x X — R x
R is g multi-task (matrix-valued) kernel on X if, for any
x,t € X, K(x,t)T = K(t,z), and it is positive semi-definite,
ie., foranym € N, {z; € X : j € N,,,} and {y; € R :
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J € Ny, } there holds
Z (vi, K(wi, 25)y;) = 0. (1)

4,J€ENm

In the spirit of Moore-Aronszjain’s theorem, there exists a
one-to-one correspondence between the multi-task kernel /C
with property (1) and a vector-valued RKHS of functions

: X — R with norm (-, -)x denoted by H, see e.g.
[14]. Moreover, for any z € X,y € R4+ and ? € Hr,
we have the reproducing property

(F(@).5) = (T Kav)x @)
where K,y : X — R is defined, for any t € X, by
Koy(t) = K(t,x)y.

In the following we describe our multi-task kernel-based frame-
work for gradient learning. Following Mukherjee et al [15,
17], the derivation of gradient learning can be motivated by
the Taylor expansion of f.: fi(2;) = fu(z;)+V fu(z;)(@i—
z;)T. Since we wish to learn f. with f; and V£, with E,
replacing f.(x;) by v;, the error!

yi ~ fi(e;) + Fa () (@i — 25)"
is expected to be small whenever x; is close to x ;. To enforce
the constraint that x; is close to x;, we introduce a weight
function produced by a Gaussian with deviation s defined by

—llzi—xj; 2
Wij = sarz€ 27 "~ This implies that w;; ~ 0 if x; is far
away from z;.
We now propose the following multi-task formulation for

gradient learning (MGL):

— . 1

fz = arg _1in { p) § ijL(yzy

m —
EHi 0,7

filw)) + By i —2)T) + A I -

where L : R x R — [0,00) is a prescribed loss function
and ) is usually called the regularization parameter. The
minimum is taken over a vector-valued RKHS with mulg;
task kernel KC. The first component f; , of the minimizer f,
of the above algorithm is used to simulate the target function
and the other components E = (f2,2,- - fat1,2) to learn
its gradient function. In Section 6, we will discuss how to use
the solution Tz) for variable selection as well as covariation
measurement.
Different choice of loss functions yield different gradient
learning algorithms. For instance, if the loss function L(y, t) =
(y — t)? then algorithm (3) leads to the least-square multi-
task gradient learning (LSMGL):

arg min {% Z wij [yl — f1 (3“7)

76ch M 7N “4)
N

~Talwy) @i — o) 7] + AT }-

In classification, the choice of loss function L(y,t) = (1 —

yt)4 in algorithm (3) yields the support vector machine for
multi-task gradient learning (SVMMGL):

3

'Our form of Taylor expansion is slightly different from that
used in [15, 17]. However, the essential idea is the same.



. 1
o pin {553 e vl -nlie)

belF

b+ T3 (@) @i = 2) D), + MT IR

Here, f1(z) + b is used to learn the target function and P,
simulating the gradient of the target function. Hence b plays
the same role of offset as in the standard SVM formulation.
In this case, at each point x; the error between the output y;
and f(x;) is now replaced by the error between y; and the
first order Taylor expansion of f(z;) at x;, ie., fi(z;) +

N
falwj) (@i — )T
2.2 Choice of multi-task kernels

We note that if IC is a diagonal matrix-valued kernel, then
each component of a vector-valued function in the associ-
ated RKHS of K can be represented, independently of the
other components, as a function in the RKHS of a scalar ker-
nel. Consequently, for a scalar kernel G if we choose the
multi-task kernel K given, for any z,t € X, by K(z,t) =
G(z,t)I441 then the MGL algorithm (3) is reduced to the
gradient learning algorithm proposed in [15, 16, 17] using
(d + 1)-folds of scalar RKHS. There, under some condi-
tions on the underlying distribution p, it has been proven
that f; , — f« and JT’QZ — V[« when the number of sam-
ples tends to infinity. Although their results are promising
both theoretically and practically, a more inherent structure
would be fa, = V f1 5. In our MGL framework (3), we can
recover this structure by choosing the multi-task kernel ap-
propriately.

Our alternative choice of multi-task kernel is stimulated by
the Hessian of Gaussian kernel proposed in [7]. For any
scalar kernel G and any x,t € X, we introduce the func-

tion
> (6)

which we will show to be a multi-task kernel. To see this,
let £? be the Hilbert space with norm ||w||%, = Y -1 w}.
Suppose that G has a feature representation, i.e., G(x,t) =
(¢p(x), d(t))e= and, for any f € Hg, there exits a vector
w € £? such that f(z) = (w, ¢(x))¢= and

1flla = llwlle-

G(z, 1), V.G(z,t)T
K1) = ( Sey Sicine

Indeed, if the input space X is compactand G : X x X —
R is a Mercer kernel, i.e., it is continuous, symmetric and
positive semi-definite, then, according to Mercer theorem, G
always has the above feature representation (see e.g. [9]).
Now we have the following proposition about /C defined by
equation (6). Let ¢, be the p-th coordinate basis in RA+1,

Theorem 2 For any smooth scalar Mercer kernel G, define
Sfunction KC by equation (6). Then, K is a multi-task kernel

and, for any ? = (f1, 72)) € Hyc there holds

o=V (7
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Proof: Since G is a scalar kernel, for any z,¢ € X we have
that G(x,t) = G(t, ). Therefore, K(x,t)T = K(t,z).
Moreover, G is assumed to be a Mercer kernel which implies
that it has a feature representation G(x,t) = (4(x), p(t)) 2.
Consequently, V,.G(z,t) = (¢(x), Vp(t)) and VG (z,t) =
(Vo(2), 6(t)), and V2,G(z,t) = (Vé(x), V(t))s2. Then,
we introduce, for any w € 2,2 € X,y € R4+ the feature
map ®(x) : £2 — R+ defined by

O(z)w = ((p(x), w)e2, (O10(x), W) ez, - .., (Dad(@), w)e2)"

Its adjoint map ‘13* is given, forany ¢t € X and y € R%*!, by
O*(t)y := ¢(2)y —I—ZpeNd Opd(z)yP*1. Hence, K(z,t)y =
O (z)P*(t)y. Consequently, for any m € N, any ¢,j € N,,
and y;,y; € R it follows >oijen,, Vi K(zi, 25)y;) =
[ > ien,, ®*(x:)yill7. is nonnegative which tells us that K
is a multi-task kernel.

We turn to the second assertion. When 7 is in the form of a
finite combination of kernel section {K,y : y € R4 x €
X}, the second assertion follows directly from the definition
of IC. For the general case, we use the fact that the vector-
valued RKHS is the closure of the span of kernel sections,
see [14]. To this end, assume that there exists a sequence
{7 = (fLA,..., fi+1)} of finite combination of kernel

sections such that T; — ? € Hy wr.t. the RKHS norm.
Hence, by the reproducing property (2), for any z € X and

P € Naw |f11(2) = fpar @)] = (&1, T (@) = T (@) =

(7 = T Kapriil < 175 — 7Hzc\/m

which tends to zeros as j tends to infinity. Consequently, it
follows, for any x € X,

f;ﬁH () = fp1(2),

Let 6, € R? be a vector with its p-th component § > 0
and others equal zero. Applying the reproducing property
(2) yields that

as j — oo. (8)

‘ (z+6p)— fl(wﬂ [f1(z+38p)—f1(2)]

:‘% 7’Cz+5 e — Kien)k ‘

<7 = Tl K@+ dpa+3,)
IC( z) — K(z, 2+ 6,) — K(z + 6y, 2)]€1) 2

=175 = Tlle (G + by, + )

2=

G@ﬂfG@x+Mqu+%ﬂD

Since G is smooth and X is compact there exists an absolute
constant ¢ > 0 such that, for any § > 0, the above equation
is furthermore bounded by

U ot5p)—H ()] 11 o+ p) =1 )] ‘

<Elf = Tl

Consequently, letting § — 0 in the above equation it follows
|0, f(x) - Opf1(x)| — 0 as j tends to infinity. Combining
this with equation (8) and the fact that fg (x) =0y fi(x)
implies that 9, f1(z) = f,+1(z) which completes the theo-
rem. |



The scalar kernel G plays the role of a hyper-parameter to
produce the multi-task kernel K given by equation (6). By
the above theorem, if we choose K to be defined by equation
(6) then any solution f, = (f1 4, fg_;) of algorithm (3) enjoys
—

the structure fo, = V fi 5.

Further specifying the kernel G in the definition (6) of multi-
task kernel K, we can recover the RFE feature ranking algo-
rithm for a linear SVM [11]. To see this, let G be a linear ker-
nel. In the next section, we will see that, for any solution 7;
of MGL algorithm (3), there exists {c; , € R*1 : j € N,,}
such that fz) = ZjeNm Kz, ¢j 2. Since G is linear, com-
bining this with Theorem 2 we know that f ,(z) = W1z
with W, = 3,27, 1)¢j, € Rand fop = V1, = W]
Consequently, in the case we have that

Froag)  Fou ) (i = 5) = Wi = fra(a2).
Moreover, by the reproducing property (2) we can check that

N
Ifll% = Izl = 1.
Putting the above equations together, in this special case we

know that the SVMMGL algorithm (5) is reduced, with the
choice of w;; = 1, to the classical learning algorithm:

. 1
min {37 (1= g £ 0) 1+ AW
€N,

Hence, our formulation of gradient learning (3) can be re-
garded as a generalization of RFE-SVM [11] to the nonlinear
case.

In the subsequent sections we discuss a general representa-
tion theorem and computational optimization problems mo-
tivated by MGL algorithms.

3 Representer theorem

In this section we investigate the representer theorem for the
MGL algorithm (3). This forms a foundation for the deriva-
tion of a computationally efficient algorithm for MGL in
Section 4.

Recall that €, is the p-th coordinate basis in R4+ and, for
any z € R9, denote the vector Z7 by (0,27). By the repro-
ducing property (2), we have that fi(z;) = (?(mj), e) =
(7), K, €1)k and likewise, %(xj)(xl—mJ)T = (?(xJ), Ti—
z;) = (7, Ke;(Z; — Z;)) k. Then, the algorithm (3) can be
rewritten by

arg _min {#Z wi L (T,
4,7 ENm,
T ene ©)
Kay @ + 7 — 5))x) + M F I}
In analogy with standard kernel methods [19, 20], we have

the following representer theorem for MGL by using the prop-
erties of multi-task kernels.

Theorem 3 For any multi-task kernel IC, consider the gra-
dient learning algorithm (3). Then, there exists representer
coefficients {c; , € R4t . j € N, } such that

T; = Z ,CZjCj,z

JENm
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and, for every j € N, the representer coefficient c;, €
span{€1,%; : i € N, }.

Proof: We can write any minimizer Tz) € Hyi as T; = 7“ +
73_ where ?II is in the span {K,,€1,K,,%;,4,j € Ny}
and 7 | is perpendicular to this span space. By the repro-
ducing property (2), we have that (?(xj), €1+ — 1) =
(T Koy (&1 + T — 7)) = <?H”C%‘ (€1 + 7 — 7))k
Hence, ? . makes no contribution to the loss function in
the MGL algorithm (9) (i.e. algorithm (3)). However, the

norm | FIE = 17y I% + 17 LlE > 11£]% unless f1 =
0. This implies, any solution fz) belongs to the span space
{Ks,e1,Kqs,%i,1,j € Ny, } and the corresponding represen-
ter coefficients belong to the span of {€1,%; : i € N,,,}. W

The representer theorem above tells us that the optimal so-
lution Tz) of algorithm (3) lives in the finite span of training
samples which paves the way for designing efficient opti-
mization algorithms for multi-task gradient learning.

4 Optimization and solution

In this section, by the above representer theorem, we ex-
plore efficient algorithms for computing the representer coef-
ficients. For clarity, we mainly focus on least-square multi-
task gradient learning algorithms (LSMGL). At the end of
this section, the support vector machine for gradient learning
(SVMMGL) in classification will be briefly discussed. One
can apply the subsequent procedures to other loss functions.

4.1 Computation of representer coefficients

To specifty the solution of LSMGL, we denote the column
vector C, € R™(4+1) by consecutively catenating all col-
umn vectors {c;, € R™! : j € N,,} and, likewise we
define a column vector Y € R"(4+1) by catenating column
vectors {y; € R : 4 € N,,}. Moreover, we introduce an
m(d+1) xm(d+1) matrix by catenating all (d+1) x (d+1)
matrix KC(z;, z;) denoted by

Kx = (K(z4, ;)

1,J €N

Finally, we introduce a system of equations
2y .. _ ] v\
m-Ac; + szleleC(acj,xl)cl v, Vi €N, (10)

where Bj = 3, ey, wij (C1+7 =) (G147 —75)", v, =
D ien,, Wij¥i(er + T — ;).

We now can solve the LSMGL algorithm by the following
theorem.

Theorem 4 For any j € N,,, the vectors Bj,y; be defined
by equation (10). Then, the representer coefficients Cy, for
the solution of the LSMGL algorithm are given by the fol-
lowing equation

Y = (m2,\1m(d+1) +diag(By, ..., Bm)ICx)lezl)Cz.
(11)

Proof: By Theorem 3, there exists {c;, € RIHL . 5 ¢

N,,} such that TZ) =3 e, Ko, ¢j 2. However, taking the



functional derivative of algorithm (3) with respective to f
. - ~ ~ ~
yields that # Zi,jeNm wij(<f27lcxj(el + T, — Zj))k —
yi)ICI] (&1 +z — ;) + Aﬁ = 0 which means that ¢; , =
s ~ ~ ~ ~ ~
o Yoien,, Wij (Wi — (fa, Koy (B1 + T — Tj)) ) (61 + T; —
Z;). Equivalently, equation (10) holds true, and hence com-
pletes the assertion. |

Solving equation (11) involves the inversion of an m(d +
1) x m(d + 1) matrix whose time complexity is usually
O((md)?). However, it is computationally prohibitive since
the coordinate (feature) dimension d is very large in many
applications. Fortunately, as suggested in Theorem 3, the
representer coefficients {c; , : j € N;,,} can be represented
by the span of column vectors of matrix

My ={€1,T1,.. ., Tin—1,Tm }.
This observation suggests the possibility of reduction of the
original high dimensional problem in R%*! to the low di-
mensional space spanned by Mx. This low dimensional space
can naturally be introduced by singular vectors of va.
To this end, we consider the representation of the matrix Mx
by its singular vectors. It will be proven to be useful to
represent matrix Mx from the singular value decomposition
(SVD) of the data matrix defined by

My = [:r17x27 cee mm,hxm]

Apparently, the rank s of My is at most min(m,d). The
SVD of My tells us that there exists orthogonal matrices
Vaxa and Uy, ., such that
un 1"
Vel X | (12)
U’rn
7‘/51 (ﬂla"'vﬂm)

My =[Wi,...

=[W,..

giag{al,...,as} 8 For

Here, the d x m matrix ¥ = [

any j € N,,,, we use the notation U; = (Uy,, ..., Uy ) and

T = (01U, 0903, ..., 05Us;) € R*. From now on we
aI]so denote

V=W,...,Vi] (13)

Hence, we have, for any j € N,,,, that x; = V[3;.
We are now ready to specify the representation of My from
the above SVD of My, To see this, for any [ € Ny and j €
N, let ‘ZT = (0,v;1), @T = (0, /)’jT). In addition, we
introduce the (d + 1) X (s + 1) matrix

9:(3 3):[51,171,...,178] (14)

which induces a one-to-one mapping V : R¥t1 — Ri+1
defined, forany 8 € R*+1, by 2 = V3 € R%*+! since column
vectors in V are orthogonal to each other. Consequently, it
follows that ~ _ _ ~

Mx =V [617617 s 7ﬁm]a
where e; is the standard first coordinate basis in R*+!. Equiv-
alently, for any i, j € N,,,,

51 = ]’}617 %j = T}BJ (15)
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We now assemble all material to state the reduced system
associated with equation (11). For this purpose, firstly we

define the kernel /C, for any z,t € X, by
K(z,t) :== VTK(z, 1)V,

and introduce the m (s + 1) x m(s + 1) matrix by catenating
all (s + 1) x (s + 1) matrices K(z;, z;):
Kx = (K(z4, 7)) (16)

1,J €Ny,
Secondly, for any j € Ny, set B; = >, wij(er + Bi —
Bi)er+ Bi — ;)" and %5 = 37, wiyier + Bi — ;).
Thirdly, associated with the system (10), for any j € N,,, and

V5 € R**!, we define the system in reduced low dimensional
space R !

mz)\’yj + B, Z I%(ﬂcj,acl)’yl =%;. 17

lEN,,

Finally, in analogy with the notation Y, the column vector
% € R™HD) is defined by successively catenating column
vectors {#; € R*t1 : i € N,,}. Likewise we can define v,
by catenating column vectors {7, , € R*T! : j € N, }.
With the above preparation we have the following result.

Theorem 5 If the {;, € R°*T! : j € N,,,} is the solution
of system (17), i.e.,

Y = (2 Alosn) + diag( B, B0)Kx )7, (19)

then the coefficient Cy defined, for any j € Ny, by cj, =
V7v; 2 is one of the solution of system (11), and thus yields

representation coefficients of the solution ? gz Jor the LSMGL
algorithm (3).

Proof: Let v, is the solution of system (17). Since Vis
orthogonal, the system (17) is equivalent to the following
equation

m2>\v’y]~z + 9:@j Z E(ij,ﬂ?l)’)/lz = ]7%

1EN,,

Recall, for any j € N,,, that B; = ﬁ%’ﬂjTﬂjqeﬂN}T =
€1E’{, VIy — s+1,and Y; = ]7% Hence, the above sys-
tem is identical to system (11) (i.e. system (10)) with C}
replaced by ﬁfyj’z which completes the assertion. |

We end this subsection with a brief discussion of the solu-
tion of the SVMMGL algorithm. Since the hinge loss is not
differentiable, we cannot use the above techniques to derive
an optimization algorithm for SVMMGL. Instead, we can
consider its dual problem. To this end, we introduce slack
variables {&;; : 4,7 € N;,,} and rewrite SVMMGL as fol-
lows:

. 1
arg  min {7 > wik + /\||7H2;c}
7@() 1,jENy,
s.L. yi(<?7lcncj (€1 +& — 7))k +b) > 1— &y,
fij 2 07 V’L,j S Nm
(19)



Given a multi-task kernel X produced by scalar kernel G, A > 0 and inputs {(z;,y;) : i € N,,, }
1. Compute projection mapping V and reduced vector Bj from equations (12), (13), and (14).
2. Compute I%(xj, x;) = )7TIC(;rj, xz))j (i.e. equation (16))
3. Solving equation (18) to get coefficient ~,, see Theorem 5 (equivalently, equation (25)
when G is linear or RBF kernel, see Theorem 6).

4. Output vector-valued function: ﬁ)() =2 jen,, K( m]-)(fivj,z).
5. Compute variable covariance and ranking variables using Proposition 1 in Section 6.

Table 1: Pseudo-code for least square multi-task gradient learning

Parallel to the derivation of the dual problem of standard
SVM (e.g. [20, 23]), using Lagrangian theory we can ob-
tain the following dual problem of SVMMGL.:

arg max Z o — ﬁ Z

4,JEN, i,5,4",5' €Np,
X [(gl + Ez — fj)TIC(xj,xj/)(El + Ei/ — fj/)]

Qi Yi Q50 Yy

S.t. Zi,jeNm Yilij = 0,0< (o771 < Wij, V?,] eN,,.

(20

Moreover, if the solution of dual problem is o, = {5 :

i,7 € N,,} then the solution of SVMMGL can be repre-
sented by

- 1 -~ o~
fz = 32N Z YiQij,oKCo; (€1 + Z; — Z5).
,5ENm

Note that

((Cr+ & — 7)) K (g, i) @ + Fir = T1)) 4y o i
is a scalar kernel matrix with double indices (¢, j) and (¢, j').
Then, when the number of samples is small the dual prob-
lem of SVMMGL can be efficiently solved by quadratic pro-

gramming with o € R™’

4.2 Further low dimensional formulation

Consider the multi-task kernel IC defined by equation (6)
with scalar kernel G. In this section, by further specify-
ing G we show that LSMGL algorithm (4) with input/output
{(xs,yi) : © € Ny, } can be reduced to its low dimensional
formulation with input/output {(5;,y;) : ¢ € N,,,}, where 3;
is defined by equation (12). This clarification will provide a
more computationally efficient algorithm.

To this end, consider the scalar kernel G defined on R x
R?. By definition of kernels (called restriction theorem in
[3]), we can see that G is also a reproducing kernel on R® x
R®. Hence, K defined by equation (6) on R¢ is also a multi-
task kernel on the underlying space R?; we use the same
notation K when no confusion arises. Therefore, associated
with the LSMGL algorithm (4) in R¢ we have an LSMGL in
low dimensional input space R®:

o = i 1 Ny —
gz = argillg oy, {m2 Zm»ww (i

(21
91(85) — BB~ )1 + AT IR}
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In analogy with the derivation of the system (10), for any
jE€N,andy; € R**!, we know that the representer coeffi-
cients of the LSMGL algorithm (21) in reduced low dimen-
sional space R**! satisfy that

m?\y; + B Y K(B;.B)w =% (22)
LEN,,

We are now ready to discuss the relation between represen-
ter coefficients of the LSMGL algorithm (4) and those of re-
duced LSMGL algorithm (21). For this purpose, let G to sat-
isfy, for any d x s matrix V, that VTV = I, and 3, ' € R®,

that

G(VB,VE) =GB, B). (23)
There exists abundant functions G satisfying the above prop-
erty. For instance, linear product kernel G(z,t) = 27t,

Gaussian kernel G(z,t) = e~ #=t1°/27 and sigmoid kernel

G(z,t) = tanh(azt + r) with parameters a,7 € R. More
generally, kernel G satisfies property (23) if it is produced by
a radial basis function (RBF) h : (0,00) — R defined, for
any z,t € X, by

Gz, t) = h(llz — t]|*). 4)
We say a function h : (0, 00) — R is complete monotone if it
is smooth and, for any » > O and k € N, (—1)kf(k)(r) > 0.
Here h(*) denotes the k-th derivative of h. According to
the well-known Schoenberg’s theorem [18], if & is complete

monotone then the function G defined by equation (24) is
positive semi-definite, and hence becomes a scalar kernel.

. . —lell .
For instance, the choice of h(t) = e 2+ with standard devi-

ation 0 > 0 and h(t) = (6% + ||z — ¢||?)~° with parameter
« > 0 yield Laplacian kernel and inverse polynomial kernel
respectively.

Now we are in a position to summarize the reduction the-
orem for multi-task kernels (6) produced by scalar kernels
G satisfying (23). Here we also use the convention that

Ks = (K(8i, 5j))i,jeNm'

Theorem 6 Let G have the property (23) and K be defined
by equation (6). Suppose {7; 5 : j € Ny} are the represen-
ter coefficients of algorithm (21), i.e., 7y, solves the equation

Y = (MmN (o) + diag( B, ., B) K )7 (25)

Then, the representer coefficients {c;, : j € Ny, } of algo-
rithm (4) are given by

Cjz = Vjz-



Proof: Suppose the multi-task kernel K is produced by G
with property (23). Recall that VTV = I, with V' given by
(14). Then, kernel K satisfies, for any x = V@ and t = V3’
with V , that

]C((L', t) = ’C(Vﬂ“ Vﬁ])

_ ( G(ﬂvﬁ/)v (VV/HLG(B7’5J))T )
YV, G(B:,8;)s V(V5,V,G(Bi B))VT )

Hence, it follows, for any z;,2; € X and 4, j € N,,, that

K(zs,x5) = ( é g )TIC(1'1'7-73']‘)( é g ) = K(Bi, B;)-

Therefore, the system (17) is identical to the system (22).
Consequently, the desired assertion follows directly from The-
orem 5. |

Equipped with Theorem 6, the time complexity and com-
puter memory can be further reduced by directly computing
m(s + 1) x m(s + 1) matrix kg instead of first computing

m(d+1) x m(d+ 1) matrix K« and then Ky in Theorem 5.
Theorem 6 also gives an appealing insight into multi-task
gradient learning framework. Roughly speaking, learning
gradient in the high dimensional space is equivalent to learn-
ing them in the low dimensional projection space spanned by
the input data.

5 Statistical error analysis

In this section we give an error analysis for least square MGL
algorithms. Our target is to show that the learned vector-
valued function from our algorithm statistically converges to
the true function and true gradient.

For the least square loss, denote by px (-) the marginal dis-
tribution on X and, for any x € X, let p(-|x) to be the con-
ditional distribution on Y. Then, the target function is the
regression function f,, minimizing the generalization error

E(f) = / (v — F())*dp(z.y).

Specifically, the regression function is defined, for any = €
X, by

fp(%‘):argrtgiﬂg/y(y—t)gp(ylw):/dep(y\z)

Hence, in this case the purpose of error analysis is to show
that solution 7; of LSMGL algorithm (4) statistically con-
verges to T)p = (f»,Vf,) asm — oo, s = s(m) — 0 and
A=A(m)—0

To this end, we introduce some notations and the follow-
ing hypotheses are assumed to be true throughout this sec-
tion. Firstly, we assume that Y C [-M, M] with M > 0.
Since X is compact the diameter of X denoted by D =
sup,, ,ex |l — ul|® is finite. Secondly, denote by L2 the

space of square integral functions ? : X — R with

norm ||7||f)x = Jy H?(x)H?de(x) Finally, denote the
boundary of X by 0.X. We assume, for some constant c, >
0, that the marginal distribution satisfies that

px (m € X - dist(z,0X) < s) <c,s, Y0 <5< D. (26)
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and, for some parameter 0 < 6 < 1, the density function
p(x) of px satisfies #-Holder continuous condition, i.e., for
any x,u € X there holds

Ip(z) — p(u)| < cpllz — ull?, Ve,ue X, (27)

Of course, p is a bounded function on X since it is contin-
uous and X is compact. For instance, if the boundary of X
is piecewise smooth and px is the uniform distribution over
X then the marginal distribution p x satisfies conditions (26)
and (27) with parameter § = 1.

We are ready to present our statistical error analysis of LSMGL

algorithms. Recall here we used the notation Tp) = (f5, V).

Theorem 7 Suppose that the marginal distribution px sat-
isfies (26) and (27). For any multi-task kernel IC, let JT; be
the solution of LSMGL algorithm. If f—,; € Hy then there
exists a constant c such that, for any m € N, with the choice

_ 1
of X = 5% and s = m” S@FDT | there holds

— - [ ¢
E“|fz _ priX] < ¢m” 3@FF0
If moreover px is a uniform distribution then, choosing A\ =
1
s? and s = m ™ 3@F0F50 | there holds

E[I7z — FI2,] < em™ 5.

The proof of this theorem needs several steps which are post-
poned to the appendix. More accurate error rates in terms of
probability inequality are possible using techniques in [17,
15]. It would also be interesting to extend this theorem to
other loss functions such as the SVMMGL algorithm.

6 Experimental validation

In this section we will only preliminarily validate the MGL
algorithm (3) on the problem of variable selection and co-
variance measurement.
By the representer Theorem 3 in Section 3, the solution of
MGL denoted by f, = (fi,2 fon) = (f1.00 forms- -+ fati,a)
can be rewritten as fz) => jen,, Ka,;¢jz. Since it only be-
longs to a vector-valued RKHS Hy, we need to find a com-
mon criterion inner product (norm) (-, -), to measure each
component of the learned gradient E = (fozs---, fat1.2)-
Once we find the criterion inner product (-, -),, we can use
the coordinate covariance

COV(E) = ((fp+1,Z7fq+1,Z>r) (28)

P,q€Ng

to measure how the variables covary. Also, the variable (fea-
ture) ranking can be done according to the following relative
magnitude of norm of each component of E:

I|fp+1 Z| r
5, = : ) (29)
T e, 1 far1,al2)1/2

If the scalar kernel G is a linear kernel then every component
of E is a constant. In this case, we can choose the stan-
dard Euclidean inner product to be the criterion inner prod-
uct (norm). When the kernel G is an RBF kernel, we show
in the following proposition that we can select the criterion
inner product (-, -),. to be the RKHS inner product (-, )¢ in
‘Ha. The computation is summarized in the following propo-
sition.




Proposition 1 Suppose the scalar kernel G has a feature
representation and the multi-task kernel IC is defined by equa-
tion (6). Then, for any solution fz) = ZjeNm Kz, ¢js € Hi
of MGL algorithm (3), the following hold true.

1. If G is a linear kernel then the coordinate covariance is
defined by

—T —

COV(}?Q_Z)) = f2z f2z = Z (-rhld)ci,zcjzjz(-rja]d)T-

1, €N,

Moreover, for LSMGL algorithm the above equation can be
more efficiently computed by

.
Cov(Fan) = V| D2 (Bis L9 (85, 1) V7.
i,jEN,,
2. If G is a smooth RBF kernel then f,.1 , € Hg and the
coordinate covariance COV(E) = (((fos1,2: fat1,2)G)
can be computed by

(fp+1.2s farr2)a = CE(KM(IZ'

where the kernel matrix Kpq(x; — x;) defined, for any i, j €
N, by

(%%ﬁwwﬁﬂ (W%ﬁWWﬁMT>
_(Vaqu)(xi - zj), (v2612)qG)(xi - ;) .

P,qENg

- mj))??j:lcm

(30)

The proof is postponed to the appendix where the computa-
tion of K, is also given if G is a Gaussian.

We run our experiment on two artificial datasets and one
gene expression dataset following [17]. In the first experi-
ment, the target function f, : R? — R with notation z =
(z1,...,2%) € R% and d = 80. The output y is contami-
nated by a Gaussian noise

y=folx)+e €e~N(0,0y).

As depicted in Figure 1 (leftmost), the thirty inputs whose
relevant features are [1, 10] U [11, 20] U[41, 50] are generated
as follows:

1. For samples from 1 to 10, 27 ~ N(1,0.05), for p €
[1,10] and z? ~ N(0,0.1), for p € [11, 80].

2. For samples from 11 to 30, 2 ~ AN(1,0.05),for p €
[11,20] and 2? ~ N(0,0.1), for p € [1,10] U [31, 80].

3. For samples from 11 to 30, features are in the form of
P ~ N(1,0.05), for p € [41,50], and 2P ~ N(0,0.1), for
p € [1,40] U[51, 80].

We let the regression function f, to be a linear function.
Specifically, we choose a noise parameter o, = 3 and the
regression function is defined by f,(z;) = w]x; fori €
[1,10], f(z;) = wiw, fori € [11,20], and f,(z;) = wlx;
for i € [21,30], where, w} = 2 + 0.5sin(27k/10) for k €
[1,10] and otherwise zero, wh = —2 — 0.5sin(27k/10) for
ke Lll7 20] and zero otherwise. The vector wg is defined
by w5 = —2 — 0.5sin(27k/10) for k € [41,50] and zero
otherwise.

In this linear case, we use the kernel G(z,t) = 27t as a ba-
sic scalar kernel and the multi-task kernel KC defined by (6)
in LSMGL algorithm (4). As in [11, 15], the regularization
parameter ) is set to be a fixed number such as 0.1 (variation
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in this parameter made little difference to feature ranking).
The parameter s in the weight coefficients w;; is set to be the
median pairwise distance between inputs. In Figure 1, the re-
sult of LSMGL is shown in (b) for variable covariation and
in (c) for feature selection respectively. We also ran the al-
gorithm (3) with the choice of kernel K(xz,t) = G(z,t)Ig41
([15, 16, 17]). The results are shown in (d) and (e) of Figure
1. We see that both algorithms worked well. The LSMGL
algorithm works slightly better: the reason maybe be that it
captures the inherent structure of gradient learning as men-
tioned before. We also ran LSMGL algorithm on this dataset;
the result is no essentially different from SVMMGL.

In the second experiment, we use the SVMMGL algorithm
for classification. For this dataset, only the first two features
are relevant to the classification task. The remaining 78 re-
dundant features are distributed according to a small Gaus-
sian random deviate. The distribution for the first two fea-
tures is shown in (f). In SVMMGL, the parameter s and A
are the same as those in the first example. The scalar kernel is
set to be a Gaussian G(z,t) = e~le=t17/20% \yhere o is also
the median pairwise distance between inputs. The feature se-
lection results for the SVMMGL algorithm are illustrated re-
spectively in (g) and (h) with different choices of multi-task
kernels C given by equation (6) and K(z,t) = G(x,t) 1441
Both algorithms picked up the two important features.

Finally, we apply our LSMGL algorithm to a well-studied
expression dataset. This dataset has two classes: acute myeloid
leumekia (AML) and acute lymphoblastic leukemia (ALL),
see e.g. [10]. There are a total of 7129 genes (variables) and
72 patients, split into a training set of 38 examples and a test
set of 34 examples. In the training set, 27 examples belong
to ALL and 11 belong to AML, and the test set is composed
of 20 ALL and 14 AML. Various variable selection algo-
rithms have been applied to this dataset by choosing features
based on training set, and then performing classification on
the test set with the selected features. We ran LSMGL with
the choice of multi-task /C given by equation (6) where G is
a linear kernel. The solution T; is learned from the training
set for ranking the genes according to the values of s, de-
fined by equation (29). Then, ridge regression is run on the
training set with truncated features to build a classifier to pre-
dict the labels on the test set. The regularization parameter
of LSMGL is fixed to be 0.1 while the regularization param-
eter in ridge regression is tuned using leave-one-out cross-
validation in the training set. The test error with selected top
ranked genes is reported in Table 2. The classification accu-
racy is quite comparable to the gradient learning algorithm
using individual RKHSs [15, 17]. However, [11, 15, 17]
did the recursive techniques to rank features and employed
SVM for classification while our method showed that ridge
regression for classification and non-recursive technique for
feature ranking also worked well in this data set. It would be
interesting to further explore this issue.

The preliminary experiments above validated our proposed
MGL algorithms. However further experiments need to be
performed to evaluate our multi-task framework for gradient
learning.
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Figure 1: LSMGL and SVMMGL feature ranking

genes 10 40 80 100 | 200 | 500
test error | 2 1 0 0 1 1
genes 1000 | 2000 | 3000 | 4000 | 6000 | 7129
test error | 2 1 1 1 1 1

Table 2: Number of test error using ridge regression algo-
rithm versus the number of top ranked genes selected by
LSMGL algorithm.

7 Conclusions

In this paper, our main contribution was to provide a novel
unifying framework for gradient learning from the perspec-
tive of multi-task learning. Various variable selection meth-
ods in the literature can be recovered by the choice of multi-
task kernels. More importantly, this framework allows us to
introduce a novel choice of multi-task kernel to capture the
inherent structure of gradient learning. An appealing repre-
senter theorem was presented which facilitates the design of
efficient optimization algorithms, especially for datasets with
high dimension and few training examples. Finally, a statis-
tical error analysis was provided to ensure the convergence
of the learned function to true function and true gradient.

Here we only preliminarily validated the method. A more ex-
tensive benchmark study remains to be pursued. In future we
will explore more experiments on biomedical datasets and
compare our MGL algorithms with previous related meth-
ods for feature selection, such as those in [21, 22] etc. It
will be interesting to implement different loss functions in
the MGL algorithms for regression and classification, apply
the spectral decomposition of the gradient outer products to
dimension reduction (see e.g. [16]), and possible use for net-
work inference from the covariance of the learned gradient
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function.
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Appendix

Let G be a scalar kernel, we use the convention 8,(,2)G to
denote the p-th partial derivative of G' with respect to the
second argument, and so is the gradient V() G.

Proof of Proposition 1.

When G is a linear kernel, by the definition (6) of multi-
-
task kernel KC, we have that fo, = 3 (xj,14)c;,, which

JEN,
implies that
T
Cov(foz) = faafon = Y (@iila)ciacl, (), 10)".

4,J€Nm

For the LSMGL algorithm, in Section 4 we showed that c; , =

]7%@ and, for any j € N,,,, z; = V3, the above equation
can be further simplified to the following:

Cov(Fan) = V[ 3 Bis L a5 1)TVT.
4,JEN,

When G is an RBF kernel, for any z, ¢ € R? and p, ¢ € Ny,
G(z,t) = G(z — t) and 0;,0,,G(x,t) = —(0p0,G)(z,1).
Hence, for any p € Ny and z € R<, we have that

frora(@) = Y (-0 Gla,2)), -V Gla,x)))e;

JEN,,

Since G has a feature representation, i.e., for any z,t € X,
there holds that G(z, t) = (¢(z), ¢(t))s2. Also, observe that
O G, 25) = (6(2), (0p0) (w5)) 2 and 07 07 G (w, ) =
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(o(z), (0p0q¢)(x;))s2. Denote c; by (cjl-, e C?_H)T
sequently, for any p € Ny, for12(-) = (wp, @(-))e2 with
wy ==Y ien,, (Opd(@;) s+ e, 0g0pd(a;)ci ™). There-
fore, for any p, ¢ € Ng we have that f, ;1 , € Hg and

(for12: far1,2)G = (wp, We) ez = Z Tqu(
1,5ENm

. Con-

—x5)c;

which completes the assertion. O

Computation of kernel K.

If G is a Gaussian kernel with standard variation o, that is,
z—t)2
for any z,t € RY G(x,t) = Gz —t) = e~ the

computation of K is listed as follows.
1. (02,G)(x) = [% - ‘H G(x)

2. Forany ¢’ € Ng, 0,0,0,G(z) =
22424 |G(x). Hence,

[IqO‘Pq/ +zp5qq/ +zq/6pq

o2

epTq + €Ty  XTdpg
2 T2 T T3
o o

Vo2,Glz) = { W} G(x)

g

3. Forany p/,q' € Ny, 80,02 G(z) = G@)["m/%ﬂ i

q'“pq
5pp/6qq/+6 ’ /(5

(7'
Z U <szqfl) q’
3

1

- (quq’app’ +2pTOprqr +mp$q’5p’(1) +

=z 51){1/+z /5pq+zp aq’ )
Cr

g (o8

] . Hence,

V202,G(a) = G(a) [— et ot

- 1 5 (2q(epa” + zel) 4+ zp(wel + eqa™))

2T (mprq

wprqld
_T+ o _UPQ)'

Proof of Theorem 7

We turn our attention to the proof of Theorem 7. We begin
with some notations and background materials. First denote
by Er, the empirical loss in LSMGL algorithm, i.e.,

Erz(?) = 771?21'7]' w(Tz _T_;)
x(yi — fi(z;) — fo(x)) (2

and the modified form of its expectation

? fzfX l_uLy fl( )

—F>(u)(@ — )] “dp(, y)dpx (u).

Since the Gaussian weight w(z — u) = ws(x — u) is de-
pendent on s, the above definition of Er(f ) is depending on
the parameter s. In addition, define the Lipschitz constant
IVf, |Lip to be the minimum constant ¢ such that ||V f,(z +
u) — Vi (x)|| < cul, Yz,u € X. We say that V[, is
Lipschitz continuous if |V fo ’Lip is finite.

- Ij)T)27

The error analysis here is divided into two main steps moti-
vated by the techniques in [15]. The first step is to bound the
= 2 — -
square error || f — f, |7, by the excess error Er( f,) —Er(f,).
In the second step, we employ standard error decomposition
[6] and Rademacher complexities [4, 12] to estimate the ex-
cess error. These two steps will be respectively stated in the



following two propositions. Before we do that, we introduce
an auxiliary functional Q, defined by

Qu(F. T ,) = J Jwle —w)[fy(w) - fi(w)
+(Fa(u) - pr( ))(u — )" dpx (z)dpx (u).
We are ready to present the first step of the error analysis:
—
bounding the square error Hﬁ — f,lI%, by the excess error
Er(fz)) — Er(?p) which is stated as the following proposition.

Proposition 2 If 0 < s,\ < 1 then there exists a constant

c;, such that

E[I7 = 312, ] < ¢ (min[s0, maxp~ (@)]
xE[Er(f,) — Er(f,)]

— — 2
L EITIR) + 1T + V5|7
The proof of this proposition follows directly from the fol-

lowing Lemmas 8 and 9. For this purpose, let the subset X,
of X be

X, = {ue X :dist(u,0X) > s, [p(v)| > (1 + cp)se}
(3D
and

cp(s) :==min{p(z) : |lu —z| < s,u € X,}.
Recall that ¢; is the first coordinate basis in R4t! and, for

any z € R%, 77 = (0,2)T € RIHL

Lemma 8 If0 < s < 1 then there exists a constant c;, such
that

(17 = 2] < o (s TR + 17 loc]
+min[s_€,g1€:§<p_1(x)} {Qs(z,?p)}).

Proof: Write ||Tz) — f_';:HQX b

17 = Follex = Joix, | Hfz ) Fo(w)?dpx ()
+ [, I Fa(w) = Fo(w)[2dpx ()
(32)

By the definition of X, we have that px (X\X,) < c,s +
¢o(14¢,)|X[s? < ¢,s” where | X| is the Lebesgue measure
of X. Hence, the first term of the above equation is bounded
by

— — — —
26, ([ fall% + 1F113%)s” < 2¢, (1 Fallk: + 11Fol13)s°

For the second term on the right-hand side of equation (32),
observe that, for any u € X, dist(u,0X) > s and {u :
lu—=z| < s,z € X;} C X. Moreover, for any = € X such
that ||u — z|| < s, by the definition of X there holds

p(x) = p(u) = (p(w)—p(2)) > (1+c,)s’ —c,llu—z]” > s°.

Consequently, it follows that

0 mlnp( ), (33)

cp(8) > max(s min
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and

x = Fo(w) (@ + 7 = )] dpx (x)dpx (u)

> [y, ey« (Fow) = ()@ + - )
xdpx (95)} dpx (u)

> ¢(3) Sy, [ fuajzs (o) = Falw) @ + 3 - 3))°
xdm}dpx(u)

(34
The integral w.r.t. = on the right-hand side of the above in-
equality can be written as (Tp)(u) — ﬁ)(u))W(s)(?p(u) —
ﬁ(u))T with (d + 1) x (d + 1) matrix 1 (s) defined by

W(s):/”u I R CR BT

Here, (€1 + @ — 7)(¢1 +u — 7)T equals that

1 (uw—x)T
(u—x (u—2)(u—2z)T )

_ _ly?
Observe that [, w(z —u)dz = s 2f||t||g1 dt
and fHu ofj<s W@ = u)(u — x)dz = 0. In addition, for any

p#q € Ng, f”ufogs w(x — u)(up —2P)(u? — 2%)dx =0

ufu
— P _ — p\2
Jju—ay<s Wz = uw)(@ = Jjp<a e 2 (@)%t
From the above observations there exists a constant ¢ such

that
(T (@)= T ()W (8) (T ()~ Fo ()T > €| T (w) — o (w) |-

Recalling the definition of W (s) and substituting this back
into equation (34) implies, for any 0 < s < 1, that

ccp(s) /X 172 (u) = Fo(w)|*dpx (w) < Qu(Fa, -

Plugging this into equation (34), the desired estimate follows
from the estimation of cp(s), i.e., equation (33). |

Now we can bound Q by the following lemma.

Lemma9 If0 < s < 1 then there exists a constant c such
—
that, for any f € Hy, the following equations hold true.

1. 0.(F. ) < c(s2nyprLip +[EA(T) - Er(f,,’)}).
2. Br(F) = Er(Fy) < o3[V, + (T 7).

Proof: Observe that [y — f1(u) — E(u) (z—uw)T] 2= [y —
Tolw) = V()@ = w)"]" + 2y = fo(u) = V()@
w) ] [fp(w) = fr(w)+(fo () =V fo(w) (u—2)" |+ [ f5(u) -
filu) + (f_g)(u) — Vo(u)(u — x)T}z‘ Then, taking the
integral of both sides of the above equality and using the fact
that f,(z) = [, ydpx (x) we have that

Er(?) Er(fy) = Qu(F. Jo) +2 [ [ wiw —
—fy(w) = V() (@ = )] [£p(0) = Jilw+
() - 1pla0)(u = )" dpx (o (o)
2 QT 5) =2 fcwle = w)[fy(@) = o)

V1, u)(a 0 dpx (@)dox () (047 T))

) [fo(@)

1
2



Applying the inequality, for any a, b > 0, that —2a% — 2b% <

—2ab, from the above equality we further have that

Er(?) —Er(_p)) > %Qs(?mfp 2fx Jx w(

[fol@) = folw) = Vfp(w) (@ — u)T] *dpx (x )dﬂx( >.
(35)
Likewise,
Er(f) —Ex(f,) = Q(F. f,) +2fX fX w(z — ) [f,(x)
_fp( ) pr(u (1_u) ][ P )+
(Fau) — pr w))(u—z)T|dpx dpx u)
< (T, 7)) +2(fy J wia— [fp( )= fplu)

Y fyu)e ) dpx o (1)) (@7 F1)

Applying the inequality 2ab < a? + b? to the above inequal-
ity yields that
— —
Br(f) —Ex(f,) < 2Qu(F, fo) + [y [y w(z —w)
[£(@) = fy(w) = Vfp(w) @~ w) | dpx (2)dpx (1)
(36)
1
However, | f,(z)—f,(u)—V f,(u)(z—u)T| = |f0 (Vf,(ta+
T

(1=t)u) =V fy(u)) (z—u)" dt| < |pr\LipHm—uH2 and the
density p(x) of px is a bounded function since we assume it
is #-Holder continuous and X is compact. Therefore,

e [y w(@ —w)[fo(@) = folw) = Vfo(w) (@ —u)T]?
xdpx (x)dpx (u) e
< Il ¥yl | o e ™ 5 o]
< C|‘P||oo|vfp|iip

Putting this into Equations (35) and (36) and arranging the
terms involved yields the desired result.

From Property (1) of Lemma 9, for any ? € Hx we have

that
—
Er(f) —Ex(f,) > —cs?|V Foliip: (37)
We now turn our attention to the second step of the error
analysis: the estimation of the excess error Er(f,) —Er(f,)+
Al 72 l|%. To do this, let

Fr=arg_inf {E(F)+ AT
e A AT

By the error decomposition technique in [6], we get the fol-
lowing estimation.

oy - . .
Proposition 3 If f) is defined above then there exists a con-
stant c such that

Er(fp) — Er(f,) + M| T lI% < S(z)

+C(S2‘vfﬂ‘2Lip + AN, 5)),
where
S(z) = Er(f2) — Era(2) + Era(F)
is referred to the sample error and

A= _int {Qu (T, 7))+ NIT 1)

f EHx
is called the approximation error.

— Er(f)
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Proof: Note that Er(ﬁ)) — Er(?p) + )\||Tz>||,2< = [ET(T;) -
Er,(F2) + Era(F) — Ex(7)] + [(Bra(Fo) + A TIR)
(Era (F)+ MIZIR) ]+ [Ex(7) ~ Ex(7F;) + AITR %] - By the

definition of f,, we know that the second term in parenthe-
sis on the right-hand side of the above equation is negative.

Hence, by the definition of f, we get that Er(?z)) — Er(?p) +
-2 . — —

ATz < S(2) + inf per {Br(F) — Ex(F) + A 7 H;c}

By the property (2) in Lemma 9, we also have, for any

M. that Br(F) — Ex(F,) < c( 2|V + Q(F. )

which implies that

€
inf (Er(7)~E(F)+AI T I3} < eIV A[fip+AO 5)).
This completes the proposition. |
Now it suffice to estimate the sample error S(z). To this
end, observe that Er, (f,) + A||f7 |2 < Er,(0) + A0)|2 <
ME which implies that [|f,|lx < Ms~(4+2)/2, Likewise,
Er(7) + M7 % < Er(0) + AO[R [ fAlle < 55 which
—
tells us that || f,|[x < Ms(4t2)/2, Using these bounds on

||7Z)H;c + HJTA)H;c, we can use the Rademacher averages (see
e.g. [4, 12]) for its definition and properties) to get the fol-
lowing estimation for the sample error.

Lemma 10 For any 0 < A < 1, there exists a constant c
such that, for any m € N, there holds

1 1
<
E[S(z)] < 6(52(d+2))\m + 33(d+2)/2m>'
Since the proof of the above lemma is rather a standard ap-
proach and indeed parallel to the proof of Lemma 26 (replac-
ing r = Ms~(4+2)/2 there) in the appendix of [15], for the
simplicity we omit the details here.

We have assembled all the materials to prove Theorem 7.

Proof of Theorem 7 .
Since we assume that f, € H;C, for any ‘8 folz +u) —

apﬁ)(u){ = }<€P+17f->p(m+u) f/) ’ - ’ fpv x+uep+1—
Kutpinh| < 1Tl [ (K@ + u, + w) + K(u,u) -

1
2

K(z+u,u)—K(u, x—&—u))gpﬂ} < CHﬁHICHUH’ and hence

IViolLip < ol| 7, llx.- Moreover,
AN 5) < Q(Fos 1) + ATl = AT 1%

Hence, we know from Proposition 3 and equation (37) that
—

MIf2llE < S(z) + ¢ (s* + A).

Combining the above equations with Propositions 2 and 3,

there exists a constant ¢ such that

E[IF ~ FlE < efmins, maxsex p @) + ]
x [B[S(2)] + 52+ A] +5°).

771 .
If we choose A = s2¢ and s = m ™ 3@™7% yields the first
assertion.
If px is the uniform distribution over X, then we have that

min(s‘e,mi)rgp(x)) = 1. Hence, choosing A\ = s’ and
S

— 71 . . .
s =m 30@+2)+50 we have the desired second assertion. This
completes the theorem.



Sparse Recovery in Large Ensembles of Kernel Machines

Vladimir Koltchinskii*
School of Mathematics, Georgia Institute of Technology
vlad@math.gatech.edu

Ming Yuan'
School of Industrial and Systems Engineering, Georgia Institute of Technology
myuan@iyse.gatech.edu

Abstract

A problem of learning a prediction rule that
is approximated in a linear span of a large
number of reproducing kernel Hilbert spaces
is considered. The method is based on pe-
nalized empirical risk minimization with ¢;-
type complexity penalty. Oracle inequalities
on excess risk of such estimators are proved
showing that the method is adaptive to un-
known degree of “sparsity” of the target func-
tion.

1 Introduction

Let (X,Y) be arandom couple in Sx T, where (S, S), (T, 7T)

are measurable spaces. Usually, T' is either a finite set,
or a subset of R (in the first case, T can be also identi-
fied with a finite subset of R). Most often, S is a com-
pact domain in a finite dimensional Euclidean space, or
a compact manifold. Let P denote the distribution of
(X,Y) and II denote the distribution of X. In a general
framework of prediction, X is an observable instance
and Y is an unobservable label which is to be predicted
based on an observation of X. Let ¢ : T'x R — Ry
be a loss function. It will be assumed in what follows
that, for all y € T, the function £(y;-) is convex. Given
f:S — R, denote

(Lo f)(a,y) =Ly, f(z))
and define the (true) risk of f as
BUY; (X)) = P(Le f).

The prediction problem then can be formulated as con-
vex risk minimization problem with the optimal predic-
tion rule f, defined as

[« = argmin; g pP(le f)

where the minimum is taken over all measurable func-
tions f : S — R. It will be assumed in what follows that

*Partially supported by NSF grant DMS-0624841.
TPartially supported by NSF grant DMS-0624841.
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f« exists and it is uniformly bounded. We shall also as-
sume the uniqueness of f, in the following discussion.

In the case when the distribution P of (X,Y) is
unknown, it has to be estimated based on the training
data which (in the simplest case) consists of n inde-
pendent copies (X1,Y7),...,(X,,Y,) of (X,Y). Let P,
denote the empirical distribution based on the training
data. Then the risk P(£ e f) can be estimated by the
empirical risk

ntY Y, F(X5) = Pa(le f).
Jj=1

The direct minimization of the empirical risk over
a large enough family of function f :.S — R almost in-
evitably leads to overfitting. To avoid it, a proper com-
plexity regularization is needed. In this paper, we will
study a problem in which the unknown target function
f« 1s being approximated in a linear span H of a large
dictionary consisting of N reproducing kernel Hilbert
spaces (RKHS) H1,...,Hy. It will be assumed that we
are given N symmetric nonnegatively definite kernels
K; :SxS—R, j=1,...,N and that H; is the RKHS
generated by K : H; = Hg,. Suppose, for simplicity,
that

Kj(z,z)<1l,zeS, j=1,...,N.

The space

H = 1.s.<j©1 H]-)

consists of all functions f : .S — R that have the follow-
ing (possibly, non-unique) additive representation

f=hH+...fn, [;E€EH;, f€EH;, 7=1,...,

and it can be naturally equipped with the ¢;-norm:

N

N
1l = [l = mf{z TRy
j=1

N
:ij,fj GHj,jl,...,N}.
=1

Additive models are a well-known special case of
this formulation. In additive models, S is a subset of



RN ie., X = (z1,...,2n), and H; represents a func-
tional space defined over z;. Several approaches have
been proposed recently to exploit the sparsity in addi-
tive models (Lin and Zhang, 2006; Ravikumar et al.,
2007; Yuan, 2007). In this paper, we consider an exten-
sion of /1 penalization technique to a more general class
of problem.

In particular, we study the following penalized em-
pirical risk minimization problem:

fe= argmin p oy, {Pn(ﬁof)—i—sﬂfﬂgl}, (1.1)

where € > 0 is a small regularization parameter. Equiv-
alently, this problem can be written as

=argming egy o1 N (1.2)

N
Pute i+ a0+ 3 b |

According to the representer theorem (Wahba, 1990),

the components of the minimizer f; have the following
representation:

fi(@) = e K;(Xi,x)
=1

for some real vector &; = (é; : ¢ = 1,...,n). In other
words, (1.2) can be rewritten as a finite dimensional con-
vex minimization problem over (¢;; : 4 = 1,...,n;j =
1,...,N).

It is known (see, e.g., Micchelli and Pontil, 2005)
that

1l = mt{ 11l : K € conv{E; :j = 1., N},

where || - || x denote the RKHS-norm generated by sym-
metric nonnegatively definite kernel K and

N
conv{K;:j=1,...,N} = {chKj :
j=1

N
Cj ZO’ZCj = 1}

j=1

Therefore (1.2) can be also written as
(anv f(s) = argminKeconv(Kj,j:l,m,N)argminfGHK (13)
Patte 1)+ el

leading to an interpretation of the problem as the one
of learning not only the target function f,, but also the
kernel K in the convex hull of a given dictionary of ker-
nels (which can be viewed as “aggregation” of kernel
machines). Similar problems have been studied recently
by Bousquet et al. (2003), Cramer et al. (2003), Lanck-
riet et al. (2004), Micchelli and Pontil (2005) and Srebro
and Ben-David (2006) among others.
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The choice of £1-norm for complexity penalization
is related to our interest in the case when the total num-
ber N of spaces H; in the dictionary is very large, but
the target function f, can be approximated reasonably
well by functions from relatively small number d of such
spaces. The ¢;-penalization technique has been com-
monly used to recover sparse solutions in the case of sim-
ple dictionaries that consist of one-dimensional spaces
H; (see, e.g, Koltchinskii (2007) and references therein).
The goal is to extend this methodology to more general
class of problems that include aggregation of large en-
sembles of kernel machines and sparse additive models.
In the case of additive models with the quadratic loss,
(1.1) becomes the so-called COSSO estimate recently
introduced by Lin and Zhang (2006).

For f € 'H, define the excess risk of f as
E()=Pltsf)=P(taf) = P(tef)~ inf P(leg)

Our main goal is to control the excess risk of f, £(f¢).

Throughout the paper, we shall also make the fol-
lowing assumption

n <N<e"

for some ~y > 0.

It will also be assumed that the loss function ¢
satisfies the following properties: for all y € T, £(y, ) is
twice differentiable, ¢!/ is a uniformly bounded function
inT xR,

sup £(y; 0) < 400, sup £, (y;0) < +00
yeT yeT

and

1
7(R) := = inf inf £(y,u) >0, R> 0.

= 1.4
2 yeT |u|<R (1.4)

We also assume without loss of generality that, for all
R, 7(R) < 1. These assumptions imply that

10! (y,u)| < Ly + L|u|, y € T,u € R

with some constants Ly, L > 0 (if £/, is uniformly bounded,
one can take L = 0).

The following bound on the excess risk holds under
the assumptions on the loss:

(1 fllso V I£llo)I1f = Fill 2o
< &N ZCIf = Felliam

with a constant C' > 0 depending only on ¢. This bound
easily follows from a simple argument based on Taylor
expansion and it will be used later in the paper.

The quadratic loss £(y,u) := (y — u)? in the case
when 7' C R is a bounded set is one of the main exam-
ples of such loss functions. In this case, 7(R) = 1 for all
R. In regression problems with a bounded response vari-
able, more general loss functions of the form £(y,u) :=
¢(y — u) can be also used, where ¢ is an even non-
negative convex twice continuously differentiable func-
tion with ¢” uniformly bounded in R, ¢(0) = 0 and

(1.5)



¢"(u) > 0, u € R. In classification problems, the loss
function of the form £(y,u) = ¢(yu) is commonly used,
with ¢ being a nonnegative decreasing convex twice con-
tinuously differentiable function such that, again, ¢’ is
uniformly bounded in R and ¢ (u) > 0, u € R. The loss
function ¢(u) = logy(1 + ™) (often referred to as the
logit loss) is a specific example.

We will assume in what follows that H is dense in
Lo(IT), which, together with (1.5), implies that

fig{P(ﬁ o f)= feiLr}“f(H)P(fo f)=Plef,).

We also need several basic facts about RKHS which
can be found in, for example, Wahba (1990). Let K be
a symmetric nonnegatively definite kernel on S x .S with

sup K (z,z) <1
€S

and H g be the corresponding RKHS. Given a probabil-
ity measure Il on S, let ¢,k > 1 be the orthonormal
system of fuctions in Lo (IT) such that the following spec-
tral representation (as in Mercer’s theorem) holds:

K(z,y) =Y Mér(@)de(y), 7,y € S,
k=1

which is true under mild regularity conditions. Without
loss of generality we can and do assume that {\z} is a
decreasing sequence, A\, — 0. It is well known that for
f7 g€ HK;

<f7 g>HK = Z <f7 ¢k>L2(H))\I<€ga ¢k>L2(H) '
k=1

Denote Hp C Hg the linear span of functions f € Hx
such that

i <f7 ¢k>%2(n) < 00
2
k=1 A

k

and let D : Hp +— Lo(II) be a linear operator defined
as follows:

oo

Df:=>

k=1

<fa¢lj\>L2(H) b0, f € Hp,
k

Then we obviously have

<f7g>HK = <Dfag>L2(H)af € HDvg € HK

Given a dictionary {Hi,...,Hn} of RKHS, one
can quite similarly define spectral representations of ker-

nels K; with nonincreasing sequences of eignevalues {)\Eﬁj )

k > 1} and orthonormal in Lo (IT) eigenfunctions {qbg )
k > 1}. This also defines spaces H D; and linear opera-
tors D; : Hp, +— Lo(II) such that

<f7g>Hj = <Djf7g>L2(H)7f S HDj7g € HKJ
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2 Bounding the /;-norm

Our first goal is to derive upper bounds on ||f¢||,, that
hold with a high probability. In what follows we use the

notation

(¢ o f)(x,y) =,y [ (),
where £, (y,u) is the derivative of ¢ with respect to the
second variable.

Theorem 1 There exists a constant D > 0 depending
only on £ such that for all A > 1 and for all € > 0 and
f € H satisfying the condition

Alog N
e> D|leflloy/ o \/4 max sup [P (e f)hy)l,
n LSESN 3, <1
the following bound holds
P{fsuel > 3||f|e1} <N @)

In particular, if € > D||¢' ® /4| o1/ AIOTgN, then

P{nfenel > 3||f5/4||e1} SN (22

Proof. By the definition of fﬂ for all f € H,

Po(Ce f*) +ell folle < PulCo f)+ell flle-

The convexity of the functional f +— P, (¢ e f) implies
that

P(te f) = Pa(te f) = P (¢ 0 ))(f7 = D).
As a result,

6||sz€1

A

ellflles + Pu (€0 1) = F9))
[P (€@ F)ha) | %

IN

ellflle, + max sup
LLSESN iy g, <1

x| f€ = flles
It follows that

(5 — max sup
1SESN || ng g, <1

< (E-l— max sup
LSESN |[hy |7, <1

P (€ o i) |) 1 e

P (0 ) |) 1l

Under the assumption

[P (€7@ f)hie) |,

£ > Imax sup
LSESN |l ng I, <1

this yields

| [ £lle. -

1l < € + MAX1<k<N SUP|p, |, <1 | P (€ @ f)R1) |
4= e Tmaxicren SUD| |1y |15, <1 [P (€ @ f)i)
(2.3)



Note that
max  sup |P, ((¢ e f)h)|
1<k<N Ikl <1
< max sup [|(P,—P)(¥ e f)hi|+
LSESN |lhg I3, <1

[P ((¢" @ f)hu) |-

+ max sup
LSESN [y |l7g, <1

Also, for any i =1,..., N

sup  [(P, — P)(¢' o f)h]
[Ihill#,; <1

= e[t (0 20069 0 B D
il <1l 4

E( -f><Xj,59><hi,Ki<Xj,~>>Hi)

n

W Y (€0 DGR

j=1

B )OG V) )|

Hi
Using Bernstein’s type inequality in Hilbert spaces, we
are easily getting the bound

(P = P)(¢" @ f)he| <

max  sup
LSESN I hg I3, <1

y Alog N\ , Alog N
e o flo (1 25N 22X

with probability at least 1 — N=4. As soon as

Alog N\ ; Alog N
A0 e o (| R AR

and

we get
[P (€70 f)he) | < €/2,

max  sup
LSESN |l ng I, <1

and it follows from (2.3) that with probability at least
1-N—4
e+e/2

re
<
170 < S22

£ ller = 301 Ner

implying (2.1).

In particular, we can use in (2.1) f := f</%. Then,
by the necessary conditions of extremum in the defini-
tion of f&/4,

max sup
LSESN YRy [0, <1

P (€0 f ) | < 5.

and the second bound follows. 11

We now provide an alternative set of conditions on
€ so that (2.1) holds. By the conditions on the loss,

16" @ fllse < C(1+ LIl flloc) < C(L+ L fler)
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with constants C, L depending only on ¢ (if ¢ is uni-
formly bounded, L = 0).

Since, by the necessary conditions of minimum at
e,
P((¢ e f)hy) =0, hy € Hi,k=1,...,N,
we also have

[P ((¢" @ f)he) |

max sup
LSRSN Yk fleg, <1

max sup
LSESN by flog, <1

ClIf = fell Loy

where we used the fact that ¢, (y,u) is Lipschitz with
respect to u. Therefore, the condition on ¢ in (2.1) is

satisfied if
Alog N
e 2 D(1+ || flle)y)

If = fellLomy < €/D
with a properly chosen D (depending only on £).

P((€ 0 f) = (¢ o £) )l

IN

and

3 Oracle inequalities

In what follows we will assume that R > 0 is such that
Ife, <R

with probability at least 1—N 4. In particular, if f € H
satisfies the assumption of Theorem 1, i.e.,

- Alog N
e > Dl|t/ef ooy

then one can take R = 3| f|,-

We need some measures of dependence (in a prob-
abilistic sense) between the spaces H;,j =1,...,N. In
the case of a simple dictionary {hq,...,hy} consisting
of N functions (equivalently, N one-dimensional spaces)
the error of sparse recovery depends on the Gram matrix
of the dictionary in the space La(II) (see, e.g., Koltchin-
skii (2007)). A similar approach is taken here. Given
hj € Hj, j =1,...,N and J C {1,...,N}, denote
by k({h; : j € J}) the minimal eigenvalue of the Gram

[P ((¢"® f)h) |,

4 max sup
LSESN [y l2g, <1

matrix ({hi, h) o) Jand &({h; 1 j € J}) its max-
1,]€

imal eigenvalue. Let

A(T) = inf{k({hy 1 j € T}) : by € My, slnum = 1

and

R(J) = sup{ k({1 j € 1) by € My, gl = 1

Also, denote L ; the linear span of subspaces H;, j €
J. Let

o) = Sup{ (fs9) Lo

11 zom gl

:fELJ7g€LJC>

f#O,g#O}-



In what follows, we will consider a set O = O(My, M3)

of functions (more precisely, their additive representa-
tions) f = fi+---+fvEH, ffEH;, j=1,....,N
that will be called “admissible oracles”. Let J; := {j :
fj # 0} and suppose the following assumptions hold:

O1. The “relevant” part J; of the dictionary satisfies
the condition

K(Jr)
RN = 2y =M

0O2. For some > 1/2 and for all j € Jy

A < Mk k=1,2,...

Recall that D; is the linear operator defined in the
first section. Denote

1
card(Jy)

1D 5117, o)
I1£511%,

¢(f) =

jEJf
We are now in the position to state the main result

of this paper.

Theorem 2 There exist constants D, L depending only
ont (L =0 if £, is uniformly bounded) such that for all
A>1, for all f € O with card(Jy) = d and for all

log N
n

e>D(1+LR)

with probability at least 1 — N—4
Ef)+2e ) IIF5 NI

J¢Js
d2B-1)/(28+1)

2
oagea - T U)de

)

Alog N
< TE(f)+ K[ ‘f]
where K is a constant depending on £, R, My, Ma, || f1lco
and || f+]|oe-

The meaning of this result can be described as fol-
lows. Suppose there exists an oracle f such that the
excess risk of f is small (i.e., f provides a good ap-
proximation of f,); the set J; is small (i.e., f has a
sparse representation in the dictionary); the condition
(O1) is satisfied, i.e. the relevant part of the dictionary
is “well posed” in the sense that the spaces H;,j € J;
are not “too dependent” among themselves and with
the rest of the spaces in the dictionary; the condition
(02) is satisfied, which means “sufficient smoothness”
of functions in the spaces H;,j € Jy; finally, the com-
ponents f;,7 € Jy of the oracle f are even smoother
I1D; fill Lo (my

155112,
properly bounded. Then the excess risk of the empir-
ical solution fg is controlled by the excess risk of the
oracle as well as by its degree of sparsity d and, at the

same time, fs is approximately sparse in the sense that

in the sense that the quantities ,J € Jy are
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Zjle || £5 l7¢; is small. In other words, the solution ob-

tained via fi-penalized empirical risk minimization is
adaptive to sparsity (at least, subject to constraints de-
scribed above).

Proof. Throughout the progf we fix representa-
tions f = fi+---+ fv and f¢ = ff+---+ f% (and we
use (1.2) to define f5). The definition of f; implies that
for all f € H,

Po(le fo) +ell flley < Pu(Co f)+el flle,

Therefore,
Ef)+e D> 15l
JEJ¢
ES) +e > (fillw, = 1£5 1)
jedy
+(P—P,)(lef—lef).
We first show that
E(f)+2e > (1f5ln,
JEJg
2(Hd
Tr(Jp) (1 = p2(Jy))
+2(P = Py)(Ce f Lo f7),

<

< 2

3E(f)+

where .
T=T(IFlleo V1Nl V | filloo)-

Let s;(f;) be a subgradient of f; +— |[/f;[l%, at
[i € Hj, ie. si(f;) = Hfjfffﬁj if f; # 0 and s;(f;) is an
arbitrary vector with [[s;(f;)|lz;, < 1 otherwise. Then
we have
1£5ll2e; = 115 I, (s5(f3)s 15 = I5)m,
(Djs;(f3), fi = f7) paam

D85 () llLamlf5 = F£ N Lo

IN

It follows that
)+ > £l

J¢Js

< en+e( ¥

1/2
|Djsj<fj>||%2<n>) x
jGJf

R 1/2
x (Z I, - fflliz(n)>

JjE€Jf
H(P—P,) (Lo f—Llef)

It can also be shown that (see Koltchinskii, 2007, Propo-
sition 1)

R 1/2
(Z I, - f;||%2<n>)

jEJf

1
: \/ R = 200

ILf — Lo



This allows us to write

E(f)+e Y If5ln,

JEJy

2 Jf)) Hf - fAEHLz(H)

+(P—P,)(Lef—1leff).
Then, using the bounds
1f = o < IF = FellLa + 1F° = fell Lo
and
EN) 2 7If = FellToy €)= 7IF = £llf s
we get
EF)+e S 11l
JEJIr
C(f)d
< &(f)+ \/ R0 =
/ l fs
N f le f
Applying the inequahty ab <a?/2+b2 / 2, we show that
[ E(f)
K(J)(L=p*( ) V7
e(f) «nd
T2 2mR(Jp) (1= p?(Jp))
Similarly,
\/ £(f9)
5(f5 C(f)d 2
= 2 a2
This leads to the following bound
Ef)+e Y 5l
JE s
£(f%) ¢(f)d 2
= S - )
L) d
2 27(Jp)(1 = p*(Jy))

+(P—P,)(Lef—1Lef).
It easily follows that
E(f)+2e Y 15l
J¢Js
2x(Nd
Th(Jp)(1 = p?(Jy))
+2(P = P,)(Ce f—lef).

<

3E(f) +
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Denote

an(0,A,R) := sup{|(Pn —P)leg—1Llef):

lg = Fllraan <6, llgsllg < A llglle, < R}~
J&€J¢

If ||f€||e

ey < R (which holds with probability at least
);

then we have

) +22 Y 1l
J¢Jy
X(Nd
TR(Jr)(1 = p*(Jy))
200 (17 = Fleaans D 155 e, R)

J€Jy

< 3&(f)+

with 7 = 7(RV || flloo V || fx]loo). We use Lemma 8 to get

E(f) 422 ) IIF5 I
J€Jy
2¢(f)d 2
Tr(J)(1 = p2(Jy))

R(Jr)
TO+LR) {\/ R0 - 22007

. [dm max;e s Z m)\(j)
XHfE _ f||L2 () W —i—R\/ J€Jyf k> k +
() log
R, fmax iy == + > 15l %
log(N

J€Jy
—d)+1
n

AlogN
<5 = fllzoqny/

Alog N
FOR( + LR)%

3E(f)+

+C(1+LR) x

(Lemma 8 can be used only under the assumption R <
eV: however, for very large R > eV, the proof of the
inequality of the theorem is very simple). Recall that

15 = Flraan < 4 2L 4 2L

Under the assumption

(3.1)



we get

E(f)+e Y If5ln,

J€Jy
2w(f)d
RN — 2T

7(Jf)
Gl +LR) [\/ RN - 2T

/ fs /é‘f dm+R

<

3E(f) + 2

wn Emv o[22
jEJy n
5
1+LR \/ f \/ AlogN
Hlog N
+CR(1+ LR) ‘;g (3.2)

Then we have

C(1+LR)\/ zenl 17 Sen \/ fg./dm

< R0 LR <Jf><1— Trp
and
dm
C(1+LR)\/ T 1_ ) \/ \/
1 IQ
—& c? .
< N+ +LRY <Jf><1— T
Similarly,
C(l—l—LR)\/g(f)\/Ak;gN
< 15(ff)+2(J2(1+/:R)2Al°7gN
4 n
and
C(1+ LR) E(Tf) AIZgN
< ié‘(f)+202(1+LR)2AlOTgN.
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This yields the following bound

SEF) +e S 11zl

2 gy
7 2¢(f)d 2
s RS A T
k(Jy) dm

402 (1 + LR)Q{

Te(Jp) (1 —p2(Jp)) n

+R\/man€Jf Zk>m )\ECJ)
n

+

~ logd
R /%Xm/‘ﬂ +4C%(1 + LR)?
J f

><Alog]\f Alog N
n n

+CR(1

(

" ( r(Jr)
K(Jg) (L = p*(J¢))
to get the following bound (with some constant C' > 0)

E)+2e ) If I,

JEJg

+ LR) (3.3)

It remains to take
nl/(2B8+1)
d2/(28+1)

(14 LR)?
Rt

m =

~2/(26+1)
) «

)2/(2ﬂ+1)

C(f)d
Th(Jf)(1 = p%(Jy))

() + 8
(1 + LR)2 > (26-1)/(28+1)
T

+o(
k(Jy)

X
<“(Jf)(1 = p*(J¢))
d(26-1)/(28+1)
- (402(1 +LR)? +

< e? +

X

(26-1)/(28+1)
> x

X 26726+

Alog N
BN (3.4)
n

+CR(1+ LR))
which implies the result. ll

4 Appendix

The Rademacher process is defined as

=n! Z g;9(X;)
j=1

where {¢;} are i.i.d. Rademacher random variables in-
dependent of {X}.

We will need several bounds for Rademacher pro-
cesses indexed by functions from RKHS (some of them
are well known; see, e.g., Mendelson (2002) and Blan-
chard, Bousquet and Massart (2007)). We state them
without proofs for brevity.

First we consider a single RKHS Hy where K is
a kernel with eingenvalues \;, and eigenfunctions ¢y, (in

Ly(10)).



Lemma 3 The following bound holds:

Zk“;l )‘k_

n

E sup |Ro(h)] <

(IRl 5 <1

Let m > 1. Denote by L the linear span of the
functions {¢x : k = 1,...,m} and by Lt the closed
linear span (in Ly (II)) of the functions {¢y : & > m+1}.
Py, Py, will denote orthogonal projectors in Lo(II) on
the corresponding subspaces.

Lemma 4 For allm > 1,

Pl A
Ra(Pyat)] < ) Zimen
n

We now turn to the case of a dictionary {H,;
., N} of RKHS with kernels {Kj;

As before, denote {)\,(cj )ik > 1} the eigenvalues (ar-

ranged in decreasing order) and {qﬁ,(cj )k > 1} the
Lo (IT)-orthonormal eigenfunctions of K;. The following
bounds will be needed in this case.

E sup

llBll 7, <1

1] =
:j=1,...N}

Lemma 5 With some numerical constant C,

Ry (hy)| < \/maxlsJ‘SN S A
n\'ty =

E max  sup

FSISN gl <1 n

log N
—

+C

Proof. We use bounded difference inequality to
get for each j = 1,..., N with probability at least 1 —

e—t—logN

Cyt+log N
sup  |Ro(hy)| <E  sup  |Rp(hy)|+ 282
(st i, <1 Vn

By the union bound, thlb yleldb with probability at least
1 — Ne t7losN —1

|R..(h )| < max E

1<j<N

[ R (1))

max  sup

sup
LSTEN |Ing s, <1

1Rl <1
+O\/i L GVlogN
vn vno
which holds for all ¢ > 0 and implies that
|Rn(hj)| < max E

1<j<N

E max  sup

sup
1SISN ing ey <2

h;)l
gl <1
. C+/log N
Vn

with a properly chosen constant C' > 0. Note that, by

| R

Lemma 3,
E sup [Ralhy)] < 1) S0
I I, <1 n
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which implies the result. Nl

As before, denote Lj,le the subspaces of Lo(II)
spanned on {(béj) i k < m} and {(b,(cj) : k> m}, re-
spectively, Pr, 7PL being the corresponding orthogonal

projections. Recall that sequence {\], '} is nonincreasing.
The following statement is a uniform version of Lemma

4.

Lemma 6 With some numerical constant C,

E max  sup
LSTEN s la, <1

00 €))
< 2\/maX1§j§N D hemi1 AR

n
[log N +C )
n

[Ra (P b))

logN +C
- .

Lemma 7 The following bound holds:

Esup{mn(g — Ol g = Floaan < 6 llglle < R,

, k(Jy) dm
2 ol < af < C\/ K= 2V
log d

N2
+2R\/maXJleZk>m k _A'_CR\/HlaT)\m
JjeJy
o [N
n

Proof. First note that

S

Jj=1

)>‘ lg = fllLoan < 6, llglle, <
Z lgjll#; < A} < Esup{’Rn( Z(gj — fj))’ .
J€Jy

jGJf
19— Fllaam < 6 llgles < B2 S lgslle, < A} +
J€Jy
Bsup | (305~ 1) | lo = Fleaay < .l <
i€ Iy
S gl < A}

JEJy




The second term can be bounded as follows:

o5

gj)\ g = Flleaan < 6 lglle < B,
J€J

Z gl < A} < Esup{‘l%(Z ||gj||Hjhj)‘ :
J€J¢ J&J;
S lgsllr, < A sl < 1} <
JEJy
AEmax sup |R,(h;)| <CA M,

TEI |Ihy I, <1 n

where we used Lemma 5. As to the first term, we use
the bound

Esup{‘Rn<

Z(gj_fj

)| o= Fleaan < lall, < 7.

JjeJs
5 laslhe < A} < Bsup{ R (3 Pustor - 1)
JE 5 jEJ
lg — fllzoam < 5}
seswp{ R Pt = 1) lalln < R},
JjE€J
Note that

P = 50,y <500 Pt = 0]
HZ Li L(H)_KjfZ L Lo (IT)
Jj€Jy JEJy
J

<RI Y oy il < S B> - HL ;
j€Jy j€Jy (In
<
(Jf HZ o(I1)

“(Jf>(1 —*(Jy))

Also, Z]EJ Pr,(g; — f;) takes values in the linear span

of U;e Js L; whose dimension < dm. This yields the

followmg bound
)| o= Ty <1

k(Jy) dm
< C\/ RN = 2"

o (5 -

7€Jf

" .
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Finally, we use Lemma 6 to get

]Esup{ (Z Pr:(g

- 1)) talls < =}

= ES“"{’Rn(Z lo; - ijIHJPL].th)] Nglle, <R
jeJy
||hj|Hjs1,j:1,...,N}
< 2REmax sup |Rn(PL4.hj)|
TETF |y, <1 i
(4)
n JEJ; n

Combining the above bounds we get

Esup{u-zn(g D1l = i < . llglles < R,

. R(Jf) dm
g;f lgslize, < A} = C\/K(Jf)(l — pQ(Jf))(S n
log d

+2R\/maxj€J.f Zk>m )\g)
n

+CA

+ CR‘ /max)\%)
jEJf

log(N —d)+1 I
—
Recall that

an(0,A,R) :=
sup{|(Pn —P)(teg—tef):g€ g(é,A,R)},

where

(6.0 R)
{g: 19— Flloaa <6 3 lgslln, < A llglle, < R}.
J€Jy

We will assume that R < eV
sumption N > n7).

(recall also the as-

Lemma 8 There exist constants C, L depending only
on the loss £ (L =0 if £ is bounded) such that for all

nY2<§<2R, nY?<A<R (4.1)

and for all A > 1 the following bound holds with proba-
bility at least 1 — N—4

E(Jy) "
w(Jp) (1= p2(Jy))

(4)
) dﬂ + R\/maxjejf Zk>m Ak] +
V n n
R fax @) /logd LA log(N —d) +1
jedg " n

Alog N Alog N
+C(1 + LR)3y/ ‘;Lg +CR(1+ LR)OTg. (4.2)

an(8,A,R) < C(1 + LR) {\/




Proof. First note that, by Talagrand’s concentra-
tion inequality, with probability at least 1 —e~¢
an(0; A1 R) <
t CR(14+LR)t
2| Ean(8; A, R) + C(1 + LR)(S\/; |, CRA+ LR

n

To apply Talagrand’s inequality we used the assump-
tions on the loss function. It follows from these assump-
tions that for all g € G(4, A, R)

[og—to iy < CO+LR) g fllLym) < C+LR)S
and also
[6eg—"Leflloc < CR(1+ LR).

Next, by symmetrization inequality,

Ean (5 A, R) < 2Esup{|Ru((fag—taf : g € G(6, A, ). }.

We write u = g — f and
leg—lef=Le(f+u)—Llef

and observe that the function
[-R,R>ur—Le(f+u)—Lef

is Lipschitz with constant C(1 + LR). This allows us
to use Rademacher contraction inequality (Ledoux and
Talagrand, 1991) to get

Ea,(3; A, R) < O(1 + LR) x
x]Esup{’Rn(g — f)’ 1g € g(é,A,R)}.

The last expectation can be further bounded by Lemma
7. As a result, we get the following bound that holds
with probability at least 1 — e~ :

(08 S O+ B w TV

| ) —
+R\/maxj€,]f Zk>m k + R. /max )\grjz) logd +
n je€Jy n

A log(Nd)H} +O(1+ LR)a\/z

n
CR(1+ LR)t
+7

The next goal is to make the bound uniform in
nY/2<§<2R and n /2 < A<R. (4.4)
To this end, consider
§j:==2R277, Aj:=R277.

We will replace t by ¢ + 2loglog(2R+/n) and use bound
(4.3) for all § = §; and A = Ay, satisfying the conditions
(4.4). By the union bound, with probability at least

1 — log(R+v/n)log(2R/n) exp{—t — 2log log(QR\/ﬁ)}

>1—et

)

=: B, (6, A, R;t).(4.3)

the following bound holds for all §;, Ay satisfying (4.4):

vn
It is enough now to substitute in the above bound ¢ :=
Alog N and to use the fact that the functions ., (6, A, R)

and Bn(é,AJ%; t) are nondecreasing with respect to ¢
and A. Together with the conditions R < e/ and N >
n?, this implies the claim. Il

~ 2
an(0;, Ak, R) < B, (6j,Ak, R;t+ 210glog(R)>.
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Abstract

Standard no-internal-regret (NIR) algorithms
compute a fixed point of a matrix, and hence
typically require O(n?) run time per round of
learning, where n is the dimensionality of the
matrix. The main contribution of this paper
is a novel NIR algorithm, which is a simple
and straightforward variant of a standard NIR
algorithm. However, rather than compute a
fixed point every round, our algorithm relies
on power iteration to estimate a fixed point,
and hence runs in O(n?) time per round.

Nonetheless, it is not enough to look only at
the per-round run time of an online learning
algorithm. One must also consider the algo-
rithm’s convergence rate. It turns out that
the convergence rate of the aforementioned al-
gorithm is slower than desired. This observa-
tion motivates our second contribution, which
is an analysis of a multithreaded NIR algo-
rithm that trades-off between its run time per
round of learning and its convergence rate.

1

An online decision problem (ODP) consists of a series of
rounds, during each of which an agent chooses one of n
pure actions and receives a reward corresponding to its
choice. The agent’s objective is to maximize its cumu-
lative rewards. It can work towards this goal by abid-
ing by an online learning algorithm, which prescribes
a possibly mixed action (i.e., a probability distribution
over the set of pure actions) to play each round, based
on past actions and their corresponding rewards. The
success of such an algorithm is typically measured in
a worst-case fashion: specifically, an adversary chooses
the sequence of rewards that the agent faces. Hence,
the agent—the protagonist—must randomize its play;
otherwise, it can easily be exploited by the adversary.
The observation that an ODP of this nature can be
used to model a single player’s perspective in a repeated
game has spawned a growing literature connecting com-
putational learning theory—specifically, the subarea of
regret minimization—and game theory—specifically, the
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subarea of learning in repeated games. Both groups
of researchers are interested in designing algorithms by
which an agent can learn from its past actions, and the
rewards associated with those actions, to play actions
now and in the future that yield high rewards. More
specifically, the entire sequence of actions should yield
low regret for not having played otherwise, or equiva-
lently, near equilibrium behavior.

In a seminal paper by Foster and Vohra [FV97], it
was established that the empirical distribution of the
joint play of a particular class of online learning al-
gorithms, called no-internal-regret (NIR) learners, con-
verges to the set of correlated equilibria in repeated ma-
trix games. However, standard NIR learning algorithms
(see Cesa-Bianchi and Lugosi [CBL06] and Blum and
Mansour [BM05])!—including the algorithm proposed
by Foster and Vohra (hereafter, FV)—involve a fixed
point calculation during each round of learning, an op-
eration that is cubic? in the number of pure actions
available to the player. Knowing that fixed point cal-
culations are expensive, Hart and Mas-Colell [HMCO00]
describe “a simple adaptive procedure” (hereafter, HM)
that also achieves the aforementioned convergence re-
sult. HM’s per-round run time is linear in the number
of pure actions.

It is well-known [HMCO00] that HM does not exhibit
no internal regret in the usual sense, meaning against
an adaptive adversary—one that can adapt in response
to the protagonist’s “realized” pure actions (i.e., those
that result from sampling his mixed actions). Still, in
a recent paper, Cahn [Cah04] has shown that HM’s al-
gorithm does exhibit no internal regret against an ad-
versary that is “not too sophisticated.” In this paper,
we use the terminology nearly oblivious to refer to this

!The former reference is to a book that surveys the field;
the latter reference is to a paper that includes a black-box
method for constructing NIR learners from another class of
learners called no-external-regret learners.

2Strassen [Str69] devised an O(n*®')-time algorithm for
matrix-matrix multiplication, based on which a fixed point
can be computed with the same run time [CLRS01]. Copper-
smith and Winograd [CW87] devised an O(n?3¢)-time algo-
rithm for matrix-matrix multiplication, but unlike Strassen’s
result their result is impractical. For better pedagogy, we
quote the “natural” O(n®) runtime in most of our discus-
sions rather than these better bounds.



type of adversary, because the “not-too-sophisticated”
condition is a weakening of the usual notion of an obliv-
ious adversary—one who chooses the sequence of re-
wards after the protagonist chooses its online learning
algorithm, but before the protagonist realizes any of its
pure actions. Since an oblivious adversary is also nearly
oblivious, Cahn’s result implies that HM exhibits no in-
ternal regret against an oblivious adversary.

As alluded to above, both FV and HM (and all the
algorithms studied in this paper) learn a mixed action
each round, and then play a pure action: i.e., a sample
from that mixed action. One important difference be-
tween them, however, which can be viewed at least as
a partial explanation of their varying strengths, is that
FV maintains as its state the mixed action it learns,
whereas HM maintains as its state the pure action it
plays. Intuitively, the latter cannot exhibit no internal
regret against an adaptive adversary because an adap-
tive adversary can exploit any dependencies between the
consecutively sampled pure actions.

Young [You04] proposes, but does not analyze rigor-
ously, a variant of HM he calls Incremental Conditional
Regret Matching (ICRM), which keeps track of a mixed
action instead of a pure action, and hence exhibits no in-
ternal regret against an adaptive adversary.®> ICRM has
quadratic run time each round. To motivate ICRM, re-
call that standard NIR algorithms involve a fixed-point
calculation. Specifically, they rely on solutions to equa-
tions of the form ¢ = ¢P;, where P, is a stochastic matrix
that encodes the learner’s regrets for its actions through
time ¢. Rather than solve this equation exactly, ICRM
takes gi11 < q:P; as an iterative approximation of the
desired fixed point.

The regret matrix P; used in ICRM (and HM) de-
pends on a parameter y that is strictly larger than the
maximum regret per round. This makes ICRM less in-
tuitive than it could be. We show that the same idea
also works when the normalizing factor ut is replaced by
the actual total regret experienced by the learner. This
simplifies the algorithm and eliminates the need for the
learner to know or estimate a bound on the rewards.
We call our algorithm Power Iteration (PI),* because
another more intuitive way to view it is as a modifi-
cation of a standard NIR algorithm (e.g., Greenwald,
et al. [GIMar]) with its fixed-point calculation replaced
by power iteration. Once again, the first (and primary)
contribution of this paper is a proof that using power it-
eration to estimate a fived point, which costs only O(n?)
per round, suffices to achieve no-internal-regret against
an adaptive adversary.

Although our PI algorithm is intuitive, the proof
that the idea pans out—that PI exhibits NIR against an
adaptive adversary—is non-trivial (which may be why

30ur analytical tools can be used to establish Young’s
claim rigorously.

4Both PI and ICRM can be construed as both incremen-
tal conditional regret matching algorithms and as power it-
eration methods. The difference between these algorithms
is merely the definition of the matrix P, and who named
them, not what they are named for per se.
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Young did not propose this algorithm in the first place).
The proof in Hart and Mas-Colell [HMCOO] relies on a
technical lemma, which states that ||q;P7 — q:P7 |1,
for some z > 0, is small, whenever all the entries on
the main diagonal of P; are at least some uniform con-
stant. With our new definition of P;, this condition does
not hold. Instead, our result relies on a generalization
of this lemma in which we pose weaker conditions that
guarantee the same conclusion. Specifically, we require
only that the trace of P, be at least n — 1. Our lemma
may be of independent interest.

Hence, we have succeeded at defining a simple and
intuitive, O(n?) per-round online learning algorithm that
achieves no internal regret against an adaptive adver-
sary. However, it is not enough to look only at the per-
round run time of an online learning algorithm. One
must also consider the algorithm’s convergence rate. It
turns out that the convergence rates of PI, ICRM, and
HM are all slower than desired (their regret bounds are

O(y/nt=1/19)), whereas FV’s regret bound is O(+/n/t)
(see, for example, Greenwald, et al. [GLMO06]). This
observation motivates our second algorithm.

As our second contribution, we analyze an alterna-
tive algorithm, one which is multithreaded. Again, the
basic idea is straightforward: one thread plays the game,
taking as its mixed action the most-recently computed
fixed point, while the other thread computes a new fixed
point. Whenever a new fixed point becomes available,
the first thread updates its mixed action accordingly.
This second algorithm, which we call MT, for multi-
threaded, exhibits a trade-off between its run time per
round and its convergence rate. If p is an upper bound
on the number of rounds it takes to compute a fixed
point, MT’s regret is bounded by O(y/np/t). Observe
that this regret bound is a function of ¢/p, the number
of fixed points computed so far. If p is small, so that
many fixed points have been computed so far, then the
run time per round is high, but the regret is low; on
the other hand, if p is large, so that only very few fixed
points have been computed so far, then the run time
per round is low, but the regret is high.

This paper is organized as follows. In Section 2, we
define online decision problems and no-regret learning
precisely. In Section 3, we define the HM, ICRM, and PI
algorithms, and report their regret bounds. In Section 4,
we introduce our second algorithm, MT, and report its
regret bound. In Section 5, we prove a straightforward
lemma that we use in the analysis of all algorithms. In
Section 6, we analyze MT. In Section 7, we analyze PI.
In Section 8, we present some preliminary simulation
experiments involving PI, HM, and MT. In Section 9,
we describe some interesting future directions.

2 Formalism

An online decision problem (ODP) is parameterized by
a reward system (A, R), where A is a set of pure actions
and R is a set of rewards. Given a reward system (A, R),
we let IT = R4 denote the set of possible reward vectors.



Definition 1 Given a reward system (A, R), an online
decision problem can be described by a sequence of re-
ward functions (7;)$2,, where 7, € (A1 +— II).

Given an ODP (7)22,, the particular history H; =
({ar)t_q, {(m-)t_,) corresponds to the agent playing a,
and observing reward vector 7, = 7, (a1,...a,—1) at all
times 7 =1,...,t.

In this paper, we restrict our attention to bounded,
real-valued reward systems; as such, we assume WLOG
that R = [0, 1]. We also assume the agent’s pure action
set is finite; specifically, we let |A| = n. Still, we allow
agents to play mixed actions. That is, an agent can
play a probability distribution over its pure actions. We
denote by A(A) the set of mixed actions: i.e., the set of
all probability distributions over A.

An online learning algorithm is a sequence of func-
tions (G;)$2,, where G : Hi—1 — A(A) so that ¢:(h) €
A(A) represents the agent’s mixed action at time ¢ > 1,
after having observed history h € H;_;. When the his-
tory h is clear from context, we abbreviate ¢;(h) by
q:- For a given history of length ¢, let ¢ be the de-
generate probability distribution corresponding to the
action actually played at time ¢: i.e., for all 1 < i < n,
(G¢); = 1 (a; = 4).5 Clearly, ¢, is a random variable.

We are interested in measuring an agent’s regret in
an ODP for playing as prescribed by some online learn-
ing algorithm rather than playing otherwise. We pa-
rameterize this notion of “otherwise” by considering a
variety of other ways that the agent could have played.
For example, it could have played any single action a all
the time; or, it could have played a’ every time it actu-
ally played a. In either case, we arrive at an alternative
sequence of play by applying some transformation to
each action in the agent’s actual sequence of play, and
then we measure the difference in rewards obtained by
the two sequences, in the worst case. That is the agent’s
regret.

A transformation of the sort used in the first exam-
ple above—a constant transformation that maps every
action a’ in the actual sequence of play to a fixed, alter-
native action a—is called an external transformation.
We denote by ®gxr the set of all external transforma-
tions, one per action a € A. Many efficient algorithms,
with both fast run time per round and fast convergence
rates, are known to minimize regret with respect to
Dpxr (e.g., [LW94, FS97, HMCO1]). Here, we are inter-
ested in transformations of the second type, which are
called internal transformations. These transformations
can be described by the following set of n-dimensional
matrices:

Oy ={¢) s a£bl<ab<n}
where
1 ifitani=j
(¢<a,b>)ij={1 ifi=anj=b

0 otherwise

1 ifp

SFor predicate p, 1 (p) = { 0 otherwise °

For example, if |A] = 4, then applying the following
transformation to a pure action a yields the third action
if a is the second action, and a otherwise:

1 00 0
p29 | 0 0 10
0010
000 1

Ppxr and Pryr are the two best-known examples of
transformation sets. More generally, a transformation
¢ can be any linear function from A(A) — A(A). In
the definitions that follow, we express reward vectors 7
as column vectors, mixed actions ¢ as row vectors, and
transformations ¢ as n-dimensional matrices.

If, at time 7, an agent plays mixed action ¢, in an
ODP with reward vector 7, the agent’s instantaneous
regret (r:), with respect to a transformation ¢ is the
difference between the rewards it could have obtained
by playing ¢,¢ and the rewards it actually obtained by

playing ¢.: i.e.,
(TT)qb = - OTr — ¢ Tr (1)

The agent’s cumulative regret vector (R;) through time
t is then computed in the obvious way: for ¢ € @,

t

(Re)s =Y _(rr)s (2)

T=1

One can also define pure action variants of the in-
stantaneous and cumulative regret vectors, as follows:

(7:7-)4{7 = G- omr — G-y (3)

and
t

(Bi)o =Y (Fr)o (4)
T=1
One can bound either the expected pure action regret
or the (mixed action) regret. To avoid unilluminating
complications, we focus on the latter in this work.

Our objective in this work is to establish sublinear
bounds on the average internal-regret vector of various
online learning algorithms. Equipped with such bounds,
we can then go on to claim that our algorithms exhibit
no internal regret by applying standard techniques such
as the Hoeffding-Azuma lemma (see, for example, Cesa-
Bianchi and Lugosi [CBL06]). Note that we cannot es-
tablish our results for general ®. We defer further dis-
cussion of this point until Section 9, where we provide
a simple counterexample.

For completeness, here is the formal definition of no-
®-regret learning;:

Definition 2 Given a finite set of transformations @,
an online learning algorithm (§:)$2, is said to exhibit

no-®-regret if for all € > 0 there exists tg > 0 such
that for any ODP (74)$2,,

1.
Pr |3t >ty s.t. max—RY > €| <e (5)
ped ¢
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The relevant probability space in the above definition is
the natural one that arises when considering a particular
ODP (7:)$2, together with an online learning algorithm
(G1)$2,. The universe consists of infinite sequences of
pure actions (a,)>2; and the measure is defined by the
learning algorithm.

We close this section with some notation that ap-
pears in later sections:

e Welet aeb = a”'b denote the dot product of column
vectors a and b.

e For vector v € R™, we let v denote the component-
wise max of v and the zero vector: i.e., (v'); =
max(v;, 0).

3 Algorithms

We begin this section by describing HM, the simple
adaptive procedure due to Hart and Mas-Colell [HMCO00]
that exhibits no internal regret against a nearly oblivi-
ous adversary, as well as ICRM, a variant of HM due to
Young [You04] that exhibits no internal regret against
an adaptive adversary. We then go on to present a sim-
ple variant of these algorithms, which we call PI, for
power iteration, for which we establish the stronger of
these two guarantees.

Definition 3 Define the n-dimensional matriz

Ne= Y (RN)so

PERINT

and the scalar

Dy = Z (R:r)qﬁ

PERINT

At a high-level, HM (Algorithm 1) and ICRM (not
shown) operate in much the same way: at each time
step ¢, an action is played and a reward is earned; then,
the regret matrix P; is computed in terms of N; and
D;, based on which a new action is derived. But the
algorithms differ in an important way: specifically, they
differ in their “state” (i.e., what they store from one
round to the next). In HM, the state is a pure action,
so that during each round, the next pure action is com-
puted based on the current pure action. In ICRM, the
state is a mixed action.

Like Young’s algorithm, the state in our algorithm,
PI (Algorithm 2), is a mixed action. But, our algo-
rithm differs from both of the others in our choice of
the matrix regret P;. In PI, P, = N;/D;, which is the
same matrix as in Greenwald et al. [GIMar], for exam-
ple. Intuitively, N;/D; is a convex combination of the
transformations in ®yp, with each ¢ € &y weighted
by the amount of regret the learner experienced for not
having transformed its play as prescribed. In HM and
ICRM, P; is a convex combination of N;/D; and the
identity matrix. This convex combination depends on
a parameter u, which is an upper bound on the regret
per round; typically,