
Contents

Foreword...vii

Invited Presentations

Peter Grunwald ...1

The Catch-Up Phenomenon in Bayesian Inference

Robin Hanson...3

Combinatorial Prediction Markets

Dan Klein ..5

Unsupervised Learning for Natural Language Processing

Gabor Lugosi..7

Concentration Inequalities

Unsupervised, Semi-Supervised and Active Learning

Kamalika Chaudhuri and Satish Rao..9

Learning Mixtures of Product Distributions Using Correlations and
Independence

Kamalika Chaudhuri and Satish Rao..21

Beyond Gaussians: Spectral Methods for Learning Mixtures of Heavy-Tailed
Distributions

Shai Ben-David, Tyler Lu and David Pal ..33

Does Unlabeled Data Provably Help? Worst-case Analysis of the Sample
Complexity of Semi-Supervised Learning

Maria-Florina Balcan, Steve Hanneke and Jennifer Wortman45

The True Sample Complexity of Active Learning

On-Line Learning

Elad Hazan and Satyen Kale ..57

Extracting Certainty from Uncertainty: Regret Bounded by Variation in Costs

i

Kosuke Ishibashi, Kohei Hatano and Masayuki Takeda...69
Online Learning ofMaximum p-Norm Margin Classifiers with Bias

Subhash Khot and Ashok Kumar Ponnuswami ...81

Minimizing Wide Range Regret with Time Selection Functions

Other Directions

Nir Ailon and Mehryar Mohri..87

An Efficient Reduction of Ranking to Classification

Michael Kearns and Jennifer Wortman..99

Learning from Collective Behavior

Bharath Sriperumbudur, Arthur Gretton, Kenji Fukumizu, Gert Lanckriet and
Bernhard Shoelkopf...111

Injective Hilbert Space Embeddings of ProbabilityMeasures

Complexity and Boolean Functions

Sung-Soon Choi, Kyomin Jung and Jeong Han Kim ...123

Almost Tight Upper Bound for Finding Fourier Coefficients of Bounded Pseudo-
Boolean Functions

Robert Holte, Steffen Lange, Sandra Zilles and Martin Zinkevich......................135

Teaching Dimensions based on Cooperative Learning

Vitaly Feldman...147

On the Power of Membership Queries in Agnostic Learning

Complexity and Boolean Functions

Thorsten Doliwa, Michael Kallweit and Hans Ulrich Simon.................................157

Dimension and Margin Bounds for Reflection-invariant Kernels

Dana Angluin, James Aspnes, Jiang Chen, David Eisenstat and Lev Reyzin......169

Learning Acyclic Probabilistic Circuits Using Test Paths

Linda Sellie ...181

Learning Random Monotone DNF Under the Uniform Distribution

Eric Blais, Ryan O'Donnell and Karl Wimmer ..193

Polynomial Regression under Arbitrary Product Distributions

ii

 Generalization and Statistics

Alon Zakai and Yaacov Ritov...205

How Local Should a Learning Method Be?

Yiming Ying and Colin Campbell ..217

Learning Coordinate Gradients with Multi-Task Kernels

Vladimir Koltchinskii and Ming Yuan ..229

Sparse Recovery in Large Ensembles of Kernel Machines

On-Line Learning and Bandits

Amy Greenwald, Zheng Li and Warren Schudy ..239

More Efficient Internal-Regret-Minimizing Algorithms

Giovanni Cavallanti, Nicolo' Cesa-Bianchi and Claudio Gentile..........................251

Linear Algorithms for Online Multitask Classification

Jacob Abernethy, Elad Hazan and Alexander Rakhlin ...263

Competing in the Dark: An Efficient Algorithm for Bandit Linear Optimization

Other Directions

Wouter M. Koolen and Steven De Rooij..275

Combining Expert Advice Efficiently

Maria-Florina Balcan, Avrim Blum and Nathan Srebo...287

Improved Guarantees for Learning via Similarity Functions

J. Hyam Rubinstein and Benjamin I. P. Rubinstein...299

Geometric & Topological Representations of Maximum Classes with Applications
to Sample Compression

Shai Shalev-Shwartz and Yoram Singer ...311

On the Equivalence of Weak Learnability and Linear Separability: New
Relaxations and Efficient Boosting Algorithms

iii

Bandits and Reinforcement Learning

Andrey Bernstein and Nahum Shimkin...323

Adaptive Aggregation for Reinforcement Learning with Efficient Exploration:
Deterministic Domains

Peter Bartlett, Varsha Dani, Thomas Hayes, Sham Kakade, Alexander Rakhlin and
Ambuj Tewari ..335

High-Probability Regret Bounds for Bandit Online Linear Optimization

Aleksandrs Slivkins and Eli Upfal..343

Adapting to a Changing Environment: the Brownian Restless Bandits

Varsha Dani, Thomas P. Hayes and Sham M. Kakade..355

Stochastic Linear Optimization under Bandit Feedback

Unsupervised and Semi-Supervised Learning

Ohad Shamir and Naftali Tishby ...367

Model Selection and Stability in k-means Clustering

Shai Ben-David and Ulrike von Luxburg ..379

Relating Clustering Stability to Properties of Cluster Boundaries

Kamalika Chaudhuri and Andrew McGregor..391

Finding Metric Structure in Information Theoretic Clustering

Karthik Sridharan and Sham M. Kakade...403

An Information Theoretic Framework for Multi-view Learning

Online Learning

Jacob Abernethy, Peter Bartlett, Alexander Rakhlin and Ambuj Tewari...........415

Optimal Stragies and Minimax Lower Bounds for Online Convex Games

Robert D. Kleinberg, Alexandru Niculescu-Mizil and Yogeshwer Sharma.........425

Regret Bounds for Sleeping Experts and Bandits

Jacob Abernethy, Manfred K. Warmuth and Joel Yellin......................................437

When Random Play is Optimal Against an Adversary

Andras Gyorgy, Gabor Lugosi and Gyorgy Ottucsak ...447

On-line Sequential Bin Packing

iv

Generalization and Statistics

Shuheng Zhou, John Lafferty and Larry Wasserman...455

Time Varying Undirected Graphs

Constantine Caramanis and Shie Mannor ..467

Learning in the Limit with Adversarial Disturbances

Liwei Wang...479

On the Margin Explanation of Boosting Algorithms

Aarti Singh and Robert Nowack and Clayton Scott...491

Adaptive Hausdorff Estimation of Density Level Sets

Satyaki Mahalanabis and Daniel Stefankovic...503

Density Estimation in Linear Time

Open Problems

Vitaly Feldman and Leslie G. Valiant..513

The Learning Power of Evolution

Parikshit Gopalan and Adam Kalai and Adam R. Klivans515

A Query Algorithm for Agnostically Learning DNF?

Adam M. Smith and Manfred K. Warmuth..517

Learning Rotations

Author Index ..519

v

vi

Foreword

This volume contains papers presented at the 21st Annual Conference on Learning Theory (previously
known as the Conference on Computational Learning Theory) held in Helsinki, Finland from July 9-12,
2008. The technical program contained 44 papers selected from 126 submissions, three open problems
selected from among five contributed, and four invited lectures that were joint with UAI. The invited
lectures were given by Peter Grünwald on “The Catch-Up Phenomenon in Bayesian Inference,” by Robin
Hanson on “Combinatorial Prediction Markets,” by Dan Klein on “Unsupervised Learning for Natural
Language Processing,” and by Gabor Lugosi on “Concentration Inequalities.” The abstracts of these
lectures are included in this volume.

The Mark Fulk award is presented annually for the best paper co-authored by a student. This year
the Mark Fulk award was supported in part by the Machine Learning Journal, which also supported
two further awards. Thus three student papers were selected for prizes. The Mark Fulk Award was
awarded to Maria-Florina Balcan, Steve Hanneke and Jennifer Wortman for their paper “The True Sample
Complexity of Active Learning.” The two Machine Learning Journal Best Paper Awards were awarded
to Jacob Abernathy for his paper “Competing in the Dark: An Efficient Algorithm for Bandit Linear
Optimization” (co-authored by Elad Hazan and Alexander Rakhlin), and to Alexandru Niculescu-Mizil
and Yogeshwer Sharma for their paper “Regret Bounds for Sleeping Experts and Bandits” (co-authored
with Robert Kleinberg).

This year witnessed many COLT submissions and a very strong program of papers. The selected papers
cover a wide range of topics including clustering, unsupervised and semi-supervised learning, active learn-
ing, boosting, online learning, bandit problems and reinforcement learning, complexity-theoretic aspects
of learning, generalization and statistical learning, kernel methods, and other topics.

We would like to thank the many people who made COLT 2008 a success. We thank the members
of the Program Committee for COLT 2008: Dana Angluin (Yale University), Jean-Yves Audibert (Ecole
Nationale des Ponts), Peter Auer (University of Leoben), Peter Bartlett (UC Berkeley), Mikhail Belkin
(Ohio State University), Shai Ben-David (University of Waterloo), Stéphane Boucheron (Universit Paris-
Diderot), Nader Bshouty (Technion), Sanjoy Dasgupta (UC San Diego), Ran El-Yaniv (Technion), Vitaly
Feldman (IBM Research), Sham M. Kakade (Toyota Technology Institute), Adam Kalai (Georgia Tech),
Vladimir Koltchinskii (Georgia Tech), Sanjay Jain (National University of Singapore), John Langford
(Yahoo! Research), Ping Li (Cornell University), Shie Mannor (McGill University), Mehryar Mohri (New
York University), Massimiliano Pontil (University College, London), Rob Schapire (Princeton University),
Shai Shalev-Shwartz (Hebrew University), Alex Smola (National ICT Australia), Nati Srebro (Toyota
Technological Institute), Ingo Steinwart (Los Alamos National Laboratory), Nicolas Vayatis, (Ecole Nor-
male Suprieure de Cachan), Volodya Vovk (Royal Holloway, University of London), and Bob Williamson
(Australian National University). We are very grateful to all of them for their careful and thorough re-
viewing and for the detailed discussions that ensured a strong program for the conference. We thank the
many sub-reviewers who assisted the Program Committee; unfortunately space constraints prevent us from
including the long list of all their names, so we must ask them to accept our thanks anonymously.

We give special thanks to Jyrki Kivinen (University of Helsinki) who served as the Local Chair of COLT
2008. We thank Kati Kervinen for general administrative support of the conference, and Sanna Kettunen
for his work in publicizing the conference. We thank Greger Lindén for creating and maintaining the

vii

conference website, and Microsoft Research for providing the CMT software that was used in the Program
Committee deliberations. We thank Nicolò Cesa-Bianchi for helping to organize the conference in his role
as head of the COLT steering committee. We thank Ran Gilad-Bachrach for his work in updating and
maintaining the www.learningtheory.org website. We also thank the ICML and UAI conference organizers
for ensuring a smooth co-location of the three conferences, including overlap with UAI.

Finally, we would like to thank the Federation of Finnish Learned Societies, Google, Helsinki Institute
for Information Technology, IBM, the Machine Learning Journal, the University of Helsinki, and Yahoo!
for their support and sponsorship of the conference.

April 2008 Rocco Servedio and Tong Zhang
COLT 2008 Program Chairs

viii

The Catch-Up Phenomenon in Bayesian Inference

Peter Grünwald
CWI, Amsterdam, The Netherlands

Peter.Grunwald@cwi.nl

Abstract

Standard Bayesian model selection/averaging sometimes learn too slowly: there exist other learning methods that
lead to better predictions based on less data. We give a novel analysis of this ”catch-up” phenomenon. Based on
this analysis, we propose the switching method, a modification of Bayesian model averaging that never learns slower,
but sometimes learns much faster than Bayes. The method is related to expert-tracking algorithms developed in the
COLT literature, and has time complexity comparable to Bayes.
The switching method resolves a long-standing debate in statistics, known as the AIC-BIC dilemma: model selec-
tion/averaging methods like BIC, Bayes, and MDL are consistent (they eventually infer the correct model) but, when
used for prediction, the rate at which predictions improve can be suboptimal. Methods like AIC and leave-one-out
cross-validation are inconsistent but typically converge at the optimal rate. Our method is the first that provably
achieves both. Experiments with nonparametric density estimation confirm that these large-sample theoretical results
also hold in practice in small samples.

1

2

Combinatorial Prediction Markets

Robin Hanson
Research Associate, Future of Humanity Institute at Oxford University

Associate Professor of Economics, George Mason University
rhanson@gmu.edu

Abstract

Several hundred organizations are now using prediction markets to forecast sales, project completion dates, and more.
This number has been doubling annually for several years. Most, however, are simple prediction markets, with one
market per number forecast, and several traders per market. In contrast, a single combinatorial prediction market
lets a few traders manage an entire combinatorial space of forecasts. For millions of numbers or less, implementa-
tion is easy, and lab experiments have confirmed feasibility and accuracy. For larger spaces, however, many open
computational problems remain.

3

4

Unsupervised Learning for Natural Language Processing

Dan Klein
University of California, Berkeley

klein@cs.berkeley.edu

Abstract

Given the abundance of text data, unsupervised approaches are very appealing for natural language processing. We
present three latent variable systems which achieve state-of-the-art results in domains previously dominated by fully
supervised systems. For syntactic parsing, we describe a grammar induction technique which begins with coarse
syntactic structures and iteratively refines them in an unsupervised fashion. The resulting coarse-to-fine grammars
admit efficient coarse-to-fine inference schemes and have produced the best parsing results in a variety of languages.
For coreference resolution, we describe a discourse model in which entities are shared across documents using a
hierarchical Dirichlet process. In each document, entities are repeatedly rendered into mention strings by a sequential
model of attentional state and anaphoric constraint. Despite being fully unsupervised, this approach is competitive
with the best supervised approaches. Finally, for machine translation, we present a model which learns translation
lexicons from non-parallel corpora. Alignments between word types are modeled by a prior over matchings. Given
any fixed alignment, a joint density over word vectors derives from probabilistic canonical correlation analysis. This
approach is capable of discovering high-precision translations, even when the underlying corpora and languages are
divergent.

5

6

Concentration inequalities

Gábor Lugosi
ICREA and Department of Economics, Pompeu Fabra University

Barcelona, Spain
gabor.lugosi@gmail.com

Abstract

In this talk by concentration inequalities we mean inequalities that bound the deviations of a function of independent
random variables from its mean. Due to their generality and elegance, many such results have served as standard tools
in a variety of areas, including statistical learning theory, probabilistic combinatorics, and the geometry of Banach
spaces. To illustrate some of the basic ideas, we start by showing simple ways of bounding the variance of a general
function of several independent random variables. We show how to use these inequalities on a few key quantities in
statistical learning theory. In the past two decades several techniques have been introduced to improve such variance
inequalities to exponential tail inequalities. We focus on a particularly elegant and effective method, the so-called
”entropy method”, based on logarithmic Sobolev inequalities and their modifications. Similar ideas appear in a variety
of areas of mathematics, including discrete and Gaussian isoperimetric problems, and estimation of mixing times of
Markov chains. We intend to shed some light to some of these connections. In particular, we mention some closely
related results on influences of variables of Boolean functions, phase transitions, and threshold phenomena.

7

8

Learning Mixtures of Product Distributions using Correlations and
Independence

Kamalika Chaudhuri
Information Theory and Applications, UC San Diego

kamalika@soe.ucsd.edu

Satish Rao
Computer Science Division, UC Berkeley

satishr@cs.berkeley.edu

Abstract

We study the problem of learning mixtures of
distributions, a natural formalization of clus-
tering. A mixture of distributions is a col-
lection of distributionsD = {D1, . . .DT },
andmixing weights, {w1, . . . , wT } such that
∑

i wi = 1. A sample from a mixture is gen-
erated by choosingi with probabilitywi and
then choosing a sample from distributionDi.
The problem of learning the mixture is that
of finding the parameters of the distributions
comprisingD, given only the ability to sam-
ple from the mixture. In this paper, we restrict
ourselves to learning mixtures of product dis-
tributions.

The key to learning the mixtures is to find a
few vectors, such that points from different
distributions are sharply separated upon pro-
jection onto these vectors. Previous techniques
use the vectors corresponding to the top few
directions of highest variance of the mixture.
Unfortunately, these directions may be direc-
tions of high noise and not directions along
which the distributions are separated. Further,
skewed mixing weights amplify the effects of
noise, and as a result, previous techniques only
work when the separation between the input
distributions is large relative to the imbalance
in the mixing weights.

In this paper, we show an algorithm which
successfully learns mixtures of distributions
with a separation condition that depends only
logarithmically on the skewed mixing weights.
In particular, it succeeds for a separation be-
tween the centers that isΘ(σ

√
T log Λ), where

σ is the maximum directional standard devia-
tion of any distribution in the mixture,T is the
number of distributions, andΛ is polynomial
in T , σ, log n and the imbalance in the mixing

weights. For our algorithm to succeed, we re-
quire aspreading condition, that the distance
between the centers bespreadacrossΘ(T log Λ)
coordinates. Additionally, with arbitrarily small
separation,i.e., even when the separation is
not enough for clustering, with enough sam-
ples, we can approximate the subspace con-
taining the centers. Previous techniques failed
to do so in polynomial time for non-spherical
distributions regardless of the number of sam-
ples, unless the separation was large with re-
spect to the maximum directional varianceσ
and polynomially large with respect to the im-
balance of mixing weights.Our algorithm works
for Binary Product Distributionsand
Axis-Aligned Gaussians. The spreading con-
dition above is implied by the separation con-
dition for binary product distributions, and is
necessary for algorithms that rely on linear
correlations.

Finally, when a stronger version of our spread-
ing condition holds, our algorithm performs
successful clustering when the separation be-
tween the centers is onlyΘ(σ∗

√
T log Λ),

whereσ∗ is the maximum directional standard
deviation in the subspace containing the cen-
ters of the distributions.

9

1 Introduction

Clustering, the problem of grouping together data points
in high dimensional space using a similarity measure, is
a fundamental problem of statistics with numerous ap-
plications in a wide variety of fields. A natural model for
clustering is that oflearning mixtures of distributions.
A mixture of distributions is a collection of distributions
D = {D1, . . . DT }, andmixing weights, {w1, . . . , wT }
such that

∑

i wi = 1. A sample from a mixture is gen-
erated by choosingi with probabilitywi and choosing
a sample from distributionDi. The problem of learning
the mixture is that of finding the parameters of the distri-
butions comprisingD, given only the ability to sample
from the mixture.

If the distributionsD1, . . . , DT are very close to each
other, then even if we knew the parameters of the dis-
tributions, it would be impossible to classify the points
correctly with high confidence. Therefore, Dasgupta
[Das99] introduced the notion of aseparation condi-
tion, which is a promise that each pair of distributions is
sufficiently different according to some measure. Given
points from a mixture of distributions and a separation
condition, the goal is to find the parameters of the mix-
tureD, and cluster all but a small fraction of the points
correctly. A commonly used separation measure is the
distance between the centers of the distributions param-
eterized by the maximum directional variance,σ, of any
distribution in the mixture.

A common approach to learning the mixtures and
therefore, clustering the high-dimensional cloud of points
is to find afew interesting vectors, such that points from
different distributions are sharply separated upon pro-
jection onto these vectors. Various distance-based meth-
ods [AK01, Llo82, DLR77] are then applied to cluster
in the resulting low-dimensional subspace. The state-
of-the-art, in practice, is to use the vectors correspond-
ing to the top few directions ofhighest varianceof the
mixture and to hope that it contains most of the sepa-
ration between the centers. This is computed by aSin-
gular Value Decomposition(SVD) of the matrix of sam-
ples. This approach has been theoretically analyzed by
[VW02] for spherical distributions, and for more gen-
eral distributions in [KSV05, AM05]. The latter show
that the maximum variance directions are indeed the in-
teresting directions when the separation isΘ(σ√

wmin

),

wherewmin is the smallest mixing weight of any distri-
bution.

This is the best possible result for SVD-based ap-
proaches; the directions of maximum variance may well
not be the directions in which the centers are separated,
but instead may be the directions of very high noise, as
illustrated in Figure 1(b). This problem is exacerbated
when the mixing weightswi are skewed – because a dis-
tribution with low mixing weight diminishes the contri-
bution to the variance along a direction that separates

the centers.

This bound is suboptimal for two reasons. Although
mixtures with skewed mixing weights arise naturally in
practice(see [PSD00] for an example), given enough sam-
ples, mixing weights have no bearing on the separability
of distributions. Consider two mixturesD′ andD′′ of
distributionsD1 andD2: in D′, w1 = w2 = 1/2, and
in D′′, w1 = 1/4 andw2 = 3/4. Given enough com-
putational resources, if we can learnD′ from 50 sam-
ples, we should be able to learnD′′ from 100 samples.
This does not necessarily hold for SVD-based methods.
Secondly, regardless ofσ, an algorithm, which has prior
knowledge of the subspace containing the centers of the
distributions, should be able to learn the mixture when
the separation is proportional toσ∗, the maximum di-
rectional standard deviation of any distribution in the
subspace containing the centers. An example in which
σ and σ∗ are significantly different is shown in Fig-
ure 1(b).

In this paper, we study the problem of learning mix-
tures ofproduct distributions. A product distribution
overRn is one in which each coordinate is distributed
independently of any others. In practice, mixtures of
product distributions have been used as mathematical
models for data and learning mixtures of product dis-
tributions specifically has been studied [FM99, FOS05,
FOS06, DHKS05] – see the Related Work section for
examples and details. However, even under this seem-
ingly restrictive assumption, providing an efficient algo-
rithm that does better than the bounds of [AM05, KSV05]
turns out to be quite challenging. The main challenge is
to find a low-dimensional subspace that contains most
of the separation between the centers; although the inde-
pendence assumption can (sometimes) help us identify
which coordinates contribute to the distance between
some pair of centers, the problem of actually finding
the low-dimensional space still requires more involved
techniques.

In this paper, we present an algorithm for learning
mixtures of product distributions, which is stable in the
presence of skewed mixing weights, and, under certain
conditions, in the presence of high variance outside the
subspace containing the centers. In particular, the de-
pendence of the separation required by our algorithm on
skewed mixing weights is only logarithmic. Addition-
ally, with arbitrarily small separation, (i.e., even when
the separation is not enough for classification), with
enough samples, we can approximate the subspace con-
taining the centers. Previous techniques failed to do so
for non-spherical distributions regardless of the num-
ber of samples, unless the separation was sufficiently
large. Our algorithm works for binary product distri-
butions and axis-aligned Gaussians. We require that the
distance between the centers bespreadacrossΘ(T log Λ)
coordinates, whereΛ depends polynomially on the max-

10

imum distance between centers andwmin. For our algo-
rithm to classify the samples correctly, we further need
the separation between centers to beΘ(σ

√
T log Λ).

In addition, if a stronger version of the spreading
condition is satisfied, then our algorithm requires a sepa-
ration of onlyΘ(σ∗

√
T log Λ) to ensure correct classifi-

cation of the samples. The stronger spreading condition,
discussed in more detail later, ensures that when we split
the coordinates randomly into two sets, the maximum
directional variance of any distribution in the mixture
along the projection of the subspace containing the cen-
ters into the subspaces spanned by the coordinate vec-
tors in each set, is comparable toσ2

∗.
In summary, compared to [AM05, KSV05], our al-

gorithm is much (exponentially) less susceptible to the
imbalance in mixture weights and, when the stronger
spreading condition holds, to high variance noise out-
side the subspace containing the centers. However, our
algorithm requires a spreading condition and coordinate-
independence, while [AM05, KSV05] are more general.
We note that for perfectly spherical distributions, the
results of [VW02] are better than our results – how-
ever, these results do not apply even for distributions
with bounded eccentricity. Finally unlike the results
of [Das99, AK01, DS00], which require the separation
to grow polynomially with dimension, our separation
only grows logarithmically with the dimension.

Our algorithm is based upon two key insights. The
first insight is that if the centers are separated along sev-
eral coordinates, then many of these coordinates arecor-
relatedwith each other. To exploit this observation, we
choose half the coordinates randomly, and search the
space of this half for directions of high variance. We
use the remaining half of coordinates tofilter the found
directions. If a found direction separates the centers, it
is likely to have some correlation with coordinates in
the remaining half, and therefore is preserved by the fil-
ter. If, on the other hand, the direction found is due to
noise, coordinate independence ensures that there will
be no correlation with the second half of coordinates,
and therefore such directions get filtered away.

The second insight is that the tasks of searching for
and filtering the directions can be simultaneously ac-
complished via a singular value decomposition of the
matrix of covariances between the two halves of coor-
dinates.In particular, we show that the top few direc-
tions of maximum variance of the covariance matrix ap-
proximately capture the subspace containing the centers.
Moreover, we show that the covariance matrix has low
singular value along any noise direction. By combining
these ideas, we obtain an algorithm that is almost in-
sensitive to mixing weights, a property essential for ap-
plications like population stratification [CHRZ07], and
which can be implemented using the heavily optimized
and thus, efficient, SVD procedure, and which works

with a separation condition closer to the information the-
oretic bound.

Related Work

The first provable results for learning mixtures of Gaus-
sians are due to Dasgupta [Das99] who shows how to
learn mixtures of spherical Gaussians with a separation
of Θ(σ

√
n) in an n-dimensional space. An EM based

algorithm by Dasgupta and Schulman [DS00] was shown
to apply to more situations, and with a separation of
Θ(σn1/4). Arora and Kannan [AK01] show how to
learn mixtures of distributions of arbitrary Gaussians
whose centers are separated byΘ(n1/4σ). Their results
apply to many other situations, for example,concentric
Gaussians with sufficiently different variance.

The first result that removed the dependence onn
in the separation requirement was that of Vempala and
Wang [VW02] who use SVD to learn mixtures of spher-
ical Gaussians withO(σT 1/4) separation. They project
to a subspace of dimensionT using an SVD and use a
distance based method in the low dimensional space. If
the separation is not enough for classification, [VW02]
can also find, given enough samples, a subspace approx-
imating the subgspace containing the centers. While the
results of [VW02] are independent of the imbalance on
mixing weights, they apply only to perfectly spherical
Gaussians, and cannot be extended to Gaussians with
bounded eccentricity. In further work Kannan, Salmasian,
and Vempala[KSV05] and Achlioptas and McSherry
[AM05] show how to cluster general Gaussians using
SVD. While these results are weaker than ours, they ap-
ply to a mixture of general Gaussians, axis-aligned or
not. We note that their analysis also applies to binary
product distributions again with polynomial dependence
on the imbalance in mixing weights1. In contrast, our
separation requirement isΩ(σ∗

√
T log Λ), i.e., is loga-

rithmically dependent on the mixing weights and dimen-
sion and the maximum variance in noise directions.

There is also ample literature on specifically learn-
ing mixtures of product distributions. Freund and Man-
sour [FM99] show an algorithm which generates dis-
tributions that areǫ-close to a mixture of two product
distributions over{0, 1}n in time polynomial inn and
1/ǫ. Feldman, O’Donnell, and Servedio show how to
generate distributions that areǫ-close to a mixture ofT
product distributions [FOS05] and axis-aligned Gaus-
sians [FOS06]. Like [FM99], they have no separation
requirements, but their algorithm takesnO(T 3) time. Das-
guptaet. al [DHKS05] provide an algorithm for learn-
ing mixtures of heavy-tailed product distributions which
works with a separation ofΘ(R

√
T), whereR is the

maximum half-radius of any distribution in the mixture.

1They do not directly address binary product distributions
in their paper, but their techniques apply.

11

While their separation requirement does not depend poly-
nomially on 1

wmin

, their algorithm runs in time expo-
nential inΘ(n

wmin
). They also require a slope, which is

comparable to our spreading condition. Chaudhuriet al.
[CHRZ07] show an iterative algorithm for learning mix-
tures of two product distributions that implicitly uses the
notion of co-ordinate independence to filter out noise di-
rections. However, the algorithm heavily uses the two
distribution restriction to find the appropriate directions,
and does not work whenT > 2.

More broadly, the problem of analyzing mixture mod-
els data has received a great deal of attention in statis-
tics, see for example, [MB88, TSM85], and has numer-
ous applications. We present three applications where
data is modelled as a mixture of product distirbutions.
First, the problem of population stratification in popula-
tion genetics has been posed as learning mixtures of bi-
nary product distributions in [SRH07]. In their work, the
authors develop an MCMC method for addressing the
problem and their software embodiment is widely used.
A second application is in speech recognition [Rey95,
PFK02], which models acoustic features at a specific
time point as a mixture of axis-aligned Gaussians. A
third application is the widely used Latent Dirichlet Al-
location model [BNJ03]. Here, documents are modelled
as distributions over topics which, in turn, are distri-
butions over words. Subsequent choices of topics and
words are assumed to beindependent. (For words, this is
referred to as the “bag of words” assumption.) [BNJ03]
develops variational techniques that provide interesting
results for various corpora. Interestingly, the same model
was used by Kleinberg and Sandler [KS04] to model
user preferences for purchasing goods (users correspond
to documents, topics to categories, and words to goods).
Their algorithm, which provides provably good perfor-
mance in this model, also uses SVD-like clustering al-
gorithms as a subroutine.

Our clustering method also involves a Canonical Cor-
relations Analysis of the samples, which seems to have
connections with multiview learning[KF07] and co-training[AT98].

Discussion

The Spreading Condition. The spreading condition
loosely states that the distance between each pair of cen-
ters is spread along aboutΘ(T log Λ) coordinates. We
demonstrate by an example, that a spread ofΩ(T), is a
natural limit for all methods that use linear correlations
between coordinates, such as our methods and SVD based
methods [VW02, KSV05, AM05]. We present, as an
example, two distributions : a mixtureD1 of T binary
product distributions, and a single binary product dis-
tribution D2, which have exactly the same covariance
matrix. Our example is based on the Hadamard code, in
which a codeword for ak-bit message is2k bits long,
and includes a parity bit for each subset of the bits of

Figure 1: (a) Spherical Gaussians: Direction of maxi-
mum variance is the direction separating the centers (b)
Arbitrary Gaussians: Direction of maximum variance is
a noise direction.

g

D1 D2

D3
D4

µ
g
1 = µ

g
2

µ
g
3 = µ

g
4

µ
f
4 = µ

f
1 fµ

f
3 = µ

f
2

Figure 2: An Example where All Covariances are0

the message. The distributions comprisingD1 are de-
fined as follows. Each of theT = 2k centers is a code-
word for ak−bit string appended by a string of length
n − k in which each coordinate has value1/2. Notice
that the lastn − k bits are noise. Thus, the centers are
separated byT/2 coordinates.D2 is the uniform dis-
tribution over then−dimensional hypercube. As there
are no linear correlations between any two bits in the
Hadamard code, the covariance ofD1 along any two
directions is0, and each direction has the same vari-
ance. As this is also the case forD2, any SVD-bsed
or correlation-based algorithm will fail to distinguish
between the two mixtures. We also note that learning
binary product distributions with minimum separation
2 and average separation1 + 1

2 log T would allow one
to learn parities oflog T variables with noise. Finally,
we note that when the spreading condition fails, one has
only a few coordinates that contain most of the distance
between centers. One could enumerate the set of possi-
ble coordinates to deal with this case, and is exponen-
tional inT log n log Λ. [FOS05] on the other hand takes
time exponential inT 3 log n, and works with no separa-
tion requirement.

2 A Summary of Our Results

We begin with some preliminary definitions about dis-
tributions drawn overn dimensional spaces. We use

12

f, g, . . . to range over coordinates, andi, j, . . . to range
over distributions. For anyx ∈ R

n, we writexf for the
f -th coordinate ofx. For any subspaceH (resp. vector
v), we useH̄ (resp. v̄) to denote the orthogonal com-
plement ofH (resp.v). For a subspaceH and a vector
v, we writePH(v) for the projection ofv onto the sub-
spaceH. For any vectorx, we use||x|| for the Euclidean
norm ofx. For any two vectorsx andy, we use〈x, y〉
for the dot-product ofx andy.

Mixtures of Distributions. A mixture of distributions
D, is a collection of distributions,{D1, . . . , DT }, over
points inR

n, and a set of mixing weightsw1, . . . , wT

such that
∑

i wi = 1. In the sequel,n is assumed to
be much larger thanT . In a product distribution over
R

n, each coordinate is distributed independently of the
others. When working with a mixture of binary prod-
uct distributions, we assume that thef -th coordinate of
a point drawn from distributionDi is 1 with probability
µf

i , and0 with probability1 − µf
i . When working with

a mixture of axis-aligned Gaussian distributions, we as-
sume that thef -th coordinate of a point drawn from dis-
tribution Di is distributed as a Gaussian with meanµf

i

and standard deviationσf
i .

Centers. We define thecenterof a distributioni as the
vectorµi, and thecenter of mass of the mixtureas the
vector µ̄ whereµ̄f is the mean of the mixture for the
coordinatef . We writeC for the subspace containing
µ1, . . . , µT .

Directional Variance. We defineσ2 as the maximum
variance of any distribution in the mixture along any
direction. We defineσ2

∗ as the maximum variance of
any distribution in the mixture along any direction in
the subspace containing the centers of the distributions.
We write σ2

max as the maximum variance of the entire
mixture in any direction. This may be more thanσ2 due
to contribution from the separation between the centers.

Spread. We say that a unit vectorv in R
n has spreadS

if
∑

f (vf)2 ≥ S · maxf (vf)2.

Distance. Given a subspaceK of R
n and two points

x, y in R
n, we writedK(x, y) for the square of the Eu-

clidean distance betweenx and y projected along the
subspaceK.

The Spreading Condition and Effective Distance. The
spreading condition tells us that the distance between
eachµi andµj should not be concentrated along a few
coordinates. One way to ensure this is to demand that
for all i, j, the vectorµi − µj has high spread. This is
comparable to the slope condition used in [DHKS05].

However, we do not need such a strong condition for
dealing with mixtures with imbalanced mixing weights.
Ourspreading conditiontherefore demands that for each
pair of centersµi, µj , the norm of the vectorµi − µj

high, even if we ignore the contribution of the top few

(aboutT log T) coordinates. Due to technicalities in our
proofs, the number of coordinates we can ignore needs
to depend (logarithmically) on this distance.

We therefore define the spreading condition as fol-
lows. We define parameterscij and a parameterΛ as :

Λ > σmaxT log2 n
wmin·(mini,j c2

ij
)

andcij is the maximum value such

that there are49T log Λ coordinatesf with |µf
i −µf

j | >
cij . We note thatΛ is bounded by a polynomial in
T, σ∗, 1/wmin, 1/cij and logarithmic inn.

We definecmin to be the minimum over all pairsi, j
of cij . Given a pair of centersi andj, let ∆ij be the set
of coordinatesf such that|µf

i − µf
j | > cij , and letνij

be defined as:νf
ij = µf

i − µf
j , if f /∈ ∆ij , andνf

ij = cij

otherwise. We definēd(µi, µj), the effective distance
betweenµi andµj to be the square of theL2 norm of
νij . In contrast, the square of the norm of the vector
µi − µj is the actual distance between centersµi and
µj , and is always greater than or equal to the effective
distance betweenµi andµj . Moreover, giveni andj
and the subspaceK, we defined̄K(µi, µj) as the square
of the norm of the vectorνij projected onto the subspace
K.

Under these definitions, our spreading condition now
requires that̄d(µi, µj) ≥ 49c2

ijT log Λ and our stronger
spreading condition requires that every vector inC has
spread32T log σ

σ∗
.

A Formal Statement of our Results. Our main con-
tribution is Algorithm CORR-CLUSTER, a correlation
based algorithm for learning mixtures of binary prod-
uct distributions and axis-aligned Gaussians. The input
to the algorithm is a set of samples from a mixture of
distributions, and the output is a clustering of the sam-
ples.

The main component of Algorithm CORR-CLUSTER
is Algorithm CORR-SUBSPACE, which, given samples
from a mixture of distributions, computes an approxi-
mation to the subspace containing the centers of the dis-
tributions. The motivation for approximating the latter
space is as follows. In theT -dimensional subspace con-
taining the centers of the distributions, the distance be-
tween each pair of centersµi andµj is the same as their
distance inRn; however, because of the low dimen-
sionality, the magnitude of the noise is small. There-
fore, provided the centers of the distributions are suf-
ficiently separated, projection onto this subspace will
sharply separate samples from different distributions.
SVD-based algorithms [VW02, AM05, KSV05] attempt
to approximate this subspace by the topT singular vec-
tors of the matrix of samples. However, for product
distributions, our Algorithm CORR-SUBSPACE can ap-
proximate this subspace correctly under more restrictive
separation conditions.

The properties of Algorithms CORR-SUBSPACEand

13

CORR-CLUSTERare formally summarized in Theorem 1
and Theorem 2 respectively.

Theorem 1 (Spanning centers) Suppose we are given
a mixture of distributionsD = {D1, . . . , DT }, with
mixing weightsw1, . . . , wT . Then with at least constant
probability, the subspaceK of dimension at most2T
output by AlgorithmCORR-SUBSPACE has the follow-
ing properties.

1. If, for all i andj, d̄(µi, µj) ≥ 49c2
ijT log Λ, then,

for all pairs i, j,

dK(µi, µj) ≥
99

100
(d̄(µi, µj) − 49Tc2

ij log Λ)

2. If, in addition, every vector inC has spread32T log σ
σ∗

,
then, with at least constant probability, the maxi-
mum directional variance inK of any distribution
Di in the mixture is at most11σ2

∗.

The number of samples required by AlgorithmCORR-
SUBSPACE is polynomial in σ

σ∗
, T , n,σ and 1

wmin

, and
the algorithm runs in time polynomial inn, T , and the
number of samples.

The subspaceK computed by Algorithm CORR-SUBSPACE
approximates the subspace containing the centers of the
distributions in the sense that the distance between each
pair of centersµi andµj is high alongK. Theorem 1
states that Algorithm CORR-SUBSPACEcomputes an ap-
proximation to the subspace containing the centers of
the distributions, provided the spreading condition is sat-
isfied. If the strong spreading condition is satisfied as
well, then the maximum variance of eachDi alongK is
also close toσ2

∗ .
Note that in Theorem 1, there is no absolute lower

bound required on the distance between any pair of cen-
ters. This means that, so long as the spreading condi-
tion is satisfied, and there are sufficiently many sam-
ples, even if the distance between the centers is not large
enough for correct classification, we can compute an ap-
proximation to the subspace containing the centers of
the distributions. We also note that although we show
that Algorithm CORR-SUBSPACE succeeds with con-
stant probability, we can make this probability higher
at the expense of a more restrictive spreading condition,
or by running the algorithm multiple times.

Theorem 2 (Clustering) Suppose we are given a mix-
ture of distributionsD = {D1, . . . , DT }, with mixing
weightsw1, . . . , wT . Then, AlgorithmCORR-CLUSTER
has the following properties.

1. If for all i andj, d̄(µi, µj) ≥ 49Tc2
ij log Λ, and for

all i, j we have:
d̄(µi, µj) > 59σ2T (logΛ + log n)

(for axis-aligned Gaussians)

d̄(µi, µj) > 59T (logΛ + log n)

(for binary product distributions)

then with probability1 − 1
n over the samples and

with constant probability over the random choices
made by the algorithm, AlgorithmCORR-CLUSTER
computes a correct clustering of the sample points.

2. For axis-aligned Gaussians, if every vector inC has
spread at least32T log σ

σ∗
, and for all i, j:

d̄(µi, µj) ≥ 150σ2
∗T (logΛ + log n)

then, with constant probability over the random-
ness in the algorithm, and with probability1 −
1
n over the samples, AlgorithmCORR-CLUSTER
computes a correct clustering of the sample points.

AlgorithmCORR-CLUSTER runs in time polynomial in
n and the number of samples required by AlgorithmCORR-
CLUSTER is polynomial in σ

σ∗
, T , n, σ and 1

wmin
.

We note that because we are required to do classifi-
cation here, we do require an absolute lower bound on
the distance between each pair of centers in Theorem 2.

The second theorem follows from the first and the
distance concentration Lemmas of [AM05] as described
in detail in Chapter 3 of [Cha07]. The Lemmas show
that once the points are projected onto the subspace com-
puted in Theorem 1, a distance-based clustering method
suffices to correctly cluster the points.

A Note on the Stronger Spreading Condition. The
motivation for requiring the stronger spreading condi-
tion is as follows. Our algorithm splits the coordinates
randomly into two setsF andG. If CF andCG denote
the restriction ofC to the coordinates inF andG respec-
tively, then our algorithm requires that the maximum
directional variance of any distribution in the mixture
is close toσ∗ in CF andCG respectively. Notice that
this does not follow from the fact that the maximum di-
rectional variance alongC is σ2

∗ : supposeC is spanned
by (0.1, 0.1, 1, 1) and(0.1, 0.1,−1, 1), variances ofD1

along the axes are(10, 10, 1, 1), andF is {1, 2}. Then,
σ2
∗ is about2.8, while the variance ofD1 alongCF is 10.

However, as Lemma 9 shows, the required condition is
ensured by the strong spreading condition.

However, in general, the maximum directional vari-
ance of anyDi in the mixture alongCF andCG may
still be close toσ2

∗ , even though strong spreading condi-
tion is far from being met. For example: ifC is the space
spanned by the firstT coordinate vectorse1, . . . , eT ,then
with probability1 − 1

2T , the maximum variance along
CF andCG is alsoσ2

∗ .

3 Algorithm CORR-CLUSTER

Our clustering algorithm follows the same basic frame-
work as the SVD-based algorithms of [VW02, KSV05,
AM05]. The input to the algorithm is a setS of samples,

14

and the output is a pair of clusterings of the samples ac-
cording to source distribution.

CORR-CLUSTER(S)
1. PartitionS into SA andSB uniformly at ran-

dom.
2. Compute: KA = Corr − Subspace(SA),

KB = Corr − Subspace(SB)
3. Project each point inSB (resp.SA) on the sub-

spaceKA (resp.KB).
4. Use a distance-based clustering algo-

rithm [AK01] to partition the points in
SA andSB after projection.

The first step in the algorithm is to use Algorithm
CORR-SUBSPACEto find aO(T)-dimensional subspace
K which is an approximation to the subspace containing
the centers of the distributions. Next, the samples are
projected ontoK and a distance-based clustering algo-
rithm is used to find the clusters.

We note that in order to preserve independence the
samples we project ontoK should be distinct from the
ones we use to computeK. A clustering of the complete
set of points can then be computed by partitioning the
samples into two setsA andB. We useA to compute
KA, which is used to clusterB and vice-versa.

We now present our algorithm which computes a ba-
sis for the subspaceK. With slight abuse of notation we
useK to denote the set of vectors that form the basis for
the subspaceK.The input to CORR-SUBSPACEis a setS
of samples, and the output is a subspaceK of dimension
at most2T .

Algorithm CORR-SUBSPACE:

Step 1: Initialize and Split Initialize the basisK with
the empty set of vectors. Randomly partition the
coordinates into two sets,F andG, each of size
n/2. Order the coordinates as those inF first, fol-
lowed by those inG.

Step 2: Sample Translate each sample point so that the
center of mass of the set of sample points is at the
origin. LetF (respectivelyG) be the matrix which
contains a row for each sample point, and a column
for each coordinate inF (respectivelyG). For each
matrix, the entry at rowx, columnf is the value of
the f -th coordinate of the sample pointx divided
by
√

|S|.

Step 3: Compute Singular Space For the matrixFTG,
compute{v1, . . . , vT }, the topT left singular vec-
tors,{y1, . . . , yT }, the topT right singular vectors,
and{λ1, . . . , λT }, the topT singular values.

Step 4: Expand Basis For eachi, we abuse notation
and usevi (yi respectively) to denote the vector
obtained by concatenatingvi with the 0 vector in

n/2 dimensions (0 vector inn/2 dimensions con-
catenated withyi respectively). For eachi, if the
singular valueλi is more than a thresholdτ =

O
(

wminc2

ij

T log2 n
·
√

log Λ
)

, we addvi andyi toK.

Step 5: Output Output the set of vectorsK.

The main idea behind our algorithm is to use half the
coordinates to compute a subspace which approximates
the subspace containing the centers, and the remaining
half to validate that the subspace computed is indeed a
good approximation. We critically use the coordinate
independence property of product distributions to make
this validation possible.

4 Analysis of Algorithm CORR-CLUSTER

This section is devoted to proving Theorems 1, and 2.
We use the following notation.
Notation.We writeF -space (resp.G-space) for then/2
dimensional subspace ofR

n spanned by the coordinate
vectors{ef | f ∈ F} (resp.{eg | g ∈ G}). We writeC
for the subspace spanned by the set of vectorsµi. We
write CF for the space spanned by the set of vectors
PF (µi). We writePF (C̄F) for the orthogonal comple-
ment ofCF in theF -space. Moreover, we writeCF∪G
for the subspace of dimension2T spanned by the union
of a basis ofCF and a basis ofCG . Next, we define a key
ingredient of the analysis.
Covariance Matrix. Let N be a large number. We de-
fine F̂ (resp.Ĝ), theperfect sample matrixwith respect
to F (resp.G) as theN × n/2 matrix whose rows from
(w1 + . . . + wi−1)N +1 through(w1 + . . . + wi)N are
equal to the vectorPF (µi)/

√
N (resp. PG(µi)/

√
N).

For a coordinatef , letXf be a random variable which is
distributed as thef -th coordinate of the mixtureD. As
the entry in rowf and columng in the matrixF̂TĜ is
equal toCov(Xf , Xg), the covariance ofXf andXg,
we call the matrixF̂TĜ thecovariance matrixof F and
G.
Proof Structure. The overall structure of our proof is
as follows. First, we show that the centers of the dis-
tributions in the mixture have a high projection on the
subspace of highest correlation between the coordinates.
To do this, we first assume,in Section 4.1 that the input
to the algorithm in Step 2 are the perfect sample ma-
trices F̂ andĜ. Of course, we cannot directly feed in
the matricesF̂ , Ĝ, as the values of the centers are not
known in advance. Next, we show in Section 4.2 that
this holds even when the matricesF andG in Step 2 of
Algorithm CORR-SUBSPACEare obtained by sampling.
In Section 4.3, we combine these two results and prove
Theorem 1. Finally, using results on distance concentra-
tion from [AM05, AK01], we complete the analysis by
proving Theorem 2.

15

4.1 The Perfect Sample Matrix

The goal of this section is to prove Lemmas 3 and 7,
which establish a relationship between directions of high
correlation of the covariance matrix constructed from
the perfect sample matrix, and directions which contain
a lot of separation between centers. Lemma 3 shows that
a direction which contains a lot of effective distance be-
tween some pair of centers, is also a direction of high
correlation.

Lemma 7 shows that a directionv ∈ PF (C̄F), which
is perpendicular to the space containing the centers, is a
direction with 0 correlation. In addition, we show in
Lemma 8, another property of the perfect sample ma-
trix – the covariance matrix constructed from the perfect
sample matrix has rank at mostT . We conclude this sec-
tion by showing in Lemma 9 that when every vector in
C has high spread, the directional variance of any distri-
bution in the mixture alongF -space orG-space is of the
order ofσ2

∗ .
We begin by showing that if a directionv contains

a lot of the distance between the centers, then, for most
ways of splitting the coordinates, the magnitude of the
covariance of the mixture along the projection ofv on
F -space and the projection ofv G-space is high. In other
words, the projections ofv alongF -space andG-space
are directions of high correlation.

Lemma 3 Let v be any vector inCF∪G such that for
somei andj, d̄v(µi, µj) ≥ 49Tc2

ij log Λ. If vF andvG
are the normalized projections ofv to F -space andG-
space respectively, then, with probability at least1 − 1

T

over the splitting step, for all suchv, vT

F F̂TĜvG ≥ τ

whereτ = O
(

wminc2

ij

T log2 n
· √log Λ

)

.

A detailed proof, presented in [Cha07], is omitted due
to lack of space. However, the main ingredient of the
proof is Lemma 4.

Lemma 4 Letv be a fixed vector inC such that for some
i andj, d̄v(µi, µj) ≥ 49Tc2

ij log Λ. If vF andvG are the
projections ofv to F -space andG-space respectively,
then, with probability at least1−Λ−2T over the splitting

step,vT

F F̂TĜvG ≥ 2τ whereτ = O
(

wminc2

ij

T log2 n
· √log Λ

)

.

Let F̂v (Ĝv respectively) be thes × n/2 matrix ob-
tained by projecting each row of̂F (respectivelyĜ) on
vF (respectivelyvG). Then,

vT

F F̂T

v ĜvvG

=
∑

i

wi〈vF ,PvF
(µi − µ̄)〉〈vG ,PvG

(µi − µ̄)〉

= vT

F F̂TĜvG

Moreover, for any pair of vectorsx in F -space and
y in G-space such that〈x, vF 〉 = 0 and〈y, vG〉 = 0,

xTF̂T

v Ĝvy =
∑

i

wi〈x,PvF
(µi−µ̄)〉〈y,PvG

(µi−µ̄)〉 = 0

Therefore,F̂T

v Ĝv has rank at most1.
The proof strategy for Lemma 4 is to show that if

dv(µi, µj) is large then the matrix̂FT

v Ĝv has high norm.
We require the following notation. For each coordinate
f we define aT -dimensional vectorzf as

zf = [
√

w1Pv(µf
1 − µ̄f), . . . ,

√
wT Pv(µ

f
T − µ̄f)]

Notice that for any two coordinatesf ,g:

〈zf , zg〉 = Cov(Pv(Xf),Pv(Xg))

, computed over the entire mixture. We also observe that
∑

f

||zf ||2 =
∑

i

wi · dv(µi, µ̄)

The RHS of this equality is the weighted sum of the
squares of the Euclidean distances between the centers
of the distributions and the center of mass. By the trian-
gle inequality, this quantity is at least49wminc

2
ijT log Λ.

We also a couple of technical lemmas – Lemmas 5 and 6,
which are stated below. The proofs of these lemmas
are omitted due to lack of space, but can be found in
[Cha07].

Lemma 5 LetA be a set of coordinates with cardinality
more than144T 2 log Λ such that for eachf ∈ A, ||zf ||
is equal and

∑

f∈A ||zf ||2 = D. Then, (1)

∑

f,g∈A,f 6=g

〈zf , zg〉2 ≥ D2

288T 2 log Λ

and (2) with probability1 − Λ−2T over the splitting of
coordinates in Step 1,

∑

f∈F∩A,g∈G∩A

〈zf , zg〉2 ≥ D2

1152T 2 log Λ

Lemma 6 Let A be a set of coordinates such that for
eachf ∈ A, ||zf || is equal and

∑

f∈A ||zf ||2 = D. If
48T log Λ + T < |A| ≤ 144T 2 log Λ, then (1)

∑

f,g∈A,f 6=g

〈zf , zg〉2 ≥ D2

1152T 4 log Λ

and (2) with probability1 − Λ−2T over the splitting in
Step 1,

∑

f∈F∩A,g∈G∩A

〈zf , zg〉2 ≥ D2

4608T 4 log Λ

16

Proof:(Of Lemma 4) From the definition of effective
distance, if the condition:̄dv(µi, µj) > 49c2

ijT log Λ
holds then there are at least49T log Λ vectorszf with
total squared norm at least98wmincij

2T log Λ. In the
sequel we will scale down each vectorzf with norm
greater thancij

√
wmin so that its norm is exactly

cij
√

wmin. We divide the vectors intolog n groups as
follows: groupBk contains vectors which have norm
betweencij

√
wmin

2k and cij
√

wmin

2k−1 .
We will call a vectorsmall if its norm is less than√

wmincij

2
√

log n
, and otherwise, we call the vectorbig. We ob-

serve that there exists a set of vectorB with the fol-
lowing properties: (1) the cardinality ofB is more than
49T log Λ, (2) the total sum of squares of the norm of the

vectors inB is greater than
49T log Λwminc2

ij

log n , and, (3) the
ratio of the norms of any two vectors inB is at most
2
√

log n.

Case 1: Suppose there exists a groupBk of small vec-
tors the squares of whose norms sum to a value greater

than
49Twminc2

ij log Λ

log n . By definition, such a group has
more than49T log Λ vectors, and the ratio is at most2.

Case 2: Otherwise, there are at least49T log Λ big vec-
tors. By definition, the sum of the squares of their norms

exceeds
49Twminc2

ij log Λ

log n . Due to the scaling, the ratio is

at most2
√

log n.
We scale down the vectors inB so that each vector

has squared norm
wminc2

ij

2k in case 1, and, squared norm
wminc2

ij

4 log n in case 2. Due to (2) and (3), the total squared

norm of the scaled vectors is at least
49Twminc2

ij log Λ

4 log2 n
.

Due to (1), we can now apply Lemmas 5 and 6 on
the vectors to conclude that for some constanta1, with
probability1 − Λ−2T ,

∑

f∈F ,g∈G
〈zf , zg〉2 ≥ a1 ·

(

w2
minc

4
ij log Λ

T 2 log4 n

)

The above sum is the square of the Frobenius norm
|F̂T

v Ĝv|F of the matrixF̂T

v Ĝv. SinceF̂T

v Ĝv has rank
at most1, and the maximum singular value of a rank1
matrix is its Frobenius norm [GL96], plugging in

τ = O
(

wminc2

ij

T log2 n
·
√

log Λ
)

completes the proof.�

Next we show that a vectorx ∈ PF (C̄F) is a di-
rection of0 correlation. A similar statement holds for a
vectory ∈ PG(C̄G).

Lemma 7 If at Step 2 of AlgorithmCORR-SUBSPACE,
the values ofF and G are respectivelyF̂ and Ĝ, and
for somek,the topk-th left singular vector isvk and the
corresponding singular valueλk is more thanτ , then
for any vectorx in PF (C̄F), 〈vk, x〉 = 0.

Proof: We first show that for anyx in PF(C̄F), and any
y, xTF̂TĜy = 0.

xTF̂TĜy =

T
∑

i=1

wi〈PF (µi), x〉 · 〈PG(µi), y〉

Sincex is in PF (C̄F), 〈PF (µi), x〉 = 0, for all i, and
hencexTF̂TĜy = 0 for all x in PF (C̄F). We now
prove the Lemma by induction onk.

Base case (k = 1). Let v1 = u1 + x1, whereu1 ∈ CF
and x1 ∈ PF(C̄F). Let y1 be the top right singular
vector ofF̂TĜ, and let|x1| > 0. Then,vT

1 F̂TĜy1 =

uT

1 F̂TĜy1, andu1/|u1| is a vector of norm1 such that
1

|u1|u
T

1 F̂TĜy1 > vT

1 F̂TĜy1, which contradicts the fact

thatv1 is the top left singular vector of̂FTĜ.

Inductive case. Let vk = uk + xk, whereuk ∈ CF and
xk ∈ PF (C̄F). Letyk be the topk-th right singular vec-
tor of F̂TĜ, and let|xk| > 0. We first show thatuk is
orthogonal to each of the vectorsv1, . . . , vk−1. Other-
wise, suppose there is somej, 1 ≤ j ≤ k − 1, such that
〈uk, vj〉 6= 0. Then,〈vk, vj〉 = 〈xk, vj〉 + 〈uk, vj〉 =
〈uk, vj〉 6= 0. This contradicts the fact thatvk is a
left singular vector ofF̂TĜ. Therefore,vT

k F̂TĜyk =

uT

k F̂TĜyk, anduk/|uk| is a vector of norm1, orthogo-
nal tov1, . . . , vk−1 such that 1

|uk|u
T

k F̂TĜyk > vT

k F̂TĜyk.
This contradicts the fact thatvk is the topk-th left sin-
gular vector ofF̂TĜ. The Lemma follows.�

Lemma 8 The covariance matrix̂FTĜ has rank at most
T .

The proof is omitted due to space constraints.
Finally, we show that if the spread of every vector in

C is high, then with high probability over the splitting of
coordinates in Step 1 of Algorithm CORR-SUBSPACE,
the maximum directional variances of any distribution
Di in CF and CG are high. This means that there is
enough information in bothF -space andG-space for
correctly clustering the distributions through distance con-
centration.

Lemma 9 If every vectorv ∈ C has spread at least
32T log σ

σ∗
, then, with constant probability over the split-

ting of coordinates in Step 1 of Algorithm
CORR-SUBSPACE, the maximum variance along any di-
rection inCF or CG is at most5σ2

∗.

Proof:(Of Lemma 9) Letv andv′ be two unit vectors
in C, and letvF (resp.v′F) andvG (resp.v′G denote the
normalized projections ofv (resp. v′) on F -space and
G-space respectively. If||vF − v′F || < σ∗

σ , then, the

17

directional variance of anyDi in the mixture alongv′F
can be written as:

E[〈v′F , x − E[x]〉2]
= E[〈vF , x − E[x]〉2] + E[〈v′F − vF , x − E[x]〉2]

+2E[〈vF , x − E[x]〉]E[〈v′F − vF , x − E[x]〉]
≤ E[〈vF , x − E[x]〉2] + ||vF − v′F ||2σ2

Thus, the directional variance of any distribution in the
mixture alongv′ is at most the directional variance along
v, plus an additionalσ2

∗ . Therefore, to show this lemma,
we need to show that ifv is any vector on aσ∗

σ -cover
of C, then with high probability over the splitting of co-
ordinates in Step 1 of Algorithm CORR-SUBSPACE, the
directional variances of anyDi in the mixture alongvF
andvG are at most4σ2

∗.
We show this in two steps. First we show that for

anyv in a σ∗

σ -cover ofC, 1
4 ≤

∑

f∈F(vf)2 ≤ 3
4 . Then,

we show that this condition means that for this vectorv,
the maximum directional variances alongvF andvG are
at most4σ2

∗.
Let v be any fixed unit vector inC. We first show

that with probability1 −
(

σ∗

σ

)2T
over the splitting of

coordinates in Step 1 of Algorithm CORR-SUBSPACE,
1
4 ≤ ∑

f∈F(vf)2 ≤ 3
4 . To show this bound, we ap-

ply the Method of Bounded Difference[PD05]. Since
we split the coordinates intoF andG uniformly at ran-
dom, E[

∑

f∈F(vf)2] = 1
2 . Let γf be the change in

∑

f∈F(vf)2 when the inclusion or exclusion of coordi-
natef in the setF changes. Then,γf = (vf)2 and
γ =

∑

f γ2
f . Since the spread of vectorv is at least

32T log σ
σ∗

, γ =
∑

f (vf)4 ≤ 1
32T log σ

σ∗

, and from the

Method of Bounded Differences,

Pr[|
∑

f∈F
(vf)2 − E[

∑

f∈F
(vf)2]| >

1

4
] ≤ e−1/32γ

≤
(σ∗

σ

)2T

By taking an union bound over allv on a σ∗
σ -cover ofC,

we deduce that for any suchv, 1
4 ≤∑f∈F(vf)2 ≤ 3

4 .
Since the maximum directional variance of any dis-

tributionDi in the mixture inC is at mostσ2
∗,

∑

f (vf)2(σf
i)2 ≤ σ2

∗. Therefore the maximum variance
alongvF as well asvG can be computed as:

1

||vF ||2
∑

f∈F
(vf)2(σf

i)2 ≤ 1

||vF ||2
∑

f

(vf)2(σf
i)2 ≤ 4σ2

∗

The lemma follows.�

4.2 Working with Real Samples

In this section, we show that given sufficient samples,
the properties of the matrixFTG, whereF andG are

generated by sampling in Step 2 of Algorithm CORR-
CLUSTER are very close to the properties of the matrix
F̂TĜ. The lemmas are stated below. The proofs are
omitted due to space constraints, but can be found in
[Cha07]. The proofs use the Method of Bounded Dif-
ferences (when the input is a mixture of binary product
distributions) and the Gaussian Concentration of Mea-
sure Inequality (for axis-aligned Gaussians).

The central lemma of this section is Lemma 10, which
shows that, if there are sufficiently many samples, for
any set of2m vectors,{v1, . . . , vm} and{y1, . . . , ym},
∑

k vT

k FTGyk and
∑

k vT

k F̂TĜyk are very close. This
lemma is then used to prove Lemmas 11 and 12. Lemma
11 shows that the top few singular vectors ofFTG out-
put by Algorithm CORR-SUBSPACEhave very low pro-
jection onPF (C̄F) or PG(C̄G). Lemma 12 shows that
the rank of the matrixFTG is almostT , in the sense
that theT + 1-th singular value of this matrix is very
low.

Lemma 10 LetU = {u1, . . . , um}, Y = {y1, . . . , ym}
be any two sets of orthonormal vectors, and letF andG
be the matrices generated by sampling in Step2 of the
algorithm. If the number of samples|S| is greater than

Ω(m3n2 log n log(σmax/δ)
δ2) (for Binary Product Distribu-

tions), andΩ(max(a1, a2)) (for Axis-Aligned Gaussians),

wherea1 = σ4m4n2 log2 n log2(σmax/δ)
δ2 , and

a2 =
σ2σ2

max
m3n log n log(σmax/δ)

δ2 , then, with probability
at least1 − 1/n,

|
∑

k

uT

k (FTG − E[FTG])yk| ≤ δ

Lemma 11 Let F andG be the matrices generated by
sampling in Step2 of the algorithm, and letv1, . . . , vm

be the vectors output by the algorithm in Step4. If the
number of samples|S| is greater than

Ω(
m3n2 log n(log Λ+log 1

ǫ
)

τ2ǫ4) (for Binary Product Distribu-
tions), andmax(a1, a2) (for Axis-Aligned Gaussians)

wherea1 = σ4m4n2 log2 n log2(Λ/ǫ)
τ2ǫ4 , and

a2 =
σ2σ2

max
m3n log n log(Λ/ǫ)

τ2ǫ4 , then, for eachk, and any
x in PF(C̄F), 〈vk, x〉 ≤ ǫ.

Lemma 12 Let F andG be the matrices generated by
sampling in Step 2 of AlgorithmCORR-SUBSPACE. If
the number of samples|S| is greater than

Ω
(

T 3n2 log n log Λ
τ2

)

(for binary product distributions) and

Ω
(

max
(

σ4T 4n2 log2 log Λ
τ2 ,

σ2

max
σ2T 3n log n log Λ

τ2

))

for axis-

aligned Gaussians, then,λT+1, the T + 1-th singular
value of the matrixFTG is at mostτ/8.

18

4.3 The Combined Analysis

In this section, we combine the lemmas proved in Sec-
tions 4.1 and 4.2 to prove Theorem 1.

We begin with a lemma which shows that if every
vector inC has spread32T log σ

σ∗
, then the maximum

directional variance inK, the space output by Algorithm
CORR-SUBSPACE, is at most11σ2

∗.

Lemma 13 Let K be the subspace output by the algo-
rithm, and letv be any vector inK. If every vector inC
has spread32T log σ

σ∗
, and the number of samples|S|

is greater than

Ω
(

max
(

σ6T 4n2 log2 log Λ
τ2σ4

∗

,
σ2

max
σ4T 3n log n log Λ

τ2σ4
∗

))

then

for anyi the maximum variance ofDi alongv is at most
11σ2

∗.

The proof is omitted due to space constraints, and
can be found in [Cha07].
The above Lemmas are now combined to prove Theo-
rem 1.
Proof:(Of Theorem 1)

SupposeK = KL∪KR, whereKL = {v1, . . . , vm},
the topm left singular vectors ofFTG and
KR = {y1, . . . , ym} are the corresponding right singu-
lar vectors. We abuse notation and usevk to denote the
vectorvk concatenated with a vector consisting ofn/2
zeros, and useyk to denote the vector consisting ofn/2
zeros concatenated withyk. Moreover, we useK, KL,
andKR interchangeably to denote sets of vectors and
the subspace spanned by those sets of vectors.

We show that with probability at least1− 1
T over the

splitting step, there exists no vectorv ∈ CF∪G such that
(1)v is orthogonal to the space spanned by the vectorsK
and (2) there exists some pair of centersi andj such that
d̄v(µi, µj) > 49Tc2

ij log Λ. For contradiction, suppose
there exists such a vectorv.

Then, if vF andvG denote the normalized projec-
tions ofv ontoF -space andG-space respectively, from
Lemma 3,vT

F F̂TGvG ≥ τ with probability at least1 −
1
T over the splitting step. From Lemma 10, if the num-

ber of samples|S| is greater thanΩ
(

T 3n2 log n log Λ
τ2

)

for

binary product distributions, and if|S| is greater than

Ω
(

max
(

σ4n2 log2 log Λ
τ2 ,

σ2σ2

max
n log n log Λ
τ2

))

for

axis-aligned Gaussians,vT

FFTGvG ≥ τ
2 with at least

constant probability. Sincev is orthogonal to the space
spanned byK, vF is orthogonal toKL and vG is or-
thogonal toKR. As λm+1 is the maximum value of
xTFTGy over all vectorsx orthogonal toKL andy or-
thogonal toKR, λm+1 ≥ τ

2 , which is a contradiction.
Moreover, from Lemma 12,λT+1 < τ

8 , and hence
m ≤ T .

Let us construct an orthonormal series of vectors
v1, . . . , vm, . . . which arealmostin CF as follows.

v1, . . . , vm are the vectors output by Algorithm CORR-
SUBSPACE. We inductively definevl as follows. Sup-
pose for eachk, vk = uk + xk, whereuk ∈ CF and
xk ∈ PF (C̄F). Let ul be a unit vector inCF which is
perpendicular tou1, . . . , ul−1. Then,vl = ul. By defi-
nition, this vector is orthogonal tou1, . . . , ul−1. In ad-
dition, for anyk 6= l, 〈vl, vk〉 = 〈ul, uk〉+ 〈ul, xk〉 = 0,
andvl is also orthogonal tov1, . . . , vl−1. Moreover, if
ǫ < 1

100T , u1, . . . , um are linearly independent, and we
can always finddim(CF) such vectors. Similarly, we
construct a set of vectorsy1, y2, Let us call the com-
bined set of vectorsC∗.

We now show that if there are sufficient samples,
dC̄∗(µi, µj) ≤ c2

ij . Note that for any unit vectorv∗

in C∗, and any unitx ∈ C̄F∪G , 〈v, x〉 ≤ mǫ. Also,
note that for anyuk andul, k 6= l, |〈uk, ul〉| ≤ ǫ2, and
||uk||2 ≥ 1 − ǫ2. Let v =

∑

k αkuk be any unit vector
in CF∪G. Then,1 = ||v||2 =

∑

k,k′ αkαk′ 〈uk, uk′〉 ≥
∑

k α2
k||uk||2 − Ω(T 2ǫ2).

The projection ofv onC∗ can be written as:
∑

k

〈v, vk〉2 =
∑

k

〈v, uk〉2

=
∑

k

∑

l

α2
l 〈uk, ul〉2 + 2

∑

l,l′

αlαl′〈uk, ul〉〈uk, ul′〉

≥
∑

k

α2
k||uk||4 − T 3ǫ4 ≥ 1 − Ω(T 2ǫ2)

The last step follows because for eachk, ||uk||2 ≥ 1 −
ǫ2. If the number of samples|S| is greater than

Ω(m3n2 log n(log Λ+log 100T)
τ2T 4) (for Binary Product Distri-

butions), and

max
(σ4m4n2 log2 n log2(100TΛ)

τ2T 4 ,
σ2

max
σ2m3n log log(100TΛ)

τ2T 4

)

(for axis-aligned Gaussians), then,ǫ < 1/100T . There-
fore,

dC̄∗(µi, µj) ≤
1

100
d(µi, µj)

For anyi andj,

d(µi, µj) = dK(µi, µj) + dC∗\K(µi, µj) + dC̄∗(µi, µj)

Since vectorsvm+1, . . . and ym+1, . . . , all belong to
CF∪G (as well asC∗ \K, there exists nov ∈ C∗ \K with
the Conditions (1) and (2) in the previous paragraph,
and d̄CF∪G\K(µi, µj) ≤ 49Tc2

ij log Λ. That is, the ac-
tual distance betweenµi andµj in CF∪G \ K (as well
asC∗ \ K) is at most the contribution tod(µi, µj) from
the top49Tc2

ij log Λ coordinates, and the contribution
to d(µi, µj) from K andC̄∗ is at least the contribution
from the rest of the coordinates. SincedC̄∗(µi, µj) ≤
1

100d(µi, µj), the distance betweenµi andµj in K is at
least 99

100 d̄(µi, µj) − 49T log Λc2
ij). The first part of the

theorem follows.
The second part of the theorem follows directly from

Lemma 13.�

19

References

[AK01] S. Arora and R. Kannan. Learning mixtures
of arbitrary gaussians. InProceedings of
33rd ACM Symposium on Theory of Com-
puting, pages 247–257, 2001.

[AM05] D. Achlioptas and F. McSherry. On spec-
tral learning of mixtures of distributions. In
Proceedings of the 18th Annual Conference
on Learning Theory, pages 458–469, 2005.

[AT98] A.Blum and T.Mitchell. Combining labeled
and unlabeled data with co-training. In
Proc. of Conference on Learning Theory,
1998.

[BNJ03] D. Blei, A. Ng, and M. Jordan. Latent
dirichlet allocation. Journal of Machine
Learning Research, (3):993–1022, January
2003.

[Cha07] K. Chaudhuri.Learning Mixtures of Distri-
butions. PhD thesis, University of Califor-
nia, Berkeley, 2007. UCB/EECS-2007-124.

[CHRZ07] K. Chaudhuri, E. Halperin, S. Rao, and
S. Zhou. A rigorous analysis of population
stratification with limited data. InProceed-
ings of the ACM-SIAM Symposium on Dis-
crete Algorithms, 2007.

[Das99] S. Dasgupta. Learning mixtures of gaus-
sians. InProceedings of the 40th IEEE
Symposium on Foundations of Computer S
cience, pages 634–644, 1999.

[DHKS05] A. Dasgupta, J. Hopcroft, J. Kleinberg, and
M. Sandler. On learning mixtures of heavy-
tailed distributions. InProceedings of the
46th IEEE Symposium on Foundations of
Computer Science, pages 491–500, 2005.

[DLR77] A. P. Dempster, N. M. Laird, and D. B. Ru-
bin. Maximum likelihood from incomplete
data via the em algorithm (with discussion).
Journal of the Royal Statistical Society B,
39, pages 1–38, 1977.

[DS00] S. Dasgupta and L. Schulman. A two-round
variant of em for gaussian mixtures. InSix-
teenth Conference on Uncertainty in Artifi-
cial Intelligence (UAI), 2000.

[FM99] Y. Freund and Y. Mansour. Estimating a
mixture of two product distributions. In
COLT: Proceedings of the Workshop on
Computational Learning Theory, Morgan
Kaufmann Publishers, 1999.

[FOS05] J. Feldman, R. O’Donnell, and R. Servedio.
Learning mixtures of product distributions
over discrete domains. InProceedings of
FOCS, 2005.

[FOS06] J. Feldman, R. O’Donnell, and R. Serve-
dio. Learning mixtures of gaussians with
no separation assumptions. InProceedings

of COLT, 2006.
[GL96] G. Golub and C. Van Loan.Matrix Com-

putations. The Johns Hopkins University
Press, 1996.

[KF07] S. Kakade and D. Foster. Multi-view re-
gression via canonical correlation analysis.
In Proc. of Conference on Learning Theory,
2007.

[KS04] Jon M. Kleinberg and Mark Sandler. Us-
ing mixture models for collaborative filter-
ing. In STOC, pages 569–578, 2004.

[KSV05] R. Kannan, H. Salmasian, and S. Vempala.
The spectral method for general mixture
models. InProceedings of the 18th Annual
Conference on Learning Theory, 2005.

[Llo82] S.P. Lloyd. Least squares quantization in
pcm. IEEE Trans. on Information Theory,
1982.

[MB88] G.J. McLachlan and K.E. Basford.Mix-
ture Models: Inference and Applications to
Clustering. Marcel Dekker, 1988.

[PD05] A. Panconesi and D. Dubhashi. Concen-
tration of measure for the analysis of ran-
domised algorithms. Draft, 2005.

[PFK02] C. Pal, B. Frey, and T. Kristjansson. Noise
robust speech recognition using Gaussian
basis functions for non-linear likelihood
function approximation. InICASSP ’02:
Proceedings of the IEEE International Con-
ference on Acoustics, Speech, and Signal
Processing, volume 1, pages I–405–I–408,
2002.

[PSD00] J. K. Pritchard, M. Stephens, and P. Don-
nelly. Inference of population structure us-
ing multilocus genotype data.Genetics,
155:954–959, June 2000.

[Rey95] D. Reynolds. Speaker identification and
verification using gaussian mixture speaker
models.Speech Communications, 1995.

[SRH07] Srinath Sridhar, Satish Rao, and Eran
Halperin. An efficient and accurate graph-
based approach to detect population sub-
structure. InRECOMB, 2007.

[TSM85] D.M. Titterington, A.F.M. Smith, and U.E.
Makov. Statistical Analysis of Finite Mix-
ture Distributions. Wiley, 1985.

[VW02] V. Vempala and G. Wang. A spectral algo-
rithm of learning mixtures of distributions.
In Proceedings of the 43rd IEEE Sympo-
sium on Foundations of Computer Science,
pages 113–123, 2002.

20

Beyond Gaussians: Spectral Methods for Learning Mixtures of
Heavy-Tailed Product Distributions

Kamalika Chaudhuri
Information Theory and Applications, UC San Diego

kamalika@soe.ucsd.edu

Satish Rao
Computer Science Division, UC Berkeley

satishr@cs.berkeley.edu

Abstract

We study the problem of learning mixtures of
distributions, a natural formalization of clus-
tering. A mixture of distributions is a collec-
tion of distributionsD = {D1, . . . , DT } and
weightsw1, . . . , wT . A sample from a mix-
ture is drawn by selectingDi with probabil-
ity wi and then selecting a sample fromDi.
The goal, in learning a mixture, is to learn the
parameters of the distributions comprising the
mixture, given only samples from the mixture.

In this paper, we focus on learning mixtures of
heavy-tailed product distributions, which was
studied by [DHKS05]. The challenge in learn-
ing such mixtures is that the techniques de-
veloped for learning mixture-models, such as
spectral methods and distance concentration,
do not apply. The previous algorithm for this
problem was due to [DHKS05], which
achieved performance comparable to the al-
gorithms of [AM05, KSV05, CR08] given a
mixture of Gaussians, but took time exponen-
tial in the dimension. We provide an algo-
rithm which has the same performance, but
runs in polynomial time.

Our main contribution is an embedding which
transforms a mixture of heavy-tailed product
distributions into a mixture of distributions
over the hypercube in a higher dimension, while
still maintaining separability. Combining this
embedding with standard spectral techniques
results in algorithms that can learn mixtures
of heavy-tailed distributions with separation
comparable to the guarantees of [DHKS05].
Our algorithm runs in time polynomial in the
dimension, number of clusters, and imbalance
in the weights.

1 Introduction

We study the problem of learning mixtures of distribu-
tions, a natural formalization of clustering. Amixture
of distributionsis a collection ofT distributionsD =
{D1, . . . , DT } overRn and mixing weightsw1, . . . , wT

such that
∑T

i=1 wi = 1. A sample from a mixture is
drawn by first selectingi with probabilitywi, and then
choosing a random sample fromDi. The goal, in learn-
ing a mixture, is to learn the parameters of the distribu-
tions comprising the mixture, and to classify the samples
according to source distribution, given only the ability to
sample from the mixture.

Learning mixtures of distributions frequently arise
in many applications in machine learning, and a fair
amount of empirical work has been devoted to the prob-
lem. On the theoretical side, all work (except for the
work of [DHKS05]) has focussed on learning mixtures
of distributions with one of the following characteristics:
either the distributions in question have exponentially-
decaying tails, for example, mixtures of Gaussians [Das99,
DS00, AM05, KSV05, AK01, VW02], or they have
severely bounded range, for example, mixtures of binary
product distributions [FOS05, CR08]. In the latter case,
the bounds deteriorate with the maximum range of val-
ues taken by any coordinate of a sample drawn from the
mixture.

In this paper, we focus our attention to learning mix-
tures of more general distributions. In particular, we
study learning mixtures of heavy-tailed product distribu-
tions, which was introduced by Dasguptaet. al[DHKS05].

If the distributions comprising a mixture are very
close together, in the sense that they have a high over-
lap in probability mass, then, even if we knew the pa-
rameters of the distributions comprising the mixture, the
samples would be hard to classify. To address this, Das-
gupta [Das99] introduced the notion of aseparation con-
dition.A separation condition is a promise that the dis-
tributions comprising a mixture are sufficiently differ-
ent according to some measure, and the goal of the al-
gorithm is to learn correctly a mixture which obeys a
certain separation condition. Naturally, the less strin-
gent a separation condition is, the harder it is to learn
a mixture, and therefore, a line of theoretical research

21

has focussed on learning mixtures of distributions under
less and less restrictive separation conditions. For mix-
tures of Gaussians, the common measure of separation
used is the minimum distance between the means of any
two distributions in the mixture, parameterized by the
maximum directional standard deviation of any distri-
bution in the mixture. However, this is not a good mea-
sure for the type of distributions considered here, as the
directional standard deviation may be infinite; follow-
ing [DHKS05], we therefore use as a measure of separa-
tion the minimum distance between themediansof any
two distributions in the mixture, as parameterized by the
maximum3

4 -radius. Recall that given0 < β ≤ 1, theβ-
radius of a one-dimensional distributionD with median
m(D) is the minimum numberRβ such that the proba-
bility mass ofD in the interval[m(D) − Rβ ,m(D) +
Rβ] is at leastβ.

The major challenge in learning mixtures of heavy-
tailed distributions is that none of the tools developed in
the literature for learning mixtures of Gaussians or bi-
nary product distributions work when the mixture con-
sists of more general distributions. The key ingredi-
ents of such algorithms for learning mixtures are: (1)
a singular value decomposition of part [CR08] or whole
[VW02, KSV05, AM05] of the covariance matrix of the
samples and (2) distance-thresholding based clustering
algorithms. Singular value decompositions of the co-
variance matrix do not converge if the distributions have
infinite variance. Even for mixtures of distributions with
finite variance, distance concentration, which works on
the principle that two samples from the same distribu-
tion are closer in space than two samples from differ-
ent distributions, does not work unless the distributions
have light tails or a very small range. The previous al-
gorithm for the problem is due to [DHKS05], which
learns mixtures of heavy-tailed distributions with per-
formance comparable to the performance of algorithms
in [AM05, KSV05, CR08] given a mixture of Gaus-
sians; however, it involves an exhaustive search over all
partitions ofΩ(n) samples, wheren is the number of
dimensions, and hence takes time exponential in the di-
mension.

In this paper, we show a general procedure for trans-
forming mixtures of heavy-tailed product distributions
into mixtures which are more well-behaved, while pre-
serving the separability of the distributions in the mix-
ture. In particular, we provide an efficiently computable
embedding fromR

n to {0, 1}O(n3/2). Our embedding,
when applied to a mixture of heavy-tailed product dis-
tributions which have certain conditions comparable to
those in [DHKS05], produces a mixture of distributions
in {0, 1}O(n3/2) with centers that are far apart. In addi-
tion, we show that the resulting mixture has good prop-
erties such that standard algorithms for learning mix-
tures of binary product distributions – such as the SVD-
based algorithms of [AM05, KSV05] and the correlations-
based algorithm of [CR08] can be applied to learn it,
leading to efficient algorithms for learning mixtures of

heavy-tailed product distributions.
More specifically, our results are as follows. Given a

mixture of general product distributions, such that each
distribution is symmetric about its median, and has3

4 -
radius upper-bounded byR, our embedding transforms
it into a mixture of distributions over{0, 1}O(n3/2), while
preserving the distance between the centers in a certain
sense which is explained in Theorem 1. We can now
apply either SVD-based clustering algorithms [KSV05,
AM05], and in this case, for sucess with probability1−
δ, we require that (a) the separation between the medians
of distributionsDi andDj beΩ(R(w

−1/2
i + w

−1/2
j) +

R
√

T log nT
δ) and (b) this separation be spread across

Ω((w
−1/2
i + w

−1/2
j)2 + T log nT

δ) coordinates. Alter-
natively, we can apply the correlations-based algorithm
of [CR08] on the transformed mixture, to get a logarith-
mic dependence on the mixing weights. In this case, to
learn the mixture with probability1− δ, we require that
(a) the minimum distance between the medians of any
two distributions in the mixture to beΩ(R

√
T log Λ +

R
√

T log(nT/δ)) and (b) that this separation to be spread
acrossΩ(T log Λ+T log(nT/δ)) coordinates, whereΛ
is polynomial inn,T and 1

wmin
.

We note that conditions comparable to all these four
conditions are required by [DHKS05] for learning mix-
tures of heavy-tailed distributions; our work improves
on their results by providing a polynomial-time algo-
rithm for the problem, as opposed to an exponential-
time algorithm. In addition, we also do not need the re-
striction, needed by [DHKS05], that the probability den-
sity function should be decreasing with distance from
the median. We also note that the guarantees of our al-
gorithms are comparable to the guarantees of [AM05,
KSV05, CR08] when the input is a mixture of axis-
aligned Gaussians.

Our Techniques

An initial approach for converting a mixture of general
product distributions to a mixture of distributions with
better properties is to remove theoutlier points, which
lie very far from the other samples. However, for the
types of distributions we consider, a sample may be an
outlier along each coordinate with constant (1/4) proba-
bility, and since there aren coordinates, with high prob-
ability, every point is an outlier. Another approach could
be to try to round the outlier points along each dimen-
sion; however, since the different mixture components
may have different mixing weights, given samples from
the mixture, it is hard to determine which of the samples
are outliers along a specific coordinate.

To address these issues, we use techniques from met-
ric embeddings [Ind01]. The main idea behind our em-
bedding is to use many randomcutting pointsto divide
the real line into intervals of lengthΩ(R); points which
fall into the even intervals are then mapped to0 and
those which fall into the odd intervals are mapped to
1. Although this process does not preserve distances be-

22

tween all pairs of points, we show that this succeeds in
separating the centers of two distributions which have
medians that are far apart compared to their3/4-radius
R. Our techniques are related to techniques in metric-
embedding [Ind01]; however, so far as we know, this is
the first time they have been applied to learning mixtures
of distributions. Combining our embedding with exist-
ing standard algorithms for learning mixtures of distri-
butions, we get efficient algorithms for learning mix-
tures of heavy-tailed distributions.

2 Related Work
Heavy-Tailed Mixtures

The work most related to ours is the work of Dasgupta,
Hopcroft, Kleinberg and Sandler [DHKS05]. Dasgupta
et. al [DHKS05] introduced the problem of learning
mixtures of heavy-tailed distributions and the notion of
using the distance between the medians, parameterized
by the half-radius, as a measure of separation between
such distributions. Their work deals with the class of all
product distributions in which the distribution of each
coordinate has the following properties: (a) symmetry
around the median (b) decreasing probability density
with distance from the median and (c)1

2 -radius upper
bounded byR′. In contrast, we require the distribution
of each coordinate to be symmetric about its median and
have 3

4 -radius upper bounded byR, and do not require
the second assumption of [DHKS05].

[DHKS05] provide two algorithms for learning such
mixtures. First, they provide an algorithm which re-

quires a separation ofΩ(R′
√

T
δ) and a spreading con-

dition that the distance between the medians of any two
distributions in the mixture should be spread overΘ(T/δ)
coordinates, to classify a1 − δ fraction of the samples
correctly. This algorithm works by performing an ex-
haustive search over all partitions ofΘ(n log(nT)

wmin
) sam-

ples, and therefore has a running time exponential in
Θ(n log(nT)

wmin

). In contrast, our algorithms work with sim-
ilar separation and spreading conditions, and only take
time polynomial inn.

Second, they provide an algorithm which works with
a stronger separation requirement ofΩ(R′√n) and a
spreading condition that the distance between the me-
dians of any two distributions in the mixture be spread
overΘ(T/δ) coordinates. Typically, for such problems,
the dimensionn is much larger than the number of clus-
tersT , and hence the separation needed here is much
larger than the separation needed by the previous al-
gorithm and our algorithms. This algorithm works by
performing an exhaustive search over all partitions of
Θ(log(nT)

wmin

) samples, and therefore has a running time

exponential inΘ(log(nT)
wmin

). Sincewmin is at most 1
T ,

this may be polynomial inn but remains exponential in
T . In contrast, the running times of our algorithms are
polynomial inn, T , and 1

wmin
, and for distributions in

which the 3
4 -radius is comparable with the half-radius,

our algorithms work with separation and spreading con-
straints comparable to algorithm (1) of [DHKS05].

[DHKS05] also works with a second class of dis-
tributions, which have mildly decaying tails. In this
case, they provide an algorithm which clusters correctly
1 − δ fraction of the samples in time exponential inn,
so long as the separation between any two distributions
is Ω(R′T 5/2/δ2).

Other Mixture Models

There has been a long line of theoretical work on learn-
ing mixtures of Gaussians. For this problem, the sepa-
ration condition is usually expressed in terms ofn, the
number of dimensions,σ, the maximum directional stan-
dard deviation of any distribution in the mixture, andT ,
the number of clusters. In [Das99], Dasgupta provided
an algorithm which learns mixtures of spherical Gaus-
sians when the centers of each pair of distributions is
separated byΩ(σ

√
n). In [DS00], Dasgupta and Schul-

man provided an algorithm which applied to more situ-
ations and required a separation ofΩ(σn1/4). [AK01]
showed how to learn mixtures of arbitrary Gaussians
with a separation ofΩ(σn1/4) using distance concen-
tration. In addition to the usual separation between the
centers, their results apply to other situations, for exam-
ple, to concentric Gaussians with sufficiently different
variance.

The first algorithm that removed the dependence on
n was due to Vempala and Wang [VW02], who gave a
singular value decomposition based algorithm for learn-
ing mixtures of spherical Gaussians with a separation
of Ω(T 1/4σ). Their algorithm applies a singular value
decomposition of the matrix of samples to compute a
T -dimensional subspace which approximates the sub-
space containing the centers, and then uses distance con-
centration to cluster the samples projected on this low-
dimensional space. In further work, [KSV05] and
[AM05] showed how to use singular value decomposi-
tion based algorithms to learn mixtures of general Gaus-
sians when the separation between the centers of distri-
butionsDi andDj is

Ω(σ(w
−1/2
i + w

−1/2
j) + σ

√

T log(T
δ)). The algorithm

of [AM05] was shown to apply tof -convergent andg-
concentrated distributions, with bounds that vary with
the nature of the distributions. Their algorithm also ap-
plies to product distributions on binary vectors. How-
ever, their algorithm does not apply to distributions with
infinite variance. Even for distributions with finite vari-
ance, unless the distribution has rapidly decaying tails,
their algorithm yields poor guarantees, proportional to
the maximum range of the distribution of each coordi-
nate.

More recently, [CR08] show an algorithm which,
under certain conditions, learns mixtures of binary prod-
uct distributions and axis-aligned Gaussians when the
centers are separated by

Ω(σ∗(
√
T log Λ +

√

T log(T
δ))) whereσ∗ is the max-

23

imum directional variance in the space containing the
centers, andΛ is polynomial inn, T and 1

wmin

. Their
algorithm also does not work for distributions with infi-
nite variance and yields poor guarantees for mixtures of
heavy-tailed product distributions.

3 A Summary of our Results

We begin with some definitions about distributions over
high-dimensional spaces.

Mixture of Distributions. A mixture of distributions
is a collection of distributionsD = {D1, . . . , DT} and
mixing weightsw1, . . . , wT such that

∑T
i=1 wi = 1. A

sample from a mixture is drawn by selectingDi with
probabilitywi and then choosing a sample fromDi.

Median. We say that a distributionD onR has median
m(D) if the probability that a sample drawn fromD is
less than or equal tom(D) is 1/2. We say that a distri-
butionD onR

n has medianm(D) = (m1, . . . ,mn) if
the projection ofD on thef -th coordinate axis has me-
dianmf , for 1 ≤ f ≤ n. For a distributionD, we write
m(D) to denote the median ofD.

Center. We say that a distributionD onR
n has center

(c1, . . . , cn) if the projection ofD on thef -th coordi-
nate axis has expectationcf , for 1 ≤ f ≤ n.

β-Radius. For 0 < β ≤ 1, theβ-Radius of a distribu-
tionD onR with medianm(D) is the smallestRβ such
that

Pr
x∼D

[m(D) −Rβ ≤ x ≤ m(D) +Rβ] ≥ β

Effective Distance. To better describe our results, we
need to define the concept ofeffective distance. The ef-
fective distance between two pointsx andy in R

n at
scaleR, denoted bydR(x, y) is defined as:

dR(x, y) =

√

√

√

√

n
∑

f=1

min(R2, (xf − yf)2)

The effective distance between two pointsx and y at
scaleR is thus high if many coordinates contribute to
the distance between the points.

Notation. We use subscriptsi, j to index over distribu-
tions in the mixture and subscriptsf, g to index over co-
ordinates inRn. Moreover, we use subscripts(f, k), . . .
to index over coordinates in the transformed space. We
useR to denote the maximum34 -radius of any coordi-
nate of any distribution in the mixture. For each distri-
butionDi in the mixture, and each coordinatef , we use
Df

i to denote the projection ofDi on thef -th coordinate
axis. For anyi, we useD̃i to denote the distribution in-
duced by applying our embedding onDi. Similarly, for
any i and anyf , we useD̃f

i to denote the distribution
induced by applying our embedding onDf

i . Moreover,
we useµ̃i to denote the center of̃Di andµ̃f

i to denote
the center ofD̃f

i .

We use||x|| to denote theL2 norm of a vectorx. We
usen to denote the number of dimensions ands to de-
note the number of samples. For a pointx, and subspace
H, we usePH(x) to denote the projection ofx onH.

3.1 Our Results

The main contribution of this paper is an embedding
from R

n to {0, 1}n′

, wheren′ > n. The embedding
has the property that samples from two product distri-
butions onR

n which have medians that are far apart
map to samples from distributions on{0, 1}n′

with cen-
ters which are also far apart. In particular, letD =
{D1, . . . , DT } be a mixture of product distributions such
that each coordinatef of each distributionDi in the
mixture satisfies the following properties:

1. Symmetryabout the median.

2. 3
4 -radius upper bounded byR.

In particular, this allows the distribution of each co-
ordinate to have infinite variance. Then the properties
of our embedding can be summarized by the following
theorems.

Theorem 1 Suppose we are given access to samples from
a mixture of product distributionsD = {D1, . . . , DT}
overRn such that for everyi andf , Df

i satisfies prop-
erties (1) and (2). Moreover, let for anyi, µ̃i denote the
center of the distributioñDi obtained by applying our
embeddingΦ onDi. If, for some constantc1,

dR(m(Di),m(Dj)) ≥ c1R

, then, there exists a constantc2, such that

||µ̃i − µ̃j || ≥ c2n
1/4T 1/2(logn logT)1/2

×dR(m(Di),m(Dj))

R

with probability1 − 1
n over the randomness in comput-

ing Φ. Moreover, for anyi, anyk, k′ and anyf 6= f ′,
coordinates(f, k) and(f ′, k′) of D̃i are independently
distributed.

Our embedding can be combined with the SVD-based
clustering algorithms of [KSV05, AM05] to provide an
efficient algorithm for learning mixtures of heavy-tailed
distributions. The resulting clustering algorithm has the
following guarantees.

Theorem 2 Suppose we are given access to samples from
a mixture of product distributionsD = {D1, . . . , DT}
overRn such that for everyi andf , Df

i satisfies prop-
erties (1) and (2). If, for some constantc3,

dR(m(Di),m(Dj)) ≥ c3R(w
−1/2
i + w

−1/2
j

+

√

T log
nT

δ
)

24

Then, AlgorithmHT-SVD clusters the samples correctly
with probability1 − δ over the samples, and with prob-
ability 1− 1

n over the randomness in the algorithm. The
algorithm runs in time polynomial inn andT , and the
number of samples required by the algorithm isÕ(n3/2T

wmin

).

Alternatively, we can also combine our algorithm
with the more recent correlation-based clustering algo-
rithm of [CR08]. The result is an efficient algorithm
with the following guarantees.

Theorem 3 Suppose we are givens samples from a mix-
ture of product distributionsD = {D1, . . . , DT } over
R

n such that for everyi andf , Df
i satisfies properties

(1) and (2). If, for some constantc3,

dR(m(Di),m(Dj)) ≥ c3R(
√

T log Λ +

√

T log
nT

δ
)

whereΛ = Θ(T
√

n log2 n
wmin

). Then,
AlgorithmHT-CORRELATIONSclusters the samples cor-
rectly with probability1 − δ over the samples, and with
at least constant probability over the randomness in the
algorithm. The algorithm runs in time polynomial inn
andT , and the number of samples required by the algo-
rithm is polynomial inn, T , and 1

wmin

.

The condition imposed on the centers of the distri-
butions states that every pair of centers is sufficiently far
apart in space, and the distance between every pair of
centers is spread acrossΩ

(

T log Λ + T log nT
δ

)

coor-
dinates.

3.2 Discussions

Symmetry. Our embedding still seems to work when
the distributions do not have perfect symmetry, but sat-
isfy an approximate symmetry condition. However, we
illustrate by an example that we need at least a weak
version of the symmetry condition for our embedding
to work. LetD1 andD2 be the following distributions
overR, whereM is a very large number. ForD1 the
probability density function is:

f1(x) =
3

8R
, −R ≤ x ≤ R

=
1

8MR
, MR ≤ x ≤ 2MR

=
1

8MR
, −2MR ≤ x ≤ −MR

The density function forD2 is:

f2(x) =
3

8R
, −R ≤ x ≤ R

=
1

4MR
, −2MR ≤ x ≤ −MR

We note that although the medians ofD1 andD2 are
R/3 distance apart, the overlap in their probability mass

in any interval of size2R is very high. Therefore, since
our embedding relies on the fact that two distributions
which have medians that are far apart, and3

4 -radius
bounded byR, have low overlap in probability mass in a
region of sizeΩ(R) around the median, it does not work
for distributions likeD1 andD2.

Spreading Condition. We note that our spreading con-
dition, while similar to thesloperequirement of [DHKS05],
is weaker; while they require the total contribution to
the distance between any two medians from all the co-
ordinates to be large with respect to the contribution
from the maximum coordinate, we only require that the
contribution come from a few coordinates, regardless of
what the maximum contribution from a coordinate is.

4 Embedding Distributions onto the
Hamming Cube

In this section, we describe an embedding which maps
points inR

n to points on a Hamming Cube of higher di-
mension. The embedding has the following property. If
for anyi andj, Di andDj are product distributions on
R

n with properties (1) and (2) such that their medians
are far apart, then, the distributions induced on the Ham-
ming cube by applying the embedding on points from
Di andDj respectively also have centers which are far
apart.

The building blocks of our embedding are embed-
dings{Φf}, one for each coordinate,f in {1, . . . , n}.
The final embeddingΦ is a concatenation of the maps
Φf for 1 ≤ f ≤ n. We describe more precisely how
to put together the mapsΦf in Section 4.3; for now, we
focus on the individual embeddingsΦf .

Each embeddingΦf , in its turn, is a concatenation
of two embeddings. The first one ensures that, for anyi

andj, if Df
i andDf

j are two distributions with proper-

ties (1) and (2) such that|m(Df
i) −m(Df

j)| is smaller
than (or in the same range as)R, then, the expected dis-
tance between the centers of the distributions induced
by applying the embedding on points fromDf

i andDf
j

is Ω
(|m(Df

i
)−m(Df

j
)|

R

)

. Unfortunately, this embedding

does not provide good guarantees when|m(Df
i)−m(Df

j)|
is large with respect toR. To address this, we use our
second embedding, which guarantees that when|m(Df

i)−
m(Df

j)| is large with respect toR, the centers of the
two distributions induced by applying the embedding on
points fromDf

i andDf
j are at least constant distance

apart. By concatenating these two embeddings, we en-
sure that in either case, the centers of the induced distri-
butions obtained by applyingΦf onDf

i andDf
j are far

apart.

4.1 Embedding Distributions with Small
Separation

In this section, we describe an embedding with the fol-
lowing property. If, for anyi, j, andf ,Df

i andDf
j have

25

properties (1) and (2) and|m(Df
i) − m(Df

j)| < 8R,
then the distance between the centers of the distributions
induced by applyingψ to points generated fromDf

i and

Df
j , is proportional to

|m(Df

i
)−m(Df

j
)|

8R .
The embedding is as follows. Given a parameterR1,

andr ∈ [0, R1), we define, for a pointx ∈ R,

ψr(x) = 0, if
⌊x− r

R1

⌋

is even

= 1, otherwise

In other words, we divide the real line into intervals of
lengthR1 and assign label0 to the even intervals and
label1 to the odd intervals. The value ofψr(x) is then
the label of the interval containingx− r.

The properties of this embedding can be summa-
rized as follows.

Theorem 4 For any i, j, and f , if Df
i andDf

j have
properties (1) and (2), and ifr is drawn uniformly at
random from[0, R1) andR1 > 2R+3|m(Df

i)−m(Df
j)|,

then,

E[| Pr
x∼Df

i

[ψr(x) = 0] − Pr
x∼Df

j

[ψr(x) = 0]|]

≥
|m(Df

i) −m(Df
j)|

2R1

Here the expectation is taken over the distribution ofr.

Notation For i = 1, . . . , T , we writeϕf
i as the proba-

bility density function of distributionDf
i centered at0,

andF f
i as the cumulative density function of distribu-

tion Df
i centered at0. For a real numberr ∈ [0, R1),

and fori = 1, . . . , T , we define

αf
i (r) =

∞
∑

λ=−∞
(F f

i (r+(2λ+1)R1)−F f
i (r+2λR1))

More specifically,αf
i (r) is the sum of the probabil-

ity mass of the distributionDi in the even intervals when
the shift isr, which is again the probability that a point
drawn fromDi is mapped to0 by the embeddingψr. In
the sequel, we use∆ to denote|m(Df

i) −m(Df
j)|. We

also assume without loss of generality thatm(Df
j) ≤

m(Df
i), andm(Df

i) = 0. Then, the left-hand side of
the equation in Theorem 4 can be written as follows.

E[| Pr
x∼Df

i

[ψr(x) = 0] − Pr
x∼Df

j

[ψr(x) = 0]|]

=
1

R1

∫ R1/2

r=−R1/2

|αf
j (r + ∆) − αf

i (r)|dr (1)

The proof of Theorem 4 follows in two steps. First,
we show that ifDf

i were a shifted version ofDf
j , a

slightly stronger version of Theorem 4 would hold. This
is shown in Lemma 5. Next,Lemma 8 shows that even
if Df

i is not a shifted version ofDf
j , the statements in

Theorem 4 still hold.

Figure 1: Proof of Lemma 6

Lemma 5 For any∆, if R1 > 3∆ + 2R, then, for any
i,

∫ R1/2

r=−R1/2

(αf
i (r) − αf

i (∆ + r))dr ≥ ∆

2

Note that the difference between the statement of The-
orem 4 and Lemma 5 is that the left-hand side of the
equation in Theorem 4 has an absolute value, and hence
Lemma 5 makes a stronger statement (under stronger
assumptions).
Before we prove Lemma 5, we need the following lemma.

Lemma 6 Let[a, a′] be any interval of length more than
2∆. Then, for anyi,

∆ ·
∫ a′

a

ϕf
i (r)dr ≥

∫ a′

r=a

(F f
i (r + ∆) − F f

i (r))dr

≥ ∆ ·
∫ a′−∆

r=a+∆

ϕf
i (r)dr

Proof: For anyr,

F f
i (r + ∆) − F f

i (r) =

∫ r+∆

t=r

ϕf
i (t)dt

We divide the interval[a, a′] into infinitesimal intervals
of lengthδ̄. The probability mass of distributionDi in
an interval[t, t+ δ̄] is δ̄ · ϕf

i (t).
Note that in the expression

∫ a′

r=a

(F f
i (r + ∆) − F f

i (r))dr

the probability mass of each interval[t, t + δ̄] wheret
lies in [a+ ∆, a′ − ∆] is counted exactly∆

δ̄
times, and

the probability mass ofDi in an interval[t, t+ δ̄], where
t lies in the interval[a, a+ ∆) ∪ (a′ −∆, a′] is counted
at most∆

δ̄
times – see Figure 1. Sinceϕf

i (t) ≥ 0 for
all t, the lemma follows in the limit when̄δ → 0. �

Proof:(Of Lemma 5) The shaded area in Figure 2 shows
the value ofαf

i (r) − αf
i (r + ∆) for a distributionDi.

26

Figure 2: Proof of Lemma 5

We can write:
∫ R1/2

r=−R1/2

(αf
i (r) − αf

i (r + ∆))dr

=

∫ R1/2

r=−R1/2

∞
∑

λ=−∞
[(F f

i (r + (2λ+ 1)R1)

−F f
i (r + 2λR1) − (F f

i (r + ∆ + (2λ+ 1)R1)

−F f
i (r + ∆ + 2λR1))]dr

=

∫ R1/2

r=−R1/2

∞
∑

λ=−∞
[(F f

i (r + (2λ+ 1)R1)

−F f
i (r + ∆ + (2λ+ 1)R1) − (F f

i (r + 2λR1)

−F f
i (r + ∆ + 2λR1))]dr

=

∫ R1/2

r=−R1/2

∞
∑

λ=−∞
[(F f

i (r + 2λR1 + ∆)

−F f
i (r + 2λR1)) − (F f

i (r + (2λ+ 1)R1 + ∆)

−F f
i (r + (2λ+ 1)R1))]dr

From Lemma 6, the first term is at least

∆ ·
∞
∑

λ=−∞

∫ R1/2−∆

r=−R1/2+∆

ϕf
i (r + 2λR1)dr

This is∆ times the total probability mass ofDi in the
intervals[2λR1 − R1/2 + ∆, 2λR1 + R1/2 − ∆], for
all λ. SinceR1 > 2∆ + 2R, this includes the interval
[−R,R], and as the median ofDi is at0 andDi has3

4 -
radius less than or equal toR, the value of the first term
is at least3∆4 .

From Lemma 6, the second term is at most

∆ ·
∞
∑

λ=−∞

∫ R1/2

r=−R1/2

ϕf
i (r + (2λ+ 1)R1)dr

This is the total probability mass ofDi in the intervals
[(2λ + 1)R1 − R1/2, (2λ + 1)R1 + R1/2], for all λ.
SinceR1 > 3∆ + 2R, none of these intervals have any
intersection with[−R,R]. The total probability mass
in these intervals is therefore at most1

4 , and therefore
the value of the second term is at most∆

4 . The lemma
follows. �

Next we show that Theorem 4 holds even if distribu-
tionDf

i is not a shifted version of distributionDf
j . This

is shown by a combination of Lemmas 7 and 8, which
are both consequences of the symmetry of the distribu-
tionsDf

i andDf
j .

Lemma 7 Suppose that for anyi, j, and f , Df
i ,Df

j
have property (1) and median0. Then, for anyr,

αf
i (r) − αf

j (r) = αf
j (−r) − αf

i (−r)

Proof: We define

ᾱf
i (r) =

∞
∑

λ=−∞
F f

i (r + 2λR1) − F f
i (r + (2λ− 1)R1)

Thus, ᾱf
i (r) is the probability mass ofDi in the odd

intervals, which is again the probability thatψr maps a
random point fromDi to 1 when the shift chosen isr.
Therefore,̄αf

i (r) = 1 − αf
i (r). SinceDi is symmetric

with median0, for any interval[a, a′], a′ > a > 0,
F f

i (a′) − F f
i (a) = F f

i (−a) − F f
i (−a′). Therefore,

αf
i (−r)

=

∞
∑

λ=−∞
F f

i (−r + (2λ+ 1)R1) − F f
i (−r + 2λR1)

=

∞
∑

λ=−∞
F f

i (r − 2λR1) − F f
i (r − (2λ+ 1)R1)

= ᾱf
i (r)

The lemma follows because

ᾱf
i (r) − ᾱf

j (r) = αf
j (r) − αf

i (r)

�

Lemma 8 For anyi andj, if Df
i andDf

j have proper-
ties (1) and (2), then,

∫ R1/2

r=−R1/2

|αf
j (r + ∆) − αf

i (r)|dr

≥
∫ R1/2

r=−R1/2

(αf
j (r) − αf

j (r + ∆))dr

Proof: By Lemma 7, for everyr ∈ [−R1/2, R1/2],
there is a uniquer′ = −r such thatαf

i (r) − αf
j (r) =

αf
j (r′)−αf

i (r′). We claim that for every such pairr, r′,

|αf
j (r + ∆) − αf

i (r)| + |αf
j (r′ + ∆) − αf

i (r′)|
≥ (αf

j (r) − αf
j (r + ∆)) + (αf

j (r′) − αf
j (r′ + ∆))

27

We note that for a fixed pair(r, r′),

|αf
j (r + ∆) − αf

i (r)| + |αf
j (r′ + ∆) − αf

i (r′)|
= |αf

j (r + ∆) − αf
i (r)| + |αf

j (r′ + ∆) + αf
j (r)

−αf
j (r) − αf

i (r′)|
≥ |αf

j (r + ∆) − αf
i (r) + αf

j (r′ + ∆) + αf
j (r)

−αf
j (r) − αf

i (r′)|
≥ |(αf

j (r + ∆) − αf
j (r)) + (αf

j (r′ + ∆) − αf
j (r′))

+(αf
j (r) + αf

j (r′) − αf
i (r) − αf

i (r′))|

The lemma follows by summing over all such pairs(r, r′).
�

Proof: (Of Theorem 4) From Equation 1 and Lemma 5,

E[| Pr
x∼Df

i

[ψr(x) = 0] − Pr
x∼Df

j

[ψr(x) = 0]|]

1

R1

∫ R1/2

−R1/2

|αf
j (r + ∆) − αf

i (r)|dr ≥ ∆

2R1

The second step follows from Lemma 5.�

4.2 Embedding Distributions with Large
Separation

In this section, we describe an embedding with the fol-
lowing property. For anyi, j, andf , if Df

i andDf
j have

properties (1) and (2), and|m(Df
i) − m(Df

j)| ≥ 8R,
then, the expected gap between the centers of the distri-
butions induced by applying the embeddings on points
fromDf

i andDf
j is at least a constant.

The embedding is as follows. Given a randomζ =
{ρ, {εk}k∈Z} whereρ is a number in[0, R2) and{εk} is
an infinite sequence of bits, we defineφζ : R → {0, 1}
as follows.

φζ(x) = εk(x),where k(x) =
⌊x− ρ

R2

⌋

(2)

In other words, ifx − ρ lies in the interval[8kR, 8(k +
1)R), thenφζ(x) = εk.

The properties of the embeddingφζ can be summa-
rized as follows.

Theorem 9 For any i, j, andf , let Df
i andDf

j have

properties (1) and (2), and let|m(Df
i)−m(Df

j)| ≥ 8R.
If R2 ≥ 8R, and ifρ is generated uniformly at random
from the interval[0, R2), and eachεk is generated by an
independent toss of a fair coin, then,

E[| Pr
x∼Df

i

[φζ(x) = 0] − Pr
x∼Df

j

[φζ(x) = 0]|] ≥ 1

8

where the expectation is taken over the distribution ofζ.

Proof: We say that an interval[a, a′] of length8R or less
is cut by the embedding if there exists somey ∈ [a, a′]

such thaty−r
8R is an integer. If[a, a′] is cut aty, then,

with probability 1
2 over the choice of{εk}, any pointx

in the interval[a, y] has a different value ofφζ(x) than
any point in(y, a′]. If an interval is not cut, then all
points in the interval have the same value ofφζ with
probability1 over the choice of{εk}.
Since the intervals[m(Df

i)−R,m(Df
i)+R] and[m(Df

j)−
R,m(Df

j) +R] have length at least2R,

Pr[[m(Df
i) −R,m(Df

i) +R], [m(Df
j) −R,m(Df

j) +R]

are not cut] ≥ 1 − 2R+ 2R

8R
≥ 1

2

If none of the intervals[m(Df
i) − R,m(Df

i) + R] and
[m(Df

j) −R,m(Df
j) +R] are cut,

Pr[φζ(m(Df
i) −R) 6= φζ(m(Df

j) −R)] =
1

2

Let us assume that the intervals[m(Df
i)−R,m(Df

i)+

R] and[m(Df
j) −R,m(Df

j) +R] are not cut and

φζ(m(Df
i) −R) 6= φζ(m(Df

j) −R)

. From the two equations above, the probability of this
event is at least14 . Also suppose without loss of general-

ity thatφζ(m(Df
i)−R) = 0. Then, sinceR is an upper

bound on the3
4 -radius of the distributionsDf

i andDf
j ,

the probability mass ofDf
i that maps to0 is at least34 ,

and the probability mass ofDf
j that maps to0 is at most

1
4 . Therefore, with probability at least14 ,

| Pr
x∼Df

i

[φζ(x) = 0] − Pr
x∼Df

j

[φζ(x) = 0]| ≥ 1

2

The theorem follows.�

4.3 Combining the Embeddings

In this section, we show how to combine the embed-
dings of Sections 4.1 and 4.2 to provide a mapΦ which
obeys the guarantees of Theorem 1. Given parameters
R1, R2, andq, we defineΦf for a coordinatef as fol-
lows.

Φf (x) = (φζ1
(xf), . . . , φζq

(xf), ψr1
(xf), . . . , ψrq

(xf))
(3)

Here,ζ1, . . . , ζq areq independent random values ofζ =
(ρ, {εk}k∈Z), whereρ is drawn uniformly at random
from the interval[0, R2), andεk, for all k, are generated
by independent tosses of an unbiased coin.r1, . . . , rq
areq independent random values ofr, wherer is drawn
uniformly at random from the interval[0, R1). Finally,
the embeddingΦ is defined as:

Φ(x) = Φ1(x) ⊕ . . .⊕ Φn(x) (4)

The properties of the embeddingΦ are summarized in
Theorem 1. Next, we prove Theorem 1. We begin with
the following lemma, which demonstrates the properties
of eachΦf .

28

Lemma 10 LetR1 ≥ 26R,R2 ≥ 8R, and
q = 4

√
nT logn logT , and suppose we are given sam-

ples from a mixture of product distributions which sat-
isfy conditions (1) and (2). Then, for alli and j, the
embeddingΦ = ⊕fΦf defined in Equation 3 satisfies
the following conditions. With probability at least1− 1

n
over the randomness in the embedding, for each coordi-
natef ,

1. If |m(Df
i) − m(Df

j)| > 8R, then, for some con-
stantc5,

||Ex∼Df

i

[Φf (x)] − Ex∼Df

j

[Φf (x)]|| ≥ c5n
1/4T 1/2

×(logn logT)1/2

2. If R√
n
≤ |m(Df

i) −m(Df
j)| ≤ 8R, then, for some

constantc6,

||Ex∼Df

i

[Φf (x)] − Ex∼Df

j

[Φf (x)]|| ≥ c6n
1/4T 1/2

×(logn logT)1/2
|m(Df

i) −m(Df
j)|

R

Proof:(Of Lemma 10) The first part of the lemma fol-
lows by Theorem 9, along with an application of the
Chernoff Bounds, followed by a Union Bound over all
i, j, f . The second part follows similarly by an applica-
tion of Theorem 4.�
Proof:(Of Theorem 1) We call a coordinatef very low
for distributionsi andj if |m(Df

i)−m(Df
j)| ≤ R√

n
, low

if R√
n
≤ |m(Df

i)−m(Df
j)| < 8R, andhighotherwise.

LetVi,j ,Li,j andHi,j respectively denote the set of very
low, low and high coordinates for distributionsDi and
Dj . Then,

||µ̃i − µ̃j ||2 =
∑

f∈Vi,j

||µ̃f
i − µ̃f

j ||2 +
∑

f∈Li,j

||µ̃f
i − µ̃f

j ||2

+
∑

f∈Hi,j

||µ̃f
i − µ̃f

j ||2

From Lemma 10,this sum is at least

∑

f∈Li,j

c6n
1/2T logn logT

|m(Df
i) −m(Df

j)|2
R2

+
∑

f∈Hi,j

c5n
1/2T logn logT

which, by the definition of effective distance is at least

c7n
1/2T logn logT

(d2
R(m(Di),m(Dj))

R2

−
∑

f∈Vi,j
(m(Df

i) −m(Df
j))2

R2

)

wherec7 is some constant. Now the contribution from
the very low coordinates to the distance betweenm(Di)

andm(Dj) is at most
√

∑

f R
2/n = R. Since

dR(m(Di),m(Dj)) ≥ 2R

, this contribution is at most12 the total distance. The
first part of the theorem therefore follows.

For any samplex from anyDi in the mixture, and
any k, k′, coordinates(f, k) and (f ′, k′) of Φ(x) are
function ofxf andxf ′

respectively. As forf 6= f ′, xf

andxf ′

are independently distributed, the second part of
the theorem follows.�

5 Applications: Learning Mixtures

In this section, we show how our embedding in The-
orem 1 can be combined with standard algorithm for
learning mixture models to yield algorithms than can
learn mixtures of heavy-tailed distributions. First, in
Section 5.1, we show how to combine our embedding
with SVD-based algorithms of [KSV05, AM05]; in Sec-
tion 5.2, we show how to combine our embedding with
the more recent algorithm of [CR08].

5.1 Clustering using SVD

In this section, we present Algorithm HT-SVD– a com-
bination of SVD-based algorithms of [AM05, KSV05]
with our embedding in Theorem 1. The input to the al-
gorithm is a setS of samples, and the output is a par-
titioning of the samples. The algorithm is described in
Figure 3.

The properties of Algorithm HT-SVD are summa-
rized by Theorem 2, which we prove for the rest of this
section. The two main steps in the proof are as fol-
lows: first, we show that after applying our embedding,
the tranformed distributions have good properties, such
as low directional variance and distance-concentration.
Next, we show that these properties imply that SVD-
based algorithms, such as those of [KSV05, AM05] can
learn these mixtures effectively. The following lemma
shows that the maximum directional variance of the trans-
formed distributions in the mixture is high; this fact is
later used crucially in demonstrating that SVD-based al-
gorithms can effectively cluster the mixture.

Lemma 11 For any i, the maximum directional vari-
ance of the transformed distributioñDi is at most
O(n1/2T logn logT).

Proof: Letv be any unit vector in the transformed space.
The variance of the transformed distributionD̃i alongv

29

HT-SVD(S)

1. LetR1 = 26R,R2 = 8R, andq = 4
√
nT logn logT . ComputeS̃ = {Φ(x)|x ∈ S}. Partition

S̃ into S̃A andS̃B uniformly at random.

2. Construct thes2 × nq matrix S̄A (respectivelyS̄B) in which the entry at rowl and columnl′ is
thel′-th coordinate of thel-th sample point iñSA (S̃B respectively).

3. Let{v1,A, . . . , vT,A} (resp.{v1,B, . . . , vT,B}) be the topT singular values of̄SA (resp.S̄B).
Project each point iñSB (resp.S̃A) on the subspaceKA (resp.KB) spanned byv1,A, . . . , vT,A

(resp.v1,B , . . . , vT,B).

4. Use a distance-based clustering algorithm as in [AK01] to partition the points inS̃A andS̃B

after projection.

Figure 3: Algorithm Using SVDs

can be written as:

Ex̃∼D̃i
[〈v, x̃ − E[x̃]〉2]

= Ex̃∼D̃i
[
∑

(f,k)

(vf,k)2 · (x̃f,k − E[x̃f,k])2

+2
∑

(f,k),(f ′,k′)

vf,k · vf ′,k′ · (x̃f,k − E[x̃f,k])

×(x̃f ′,k′ − E[x̃f ′,k′

])]

≤ Ex̃∼D̃i
[
∑

(f,k)

(vf,k)2 + 2
∑

(f,k),(f ′,k′)

vf,k · vf ′,k′

×(x̃f,k − E[x̃f,k]) · (x̃f ′,k′ − E[x̃f ′,k′

])]

≤ Ex̃∼D̃i
[
∑

(f,k)

(vf,k)2 + 2
∑

f

∑

k,k′

vf,kvf,k′

×(x̃f,k − E[x̃f,k]) · (x̃f,k′ − E[x̃f,k′

])]

≤ Ex̃∼D̃i
[
∑

f

(
∑

k

vf,k)2]

As x̃f,k is distributed independently of̃xf ′,k′

whenf 6=
f ′, in this case,

Ex̃∼D̃i
[(x̃f,k − E[x̃f,k]) · (x̃f ′,k′ − E[x̃f ′,k′

])] = 0

The lemma follows as|(x̃f,k − E[x̃f,k])| ≤ 1 for anyf
andk, and there are at mostO(n1/2T logn logT) coor-
dinates corresponding to a singlef . �

Next we show that the transformed distributions also
possess some distance-concentration properties.

Lemma 12 LetH be ad-dimensional subspace of
{0, 1}4n3/2T log T log n. Then for anyi,

Pr
x̃∼D̃i

[||PH(x̃− E[x̃])|| < 4n1/4T 1/2(log n logT)1/2

×
√

d log(d/δ)] ≥ 1 − δ

Proof: Let q = 4n1/2T logn logT . Let v1, . . . , vd be
an orthonormal basis ofH. As

||PH(x̃)||2 =

d
∑

l=1

(〈vl, x̃〉)2

we apply the Method of Bounded Differences to bound
the value of each〈vl, x̃〉.

〈vl, x̃〉 =
∑

f

∑

k

vf,k
l · x̃f,k

As changing each coordinate of the original sample point
x will change at mostq coordinates of̃x, γf , the change
in 〈vl, x̃〉 when we change a coordinatef of the orig-
inal sample point is at most(

∑

k v
f,k
l)2. Therefore,

γ =
∑

f γ
2
f =

∑

f (
∑

k v
f,k
l)2. Sincevl is a unit vector,

γ ≤ q. Thus, for anyl,

Pr[|〈vl, x̃〉 − 〈vl,E[x̃]〉| >
√

q log(d/δ)] ≤ δ

d

As ||PH(x̃−E[x̃])||2 =
∑

l〈vl, x̃−E[x̃]〉2, the lemma
follows by applying a Union Bound over each vectorvl.
�

We are now ready to prove Theorem 2. The main
tool in our proof is the following lemma, due to [AM05],
which shows that if the separation between the trans-
formed centers is large, then, Step 3 of the algorithm
will find a subspace in which the transformed centers
are far apart.

Lemma 13 Let, for eachi, ci,A be the empirical cen-
ters ofD̃i computed from the points iñSA, and letσ be
the maximum directional standard deviation of anyD̃i.
Then,

||PKB
(ci,A − cj,A)|| ≥ ||ci,A − cj,A||

−σ(w
−1/2
i + w

−1/2
j)

30

Proof: (Of Theorem 2) Letq = 4n1/2T logn logT .
When the distributions in the input mixture obey the
separation conditions of Theorem 2, from Theorem 1,
for eachi andj, the distance between the transformed
centers̃µi andµ̃j is at least :

Ω(
√
q) · (w−1/2

i + w
−1/2
j +

√

T log(Tn/δ))

Since the number of samples is at leastΩ(n3/2

wmin
), the

distance between the sample means and actual means of
the transformed distributions are at mostO(1). There-
fore, from Theorem 13,

||PKB
(ci,A − cj,A)|| ≥ c8

√

qT log(Tn/δ)

whereci,A andcj,A are the empirical centers of the trans-
formed distributions, andc8 is some constant. AsKB

has dimension at mostT , from Lemma 12 and a union
bound over all pairs of samples, with probability1 − δ,
all pairs of samples drawn from a distributionDi have
distance at most

2n1/4T 1/2(log n logT)1/2
√

2T log(nT/δ)

in the subspaceKB. On the other hand, for some con-
stanta′, a sample drawn fromDi and a sample drawn
fromDj are at least

a′n1/4T 1/2(logn logT)1/2
√

T log(nT/δ)

apart inKB. Algorithm HT-SVD therefore works for
a′ > 2

√
2. �

5.2 Clustering Using Correlations

In this section, we present Algorithm HT-CORRELATIONS
which is a combination of our embedding with the
correlations-based clustering algorithm of [CR08]. Al-
gorithm HT-CORRELATIONS is described in Figure 4.
The input to the algorithm is a setS of s samples, and
the output is a partitioning of the samples.

The properties of Algorithm HT-CORRELATIONSare
described in Theorem 3. This section is devoted to
proving Theorem 3. The proof proceeds in three steps.
First, we deduce from Theorem 1 that if the distribu-
tions satisfy the conditions in Theorem 3, then the trans-
formed distributions satisfy the separation and spread-
ing requirements of Theorem 1 in [CR08]. We can then
apply Theorem 1 to show that the centers of the trans-
formed distributions are far apart inKA andKB, the
subspaces computed in Step 4 of
Algorithm HT-CORRELATIONS. Finally, we use this
fact along with Lemmas 11 and 12 to show that distance
concentration algorithms work in these output subspaces.
Proof:(Of Theorem 3) Letq = 4n1/2T logn logT . From
Theorem 1 and Conditions (1) and (2), for eachi andj,
the distance between the transformed centersµ̃i andµ̃j

is at least

Ω(
√
q)(

√

T log Λ +
√

T log(nT/δ))

We note that the proof of Theorem 1 in [CR08] requires
only that for each distribution, the coordinates inF are
independently distributed from the coordinates inG. Since
the distribution of any coordinate inF is independent of
the distribution inG (although the coordinates withinF
or G are not necessarily independently distributed), we
can apply Theorem 1 in [CR08] to conclude that for each
i andj, there exists some constanta such that:

dKB
(µ̃i, µ̃j) ≥ Ω(d(µ̃i, µ̃j))

≥ a(
√

qT log Λ +
√

qT log(nT/δ))

As KB has dimension at most2T , from Lemma 12
and a union bound, with probability1 − δ, all pairs of
samples drawn from a distributionDi have distance at
most 2

√

qT log(Tn/δ) in the subspaceKB. On the
other hand, a sample drawn fromDi and a sample drawn
fromDj are at least(a1 − 2)

√

2qT log(Tn/δ) apart in
KB. Algorithm HT-CORRELATIONS therefore works.
�

References

[AK01] S. Arora and R. Kannan. Learning mixtures
of arbitrary gaussians. InProceedings of
33rd ACM Symposium on Theory of Com-
puting, pages 247–257, 2001.

[AM05] D. Achlioptas and F. McSherry. On spec-
tral learning of mixtures of distributions. In
Proceedings of the 18th Annual Conference
on Learning Theory, pages 458–469, 2005.

[CR08] K. Chaudhuri and S. Rao. Learning mix-
tures of distributions using correlations and
independence. In21st Annual Conference
on Learning Theory, 2008.

[Das99] S. Dasgupta. Learning mixtures of gaus-
sians. InProceedings of the 40th IEEE
Symposium on Foundations of Computer S
cience, pages 634–644, 1999.

[DHKS05] A. Dasgupta, J. Hopcroft, J. Kleinberg, and
M. Sandler. On learning mixtures of heavy-
tailed distributions. InProceedings of the
46th IEEE Symposium on Foundations of
Computer Science, pages 491–500, 2005.

[DS00] S. Dasgupta and L. Schulman. A two-round
variant of em for gaussian mixtures. InSix-
teenth Conference on Uncertainty in Artifi-
cial Intelligence (UAI), 2000.

[FOS05] J. Feldman, R. O’Donnell, and R. Servedio.
Learning mixtures of product distributions
over discrete domains. InProceedings of
FOCS, 2005.

[Ind01] Piotr Indyk. Algorithmic applications of
low-distortion geometric embeddings. In
FOCS, pages 10–33, 2001.

31

HT-CORRELATIONS(S)

1. Partition the set of coordinates intoF andG uniformly at random.

2. PartitionS uniformly at random intoSA andSB. Let R1 = 26R, R2 = 8R, and q =
4
√
nT logn logT . ComputeS̃A = {Φ(x)|x ∈ SA} andS̃B = {Φ(x)|x ∈ SB}.

3. Construct thenq
2 × nq

2 covariance matrixMA (respectivelyMB), which has a row for each
tuple (f, k), f ∈ F , k ∈ [q], and a column for each tuple(g, k), g ∈ G, k ∈ [q]. The entry
at row(f, k) and column(g, k′) is the covariance between coordinate(f, k) and(g, k′) of the
transformed points over all samples inSA (SB respectively).

4. Let {v1,A, . . . , vT,A} and{y1,A, . . . , yT,A} ({v1,B, . . . , vT,B} and{y1,B, . . . , yT,B} respec-
tively) be the topT left and right singular vectors ofMA (resp.MB). Project each point iñSB

(resp. S̃A) on the subspaceKA (resp.KB) spanned by{v1,A, . . . , vT,A} ∪ {y1,A, . . . , yT,A}
(resp.{v1,B, . . . , vT,B} ∪ {y1,B, . . . , yT,B}).

5. Use a distance-based clustering algorithm [AK01] to partition the points inS̃A andS̃B after
projection.

Figure 4: Algorithm Using Correlations

[KSV05] R. Kannan, H. Salmasian, and S. Vempala.
The spectral method for general mixture
models. InProceedings of the 18th Annual
Conference on Learning Theory, 2005.

[VW02] V. Vempala and G. Wang. A spectral algo-
rithm of learning mixtures of distributions.
In Proceedings of the 43rd IEEE Sympo-
sium on Foundations of Computer Science,
pages 113–123, 2002.

32

Does Unlabeled Data Provably Help?
Worst-case Analysis of the Sample Complexity of Semi-Supervised Learning

Shai Ben-David and Tyler Lu and Dávid Pál
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, ON, Canada

{shai,ttlu,dpal}@cs.uwaterloo.ca

Abstract

We study the potential benefits to classification pre-
diction that arise from having access to unlabeled
samples. We compare learning in the semi-supervised
model to the standard, supervised PAC (distribu-
tion free) model, considering both the realizable
and the unrealizable (agnostic) settings.
Roughly speaking, our conclusion is that access
to unlabeled samples cannot provide sample size
guarantees that are better than those obtainable with-
out access to unlabeled data, unless one postulates
very strong assumptions about the distribution of
the labels.
In particular, we prove that for basic hypothesis
classes over the real line, if the distribution of un-
labeled data is ‘smooth’, knowledge of that distrib-
ution cannot improve the labeled sample complex-
ity by more than a constant factor (e.g., 2). We
conjecture that a similar phenomena holds for any
hypothesis class and any unlabeled data distribu-
tion. We also discuss the utility of semi-supervised
learning under the common cluster assumption con-
cerning the distribution of labels, and show that
even in the most accommodating cases, where data
is generated by two uni-modal label-homogeneous
distributions, common SSL paradigms may be mis-
leading and may result in poor prediction perfor-
mance.

1 Introduction
While the problem of classification prediction based on la-
beled training samples has received a lot of research atten-
tion and is reasonably well understood, in many practical
learning scenarios, labeled data is hard to come by and un-
labeled data is more readily available. Consequently, users
try to utilize available unlabeled data to assist with the clas-
sification learning process. Learning from both labeled and
unlabeled data is commonly called semi-supervised learning
(SSL). Due to its wide potential applications, this approach
is gaining attention in both the application oriented and the
theoretical machine learning communities.

However, theoretical analysis of semi-supervised learn-
ing has, so far, been scarce and it falls short of providing

unequivocal explanation of merits of using unlabeled exam-
ples in learning. We take steps toward rectifying this theory-
practice gap by providing formal analysis of some semi-supervised
learning settings. The question we focus on is whether un-
labeled data can be utilized to provably improve the sample
complexity of classification learning.

We investigate what type of assumptions about the data
generating distribution (or which circumstances) are suffi-
cient to make the SSL approach yield better bounds on the
predictions accuracy than fully supervised learning. The bulk
of this paper focuses on showing that without prior knowl-
edge about the distribution of labels, SSL cannot guarantee
any significant advantages in sample complexity (e.g., no
more than a constant factor for learning tasks over the real
line).

we carry our analysis in a simplified, utopian, model of
semi-supervised learning, in which the learning algorithm
has perfect knowledge of the probability distribution of the
unlabeled data. We focus on estimating the labeled sample
complexity of learning. Since our model provides the learner
with more information than just a sample of the unlabeled
data distribution, lower bounds on the labeled sample com-
plexity of learning in our model imply similar lower bounds
for common notions of semi-supervised learning. Upper bounds,
or sample size sufficiency results (for the labeled samples) in
our model, apply to the common SSL setting only once suf-
ficiently large unlabeled samples are available to the learner.
In this paper we mainly discuss lower bounds, and when we
address upper bounds we settle for stating that they apply
eventually as the unlabeled sample sizes grow.

Our model of semi-supervised learning can be viewed as
learning with respect to a fixed distribution, (see Benedek
and Itai [5]). However, our emphasis is different. Our goal
is to compare how the knowledge of the unlabeled distribu-
tion helps, as opposed to learning when the only access to
the underlying unlabeled data distribution is via the training
labeled sample. We call the former setting semi-supervised
and the latter supervised or fully supervised learning.

We present explicit formalization of different ways in
which the merits of the semi-supervised paradigm can be
measured. We then investigate the extent by which SSL can
provide provable advantages over fully supervised learning
with respect to these measures.

Roughly speaking, we conclude that no special unlabeled
data distribution (like, say, one that breaks into clear data
clusters) suffices to render SSL an advantage over fully su-

33

pervised learning. Unlabeled data can make a difference
only under strong assumptions (or prior knowledge) about
the conditional labeled distribution.

One should note however, that in many cases such knowl-
edge can also be utilized by a fully supervised algorithm.
The search for justification to the SSL paradigm therefore
leaves us with one setting - the cases where there exists prior
knowledge about the relationship between the labels and the
unlabeled data structure (and not just about the labels per se).
However, we show in Section 3 that common applications of
SSL paradigms for utilizing such relationship (like the popu-
lar cluster assumption or the related algorithmic bias towards
class boundaries that pass through low-density data regions)
may lead to poor prediction accuracy, even when the data
does comply with the underlying data model (say, the data
is generated by a mixture of two Gaussian distributions, one
for each label, each generating a homogeneously labeled set
of examples).

The potential merits of SSL, in both settings - either with
or without making assumptions about the labeled distribu-
tion, have been investigated before. Vapnik’s model of trans-
ductive learning [15], as well as Kääriäinen’s paper [12] ad-
dress the setting without restrictions on the way labels are
generated while Balcan-Blum’s augmented PAC model for
semi-supervised learning [3, 4] offers a framework for for-
malizing prior knowledge about the relationship between la-
bels and the structure of the unlabeled distribution. We elab-
orate more about these in the next section on related work.
One basic difference between these works and ours is that
they try to provide explanations of the success of the SSL
paradigm while we focus on investigating its inherent limi-
tations.

This paper does not resolve the issue of the utility of un-
labeled data in full generality. Rather, we provide answers
for relatively simple classes of concepts over the real line
(thresholds and unions of d intervals). We believe that these
answers generalize to other classes in an obvious way. We
also pose some conjectures and open questions.

The paper is organized as follows. We start by discussing
previous related work in Section 2. In Section 3 and show
that a commonly held assumption can result in performance
degradation of SSL. We continue on our main path in Sec-
tion 4 where we formally define our model of semi-supervised
learning and introduce notation. Section 5 casts the previous
paradigms in our model and formally poses the question of
the utility of unlabeled data to sample based label predic-
tion. This question guides the rest of the paper. Section 6
analyzes this question for basic learning tasks over the real
line. The section concludes by asking a slightly different
question about the possible meaningful formalizations of the
SSL and supervised learning comparison. We conclude our
paper in section 7 where we also discuss open questions and
directions for further research.

2 Related Work
Analysis of performance guarantees for semi-supervised learn-
ing can be carried out in two main setups. The first fo-
cuses on the unlabeled marginal data distribution and does
not make any prior assumptions about the conditional la-
bel distribution. The second approach focuses on assump-

tions about the conditional labeled distribution, under which
the SSL approach has potentially better label prediction per-
formance than learning based on just labeled samples. The
investigation of the first setup was pioneered by Vapnik in
the late 70s in his model of transductive learning, e.g. [15].
There has been growing interest in this model in the recent
years due to the popularity of using unlabeled data in practi-
cal label prediction tasks. This model assumes that unlabeled
examples are drawn IID from an unknown distribution, and
then the labels of some randomly picked subset of these ex-
amples are revealed to the learner. The goal of the learner is
to label the remaining examples minimizing the error. The
main difference between this model and SSL is that the er-
ror of learner’s hypothesis is judged only with respect to the
known initial sample.

However, there are no known bounds in the transduc-
tive setting that are strictly better than supervised learning
bounds. Vapnik’s bounds [15] are almost identical. El-Yaniv
and Pechyony [10] prove bounds that are similar to the usual
margin bounds using Rademacher complexity, except that
the learner is allowed to decide a posteriori the concept class
given the unlabeled examples. But they do not show whether
it can be advantageous to choose the class in this way. Their
earlier paper [9] gave bounds in terms of a notion of uni-
form stability of the learning algorithm, and in the broader
setting where examples are not assumed to come IID from
an unknown distribution. But again, it’s not clear whether
and when the resulting bounds beat the supervised learning
bounds.

Kääriäinen [12] proposes a method for semi-supervised
learning without prior assumption on the conditional label
distributions. The algorithm of Kääriäinen is based on the
observation that one can output the function that minimizes
the unlabeled data weights in the symmetric differences to
all other functions of the version space. This algorithm can
be reduce the error of supervised ERM by a factor of 2. For
more details on these algorithms, see Section 5.

Earlier, Benedek and Itai [5] discuss a model of ”learn-
ing over a fixed distribution”. Such a model can be viewed
as SSL learning, since once the unlabeled data distribution
is fixed, it can be viewed as being known to the learner.
The idea of Benedek and Itai’s algorithm is to construct a
minimum ε-cover of the hypothesis space under the pseudo-
metric induced by the data distribution. The learning algo-
rithm they propose is to apply empirical risk minimization
(ERM) on the functions in such a cover. Of course this ε-
cover algorithm requires knowledge of the unlabeled distrib-
ution, without which the algorithm reduces to ERM over the
original hypothesis class.

The second, certainly more popular, set of semi-supervised
approaches focuses on assumptions about the conditional la-
beled distributions. A recent PAC model of SSL proposed
by Balcan and Blum [3, 4] attempts to formally capture such
assumptions. They propose a notion of a compatibility func-
tion that assigns a higher score to classifiers which “fit nicely”
with respect to the unlabeled distribution. The rationale is
that by narrowing down the set of classifiers to only compat-
ible ones, the capacity of the set of potential classifiers goes
down and the generalization bounds of empirical risk mini-
mization improve. However, since the set of potential classi-

34

fiers is trimmed down by a compatibility threshold, if the pre-
sumed label-structure relationship fails to hold, the learner
may be left with only poorly performing classifiers. One se-
rious concern about this approach is that it provides no way
of verifying these crucial modeling assumptions. In Sec-
tion 3 we demonstrate that this approach may damage learn-
ing even when the underlying assumptions seem to hold. In
Claim 3 we show that without prior knowledge of such rela-
tionship that the Balcan and Blum approach has poor worst-
case generalization performance.

Common assumptions include the smoothness assump-
tion and the related low density assumption [7] which sug-
gests that the decision boundary should lie in a low density
region. In section 3, we give examples of mixtures of two
Gaussians showing that the low density assumption may be
misleading even under favourable data generation models,
resulting in low density boundary SSL classifiers with larger
error than the outcome of straightforward supervised learn-
ing that ignores the unlabeled data.

Many other assumptions about the labels/unlabeled data
structure relationship have been investigated, most notably
co-training [6] and explicit generative data models [8].

However, all these approaches, are based on very strong
assumptions about the data generating distributions. Assump-
tions that are hard to verify, or to justify on the basis of prior
knowledge of a realistic learner.

3 On SSL and the Cluster Assumption
This paper has several results of the form “as long as one
does not make any assumptions about the behavior of the
labels, SSL cannot help much over algorithms that ignore
the unlabeled data.”

However, two arguments can be raised against such claims.
First, SSL is not really intended to be used without any prior
assumption about the distribution of labels. In fact, SSL can
be viewed as applying some prior knowledge (or just belief)
that the labels are somehow correlated with the unlabeled
structure of the data. Can we say anything (anything nega-
tive, naturally . . .) under such an assumption?

Second, maybe using unlabeled data can’t always help
you, but if it can help sometimes why not use it (always)?
Well, can we show that in some cases the use of unlabeled
data can indeed hurt the learner? Of course, nothing of that
kind can apply for all potential learners, since a learner can
choose to ignore the unlabeled data and then of course not get
hurt by “using” it. We are therefore left with asking, “can
the use of unlabeled data hurt the performance of concrete
common SSL paradigms?”

We briefly address these two questions below by demon-
strating that for certain common SSL strategies (“low den-
sity cut” and Balcan-Blum style use of “compatibility thresh-
old”) SSL can sometimes hurt you, even when the (vaguely
stated) “cluster assumption” does hold (when the data breaks
into clear uni-modal distributions, each labeled homogeneously).
We also show a general lower bound on the sample complex-
ity of SSL under a general model of the cluster assumption.

In Figures 1, 2, and 3 we depict three examples of simple
data distributions over the real line. In all of these examples,
the data is generated by a mixture of two uni-modal distrib-
utions, each of these modes generates examples labeled ho-

mogeneously, each by a different label. However, the min-
imum density point of the unlabeled mixture data is signif-
icantly off the optimal label prediction decision boundary.
Figure 1 shows a mixture of two equal-variance symmetric
Gaussians, Figure 2 is a mixture of different Gaussians and
Figure 3 shows an extreme case of uni-modal density func-
tions for which the error of the minimum density partition
has classification error that is twice that of the optimal deci-
sion boundary.

Note that in all such examples, not only does the minimum-
density bias mislead the learning process, but also, if one
follows the paradigm suggested by Balcan and Blum [4], a
wrong choice of the compatibility threshold level will doom
the learning process to failure (whereas a simple empirical
risk minimization that ignores unlabeled data will succeed
based on a small number of labeled samples).

In [13] Rigollet present a formal model of the clsuter
assumption. Given a probability distribution, D over some
Euclidean data domain, define, for any positive real number,
a, L(a) = x : p(x) > a. The cluster assumption says that
points in each of the connected components of L(a) [after
removal of ”lines or thin ribbons”] have the same Bayesian
optimum label.

This is a quite strong assumption under which one can
apply an SSL approach. However, in spite of this strong
cluster assumption, we can prove that the ratio between the
sample complexity of SSL and SL is at most d- the Euclidean
dimension of the data.

Namely, on one hand, the results of Section 6, below,
provide a lower bound of Ω

(
k+ln(1/δ)

ε2

)
on the sample com-

plexity of SSL learning under this cluster assumption, where
k is the number of connected components of L(a). On the
other hand, a learner that has access to only labeled exam-
ples, can apply the basic ERM algorithm to the class of all k-
cell Voronoi partitions of the space. Since the VC-dimension
of the class of all k-cell Voronoi partitions in Rd is of order
kd, the usual VC-bounds on the sample complexity of such
an SL learner is O

(
kd+ln(1/δ)

ε2

)
examples.

4 A No-Prior-Knowledge Model of
Semi-Supervised Learning

We work in the common (agnostic) PAC framework, in which
a learning problem is modeled by a probability distribution
P over X × {0, 1} for some domain set, X . Any func-
tion from X to {0, 1} is called a hypothesis. Examples are
pairs, (x, y) ∈ X × {0, 1}, and a sample is a finite sequence
S = {(xi, yi)}m

i=1 of examples.

Definition 1 (SL and SSL).

• A supervised learning (SL) algorithm is a function, L :⋃
m∈N(X × {0, 1})m → {0, 1}X , that mapping sam-

ples to a hypotheses.

• A semi-supervised learning (SSL) algorithm is a func-
tion L :

⋃
m∈N(X × {0, 1})m × P → {0, 1}X , where

P is a set of probability distributions over X . Namely,
an SSL algorithm takes as input not only a finite labeled
sample but also a probability distribution over the do-
main set (and outputs a hypothesis, as before).

35

−4 −3 −2 −1 0 1 2 3 4 5 6
OPT

σ σ

1

2
N(0, 1) 1

2
N(2, 1)

1

2
(N(0, 1) + N(2, 1))

Figure 1: Mixture of two GaussiansN (0, 1) (labeled ’-’) and
N (2, 1) (labeled ’+’) shows that the optimum threshold is at
x = 1, the densest point of the unlabeled distribution. The
sum of these two Gaussians is unimodal.

−2 −1 0 1 2 3 4

1

2
N(0, 1)

1

2
(N(0, 1) + N(4, 2))

1

2
N(4, 2) OPT

min density

Figure 2: Mixture of two GaussiansN (0, 1) (labeled ’-’) and
N (4, 2) (labeled ’+’) with difference variances. The min-
imum density point of the unlabeled data (the sum of the
two distributions) does not coincide with the optimum label-
separating threshold where the two Gaussians intersect. The
classification error of optimum is≈ 0.17 and that of the min-
imum density partition is ≈ 0.21.

P1, slope = −1

P2, slope = 1− ε

OPT

min density

Err(min density) ≈ 2Err(OPT)

Err(OPT)

Figure 3: The solid line indicates the distribution P1 (labeled
’-’) and the dotted line is P2 (labeled ’+’). The x coordinate
of their intersection is the optimum label prediction bound-
ary. The slope of the solid line is slightly steeper than that
of the dotted line (| − 1| > 1 − ε). The minimum density
point occurs where the density of P1 reaches 0. The error of
the minimum unlabeled density threshold is twice that of the
optimum classifier.

For a distribution P over X×{0, 1}, letD(P) denote the
marginal distribution over X . That is, formally, for X ′ ⊆
X we define D(P)(X ′) = P (X ′ × {0, 1}) (provided that
X ′×{0, 1} is P -measurable). For a learning problem P , we
call D(P) the unlabeled distribution of P .

Following the common PAC terminology and notation,
the error of a hypothesis h, with respect to P , is ErrP (h) =
Pr(x,y)∼P [h(x) 6= y]. Similarly, the empirical error, ErrS(h),
of a hypothesis h on a sample S is defined as ErrS(h) =
1

m |{i : i ∈ {1, 2, . . . ,m}, h(xi) 6= yi}|.

Definition 2 (The sample complexities (SSL and SL) of a
class). For a class H of hypotheses, the sample com-
plexity of a semi-supervised learning algorithm A with re-
spect to P , confidence δ > 0 and accuracy ε > 0, is

m(A,H, P, ε, δ) = min
{
m ∈ N :

Pr
S∼P m

[ErrP (A(S,D(P)))− inf
h′∈H

ErrP (h′) > ε] < δ
}

.

The sample complexity of a supervised learning algorithm A
is defined similarly, except that the second input parameter
D(P) is omitted.

We consider two settings, realizable and agnostic. In the
agnostic setting, P can be arbitrary. The realizable setting is
defined by assuming that there exists hypothesis h ∈ H such
that ErrP (h) = 0; consequently infh′∈H ErrP (h′) = 0. In
particular, this implies that for any x ∈ X , the conditional
probabilities, P (y = 0| x) and P (y = 1| x) are always
either 0 or 1; in the agnostic setting the conditionals can be
arbitrary.

Without reference to any learning problem, an unlabeled
distribution D is simply any distribution over X . We use
Ext(D) to denote all possible extensions of D, that is, Ext(D)
is the family of all possible distributions P over X × {0, 1}
such that D(P) = D. For an unlabeled distribution D and
hypothesis h, Dh denotes the probability distribution in Ext(D)
such that Dh(y = h(x) | x) = 1. For a hypothesis h and an
“unlabeled sample” S = {xi}m

i=1, where xi ∈ X , we denote
by (S, h(S)) the sample {(xi, h(xi))}m

i=1.
For a subset T of some domain set, we use 1T to de-

note its characteristic function. In particular, if T ⊆ X then
1T is a hypothesis over X . For two hypothesis g, h we use
g∆h to denote their “symmetric difference”, that is, g∆h is
a hypothesis 1{x ∈ X : g(x) 6= h(x)}. Finally, VC(H)
denotes the VC-dimension [14] of hypothesis class H .

5 Previous No Prior Knowledge Paradigms
Previous approaches to SSL algorithms for the no prior knowl-
edge paradigm have used the unlabeled sample to figure out
the “geometry” of the hypothesis space with respect to the
unlabeled (marginal) distribution. A common approach is to
use that knowledge to reduce the hypothesis search space. In
doing so, one may improve the generalization upper bounds.

Recall that given an unlabeled distribution D and a hy-
pothesis class H , an ε-cover is a subset H ′ ⊆ H such that
for any h ∈ H there exists g ∈ H ′ such that D(g∆h) ≤ ε.
Note that if H ′ is an ε-cover for H with respect to D, then
for every extension P ∈ Ext(D) the infg∈H′ ErrP (g) ≤
infh∈H ErrP (h) + ε.

36

In some cases the construction of a small ε-cover is a ma-
jor use of unlabeled data. Benedek and Itai [5] analyze the
approach, in the case when the unlabeled distribution is fixed
and therefore can thought of as known to the learner. They
show that the smaller an ε-cover is the better its generaliza-
tion bound one for the ERM algorithm over this cover.

Balcan and Blum [4] suggest a different way of using
the unlabeled data to reduce the hypothesis space. However,
we claim that without making any prior assumptions about
the relationship between the labeled and unlabeled distribu-
tions, their approach boils down to the ε-cover construction
described above.

Claim 3. Let H be any hypotheses class, ε, δ > 0, and D
be any unlabeled distribution. Let H ′ ⊆ H be the set of
“compatible hypotheses.” Suppose A is an SSL algorithm
that outputs any hypothesis in H ′. If H ′ does not contain an
ε-cover of H with respect to D, the error of the hypothesis
that A outputs is at least ε regardless of the size of the labeled
sample.

Proof. Since H ′ does not contain an ε-cover of H , there exist
a hypothesis h ∈ H such that for all g ∈ H ′, D(g∆h) > ε.
Thus, for any g ∈ H ′, ErrDh(g) > ε. Algorithm A outputs
some g ∈ H ′ and the proof follows.

Kääriäinen [12] utilizes the unlabeled data in a different
way. Given the labeled data his algorithm constructs the ver-
sion space F ⊆ H of all sample-consistent hypotheses, and
then applies the knowledge of the unlabeled distribution D to
find the “center” of that version space. Namely, a hypothesis
g ∈ F that minimizes maxh∈F D(g∆h).

Clearly, all the above paradigms depend on the knowl-
edge of the unlabeled distribution D. In return, better up-
per bounds on the sample complexity of the respective al-
gorithms (or equivalently on the errors of the hypotheses
produced by such algorithms) can be shown. For exam-
ple, Benedek and Itai give (for the realizable case) an up-
per bound on the sample complexity that depends on the size
of the ε-cover—the smaller ε-cover, the smaller the upper
bound.

In the next section we analyze the gains that such knowl-
edge of unlabeled data distribution can make in the no prior
knowledge setting. We prove that over the real line for any
“smooth” unlabeled distribution D, ERM over the full hy-
pothesis class H has worst case sample complexity that is
at most by constant factor bigger than the worst case sample
complexity of any SSL algorithm. We conjecture that this a
more general phenomenon.

Conjecture 4. For any hypothesis class H , there exists a con-
stant c ≥ 1 and a supervised algorithm A, such that for
any distribution D over the domain and any semi-supervised
learning algorithm B,

sup
h∈H

m(A,H, Dh, ε, δ) ≤ c · sup
h∈H

m(B,H,Dh, ε, δ)

for any ε and δ small enough, say smaller than 1/c.

Conjecture 5. For any hypothesis class H , there exists a con-
stant c ≥ 1 and a supervised algorithm A, such that for

any distribution D over the domain and any semi-supervised
learning algorithm B,

sup
P∈Ext(D)

m(A,H, P, ε, δ) ≤ c · sup
P∈Ext(D)

m(B,H,P, ε, δ)

for any ε and δ small enough, say smaller than 1/c.

6 Inherent Limitations of Semi-Supervised
Learning

This section is devoted to proving the inherent limitations of
SSL paradigm in the no prior knowledge model over the real
line. In Section 6.2 we prove Conjecture 4 for thresholds
on the real line in the realizable setting, under the condition
that the unlabeled distribution is absolutely continuous. In
Section 6.3 we prove Conjecture 5 for thresholds and union
of d intervals over the real line in the agnostic setting (under
the same unlabeled distribution condition).

The former follows from Theorems 8 and 10. The latter
follows from Corollary 13 (for thresholds) and from Corol-
lary 16 (for union of d intervals). To prove the results we rely
on a simple “rescaling trick” that we explain in Section 6.1.

We briefly sketch the idea of the proofs. Let us start by
defining the hypothesis classes. The class of thresholds is
defined as H = {1(−∞, t] : t ∈ R} and the class of union
of d intervals

UId = {1[a1, a2) ∪ [a3, a4) ∪ · · · ∪ [a2`−1, a2`) :
` ≤ d, a1 ≤ a2 ≤ · · · ≤ a2`} .

The rescaling trick says that the SSL sample complexity of
learning H (resp. UId) under any two absolutely continuous
unlabeled distributions is exactly the same. We can thus fo-
cus on the sample complexity of learning under some fixed
absolutely continuous distribution; for concreteness and con-
venience we chose the uniform distribution over (0, 1). By
proving a sample complexity lower bound on the learning
under the uniform distribution over (0, 1), we are effectively
proving a lower bound on the sample complexity of SSL un-
der any absolutely continuous distribution. Through the use
of techniques from the probabilistic method, we obtain lower
bounds on the SSL sample complexity that is within a con-
stant factor of the well-known upper bounds on SL sample
complexity (e.g. VC upper bounds on the sample complexity
of ERM for any unknown distribution).

In Section 6.4 we discuss other possible formulations of
the comparison between SL and SSL algorithms.

6.1 Rescaling Trick
In this section we show that learning any “natural” hypoth-
esis class on the real line has the same sample complexity
for any absolutely continuous unlabeled distribution inde-
pendent of its shape. Intuitively, if we imagine the real axis
made of rubber, then a natural hypothesis class is one that
is closed under rescaling (stretching) of the axis. Classes of
thresholds and union of d intervals are examples of such nat-
ural classes, since under any rescaling an interval remains an
interval. The rescaling will apply also on the unlabeled dis-
tribution over the real line and it will allow us to go from any
absolutely continuous distribution to the uniform distribution
over (0, 1).

37

More formally, a rescaling is a continuous increasing
function f from an open interval I onto an open interval J .
We denote by H|A the restriction of a class H to a subset
A, that is, H|A = {h|A : h ∈ H}. We use ◦ to de-
note function composition. We say that a hypothesis class
H over R is closed under rescaling whenever for any rescal-
ing f : I → J , if h|J ∈ H|J , then h|J ◦ f ∈ H|I . If
H is any class closed under rescaling, then any rescaling f
induces a bijection h|J 7→ h|J ◦ f between H|I and H|J .
(This follows since f−1 is also rescaling.) Clearly, the class
of thresholds and the class of unions of d intervals are closed
under rescaling.

We show that the sample complexity is unaffected by the
rescalings provided that the hypothesis class is closed under
rescalings. We split the results into two lemmas—Lemma 6
and Lemma 7. The first lemma shows that if we have a su-
pervised algorithm with certain sample complexity for the
case when the unlabeled distribution is the uniform distribu-
tion over (0, 1), then the algorithm can be translated into an
SSL algorithm with the same sample complexity for the case
when the unlabeled distribution is any absolutely continuous
distribution. The second lemma shows the translation in the
other direction. Namely, that a SSL algorithm with certain
sample complexity on some absolutely continuous unlabeled
distribution can be translated to a supervised algorithm for
the case when unlabeled distribution is uniform over (0, 1).

Lemma 6 (Rescaling trick I). Let H be a hypothesis class
over R closed under rescaling. Let U be the uniform distrib-
ution over (0, 1). Let ε, δ > 0.

(a) (Realizable case): If A is any supervised or semi-
supervised algorithm, then there exists an semi-supervised
learning algorithm B such that for any distribution D over
an open interval I which is absolutely continuous with re-
spect to Lebesgue measure on I

sup
h∈H

m(B,H,Dh, ε, δ) ≤ sup
g∈H

m(A,H, Ug, ε, δ) . (1)

(b) (Agnostic case): If A is any supervised or semi-supervised
algorithm, then there exists an semi-supervised learning al-
gorithm B such that for any distribution D over an open in-
terval I which is absolutely continuous with respect to Lebesgue
measure on I

sup
P∈Ext(D)

m(B,H,P, ε, δ) ≤ sup
Q∈Ext(U)

m(A,H, Q, ε, δ) . (2)

Proof. Fix H and A. We construct algorithm B as follows.
The algorithm B has two inputs, a sample S = {(xi, yi)}m

i=1
and a distribution D. Based on D the algorithm computes
the cumulative distribution function F : I → (0, 1), F (t) =
D(I ∩ (−∞, t]). Then, B computes from S transformed
sample S′ = {(x′i, yi)}m

i=1 where x′i = F (xi). On a sample
S′ the algorithm B simulates algorithm A and computes h =
A(S′). (If A is semi-supervised we fix its second input to be
U). Finally, B outputs g = h ◦ F .

It remains to show that for any D with continuous cumu-
lative distribution function (1) and (2) holds for any ε, δ > 0.
We prove (2), the other equality is proved similarly.

Let P ∈ Ext(D). Slightly abusing notation, we define
the “image” distribution F (P) over (0, 1)× {0, 1} to be

F (P)(M) = P ({(x, y) : (F (x), y) ∈ M})

for any (measurable) M ⊆ (0, 1) × {0, 1}. It is not hard
to see that if S is distributed according to Pm, then S′ is
distributed according to (F (P))m. Clearly, D(F (P)) = U
i.e. F (P) ∈ Ext(U). Further note that since D is ab-
solutely continuous, F is a rescaling. Hence ErrF (P)(h) =
ErrP (h ◦ F) and infh∈H ErrP (h) = infh∈H ErrF (P)(h).
Henceforth, for any ε and any m ∈ N

Pr
S∼P m

[ErrP (B(S, D))− inf
h∈H

ErrP (h) > ε]

= Pr
S′∼F (P)m

[ErrP (A(S′) ◦ F)− inf
h∈H

ErrF (P)(h) > ε]

= Pr
S′∼F (P)m

[ErrF (P)(A(S′))− inf
h∈H

ErrF (P)(h) > ε] .

Therefore, for any ε, δ > 0,

m(B,H,P, ε, δ) = m(A,H, F (P), ε, δ)
≤ sup

Q∈Ext(P)

m(A,H, Q, ε, δ) .

Taking supremum over P ∈ Ext(D) finishes the proof.

Lemma 7 (Rescaling trick II). Let H be a hypothesis class
over R closed under rescaling. Let U be the uniform distrib-
ution over (0, 1). Let ε, δ > 0.

(a) (Realizable case): If B is any supervised or semi-
supervised algorithm and D is any distribution over an open
interval I , which is absolutely continuous with respect to the
Lebesgue measure on I , then there exists a supervised learn-
ing algorithm A such that

sup
g∈H

m(A,H, Ug, ε, δ) ≤ sup
h∈H

m(B,H,Dh, ε, δ) . (3)

(b) (Agnostic case): If B is any supervised or semi-supervised
algorithm and D is any distribution over an open interval I ,
which is absolutely continuous with respect to the Lebesgue
measure on I , then there exists a supervised learning algo-
rithm A such that

sup
Q∈Ext(U)

m(A,H, Q, ε, δ) ≤ sup
P∈Ext(D)

m(B,H,P, ε, δ) . (4)

Proof. Fix H , B and D. Let F : I → (0, 1) be the be
cumulative distribution function of D, that is, F (t) = D(I ∩
(−∞, t)). Since D is absolutely continuous, F is a rescaling
and inverse F−1 exists.

Now, we construct algorithm A. Algorithm A maps in-
put sample S′ = {(x′i, yi)}m

i=1 to sample S = {(xi, yi)}m
i=1

where xi = F−1(x′i). On a sample S the algorithm A sim-
ulates algorithm B and computes g = B(S, D). (If B is
supervised, then the second input is omitted.) Finally, A out-
puts h = g ◦ F−1.

It remains to show that for any D with continuous cumu-
lative distribution function (3) and (4) holds for any ε, δ > 0.
We prove (4), the other equality is proved similarly.

Let Q ∈ Ext(U). Slightly abusing notation, we define
the “pre-image” distribution F−1(Q) over I × {0, 1} to be

F−1(Q)(M) = Q ({(F (x), y) : (x, y) ∈ M})

for any (measurable) M ⊆ I × {0, 1}. It is not hard to
see that if S′ is distributed according to Q, then S is distrib-
uted according to (F−1(Q))m. Clearly,D(F−1(U) = D i.e.

38

F−1(Q) ∈ Ext(D). Since F−1 is a rescaling, ErrF−1(Q)(h) =
ErrQ(h◦F−1) and infh∈H ErrQ(h) = infh∈H ErrF−1(Q)(h).
Henceforth, for any ε > 0 and any m ∈ N

Pr
S′∼Qm

[ErrQ(A(S′))− inf
h∈H

ErrQ(h)]

= Pr
S∼F−1(Q)m

[ErrQ(B(S, D) ◦ F−1)− inf
h∈H

ErrF−1(Q)(h)]

= Pr
S∼F−1(Q)m

[ErrF−1(Q)(B(S, D))− inf
h∈H

ErrF−1(Q)(h)] .

Therefore, for any ε, δ > 0,

m(A,H, Q, ε, δ) = m(B,H,F−1(Q), ε, δ)
≤ sup

P∈Ext(D)

m(B,H,P, ε, δ)

Taking supremum over Q ∈ Ext(U) finishes the proof.

6.2 Sample Complexity of Learning Thresholds in the
Realizable Case

In this section we consider learning the class of thresholds,
H = {1(−∞, t] : t ∈ R}, on the real line in the real-
izable setting and show that for absolutely continuous unla-
beled distributions SSL has at most factor 2 advantage over
SL in the sample complexity.

First, in Theorem 8, we show ln(1/δ)
ε upper bound on the

sample complexity of supervised learning. This seems to be
a folklore result. Second, we consider sample complexity
of semi-supervised learning in the case when D(P) is ab-
solutely continuous with respect to the Lebesgue measure on
R. In Theorems 9 and 10 we show that the sample complex-
ity is between ln(1/δ)

2ε +O(1
ε) and ln(1/δ)

2.01 ε −O(1
ε).1 Ignoring

the lower order terms, we see that the sample complexity of
supervised learning is (asymptotically) at most 2-times larger
than that of semi-supervised learning.

We will make use the following of two algorithms: su-
pervised algorithm L and semi-supervised algorithm B pro-
posed by Kääriäinen [12]. Both algorithms on a sample S =
((x1, y2), (x2, y2), . . . , (xm, ym)) first compute

` = max{xi : i ∈ {1, 2, . . . ,m}, yi = 1} ,

r = min{xi : i ∈ {1, 2, . . . ,m}, yi = 0} .

Algorithm L simply outputs the hypothesis 1(−∞, `]. Algo-
rithm B makes use of its second input, distribution D. Pro-
vided that ` < r, B computes t′′ = sup{t′ : D((`, t′]) ≤
D((`, r])/2} and outputs hypothesis 1(−∞, t′′].

Theorem 8 (SL upper bound). Let H be the class of thresh-
olds and L be the supervised learning algorithm defined above.
For any D, for any ε, δ > 0, and any “target” h ∈ H ,

m(A,H, Dh, ε, δ) ≤ ln(1/δ)
ε

.

Proof. Let h = 1(−∞, t) and let s = sup{s : D((s, t]) ≥
ε}. The event ErrDh(L(S)) ≥ ε occurs precisely when

1The 2.01 in the lower bound can be replaced by arbitrary num-
ber strictly greater than 2. This slight imperfection is a consequence
of that the true dependence of the sample complexity on ε, in this
case, is of the form 1/ ln(1− 2ε) and not 1/(2ε).

the interval (s, t] does not contain any sample points. This
happens with probability (1 − D((s, t]))m ≤ (1 − ε)m. If
m ≥ ln(1/δ)

ε , then (1− ε)m ≤ exp(−εm) ≤ δ.

Theorem 9 (SSL upper bound). Let H be the class of thresh-
olds and B be the semi-supervised learning algorithm de-
fined above. For any absolutely continuous distribution D
over an open interval, any ε ∈ (0, 1

4), δ ∈ (0, 1
2), and any

“target” h ∈ H ,

m(B,H,Dh, ε, δ) ≤ ln(1/δ)
2ε

+
ln 2
2ε

.

Proof. By rescaling trick (Lemma 6 part (a)) we can assume
that D is uniform over (0, 1). Fix ε ∈ (0, 1

4), δ ∈ (0, 1
2) and

h ∈ H . We show that, for any m ≥ 2,

Pr
S∼Dm

h

[ErrDh(B(S, Dh)) ≥ ε] ≤ 2(1− 2ε)m , (5)

from which the theorem easily follows, since if m ≥ ln(1/δ)
2ε +

ln 2
2ε , then m ≥ 2 and 2(1− 2ε)m ≤ 2 exp(−2mε) ≤ δ.

In order to prove (5), let h = 1(−∞, t] be the “tar-
get”. Without loss of generality t ∈ [0, 1

2]. With a little
abuse, we assume that ` ∈ [0, t] and r ∈ [t, 1]. For conve-
nience, we define a : [0, t] → [t, 1], b : [0, t] → [t, 1] as
a(`) = max(2t− `− 2ε, t) and b(`) = min(2t− ` + 2ε, 1)
respectively. It is easily verified that ErrDh(B(S, Dh)) ≤ ε
if and only if r ∈ [a(`), b(`)].

We lower bound the probability of success

p = Pr
S∼Dm

h

[ErrDh(B(S, Dh)) ≤ ε] .

There are two cases:
Case 1: If t > 2ε, then we integrate over all possible

choices of the rightmost positive example in S (which de-
termines `) and leftmost negative example in S (which de-
termines r). There are m(m − 1) choices for the rightmost
positive example and leftmost negative example. We have

p ≥ p1 = m(m− 1)
∫ t

0

∫ b(`)

a(`)

(1− r + `)m−2 drd` .

Case 2: If t ≤ 2ε, then we integrate over all possible
choices of the rightmost positive example in S and leftmost
negative example in S. Additionally we also consider sam-
ples without positive examples, and integrate over all possi-
ble choices of the leftmost (negative) example. We have

p ≥ p2 = m(m− 1)
∫ t

0

∫ b(`)

a(`)

(1− r + `)m−2 drd`

+ m

∫ 2ε

t

(1− r)m−1 dr

Both cases split into further subcases.
Subcase 1a: If t > 2ε and t + 4ε ≤ 1 and t + ε ≥ 1/2,

39

then 0 ≤ 2t + 2ε− 1 ≤ t− 2ε ≤ t and

p1 = m(m− 1)
[∫ 2t+2ε−1

0

∫ b(`)

a(`)

(1− r + `)m−2 drd`

+
∫ t−2ε

2t+2ε−1

∫ b(`)

a(`)

(1− r + `)m−2 drd`

+
∫ t

t−2ε

∫ b(`)

a(`)

(1− r + `)m−2 drd`

]
= m(m− 1)

[∫ 2t+2ε−1

0

∫ 1

2t−`−2ε

(1− r + `)m−2 drd`

+
∫ t−2ε

2t+2ε−1

∫ 2t−`+2ε

2t−`−2ε

(1− r + `)m−2 drd`

+
∫ t

t−2ε

∫ 2t−`+2ε

t

(1− r + `)m−2 drd`

]
= 1− 1

2
(1− 2t− 2ε)m − 1

2
(−1 + 2t + 6ε)m − (1− 2ε)m

≥ 1− 2(1− 2ε)m .

Subcase 1b: If t > 2ε and t+ε ≤ 1/2, then 2t+2ε−1 ≤
0 ≤ t− 2ε ≤ t and

p1 = m(m− 1)
[∫ t−2ε

0

∫ b(`)

a(`)

(1− r + `)m−2 drd`

+
∫ t

t−2ε

∫ b(`)

a(`)

(1− r + `)m−2 drd`

]
= m(m− 1)

[∫ t−2ε

0

∫ 2t−`+2ε

2t−`−2ε

(1− r + `)m−2 drd`

+
∫ t

t−2ε

∫ 2t−`+2ε

t

(1− r + `)m−2 drd`

]
= 1− (1− 2ε)m +

1
2
(1− 2t− 2ε)m − 1

2
(1− 2t + 2ε)m

≥ 1− 3
2
(1− 2ε)m .

Subcase 1c: If t > 2ε and t + 4ε ≥ 1, then 0 ≤ t− 2ε ≤
2t + 2ε− 1 ≤ t, and

p1 = m(m− 1)
[∫ t−2ε

0

∫ b(`)

a(`)

(1− r + `)m−2 drd`

+
∫ 2t+2ε−1

t−2ε

∫ b(`)

a(`)

(1− r + `)m−2 drd`

+
∫ t

2t+2ε−1

∫ b(`)

a(`)

(1− r + `)m−2 drd`

]
= m(m− 1)

[∫ t−2ε

0

∫ 1

2t−`−2ε

(1− r + `)m−2 drd`

+
∫ 2t+2ε−1

t−2ε

∫ 1

t

(1− r + `)m−2 drd`

+
∫ t

2t+2ε−1

∫ 2t−`+2ε

t

(1− r + `)m−2 drd`

]
= 1− (1− 2ε)m − 1

2
(1− 2t + 2ε)m − 1

2
(2t + 2ε− 1)m

≥ 1− 2(1− 2ε)m .

Subcase 2a: If t ≤ 2ε and t + ε ≥ 1/2, then t − 2ε ≤
0 ≤ 2t + 2ε− 1 ≤ t and

p2 = m(m− 1)
[∫ 2t+2ε−1

0

∫ b(`)

a(`)

(1− r + `)m−2 drd`

+
∫ t

2t+2ε−1

∫ b(`)

a(`)

(1− r + `)m−2 drd`

]
+ m

∫ 2ε

t

(1− r)m−1 dr

= m(m− 1)
[∫ 2t+2ε−1

0

∫ 1

t

(1− r + `)m−2 drd`

+
∫ t

2t+2ε−1

∫ 2t−`+2ε

t

(1− r + `)m−2 drd`

]
+ (1− t)m − (1− 2ε)m

= 1− 3
2
(1− 2ε)m − 1

2
(2t + 2ε− 1)m

≥ 1− 2(1− 2ε)m .

Subcase 2b: If t ≤ 2ε and t + ε ≤ 1/2, then t− 2ε ≤ 0,
2t + 2ε− 1 ≤ 0 and

p2 = m(m− 1)
∫ t

0

∫ b(`)

a(`)

(1− r + `)m−2 drd`

+ m

∫ 2ε

t

(1− r)m−1 dr

= m(m− 1)
∫ t

0

∫ 2t−`+2ε

t

(1− r + `)m−2 drd`

+ (1− t)m − (1− 2ε)m

= 1− 3
2
(1− 2ε)m − 1

2
(1− 2t− 2ε)m

≥ 1− 2(1− 2ε)m .

Theorem 10 (SSL lower bound). For any (randomized) semi-
supervised algorithm A, any ε ∈ (0, 0.001), any δ > 0,
any absolutely continuous probability distribution D over an
open interval, there exists h ∈ H , such that

m(A,H, Dh, ε, δ) ≥ ln(1/δ)
2.01ε

− ln 2
2.01ε

.

Proof. By rescaling trick (Lemma 7 part (a)) we can as-
sume that D is uniform over (0, 1). Fix A, ε, δ. We show
the existence of required h by a probabilistic argument. We
consider picking t uniformly at random from (0, 1) and let
h = 1(−∞, t]. We prove that for any m ≥ 0,

E
t

Pr
S∼Dm

h

[ErrDh(A(S, Dh)) ≥ ε] ≥ 1
2
(1− 2ε)m . (6)

The left-hand side can rewritten as
E
t

Pr
S∼Dm

h

[ErrDh(A(S, Dh)) ≥ ε]

= E
t

E
S∼Dm

h

1{(t, S) : ErrDh(A(S, D)) ≥ ε}

= E
S∼Dm

E
t
1{(t, S) : ErrDh(A((S, h(S)), D)) ≥ ε}

= E
S∼Dm

Pr
t

[ErrDh(A(h(S), Dh)) ≥ ε]

40

To lower bound the last expression, fix unlabeled points 0 ≤
x1 ≤ x2 ≤ · · · ≤ xm ≤ 1. For convenience, let x0 = 0 and
xm+1 = 1. We claim that

Pr
t

[
ErrDh(A((S, h(S)), D)) ≥ ε

]
≥

m∑
i=0

max(xi+1 − xi − 2ε, 0) . (7)

To prove that we also fix i ∈ {0, 1, 2, . . . ,m} and restrict t
to lie in the interval (xi, xi+1]. The labels in (S, h(S)) are
hence fixed. Hence the hypothesis g = A((S, h(S)), D) is
fixed. It is not hard to see that regardless of g∫ xi+1

xi

1
{
t : ErrDh(g) ≥ ε

}
dt ≥ max(xi+1−xi−2ε, 0) ,

which follows from that the set {t : ErrDh(g) < ε} is
contained in an interval of length at most 2ε. Summing over
all i we obtain (7).

In order to prove (6) we will compute expectation over
S ∼ Dm of both sides of (7). Expectation of the left side of
(7) equals to the left side of (6). The expectation of the right
side of (7) is equal to

Im = m!
∫ xm+1

0

∫ xm

0

∫ xm−1

0

· · ·
∫ x2

0︸ ︷︷ ︸
m times

m∑
i=0

max(xi+1 − xi − 2ε, 0)

dx1 · · ·dxm−2dxm−1dxm ,

since there are m! equiprobable choices for the order of the
points x1, x2, . . . , xm among which we choose, without loss
of generality, the one with x1 ≤ x2 ≤ · · · ≤ xm. We look at
Im as a function of xm+1 and we prove that

Im(xm+1) = (max(xm+1 − 2ε, 0))m+1
, (8)

for any m ≥ 0 and any xm+1 ∈ [0, 1]. The bound (6) follows
from (8), since Im = Im(1) = (1 − 2ε)m+1 ≥ 1

2 (1 − 2ε)m

for ε ≤ 1/4. In turn, (8) follows, by induction on m, from
the recurrence

Im(xm+1) = m

∫ xm+1

0

Im−1(xm)

+ max(xm+1 − xm − 2ε, 0) · xm−1
m dxm ,

which is valid for all m ≥ 1. In the base case, m = 0,
I0(x1) = max(x1 − 2ε, 0) trivially follows by definition.
In the inductive case, m ≥ 1, we consider two cases. First
case, xm+1 < 2ε, holds since max(xi+1 − xi − 2ε, 0) = 0
and hence by definition Im(xm+1) = 0. In the second case,
xm+1 ≥ 2ε, from the recurrence and the induction hypothe-

sis we have

Im(xm+1) = m

∫ xm+1

0

(max(xm − 2ε, 0))m

+ max(xm+1 − xm − 2ε, 0) · xm−1
m dxm

= m

∫ xm+1

2ε

(xm − 2ε)m dxm

+ m

∫ xm+1−2ε

0

(xm+1 − xm − 2ε)xm−1
m dxm

=
m

m + 1
(xm+1 − 2ε)m+1

+
1

m + 1
(xm+1 − 2ε)m+1

= (xm+1 − 2ε)m+1 .

To finish the proof of the theorem, suppose m < ln(1/δ)
2.01ε −

ln 2
2.01ε . Then 1

2 (1− 2ε)m > δ, since

ln
(

1
2
(1− 2ε)m

)
=

− ln 2 + m ln(1− 2ε) > − ln 2−m(2.01ε) > ln δ ,

where we have used that ln(1 − 2ε) > −2.01ε for any ε ∈
(0, 0.001). Therefore from (6), for at least one target h =
1(−∞, t], with probability greater than δ, algorithm A fails
to output a hypothesis with error less than ε.

Remark. The ln(1/δ)
2.01 ε − O(1

ε) lower bound applies to super-
vised learning as well. However, we do not know of any su-
pervised algorithm (deterministic or randomized) that has as-
ymptotic sample complexity c ln(1/δ)

ε for any constant c < 1.
For example, the randomized algorithm that outputs with
probability 1/2 the hypothesis 1(−∞, `] and with probabil-
ity 1/2 the hypothesis 1(−∞, r) still cannot achieve the SSL
sample complexity. We conjecture that all supervised algo-
rithms for learning thresholds on real line in the realizable
setting have asymptotic sample complexity at least ln(1/δ)

ε .

6.3 Sample Complexity in Agnostic Case
In this section, we show that even in the agnostic setting SSL
does not have more than constant factor improvement over
SL. We prove some lower bounds for some classes over the
real line. We introduce the notion of a b-shatterable distri-
bution, which intuitively, are distributions where there are b
“clusters” that can be shattered by the concept class. The
main lower bound of this section are for such distributions
(see Theorem 15). We show how this lower bound results
in tight sample complexity bounds for two concrete prob-
lems. The first is learning thresholds on the real line where
we show a bound of Θ(ln(1/δ)/ε2). Then we show sample
complexity of Θ

(
2d+ln(1/δ)

ε2

)
for the union of d intervals on

the real line.
The sample complexity of the union of d intervals for a

fixed distribution in a noisy setting has also been investigated
by Gentile and Helmbold [11]. They show a lower bound
of Ω

(
2d log 1

∆/(∆(1− 2η)2)
)

where ∆ is the distance to
the target that the learning algorithm should guarantee with

41

high probability, and η is the probability of a wrong label ap-
pearing (see classification noise model of [1]). This notation
implies that the difference in true error of target and the algo-
rithm’s output is ε = (1−2η)∆. Setting η = 1/2−ε/4 gives
Ω(2d/ε2). We note that we do not make the assumption of a
constant level of noise for each unlabeled example. It turns
out, however, that in our proofs we do construct worst case
distributions that have a constant noise rate that is slightly
below 1/2.

We point out two main differences between our results
and that of Gentile and Helmbold. The first being that we
explicitly construct noisy distributions to obtain ε2 in the
denominator. The second difference is that our technique
appears to be quite different from theirs, which uses an in-
formation theory approach, whereas we make use of known
techniques based on lower bounding how well one can dis-
tinguish similar noisy distributions, and then applying an av-
eraging argument. The main tools used in this section come
from Anthony and Bartlett [2, Chapter 5].

We first cite a result on how many examples are needed to
distinguish two similar, Bernoulli distributions in Lemma 11.
Then in Lemma 12 we prove an analogue of this for arbitrary
unlabeled distributions. The latter result is used to give us a
lower bound in Theorem 15 for b-shatterable distributions
(see Definition 14). Corollary 13 and 16 gives us tight sam-
ple complexity bounds for thresholds and union of intervals
on R.

Lemma 11 (Anthony and Bartlett [2]). Suppose that P is
a random variable uniformly distributed on {P1, P2} where
P1, P2 are Bernoulli distributions over {0, 1} with P1(1) =
1/2 − γ and P2(1) = 1/2 + γ for 0 < γ < 1/2. Suppose
that ξ1, . . . , ξm are IID {0, 1} valued random variables with
Pr(ξi = 1) = P (1) for each i. Let f be a function from
{0, 1}m → {P1, P2}. Then

E
P

Pr
ξ∼P m

[f(ξ) 6= P] >
1
4

(
1−

√
1− exp

(
−4mγ2

1− 4γ2

))
=: F (m, γ).

One can view the lemma this way: if one randomly picks
two weighted coins with similar biases, then there’s a lower
bound on the confidence with which one can accurately pre-
dict the coin that was picked.

The next result is similar except an unlabeled distribution
D is fixed, and the distributions we want to distinguish will
be extensions of D.

Lemma 12. Fix any X , H , D over X , and m > 0. Sup-
pose there exists h, g ∈ H with D(h∆g) > 0. Let Ph

and Pg be the extension of D such that Ph((x, h(x))|x) =
Pg((x, g(x))|x) = 1/2+γ. Let AD : (h∆g×{0, 1})m → H
be any function. Then for any x1, . . . , xm ∈ h∆g, there ex-
ists P ∈ {Ph, Pg} such that if yi ∼ Pxi

for all i,

Pr
yi

[ErrP (AD((x1, y1), . . . , (xm, ym)))−OPTP

> γD(h∆g)] > F (m, γ) .

Where Px is the conditional distribution of P given x, and
OPTP = 1/2 − γ. Thus if the probability of failure is at

most δ, we require

m ≥
(

1
4γ2

− 1
)

ln
1
8δ

. (9)

Proof. Suppose for a contradiction this is not true. Let P =
{Ph, Pg}. Then there exists an AD and x1, . . . , xm such that

∀P ∈ P, Pr
yi

[ErrP (AD((x1, y1), . . . , (xm, ym)))−OPTP

> γD(h∆g)] ≤ F (m, γ). (10)

Then we will show that the lower bound in Lemma 11 can
be violated. Now h∆g can be partitioned into ∆0 = {x :
h(x) = 0} and ∆1 = {x : h(x) = 1}. Without loss of gen-
erality assume {x1, . . . , xl} ⊆ ∆0 and {xl+1, . . . , xm} ⊆
∆1. Let A = AD((x1, y1), . . . , (xm, ym)).

From the triangle inequality D(A∆h) + D(A∆g) ≥
D(h∆g). Thus if A is closer to h then D(A∆g) ≥ D(h∆g)/2
and vice versa. Let P be a random variable uniformly dis-
tributed on P . We have Pr(y1 = 1) = · · · = Pr(yl = 1) =
P∆0(1) = Pr(yl+1 = 0) = · · · = Pr(ym = 0) = P∆1(0).

Let ξ1, . . . , ξm ∼ P∆0 so that Pr(ξi = 1) = 1/2 − γ
when P = Ph and equal to 1/2 + γ when P = Pg . Let us
define the function f : {0, 1}m → P as follows. It will take
as input ξ1, . . . , ξm then transform this to an input of AD as
I = (x1, ξ1), . . . , (xl, ξl), (xl+1, 1−ξl+1), . . . , (xm, 1−ξm)
so that ξi and 1 − ξj is from the same distribution as yi and
yj , respectively, for i ≤ l, j > l. Now define

f(ξ1, . . . , ξl) =
{

Ph if D(AD(I)∆h) < D(AD(I)∆g)
Pg otherwise

.

We have

E
P

Pr
ξ∼P m

∆0

[f(ξ) 6= P]

≤ E
P

Pr
ξ

[D(AD(I)∆OPTP) > D(h∆g)/2]

≤ E
P

Pr
ξ

[
ErrP (AD(I))−OPTP > γD(h∆g)

]
≤ F (m, γ)

where the last inequality follows from (10). This is a con-
tradiction, so the lower bound from Lemma 11 must apply.
If the probability of failure F (m, γ) is at most δ, solving the
inequality for m gives (9).

Corollary 13. The SSL sample complexity of learning thresh-
olds over the uniform distribution over (0, 1) is Θ(ln(1/δ)/ε2).

Proof. Upper bound comes from any ERM algorithm. Let
h = 1(−∞, 0] and g = 1(−∞, 1] so D(h∆g) = 1. Set
γ = ε as in Lemma 12.

Definition 14. The triple (X , H , D) is b-shatterable if there
exists disjoint sets C1, C2, . . . , Cb with D(Ci) = 1/b for
each i, and for each S ⊆ {1, 2, . . . , b}, there exists h ∈ H
such that

h ∩

(
b⋃

i=1

Ci

)
=
⋃
i∈S

Ci.

42

Theorem 15. If (X , H , D) is b-shatterable and H contains
h, g with D(h∆g) = 1 then a lower bound on the SSL sam-
ple complexity for 0 < ε, δ < 1/64 is

Ω
(

b + ln 1
δ

ε2

)
.

Proof. The proof is similar to Theorem 5.2 in Anthony and
Bartlett [2]. Let G = {h1, h2, . . . , h2b} be the class of func-
tions that b-shatters D with respect to C = {C1, . . . , Cb}.
We construct noisy extensions of D, P = {P1, P2, . . . , P2b}
so that for each i, Pi((x, hi(x))) = (1 + 2γ)/(2b). For
any h ∈ H let snap(h) = argminh′∈G D(h∆h′). Suppose
P ∈ P , let h∗ denote the optimal classifier which is some
g ∈ G depending on the choice of P . If i 6= j and N(hi, hj)
is the number of sets in C where hi and hj disagree, then
D(hi∆hj) ≥ N(hi, hj)/b, and since G is a 1/b-packing,

ErrP (h) ≥ ErrP (h∗) +
γ

b
N(snap(h), h∗)

=
1
2
(
ErrP (snap(h)) + ErrP (h∗)

)
. (11)

Modifying the proof of Anthony and Bartlett with the use of
Lemma 12 rather than Lemma 11 we get that there exists a
P ∈ P such that whenever m ≤ b/(320ε2),

Pr
S∼P m

[
ErrP (snap(A(D,S)))− ErrP (h∗) > 2ε

]
> δ.

Whenever A fails, we get from (11)

ErrP (A(D,S))− ErrP (h∗)

≥ 1
2
(
ErrP (snap(h)) + ErrP (h∗)

)
≥ ε.

To get Ω(ln(1/δ)/ε2), apply Lemma 12 with h and g.

We will now apply the above theorem to give the sample
complexity for learning union of intervals on the real line.
Recall that by the rescaling trick, we only need to consider
the sample complexity with respect to the uniform distribu-
tion on (0, 1).

Corollary 16. The SSL sample complexity for learning the
class of union of at most d intervals UId = {[a1, a2)∪ · · · ∪
[a2l−1, a2l) : l ≤ d, 0 ≤ a1 ≤ a2 ≤ · · · ≤ a2l ≤ 1} over
uniform distribution on (0, 1) is

Θ
(

2d + ln 1
δ

ε2

)
.

Proof. We have VC(UId) = 2d, thus the upper bound fol-
lows immediately. Construct 2d-shatterable sets by letting
Ci = [(i − 1)/2d, i/2d) for i = 1, . . . , 2d. For any S ⊆
{1, . . . , 2d} define hS =

⋃
i∈S Ci. Now if |S| ≤ d then

clearly hS ∈ UId, if |S| > d then hS ∈ UId since |S| < d.
But then [0, 1)\hS can be covered by at most d intervals, so
hS ∈ UId. Thus the set {hS : S ⊆ {1, . . . , 2d}} 2d-shatters
D on [0, 1]. Also let h = [0, 0) = ∅ and g = [0, 1). Now
apply Theorem 15 for the bound.

6.4 No Optimal Semi-Supervised Algorithm
One could imagine a different formulation of the compar-
ison between SL and SSL paradigms. For example, one
might ask naively whether, for given class H , there is a semi-
supervised algorithm A, such that for any supervised algo-
rithm B, and any ε, δ, on any probability distribution P the
sample complexity of A is no higher than the sample com-
plexity of B. The answer to the question is easily seen to be
negative, because for any P there exists a supervised learn-
ing algorithm BP that ignores the labeled examples and sim-
ply outputs hypothesis h ∈ H with minimum error ErrP (h)
(or even Bayes optimal classifier for P). On P the sample
complexity of BP is zero, unfortunately, on P ′, sufficiently
different from P , the sample complexity of BP is infinite.

One might disregard algorithms such as BP and ask the
same question as above, except that one quantifies over only
the subset of algorithms that on any distribution over X ×
{0, 1} have sample complexity that is polynomial in 1/ε and
ln(1/δ). Such algorithms are often called PAC (Probably
Approximately Correct). The following theorem demonstrates
that such restriction does not help and the answer to the ques-
tion is still negative.

Theorem 17. Let H = {1(−∞, t] : t ∈ R} be the class of
thresholds over the real line. For any absolutely continuous
distribution D (with respect to Lebesgue measure on R), any
semi-supervised algorithm A, any ε > 0 and δ ∈ (0, 1

2),
there exists a distribution P ∈ Ext(D) and a supervised
PAC learning algorithm B such that

m(A,H, P, ε, δ) > m(B,H,P, ε, δ) .

Proof. Fix any A, D and m. Let L be the algorithm that
chooses the left most empirical error minimizer, that is, on a
sample S, L outputs 1(−∞, `], where

` = inf
{

t ∈ R : ErrS(1(−∞, t]) = min
h′∈H

ErrS(h′)
}

.

For any h ∈ H we also define algorithm Lh, which outputs h
if ErrS(h) = 0, and otherwise Lh outputs L(S). First, note
that L ≡ L1∅. Second, for any h, Lh outputs a hypothesis
that minimizes empirical error, and since VC(H) = 1, it is a
PAC algorithm. Third, clearly the sample complexity of Lh

on Dh is zero (regardless of ε and δ).
Theorem 10 shows that there exists h ∈ H such that

the sample complexity of A on Dh is positive, in fact, it is
increasing as ε and δ approach zero. Thus there exists super-
vised algorithm B = Lh with lower sample complexity than
A.

7 Conclusion
We provide a formal analysis of the sample complexity of
semi-supervised learning compared to that of learning from
labeled data only. We focus on bounds that do not depend on
assumptions concerning the relationship between the labels
and unlabeled data distribution.

Our main conclusion is that in such a setting semi-supervised
learning has limited advantage. Formally, we show that for
basic concept classes over the real line this advantage is never
more than a constant factor of the sample size. We believe
that this phenomena applies much more widely.

43

We also briefly address the error bounds under common
assumptions on the relationship between unlabeled data and
the labels. We demonstrate that even when such assumptions
apply common SSL paradigms may be inferior to standard
empirical risk minimization. We conclude that prior beliefs
like the cluster assumption should be formulated more pre-
cisely to reflect the known practical merits of SSL. This dis-
cussion highlights a dire deficiency in current approach to
semi-supervised learning; common assumptions about these
labels-unlabeled structure relationships do not offer any method
for reliably checking if they hold (in any given learning prob-
lem).

The paper calls attention to, and formalizes, some natural
fundamental questions about the theory-practice gap con-
cerning semi-supervised learning. The major open question
we raise is whether any semi-supervised learning algorithm
can achieve sample size guarantees that are unattainable with-
out access to unlabeled data. This is formalized in Conjec-
tures 5 and 4.

Acknowledgements. We like to thank Nati (Nathan) Srebro
and Vitaly Feldman for useful discussions.

References
[1] Dana Angluin and Philip D. Laird. Learning from noisy

examples. Machine Learning, 2(4):343–370, 1987.
[2] Martin Anthony and Peter L. Bartlett. Neural Network

Learning: Theoretical Foundations. Cambridge Uni-
versity Press, January 1999.

[3] Maria-Florina Balcan and Avrim Blum. A PAC-style
model for learning from labeled and unlabeled data. In
Proceedings of 18th Annual Conference on Learning
Theory 2005, pages 111–126. Springer, 2005.

[4] Maria-Florina Balcan and Avrim Blum. An augmented
PAC model for semi-supervised learning. In Olivier
Chapelle, Bernhard Schölkopf, and Alexander Zien,
editors, Semi-Supervised Learning, chapter 21, pages
61–89. MIT Press, September 2006.

[5] Gyora M. Benedek and Alon Itai. Learnability with re-
spect to fixed distributions. Theoretical Computer Sci-
ence, 86(2):377–389, 1991.

[6] Avrim Blum and Tom M. Mitchell. Combining labeled
and unlabeled sata with co-training. In COLT, pages
92–100, 1998.

[7] Olivier Chapelle, Bernhard Schölkopf, and Alexander
Zien, editors. Semi-Supervised Learning. MIT Press,
September 2006.

[8] Fabio Cozman and Ira Cohen. Risks of semi-supervised
learning: How unlabeled data can degrade performance
of generative classifiers. In Olivier Chapelle, Bern-
hard Schölkopf, and Alexander Zien, editors, Semi-
Supervised Learning, chapter 4, pages 57–72. MIT
Press, September 2006.

[9] Ran El-Yaniv and Dmitry Pechyony. Stable transduc-
tive learning. In COLT, pages 35–49, 2006.

[10] Ran El-Yaniv and Dmitry Pechyony. Transductive
rademacher complexity and its applications. In COLT,
pages 157–171, 2007.

[11] Claudio Gentile and David P. Helmbold. Improved
lower bounds for learning from noisy examples: and

information-theoretic approach. In Proceedings of
COLT 1998, pages 104–115. ACM, 1998.

[12] Matti Kääriäinen. Generalization error bounds using
unlabeled data. In Proceedings of COLT 2005, pages
127–142. Springer, 2005.

[13] P.Rigollet. Generalization error bounds in semi-
supervised classification under the cluster assumption.
The Journal of Machine Learning Research, 8:1369–
1392, 2007.

[14] Vladimir N. Vapnik. Statistical Learning Theory.
Wiley-Interscience, September 1998.

[15] Vladimir N. Vapnik. Transductive inference and
semi-supervised learning. In Olivier Chapelle, Bern-
hard Schölkopf, and Alexander Zien, editors, Semi-
Supervised Learning, chapter 24, pages 453–472. MIT
Press, September 2006.

44

The True Sample Complexity of Active Learning

Maria-Florina Balcan
Computer Science Department

Carnegie Mellon University
ninamf@cs.cmu.edu

Steve Hanneke
Machine Learning Department

Carnegie Mellon University
shanneke@cs.cmu.edu

Jennifer Wortman
Computer and Information Science

University of Pennsylvania
wortmanj@seas.upenn.edu

Abstract

We describe and explore a new perspective on the
sample complexity of active learning. In many sit-
uations where it was generally believed that ac-
tive learning does not help, we show that active
learning does help in the limit, often with expo-
nential improvements in sample complexity. This
contrasts with the traditional analysis of active
learning problems such as non-homogeneous lin-
ear separators or depth-limited decision trees, in
which Ω(1/ǫ) lower bounds are common. Such
lower bounds should be interpreted carefully; in-
deed, we prove that it is always possible to learn an
ǫ-good classifier with a number of samples asymp-
totically smaller than this. These new insights arise
from a subtle variation on the traditional definition
of sample complexity, not previously recognized
in the active learning literature.

1 Introduction

Machine learning research has often focused on the problem
of learning a classifier from labeled examples sampled inde-
pendent from the particular learning algorithm that is used.
However, for many contemporary practical problems such
as classifying web pages or detecting spam, there is often
an abundance ofunlabeleddata available, from which a rel-
atively small subset is selected to be labeled and used for
learning. In such scenarios, the question arises of how to
select that subset of examples to be labeled.

One possibility, which has recently been generating sub-
stantial interest, isactive learning. In active learning, the
learning algorithm itself is allowed to select the subset of un-
labeled examples to be labeled. It does this sequentially (i.e.,
interactively), using the requested label information from
previously selected examples to inform its decision of which
example to select next. The hope is that by only requesting
the labels of informative examples, the algorithm can learn
a good classifier using significantly fewer labels than would
be required if the labeled set were sampled at random.

A number of active learning analyses have recently been
proposed in a PAC-style setting, both for the realizable and
for the agnostic cases, resulting in a sequence of important
positive and negative results [6, 7, 8, 2, 10, 4, 9, 13, 12].

In particular, the most concrete noteworthy positive result
for when active learning helps is that of learning homo-
geneous (i.e., through the origin) linear separators, when
the data is linearly separable and distributed uniformly over
the unit sphere, and this example has been extensively an-
alyzed [8, 2, 10, 4, 9]. However, few other positive results
are known, and there are simple (almost trivial) examples,
such as learning intervals or non-homogeneous linear sepa-
rators under the uniform distribution, where previous analy-
ses of sample complexities have indicated that perhaps active
learning does not help at all [8].

In this work, we approach the analysis of active learn-
ing algorithms from a different angle. Specifically, we point
out that traditional analyses have studied the number of label
requests required before an algorithm can both produce anǫ-
good classifierandprove that the classifier’s error is no more
thanǫ. These studies have turned up simple examples where
this number is no smaller than the number of random labeled
examples required for passive learning. This is the case for
learning certain nonhomogeneous linear separators and in-
tervals on the real line, and generally seems to be a common
problem for many learning scenarios. As such, it has led
some to conclude that active learningdoes not helpfor most
learning problems. One of the goals of our present analysis
is to dispel this misconception. Specifically, we study the
number of labels an algorithm needs to request before it can
produce anǫ-good classifier, even if there is no accessible
confidence bound available to verify the quality of the clas-
sifier. With this type of analysis, we prove that active learn-
ing can essentially always achieve asymptotically superior
sample complexity compared to passive learning when the
VC dimension is finite. Furthermore, we find that for most
natural learning problems, including the negative examples
given in the previous literature, active learning can achieve
exponential1 improvements over passive learning with re-
spect to dependence onǫ. This situation is characterized in
Figure 1.1.

1.1 A Simple Example: Unions of Intervals

To get some intuition about when these types of sample com-
plexity are different, consider the following example. Sup-
pose thatC is the class of all intervals over[0, 1] andD is

1We slightly abuse the term “exponential” throughout the paper.
In particular, we refer to anypolylog(1/ǫ) as being an exponential
improvement over1/ǫ.

45

Best accessible confidence

bound on the error

True error rate of

the learner's hypothesis

Γ polylogH1�ΕL 1�Ε
labels

Ε

Figure 1.1: Active learning can often achieve exponential
improvements, though in many cases the amount of improve-
ment cannot be detected from information available to the
learning algorithm. Hereγ may be a target-dependent con-
stant.

a uniform distribution over[0, 1]. If the target function is
the empty interval, then for any sufficiently smallǫ, in order
to verify with high confidence that this (or any) interval has
error≤ ǫ, we need to request labels in at least a constant
fraction of theΩ(1/ǫ) intervals [0, ǫ], [ǫ, 2ǫ], . . ., requiring
Ω(1/ǫ) total label requests.

However, no matter what the target function is, we can
findanǫ-good classifier with only a logarithmic sample com-
plexity via the following extremely simple 2-phase learning
algorithm. We start with a large (Ω(1/ǫ)) set of unlabeled ex-
amples. In the first phase, on each round we choose a point
x uniformly at random from the unlabeled sample and query
its label. We repeat this until we observe the first+1 label, at
which point we enter the second phase. In the second phase,
we alternate between running one binary search on the ex-
amples between0 and thatx and a second on the examples
between thatx and1 to approximate the end-points of the
interval. At the end, we output a smallest interval consistent
with the observed positive labels.

If the targeth∗ labels every point as−1 (the so-called
all-negativefunction), the algorithm described above would
output a hypothesis with0 error even after0 label requests.
On the other hand, if the target is an interval[a, b] ⊆ [0, 1],
whereb − a = w > 0, then after roughlyO(1/w) queries
(a constant number that depends only on the target), a posi-
tive example will be found. Since onlyO(log(1/ǫ)) queries
are required to run the binary search to reach error rateǫ, the
sample complexity is at worst logarithmic in1/ǫ. Thus, we
see a sharp distinction between the sample complexity re-
quired tofind a good classifier (logarithmic) and the sample
complexity needed to both find a good classifierand verify
that it is good.

This example is particularly simple, since there is effec-
tively only one “hard” target function (the all-negative tar-
get). However, most of the spaces we study are significantly
more complex than this, and there are generally many targets
for which it is difficult to achieve good verifiable complexity.

Our Results: We show that in many situations where it
was previously believed that active learning cannot help, ac-
tive learning does help in the limit. Our main specific contri-

butions are as follows:

• We distinguish between two different variations on the
definition of sample complexity. The traditional defi-
nition, which we refer to asverifiable sample complex-
ity, focuses on the number of label requests needed to
obtain a confidence bound indicating an algorithm has
achieved at mostǫ error. The newer definition, which
we refer to simply assample complexity, focuses on the
number of label requests before an algorithm actually
achieves at mostǫ error. We point out that the latter is
often significantly smaller than the former, in contrast
to passive learning where they are often equivalent up
to constants for most nontrivial learning problems.

• We prove thatanydistribution and finite VC dimension
concept class has active learning sample complexity
asymptotically smaller than the sample complexity of
passive learning for nontrivial targets. A simple corol-
lary of this is that finite VC dimension implieso(1/ǫ)
active learning sample complexity.

• We show it is possible to actively learn with anexponen-
tial rate a variety of concept classes and distributions,
many of which are known to require a linear rate in the
traditional analysis of active learning: for example, in-
tervals on[0, 1] and non-homogeneous linear separators
under the uniform distribution.

• We show that even in this new perspective, there do
exist lower bounds; it is possible to exhibit somewhat
contrived distributions where exponential rates are not
achievable even for some simple concept spaces (see
Theorem 12). The learning problems for which these
lower bounds hold are much more intricate than the
lower bounds from the traditional analysis, and intu-
itively seem to represent the core of what makes a hard
active learning problem.

2 Background and Notation

Let X be an instance space andY = {−1, 1} be the set of
possible labels. LetC be the hypothesis class, a set of mea-
surable functions mapping fromX to Y, and assume thatC
has VC dimensiond. We consider here the realizable set-
ting in which it is assumed that the instances are labeled by
a target functionh∗ in the classC. Theerror rate of a hy-
pothesish with respect to a distributionD overX is defined
aser(h) = PD(h(x) 6= h∗(x)).

We assume the existence of an infinite sequence
x1, x2, . . . of examples sampled i.i.d. according toD. The
learning algorithm may access any finite initial segment
x1, x2, . . . , xm. Essentially, this means we allow the algo-
rithm access to an arbitrarily large, but finite, sequence of
random unlabeled examples. In active learning, the algo-
rithm can select any examplexi, and request the labelh∗(xi)
that the target assigns to that example, observing the labels
of all previous requests before selecting the next example to
query. The goal is to find a hypothesish with small error with
respect toD, while simultaneously minimizing the number
of label requests that the learning algorithm makes.

46

2.1 Two Definitions of Sample Complexity

The following definitions present a subtle but significant dis-
tinction we refer to throughout the paper. Several of the re-
sults that follow highlight situations where these two defini-
tions of sample complexity can have dramatically different
dependence onǫ.

Definition 1 A function S(ǫ, δ, h∗) is a verifiable sample
complexityfor a pair (C, D) if there exists an active learn-
ing algorithmA(t, δ) that outputs both a classifierht anda
valueǫ̂t ∈ R after making at mostt label requests, such that
for any target functionh∗ ∈ C, ǫ ∈ (0, 1/2), δ ∈ (0, 1/4),
for anyt ≥ S(ǫ, δ, h∗),

PD(er(ht) ≤ ǫ̂t ≤ ǫ) ≥ 1− δ.

Definition 2 A functionS(ǫ, δ, h∗) is a sample complexity
for a pair (C, D) if there exists an active learning algorithm
A(t, δ) that outputs a classifierht after making at mostt
label requests, such that for any target functionh∗ ∈ C, ǫ ∈
(0, 1/2), δ ∈ (0, 1/4), for anyt ≥ S(ǫ, δ, h∗),

PD(er(ht) ≤ ǫ) ≥ 1− δ.

Note that both types of sample complexity can be target-
dependent and distribution-dependent. The only distinction
is whether or not there is an accessible guarantee on the error
of the chosen hypothesis that is also at mostǫ. This confi-
dence bound can only depend on quantities accessible to the
learning algorithm, such as thet requested labels. Thus, any
verifiable sample complexity function is also a sample com-
plexity function, but we study a variety of cases where the
reverse is not true. In situations where there are sample com-
plexity functions significantly smaller than any achievable
verifiable sample complexities, we sometimes refer to the
smaller quantity as thetrue sample complexityto distinguish
it from the verifiable sample complexity.

A common alternative formulation of verifiable sample
complexity is to letA takeǫ as an argument and allow it to
choose online how many label requests it needs in order to
guarantee error at mostǫ [8]. This alternative definition is
essentially equivalent (either definition can be reduced to the
other without significant loss), as the algorithm must be able
to produce a confidence bound of size at mostǫ on the error
of its hypothesis in order to decide when to stop requesting
labels anyway.2

2.2 The Verifiable Sample Complexity

To date, there has been a significant amount of work study-
ing the verifiable sample complexity (though typically un-
der the aforementioned alternative formulation). It is clear
from standard results in passive learning that verifiable sam-
ple complexities ofO ((d/ǫ) log(1/ǫ) + (1/ǫ) log(1/δ)) are

2There is some question as to what the “right” formal model
of active learning is in general. For instance, we could instead let
A generate an infinite sequence ofht hypotheses (or(ht, ǫ̂t) in
the verifiable case), whereht can depend only on the firstt label
requests made by the algorithm along with some initial segment
of unlabeled examples (as in [5]), representing the case where we
are not sure a-priori of when we will stop the algorithm. However,
for our present purposes, such alternative models are equivalent in
sample complexity up to constants.

easy to obtain for any learning problem, by requesting the
labels of random examples. As such, there has been much
interest in determining when it is possible to achieve verifi-
able sample complexitysmaller than this, and in particular,
when the verifiable sample complexity is a polylogarithmic
function of1/ǫ (representing exponential improvements over
passive learning).

One of the earliest active learning algorithms in this
model is the selective sampling algorithm of Cohn, Atlas,
and Ladner [6], henceforth referred to as CAL. This algo-
rithm keeps track of two spaces—the currentversion space
Ci, defined as the set of hypotheses inC consistent with all
labels revealed so far, and the currentregion of uncertainty
Ri = {x ∈ X : ∃h1, h2 ∈ Ci s.t.h1(x) 6= h2(x)}. In
each roundi, the algorithm picks a random unlabeled exam-
ple fromRi and requests its label, eliminating all hypotheses
in Ci inconsistent with the received label to make the next
version spaceCi+1. The algorithm then definesRi+1 as the
region of uncertainty for the new version spaceCi+1 and
continues. Its final hypothesis can then be taken arbitrarily
from Ct, the final version space, and we use the diameter of
Ct for the ǫ̂t error bound.

While there are a small number of cases in which this
algorithm and others have been shown to achieve exponen-
tial improvements in the verifiable sample complexity for all
targets (most notably, the case of homogeneous linear sepa-
rators under the uniform distribution), there exist extremely
simple concept classes for whichΩ(1/ǫ) labels are needed
for some targets. For example, consider the class of intervals
in [0, 1] under the uniform distribution. In order to distin-
guish the all-negative target from the set of hypotheses that
are positive on a region of weightǫ and make a high proba-
bility guarantee,Ω(1/ǫ) labeled examples are needed [8].

Recently, there have been a few quantities proposed to
measure the verifiable sample complexity of active learning
on any given concept class and distribution. Dasgupta’ssplit-
ting index[8], which is dependent on the concept class, data
distribution, target function, and a parameterτ , quantifies
how easy it is to make progress toward reducing the diam-
eter of the version space by choosing an example to query.
Another quantity to which we will frequently refer is Han-
neke’sdisagreement coefficient[12], defined as follows.

Definition 3 For anyh ∈ C andr > 0, letB(h, r) be a ball
of radiusr aroundh in C. That is,

B(h, r) = {h′ ∈ C : PD(h(x) 6= h′(x)) ≤ r} .

For any hypothesis classC, define theregion of disagree-
mentas

DIS(C) = {x ∈ X : ∃h1, h2 ∈ C : h1(x) 6= h2(x)} .

Additionally, letC̄ denote any countable dense subset ofC.3

For our purposes, thedisagreement coefficient of a hypothe-
sish, denotedθh, is defined as

θh = sup
r>0

P(DIS(B̄(h, r)))

r
.

3That is, C̄ is countable and∀h ∈ C,∀ǫ > 0,∃h′ ∈ C̄ :
P(h(X) 6= h′(X)) ≤ ǫ. Such a subset exists, for example, in
any C with finite VC dimension. We introduce this countable
dense subset to avoid certain degenerate behaviors, such as when
DIS(B(h, 0)) = X .

47

The disagreement coefficient for aconcept spaceC is de-
fined asθ = suph∈C θh.

The disagreement coefficient is often a useful quan-
tity for analyzing the verifiable sample complexity of ac-
tive learning algorithms. For example, it has been shown
that the algorithm of Cohn, Atlas, and Ladner described
above achieves a verifiable sample complexity at mostθh∗d ·
polylog(1/(ǫδ)) when run with concept class̄C for target
functionh∗ ∈ C [12]. We will see that both the disagree-
ment coefficient and splitting index are also useful quantities
for analyzing true sample complexities, though their use in
that case is less direct.

2.3 The True Sample Complexity

This paper focuses on situations where true sample complex-
ities are significantly smaller than verifiable sample com-
plexities. In particular, we show that many common pairs
(C, D) have sample complexity that is polylogarithmic in
both 1/ǫ and 1/δ and linear only in some finite target-
dependent constantγh∗ . This contrasts sharply with the infa-
mous1/ǫ lower bounds mentioned above, which have been
identified for verifiable sample complexity. The implication
is that, for any fixed targeth∗, such lower bounds vanish as
ǫ approaches0. This also contrasts with passive learning,
where1/ǫ lower bounds are typically unavoidable [1].

Definition 4 We say that(C, D) is actively learnable at an
exponential rate if there exists an active learning algorithm
achieving sample complexity

S(ǫ, δ, h∗)=γh∗ · polylog (1/(ǫδ))

for some finiteγh∗ = γ(h∗, D) independent ofǫ andδ.

3 Strict Improvements of Active Over Passive
In this section, we describe conditions under which active
learning can achieve a sample complexity asymptotically su-
perior to passive learning. The results are surprisingly gen-
eral, indicating that whenever the VC dimension is finite,
essentiallyanypassive learning algorithm is asymptotically
dominatedby an active learning algorithm onall targets.

Definition 5 A function S(ǫ, δ, h∗) is a passive learning
sample complexity for a pair(C, D) if there exists an algo-
rithm A(((x1, h

∗(x1)), (x2, h
∗(x2)), . . . , (xt, h

∗(xt))), δ)
that outputs a classifierht, such that for any target function
h∗ ∈ C, ǫ ∈ (0, 1/2), δ ∈ (0, 1/4), for anyt ≥ S(ǫ, δ, h∗),

PD(er(ht) ≤ ǫ) ≥ 1− δ.

Thus, a passive learning sample complexity corresponds
to a restriction of an active learning sample complexity to
algorithms that specifically request the firstt labels in the
sequence and ignore the rest. In particular, it is known that
for any finite VC dimension class, there is always anO (1/ǫ)
passive learning sample complexity [14]. Furthermore, this
is often tight (though not always), in the sense that for any
passive algorithm, there exist targets for which the corre-
sponding passive learning sample complexity isΩ (1/ǫ) [1].
The following theorem states that for any passive learning
sample complexity, there exists an achievable active learn-
ing sample complexity with a strictly slower asymptotic rate
of growth. Its proof is included in Appendix D.

Theorem 6 SupposeC has finite VC dimension, and let
D be any distribution onX . For any passive learning
sample complexitySp(ǫ, δ, h) for (C, D), there exists an
active learning algorithm achieving a sample complexity
Sa(ǫ, δ, h) such that, for all targetsh ∈ C for which
Sp(ǫ, δ, h) = ω(1),4

Sa(ǫ, δ, h) = o (Sp(ǫ/4, δ, h)) .

In particular, this implies the following simple corollary.

Corollary 7 For any C with finite VC dimension, and any
distributionD overX , there is an active learning algorithm
that achieves a sample complexityS(ǫ, δ, h) such that

S(ǫ, δ, h) = o (1/ǫ)

for all targetsh ∈ C.

Proof: Let d be the VC dimension ofC. The passive
learning algorithm of Haussler, Littlestone & Warmuth [14]
is known to achieve a sample complexity no more than
(kd/ǫ) log(1/δ), for some universal constantk < 200 [14].
Applying Theorem 6 now implies the result.

Note the interesting contrast, not only to passive learning,
but also to the known results on theverifiablesample com-
plexity of active learning. This theorem definitively states
that theΩ (1/ǫ) lower bounds common in the literature on
verifiable samples complexity canneverarise in the anal-
ysis of the true sample complexity of finite VC dimension
classes.

4 Composing Hypothesis Classes

Recall the simple example of learning the class of inter-
vals over[0, 1] under the uniform distribution. It is well
known that the verifiable sample complexity of the “all-
negative” classifier in this class isΩ(1/ǫ). However, con-
sider the more limited classC1 ⊂ C containing only the
intervalsh with w(h) = P(h(X) = +1) > 0. Using
the simple algorithm described in Section 1.1, this restricted
class can be learned with a (verifiable) sample complexity
of only O(1/w(h) + log(1/ǫ)). Furthermore, the remain-
ing set of classifiersC2 = C \ C′ (which consists of only
the all-negative classifier) has sample complexity0. Thus,
C = C1 ∪ C2, and both(C1, D) and(C2, D) are learnable
at an exponential rate.

It turns out that it is often convenient to view concept
classes in terms of such well-constructed, possibly infinite
sequences of subsets. Generally, given a distributionD and
a function classC, suppose we can construct a sequence
of subclasses,C1, C2, . . ., whereC = ∪∞i=1Ci, such that
it is possible to actively learn any subclassCi with only

4Recall that we say a non-negative functionφ(ǫ) = o (1/ǫ) iff
lim
ǫ→0

φ(ǫ)/(1/ǫ) = 0. Similarly, φ(ǫ) = ω(1) iff lim
ǫ→0

1/φ(ǫ) = 0.

Here and below, theo(·), ω(·), Ω(·) andO(·) notation should be
interpreted asǫ → 0 (from the+ direction), treating all other pa-
rameters (e.g.,δ andh∗) as fixed constants. Note that any algorithm
achieving a sample complexitySp(ǫ, δ, h) 6= ω(1) is guaranteed,
with probability≥ 1 − δ, to achieve error zero using a finite num-
ber of samples, and therefore we cannot hope to achieve a slower
asymptotic growth in sample complexity.

48

Si(ǫ, δ, h) sample complexity. Thus, if we know that the tar-
geth∗ is in Ci, it is straightforward to guaranteeSi(ǫ, δ, h

∗)
sample complexity. However, it turns out it is also possible
to learn with sample complexityO(Si(ǫ/2, δ/2, h∗)) even
without this information. This can be accomplished by using
an aggregation algorithm.

We describe a simple algorithm for aggregation below
in which multiple algorithms are run on different subclasses
Ci in parallel and we select among their outputs by com-
parisons. Within each subclassCi we run an active learning
algorithmAi, such as Dasgupta’s splitting algorithm [8] or
CAL, with some sample complexitySi(ǫ, δ, h).

Algorithm 1 The Aggregation Procedure. Here it is assumed
that C = ∪∞i=1Ci, and that for eachi, Ai is an algorithm
achieving sample complexity at mostSi(ǫ, δ, h) for the pair
(Ci, D). The procedure takest andδ as parameters.

Let k be the largest integer s.t.k2 ⌈72 ln(4k/δ)⌉ ≤ t/2
for i = 1, . . . , k do

Let hi be the output of runningAi(⌊t/(4i2)⌋, δ/2) on
the sequence{x2n−1}∞n=1

end for
for i, j ∈ {1, 2, . . . , k} do

if P(hi(X) 6= hj(X)) > 0 then
Let Rij be the first⌈72 ln(4k/δ)⌉ elements in the se-
quence{x2n}∞n=1 for whichhi(x) 6= hj(x)
Request the labels of all examples inRij

Let mij be the number of elements inRij on which
hi makes a mistake

else
Let mij = 0

end if
end for
Returnĥt = hi wherei = argmin

i∈{1,2,...,k}
max

j∈{1,2,...,k}
mij

Using this algorithm, we can show the following sample
complexity bound. The proof appears in Appendix A.

Theorem 8 For any distributionD, let C1, C2, . . . be a se-
quence of classes such that for eachi, the pair(Ci, D) has
sample complexity at mostSi(ǫ, δ, h) for all h ∈ Ci. Let
C = ∪∞i=1Ci. Then(C, D) has a sample complexity at most

min
i:h∈Ci

max

{

4i2 ⌈Si(ǫ/2, δ/2, h)⌉ , 2i2
⌈

72 ln
4i

δ

⌉}

,

for anyh ∈ C. In particular, Algorithm 1 achieves this, when
used with theAi algorithms that each achieve theSi(ǫ, δ, h)
sample complexity.

A particularly interesting implication of Theorem 8 is
that, if we can decomposeC into a sequence of classesCi

such that each(Ci, D) is learnable at an exponential rate,
then this procedure achieves exponential rates. Since it is
more abstract and it allows us to use known active learning
algorithms as a black box, we often use this compositional
view throughout the remainder of the paper. In particular,
since the verifiable sample complexity of active learning is
presently much better understood in the existing literature,
it will often be useful to use this result in combination with

an algorithm with a known bound on itsverifiablesample
complexity. As the following theorem states, at least for the
case of exponential rates, this approach of constructing al-
gorithms with good true sample complexity by reduction to
algorithms with known verifiable complexity on subspaces
loses nothing in generality. The proof is included in Ap-
pendix B.

Theorem 9 For any (C, D) learnable at an exponential
rate, there exists a sequenceC1, C2, . . . with C = ∪∞i=1Ci,
and a sequence of active learning algorithmsA1, A2, . . .
such that the algorithmAi achievesverifiablesample com-
plexity at mostγipolylogi (1/(ǫδ)) for the pair (Ci, D).
Thus, the aggregation algorithm (Algorithm 1) achieves ex-
ponential rates when used with these algorithms.

Note that decomposing a givenC into a sequence ofCi

subsets that have good verifiable sample complexities is not
always a simple task. One might be tempted to think a simple
decomposition based on increasing values of verifiable sam-
ple complexity with respect to(C, D) would be sufficient.
However, this is not always the case, and generally we need
to use information more detailed than verifiable complexity
with respect to(C, D) to construct a good decomposition.
We have included in Appendix C a simple heuristic approach
that can be quite effective, and in particular yields good sam-
ple complexities for every(C, D) described in Section 5.

5 Exponential Rates

The results in Section 3 tell us that the sample complexity
of active learning can be made strictly superior to any pas-
sive learning sample complexity when the VC dimension is
finite. We now ask how much better that sample complex-
ity can be. In particular, we describe a number of concept
classes and distributions that are learnable at anexponential
rate, many of which are known to requireΩ(1/ǫ) verifiable
sample complexity.

5.1 Exponential rates for simple classes

We begin with a few simple observations, to point out situ-
ations in which exponential rates are trivially achievable; in
fact, in each of the cases mentioned in this subsection, the
sample complexity is actuallyO(1).

Clearly if |X | < ∞ or |C| < ∞, we can always achieve
exponential rates. In the former case, we may simply re-
quest the label of everyx in the support ofD, and thereby
perfectly identify the target. The correspondingγ = |X |.
In the latter case, for every pairh1, h2 ∈ C such that
P(h1(X) 6= h2(X)) > 0, we may request the label of any
xi such thath1(xi) 6= h2(xi), and there will be only one (up
to measure zero differences)h ∈ C that gets all of these ex-
amples correct: namely, the target function. So in this case,
we learn with an exponential rate withγ = |C|2.

Less obvious is the fact that this argument extends to any
countably infinitehypothesis classC. In particular, in this
case we can list the classifiers inC: h1, h2, Then we
define the sequenceCi = {hi}, and simply use Algorithm 1.
By Theorem 8, this gives an algorithm with sample complex-
ity S(ǫ, δ, hi) = 2i2 ⌈72 ln(4i/δ)⌉ = O(1).

49

5.2 Geometric Concepts, Uniform Distribution

Many interesting geometric concepts inR
n are learnable at

an exponential rate if the underlying distribution is uniform
on some subset ofRn. Here we provide some examples;
interestingly, every example in this subsection has some tar-
gets for which theverifiablesample complexity isΩ (1/ǫ).
As we see in Section 5.3, all of the results in this section can
be extended to many other types of distributions as well.

Unions of k intervals under arbitrary distributions: Let
X be the interval[0, 1) and let C(k) denote the class of
unions of at mostk intervals. In other words,C(k) contains
functions described by a sequence〈a0, a1, · · · , aℓ〉, where
a0 = 0, aℓ = 1, ℓ ≤ 2k + 1, anda0, · · · , aℓ is the (nonde-
creasing) sequence of transition points between negative and
positive segments (sox is labeled+1 iff x ∈ [ai, ai+1) for
someoddi). For any distribution, this class is learnable at an
exponential rate, by the following decomposition argument.
First, let

C1 = {h ∈ C(k) : P(h(X) = +1) = 0} .

That is,C1 contains the all-negative function, or any func-
tion that is equivalent given the distributionD. For i =
2, 3, . . . , k + 1, inductively define

Ci =
{

h ∈ C(k) : ∃h′ ∈ C(i−1)

s.t.P(h(X) 6= h′(X)) = 0
}

\ ∪j<iCj .

In other words,Ci contains all of the functions that can be
represented as unions ofi− 1 intervals but cannot be repre-
sented as unions of fewer intervals. ClearlyC1 has verifiable
sample complexity0. For i > 1, within each subclassCi,
the disagreement coefficient is bounded by something pro-
portional tok + 1/w(h), where

w(h) = min{P([aj, aj+1)) : 0 ≤ j < ℓ, P([aj, aj+1)) > 0}
is the weight of the smallest positive or negative interval and
〈a0, a1, · · · , aℓ〉 is the sequence of transition points corre-
sponding to thish. Thus, running CAL withC̄i achieves
polylogarithmic (verifiable) sample complexity for anyh ∈
Ci. SinceC(k) = ∪k+1

i=1 Ci, by Theorem 8,C(k) is learnable
at an exponential rate.

Ordinary Binary Classification Trees: Let X be the cube
[0, 1]n, D be the uniform distribution onX , andC be the
class of binary decision trees using a finite number of axis-
parallel splits (see e.g., Devroye et al. [11], Chapter 20). In
this case, (similarly to the previous example) we letCi be
the set of decision trees inC distance zero from a tree with
i leaf nodes, not contained in anyCj for j < i. For anyi,
the disagreement coefficient for anyh ∈ Ci (with respect to
(Ci, D)) is a finite constant, and we can chooseC̄i to have
finite VC dimension, so each(Ci, D) is learnable at an ex-
ponential rate (by running CAL with̄Ci), and thus by Theo-
rem 8,(C, D) is learnable at an exponential rate.

5.2.1 Linear Separators
Theorem 10 LetC be the hypothesis class of linear separa-
tors in n dimensions, and letD be the uniform distribution
over the surface of the unit sphere. The pair(C, D) is learn-
able at an exponential rate.

Proof: (Sketch) There are multiple ways to achieve this. We
describe here a simple proof that uses a decomposition as
follows. Let λ(h) be the probability mass of the minority
class under hypothesish. C1 contains only the separators
h with λ(h) = 0, andC2 = C \ C1. As before, we can
use a black box active learning algorithm such as CAL to
learn within each classCi. To prove that we indeed get the
desired exponential rate of active learning, we show that the
disagreement coefficient of any separatorh with respect to
(C, D) is at most∝ √n/λ(h). Hanneke’s results concerning
the CAL algorithm [12] then imply thatC2 is learnable at an
exponential rate. SinceC1 trivially has sample complexity
1, combined with Theorem 8, this would imply the result.

We describe the key steps involved in computing the dis-
agreement coefficient. First we can show that for any two
linear separatorsh(x) = sign(w · x + b) and h′(x) =
sign(w′ · x + b′), we can lower bound the distance between
them as

P(h(X) 6= h′(X)) ≥ max

{

|λ− λ′|, 2α

π
min{λ, λ′}

}

,

whereα = arccos(w·w′) is the angle betweenw andw′, λ is
the probability mass of the minority class underh, andλ′ is
the probability mass of the minority class underh′. Assume
for now thath andh′ are close enough together to have the
same minority class; it’s not necessary, but simplifies things.

We are now ready to compute the disagreement coeffi-
cient. Assumer < λ/

√
n. From the previous claim we have

B(h, r) ⊆
{

h′ : max

{

|λ− λ′|, 2α

π
min{λ, λ′}

}

≤ r

}

whereB(h, r) is the ball of radiusr aroundh in the hypoth-
esis space. The region of disagreement of the set on the left
is contained within

DIS ({h′ : w′ = w ∧ |λ′ − λ| ≤ r})

∪DIS

({

h′ :
2α

π
(λ− r) ≤ r ∧ |λ− λ′| = r

})

.

By some trigonometry, we can show this region is con-
tained within

DIS({h′ : w′ = w ∧ |λ′ − λ| ≤ r})
∪
{

x : |w · x + b1| ≤ c
r

λ

}

∪
{

x : |w · x + b2| ≤ c
r

λ

}

for some constantsb1, b2, c. Using previous results [2, 12], it
is possible to show that the measure of this region is at most
2r + c′(

√
n/λ)r = c′′(

√
n/λ)r. This finally implies that for

any target function, the disagreement coefficient is at most
c′′(
√

n/λ), whereλ is the probability of the minority class
of the target function.

5.3 Composition results

We can also extend the results from the previous subsection
to other types of distributions and concept classes in a variety
of ways. Here we include a few results to this end.

Close distributions: If (C, D) is learnable at an exponential
rate, then for any distributionD′ such that for all measurable

50

Figure 5.1: Illustration of the proof of Theorem 11. The dark
gray regions representBD1

(h1, 2r) andBD2
(h2, 2r). The func-

tion h that gets returned is in the intersection of these. The light
gray regions representBD1

(h1, ǫ/3) andBD2
(h2, ǫ/3). The tar-

get functionh∗ is in the intersection of these. We therefore must
haver ≤ ǫ/3, and by the triangle inequalityer(h) ≤ ǫ.

A ⊆ X , λPD(A) ≤ PD′(A) ≤ (1/λ)PD(A) for someλ ∈
(0, 1], (C, D′) is also learnable at an exponential rate. In
particular, we can simply use the algorithm for(C, D), filter
the examples fromD′ so that they appear like examples from
D, and then anyt large enough to find anǫλ-good classifier
with respect toD is large enough to find anǫ-good classifier
with respect toD′.

A composition theorem for mixtures of distributions:
Suppose there exist algorithmsA1 andA2 for learning a
classC at an exponential rate under distributionsD1 and
D2 respectively. It turns out we can also learn under any
mixtureof D1 andD2 at an exponential rate, by usingA1

andA2 as black boxes. In particular, the following theorem
relates the sample complexity under a mixture to the sample
complexities under the mixing components.

Theorem 11 Let C be an arbitrary hypothesis class. As-
sume that the pairs(C, D1) and (C, D2) have sam-
ple complexitiesS1(ǫ, δ, h

∗) and S2(ǫ, δ, h
∗) respectively,

where D1 and D2 have density functionsPD1
and PD2

respectively. Then for anyα ∈ [0, 1], the pair
(C, αD1 + (1 − α)D2) has sample complexity at most
2 ⌈max{S1(ǫ/3, δ/2, h∗), S2(ǫ/3, δ/2, h∗)}⌉.

Proof: If α = 0 or 1 then the theorem statement holds triv-
ially. Assume instead thatα ∈ (0, 1). We describe an algo-
rithm in terms ofα, D1, andD2, which achieves this sample
complexity bound.

Suppose algorithmsA1 andA2 achieve the stated sample
complexities underD1 andD2 respectively. At a high level,
the algorithm we define works by “filtering” the distribution
over input so that it appears to come from two streams, one
distributed according toD1, and one distributed according to
D2, and feeding these filtered streams toA1 andA2 respec-
tively. To do so, we define a random sequenceu1, u2, · · · of
independent uniform random variables in[0, 1]. We then run
A1 on the sequence of examplesxi from the unlabeled data
sequence satisfying

ui <
αPD1

(xi)

αPD1
(xi) + (1− α)PD2

(xi)
,

and runA2 on the remaining examples, allowing each to
make an equal number of label requests.

Let h1 andh2 be the classifiers output byA1 andA2.
Because of the filtering, the examples thatA1 sees are dis-
tributed according toD1, so aftert/2 queries, the current
error ofh1 with respect toD1 is, with probability1 − δ/2,
at mostinf{ǫ′ : S1(ǫ

′, δ/2, h∗) ≤ t/2}. A similar argument
applies to the error ofh2 with respect toD2.

Finally, let

r = inf{r : BD1
(h1, r) ∩BD2

(h2, r) 6= ∅} .

Define the output of the algorithm to be anyh ∈
BD1

(h1, 2r) ∩ BD2
(h2, 2r). If a total of t ≥

2 ⌈max{S1(ǫ/3, δ/2, h∗), S2(ǫ/3, δ/2, h∗)}⌉ queries have
been made (t/2 by A1 and t/2 by A2), then by a union
bound, with probability at least1 − δ, h∗ is in the intersec-
tion of the ǫ/3-balls, and soh is in the intersection of the
2ǫ/3-balls. By the triangle inequality,h is within ǫ of h∗ un-
der both distributions, and thus also under the mixture. (See
Figure 5.1 for an illustration of these ideas.)

5.4 Lower Bounds

Given the previous discussion, one might suspect thatany
pair (C, D) is learnable at an exponential rate, under some
mild condition such as finite VC dimension. However, we
show in the following that this isnot the case, even for some
simple geometric concept classes when the distribution is es-
pecially nasty.

Theorem 12 There exists a pair(C, D), with the VC dimen-
sion ofC equal1, that is not learnable at an exponential rate
(in the sense of Definition 4).

Proof: (Sketch) LetT be a fixed infinite tree in which each
node at depthi hasci children; ci is defined shortly. We
consider learning the hypothesis classC where eachh ∈ C
corresponds to a path down the tree starting at the root; every
node along this path is labeled1 while the remaining nodes
are labeled−1. Clearly for eachh ∈ C there is precisely
one node on each level of the tree labeled1 by h (i.e. one
node at each depthd). C has VC dimension 1 since knowing
the identity of the node labeled1 on level i is enough to
determine the labels of all nodes on levels0, . . . , i perfectly.
This learning problem is depicted in Figure 5.2.

Now we defineD, a “bad” distribution forC. Let ℓi

be the total probability of all nodes on leveli according to
D. Assume all nodes on leveli have the same probability
according toD, and call thispi. By definition, we havepi =

ℓi/
∏i−1

j=0 cj .
We show that it is possible to define the parameters above

in such a way that for anyǫ0 > 0, there exists someǫ < ǫ0
such that for some levelj, pj = ǫ andcj−1 ≥ (1/pj)

1/2 =

(1/ǫ)1/2. This implies thatΩ(1/ǫ1/2) labels are needed to
learn with error less thanǫ, for the following reason. We
know that there is exactly one node on levelj that has label 1,
and that any successful algorithm must identify this node (or
have a lucky guess at which one it is) since it has probability
ǫ. By the usual probabilistic method trick (picking the target
at random by choosing the positive node at each leveli + 1
uniformly from the children of the positive at leveli), we

51

...

.

...

+

+

+

Figure 5.2: A learning problem where exponential rates are not achievable. The instance space is an infinite-depth tree. The
target labels nodes along a single infinite path as+1, and labels all other nodes−1. When the number of children and probability
mass of each node at each subsequent level are set in a certain way, sample complexities ofo (1/

√
ǫ) are not achievable.

can argue that in order to label that node positive with at
least some constant probability, we need to query at least a
constant fraction of the node’s siblings, so we need to query
on the order ofcj−1 nodes on levelj.

Thus it is enough to show that we can define the values
above such that for alli, ci−1 ≥ (1/pi)

1/2, and such thatpi

gets arbitrarily small asi gets big.
To start, notice that if we recursively define the values of

ci asci =
∏i−1

j=0 cj/ℓi+1 then

c2
i−1 = ci−1

(

∏i−2
j=0 cj

ℓi

)

=

∏i−1
j=0 cj

ℓi
=

1

pi

andci−1 ≥ (1/pi)
1/2 as desired.

To enforce thatpi gets arbitrarily small asi gets big, we
simply need to setℓi appropriately. In particular, we need
limi→∞ ℓi/

∏i−1
j=0 cj = 0. Since the denominator is increas-

ing in i, it suffices to showlimi→∞ ℓi = 0. Defining the
values ofℓi to be any positive probability distribution overi
that goes to 0 in the limit completes the proof.

For essentially any functionφ = o (1/ǫ), the tree exam-
ple in the proof can be modified to construct a pair(C, D)
with the VC dimension ofC equal to1 such that no al-
gorithm achieveso(φ(ǫ)) sample complexity for all targets:
simply chooseci = ⌊φ(pi+1)⌋, where{pj} is any sequence
strictly decreasing to0 s.t.pi+1φ(pi+1)

∏

j<i cj ≤ ℓi+1 and
φ(pi+1) ≥ 1, where as before{ℓj} is any sequence of pos-
itive values summing to1; we can (arbitrarily) assign any
left-over probability mass to the root node;φ = o(1/ǫ) guar-
antees that such a{pj} sequence exists for anyφ = ω(1).
Thus, theo (1/ǫ) guarantee of Corollary 7 is in some sense
the tightest guarantee we can make at that level of generality,
without using a more detailed description of the structure of
the problem beyond the finite VC dimension assumption.

This type of example can be realized by certain nasty dis-
tributions, even for a variety of simple hypothesis classes: for
example, linear separators inR2 or axis-aligned rectangles
in R

2. We remark that this example can also be modified to
show that we cannot expect intersections of classifiers to pre-
serve exponential rates. That is, the proof can be extended
to show that there exist classesC1 andC2, such that both
(C1, D) and(C2, D) are learnable at an exponential rate, but
(C, D) is not, whereC = {h1 ∩ h2 : h1 ∈ C1, h2 ∈ C2}.

6 Discussion and Open Questions

The implication of our analysis is that in many interesting
cases where it was previously believed that active learning
could not help, it turns out that active learningdoes help
asymptotically. We have formalized this idea and illustrated
it with a number of examples and general theorems through-
out the paper. This realization dramatically shifts our under-
standing of the usefulness of active learning: while previ-
ously it was thought that active learning couldnot provably
help in any but a few contrived and unrealistic learning prob-
lems, in this alternative perspective we now see that active
learning essentiallyalwayshelps, and does so significantly
in all but a few contrived and unrealistic problems.

The use of decompositions ofC in our analysis also gen-
erates another interpretation of these results. Specifically,
Dasgupta [8] posed the question of whether it would be use-
ful to develop active learning techniques for looking at un-
labeled data and “placing bets” on certain hypotheses. One
might interpret this work as an answer to this question; that
is, some of the decompositions used in this paper can be in-
terpreted as reflecting a preference partial-ordering of the hy-
potheses, similar to ideas explored in the passive learning lit-
erature [16, 15, 3]. However, the construction of a good de-
composition in active learning seems more subtle and quite
different from previous work in the context of supervised or
semi-supervised learning.

It is interesting to examine the role of target- and
distribution-dependent constants in this analysis. As defined,
both the verifiable and true sample complexities may de-
pend heavily on the particular target function and distribu-
tion. Thus, in both cases, we have interpreted these quanti-
ties as fixed when studying the asymptotic growth of these
sample complexities asǫ approaches0. It has been known
for some time that, with only a few unusual exceptions, any
target- and distribution-independent bound on the verifiable
sample complexity could typically be no better than the sam-
ple complexity of passive learning; in particular, this obser-
vation lead Dasgupta to formulate his splitting index bounds
as both target- and distribution-dependent [8]. This fact also
applies to bounds on the true sample complexity as well. In-
deed, the entire distinction between verifiable and true sam-
ple complexities collapses if we remove the dependence on
these unobservable quantities.

There are many interesting open problems within
this framework. Perhaps two of the most interesting are
formulating general necessary and sufficient conditions for

52

learnability at an exponential rate, and determining whether
Theorem 6 can be extended to the agnostic case.

Acknowledgments: We thank Eyal Even-Dar, Michael
Kearns, and Yishay Mansour for numerous useful discus-
sions and for helping us to initiate this line of thought. We
are also grateful to Larry Wasserman and Eric Xing for their
helpful feedback.
Maria-Florina is supported in part by an IBM Graduate Fel-
lowship and by a Google Research Grant. Steve is funded by
the NSF grant IIS-0713379 awarded to Eric Xing.

References

[1] A. Antos and G. Lugosi. Strong minimax lower bounds
for learning.Machine Learning, 30:31–56, 1998.

[2] M.-F. Balcan, A. Beygelzimer, and J. Langford. Ag-
nostic active learning. InProceedings of the 23rd In-
ternational Conference on Machine Learning, 2006.

[3] M.-F. Balcan and A. Blum. A PAC-style model for
learning from labeled and unlabeled data. Book chap-
ter in “Semi-Supervised Learning”, O. Chapelle and B.
Schlkopf and A. Zien, eds., MIT press, 2006.

[4] M.-F. Balcan, A. Broder, and T. Zhang. Margin based
active learning. InProceedings of the 20th Annual Con-
ference on Learning Theory, 2007.

[5] R. Castro and R. Nowak. Minimax bounds for active
learning. InProceedings of the 20th Annual Conference
on Learning Theory, 2007.

[6] D. Cohn, L. Atlas, and R. Ladner. Improving gen-
eralization with active learning.Machine Learning,
15(2):201–221, 1994.

[7] S. Dasgupta. Analysis of a greedy active learning strat-
egy. In Advances in Neural Information Processing
Systems, 2004.

[8] S. Dasgupta. Coarse sample complexity bounds for ac-
tive learning. InAdvances in Neural Information Pro-
cessing Systems, 2005.

[9] S. Dasgupta, D. Hsu, and C. Monteleoni. A general ag-
nostic active learning algorithm. InAdvances in Neural
Information Processing Systems, 2007.

[10] S. Dasgupta, A. Kalai, and C. Monteleoni. Analysis of
perceptron-based active learning. InProceedings of the
18th Annual Conference on Learning Theory, 2005.

[11] L. Devroye, L. Gyorfi, and G. Lugosi.A Probabilistic
Theory of Pattern Recognition. Springer-Verlag, 1996.

[12] S. Hanneke. A bound on the label complexity of ag-
nostic active learning. InProceedings of the 24th Inter-
national Conference on Machine Learning, 2007.

[13] S. Hanneke. Teaching dimension and the complexity of
active learning. InProceedings of the 20th Conference
on Learning Theory, 2007.

[14] D. Haussler, N. Littlestone, and M. Warmuth. Predict-
ing {0, 1}-functions on randomly drawn points.Infor-
mation and Computation, 115:248–292, 1994.

[15] J. Shawe-Taylor, P. L. Bartlett, R. C. Williamson, and
M. Anthony. Structural risk minimization over data-
dependent hierarchies.IEEE Transactions on Informa-
tion Theory, 44(5):1926–1940, 1998.

[16] V. N. Vapnik. Statistical Learning Theory. John Wiley
and Sons Inc., 1998.

Appendix

A Proof of Theorem 8
First note that the total number of label requests used
by the aggregation procedure in Algorithm 1 is at most
t. Initially running the algorithmsA1, . . . , Ak requires
∑k

i=1⌊t/(4i2)⌋ ≤ t/2 labels, and the second phase of the
algorithm requiresk2⌈72 ln(4k/δ)⌉ labels, which by defini-
tion of k is also less thant/2. Thus this procedure is a valid
learning algorithm.

Now suppose thath∗ ∈ Ci, and assume that

t ≥ max
{

4i2 ⌈Si(ǫ/2, δ/2, h∗)⌉ , 2i2 ⌈72 ln(4i/δ)⌉
}

.

We must show that for any such value oft, er(ĥt) ≤ ǫ with
probability at least1− δ.

First notice that sincet ≥ 2i2 ⌈72 ln(4i/δ)⌉, k ≥ i. Fur-
thermore, sincet/(4i2) ≥ ⌈Si(ǫ/2, δ/2, h∗)⌉, with proba-
bility at least1 − δ/2, runningAi(⌊t/(4i2)⌋, δ/2) returns a
functionhi with er(hi) ≤ ǫ/2.

Let j∗ = argminj er(hj). By Hoeffding’s inequality,
with probability at least1− δ/4, for all ℓ,

mj∗ℓ ≤
7

12
⌈72 ln (4k/δ)⌉ ,

and thus

min
j

max
ℓ

mjℓ ≤
7

12
⌈72 ln(4k/δ)⌉ .

Furthermore, by Hoeffding’s inequality and a union bound,
with probability at least1− δ/4, for anyℓ such that

mℓj∗ ≤
7

12
⌈72 ln(4k/δ)⌉

we have that

er(hℓ|hℓ(x) 6= hj∗(x)) ≤ 2

3
and thuser(hℓ) ≤ 2er(hj∗). By a union bound over these
three events, we find that, as desired, with probability at least
1− δ,

er(ĥt) ≤ 2er(hj∗) ≤ 2er(hi) ≤ ǫ .

B Proof of Theorem 9
Assume that(C, D) is learnable at an exponential rate. That
means there exists an algorithmA such that for any targeth∗

in C, there exist constantsγh∗ = γ(h∗, D) andkh∗ such that
for any ǫ andδ, with probability at least1 − δ, for anyt ≥
γh∗(log (1/(ǫδ)))kh∗ , after t label requests,A(t, δ) outputs
anǫ-good classifier.

We defineCi = {h ∈ C : γh ≤ i, kh ≤ i}. For everyi,
we define an algorithmAi that achieves the required polylog
verifiable sample complexity as follows. We first runA to
obtain functionhA. We then letAi always output the closest
classifier inCi to hA. If t ≥ i(log (2/(ǫδ)))i, then aftert la-
bel requests, with probability at least1−δ, A(t, δ) outputs an
ǫ/2-good classifier, so by the triangle inequality, with proba-
bility at least1−δ, Ai(t, δ) outputs anǫ-good classifier. Fur-
thermore,Ai can output̂ǫt = (2/δ) exp

{

−(t/i)1/i
}

, which
is no more thanǫ. Combining this with Theorem 8 we get
the desired result.

53

C Heuristic Approaches to Decomposition

As mentioned, decomposing purely based on verifiable
complexity with respect to(C, D) typically cannot yield a
good decomposition even for very simple problems, such as
unions of intervals. The reason is that the set of classifiers
with high verifiable sample complexity may itself have high
verifiable complexity.

Although we do not yet have a general method that can
provably always find a good decomposition when one exists
(other than the trivial method in the proof of Theorem 9), we
often find that a heuristic recursive technique can be quite
effective. That is, we can defineC1 = C. Then fori > 1,
we recursively defineCi as the set of allh ∈ Ci−1 such that
θh = ∞ with respect to(Ci−1, D). Suppose that for some
N , CN+1 = ∅. Then for the decompositionC1, C2, . . . , CN ,
everyh ∈ C hasθh < ∞ with respect to at least one of
the sets in which it is contained. Thus, the verifiable sample
complexity ofh with respect to that set isO(polylog(1/ǫδ)),
and the aggregation algorithm can be used to achieve polylog
sample complexity.

We could alternatively perform a similar decomposition
using a suitable definition of splitting index [8], or more gen-
erally using

lim sup
ǫ→0

SCi−1
(ǫ, δ, h)

(

log
(

1
ǫδ

))k

for some fixed constantk > 0.
While this procedure does not always generate a good

decomposition, certainly ifN < ∞ exists, then this creates
a decomposition for which the aggregation algorithm, com-
bined with an appropriate sequence of algorithms{Ai}, can
achieve exponential rates. In particular, this is the case for all
of the(C, D) described in Section 5. In fact, even ifN =∞,
as long as everyh ∈ C does end up insomesetCi for finite
i, this decomposition would still provide exponential rates.

D Proof of Theorem 6

We now finally prove Theorem 6. This section is mostly
self-contained, though we do make use of Theorem 8 from
Section 4 in the final step of the proof.

For anyV ⊆ C andh ∈ C, define

B̄V (h, r) = {h′ ∈ V̄ : PD(h(x) 6= h′(x)) ≤ r} ,

whereV̄ is, as before, a countable dense subset ofV . Define
theboundaryof h with respect toD andV , denoted∂V h, as

∂V h = lim
r→0

DIS(B̄V (h, r)).

The proof will proceed according to the following out-
line. We begin in Lemma 13 by describing special conditions
under which a CAL-like algorithm has the property that the
more unlabeled examples it processes, the smaller the frac-
tion of them it requests the labels of. Since CAL always
identifies the target’s true label on any example it processes,
we end up with a set of labeled examples growing strictly
faster than the number of label requests used to obtain it;
we can use this as a training set in any passive learning al-
gorithm. However, the special conditions under which this
happens are rather limiting, so we require an additional step,
in Lemma 14; there, we exploit a subtle relation between

overlapping boundary regions and shatterable sets to show
that we can decompose any finite VC dimension class into
a countable number of subsets satisfying these special con-
ditions. This, combined with the aggregation algorithm, ex-
tends Lemma 13 to the general conditions of Theorem 6.

Lemma 13 Suppose(C, D) is such thatC has finite VC di-
mensiond, and∀h ∈ C, P(∂Ch) = 0. Then for any pas-
sive learning sample complexitySp(ǫ, δ, h) for (C, D), there
exists an active learning algorithm achieving a sample com-
plexitySa(ǫ, δ, h) such that, for any target functionh∗ ∈ C
whereSp(ǫ, δ, h

∗) = ω(1),

Sa(ǫ, δ/2, h∗) = o(Sp(ǫ/2, δ, h∗)) .

Proof:We perform the learning in two phases. The first
is a passive phase: we simply request the labels of
x1, x2, . . . , x⌊t/3⌋, and let

V = {h ∈ C̄ : ∀i ≤ ⌊t/3⌋, h(xi) = h∗(xi)} .

In other words,V is the set of all hypotheses that correctly
label the first⌊t/3⌋ examples. By standard consistency re-
sults [11], with probability at least1− δ/8, there is a univer-
sal constantc > 0 such that

sup
h1,h2∈V

PD(h1(x) 6= h2(x)) ≤ c

(

d ln t + ln 1
δ

t

)

.

In particular, on this event, we have

P(DIS(V)) ≤ P

(

DIS

(

B̄

(

h∗, c
d ln t + ln 1

δ

t

)))

.

Let us denote this latter quantity by∆t. Note that∆t goes
to 0 ast grows.

If ever we haveP(DIS(V)) = 0 for some finitet, then
clearly we can return anyh ∈ V , so this case is easy.

Otherwise, letnt = ⌊t/(36P(DIS(V)) ln(8/δ))⌋, and
supposet ≥ 3. By a Chernoff bound, with prob-
ability at least 1 − δ/8, in the sequence of examples
x⌊t/3⌋+1, x⌊t/3⌋+2, . . . , x⌊t/3⌋+nt

, at mostt/3 of the exam-
ples are inDIS(V). If this is not the case, we fail and output
an arbitraryh; otherwise, we request the labels of every one
of thesent examples that are inDIS(V). Now construct
a sequenceL = {(x′

1, y
′
1), (x

′
2, y

′
2), . . . , (x

′
nt

, y′
nt

)} of la-
beled examples such thatx′

i = x⌊t/3⌋+i, andy′
i is either

the label agreed upon by all the elements ofV , or it is the
h∗(x⌊t/3⌋+i) label value we explicitly requested. Note that
becauseinfh∈V er(h) = 0 with probability1, we also have
that with probability1 everyy′

i = h∗(x′
i). We may there-

fore use thesent examples as iid training examples for the
passive learning algorithm.

Specifically, let us split up the sequenceL into k = 4
sequencesL1,L2, . . . ,Lk, where

Li =
{

(x′
(i−1)⌊nt/k⌋+1, y

′
(i−1)⌊nt/k⌋+1),

(x′
(i−1)⌊nt/k⌋+2, y

′
(i−1)⌊nt/k⌋+2),

. . . , (x′
i⌊nt/k⌋, y

′
i⌊nt/k⌋)

}

.

SupposeA is the passive learning algorithm that guaran-
teesSp(ǫ, δ, h) passive sample complexities. Then fori ∈
{1, 2, . . . , k−1}, lethi be the classifier returned byA(Li, δ).

54

Additionally, lethk be any classifier inV consistent with the
labels inLk.

Finally, for each i, j ∈ {1, 2, . . . , k}, request the
labels of the first⌊t/(3k2)⌋ examples in the sequence
{x⌊t/3⌋+nt+1, x⌊t/3⌋+nt+2, . . .} that satisfyhi(x) 6= hj(x)

and letRij denote these⌊t/(3k2)⌋ labeled examples (Rij =
∅ if PD(hi(x) 6= hj(x)) = 0). Letmij denote the number of
mistakeshi makes on the setRij . Finally, letĥt = hi where

i = argmin
i

max
j

mij .

This will be the classifier we return.
It is known (see, e.g., [11]) that if⌊nt/k⌋ ≥

c′((d/ǫ) log(1/ǫ) + (1/ǫ) log(1/δ)) for some finite univer-
sal constantc′, then with probability at least1− δ/8 over the
draw ofLk, er(hk) ≤ ǫ. Define

S̄p(ǫ, δ, h
∗)=min

{

Sp(ǫ, δ, h
∗), c′

d log(1/ǫ)+log(1/δ)

ǫ

}

.

We have chosenk large enough so that, if⌊nt/k⌋ ≥
S̄p(ǫ, δ, h

∗), then with probability at least1 − δ/8 over the
draw ofL, mini er(hi) ≤ ǫ. Furthermore, by a Hoeffding
bound argument (similar to the proof of Theorem 8), for any
t ≥ t0 = 3k2 ⌈72 ln(16k/δ)⌉, we have that with probability
at least1− δ/8, er(ĥt) ≤ 2 mini er(hi). Define

Sa(2ǫ, δ/2, h∗) =

1 + inf

{

s ≥ t0 : s ≥ 144k ln
8

δ
S̄p(ǫ, δ, h

∗)∆s

}

.

Note that if t ≥ Sa(2ǫ, δ/2, h∗), then (with probability≥
1− δ/8)

S̄p(ǫ, δ, h
∗) ≤ t

144k ln 8
δ ∆t

≤ ⌊nt/k⌋ .

So, by a union bound over the possible failure events listed
above (δ/8 for P(DIS(V)) > ∆t, δ/8 for more thant/3 ex-
amples ofL in DIS(V), δ/8 for mini er(hi) > ǫ, andδ/8 for
er(ĥt) > 2 mini er(hi)), if t ≥ Sa(2ǫ, δ/2, h∗), then with
probability at least1− δ/2, er(ĥt) ≤ 2ǫ. SoSa(ǫ, δ, h∗) is a
valid sample complexity function, achieved by the described
algorithm. Furthermore,

Sa(ǫ, δ/2, h∗) ≤ 1

+ max

{

t0, 144k ln
8

δ
S̄p(ǫ/2, δ, h∗)∆Sa(ǫ,δ/2,h∗)−2

}

.

Sp(ǫ, δ, h
∗) = ω(1) implies Sa(ǫ, δ/2, h∗) = ω(1), so we

know that∆Sa(ǫ,δ/2,h∗)−2 = o(1). Thus,Sa(ǫ, δ/2, h∗) =

o
(

S̄p(ǫ/2, δ, h∗)
)

, and thus we haveSa(ǫ, δ/2, h∗) =
o(Sp(ǫ/2, δ, h∗)).

As an interesting aside, it is also true (by essentially the
same argument) that under the conditions of Lemma 13, the
verifiable sample complexity of active learning is strictly
smaller than theverifiable sample complexity of passive
learning in this same sense. In particular, this implies a ver-
ifiable sample complexity that iso (1/ǫ) under these con-
ditions. For instance, with some effort one can show that
these conditions are satisfied when the VC dimension ofC

is 1, or when the support ofD is at most countably infi-
nite. However, for more complex learning problems, this
condition will typically not be satisfied, and as such we re-
quire some additional work in order to use this lemma to-
ward a proof of the general result in Theorem 6. Toward this
end, we again turn to the idea of a decomposition ofC, this
time decomposing it into subsets satisfying the condition in
Lemma 13.

Lemma 14 For any (C, D) whereC has finite VC dimen-
siond, there exists a countably infinite sequenceC1, C2, . . .
such thatC = ∪∞i=1Ci and∀i, ∀h ∈ Ci, P(∂Ci

h) = 0.

Proof: The case ofd = 0 is clear, so assumed > 0. A
decomposition procedure is given in Algorithm 2. We will
show that, if we letH = Decompose(C), then the maximum
recursion depth is at mostd (counting the initial call as depth
0). Note that if this is true, then the lemma is proved, since
it implies thatH can be uniquely indexed by ad-tuple of
integers, of which there are at most countably many.

Algorithm 2 Decompose(H)

LetH∞ = {h ∈ H : P(∂Hh) = 0}
if H∞ = H then

Return{H}
else

For i ∈ {1, 2, . . .}, letHi =
{

h∈H : P(∂Hh)∈((1+2−(d+3))−i, (1+2−(d+3))1−i]
}

Return
⋃

i∈{1,2,...}
Decompose(Hi) ∪ {H∞}

end if

For the sake of contradiction, suppose that the maximum
recursion depth of Decompose(C) is more thand (or is infi-
nite). Thus, based on the firstd + 1 recursive calls in one of
those deepest paths in the recursion tree, there is a sequence
of sets

C = H(0) ⊇ H(1) ⊇ H(2) ⊇ · · ·H(d+1) 6= ∅
and a corresponding sequence of finite positive integers
i1, i2, . . . , id+1 such that for eachj ∈ {1, 2, . . . , d + 1}, ev-
eryh ∈ H(j) has

P(∂H(j−1)h) ∈
(

(1 + 2−(d+3))−ij , (1 + 2−(d+3))1−ij

]

.

Take anyhd+1 ∈ H(d+1). There must exist somer > 0
such that∀j ∈ {1, 2, . . . , d + 1},
P(DIS(B̄H(j−1) (hd+1, r)))

∈
(

(1 + 2−(d+3))−ij, (1 + 2−(d+2))(1 + 2−(d+3))−ij
]

.

In particular, any set of≤ 2d+1 classifiers T ⊂
B̄H(j)(hd+1, r/2) must haveP(∩h∈T ∂H(j−1)h) > 0.

We now construct a shattered set of points of sized + 1.
Consider constructing a binary tree with2d+1 leaves as fol-
lows. The root node containshd+1 (call this level 0). Let
hd ∈ B̄H(d)(hd+1, r/4) be some classifier withP(hd(X) 6=
hd+1(X)) > 0. Let the left child of the root behd+1 and
the right child behd (call this level 1). DefineA1 = {x :

55

hd(x) 6= hd+1(x)}, and let∆1 = 2−(d+2)
P(A1), Now

for eachj ∈ {d − 1, d − 2, . . . , 0} in decreasing order,
we define thed − j + 1 level of the tree as follows. Let
Tj+1 denote the nodes at thed − j level in the tree, and let
A′

d−j+1 =
⋂

h∈Tj+1
∂H(j)h. We iterate over the elements

of Tj+1 in left-to-right order, and for each oneh, we find
h′ ∈ B̄H(j)(h, ∆d−j) with

PD(h(x) 6= h′(x) ∧ x ∈ A′
d−j+1) > 0 .

We then define the left child ofh to beh and the right child
to beh′, and we update

A′
d−j+1 ← A′

d−j+1 ∩ {x : h(x) 6= h′(x)} .

After iterating through all the elements ofTj+1 in this man-
ner, defineAd−j+1 to be the final value ofA′

d−j+1 and

∆d−j+1 = 2−(d+2)
P(Ad−j+1). The key is that, because

everyh in the tree is withinr/2 of hd+1, the setA′
d−j+1

always has nonzero measure, and is contained in∂H(j)h for
anyh ∈ Tj+1, so there always exists anh′ arbitrarily close
to h with PD(h(x) 6= h′(x) ∧ x ∈ A′

d−j+1) > 0.
Note that fori ∈ {1, 2, . . . , d + 1}, every node in the left

subtree of anyh at leveli− 1 is strictly within distance2∆i

of h, and every node in the right subtree of anyh at leveli−1
is strictly within distance2∆i of the right child ofh. Since
2∆i2

d+1 = P(Ai), there must be some setA∗
i ⊆ Ai with

P(A∗
i) > 0 such that for everyh at leveli − 1, every node

in its left subtree agrees withh on everyx ∈ A∗
i and every

node in its right subtree disagrees withh on everyx ∈ A∗
i .

Therefore, taking any{x1, x2, . . . , xd, xd+1} such that each
xi ∈ A∗

i creates a shatterable set (shattered by the set of leaf
nodes in the tree). This contradicts VC dimensiond, so we
must have that the maximum recursion depth is at mostd.

Proof:[Theorem 6] Theorem 6 now follows by a sim-
ple combination of Lemmas 13 and 14, along with Theo-
rem 8. That is, the passive learning algorithm achieving
passive learning sample complexitySp(ǫ, δ, h) on (C, D)
also achievesSp(ǫ, δ, h) on any(Ci, D), whereC1, C2, . . .
is the decomposition from Lemma 14. So Lemma 13 guar-
antees the existence of active learning algorithmsA1, A2, . . .
such thatAi achieves a sample complexitySi(ǫ, δ/2, h) =
o(Sp(ǫ/2, δ, h)) on (Ci, D) for all h ∈ Ci s.t. Sp(ǫ, δ, h) =
ω(1). Finally, Theorem 8 tells us that this implies the ex-
istence of an active learning algorithm based on theseAi

combined with Algorithm 1, achieving sample complexity
o(Sp(ǫ/4, δ, h)) on (C, D).

Note there is nothing special about4 in Theorem 6. Using a
similar argument, it can be made arbitrarily close to1.

56

Extracting Certainty from Uncertainty:
Regret Bounded by Variation in Costs

Elad Hazan
IBM Almaden

650 Harry Rd, San Jose, CA 95120
hazan@us.ibm.com

Satyen Kale
Microsoft Research

1 Microsoft Way, Redmond, WA 98052
sakale@microsoft.com

Abstract

Prediction from expert advice is a fundamental prob-
lem in machine learning. A major pillar of the field
is the existence of learning algorithms whose aver-
age loss approaches that of the best expert in hind-
sight (in other words, whose average regret ap-
proaches zero). Traditionally the regret of online
algorithms was bounded in terms of the number of
prediction rounds.
Cesa-Bianchi, Mansour and Stoltz [4] posed the
question whether it is be possible to bound the re-
gret of an online algorithm by the variation of the
observed costs. In this paper we resolve this ques-
tion, and prove such bounds in the fully adversar-
ial setting, in two important online learning sce-
narios: prediction from expert advice, and online
linear optimization.

1 Introduction
A cornerstone of modern machine learning are algorithms
for prediction from expert advice. The seminal work of Lit-
tlestone and Warmuth [12], Vovk [13] and Freund and Schapire
[6] gave algorithms which, under fully adversarial cost se-
quences, attain average cost approaching that of the best ex-
pert in hindsight.

To be more precise, consider a prediction setting in which
an online learner has access to n experts. Iteratively, the
learner may chose the advice of any expert deterministically
or randomly. After choosing a course of action, an adversary
reveals the cost of following the advice of the different ex-
perts, from which the expected cost of the online learner is
derived. The classic results mentioned above give algorithms
which sequentially produce randomized decisions, such that
the difference between the (expected) cost of the algorithm
and the best expert in hindsight grows like O(

√
T log n),

where T is the number of prediction iterations. This extra
additive cost is known as the regret of the online learning
algorithm.

However, a priori it is not clear why online learning algo-
rithms should have high regret (growing with the number of
iterations) in an unchanging environment. As an extreme ex-
ample, consider a setting in which there are only two experts.
Suppose that the first expert always incurs cost 1, whereas

the second expert always incurs cost 1
2 . One would expect to

“figure out” this pattern quickly, and focus on the second ex-
pert, thus incurring a total cost that is at most T

2 plus at most
a constant extra cost (irrespective of the number of rounds
T), thus having only constant regret. However, any straight-
forward application of previously known analyses of expert
learning algorithms only gives a regret bound of Θ(

√
T) in

this simple case (or very simple variations of it).
More generally, the natural bound on the regret of a “good”

learning algorithm should depend on variation in the sequence
of costs, rather than purely on the number of iterations. If the
cost sequence has low variation, we expect our algorithm to
be able to perform better.

This intuition has a direct analog in the stochastic setting:
here, the sequence of experts’ costs are independently sam-
pled from a distribution. In this situation, a natural bound on
the rate of convergence to the optimal expert is controlled by
the variance of the distribution (low variance should imply
faster convergence). This was formalized by Cesa-Bianchi,
Mansour and Stoltz [4], who assert that “proving such a rate
in the fully adversarial setting would be a fundamental re-
sult”.

In this paper we prove the first such regret bounds on
online learning algorithms in two important scenarios: pre-
diction from expert advice, and the more general framework
of online linear optimization. Our algorithms have regret
bounded by the variation of the cost sequence, in a man-
ner that is made precise in the following sections. Thus, our
bounds are tighter than all previous bounds, and hence yield
better bounds on the applications of previous bounds (see,
for example, the applications in [4]).

1.1 Online linear optimization

Online linear optimization [10] is a general framework for
online learning which has received much attention recently.
In this framework the decision set is an arbitrary bounded,
closed, convex set in Euclidean space K ⊆ Rn rather than a
fixed set of experts, and the costs are determined by adver-
sarially constructed vectors, f1, f2, . . . ∈ Rn, such that the
cost of point x ∈ K is given by ft · x. The online learner it-
eratively chooses a point in the convex set xt ∈ K, and then
the cost vector ft is revealed and the cost ft · xt is occurred.
The performance of online learning algorithms is measured
by the regret, which is defined as the difference in the total
cost of the sequence of points chosen by the algorithm, viz.

57

∑T
t=1 ft ·xt, and the total cost of the least cost fixed point in

hindsight, viz. minx∈K

∑T
t=1 ft · x.

Several decision problems fit very naturally in this frame-
work. For example, in the online shortest path problem the
online learner has to repeatedly choose a path in a given
graph from a source node to a destination node. Her cost
is the total length of the path according to weights which are
chosen by an adversary. This problem can be cast as an on-
line linear optimization problem, where the decision space is
the set of all distributions over paths in the graph connect-
ing the source to the destination. Even though this set sits in
exponential dimensional Euclidean space, by thinking of a
distribution over paths as a flow in the graph, it is possible to
efficiently represent the decision space as a polytope in R|E|
(E denotes the set of edges in the given graph), described
by O(|E|) constraints, and translate the cost functions to this
new domain as well.

The general online linear optimization framework allows
for efficient and natural algorithms based on the gradient de-
scent update rule coupled with Euclidean projections [8, 14].
Specifically, we consider Zinkevich’s Lazy Projection algo-
rithm [14]. This algorithm runs online gradient descent on
an auxiliary sequence of points and chooses the projections
of these auxiliary points on the convex set in every iteration.
This algorithm was shown to have regret O(

√
T).

The crucial geometric intuition which allows us to prove
regret bounds based on the variation of the cost sequence can
be summarized by the following intuitive fact: the distance
between successive projections for the Lazy Projection algo-
rithm is directly related to the variation of the cost sequence.

We now describe our bounds. Define the variation of the
sequence of cost functions to be VART =

∑T
t=1 ‖ft−µ?

T ‖2,
where µ?

T = 1
T

∑T
t=1 ft is the mean of the sequence. Our

analysis of the Lazy Projection algorithm yields the follow-
ing regret bound:

Regret ≤ O(
√

VART).

1.2 Prediction from expert advice
Prediction from expert advice can be cast as a special case of
online linear optimization: the decision space is the simplex
of all distributions on n experts. The expectation operator
provides a linear cost function on the simplex via the costs
of the experts. Hence, our result for online linear optimiza-
tion already implies variation bounds for regret in the case of
prediction from expert advice.

However, this bound is suboptimal, as it depends on the
variation of all experts rather than, say, the maximum vari-
ation of a single expert. This issue is familiar to learning
theorists: “Euclidean algorithms” such as gradient descent
attain performance which relates to the Euclidean norm of
the cost functions (or variations in our case). While this Eu-
clidean flavor is optimal in certain cases (i.e. when the under-
lying convex set is the hyper-cube), for certain convex bodies
such as the simplex, better performance can be achieved. The
multiplicative update algorithms such as EG [11] and FPL∗
[10] attain regret which is proportional to O(R

√
T log n)

where R is a bound on the `∞ norm of the cost functions.
By analogy with the online linear optimization case, for

a sequence of cost vectors f1, f2, . . . , fT ∈ Rn, where ft(i)

is the cost of expert i in the tth round, we would expect to
be able to bound the regret of online linear optimization over
the simplex by something like O(

√
VAR∞T log n), where

VAR∞T = max
i∈n

{
T∑

t=1

|ft(i)− µ?
T (i)|2

}

is the maximum variation in costs amongst the different ex-
perts (as before, µ?

T (i) = 1
T

∑T
t=1 ft(i) is the mean cost of

the ith expert). In fact, our bound is even a bit stronger,

Regret(T) = O
(√

VARmax
T log n

)
.

Here VARmax
T ≤ VAR∞T , and is defined to be

VARmax
T = max

t≤T
{VARt(`t)} ,

where VARt(i) is the variation in costs of expert i up to the
tth round, and `t is the best expert till the tth round.

Whereas for the general online linear optimization we
consider the well-known Lazy Projection algorithms and our
results are novel by tighter analysis, for the case of prediction
from expert advice we need to consider a new algorithm. We
can prove that existing variants of the multiplicative weights
algorithms do not attain the performance above, and instead
consider a different variant of update rule, in which the dis-
tribution at time t, denoted xt is defined to be

xt(i) ∝ exp

(
−η

t−1∑
τ=1

fτ (i)− 4η2
t−1∑
τ=1

(fτ (i)− µτ (i))2
)

,

where η is a learning rate parameter and µt = 1
t

∑t−1
τ=1 fτ

is the (approximate) mean cost vector at iteration t. That is,
the distribution over experts explicitly takes into account the
variation in their costs. As far as we know this is a new
variant of the multiplicative update algorithms family, and it
is necessary to include this feature to prove variation bounds
on the regret.

1.3 Discussion of the results
Cesa-Bianchi, Mansour and Stoltz [4] discussed desiderata
for fundamental regret bounds for the expert prediction prob-
lem: invariance under translation and rescaling of costs vec-
tors. Invariance under translation implies that the bounds de-
pend only on the effective ranges of the cost vectors in each
round, rather than the absolute ranges (by effective range,
we mean the maximum difference between the costs in any
given round). This is because if any round, the cost vectors
are all changed by the same amount, the difference between
the expected cost of the algorithm in that round and the cost
of any given expert remains the same as without the trans-
lation. Our regret bounds enjoy this translation invariance
property: this is a direct consequence of the variation bound.
This implies, for instance, that it doesn’t matter what sign the
costs are, and in fact our bounds are robust enough to handle
mixed signs in costs.

Rescaling invariance implies that the bound continues to
hold even if all the cost vectors are scaled by the same factor.
Again, our regret bounds enjoy rescaling invariance since the
regret and the square-root variation scale by the same factors.

We make crucial use of these invariance properties in our
analysis; the invariance allows us to normalize the cost vec-
tors in ways that make them easier to reason about.

58

1.4 The stationary stochastic setting vs. an adversary

A point made by [4] is that the variation bounds on the regret
essentially match the performance of a natural algorithm in
the stochastic setting in which the payoffs are generated by
a stationary stochastic process. Let us give a rough sketch
of why this is true. Consider a setting of online linear opti-
mization over the unit ball. Suppose that the cost functions
are generated by a stationary stochastic process, such that
in each iteration the cost function is independently sampled
from a fixed distribution with some mean vector µ. For a
long enough sequence of cost functions drawn from this dis-
tribution, the best point in hindsight is essentially the least
cost point with respect to the cost vector µ.

Let µ̄ be the observed mean of samples. The natural al-
gorithm uses µ̄ as proxy for the actual mean and chooses
its point with µ̄ as a cost vector, and this can be shown to
be optimal. It is a standard fact that the variance of µ̄ de-
creases inversely with the number of samples. Thus, if σ2

is the variance of the distribution, then the variance of µ̄ af-
ter t iterations is σ2

t . The expected regret on iteration t is
proportional to the standard deviation σ√

t
, and thus the total

regret of the optimal predictor is on the order of
∑T

t=1
σ√
t

=

O(
√

σ2T) = O(
√

VART).
Hence, the optimal achievable regret in this simple set-

ting is proportional to square root of the total variation. In
the sequel we prove that the same regret (up to constant fac-
tors) can be achieved in the fully adversarial setting, i.e. in
a setting in which the cost functions are chosen completely
adversarially. In the stationary stochastic setting, the average
cost converges to the average optimum cost at a speed that
depends on the variance of the distribution: lower variance
implies faster convergence. Hence, by proving the variation
bounds on the regret, we give strong indication that online
linear optimization in the adversarial setting is as efficient
as in the stationary stochastic setting.

1.5 A brief history of prediction

It is incredible that as early as the late fifties, Hannan [7]
devised an efficient algorithm for online decision making.
Hannan’s algorithm proceeds by adding a perturbation to the
costs of actions seen so far, and choosing the action with
least cost (taking into account the perturbations). He proves
that the regret of an online player using his algorithm grows
like O(

√
T) where T is the number of prediction iterations.

Since then much water has flown under the bridge and
many experts have predicted: this includes the aforemen-
tioned influential multiplicative update family of algorithms
[12, 13, 6], Cover’s universal portfolio prediction problem
[5] and the extensions of Follow-The-Perturbed-Leader [10]
to online optimization and complex decision problems such
as online shortest paths. The machine learning community
has extended these fundamental results into a beautiful the-
ory of general prediction using Bregman divergences and
generalized projections (in order to do justice to the numer-
ous contributors we refer to the credits in the comprehensive
book of [3]). This work refined upon the basic regret bound
of O(

√
T). This refinement, however, deals with the con-

stants multiplying the
√

T term.

Freund and Schapire [6] showed that a Multiplicative
Weights algorithm based on the Weighted Majority algorithm

attains regret bounds of O

(√
R

∑T
t=1 ft(i∗) log n

)
, where

it is assumed that all costs are in the range [0, R], and i∗ is the
best expert in hindsight. In the case when the costs lie in the
range [−R, R], Allenberg-Neeman and Neeman [1] showed
that there is an expert i such that the regret can be bounded by

O

(√
R

∑T
t=1 |ft(i)| log n

)
. Most recently Cesa-Bianchi,

Mansour and Stoltz [4] gave the first second-order regret
bounds: they proved a bound of O

(√
Amax

T log n
)

where
Amax

T = maxt≤T {
∑t

τ=1 fτ (`t)2} is the maximum, over all
the time periods t, of the sum of squares of losses up to time
t of the best expert at time t. They suggest, and indeed as we
argue in the previous section it makes intuitive sense, that the
it should be possible to get a bound that scales as

√
VARmax

T .
In this paper we prove their conjecture to be correct, in

effect providing the optimal regret bounds up to constant fac-
tors.

2 Notation and background
The following definitions and derivations may be familiar to
experts in learning theory, who may wish to proceed directly
to the next section.

In the online linear optimization problem, the decision
space is a closed, bounded, convex set K ∈ Rn, and we
are sequentially given a series of linear cost functions ft :
K → R for t = 1, 2, With some abuse of notation, we
also write the functions as ft(x) = ft · x for some vector
ft ∈ Rn.

The algorithm iteratively produces a point xt ∈ K in
every round t, without knowledge of ft (but using the past
sequence of cost functions), and incurs the cost ft(xt). The
regret at time T is defined to be

Regret(f1, f2, . . . , fT) :=
T∑

t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x).

Usually, we will drop the cost vectors from the regret nota-
tion when they are clear from context. For convenience, we
define f0 = 0, and let Ft =

∑t−1
τ=0 fτ .

We proceed to describe a widely used algorithmic tech-
nique in online learning, on the basis of which we will derive
our algorithms.

Since our goal is to get regret bounded by the variation
in the cost sequence, intuitively, a Follow-The-Leader (FTL)
type algorithm, which always chooses the best point so far to
use in the next round, should perform well if the variation is
low. The FTL algorithm by itself doesn’t usually guarantee
low regret, mainly because it is inherently unstable: it may
swing wildly from one point to another from one iteration
to the next at very little provocation (for example, consider
the case of expert prediction with 2 experts for the following
sequence of cost vectors: (1/2, 0), (0, 1), (1, 0), (0, 1), . . .).
To make it stable, we add a strictly convex regularization
function R(x) before computing the leader. The generic al-
gorithm which results is shown below, and is called Follow
The Regularized Leader (FTRL):

59

Algorithm 1 FTRL
1: Let K be a convex set
2: Input: parameter η > 0, regularization function R(x).
3: for t = 1 to T do
4: Use xt , minx∈K

(
Ft · x + 1

η R(x)
)

,
5: Receive ft

6: end for

A crucial observation regarding the FTRL algorithm which
we use in the analysis is its equivalence to the following al-
gorithm, which we call Follow the Lazy Projected Leader
(FLPL). This algorithm maintains an auxiliary sequence of
points which are updated using a gradient descent type algo-
rithm, which are then projected into the convex set using the
Bregman divergence BR defined by R:

BR(x, y) = R(x)−R(y)−∇R(y) · (x− y).

The algorithm as it is given has an implicit update, whose
implementation we ignore for now (in this paper we are only
concerned with the Euclidean and Relative Entropy diver-
gences, in which case the updates are efficient).

Algorithm 2 FLPL
1: Let K be a convex set
2: Input: parameter η > 0, regularizer function R(x).
3: for t = 1 to T do
4: If t = 1, choose y1 such that ∇R(y1) = 0.
5: If t > 1, choose yt such that ∇R(yt) = ∇R(yt−1)−

ηft−1.
6: Project according to BR:

xt = arg min
x∈K

BR(x, yt)

7: end for

In fact, the two algorithms above are identical. This is
perhaps not surprising, given what is known about the so
called “mirror-descent” algorithm (e.g. [3]). Nevertheless
this fact is crucial for our later derivations, and we did not
find this precise statement elsewhere, hence we include a
short proof.

Lemma 1 The two algorithms above produce identical pre-
dictions, i.e.

arg min
x∈K

(
Ft · x +

1
η
R(x)

)
= arg min

x∈K
BR(x, yt).

Proof: First, let us observe that the unconstrained optimum
x∗ = arg minx∈Rn

(
Ft · x + 1

η R(x)
)

satisfies

Ft +
1
η
∇R(x∗) = 0

By induction, the above equation is also satisfied for yt.
Since R(x) is assumed to be strictly convex, there is only one
solution for the above equation and thus yt = x∗. Hence,

BR(x, yt) = R(x)−R(yt)−∇R(yt) · (x− yt)
= R(x)−R(yt) + ηFt · (x− yt).

Since R(yt) and Ft · yt are constants (i.e. independent of x),
BR(x, yt) is minimized at the point x that minimizes R(x)+
ηFt · x, which implies that

arg min
x∈K

BR(x, yt) = arg min
x∈K

(
Ft · x +

1
η
R(x)

)
.

One important property which follows from the first char-
acterization of xt is the following standard bound on the re-
gret, due to Kalai and Vempala [10], called the Follow-The-
Leader/Be-The-Leader (FTL-BTL) inequality:

Lemma 2 The regret of the FTRL (or equivalently, the FLPL)
algorithm is bounded as:

Regret ≤
T∑

t=1

ft · (xt − xt+1) +
1
η
[R(xT)−R(x0)].

3 Algorithms and main results
In this section we describe the algorithms for which we prove
variation bounds, and state formally their performance guar-
antees.

3.1 Online linear optimization
We start by describing our result for online linear optimiza-
tion. Following the notation defined in the previous section,
we assume that K ⊆ Bn, where Bn is the unit ball inRn, and
that 0 ∈ K. This is without loss of generality, and can be as-
sumed by a suitable scaling and translation of K. Scaling K
down by its diameter D makes the diameter 1 and scales the
regret down by D as well, and changing the coordinate sys-
tem so that K contains the origin doesn’t change the regret
bound. Here, we are making use of the translation invariance
of our regret bounds.

We also assume that for all t, ‖ft‖ ≤ 1. If we have some
other bound R on ‖ft‖, then we scale down the ft’s by R
to get new cost vectors f ′t such that ‖f ′t‖ ≤ 1. We can then
run the algorithm pretending as if f ′t is the sequence of cost
vectors.

Define the variation of sequence of cost vectors f1, . . . , fT

to be

VART (f1, f2, . . . , fT) =
T∑

t=1

‖ft − µ‖2,

where µ = 1
T

∑T
t=1 ft is the vector that minimizes the above

expression. Usually, we will drop the cost vectors from the
notation for the variation, refer to it simply as VART , when
the cost vectors are clear from context. To see that scaling
has no effect on the regret bound, note

VART (f ′1, . . . , f
′
T) =

1
R2

VART (f1, . . . , fT),

and

Regret(f ′1, . . . , f
′
T) =

1
R

Regret(f1, . . . , fT).

Thus, if Regret(f ′1, . . . , f
′
T) = O(

√
VART (f ′1, . . . , f

′
T)), then

Regret(f1, . . . , fT) = O(
√

VART (f1, . . . , fT)). This is ex-
actly the rescaling invariance discussed earlier.

60

For ease of notation, we define f0 = 0, and for any t > 0,
let Ft =

∑t−1
τ=0 fτ and µt = 1

t Ft = 1
t

∑t−1
τ=0 fτ . We in-

stantiate the FTRL/FLPL algorithm with the regularization
function R(x) = 1

2‖x‖2. This regularization was considered
many times before, and the only change hereby is to choose
a different “learning rate” η, which will enable us to prove
the novel regret bounds. Since ∇R(x) = x for this regular-
ization, the algorithm that results is:

Algorithm 3 Lazy Projection
1: Let K be a convex set
2: Input: parameter η > 0.
3: for t = 1 to T do
4: If t = 1, choose y1 = 0.
5: If t > 1, let yt = yt−1 − ηft−1.
6: Use xt = arg minx∈K ‖x− yt‖.
7: end for

Our main theorem with respect to online linear optimiza-
tion is:

Theorem 3 Let ft, for t = 1, 2, . . . , T , be a sequence of
cost vectors to the experts so that ‖ft‖ ≤ 1. Setting η =
min{2/

√
VART , 1/6}, the regret of the Lazy Projection al-

gorithm is bounded by

Regret ≤ 16
√

VART .

Of course, an upper bound on the total variation VART

may not be known in advance. Even so, standard η-halving
tricks (start with η = 1/6, and halve η as soon as the varia-
tion quadruples, and restart the algorithm) immediately give
an O(

√
VART) regret bound. The formal application of this

standard trick is omitted from this extended abstract.

3.2 Prediction from expert advice
In the expert learning problem, we assume that we have ac-
cess to n experts. In each round t, we choose a distribution
xt over the experts and choose an expert from it. Then, we
obtain a cost vector ft which specifies a cost ft(i) for ev-
ery expert, and we incur the cost of the chosen expert. Our
goal is to bound the total expected cost of the algorithm (i.e.∑T

t=1 ft ·xt) relative to the total cost of the expert with min-
imum total cost in hindsight (i.e. mini

∑T
t=1 ft(i)).

For simplicity, we assume that all costs ft(i) ∈ [0, 1].
This can be assumed without loss of generality from the
rescaling and translation invariance of our final regret bounds.
In general, all we need is bound R on the maximum value of
ft(i) − ft(j) over all rounds and all pairs of experts i, j. In
each round, the algorithm can be run by scaling the costs
of all experts down by R, and then subtracting out the min-
imum cost in each round. As in the case of online linear
optimization, this scaling and translation doesn’t affect the
square-root variation bound on the regret.

As mentioned before, this setting is a special case of the
online linear optimization where the domain K is the sim-
plex (denoted ∆) of distributions over the experts. To design
an algorithm for this special case, we need a different regu-
larization function, ne(x) =

∑
i xi ln xi − xi.The Bregman

divergence which arises from this is the un-normalized rela-
tive entropy (c.f Herbster and Warmuth [9]), defined on Rn

+,
called as follows:

Dne(x, y) :=
∑

i

yi · ln yi

xi
+ yi − xi.

Note that when x, y ∈ ∆, Dne(x, y) is the relative entropy
between x and y, and ne(x) is the negative entropy of x. The
Bregman projection on the simplex with the un-normalized
relative entropy divergence is implemented simply by scal-
ing all the coordinates so that they sum to 1.

A significant twist on the usual multiplicative weights al-
gorithm is that we modify the cost functions to explicitly take
into account the variation: we actually run the FTRL/FLPL
algorithm on the sequence of cost vectors f̃1, f̃2, . . . where

f̃t(i) =
[
ft(i) + 4η(ft(i)− µt(i))2

]
,

where µt = 1
t

∑t−1
τ=0 fτ . As before, we use the convention

that f0 = 0.
For ease of notation, for a vector x, we define the vector

x2 as x2(i) = x(i)2. Thus, we can write f̃t compactly as
f̃t = ft + 4η(ft − µt)2. The algorithm which results is
given below:

Algorithm 4 Variation MW
1: Input: parameter η > 0.
2: for t = 1 to T do
3: If t = 1, choose y1 = ~1, the all 1’s vector.
4: If t > 1, let yt(i) = yt−1(i) exp(−ηf̃t−1(i)), where

f̃t−1(i) = ft−1(i) + 4η(ft−1(i)− µt−1(i))2.
5: Use xt = yt/Zt, where Zt =

∑
i yt(i).

6: end for

Define

VARmax
T = max

t≤T
{VARt(`t)},

where `t is the best expert till the tth round, and VARt(i) =∑t
τ=1(ft(i) − µ?

t (i))
2 where µ?

t (i) = 1
t

∑t
τ=1 fτ (i) is the

mean cost of the ith expert till the tth round. Our main result
concerning prediction from expert advice is

Theorem 4 Let ft, for t = 1, 2, . . . , T , be a sequence of
cost vectors to the experts so that ft(i) ∈ [0, 1]. Setting η =
min

{√
log(n)/4VARmax

T , 1/10
}

, the regret of the Variation
MW algorithm is bounded by

Regret ≤ 8
√

VARmax
T log(n) + 10 log(n).

Again, η-halving tricks can be used to obtain this re-
sult in the case when VARmax

T is not known ahead of time.
The additive log(n) term is inherent in all expert learning
algorithms and also appears in all previously known regret
bounds.

61

4 Analysis of the Lazy Projection algorithm
In this section we prove Theorem 3. The proof uses the dual
characterization of the FTRL type algorithms introduced pre-
viously: on one hand we follow the standard methodology of
the Follow-The-Leader type algorithms, bounding the regret
by distance between consecutive predictions. On the other
hand we use the fact that these predictions are projections of
aggregate cost functions, and analyze the distance between
successive projections. In fact, this latter analysis is the main
crux of the proof - we refine previous approaches by giving
a tighter bound on this distance which is based on simple
geometrical intuition.
Proof: (Theorem 3)
In order to aid understanding, we present the proof as a series
of lemmas. We defer the proofs of the lemmas to after the
present proof. We start by invoking the FTL-BTL inequality
(Lemma 2) to obtain the following bound:

Lemma 5

Regret ≤
T∑

t=1

(ft − µt) · (xt − xt+1) +
1
η
.

We proceed to relate the distance between successive projec-
tions to the variation in the cost vectors. This lemma is the
main crux of the proof, and is based on the geometric intu-
ition depicted in Figure 1. The idea in the proof is that if the
sequence of cost vectors has low variation, then the cumu-
lative cost vector Ft is far away from the convex body, and
in such a case, the distance between successive projections
can be bounded in terms of the length of the component of
ft orthogonal to Ft, which can in turn be bounded in terms
of ‖ft − µt‖, since µt = 1

t Ft.

Lemma 6 For all t, we have:

‖xt − xt+1‖ ≤ 3η

2
‖ft − µt‖+

2
t
.

θ

yt

−ηft

yt+1

K

0

xt+1

xt

Figure 1: The distance between successive projections, viz.
‖xt − xt+1‖, is bounded by the length of the component of
−ηft orthogonal to the yt − xt.

For ease of notation, we define a parameter of the cost
vectors which will be further used in the analysis:

ρ(T) :=
T∑

t=1

1
t
‖ft − µt‖.

This parameter measures the variation of the cost vectors.
Using the Cauchy-Schwartz inequality and Lemma 6 we get

(ft − µt) · (xt − xt+1)

≤ ‖ft − µt‖ ·
[
3η

2
‖ft − µt‖+

2
t

]

≤ 3η

2
‖ft − µt‖2 +

2‖ft − µt‖
t

.

Plugging this into the regret bound of Lemma 5 gives us the
following bound:

Regret ≤ 3η

2

T∑
t=1

‖ft − µt‖2 + 2ρ(T) +
1
η
. (1)

To proceed from here, we use the following Lemma (which,
curiously enough, is proved using the analysis of an online
learning algorithm that has nothing to do with the present
setting!):

Lemma 7 For any vector µ, we have:

T∑
t=1

‖ft − µt‖2 ≤
T∑

t=1

‖ft − µ‖2 + 4ρ(T).

Plugging into equation (1) we get that, for any vector µ (and
in particular, for µ = µ?

T := 1
T

∑T
t=1 ft),

Regret ≤ 3η

2

T∑
t=1

‖ft − µ‖2 + (2 + 6η)ρ(T) +
1
η
.

We can bound on ρ(T) as follows:

Lemma 8 For any vector µ, we have:

ρ(T) ≤ 3

√√√√
T∑

t=1

‖ft − µ‖2.

Finally, by setting η = min{2/
√

VART , 1/6}, the proof is
complete.

We now give the omitted proofs of Lemmas used in the
above proof.
Proof: (Lemma 5)
By definition of xt, we know that

Ft · xt +
1
2η
‖xt‖2 ≤ Ft · xt+1 +

1
2η
‖xt+1‖2.

62

Recall that µt = Ft/t. Hence,

T∑
t=1

µt · (xt − xt+1) =
T∑

t=1

Ft

t
· (xt − xt+1)

≤
T∑

t=1

1
t
· 1
2η

(‖xt+1‖2 − ‖xt‖2)

≤ 1
2η

T∑
t=2

‖xt‖2 ·
(

1
t− 1

− 1
t

)
+
‖xT+1‖2

2ηT

≤ 1
2η

.

Here, we use the fact that ‖xt‖ ≤ 1. The stated bound then
follows from Lemma 2.

Proof: (Lemma 6)
We split up the analysis in two cases:

1. ‖Ft‖ ≤ 2/η: Assume that ‖Ft‖ > 0. Since xt and xt+1

are the projections of yt and yt+1 respectively on K, by
the Projection Lemma 9 we have

‖xt − xt+1‖ ≤ ‖yt − yt+1‖
= η‖ft‖
≤ η‖ft − µt‖+ η‖µt‖

≤ η‖ft − µt‖+
2‖µt‖
‖Ft‖

= η‖ft − µt‖+
2
t
.

If ‖Ft‖ = 0, then the Projection Lemma 9 implies that
‖xt−xt+1‖ ≤ η‖ft‖ = η‖ft−µt‖, so the stated bound
still holds.

2. ‖Ft‖ ≥ 2/η: we first show the following bound:

‖xt − xt+1‖ ≤ η‖ft − µt‖+ ‖ft‖/‖Ft‖. (2)

Consider two unit vectors: u in the direction yt−xt, and
v in the direction yt. We claim that the sine of the angle
θ between these vectors is at most 1/η‖Ft‖. To see this,
consider the triangle formed by the points 0, xt, yt. We
are interested in the angle θ at vertex yt (see Figure 1).
Let ϑ be the angle at xt. By the law of sines, we have

sin(θ) =
‖xt‖ sin(ϑ)

‖yt‖ ≤ 1
‖yt‖ =

1
η‖Ft‖ ,

where the inequality follows because ‖xt‖ ≤ 1 and
sin(ϑ) ≤ 1.
Now, we consider the components of ft along u and v:
define fu

t = (ft · u)u and fv
t = (ft · v)v. Consider the

point yt− ηfu
t . Since it lies on the line joining yt to xt,

its projection on K is also xt. Here, we use the fact that
yt − ηfu

t is outside K: this is because

‖yt − ηfu
t ‖ ≥ ‖yt‖ − η‖fu

t ‖ ≥ η‖Ft‖ − η ≥ 1.

By the Projection Lemma 9, we have

‖xt+1−xt‖ ≤ ‖yt+1−(yt−ηfu
t)‖ = η‖ft−fu

t ‖. (3)

Let x be the projection of fv
t on the subspace spanned

by u (i.e. x = (fv
t · u)u). Then, since fu

t is the projec-
tion of ft in the subspace spanned by u, it is the closest
point to ft in the subspace, and since x is also in the
subspace, we have

‖ft − fu
t ‖ ≤ ‖ft − x‖

≤ ‖ft − fv
t ‖+ ‖fv

t − x‖
= ‖ft − fv

t ‖+ ‖fv
t ‖ sin(θ)

≤ ‖ft − fv
t ‖+ ‖ft‖/η‖Ft‖

≤ ‖ft − µt‖+ ‖ft‖/η‖Ft‖.
The last inequality follows because fv

t is the closest
point to ft in the subspace spanned by v, and µt is a
point in this subspace. Plugging this bound into (3), we
get (2).
Now, we have the following bound on ‖ft‖/‖Ft‖:

‖ft‖
‖Ft‖ ≤ ‖ft − µt‖+ ‖µt‖

‖Ft‖ ≤ η

2
‖ft−µt‖+

1
t
. (4)

Plugging (4) into (2), we get the required bound.

Proof: (Lemma 7)
We may assume that ‖µ‖ ≤ 1, since the right hand side is
minimized at µ = 1

T

∑T
t=1 ft. The statement of the lemma is

essentially bounding the regret of the FTL algorithm played
on the sequence of cost functions ct(x) = ‖x − ft‖2, for
t = 0, 1, 2, . . . , T , with the convex domain the unit ball Bn.
This is because the leader in round t is

arg min
x∈Bn

{
t−1∑
τ=0

‖x− fτ‖2} =
1
t

t−1∑
τ=0

fτ = µt.

We assume here that the first point played by the algorithm
is 0. Then by the FTL-BTL inequality (Lemma 2), the regret
of the FTL algorithm can be bounded as (here, the regular-
ization function R(x) is null):

Regret ≤ c0(0)− c0(µ1) +
T∑

t=1

ct(µt)− ct(µt+1)

≤
T∑

t=1

∇ct(µt) · (µt − µt+1) (∵ ct is convex)

≤
T∑

t=1

‖∇ct(µt)‖‖µt − µt+1‖

≤
T∑

t=1

‖2(ft − µt)‖ · ‖µt − µt+1‖.

Now, we have

‖µt − µt+1‖ =
∥∥∥∥µt − tµt + ft

t + 1

∥∥∥∥

≤ 1
t + 1

(‖µt‖+ ‖ft‖)

≤ 2
t
.

63

Thus, the regret is bounded by 4ρ(T).

Proof: (Lemma 8) We may assume without loss of general-
ity that µ = 0: using the vectors ft − µ instead of ft doesn’t
change the value of ρ(T). We have

ρ(T) =
T∑

t=1

1
t
‖ft − Ft/t‖

≤
T∑

t=1

1
t

[
‖ft‖+

1
t
‖Ft‖

]

≤
T∑

t=1

[
1
t
‖ft‖+

1
t2

t−1∑
τ=1

‖fτ‖
]

≤
T∑

t=1

2
t
‖ft‖

(
∵

T∑
τ=t+1

1
t2
≤ 1

t

)

≤

√√√√
[

T∑
t=1

‖ft‖2
][

T∑
t=1

4
t2

]
(Cauchy-Schwarz)

≤ 3

√√√√
T∑

t=1

‖ft‖2,

as required.

The projection lemma which follows is a well-known
fact from convex optimization theory. We include the proof
for completeness.

Lemma 9 (Projection lemma) Let K be a convex set, and
let x and y be any two points. Let x′ and y′ be their respec-
tive projections on K. Then

‖x′ − y′‖ ≤ ‖x− y‖.
Proof: Assume that x′ 6= y′, otherwise the inequality is triv-
ial. By the properties of projections on convex sets, we have

(x− x′) · (y′ − x′) ≤ 0 and (y− y′) · (x′ − y′) ≤ 0. (5)

Consider the line ` passing through x′ and y′, and con-
sider the projections x′′ and y′′ of x and y respectively on
this line. The inequalities (5) imply that along `, the order of
the points is (x′′, x′, y′, y′′). Thus, we have

‖x′ − y′‖ ≤ ‖x′′ − y′′‖ ≤ ‖x− y‖,
where the last inequality follows because the projection of
any line segment on any line is no longer than the segment
itself.

5 Analysis of the Variation MW algorithm
The analysis of the Variation MW is straightforward, though
complicated somewhat due to heavy algebraic manipulations.
We outline the main ideas in the analysis now. Our starting
point is Lemma 10, a well-known bound which relates the
regret of the Multiplicative Weights algorithm with the ex-
pected squared losses of the experts (the expectation being
taken under the distributions generated by the algorithm).

Next, we make crucial use of the fact that the Multiplica-
tive Weighs algorithm puts exponentially higher weight on
experts with lower cost than those with higher costs. Since
we explicitly factor in the variation in the costs of each ex-
pert before computing their exponential weights, eventually
the algorithm starts to concentrate all the weight on experts
with lower cost and lower variation. This yields the desired
regret bound.

We now describe a regret bound on the performance of
the Multiplicative Weights algorithm. This bound is well-
known (see, for e.g. [4, 2]), we include the short proof for
completeness.

Lemma 10 Suppose in round t of the expert prediction prob-
lem, expert i incurs cost gt(i), where |gt(i)| ≤ M . Consider
the Multiplicative Weights algorithm, that in round t chooses
expert i with probability xt(i) ∝ exp(−η

∑t−1
τ=1 gτ (i)). Then,

if η ≤ 1/M ,

Regret ≤ η
T∑

t=1

g2
t · xt +

log n

η
.

Proof: Let wt(i) = exp(−η
∑t−1

τ=1 gτ (i)), and let Zt =∑
i wt(i). Then the distribution on the experts at time t is

exactly wt/Zt. We think of Zt as a potential function, and
track how it changes over time. Initially, Z1 = n. We have

Zt+1 =
∑

i

wt(i) exp(−ηgt(i))

≤
∑

i

wt(i)(1− ηgt(i) + η2gt(i)2) (6)

= Zt(1− η(gt · xt) + η2(g2
t · xt))

≤ Zt exp(−η(gt · xt) + η2(g2
t · xt)).

In (6), we used the fact that for |x| ≤ 1, we have exp(x) ≤
1 + x + x2. Thus, by induction, we have

ZT+1 ≤ n exp

(
−η

T∑
t=1

(gt · xt) + η2
T∑

t=1

(g2
t · xt)

)
.

Also, for any expert i we have the bound

ZT+1 ≥ wT+1(i) = exp

(
−η

T∑
τ=1

gτ (i)

)
.

Putting these two inequalities together, taking logarithms and
simplifying, we get the desired bound on the regret.

For our analysis, we use a slightly different notion of
variation of the experts’ costs: for any round t and any expert
i, define

Qt(i) =
t−1∑
τ=1

(fτ (i)− µτ (i))2.

Recall that the usual definition of variation of an experts cost
up to the tth round is simply

VARt(i) =
t∑

τ=1

(fτ (i)− µ?
t (i))

2,

64

where µ?
t (i) = 1

t

∑t
τ=1 ft(i). But it is easily seen from (the

1 dimensional version of) Lemmas 7 and 8 that

Qt(i) ≤ VARt(i) + 12
√

VARt(i). (7)

and thus Qt(i) can serve as a proxy for the true variation (up
to constant factors).

Recall that `t is the best expert till time t, and VARmax
T =

maxt≤T {VARt(`t)}. Define Qmax
T = maxt≤T Qt(`t). Then,

we have that
Qmax

T ≤ 4VARmax
T ,

assuming that VARmax
T ≥ 16. Then, the following Lemma

combined with inequality (7) implies Theorem 4.

Lemma 11 Let ft, for t = 1, 2, . . . , T , be a sequence of cost
vectors to the experts so that ft(i) ∈ [0, 1]. Let `t be the best
expert at time t, and let Q be an upper bound on Qmax

T =
maxt{Qt(`t)}. Then setting η = min{

√
log(n)/4Q, 1/10},

the regret of the Variation MW algorithm is bounded by

Regret ≤ 4
√

Q log(n) + 10 log(n).

Proof: Define gt = f̃t−αt
~1, where αt = µt(`t)+ 4η

t Qt(`t),
and ~1 is the all 1’s vector. Note that for any i,

exp

(
−η

t−1∑
τ=1

gτ (i)

)
=

1
Z

exp

(
−η

t−1∑
τ=1

f̃τ (i)

)
,

where Z is a scaling constant independent of i. Hence, scal-
ing either the weights exp(−η

∑t−1
τ=1 gτ (i)) or the weights

exp(−η
∑t−1

τ=1 f̃τ (i)) to sum up to 1 yields the same distri-
bution, viz. xt.

Since we assumed that the ft(i) ∈ [0, 1], we conclude
that gt(i) ∈ [−2, 2] (since 4η ≤ 1). Applying Lemma 10 to
the sequence of cost vectors gt, we get the following regret
bound, where `T is the final best expert:

T∑
t=1

f̃t · xt −
T∑

t=1

f̃t(`T) ≤ η
T∑

t=1

g2
t · xt +

log n

η
.

Here, we used the fact that the
∑T

t=1 αt
~1 · xt =

∑T
t=1 αt.

Simplifying using the definition of f̃t, we get
T∑

t=1

ft · xt −
T∑

t=1

ft(`T)

≤ η
T∑

t=1

g2
t · xt +

log n

η

− 4η
T∑

t=1

(ft − µt)2 · xt + 4η
T∑

t=1

(ft(`T)− µt(`T))2

≤ η
T∑

t=1

[g2
t − 4(ft − µt)2] · xt + 4η(Q + 1) +

log n

η
,

(8)

since
∑T

t=1(ft(`T)− µt(`T))2 ≤ QT (`T) + 1 ≤ Q + 1.
The following lemma bounds the first term in (8). The

proof is a straightforward calculation, and so we defer its
proof to after the present proof.

Lemma 12 If η ≤ 1/10, then for any i, we have

g2
t (i)− 4(ft(i)− µt(i))2 ≤ 2(µt(i)− αt)2.

Plugging this bound into (8), we get that

Regret ≤ 2η
T∑

t=1

(µt−αt
~1)2 ·xt +

log n

η
+4η(Q+1). (9)

We now proceed to bound
∑T

t=1(µt − αt
~1)2 · xt. We

bound each term in the summation separately. For any t ≤
log n

η , we simply bound |µt(i)− αt| ≤ 2 and hence we have

(µt − αt
~1)2 · xt ≤ 2.

Now let t > log n
η . For convenience of notation, we drop

the subscript t from xt(i) and refer to them as x(i).

(µt − αt
~1)2 · x

=
∑

i:µt(i)≤αt

(µt(i)− αt)2x(i) +
∑

i:µt(i)>αt

(µt(i)− αt)2x(i)

≤
∑

i:µt(i)≤αt

[
4η

t
Qt(`t)

]2

x(i) +
∑

i:µt(i)>αt

(µt(i)− αt)2x(i)

(10)

≤
[
4η

t
Qt(`t)

]2

+
∑

i:µt(i)>αt

(µt(i)− αt)2x(i) (11)

Here, (10) follows because when µt(i) ≤ αt = µt(`t) +
4η
t Qt(`t), we have |µt − αt| ≤ 4η

t Qt(`t) since µt(i) ≥
µt(`t).

We now bound each term of (11) separately. The proof
of the following lemma is a straightforward calculation and
we defer it to after the present proof.

Lemma 13 The first term of (11), summed over all t, can be
bounded as:

T∑
t=1

[
4η

t
Qt(`t)

]2

≤ 32η2Q.

The hard part is to bound the second term of (11). We
now proceed to do so. The intuition in the following analy-
sis is that the Variation MW algorithm tends to concentrate
exponentially high weight on the experts that have low cost.

Let I be the index set of all i such that µt(i) > αt.
Note that `t /∈ I . Now, we have x(i) ∝ exp(−ηtµt(i) −
4η2Qt(i)), and thus x(`t) ∝ exp(−ηtαt). Thus, x(i) can be
written as:

x(i) =
exp(−ηtµt(i)− 4η2Qt(i))

exp(−ηtαt) +
∑

j 6=`t
exp(−ηtµt(j)− 4η2Qt(j))

=
λ(i) exp(−ηt(µt(i)− αt))

1 +
∑

j 6=`t
λ(j) exp(−ηt(µt(j)− αt))

,

where λ(i) = exp(−4η2Qt(i)). Note that all λ(i) ∈ (0, 1].
Define, for all i, d(i) = (µt(i) − αt). Note that for i ∈ I ,
d(i) ∈ [0, 1]. Thus, we have

∑

i∈I

d(i)2x(i) =
∑

i∈I

λ(i)d(i)2 exp(−ηtd(i))
1 +

∑
j 6=`t

λ(j) exp(−ηtd(j))
.

65

To upper bound
∑

i∈I d(i)2x(i), we can neglect the factors
in the denominator which depend on i /∈ I ∪ {`t}; this only
increases the value. Let dI and λI be the vectors d and λ
restricted to the index set I . Define the function h : (0, 1]|I|×
[0, 1]|I| → R as

h(λI , dI) =
∑

i∈I

λ(i)d(i)2 exp(−ηtd(i))
1 +

∑
j∈I λ(j) exp(−ηtd(j))

.

This maximum value of this function on its domain gives an
upper bound on the expression above.

Lemma 14 For t > log n
η , and for any (λI , dI) ∈ (0, 1]|I| ×

[0, 1]|I|, we have

h(λI , dI) ≤ 2 log2 n

η2t2
.

Putting Lemmas 13 and 14 together, we have that
T∑

t=1

(µt − αt
~1)2 · xt ≤

∑

t≤ log n
η

2 +
T∑

t=1

[
4η

t
Qt(`t)

]2

+
∑

t> log n
η

2 log2 n

η2t2

≤ 32η2Q +
4 log n

η
.

Plugging this bound into (9), we get

Regret ≤ log n

η
+ 64η3Q + 8 log(n) + 4η(Q + 1).

Now, if we set η = {
√

log n/4Q, 1/10}, we get that the
regret is bounded by

Regret ≤ 4
√

Q · log n + 10 log(n).

Again, it may not be possible to get an upper bound on
Qmax

T a priori, but we can use the same η-halving idea (start
with η = 1/10, and halve η as soon as this maximum quadru-
ples, and restart the algorithm) and get regret that bounded
by

Regret ≤ O

(√
Qmax

T log(n) + log(Qmax
T) log(n)

)
.

The details of this bound are standard and are hence omitted
from this extended abstract.

We now give the omitted proofs of Lemmas 12, 13, and 14.
Proof: (Lemma 12)
We have:

gt(i)2 = (ft(i)− αt + 4η(ft(i)− µt(i))2)2

= (ft(i)− αt)2 + 8η(ft(i)− αt)(ft(i)− µt(i))2

+ 16η2(ft(i)− µt(i))4

≤ (ft(i)− αt)2 + (16η + 16η2)(ft(i)− µt(i))2
(12)

≤ 2(µt(i)− αt)2 + (2 + 16η + 16η2)(ft(i)− µt(i))2
(13)

≤ 2(µt(i)− αt)2 + 4(ft(i)− µt(i))2. (14)

Here, inequality (12) follows because |ft(i) − µt(j)| ≤ 1
for any i, j, and |ft(i) − αt| ≤ 2, inequality (13) follows
from the fact that (a+ b)2 ≤ 2a2 +2b2 for any real numbers
a, b, and inequality (14) follows since 16η + 16η2 ≤ 2 if
η ≤ 1/10. The lemma follows.

Proof: (Lemma 13)
Note that for t ≤ Q, Qt(`t) =

∑t−1
τ=1(fτ (i) − µτ (i))2 ≤ t,

and for t > Q, Qt(`t) ≤ Q. Thus we have

T∑
t=1

[
4η

t
Qt(`t)

]2

≤ 16η2·

∑

t≤Q

12 +
∑

t>Q

Q2

t2


 ≤ 32η2Q.

Proof: Lemma 14)
Let S = {i : d(i) ≤ log n

ηt }, and let S′ = I \ S. We upper
bound h(λI , dI) as follows:

h(λI , dI) ≤
∑

i∈S

λ(i)d(i)2 exp(−ηtd(i))∑
j∈S λ(j) exp(−ηtd(j))

+
∑

i∈S′
λ(i)d(i)2 exp(−ηtd(i))

≤ max
i∈S′

{
λ(i)d(i)2 exp(−ηtd(i))

λ(i) exp(−ηtd(i))

}
(15)

+
∑

i∈S′

log2 n

η2t2
exp (− log n) (16)

≤ 2 log2 n

η2t2
.

In (15) we use the inequality
Pn

i=1 aiPn
i=1 bi

≤ maxi≤n
ai

bi
for pos-

itive reals ai and bi. In (16), we used the following facts (a)
λ(i) ≤ 1, and (b) the function x2 exp(−ηtx) has a negative
derivative (and is thus decreasing) when x > 2

ηt , and thus its

maximum over the range [log n
ηt , 1] is obtained at log n

ηt .

6 Conclusions and Future Work
In this paper, we investigated the possibility of bounding the
regret of online learning algorithms by terms which depend
on the variation of the cost sequence, rather than the number
of prediction rounds. We analyzed two algorithms, Lazy Pro-
jection and Variation MW, and showed that these algorithms
obtain variation-bounded regret. Such bounds are significant
not only because they show that it is possible to suffer much
less regret than previously believed when the cost sequence
is particularly benign, but also because they match the re-
gret bounds of natural regret minimizing algorithms in the
stochastic setting of independent cost functions from a fixed
distribution.

We believe that this work opens up many new directions
for future research, all related to bounding the regret in terms
of the variation of the cost sequence in the various different
scenarios in which regret minimizing algorithms have been
devised: bandit settings, strictly convex cost functions, on-
line convex optimization and so on. We conjecture in all
such scenarios, it is possible to get variation-bounded regret.

66

Specifically, we conjecture that any dependence on T , the
number of prediction rounds, in the regret bound can be re-
placed by the same dependence on the variation of the cost
sequence. In other scenarios, the variation needs to be de-
fined carefully in settings in which it is not natural or obvi-
ous, such as in the case of online convex optimization.

Acknowledgements
We thank Martin Zinkevich for initial discussions on the pos-
sibility of variation bounds on the regret.

References
[1] Chamy Allenberg-Neeman and Benny Neeman. Full

information game with gains and losses. In 15’th Inter-
national Conference on Algorithmic Learning Theory,
2004.

[2] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and
Robert E. Schapire. The nonstochastic multiarmed ban-
dit problem. SIAM J. Comput., 32(1):48–77, 2003.

[3] Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction,
Learning, and Games. Cambridge University Press,
2006.

[4] Nicolò Cesa-Bianchi, Yishay Mansour, and Gilles
Stoltz. Improved second-order bounds for prediction
with expert advice. Mach. Learn., 66(2-3):321–352,
2007.

[5] T. Cover. Universal portfolios. Math. Finance, 1:1–19,
1991.

[6] Yoav Freund and Robert E. Schapire. A decision-
theoretic generalization of on-line learning and an ap-
plication to boosting. J. Comput. Syst. Sci., 55(1):119–
139, 1997.

[7] James Hannan. Approximation to bayes risk in re-
peated play. In M. Dresher, A. W. Tucker, and P. Wolfe,
editors, Contributions to the Theory of Games, volume
III, pages 97–139, 1957.

[8] D. P. Helmbold, J. Kivinen, and M. K. Warmuth. Rel-
ative loss bounds for single neurons. IEEE Transac-
tions on Neural Networks, 10(6):1291–1304, Novem-
ber 1999.

[9] Mark Herbster and Manfred K. Warmuth. Tracking the
best linear predictor. Journal of Machine Learning Re-
search, 1:281–309, 2001.

[10] Adam Kalai and Santosh Vempala. Efficient algorithms
for online decision problems. Journal of Computer and
System Sciences, 71(3):291–307, 2005.

[11] Jyrki Kivinen and Manfred K. Warmuth. Exponenti-
ated gradient versus gradient descent for linear predic-
tors. Inf. Comput., 132(1):1–63, 1997.

[12] Nick Littlestone and Manfred K. Warmuth. The
weighted majority algorithm. Information and Com-
putation, 108(2):212–261, 1994.

[13] V. Vovk. A game of prediction with expert advice. J.
Comput. Syst. Sci., 56(2):153–173, 1998.

[14] Martin Zinkevich. Online convex programming and
generalized infinitesimal gradient ascent. In ICML,
pages 928–936, 2003.

67

68

Online Learning of Approximate Maximum p-Norm Margin Classifiers with Bias

Kosuke Ishibashi, Kohei Hatano and Masayuki Takeda
Department of Informatics, Kyushu University

744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
{k-ishi, hatano, takeda}@i.kyushu-u.ac.jp

Abstract

We propose a new online learning algorithm which
provably approximates maximum margin classifiers
with bias, where the margin is defined in terms of
p-norm distance. Although learning of linear clas-
sifiers with bias can be reduced to learning of those
without bias, the known reduction might lose the
margin and slow down the convergence of online
learning algorithms. Our algorithm, unlike pre-
vious online learning algorithms, implicitly uses
a new reduction which preserves the margin and
avoids such possible deficiencies. Our preliminary
experiments show that our algorithm runs much
faster than previous algorithms especially when the
underlying linear classifier has large bias.

1 Introduction

Large margin classification methods are quite popular among
Machine Learning and related research areas. Various gen-
eralization bounds (e.g., [32, 34, 10]) guarantee that linear
classifiers with large margin over training data have small
generalization error with high probability. The Support Vec-
tor Machine (SVM) [5] is one of the most powerful among
such methods. The central idea of SVM is to find the maxi-
mum 2-norm margin hyperplane over linearly separable data.
Further, by using kernels and soft margin formulations, it can
learn large margin hyperplane over linearly inseparable data
as well. The problem of finding the maximum 2-norm mar-
gin hyperplane over data is formulated as a quadratic pro-
gramming problem. So the task of SVM can be solved in
polynomial time by using standard optimization methods.

On the other hand, solving quadratic programming prob-
lems is time-consuming, especially for huge data which is
now common in many applications. This motivates many
researches for making SVM more scalable. One of major
approaches is to decompose the original quadratic program-
ming problem into smaller problems which are to solve [28,
29, 16, 8, 17]. Another popular approach is to apply on-
line learning algorithms. Online learning algorithms such
as Perceptron [31, 27, 26] and its variants [1, 11, 22, 13]
work in iterations, where at each iteration, they process only
one instance and update their hypotheses successively. On-
line learning algorithms use less memory, and are easy to

implement. Many online learning algorithms that find large
margin classifiers have been proposed, including, e.g., Ker-
nel Adatron [12], Voted Perceptron [11], Max Margin Per-
ceptron [21], ROMMA [22], ALMA [13], NORMA [19],
LASVM [4], MICRA [35], and Pegasos [33].

However, most of these online learning algorithms do not
fully exploit the linear separability of data. More precisely,
they are designed to learn homogeneous hyperplanes, i.e.,
hyperplanes that lie on the origin, and they cannot learn lin-
ear classifiers with bias directly. So, in order to learn lin-
ear classifiers with bias, typical online learning algorithms
map instances from the original space R

n to an augmented
space R

n+1 with an extra dimension by using the mapping
φ : x �→ x̃ = (x,−R), where R is the maximum 2-norm
of instances [10]. Then, a hyperplane with bias (w, b) in
the original space corresponds to the hyperplane without bias
w̃ = (w,−b/R) in the augmented space since w · x + b =
w̃ · x̃. So, by using this mapping, learning linear classifiers
with bias can be reduced to learning those without bias. But,
this mapping weakens the guarantee of margin. Suppose that
for a sequence of labeled examples (x1, y1), . . . , (xT , yT)
(xt ∈ R

n and yt ∈ {−1, +1} for t = 1, . . . , T), there is a
hyperplane with bias (u, b) that has margin

γ = min
t=1,...,T

yt(u · xt + b)
‖u‖2R

,

where instances are normalized by R so as to limit the max-
imum 2-norm of instances to be one. Then, the correspond-
ing hyperplane ũ = (u,−b/R) over the augmented space,
in which the maximum norm of instances is bounded by R̃,
has margin

γ̃ =
y(ũ · x̃)
‖ũ‖2R̃

≥ y(u · x + b)
2‖u‖2R

=
1
2
γ,

since ‖ũ‖2
2 = ‖u‖2 + b2/R2 ≤ 2‖u‖2, and ‖x̃‖2

2 ≤ 2R.
Even though the loss of margin is at most by a constant fac-
tor, it might cause significant difference in prediction perfor-
mance over practical applications.

In this paper, we propose a new online learning algo-
rithm that approximately maximizes the margin. Our algo-
rithm, PUMMA (P-norm Utilizing Maximum Margin Algo-
rithm), is an extension of ROMMA [22] in two ways. First,
PUMMA can optimize the bias directly by using an implicit
reduction from learning of linear classifiers with bias to learn-
ing those without bias, instead of using the mapping φ.

69

Second, PUMMA can provably approximate the max-
imum p-norm margin classifier for p ≥ 2. A benefit of
maximizing p-norm margin is that we can find sparse lin-
ear classifiers quickly. Technically speaking, PUMMA is a
variant of p-norm algorithm [15, 14]. It is known that, if
we set p = ∞ or p = O(ln n), the p-norm algorithm be-
haves like online multiplicative update algorithms such as
Winnow [23], which can converge exponentially faster than
Perceptron, when the underlying linear classifier is sparse.
For example, if the target concept is a k-disjunction over n
boolean variables, Winnow can find a consistent hypothesis
in O(k ln n) mistakes, while Perceptron needs Ω(kn) mis-
takes [20].

We show that PUMMA, given a parameter δ (0 < δ ≤ 1)
and p ≥ 2, finds a linear classifier which has p-norm mar-

gin at least (1 − δ)γ in O((p−1)R2

δ2γ2) updates, when there ex-
ists a hyperplane with p-norm margin γ that separates the
given sequence of data. The worst-case iteration bound of
PUMMA is as the same as those of typical Perceptron-like
algorithms when p=2 and that of ALMA [13] for p > 2,
PUMMA is potentially faster than these previous algorithms
especially when the underlying linear classifier has large bias.

For linearly inseparable data, PUMMA can use kernels
and the 2-norm soft margin formulation [9] for p = 2, as
well as previous Perceptron-like online learning algorithms.
Further, we extend PUMMA to deal with 2-norm soft mar-
gin formulation for p > 2. Note that in standard implemen-
tations of the SVM [16, 8, 17], the 1-norm soft margin for-
mulation (see, e.g., [10]) is preferred since it often requires
less computation time. However, in general, both soft mar-
gin formulations are incomparable in terms of generalization
ability, which depends on data and choices of kernels. For
online-based implementations of the SVM with 1-norm soft
margin see LASVM [4] and Pegasos [33].

There are other related works. For p = 2, previous al-
gorithms such as Kernel Adatron [12], NPA [18], SMO al-
gorithm [29], Max Margin Perceptron [21], and LASVM [4]
can find bias directly as well. However, the first three algo-
rithms are not suitable for the online setting since they need
to store past examples to compute the bias. Max Margin
Perceptron finds the same solution of our algorithm, but its
upperbound of updates is ln(R/γ) times worse than that of
PUMMA . For LASVM, there is no theoretical analysis of
its convergence rate. For p = ∞, ROME algorithm [24] is
also similar to our present work. It is an online learning algo-
rithm that finds an accurate linear classifier quickly when the
margin of the underlying classifier is defined as ∞-norm dis-
tance. On the other hand, ROME requires prior knowledge
of the margin and bias. For a more general convex optimiza-
tion technique which includes ROMMA as a special case,
see [3].

In our preliminary experiments, PUMMA converges faster
than previous online algorithms over artificial dataset, espe-
cially when the underlying linear classifier has large bias. In
particular, for p = O(ln n), PUMMA is from 2 to 10 times
faster than ALMA. Over real datasets, PUMMA often out-
performs previous online algorithms.

2 Preliminaries

2.1 Norm

For any vector x ∈ R
n and p > 0, p-norm ‖x‖p of x is given

as (
∑n

i=1 |xi|p) 1
p . In particular, ‖x‖∞ is given as ‖x‖∞ =

maxi |xi|. It can be shown that, for any fixed x ∈ R
n, the

p-norm ‖x‖p is decreasing with respect to p, i.e., ‖x‖p′ ≤
‖x‖p for any 0 < p ≤ p′. For p > 1, q-norm is dual to
p-norm if 1/q = 1 − 1/p. For p ≥ 1 and q such that 1/p +
1/q = 1, it is known that

‖x‖∞ ≤ ‖x‖p ≤ ‖x‖1 ≤ n1/p‖x‖∞.

2.2 Online learning

We consider the standard setting of online learning of linear
classifiers, in which learning proceeds in trials. At each trial
t, the learner receives an instance xt ∈ R

n, and it predicts
a label ŷt ∈ {−1, +1}. Then the learner receives the true
label yt ∈ {−1, +1} and then it possibly updates its current
hypothesis depending on the received label. In this paper,
we assume that labels are determined by a linear classifier
f(x) = sign(w · x + b) for some weight vector w ∈ R

n

and bias b ∈ R, where sign(a) = +1 if a ≥ 0, otherwise
sign(a) = −1. In particular, if yt 	= ŷt, we say that the
learner makes a mistake. A typical goal of online learning
is to minimize the number of mistakes as small as possible.
Most of known online algorithms are mistake-driven, that is,
they update their hypotheses when they make a mistake.

The p-norm distance between a hyperplane and a point is
computed as follows:

Lemma 1 ([25]) Let V = {v ∈ R
n | w · v + b = 0}. Then,

for any x ∈ R
n,

min
v∈V

‖x − v‖p =
|w · x + b|

‖w‖q
,

where q = 1/(1 − 1/p) 1.

Based on Lemma 1, the p-norm (geometric) margin of a hy-
perplane (w, b) over an example (x, y) is defined as

y(w · x + b)
‖w‖q

.

For any sequence of examples S = ((x1, y1), . . . , (xT , yT))
(T ≥ 1), the margin of a hyperplane (w, b) over S is defined
as the minimum margin of examples in S. The algorithms
we consider update their hypotheses if not only they make a
mistake, but also their hypotheses have insufficient margin.
In this paper, the learner’s goal is to minimize the number
of updates in order to obtain a linear classifier with approxi-
mately maximum p-norm margin over the given sequence of
examples.

2.3 Convex duality

We review the basic results on convex analysis. Let F :
R

n → R be a strictly convex differentiable function. The
Legendre dual of F , denoted as F ∗, is defined by

F ∗(θ) = sup
w∈Rn

(θ · w − F (w)) .

1More generally, this lemma holds for an arbitrary norm and its
dual norm.

70

It can be verified that F ∗ is also strictly convex and differen-
tiable. Then the following lemma holds:

Lemma 2 ([30, 7]) 1. F ∗∗ = F .

2. F (w) + F ∗(θ) = θ · w if and only if θ = ∇F (w).
3. ∇F ∗ = (∇F)−1.

In particular, we use F (w) = 1
2‖w‖2

q throughout this
paper. Let f = ∇F , that is,

f (w)i =
sign(wi)|wi|q−1

‖w‖q−2
q

By Lemma 2 and some calculations, we obtain the following
property.

Lemma 3 ([14]) 1. The inverse f −1 of f is given as

f−1(w)i =
sign(wi)|wi|p−1

‖w‖p−2
p

,

where 1/p + 1/q = 1.

2. ‖f(w)‖p = ‖w‖q.

3. w · f (w) = ‖f(w)‖2
p = ‖w‖2

q .

Finally, we will use the following bound later.

Proposition 1 ([15, 14]) Let G(θ) = 1
2‖θ‖2

p with p ≥ 2
and let g = ∇G. Then it holds for any x and a that

G(θ + a) ≤ G(θ) + g(θ) · a +
(p − 1)

2
‖a‖2

p.

3 PUMMA

We consider the learning of maximum p-norm margin classi-
fiers in the online learning setting. By Lemma 1, the problem
of finding the maximum p-norm margin hyperplane over a
sequence of labeled examples S = ((x1, y1),. . . ,(xm, yT))
is formulated as follows:

min
w,b

1
2
‖w‖2

q, (1)

subject to :

yt(w · xt + b) ≥ 1 (1 ≤ t ≤ T),

where q is such that 1/p + 1/q = 1. Since the problem
(1) is a convex optimization problem with linear inequality
constraints, it can be solved by optimization methods such as
interior-point methods [6]. However, in the context of online
learning, it is time-consuming to solve the problem (1) at
each trial. Further, it is necessary to store all the past given
examples.

For p = 2, Li and Long proposed an elegant solution of
the problem (1) in the online learning setting [22]. Their al-
gorithm, ROMMA, is an online learning algorithm that finds
approximate 2-norm maximum margin hyperplanes without
bias. At each trial t, given an instance xt, ROMMA predicts
ŷt = sign(wt · xt) such that

wt = argmin
w

1
2
‖w‖2

2, (2)

subject to

yt−1w · xt−1 ≥ 1 and w · wt−1 ≥ ‖wt−1‖2
2.

It can be shown that the constraints of the problem (2) is
relaxed, that is, the constraints of the problem (2) is weaker
than those of the problem (1) when p = 2 and b t is fixed with
0. In fact, the second constraint in (2) corresponds to the
hyperspace that contains the polyhedron which representing
the constraints yj(w · xj) ≥ 1 (j = 1, . . . , t − 2).

Our algorithm, PUMMA, generalizes ROMMA in two
folds: (i) PUMMA can maximize any p-norm margin with
p ≥ 2. (ii) PUMMA can directly learns non-homogeneous
hyperplanes. PUMMA takes δ (0 ≤ δ < 1) and p (p ≥ 2) as
parameters. For initialization, it requires initial weight vec-
tor w0 = 0 ∈ R

n and positive and negative instances xpos
1

and xneg
1 , respectively. These two examples are easily ob-

tained by keep predicting −1 until the first positive example
appears and predicting +1 until the first negative example
comes. If either a positive or negative example cannot be
obtained, then the number of updates is at most 1.

Then, given a sequence S =((x1, y1), . . . , (xt−1, yt−1))
of examples and an instance xt, PUMMA predicts ŷt =
sign(wt · xt + bt), where wt and bt is given as follows:

(wt, bt) = arg min
w,b

1
2
‖w‖2

q, (3)

subject to :

w · xpos
t + b ≥ 1, w · xneg

t + b ≤ −1

w · f(wt−1) ≥ ‖wt−1‖2
q,

where q = 1/(1 − 1/p), xpos
t and xneg

t are the last positive
and negative examples which incur updates, respectively. If
yt(wt ·xt +bt) < 1−δ, PUMMAp(δ) updates (xpos

t+1, x
neg
t+1)

= (xt, x
neg
t), if yt = +1, and (xpos

t+1, x
neg
t+1) = (xpos

t , xt),
otherwise.

3.1 Solution of the optimization problem (3)

Now we show the solution of the optimization problem (3).
In this subsection, for simplicity, we denote v = w t−1, θ =
f(wt−1), xpos = xpos

t and xneg = xneg
t . Let L be the

Lagrangian, that is,

L(w, b, α,β) =
1
2
‖w‖2

q

+
∑

�∈{pos,neg}
α�{1 − y�(w · x� + b)}

+ β(‖v‖2
q − θ · w), (4)

where ypos = +1 and yneg = −1. Then the partial deriva-
tive of L w.r.t. wi and b is given respectively as

∂L

∂wi
= f(w)i −

∑

�∈{pos,neg}
y�α�x�

i − βθi, and (5)

∂L

∂b
= αpos − αneg . (6)

Since the solution (w∗, b∗) must enforce the partial deriva-
tives (5) and (6) to be zero, the vector w∗ is specified as

w∗ = f−1(αz + βθ),

where α = αpos = αneg , z = xpos − xneg and

f−1(θ)i =
sign(θi)|θi|p−1

‖θ‖p−2
p

.

71

PUMMA p(δ)
begin

1. (Initialization) Get examples (xpos
1 , +1)

and (xneg
1 ,−1). Let w0 = (0, . . . , 0) ∈

R
n.

2. For t = 1 to T ,
(a) Receive an instance xt.
(b) Let

(wt, bt) = arg min
w,b

1
2
‖w‖2

q,

subject to :

(w · xpos
t + b) ≥ 1

(w · xneg
t + b) ≤ −1

w · f(wt−1) ≥ ‖wt−1‖2
q.

(c) Predict ŷt = sign(wt · xt + bt).
(d) Receive the label yt. If yt(wt · xt +

bt) < 1 − δ, update

(xpos
t+1, x

neg
t+1) =

{

(xt, x
neg
t) , (yt = +1)

(xpos
t , xt) , (yt = −1).

Otherwise, let

(xpos
t+1, x

neg
t+1) = (xpos

t , xneg
t).

end.

Figure 1: The description of PUMMA .

Further, by KKT conditions, the parameters α and β satisfy
that

α(1 − w∗ · xpos − b∗) = 0, (7)

α(1 + w∗ · xneg + b∗) = 0, (8)

1 − w∗ · xpos − b∗ ≤ 0, (9)

1 + w∗ · xneg + b∗ ≤ 0, (10)

α ≥ 0, (11)

β(‖v‖2
q − w∗ · θ) = 0, (12)

‖v‖2
q − w∗ · θ ≤ 0, (13)

and β ≥ 0. (14)

We show that α > 0 by contradiction. Assuming that α = 0,
we have w∗ = f(βθ) = βv. Then the conditions (12), (13)
and (14) implies β = 1 and thus w∗ = v. However, the
conditions (9) or (10) cannot be satisfied for w ∗ = v, which
is a contradiction.

Now we consider two cases. (i) Suppose that β = 0.
Then, since α > 0 and the conditions (7) and (8) hold, the
vector w∗ is given as

w∗ = αf−1(z), (15)

where α = 2/‖z‖2
p. (ii) Otherwise, i.e., if β > 0, by the

conditions (7), (8), and (12),

w∗ = f−1(αz + βv), (16)

where α and β where α and β satisfies the following equa-
tions

{

f−1(αz + βθ) · z = 2,

f−1(αz + βθ) · θ = ‖v‖2
q.

(17)

That is, the optimal solution w∗ satisfies the constraints of
the problem(3) with equality. In this case, the solution can
be obtained by maximizing its Lagrange dual L∗ which is
defined as

L∗(α, β) = min
w,b

L(w, b, α, β).

Further, with some calculations, L∗ is computed as

L∗(α, β) = −1
2
‖αz + βθ‖2

p + 2α + β‖θ‖2
p. (18)

Then, Note that the partial derivatives of L∗ are

∂L∗

∂α
= −f−1(αz + βθ) · z + 2

∂L∗

∂β
= −f−1(αz + βθ) · θ + ‖θ‖2

p.

Since L∗ is concave, the equations (17) is satisfied if and
only if L∗ is maximized. So, given an initial assignment
(α0, β0), we can approximate (α, β) by repeating the New-
ton update

(

αk+1

βk+1

)

=
(

αk

βk

)

−∇2L∗(α, β)−1∇L∗(αk, βk)

for sufficiently many steps, where

∂2L∗

∂2α
=
∑

i

f−1′
(αz + βθ)iz

2
i ,

∂2L∗

∂β∂α
=
∑

i

f−1′
(αz + βθ)iziθi,

∂2L∗

∂α∂β
=
∑

i

f−1′
(αz + βθ)iziθi,

∂2L∗

∂2β
=
∑

i

f−1′
(αz + βθ)iθ

2
i ,

and

f−1′
(θ)i =

∂f−1(θ)
∂θi

= −(p − 2)
|θi|2(p−1)

‖θ‖2p−2
p

+ (p − 1)
|θi|p−2

‖θ‖p−2
p

.

In our implementation, we set initial values as α0 = 0 and
β0 = 1.

In particular, for p = 2, it holds that f(x) = f −1 = x.
So, we have the following analytical solution for equations
(17):

α =
‖v‖2(2 − v · z)

‖v‖2‖z‖2 − (v · z)2
and

β =
‖v‖2‖z‖2 − 2(v · z)
‖v‖2‖z‖2 − (v · z)2

. (19)

72

Figure 2: Illustration of the implicit reduction which pre-
serves the margin. Each pair of positive and negative ex-
amples in the original space (left) corresponds to a positive
example in the new space (right).

As a summary, in order to obtain the solution w ∗, we first
assume the case (i) and check whether the condition w ∗ ·θ >
‖v‖2

q holds or not. If it does, the solution is given as (15).
Otherwise, the case (ii) holds and the solution is (19) for
p = 2, or we apply Newton method for p > 2.

In either case (i) or (ii), the bias b∗ is given as

b∗ = −w∗ · xpos + w∗ · xneg

2
. (20)

3.2 Implicit reduction to learning classifiers without
bias

We show an interpretation of PUMMA from the viewpoint of
reduction. Let us fix p = 2. Then, it is easily verified that the
update of PUMMA is identical to that of ROMMA for the
instance z = (xpos

t − xneg
t)/2 whose label is positive. This

observation implies a reduction from learning linear classi-
fiers with bias to learning of those without bias. Let X =
X pos ∪ Xneg be a subset of R

n, where X pos and X neg are
positive and negative set of instances and X pos ∩Xneg = ∅.
Assume that there exists (u, b) such that u · xpos + b ≥ 1
for each xpos ∈ X pos, and u · xneg + b ≤ −1 for each
xneg ∈ Xneg . Then we consider the set

Z =
{

xpos − xneg

2

∣

∣ xpos ∈ X pos, xneg ∈ Xneg

}

.

That is, from a set of positive and negative instances, we de-
fine the set of positive instances. Then, the following prop-
erty holds for Z .

Theorem 2 Fix any p satisfying 2 ≤ p < ∞. Let (u, b)
be the maximum p-norm hyperplane over X . Then, u is
the maximum p-norm hyperplane over Z as well. Also, the
opposite holds for some b.

Proof: Let u′ be the maximum p-norm hyperplane over Z .
Note that u · z ≥ 1 for each z ∈ Z (See Figure 2). So,
we have ‖u‖2

q ≥ ‖u′‖2
q for q s.t. 1/p + 1/q = 1. Now let

b′ = u′ · (x̃pos + x̃neg)/2, where x̃pos and x̃neg satisfies
u′ · (x̃pos − x̃neg) = 2, for any xpos ∈ X pos. Note that such
a pair (x̃pos, x̃neg) always exists since u′ is the maximum

p-norm margin hyperplane. Then, we have

u′ · xpos + b′ = u′ · x̃pos + b′ + u′ · (xpos − x̃pos)

=
u′ · (x̃pos − x̃neg)

2
+ u′ · (xpos − x̃pos)

= 1 + u′ · (xpos − x̃neg − x̃pos + x̃neg)
≥ 1 + 2 − 2 = 1.

Similarly, it holds for any xneg ∈ Xneg that u′ ·xneg + b′ ≤
−1. So, we get ‖u′‖2

q ≥ ‖u‖2
q . Finally, since the function

‖ · ‖2
q (1 < q ≤ 2) is strictly convex, the minimum is unique.

Therefore we obtain u = u′.

This theorem ensures that finding the maximum margin
hyperplane with bias can be reduced to finding those without
bias over pairs of positive and negative instances. Observe
that this reduction does not reduce the margin.

PUMMA can be viewed as a “wrapper” algorithm of
ROMMA equipped with this reduction. Given positive and
negative instances xpos and xneg , PUMMA constructs a pos-
itive instance z = (xpos −xneg)/2 and train ROMMA with
z for a trial. Then PUMMA receives a weight vector w and
set bias b as b = −(w ·(xpos+xneg))/2. If PUMMA makes
a mistake (or does not have enough margin) over a new in-
stance, it updates z and train ROMMA again.

It is possible to use any online learning algorithm that
finds maximum margin linear classifier without bias as sub-
routines if it satisfies the following requirement: such an al-
gorithm must output a weight vector whose support vector is
z. However, most of known online algorithms maximizing
the margin does not satisfy this requirement and ROMMA
seems to be the only one satisfying the requirement so far.

3.3 Convergence proof

We prove an upperbound of updates made by PUMMA. First
of all, by the KKT conditions for equations (7) and (8), the
following property holds:

Lemma 4 For t ≥ 1, it holds that

wt · xpos
t + bt = 1 and wt · xneg

t + bt = −1.

Then we prove that the optimal solution of the offline op-
timization problem (1) is a feasible solution of the PUMMA’s
optimization problem (3).

Lemma 5 Let (u, b) ∈ R
n × R be a hyperplane such that

yj(u · xj + b) ≥ 1 for j = 1, . . . , t. Then, it holds that
u · f (wt) ≥ ‖wt‖2

q and ‖u‖q ≥ ‖wt‖q.

Proof: For convenience of the proof, we denote θ t = f(wt).
Without loss of generality, we can assume that an update is
made at each trial t ≥ 1. The proof for the first inequality is
done by induction on t. For t = 1, the vector is written as
w1 = f−1(θ1), where θ1 = α(xpos

1 − xneg
1) for some α ≥

0. By the definition of u and b, it holds that u ·xpos
1 + b ≥ 1

and u · xneg
1 + b ≤ −1, respectively. So, we obtain

u · θ1 = α(u · xpos
1 − u · xneg

1)
≥ α(1 − b + 1 + b) = 2α.

73

On the other hand, by Lemma 4, we have

‖w1‖2
q = w1 · θ1 = αw1 · (xpos

1 − xneg
1) = 2α,

which shows u · θ1 ≥ ‖w1‖2
q.

Suppose that for t < t′, the statement is true. Then,
there are two cases: (i) wt′ · θt′−1 = ‖wt′−1‖2

q , and wt′ =
f−1(θt′), where θt′ = α(xpos

t′ −xneg
t′)+βθt′−1 for some α

and β, or (ii)wt′ · θt′−1 > ‖wt′−1‖2
q , and wt′ = f−1(θt′),

where θt′ = α(xpos
t − xneg

t). For the case (ii), the proof
follows the same argument for t = 1, so we only consider
the case (i). By the inductive assumption, we have

u · θt′ = α(u · xpos
t′ − u · xneg

t′) + βu · θt′−1

≥ 2α + β‖wt′−1‖2
q

By Lemma 4,

‖wt′‖2
q = wt′ · θt′

= wt′ · α(xpos
t′ − xneg

t′) + βwt′θt′−1

= 2α + β‖wt′−1‖2
q.

So, we get u · θt′ ≥ ‖wt′‖2
q and thus we prove the first

inequality. The second inequality holds immediately since
both (u, b) and (wt, bt) satisfy the same constraints in (3)
and (wt, bt) minimizes the norm by definition.

Next, prove the following lemma:

Lemma 6 For each trial t ≥ 1 in which an update is in-
curred,

‖wt+1‖2
q − ‖wt‖2

q ≥ δ2

2(p − 1)R2
,

where R = maxj=1,...,t ‖xj‖p.

Proof: By the weak duality theorem (see, e.g.,[6]), the opti-
mum of the problem (3) is bounded below by the Lagrangian
dual L∗(α, β) in (18) for any α ≥ 0 and β ≥ 0. Therefore,
using the notations in the derivation of update,

1
2
‖w∗‖2

q −
1
2
‖v‖2

q ≥ L∗(α, β) − 1
2
‖v‖2

q.

So, by using Proposition 1 and letting β = 1, we have

L∗(α, 1) − 1
2
‖v‖2

q

= − G(θ + αz) + G(θ) + 2α

≥− g(θ) · αz − (p − 1)
2

α2‖z‖2
p + 2α

= − αv · z − (p − 1)
2

α2‖z‖2
p + 2α.

The right hand side of the inequality above is maximized if

α =
2 − v · z

(p − 1)‖z‖2
p

. (21)

Note that α is positive since v · z ≤ 2 − δ. Subsisting (21),

L∗(α, 1) − 1
2
‖v‖2

q ≥ (2 − v · z)2

2(p − 1)‖z‖2
p

≥ δ2

2(p − 1)R2
.

Now we are ready to prove our main result.

Theorem 3 Suppose that for a sequence S = ((x1, y1), . . . ,
(wT , yT)), there exists a hyperplane (u, b) ∈ R

n × R such
that yt(u · xt + b) ≥ 1 for t = 1, . . . , T and the hyper-
plane (u, b) has p-norm margin γ over S. Further, let R =
maxt=1,...,T ‖xt‖p. (i) Then the number of updates made by
PUMMAp(δ) is at most

O

(

(p − 1)R2‖u‖2
q

δ2

)

.

(ii) PUMMAp(δ) outputs a hypothesis with p-norm margin
at least (1 − δ)γ after at most the updates above.

Proof: As in Lemma 5, without loss of generality, we as-
sume that PUMMA updates for t = 1, . . . , M(M ≤ T). By
Lemma 5, we have ‖wt‖q ≤ ‖u‖q for t ≥ 1. Further, by
Lemma 6, it holds that after M updates

‖u‖2
q ≥ ‖wT ‖2

q ≥ δ2M

2(p − 1)R2
,

which implies M ≤ 2‖u‖2
qR2

δ2 . Further, after at most
2‖u‖2

qR2

δ2

updates, we have yt(wt + bt) ≥ 1 − δ for t ≥ T . Then the
achieved margin is at least

1 − δ

‖w‖q
≥ 1 − δ

‖u‖q
= (1 − δ)γ.

Since it holds that ‖x‖p ≤ ‖x‖1 for p ≥ 1 and ‖x‖∞ ≤
‖x‖p ≤ n1/p‖x‖∞, we obtain the following corollary (A
similar result was shown in [13]).

Corollary 4 Assume that for a sequence S = ((x1, y1), . . . ,
(wT , yT)), there exists a hyperplane (u, b) ∈ R

n × R such
that yt(u · xt + b) ≥ 1 for t = 1, . . . , T and the hyper-
plane (u, b) has ∞-norm margin γ over S. Further, let R =
maxt=1,...,T ‖xt‖∞. Then, by setting p = c ln n (c > 0), (i)
the number of updates made by PUMMAp(δ) is at most

O

(

R2‖u‖2
1 ln n

δ2

)

.

(ii) PUMMAp(δ) outputs a hypothesis with ∞-norm margin
at least 1−δ

e1/c γ after at most the updates above.

4 Kernel and Soft Margin Extensions

4.1 Kernel Extension

As well as SVM, ROMMA and other Perceptron-like online
algorithms, PUMMA can use kernel functions for p = 2.
Note that, at trial t, the weight vector wt is written as

wt =
t−1
∑

j=1

⎛

⎝

t−1
∏

n=j+1

αn

⎞

⎠βjzj ,

thus an inner product wt · xt is given as a weighted sum
of inner products xj · xj′ between instances since zj =
xpos

j − xneg
j . Therefore, we can apply kernel methods by

replacing each inner product xj · xj′ with K(xj , xj′) for
some kernel K . More practically, we can compute the in-
ner products between wt and a mapped instance using the
recurrence wt = αt(x

pos
t − xneg

t) + βtwt−1.

74

4.2 2-norm Soft Margin Extension

In order to apply PUMMA to linearly inseparable data, as
in [21, 22], we employ the 2-norm soft margin minimiza-
tion [9, 10], which is formulated as follows: Given a se-
quence S = ((x1, y1), . . . , (xT , yT)) and letting S be the
set of examples in S,

min
w,b,ξ

1
2
‖w‖q +

C

2

∑

(x,y)∈S
ξ2
x, (22)

subject to

y(w · x + b) ≥ 1 − ξx ((x, y) ∈ S),

where the constant C > 0 is given as a parameter. Here, we
implicitly assume that labels are consistent, i.e., if xt = xt′

then yt = yt′ . So we drop y from the subscript of ξ.
For p = 2, it is well known that this formulation is equiv-

alent to the 2-norm minimization problem over linearly sep-
arable examples in an augmented space:

min
w̃,b,

1
2
‖w̃‖2,

subject to:

y(w̃ · x̃ + b) ≥ 1 (x ∈ S),

where w̃ = (w,
√

Cξ), x̃ = (x, y√
C

ex) for each (x, y) ∈
S, and each ex is a unit vector in R

|S| whose element corre-
sponding to x is 1 and other elements are set to 0. To use a
kernel function K with this soft margin formulation, we just
modify K as follows:

K̃(xj , xj) = K(xi, xj) +
Δij

C
, (23)

where Δij = 1 if i = j, otherwise Δij = 0.
For p > 2, we modify PUMMA so that, given S =

((x1, y1), . . . , (xt−1, yt−1)) and an instance xt, it predicts
ŷt = sign(wt · xt + bt), where (wt, bt, ξt) is specified as
follows:

(wt, bt, ξt) =arg min
w,b,ξ

1
2
‖w‖2

q +
C

2

∑

(x,y)∈Mt

ξ2
x, (24)

subject to:

w · xpos
t + b ≥ 1 − ξpos

t , (25)

w · xneg
t + b ≤ −1 + ξneg

t ,

w · f(wt−1) + C
∑

(x,y)∈Mt−1

ξxξt−1,x ≥

‖wt−1‖2
q + C

∑

(x,y)∈Mt−1

ξ2
t−1,x,

where Mt denotes the set of examples in S which have in-
curred updates of PUMMA in t − 1 trials, ξpos

t = ξxpos
t

and
ξneg
t = ξxneg

t
. Then the modified PUMMA update xpos

t+1 or
xneg

t if yt+1(wt+1 · xt+1 + bt+1) < 1 − δ − ξxt+1 , where
ξxt+1 = ξx′

t
if xt+1 = xt′ such that (xt′ , yt′) ∈ Mt. Oth-

erwise, ξxt+1 = 0.

Solution The Lagrangian function is given as

L(w, b, ξ, α, β)

=
1
2
‖w‖2

q +
C

2

∑

(x,y)∈Mt

ξ2
x

+
∑

�∈{pos,neg}
α�(1 − ξ�

t − y�
tw · x�

t)

+ β

(

‖wt−1‖2
q − w · f(wt−1)

+ C
∑

x∈Mt−1

ξt−1,x
2 − C

∑

x∈Mt−1

ξxξt−1,x

)

.

To simplify descriptions, without loss of generality, we
assume that xt is a positive instance. Note that every solution
is as same as when xt is a negative one. As done in the
separable case, by using KKT conditions, we consider the
following two cases:

(i)Suppose that β = 0, α > 0. Then the optimal solution
(w∗, b∗, ξ∗) is given as

w∗ = αf−1(z),

α =
2

2
C + ‖z‖2

p

,

ξpos∗
t = ξneg∗

t =
α

C
,

ξ∗x = 0 (x ∈ Mt\{xpos
t , xneg

t }),

where z = xpos
t − xneg

t . (ii)Otherwise, β 	= 0, α > 0. Let
θ = f(wt−1). Then we have

w∗ = f−1(αz + βθ),

ξpos∗
t =

{

α
C , if (xt, yt) /∈ Mt,
α
C + βξneg

t−1, if (xt, yt) ∈ Mt,

ξneg∗
t =

α

C
+ βξneg

t−1,

ξx = βξt−1,x (x ∈ Mt\{xpos
t , xneg

t }),

where α and β are the maximizers of the Lagrange dual

L∗(α, β) = min w, b, ξL(w, b, ξ, α, β)

=
1
2
‖αz + βθ‖2

p

− 2α +
α2

C
+ αβξneg

t−1

− β‖θ‖2
p − C(β − β2

2
)
∑

x∈Mt−1

ξ2
x,j .

Again, we can approximate (α, β) by repeating the Newton
update

(

αk+1

βk+1

)

=
(

αk

βk

)

−∇2L∗(α, β)−1∇L∗(αk, βk)

75

for sufficiently many steps, where

∂2L∗

∂2α
=
∑

i

f−1′
(αz + βθ)iz

2
i +

2
C

∂2L∗

∂β∂α
=

∂2L∗

∂α∂β

=
∑

i

f−1′
(αz + βθ)iziθi + ξneg

t−1

∂2L∗

∂2β
=
∑

i

f−1′
(αz + βθ)iθ

2
i + C

∑

x∈Mt−1

ξ2
x,j .

As in the case without soft margin, in order to acquire the
solution w∗ and ξ∗, we first assume the case (i) and check
whether the third constraint of the problem (24) holds with
strict inequality or not. If it does, then the case (i) is true.
Otherwise, the case (ii) holds. Finally, the bias b∗ is given as

b∗ = −w∗ · xpos + w∗ · xneg + (ξpos
t − ξneg

t)
2

.

By the same argument as Section 3, we obtain the fol-
lowing:

Theorem 5 For a sequence S = ((x1, y1), . . . , (wT , yT)),
let (u, b, ξ) ∈ R

n × R × R
|S| be the optimal solution of the

problem (22). Further, let R = maxt=1,...,T ‖xt‖p. (i) Then
the number of updates made by PUMMAp(δ) is at most

O

⎛

⎝

{

(p − 1)R2 + 2
C

}

(

‖u‖2
q +

∑

(x,y)∈S ξ2
x

)

δ2

⎞

⎠ .

(ii) PUMMAp(δ) outputs a hypothesis with p-norm margin
whose objective value for the problem (22) is at most 1

(1−δ)2

times the optimum after at most the updates above.

5 Experiments

5.1 Experiments over artificial datasets

We examine PUMMA , ALMA and ROMMA over artificial
datasets generated by sparse linear classifiers. Each artificial
dataset consists of n-dimensional {−1, +1}-valued vectors
with n = 100. Each vector is labeled with a r-of-k threshold
function f , which is represented as f(x) = sign(xi1 + · · ·+
xik

+ k − 2r + 1) for some i1, . . . , ik s.t. 1 ≤ i1 ≤ i2 ≤
· · · ≤ ik ≤ n, and it outputs +1 if at least r of k relevant
features have value +1, and outputs −1, otherwise.

For k = 16 and r ∈ {1, 4, 8} (equivalently, the bias
b ∈ {15, 9, 1}, respectively), we generate random 1000 ex-
amples labeled by the r-of-k threshold function, so that pos-
itive and negative examples are equally likely. For ALMA
and ROMMA, we add an extra dimension with value −R
to each vector to learn linear classifiers with bias, where
R = max ||x||p. Note that one can choose different values
other than −R, say, 1. However, as remarked in [10], such
a choice for the value in the extra dimension increases the
number of iterations by O(R2) times when the underlying
hyperplane has large bias. So our choice seems to be fair.

We set parameters so that each algorithm is guaranteed
to achieve at least 0.9 times the maximum p-norm margin.

0 0.5 1 1.5 2 2.5

x 10
4

-0.02

-0.01

0

0.01

0.02
0.0225

of updates

m
ar
gi
n

p=2

PUMMA(15)

PUMMA(1)

ROMMA(15)

ALMA(1)

PUMMA

ROMMA

ALMA

10
4

10
6

-0.2

-0.15

-0.1

-0.05

0

0.0461

p=2 ln (N)

of updates
m
ar
gi
n

ALMA(15)

ALMA(9)

ALMA(1)

PUMMA(15)

PUMMA(9)

PUMMA(1)

PUMMA ALMA

Figure 3: Number of updates and margin over artificial data
set in the case p = 2 (upper) and p = 2 ln(n) (lower). We
set x-axes log scale since the numbers of updates of ALMA
are quite larger than PUMMA ’s. And we hide the result of
the case p = 2 and b = 9 since we make the figure easy to
view. The parenthetical digits denote the value of bias.

That is, we set α = 0.1 (note the parameter α is defined
differently in [13]) for ALMA and δ = 0.1 for ROMMA an
PUMMA . We examine p ∈ {2, 2 lnn}.

We train each algorithm until its hypothesis converges
by running it in epochs, where, in one epoch, we make each
algorithm go through the whole training data once. At end
of each epoch, for each algorithm, we record number of up-
dates, margin incurred during the training and real computa-
tion time. Note that we measure the margin of each hypoth-
esis over the original space. We execute these operations 10
times, changing the randomly generated data, and we aver-
age the results over 10 executions. The experiments are con-
ducted on a 3.8 GHz Intel Xeon processor with 8 GB RAM
running Linux. We use MATLAB for the experiments.

The results are represented in Figure 3 and 4. We ob-
serve that PUMMA converges faster. PUMMA ’s computa-
tion time is quite shorter than that of ALMA, although it uses
Newton method in each update, Note that we omit the result
of ALMA in the case p = 2 since the result is worse than the
others. For p = 2, we don’t use Newton method in the ex-
ecution of PUMMA because we have the analytical solution
of the optimal value of α and β by solving the optimization
problem directly.

76

Table 1: Computation time (sec.) and obtained margin (denoted as γ ′) on some UCI datasets.

SVMlight PUMMA ROMMA MICRA
dataset sec. 102γ′ sec. 102γ′ sec. 102γ′ sec. 102γ′

ionosphere 0.06 10.55 0.54 10.49 3.12 10.50 0.48 10.04
house-votes 0.03 17.42 0.26 17.31 0.62 17.36 0.09 16.51

adult-1k 0.47 4.95 5.40 4.50 15.83 4.91 2.34 4.03
adult-2k 2.13 3.40 25.38 3.37 82.70 3.38 5.61 2.81
adult-4k 9.33 2.40 159.54 2.38 496.52 2.38 55.91 2.00
adult-8k 232.42 1.69 807.46 1.67 2167.40 1.67 189.13 1.46

adult-16k 1271.06 1.20 3365.47 1.18 12503.62 1.18 2050.84 1.13
adult-full 5893.20 0.83 44480.59 0.82 71296.34 0.82 12394.86 0.79

5.2 Experiments over some UCI datasets

We compare PUMMA with some other learning algorithms
over the real datasets. The algorithms are SVM light [16],
MICRA [35], and ROMMA [22]. We used the following
datasets of UCI Machine Learning Repository [2]. (i) The
ionosphere dataset consists of 351 instances which have 34
continuous attributes. (ii) The house-vote dataset consists of
435 instances which have 16 discrete attributes {y, n, ?}. We
change these attributes to {1,−1, 0}. (iii) The adult dataset
consists of 32561 instances which have 14 attributes. Among
the attributes, 6 of them are discrete and the others are con-
tinuous. We change this 14 attributes to 123 binary attributes
as Platt did in [29]. The name of dataset ’adult-mk’ in Ta-
ble 1 denotes a subset of the adult dataset which contains
1000 × m instances. Note that all the datasets have binary
class and we change the range of labels with {1,−1}.

To optimize the 2-norm soft margin for this linearly in-
separable dataset, we use the following modified inner prod-
uct

IP (xi, xj) = xi · xj +
Δij

C
.

We added a dimension which denotes the bias as in Section
1 when we run MICRA and ROMMA which can’t deal with
bias directly.

We modify SVMlight so as not to optimize 1-norm soft
margin, and we change the inner product so that it optimizes
2-norm soft margin. We set δ = 0.01 for PUMMA and
ROMMA to achieve 99% of the maximum margin. The pa-
rameters of MICRA are changed for each dataset as in [35].
But, parameters might not be completely the same as them
because some datasets are different from those they used.
Finally we set 2-norm soft margin parameter C = 1 for all
algorithms. In order to converge faster, we use the following
heuristics for each online algorithm.

Active Set We try to improve the order of given examples
to feed for each online algorithm. First, we give all the exam-
ples to each online learning algorithm once. Then, we make
a new dataset called “active set” , containing the examples
which causes updates. After that, we give each example in
the active set to the algorithm. If the example doesn’t cause
any updates, we remove the example from the active set, and
we repeat this procedure until the active set becomes empty.
Finally, we give all the examples again and check if the al-

gorithm makes any updates. If some updates occur, we con-
struct an active set again and repeat the whole procedure.

We run each algorithm and we measure its real computa-
tion time as well as its obtained margin. The experiments on
real datasets are conducted on a 3.0 GHz Intel Xeon proces-
sor with 16 GB RAM running Linux. We implemented each
algorithm in C.

Table 1 shows the real computation time and obtained
margin. As can be seen, PUMMA converges quite faster than
ROMMA. On the other hand, PUMMA converges slower
than MICRA. However, the parameters of MICRA are quite
sensitive to datasets and nontrivial to tune appropriately. The
results on all the real data set show that SVMlight is the
fastest, whereas MICRA is reported to be faster than SVMlight

over some datasets and with tuned parameters [35]. Note that
this might be due to our selection of active sets which is dif-
ferent from theirs.

5.3 Experiments over MNIST dataset

Next, we compare these algorithms over MNIST dataset.
Since the dataset is not linearly separable, we use polyno-
mial kernel and 2-norm soft margin as follows.

K(xi, xj) =
(

1 +
xi · xj

s

)d

+
Δi,j

C
.

Since computing kernels is time-consuming, we use some
extra heuristics in addition to our active set selection.

Kernel Cache Since we have to compute kernel values of
the same examples repeatedly, we memorize them in a cache
matrix. In the cache matrix, each row memorizes the kernel
values of a support vector and all the examples, where a sup-
port vector is an instance which causes an update. The length
of each row equals to the number of training instances. The
number of rows depends on the memory size. When the new
kernel value of a support vector and an instance is required,
we search the cached value in the cache matrix. If we fails,
we calculate the value and store it in the cache matrix. To do
this, we search the row of the corresponding support vector.
We store the value if we succeed, or we make the new row
otherwise. If the matrix is full, we replace the least refer-
enced row by the new row.

Inner Product Cache In our experiments, we keep giv-
ing examples to each online leaning algorithms until they

77

Table 2: Computation time (sec.) and obtained margin (denoted as γ ′) on MNIST datasets.

SVMlight SVMlight w/o bias PUMMA ROMMA
class sec. γ′ sec. γ′ sec. γ′ sec. γ′

0 256.51 1.339 164.83 1.155 373.48 1.330 218.97 1.150
1 152.10 0.712 119.62 0.712 291.54 0.706 231.82 0.708
2 413.43 0.810 309.77 0.765 1674.08 0.804 870.58 0.761
3 566.84 0.763 384.17 0.722 2654.19 0.757 2296.34 0.719
4 333.04 0.650 267.65 0.629 905.16 0.645 505.11 0.626
5 428.36 0.672 301.99 0.664 1480.44 0.667 1007.91 0.661
6 246.47 0.941 184.39 0.880 534.80 0.934 308.18 0.876
7 322.90 0.621 304.54 0.611 860.89 0.616 584.36 0.608
8 694.17 0.810 437.48 0.727 5648.12 0.804 5074.51 0.723
9 599.78 0.558 399.08 0.541 5290.33 0.554 6057.92 0.538

avg. 401.36 0.788 287.35 0.741 1971.30 0.782 1715.57 0.737

make no update on all the examples. Assume that at trial
t = t1, t2(t1 < t2), the weight vector wt is updated by the
same example xt1 . The weight vector wt2 is written as

wt2 =
t2−1
∑

j=1

⎛

⎝

t2−1
∏

k=j+1

αk

⎞

⎠ βjzj

=

(

t2−1
∏

k=t1

αk

)

wt1 +
t2−1
∑

j=t1

⎛

⎝

t2−1
∏

n=j+1

αn

⎞

⎠βjzj .

So, if we memorize the inner product w t1 · xt1 , we can cal-
culate wt2 · xt1 easier. This technique is efficient when we
use kernel.

Halving δ It is reported that by decreasing δ in a dynam-
ical way, ROMMA converges faster [22]. Similar to their
approach, we shrink the parameter δ by halving repeatedly.
More precisely, we set δ = 1 at first, and halve δ when the
algorithm makes no update for all the examples. We repeat
this procedure until δ is as small as we require. Note that if
δ is smaller than the required value δ target, we set δ = δtarget.
When we use kernels, this halving heuristics can reduce sup-
port vectors in the early stage of learning, which contributes
faster convergence.

MNIST dataset contains 60, 000 matrix and labels. Each
(28 × 28) matrix represents the image of the hand written
digit. The value of each element is in {0, · · · , 255}, which
denotes the density. Each label takes the value {0, · · · , 9}.
MNIST dataset has 10 classes. Since each algorithm can
deal with only binary class, we change each label so that one
class is positive and the others are negative. Then we get 10
binary labeled datasets.

We run three learning algorithms, SVMlight, ROMMA
and PUMMA on these datasets until they converge. We omit
the evaluation of MICRA since it needs careful tuning of
parameters to converge fast. We record the real computa-
tion time and margin. Note that we use our heuristics for
ROMMA and PUMMA . And we set some kernel param-
eters, s = 11002, d = 5 and C = 1/30 as in [22]. We
set δtarget = 0.01 and use 1 GB kernel cache. We also run
SVMlight with the same size of cache memory, but its caching

strategy is different from ours. The experiments on MNIST
dataset are conducted on the same machine as the experi-
ments on UCI dataset.

The results are shown in Table 2. PUMMA gains higher
margin than ROMMA over almost all of the datasets. On
the other hand, PUMMA requires more computation time.
This seems to be due to the fact that ROMMA solves the
different optimization problem, i.e., maximization of mar-
gin without bias. We observe the same tendency between
SVMlight with and without bias. Further, computation times
of PUMMA are worse than SVMlight. But, PUMMA and
ROMMA might be improved if we employ a different strat-
egy for active set selection.

6 Conclusion and Future work

In this paper, we propose PUMMA which obtains the maxi-
mum p-norm margin classifier with bias approximately. Our
algorithm often runs faster than previous online learning al-
gorithms when the underlying linear classifier has large bias,
by taking advantage of finding bias directly.

Although the worst case upperbound on iterations of our
algorithm is the same as those of previous algorithms, our
experiments over artificial datasets suggest that our iteration
bound might be better. For example, when the target function
is a r-of-k threshold function, iteration bound of PUMMA is
O(k2 ln n) with p = O(ln n). However, in our experiments,
PUMMA seems to converge in O(rk ln n) iterations, which
is the best upperbound obtained by Winnow when k and r are
known a priori. Unfortunately, we have not yet succeeded in
proving better iteration bounds. It is still open if there ex-
ists an online learning algorithms that learns r-of-k thresh-
old functions in O(rk ln n) updates without knowing k and
r [23].

So far PUMMA or ALMA approximates ∞-norm mar-
gin indirectly by setting p = O(ln n). Developing an adap-
tive online algorithm that directly maximizes ∞-norm mar-
gin is also an open problem. One of the future work is to
extend our algorithm to handle 1-norm soft margin which is
commonly used in SVM. Further, we would like to apply
PUMMA to learning sparse classifiers in practical applica-

78

15 9 1
0

5

10

bias

se
co
nd

p=2

 PUMMA

 ROMMA

15 9 1
0

100

200

300

bias

se
co
nd

p=2 ln (n)

ALMA

PUMMA

Figure 4: Computation time over artificial data set in the case
p = 2 (upper) and p = 2 ln(n) (lower).

tions.

Acknowledgments

We thank anonymous referees for helpful comments.

References

[1] J. K. Anlauf and M. Biehl. The adatron; an adaptive
perceptron algorithm. Europhysics Letters, 10:687–
692, 1989.

[2] A. Asuncion and D. J. Newman. UCI ma-
chine learning repository. University of Cali-
fornia, Irvine, School of Information and Com-
puter Sciences, http://mlearn.ics.uci.edu/
MLRepository.html, 2007.

[3] H. H. Bauschke and P. L. Combettes. A weak-to-strong
convergence principle for Fejér-monotone methods in
hilbelt spaces. Mathematics of Operations Research,
26(2):248–264, 2001.

[4] A. Bordes, S. Ertekin, J. Weston, and Léon Bottou.
Fast kernel classifiers with online and active learning.
Journal of Machine Learning Research, 6:1579–1619,
2005.

[5] B. E. Boser, I. Guyon, and V. Vapnik. A training al-
gorithm for optimal margin classifiers. In Proceedings
of the 5th Annual ACM Workshop on Computational
Learning Theory, pages 144–152, 1992.

[6] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, 2004.

[7] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning,
and Games. Cambridge University Press, 2006.

[8] C. C. Chang and C. J. Lin. Libsvm: a library
for support vector machines. Software available
at http://www.csie.ntu.edu.tw/˜cjlin/
libsvm, 2001.

[9] C. Cortes and V. Vapnik. Support vector networks. Ma-
chine Learning, 20:273–297, 1995.

[10] N. Cristianini and J. Shawe-Taylor. An Introduction to
Support Vector Machine. Cambridge University Press,
2000.

[11] Y. Freund and R. E. Schapire. Large margin classifica-
tion using the perceptron algorithm. Machine Learn-
ing, 37(3):277–299, 1999.

[12] T. Friess, N. Cristianini, and C. Campbell. The kernel
adatron algorithm: a fast and simple learning procedure
for support vector machine. In Proceedings of the 15th
International Conference on Machine Learning, 1998.

[13] C. Gentile. A new approximate maximal margin clas-
sification algorithm. Journal of Machine Learning Re-
search, 2:213–242, 2001.

[14] C. Gentile. The robustness of the p-norm algorithms.
Machine Learning, 53(3):265–299, 2003.

[15] A. J. Grove, N. Littlestone, and D. Schuurmans. Gen-
eral convergence results for linear discriminant up-
dates. In Proceedings of the tenth anual conference of
Computational learning theory, pages 171–183, 1997.

[16] T. Joachims. Making large-scale support vector ma-
chine learning practical. In A. Smola B. Schölkopf,
C. Burges, editor, Advances in kernel methods - Sup-
port vector learning, pages 169–184. MIT Press, 1999.

[17] T. Joachims. Training linear svms in linear time. In
Proceedings of the ACM Conference on Knowledge
Discovery and Data Mining (KDD), 2006.

[18] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and
K. R. K. Murthy. A fast iterative nearest point al-
gorithm for support vector machine classifier design.
IEEE Transactions on Neural Networks, 11(1):124–
136, 2000.

[19] J. Kivinen, A. J. Smola, and R. C. Williamson. On-
line learning with kernels. IEEE Transactions on Sig-
nal Processing, 52(8):2165–2176, 2004.

[20] J. Kivinen, M. K. Warmuth, and P. Auer. The percep-
tron algorithm versus winnow: linear versus logarith-
mic mistake bounds when few input variables are rele-
vant. Artificial Intelligence, 97(1-2):325–343, 1997.

[21] A. Kowalczyk. Maximum margin perceptron. In
B. Scholkopf A. Smola, P. Bartlett and D. Schuurmans,
editors, Advances in Large Margin Classifiers, pages
75–114. MIT Press, 2000.

[22] Y. Li and P. M. Long. The relaxed online maximum
margin algorithm. Machine Learning, 46(1-3):361–
387, 2002.

[23] N. Littlestone. Learning quickly when irrelevant at-
tributes abound: A new linear-threshold algorithm.
Machine Learning, 2(4):285–318, 1988.

[24] P. M. Long and X. Wu. Mistake bounds for maximum
entropy discrimination. In Advances in Neural Infor-

79

mation Processing Systems 17, pages 833–840, 2004.
[25] O. L. Mangasarian. Arbitrary-norm separating plane.

Operations Research Letters, 24:15–23, 1999.
[26] M. L. Minsky and S. A. Papert. Perceptrons. MIT

Press, 1969.
[27] A. B. Novikoff. On convergence proofs on percep-

trons. In Symposium on the Mathematical Theory of
Automata, volume 12, pages 615–622. Polytechnic In-
stitute of Brooklyn, 1962.

[28] E. Osuna, R. Freund, and F. Girosi. Improved training
algorithm for support vector machines. In Proceedings
of IEEE NNSP’97, 1997.

[29] J. Platt. Fast training of support vector machines us-
ing sequential minimal optimization. In B. Scholköpf,
C. Burges, and A. Smola, editors, Advances in Kernel
Methods - Support Vector Learning, pages 185–208.
MIT Press, 1999.

[30] R. T. Rockafellar. Convex Analysis. Princeton Univer-
sity Press, 1970.

[31] Frank Rosenblatt. The perceptron: a probabilistic
model for information storage and organization in the
brain. Psychological Review, 65:386–408, 1959.

[32] R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee.
Boosting the margin: a new explanation for the effec-
tiveness of voting methods. The Annals of Statistics,
26(5):1651–1686, 1998.

[33] S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos:
Primal estimated sub-gradient solver for svm. In Pro-
ceedings of the 24th International Conference on Ma-
chine Learning, 2007.

[34] J. Shawe-Taylor, P. L. Bartlett, R. C. Williamson, and
M. Anthony. Structural risk minimization over data-
dependent hierarchies. IEEE Transactions on Informa-
tion Theory, 44(5):1926–1940, 1998.

[35] P. Tsampouka and J. Shawe-Taylor. Approximate max-
imum margin algorithms with rules controlled by the
number of mistakes. In Proceedings of the 24th Inter-
national Conference on Machine Learning, 2007.

80

Minimizing Wide Range Regret with Time Selection Functions

Subhash Khot and Ashok Kumar Ponnuswami
New York University and Georgia Tech

khot@cs.nyu.edu andpashok@cc.gatech.edu

Abstract

We consider the problem of minimizing regret with
respect to a given setS of pairs of time selection
functions and modifications rules. We give an on-
line algorithm that hasO(

√
T log |S|) regret with

respect toS when the algorithm is run forT time
steps and there areN actions allowed. This im-
proves the upper bound ofO(

√
TN log(|I||F|))

given by Blum and Mansour [BM07a] for the case
whenS = I × F for a setI of time selection
functions and a setF of modification rules. We do
so by giving a simple reduction that uses an online
algorithm for external regret as a black box.

1 Introduction
We consider the following online optimization problem. At
the beginning of each day (a time step), we have to choose
one of theN allowed actions. Instead of picking one ac-
tion deterministically, we may come up with a distribution
over the actions. At the end of the day, an adversary, with
the knowledge of the distribution we picked, fixes a loss for
each action. We give a concrete example from Cesa-Bianchi
et al. [CBFH+97]. Suppose we want to predict the proba-
bility that it rains on a day based on the predictions ofN
weather forecasting websites. But we don’t know which of
these “experts” give good forecasts. We come up with some
weights on the websites using an online algorithm and use
the weighted prediction as our guess for the probability of
raining. At the end of the day, based on whether or not it
rained, everyone is incurs a loss depending on how inaccu-
rate their prediction was. Usually it is assumed that the loss
for each action is picked from a fixed interval, like[0, 1].
For example, we could charge a person who predictsp as
the probability of rain1 − p if it rains andp if does not.
After T days, we compare the loss incurred by the online
algorithm we used to the loss incurred if we had followed a
simple strategy (like just picking the same action each day).
Our goal is to minimize ourregret for not following one of
the simple strategies. One may also compare the algorithm’s
performance to the performance if the distribution over ac-
tions at each time step were modified using a certain set of
rules. We consider the problem of designing algorithms with
low regret with respect to a given set of strategies or modifi-
cation rules.

The most basic regret studied isexternal regret, which
is the difference between the loss incurred by the algorithm
and the loss incurred by the best action in hindsight. An-
other kind of regret commonly studied is calledinternal re-
gret. This was introduced by Foster and Vohra [FV98]. Here,
we consider the set of modification rules where for each pair
(a, b) of actions we have a rule of the kind: Every time the
algorithm suggests pickinga, pick b instead. The internal
regret of the algorithm is the regret of not having applied
one of these modification rules. Each rule here can be con-
sidered as a functionfa,b that maps every action to itself,
except actiona which gets mapped tob. If we consider the
set of modification rules corresponding to all functions map-
ping the set of actions into itself, we get the notion ofswap
regret. Finally, we can allow any subset of these mappings as
the set of allowed modification rules which gives the notion
of wide range regret. This was defined by Lehrer [Leh03].
Lehrer also associatestime selectionfunction with each rule
that indicates whether a rule is “active” at a give time or not.
A related model is that of “sleeping experts” or “specialists”
defined in Freund et al. [FSSW97]. Here, at the beginning of
time t, each specialist can decide whether are not the current
situation is her area of speciality and make a prediction only
if it does. In addition, Blum and Mansour [BM07a] con-
sider the case where the experts can be “partially awake”.
One way to interpret the activeness function is that it mea-
sures degree of confidence that the corresponding rule will
perform well at a given time. In this case, we weigh the loss
incurred by the algorithm and the modified action with the
time selection function to calculate the regret.

The first algorithm with external regret sublinear inT
was developed by Hannan [Han57]. An algorithm whose
external regret has only logarithmic dependence onN was
given by Littlestone and Warmuth [LW94] and Cesa-Bianchi
et al. [CBFH+97].

Lemma 1 ([CBFH+97]) There exists an online algorithm
with external regret at mostO(

√
T log N) when the losses

are picked from[−1,+1]. The running time is polynomial in
T andN .

The number of time stepsT for which it will be run need
not be provided as an input to the above algorithm. Stoltz
and Lugosi [SL05] give a general method to convert any
“weighted average predictor” algorithm for external regret
to a low internal or swap regret algorithm. At a high level,
they pretend there is an expert for each modification rule

81

who always suggests using that rule. At each time step,
the expert is charged the loss that would be incurred if his
modification rule were actually used. The weighted aver-
age predictor would give a distribution over the experts. The
distribution over the actual actions is found by computing
the fixed point of the expected modification rule picked from
the distribution over the experts. This gives algorithms with
O(
√

T log N) internal regret andO(
√

TN log N) swap re-
gret. Our approach for wide range regret with time selec-
tion functions is based on the same idea. A drawback of a
swap regret algorithm constructed this way is that it needs
to maintainNN weights. Blum and Mansour [BM07a] give
an algorithm that hasO(

√
TN log N) swap regret and runs

in time polynomial inN too. They also give an algorithm
that hasO(

√
TN log(KM)) regret with respect toK modi-

fication rules andM time selection functions. Here, for each
modification rule and time selection function, the regret of
not having modified the algorithms action by the rule with
the losses weighed by the time selection function is consid-
ered. In this case, we can think of there beingM people who
are interested in following an algorithm’s predictions. They
have varying degrees of importance associated with each day
(given by their corresponding time selection function) and
want to minimize regret with respect to all the modification
rules. The algorithm’s goal is to minimize the maximum re-
gret of a person. This is a bit different from the model consid-
ered in Lehrer [Leh03]. But with some effort, one can check
that the result of Blum and Mansour [BM07a] can be gener-
alized to the model of Lehrer [Leh03]. We refer the reader to
[BM07b]for other bounds on the regret minimization and the
relation of various kinds of regret to equilibriums in games.

The paper is organized as follows. In the next section,
we define the model we work with formally and state our
main result. We state the ideas we use from related results in
Section 3. We prove our main result of an improved upper
bound for wide range regret in Section 4. We conclude with
a “first-order” upper bound in Section 5.

2 Our Model and Result

Let the set of actions be[N] = {1, 2, . . . , N}. Consider the
following T round game between an online algorithmH and
an adversary. At the beginning of timet = 1, 2, . . . , T , the
algorithm picks a probability vector12 pt = (pt

1, p
t
2, . . . , p

t
N).

The adversary then picks the loss vectorlt = (lt1, l
t
2, . . . , l

t
N)

for time t. The entries oflt are picked from a fixed interval.
In this paper, we assume the losses are either picked from
[0, 1] or from [−1,+1].

Define the regret ofH with respect to actiona ∈ [N] to
be

RH,a =
T∑

t=1

(
∑

b∈[N]

pt
bl

t
b − lta) =

T∑
t=1

∑
b∈[N]

pt
b(l

t
b − lta).

This can be interpreted as the difference between the ex-
pected loss ofH and the loss of actiona. Define theexternal

1A probability vector is a vector in which the entries are non-
negative and sum to 1.

2All vectors we consider are column vectors. We will use> to
denote the transpose.

regretof H to be

RH,ext = max
a∈[N]

RH,a.

We now define the model with time selection functions
from Blum and Mansour [BM07a]. A time selection function
is a functionI : N −→ [0, 1]. Let I be the set of time
selection functions. At the beginning of timet, the adversary
sets the values ofI(t) for eachI ∈ I. The algorithm then
picks pt after which the adversary now pickslt as before.
Given a modification rulef : [N] −→ [N], defineMf to be
the matrix with a1 in columnf(i) of row i for all i and zeros
everywhere else. Define the regret ofH with respect to time
selection functionI and a modification rulef to be

RH,I,f =
∑

t

I(t)
∑

a∈[N]

pt
a(lta − ltf(a))

=
∑

t

I(t)(pt · lt − pt>Mf lt).

Informally, we first weigh all the losses at timet by I(t), the
significance attached to timet. Then we look at the differ-
ence between the expected loss ofH and the expected loss
if the output ofH were modified every time by applyingf .
That is, we measure the regret of not having played action
f(a) every time we playeda. Given a setS of pairs(I, f),
whereI is a time selection function andf is a modification
rule, thewide range regretof H with respect toS is defined
as

RH,S = max
(I,f)∈S

RH,I,f .

Let 1 : N −→ [0, 1] be the function that always outputs 1,
i.e., 1(t) = 1. For simplicity of notation, we will usef to
also denote the pair(1, f) when we are not concerned with
time selection functions, in which case we assume that the
adversary always sets1(t) to 1. It is easy to check that exter-
nal regret is the sameRH,Fext

whereFext = {fa}a∈[N] and
∀b ∈ [N] : fa(b) = a. The internal regretof H is defined
to beRH,Fint

, whereFint = {fa,b}a,b∈[N] andfa,b(a) = b
while fa,b(c) = c for c 6= a. Theswap regretof H is de-
fined to beRH,Fswap

, whereFswap is the set of all functions
f : [N] −→ [N].

We prove the following theorem for minimizing wide
range regret.

Theorem 2 There exists an online algorithmH that for any
given setS satisfies

• RH,S = O(
√

T log |S|) when the losses are picked
from the[0, 1].

• The running time ofH is polynomial inT , N and|S|.

Note that this matches (upto a constant) the results for ex-
ternal, internal and swap regret if we are not concerned with
time selection functions. A drawback of our apporoach is
that if the size of the setS is large, the running time is high.
For example, for swap regret with time selection functions,
we may need time polynomial inT andNN . But for this
case, the result of Blum and Mansour already gives a more
efficient algorithm with the same regret (upto a constant).

82

3 Previous Results

We use ideas from Stoltz and Lugosi [SL05] and Blum and
Mansour [BM07a].

We first describe the approach of Stoltz and Lugosi [SL05]
for internal regret. The idea is to simulate a low external re-
gret algorithm forN(N − 1) imaginary experts. Start with
any “weighted average predictor”Hext with low external re-
gret. There areN(N − 1) imaginary experts, one for each
modification rulefa,b. The expert corresponding tofa,b al-
ways suggests playingb instead ofa. We will specify how
the probability weights over the actual actions are calculated
from the output ofHext and how the losses are generated for
the imaginary experts ofHext.

At time t, supposeHext outputs probabilityqt
a,b for the

expert corresponding tofa,b. Then compute the probability
vectorpt = (pt

1, p
t
2, . . . , p

t
N) on the actual actions as a fixed

point of
pt =

∑
a,b∈[N]

qt
a,bp

t
a→b,

wherept
a→b denotes the probability vector obtained frompt

by changing the weight of actiona to zero at putting it on
actionb. This can also be expressed as

pt> =
∑
a,b

qt
a,bp

t>Mfa,b
= pt>

∑
a,b

qt
a,bMfa,b

.

Let the adversary return backlt as the loss vector at timet.
The loss incurred at timet by each of the imaginary experts
for fa,b is calculated as

ltfa,b
= lt · pt

i→j = pt>Mfa,b
lt.

This quantity can be thought of as the loss incurred if we
followed the expert’s suggestion of playingb instead ofa.
Stoltz and Lugosi [SL05] showed that this achieves low in-
ternal regret. For an arbitrary set of modification rulesF ,
we have an expert for each modification rulef ∈ F and the
probability and loss vectors are now calculated as

pt = pt>
∑
f∈F

qt
f Mf

and
ltf = pt>Mf lt.

We now discuss the ideas we use from Blum and Man-
sour [BM07a]. We start with the case whereS = I × Fext

for someI. In this case, there is an expert for each(I, fa) ∈
S. There is a weightwt

I,a associated with this expert at the
end of timet where

wt
I,a = β−R̃t

I,a

and

R̃t
I,a =

t∑
t′=1

I(t′)(βlt
′

H − lt
′

a)

for some parameterβ ∈ (0, 1). Above,ltH is the actual loss
incurred at timet. The quantityR̃t

I,a is called a “less-strict”
external regret. The probabilitypt

a associated with the action
a at time t is then proportional to

∑t
I∈I I(t)wt

I,a. By op-
timizing for the parameterβ, Blum and Mansour [BM07a]

show that this achieves a low external regret with respect to
all time selection functions.

To generalize this idea for wide range regret, whereS =
I ×F , they introduce an expert for eacha ∈ [N], I ∈ I and
f ∈ F . There is a weightwt

a,I,f for each such expert. Note
that this does not simplify to the reduction in the previous
paragraph for the case whenF = Fext. Instead, in the next
section we obtain a reduction where there are experts only
for each(I, f) ∈ S. Intuitively, this is where we remove
the polynomial dependence of wide range regret onN and
obtain a slightly simpler reduction.

4 A Reduction from Wide Range Regret to
External Regret

We will prove Theorem 2 in this section. We first give an
algorithm that when given a low external regret algorithm as
a black box uses it to guarantee low wide range regret.

Theorem 3 Given an algorithmHext with external regret
R(T,N) when the losses are from[−1,+1], one can con-
struct an algorithmH that when given losses from[0, 1] sat-
isfies:

• RH,S = R(T, |S|)
• The running time ofH is polynomial in the running time

of Hext, T , N , and|S|.

Idea: H will basically simulate an instance ofHext with the
elements ofS being the actions. Figure 1 shows the inputs
and outputs ofH andHext at timet. At time t, Hext pro-
duces someqt

I,f for each(I, f) ∈ S, where theqt
I,f form a

probability distribution overS. H will then use this to come
up with a probability vectorpt = (pt

1, p
t
2, . . . , p

t
N) on the

actual actions.H will basically pick a random(I, f) with
probability proportional toI(t)qt

I,f . After this, it picks a
vectorpt over the actual actions such thatpt is a fixed point
of such a randomf , i.e., modifyingpt by f in expectation
just yieldspt. Intuitively, the loss passed to the black box
Hext for (I, f) is such thatqt

I,f measures the regret with re-
spect to time selection functionI of not having modified the
output ofH using functionf . Multiplying this byI(t) takes
care of the relevance of(I, f) at timet. Basically, the algo-
rithm makes sure that if the regret with respect to(I, f) was
large so far, then that regret doesn’t increase at the current
step.
Proof: We first specify howH computespt andl′t at timet.
To computept, getqt from Hext. If

∑
(I,f)∈S I(t)qt

I,f = 0,
then output any probability vectorp. Otherwise definept to
be any vector satisfying

pt> = pt>

(∑
(I,f)∈S I(t)qt

I,f Mf∑
(I,f)∈S I(t)qt

I,f

)
. (1)

This is well defined since
∑

(I,f) I(t)qt
I,f 6= 0. Such a vector

pt exists since every row of∑
(I,f) I(t)qt

I,f Mf∑
(I,f) I(t)qt

I,f

(2)

83

��� ������ 	
�
� � ����
� 	��

� � ������ 	
�

����
� ��
����

������� �

� ��� �

��! � �

" � �
" � �
" � � # $

%& '
() '
*

+ ����,� 	-�
+ ����.� 	��
+ ������ 	-�

///
� � � �
 ///

///
///

/////////
///

/// ///

Figure 1: The reduction from wide range to external regret.

is a probability vector becauseMf has exactly one1 in each
row. That is, (2) defines the transition matrix of a Markov
chain. WhenH gets back loss vectorlt, it computes

l′tI,f = I(t)
∑
a∈N

pt
a(ltf(a) − lta) = I(t)pt>(Mf − I)l t

whereI is the identity matrix. This yields∑
t

l′tI,f =
∑

t

I(t)pt>(Mf − I)l t = −RH,I,f . (3)

That is,l′tI,f is exactly the decrease at timet of the regret with
respect to(I, f). It is easy to check thatl′tI,f ∈ [−1,+1].

From the low external regret guarantee ofHext, for all
(I, f) ∈ S:∑

t

∑
(J,g)∈S

qt
J,gl

′t
J,g ≤

∑
t

l′tI,f + R(T, |S|). (4)

We will next show that∑
(J,g)∈S

qt
J,gl

′t
J,g = 0. (5)

Together with (3) and (4), this will show that for all(I, f) ∈
S,

0 ≤ −RH,I,f + R(T, |S|),
or RH,I,f ≤ R(T, |S|) which proves the theorem.

We now proceed to prove (5).∑
(J,g)∈S

qt
J,gl

′t
J,g =

∑
(J,g)

qt
J,gJ(t)pt>(Mg − I)l t

=
∑
(J,g)

qt
J,gJ(t)pt>Mg lt −

∑
(J,g)

qt
J,gJ(t)pt>lt

= pt>
(∑

(J,g)

J(t)qt
J,gMg

)
lt −

(∑
(J,g)

qt
J,gJ(t)

)
(pt>lt).

(Case 1:)Suppose
∑

(J,g) J(t)qt
J,g 6= 0. In this case we can

use (1) to get∑
(J,g)∈S

qt
J,gl

′t
J,g =

(∑
(J,g)

qt
J,gJ(t)

)
(pt>lt)

−
(∑

(J,g)

qt
J,gJ(t)

)
(pt>lt)

= 0.

(Case 2:)Assume
∑

(J,g) J(t)qt
J,g = 0. ThenJ(t)qt

J,g = 0
for all pairs(J, g) sinceJ(t) andqt

J,g are all non-negative,
which implies ∑

(J,g)∈S

qt
J,gl

′t
J,g = 0.

It can be seen easily that Theorem 3 and Lemma 1 imply
Theorem 2.

5 A First-Order Bound for Wide Range
Regret

If we are only concerned with regret bounds as a function
of T and N (called “zero-order” bounds in Cesa-Bianchi
et al. [CBMS05]), Theorem 2 matches (up to a constant)
the known upper bounds for external, internal and swap re-
gret. One can also try to obtain “first-order” bounds, bounds
that depend on the sum of payoffs of actions instead of the
time. For example, Blum and Mansour [BM07a] show a
O(
√

Lmin log(NM) + log(NM)) upper bound for mini-
mizing external regret with respect to a setI of M time se-
lection functions, whereLmin = maxIminaLI,a andLI,a =∑

t I(t)lta. For the case when there is at least one “real” ex-
pert that does well most of the time, such a bound will be
much tighter than a zero-order bound. One can hope to use
external regret algorithms with good first-order bounds like
the following to come up with good first-order bounds for
wide range regret.

Lemma 4 (Cesa-Bianchi et al. [CBFH+97]) There exists an
algorithm with running time polynomial inT andN and ex-
ternal regretO(

√
Lmin log N + log N) when the losses are

picked from[0, 1].

We need an algorithm that can handle losses from the in-
terval [−1,+1] in Theorem 3. One way to use the algorithm
from Lemma 4 is to map the lossesl′tI,f to the interval[0, 1]
by a linear transformation. But this also changes the loss
of best action and makes the first order bound obtained very
weak. Another alternative is to tinker with the quantity that
l′tI,f signifies. If we are concerned only with modification
rules (and not time selection functions), we can redefinel′tf
as

l′tf =
∑
a∈N

pt
altf(a).

But for technical reasons, this can’t be done if we are also
working with time selection functions. Note that the only
term in (4) that depends onI andf is l′tI,f , and hence it must

84

capture all the terms that depend oneitherI or f in the defi-
nition ofRH,I,f . So we give a method based on the approach
of Blum and Mansour [BM07a]. The main idea is to define
a reduced regretfor each pair(I, f).

Theorem 5 There exists an online algorithm that for anyS
satisfies:

• The wide range regret with respect toS is at mostO(√
Lmin log |S|+ log |S|), where

Lmin = max
I

min
(I,f)∈S

∑
t

I(t)pt>Mf lt.

• The running time is polynomial inT , N , and|S|.

Proof: Define the loss ofH with respect toI till time t as

Lt
H,I =

t∑
t′=1

I(t)pt · lt,

and the loss ofH with respect to(I, f) till time t as

Lt
H,I,f =

t∑
t′=1

I(t)pt>Mf lt.

We assume that at any timet, not all I(t) are zero. This is
without loss of generality since in this case, the losses de-
fined above don’t change at timet. For someβ ∈ (0, 1)
to be fixed later, we basically run a exponentially weighted
predictor with a weight for each pair(I, f). The weight of

(I, f) at the end of timet is wt
I,f = β−R̃t

H,I,f , where

R̃t
H,I,f = βLt

H,I − Lt
H,I,f .

That is,R̃t
H,I,f is a regret ofH with respect to(I, f) where

the incurred loss is reduced by a factorβ. We defineqt
I,f =

wt−1
I,f /W t−1, whereW t =

∑
(I,f)∈S wt

I,f is the sum of the
weights.

At time t, the algorithm does the following. It computes
qt
I,f as above. The probability vectorpt over the actual ac-

tions is picked as in (2). This is well defined sincewt
I,f (and

henceqt
I,f) are all non-zero and at least one of theI(t) is

also non-zero (by assumption). Then the algorithm updates
all the losses and weights when it gets backlt from the ad-
versary. We first show that the sum of the weights can not
increase at any time.

Claim 6

∀t :
∑

(I,f)∈S

wt
I,f ≤

∑
(I,f)∈S

wt−1
I,f

Proof: We will use the fact that for anyβ ∈ (0, 1) andx ∈
[0, 1], βx ≤ 1− (1− β)x andβ−x ≤ 1 + (1− β)x/β. This

gives∑
(I,f)∈S

wt
I,f =

∑
(I,f)

wt−1
I,f βI(t)(pt>Mf lt−βpt·lt)

≤
∑
(I,f)

[
wt−1

I,f

(
1− (1− β)I(t)pt>Mf lt

)

×
(
1 + (1− β)I(t)pt · lt

)]

≤
∑
(I,f)

wt−1
I,f −

(1− β)W t−1
∑
(I,f)

qt
I,fI(t)pt>Mf lt


+

(1− β)W t−1
∑
(I,f)

qt
I,fI(t)pt · lt


=
∑
(I,f)

wt−1
I,f −

(1− β)W t−1pt>
(∑

(I,f)

qt
I,fI(t)Mf

)
lt


+

(1− β)W t−1
(∑

(I,f)

qt
I,fI(t)

)
(pt · lt)


=
∑
(I,f)

wt−1
I,f .

Above, the second inequality follows from the definition of
qt
I,f and the last equality follows from (2).

We now get back to the proof of the theorem. The claim
implies that for all(I, f) ∈ S,

β−(βLT
H,I−LT

H,I,f) = β−R̃T
H,I,f = wT

I,f ≤
∑

(J,g)∈S

w0
J,g = |S|

which gives

(βLT
H,I − LT

H,I,f) log(1/β) ≤ log |S|

or

LH,I ≤
LH,I,f + log |S|

log(1/β)

β
.

Since for a givenI, the statement is true for allf such that
(I, f) ∈ S, we can rewrite it as:

LH,I ≤
LH,I,min + log |S|

log(1/β)

β

where
LH,I,min = min

f :(I,f)∈S
LH,I,f .

Settingβ so that

β−1 = 1 + min


√

log |S|
Lmin

,
1
2


gives the theorem.

85

Acknowledgments

The authors would like to thank Yishay Mansour for com-
ments on an early draft of the paper.

References

[BM07a] Avrim Blum and Yishay Mansour. From ex-
ternal to internal regret.J. Mach. Learn. Res.,
8:1307–1324, 2007.

[BM07b] Avrim Blum and Yishay Mansour. Learning,
regret minimization and equilibria. In Noam
Nisan, Tim Roughgarden, Eva Tardos, and Vi-
jay Vazirani, editors,Algorithmic Game The-
ory, chapter 4. Cambridge University Press,
2007.

[CBFH+97] Nicolò Cesa-Bianchi, Yoav Freund, David
Haussler, David P. Helmbold, Robert E.
Schapire, and Manfred K. Warmuth. How to
use expert advice.J. ACM, 44(3):427–485,
1997.

[CBMS05] Nicolò Cesa-Bianchi, Yishay Mansour, and
Gilles Stoltz. Improved second-order bounds
for prediction with expert advice. InCOLT,
pages 217–232, 2005.

[FSSW97] Yoav Freund, Robert E. Schapire, Yoram
Singer, and Manfred K. Warmuth. Using
and combining predictors that specialize. In
STOC ’97: Proceedings of the twenty-ninth an-
nual ACM symposium on Theory of computing,
pages 334–343, 1997.

[FV98] Dean Foster and Rakesh V. Vohra. Asymptotic
calibration.Biometrika, 85:379–390, 1998.

[Han57] J. Hannan. Approximation to bayes risk in re-
peated plays. In M.Dresher, A. Tucker, and
P. Wolfe, editors,Contributions to the Theory
of Games, volume 3, pages 97–139. Princeton
University Press, 1957.

[Leh03] Ehud Lehrer. A wide range no-regret theorem.
Games and Economic Behavior, 42(1):101–
115, 2003.

[LW94] Nick Littlestone and Manfred K. Warmuth.
The weighted majority algorithm.Inf. Com-
put., 108(2):212–261, 1994.

[SL05] Gilles Stoltz and Ǵabor Lugosi. Internal regret
in on-line portfolio selection. Mach. Learn.,
59(1-2):125–159, 2005.

86

An Efficient Reduction of Ranking to Classification

Nir Ailon
Google Research

76 Ninth Ave, 4th Floor
New York, NY 10011
nailon@google.com

Mehryar Mohri
Courant Institute and Google Research

251 Mercer Street
New York, NY 10012
mohri@cims.nyu.edu

Abstract

This paper describes an efficient reduction of the
learning problem of ranking to binary classifica-
tion. The reduction is randomized and guarantees
a pairwise misranking regret bounded by that of
the binary classifier, improving on a recent result
of Balcan et al. (2007) which ensures only twice
that upper-bound. Moreover, our reduction applies
to a broader class of ranking loss functions, admits
a simple proof, and the expected time complexity
of our algorithm in terms of number of calls to a
classifier or preference function is also improved
from Ω(n2) to O(n log n). In addition, when the
top k ranked elements only are required (k � n),
as in many applications in information extraction
or search engine design, the time complexity of our
algorithm can be further reduced to O(k log k+n).
Our reduction and algorithm are thus practical for
realistic applications where the number of points
to rank exceeds several thousands. Much of our
results also extend beyond the bipartite case pre-
viously studied. To further complement them, we
also derive lower bounds for any deterministic re-
duction of ranking to binary classification, proving
that randomization is necessary to achieve our re-
duction guarantees.

1 Introduction
The learning problem of ranking arises in many modern ap-
plications, including the design of search engines, informa-
tion extraction, and movie recommendation systems. In these
applications, the ordering of the documents or movies re-
turned is a critical aspect of the system.

The problem has been formulated within two distinct set-
tings. In the score-based setting, the learning algorithm re-
ceives a labeled sample of pairwise preferences and returns a
scoring function f :U → R which induces a linear ordering
of the points in the set U . Test points are simply ranked ac-
cording to the values of f for those points. Several ranking
algorithms, including RankBoost (Freund et al., 2003; Rudin
et al., 2005), SVM-type ranking (Joachims, 2002), and other
algorithms such as PRank (Crammer & Singer, 2001; Agar-
wal & Niyogi, 2005), were designed for this setting. Gener-

alization bounds have been given in this setting for the pair-
wise misranking error (Freund et al., 2003; Agarwal et al.,
2005), including margin-based bounds (Rudin et al., 2005).
Stability-based generalization bounds have also been given
in this setting for wide classes of ranking algorithms both in
the case of bipartite ranking (Agarwal & Niyogi, 2005) and
the general case (Cortes et al.2007b; 2007a).

A somewhat different two-stage scenario was considered
in other publications starting with (Cohen et al., 1999), and
later (Balcan et al., 2007), which we will refer to as the
preference-based setting. In the first stage of that setting, a
preference function h : U×U 7→ [0, 1] is learned, where val-
ues of h(u, v) closer to one indicate that u is ranked above
v and values closer to zero the opposite. h is typically as-
sumed to be the output of a classification algorithm trained
on a sample of labeled pairs, and can be for example a con-
vex combination of simpler preference functions as in (Co-
hen et al., 1999). A crucial difference with the score-based
setting is that, in general, the preference function h may
not induce a linear ordering. The relation it induces may
be non-transitive, thus we may have for example h(u, v) =
h(v, w) = h(w, u) = 1 for three distinct points u, v, and w.
To rank a test subset V ⊆ U , in the second stage, the algo-
rithm orders the points in V by making use of the preference
function h learned in the first stage. The subset ranking set-
up examined by Cossock and Zhang (2006), though distinct,
also bears some resemblance with this setting.

This paper deals with the preference-based ranking set-
ting just described. The advantage of this setting is that the
learning algorithm is not required to return a linear ordering
of all points in U , which may be impossible to achieve fault-
lessly in accordance with a general possibly non-transitive
pairwise preference labeling. This is more likely to be achiev-
able exactly or with a better approximation when the algo-
rithm is requested instead, to supply a linear ordering, only
for limited subsets V ⊆ U .

When the preference function is obtained as the output
of a binary classification algorithm, the preference-based set-
ting can be viewed as a reduction of ranking to classification.
The second stage specifies how the ranking is obtained using
the preference function.

Cohen et al. (1999) showed that in the second stage of
the preference-based setting, the general problem of finding
a linear ordering with as few pairwise misrankings as possi-
ble with respect to the preference function h is NP-complete.
The authors presented a greedy algorithm based on the tour-

87

nament degree, that is, for a given element u, the difference
between the number of elements it is preferred to versus the
number of those preferred to u. The bound proven by the au-
thors, formulated in terms of the pairwise disagreement loss
l with respect to the preference function h, can be written as
l(σgreedy, h) ≤ 1/2 + l(σoptimal, h)/2, where l(σgreedy, h)
is the loss achieved by the permutation σgreedy returned by
their algorithm and l(σoptimal, h) the one achieved by the
optimal permutation σoptimal with respect to the preference
function h. This bound was given for the general case of
ranking, but, in the particular case of bipartite ranking, a
random ordering can achieve a pairwise disagreement loss
of 1/2 and thus the bound is not informative. Note that the
algorithm can be viewed as a derandomization technique.

More recently, Balcan et al. (2007) studied the bipartite
ranking problem. In this particular case, the loss of an output
ranking is measured by counting pairs of ranked elements,
one of which is positive and the other negative (based on
some ground truth). They showed that sorting the elements
of V according to the same tournament degree used by Co-
hen et al. (1999) guarantees a regret of at most 2r using a
binary classifier with regret r. (The regret is defined as a
calibration of the loss function that aligns a theoretical op-
timum with 0.) However, due to the quadratic nature of the
definition of the tournament degree, their algorithm requires
Ω(n2) calls to the preference function h, where n = |V | is
the number of objects to rank.

We describe an efficient randomized algorithm for the
second stage of preference-based setting and thus for reduc-
ing the learning problem of ranking to binary classification.
We improve on the recent result of Balcan et al. (2007), by
guaranteeing a pairwise misranking regret of at most r using
a binary classifier with regret r, thereby improving the bound
by a factor of 2. Our reduction applies, with different con-
stants, to a broader class of ranking loss functions, admits a
simple proof, and the expected running time complexity of
our algorithm in terms of number of calls to a classifier or
preference function is improved from Ω(n2) to O(n log n).
Furthermore, when the top k ranked elements only are re-
quired (k � n), as in many applications in information ex-
traction or search engines, the time complexity of our algo-
rithm can be further reduced to O(k log k + n). Our reduc-
tion and algorithm are thus practical for realistic applications
where the number of points to rank exceeds several thou-
sands. The price paid for this improvement is in resorting
to nondeterminism. Indeed, our algorithms are randomized,
but this turns our to be necessary. We give a simple proof
of a lower bound of 2r for any deterministic reduction of
ranking to binary classification with classification regret r,
thereby generalizing to all deterministic reductions a lower
bound result of Balcan et al.(2007).

To appreciate our improvement of the reduction bound
from a factor of 2 to 1, consider the case of a binary classi-
fier with an error rate of just 25%, which is quite reasonable
in many applications. Assume that the Bayes error is close to
zero for the classification problem and similarly that for the
ranking problem that the regret and loss approximately coin-
cide. Then, the bound of Balcan et al. (2007) guarantees for
the ranking algorithm a pairwise misranking error of at most
50%. But, since a random ranking can achieve 50% pairwise

misranking error, the bound turns out not to be informative
in that case. Instead, with a factor of 1, the bound ensures a
pairwise misranking of at most 25%.

Much of our results also extend beyond the bipartite case
previously studied by Balcan et al.(2007) to the general case
of ranking. A by-product of our proofs is a bound on the pair-
wise disagreement loss with respect to the preference func-
tion h that we will compare to the result given by Cohen et al.
(1999).

The algorithm used by Balcan et al. (2007) to produce a
ranking based on the preference function is known as sort-
by-degree and has been recently used in the context of mini-
mizing the feedback arcset in tournaments (Coppersmith et al.,
2006). Here, we use a different algorithm, QuickSort, which
has also been recently used for minimizing the feedback arc-
set in tournaments (Ailon et al.2005; 2007). The techniques
presented build upon earlier work by Ailon et al.(2005; 2007)
on combinatorial optimization problems over rankings and
clustering.

The remainder of the paper is structured as follows. In
Section 2, we introduce the definitions and notation used in
future sections and introduce a general family of loss func-
tions for ranking. Section 3 describes a simple and effi-
cient algorithm for reducing ranking to binary classification,
proves several bounds guaranteeing the quality of the rank-
ing produced by the algorithm, and analyzes the running-
time complexity of our algorithm. In Section 4, we derive
a lower bound for any deterministic reduction of ranking to
binary classification. In Section 5, we discuss the relation-
ship of the algorithm and its proof with previous related work
in combinatorial optimization, and discuss key assumptions
related to the notion of regret in this context.

2 Preliminaries

This section introduces several preliminary definitions nec-
essary for the presentation of our results. In what follows,
U will denote a universe of elements, e.g., the collection of
all possible query-result pairs returned by a web search task,
and V ⊆ U will denote a small subset thereof, e.g., a prelim-
inary list of relevant results for a given query. For simplicity
of notation we will assume that U is a set of integers, so that
we are always able to choose a minimal canonical element
in a finite subset, as we do in (9) below. This arbitrary order-
ing should not be confused with the ranking problem we are
considering.

2.1 General Definitions and Notation
We first briefly discuss the learning setting and assumptions
made here and compare them with those of Balcan et al.
(2007) and Cohen et al.(1999).

In what follows, V ⊆ U represents a finite subset ex-
tracted from some arbitrary universe U , which is the set we
wish to rank at each round. The notation S(V) denotes the
set of rankings on V , that is the set of injections from V to
[n] = {1, . . . , n}, where n = |V |. If σ ∈ S(V) is such a
ranking, then σ(u) is the rank of an element u ∈ V , where
lower ranks are interpreted as preferable ones. More pre-
cisely, we say that u is preferred over v with respect to σ if
σ(u) < σ(v). For convenience, and abusing notation, we

88

also write σ(u, v) = 1 if σ(u) < σ(v) and σ(u, v) = 0 oth-
erwise. We let

(
V
k

)
denote the collection of all subsets of size

exactly k of V . To distinguish between functions taking or-
dered vs. unordered arguments in what follows, we will use
the notation Fu1u2...uk

to denote k unordered arguments for
a function F defined on

(
V
k

)
and F (u1, u2, . . . , uk) to denote

k ordered arguments for a function F defined on V × · · · × V︸ ︷︷ ︸
k

.

2.2 Ground truth
As in standard learning scenarios, at each round, there is an
underlying unknown ground truth which we wish the output
of the learning algorithm to agree with as much as possible.
The ground truth is a ranking that we denote by σ∗ ∈ S(V),
equipped with a function ω assigning different importance
weight to pairs of positions. The combination (σ∗, ω) is ex-
tremely expressive, as we shall see below in Section 2.5. It
can encode in particular the standard average pairwise mis-
ranking or AUC loss assumed by Balcan et al. (2007) in a
bipartite setting, but also more sophisticated ones capturing
misrankings among the top k, and other losses that are close
but distinct from those considered by Clémençon and Vayatis
(2007).

2.3 Preference function
As with both (Cohen et al., 1999) and (Balcan et al., 2007),
we assume that a preference function h : U × U → [0, 1]
is learned in a first learning stage. The convention is that
the higher h(u, v) is, the more our belief that u should be
preferred to v. The function h satisfies pairwise consistency:
h(u, v) + h(v, u) = 1, but need not even be transitive on 3-
tuples (cycles may be induced). The second stage uses h to
output a proper ranking σ, as we shall further discuss below.
The running time complexity of the second stage is measured
with respect to the number of calls to h.

2.4 Output of Learning Algorithm
The final output of the second stage of the algorithm, σ, is a
proper ranking of V . Its cost is measured differently in (Bal-
can et al., 2007) and (Cohen et al., 1999). In the former, it is
measured against the unknown ground truth and compared to
the cost of h against the ground truth. The rationale is that the
information encoded in h contains all pairwise preference in-
formation using the state-of-the-art binary classification. In
(Cohen et al., 1999), σ is measured against the given prefer-
ence function h, and compared to the theoretically best one
can obtain. Thus, there h plays the role of a known ground
truth.

2.5 Loss Functions
We are now ready to define the loss functions used to mea-
sure the quality of an output ranking σ either with respect
to σ∗, as in (Balcan et al., 2007), or with respect to h, as in
(Cohen et al., 1999).

The following general loss function Lω measures the qual-
ity of a ranking σ with respect to a desired one σ∗ using a
weight function ω (described below):

Lω(σ, σ∗) =
(

n

2

)−1∑
u6=v

σ(u, v)σ∗(v, u)ω(σ∗(u), σ∗(v)).

The sum is over all pairs u, v in the domain V of the rank-
ings σ, σ∗. It counts the number of inverted pairs u, v ∈
V weighed by ω, which assigns importance coefficients to
pairs, based on their positions in the ground truth σ∗. The
function ω must satisfy the following three natural axioms,
which will be necessary in our analysis:

(P1) Symmetry: ω(i, j) = ω(j, i) for all i, j;

(P2) Monotonicity: ω(i, j) ≤ ω(i, k) if either i < j < k or
i > j > k;

(P3) Triangle inequality: ω(i, j) ≤ ω(i, k) + ω(k, j).

This definition is very general and encompasses many useful,
well studied distance functions. Setting ω(i, j) = 1 for all
i 6= j yields the unweighted pairwise misranking measure or
the so-called Kemeny distance function.

For a fixed integer k, the following function

ω(i, j) =
{

1 if ((i ≤ k) ∨ (j ≤ k)) ∧ (i 6= j)
0 otherwise,

(1)

can be used to emphasize ranking at the top k elements. Mis-
ranking of pairs with one element ranked among the top k is
penalized by this function. This can be of interest in applica-
tions such as information extraction or search engines where
the ranking of the top documents matters more. For this em-
phasis function, all elements ranked below k are in a tie. In
fact, it is possible to encode any tie relation using ω.

Bipartite Ranking. In a bipartite ranking scenario, V
is partitioned into a positive and negative set V + and V − of
sizes m+ and m− respectively, where m++m− = |V | = n.
For this scenario (Balcan et al., 2007; Hanley & McNeil,
1982; Lehmann, 1975), we are often interested in the AUC
score of σ ∈ S(V) defined as follows:

1− AUC(V +, V −, σ) =
1

m−m+

X
u,v∈V

1(u,v)∈V +×V −σ(v, u).

This expression measures the probability given a random
crucial pair of elements, one of which is positive and the
other negative, that the pair is misordered in σ. It is immedi-
ate to verify that this is equal to Lω(σ, σ∗), where σ∗ is any
ranking placing V + ahead of V −, and

ω(i, j) =

(
n
2

)
m−m+


1 (i ≤ m+) ∧ (j > m+)
1 (j ≤ m+) ∧ (i > m+)
0 otherwise.

(2)

Simplified notation. To avoid carrying σ∗ and ω, we
will define for convenience

τ∗(u, v) = σ∗(u, v)ω(σ∗(u), σ∗(v))

and

L(σ, τ∗) := Lω(σ, σ∗) =
(

n

2

)−1∑
u6=v

σ(u, v)τ∗(v, u) .

We will formally call τ∗ a generalized ranking, and it will
take the role of the ground truth. If ω is obtained as in (2) for
some integers m+,m− satisfying m+ + m− = n then we
will say that the corresponding τ∗ is bipartite.

89

It is immediate to verify from the properties of the weight
function ω that for all u, v, w ∈ V ,

τ∗(u, v) ≤ τ∗(u, w) + τ∗(w, v) . (3)

If τ∗ is bipartite, then additionally,

τ∗(u, v) + τ∗(v, w) + τ∗(w, u) =
τ∗(v, u) + τ∗(w, v) + τ∗(u, w) . (4)

2.6 Preference Loss Function
We need to extend the definition to measure the loss of a
preference function h with respect to σ∗. In contrast with
the loss function just defined, we need to define a preference
loss measuring a generalized ranking’s disagreements with
respect to a preference function h when measured against
τ∗. We can readily extend the loss definitions defined above
as follows:

L(h, τ∗) = Lω(h, σ∗) =
∑
u6=v

h(u, v)τ∗(v, u) .

As explained above, L(h, τ∗) is the ideal loss the learning
algorithm will aim to achieve with the output ranking hy-
pothesis σ.

2.7 Input Distribution
The set V we wish to rank together with the ground truth τ∗

are drawn as pair from a distribution we denote by D. In
other words, τ∗ may be a random function of V . For our
analysis of the loss though, it is convenient to think of V
and τ∗ as fixed, because our bounds will be conditioned on
fixed V, τ∗ and will easily generalize to the stochastic set-
ting. Finally, we say that D is bipartite if τ∗ is bipartite with
probability 1.

2.8 Regret Functions
The notion of regret is commonly used to measure the dif-
ference between the loss incurred by a learning algorithm
and that of some best alternative. This section introduces
the definitions of regret that we will be using to quantify the
quality of a ranking algorithm in this context. We will de-
fine a notion of weak and strong regret for both ranking and
classification losses as follows.

To define a strong ranking regret, we subtract from the
loss function the minimal loss that could have been obtained
from a global ranking σ̃ of U . More precisely, we define:

Rrank(A,D) = EV,τ∗,s[L(As(V), τ∗)]
− min

σ̃∈S(U)
EV,τ∗ [L(σ̃|V , τ∗)] ,

where σ̃|V ∈ S(V) is defined by restricting the ranking σ̃ ∈
S(U) to V in a natural way, and A is a possibly randomized
algorithm using a stream of random bits s (and a pre-learned
preference function h) to output a ranking As(V) in S(V).

As for the strong preference loss, it is natural to subtract
the minimal loss over all, possibly cyclic, preference func-
tions on U .

More precisely, we define:

Rclass(h, D) = EV,τ∗ [L(h|V , τ∗)]−min
h̃

EV,τ∗ [L(h̃|V , τ∗)] ,

where the minimum is over h̃, a preference function over
U , and ·|V is a restriction operator on preference functions
defined in the natural way.

The weak ranking and classification regret functionsR′
rank

and R′
class are defined as follows:

R′
rank(A,D) = EV,τ∗,s[L(As(V), τ∗)]

− EV min
σ̃∈S(V)

Eτ∗|V [L(σ̃, τ∗)] (5)

R′
class(h, D) = EV,τ∗ [L(h|V , τ∗)]

− EV min
h̃

Eτ∗|V [L(h̃, τ∗)] , (6)

where τ∗|V is the random variable τ∗ conditioned on fixed
V . The difference between R and R′ for both ranking and
classification is that in their definition the min operator and
the EV operator are permuted.

The following inequalities follow from the concavity of
min and Jensen’s inequality:

R′
rank(A,D) ≥ Rrank(A,D) and

R′
class(A,D) ≥ Rclass(A,D).

(7)

For a fixed V and any u, v ∈ V , let

e(u, v) = Eτ∗|V [τ∗(u, v)] . (8)

The reason we work with R′
class is because the preference

function h̃ over U obtaining the min in the definition of
R′

class can be determined locally for any u, v ∈ U by

h̃(u, v) =


1 e(u, v) > e(v, u)
0 e(v, u) > e(u, v)
1u>v otherwise .

(9)

Also, equation (3) holds true with e replacing τ∗, and sim-
ilarly for (4) if D is bipartite (by linearity of expectation).
We cannot do a similar thing when working with the strong
regret function Rclass.

The reason we work with weak ranking regret is for com-
patibility with our choice of weak classification regret, al-
though our upper bounds on R′

rank trivially apply to Rrank

in virtue of (7).
In Section 5.4, we will discuss certain assumptions under

which our results work for the notion of strong regret as well.
Note that Balcan et al. (2007) also implicitly use such an as-
sumption in deriving their regret bounds. Our regret bounds
(second part of Theorem 2) hold under the same assumption.
Our result is thus exactly comparable with theirs.

3 Algorithm for Ranking Using a Preference
Function

This section describes and analyzes an algorithm for obtain-
ing a global ranking of a subset using a prelearned prefer-
ence function h, which corresponds to the second stage of
the preference-based setting. Our bound on the loss will be
derived using conditional expectation on the preference loss
assuming a fixed subset V ⊆ U , and fixed ground truth τ∗.

To further simplify the analysis, we assume that h is bi-
nary, that is h(u, v) ∈ {0, 1} for all u, v ∈ U .

90

3.1 Description
One simple idea to obtain a global ranking of the points in V
consists of using a standard comparison-based sorting algo-
rithm where the comparison operation is based on the pref-
erence function. However, since in general the preference
function is not transitive, the property of the resulting per-
mutation obtained is unclear.

This section shows however that the permutation gener-
ated by the standard QuickSort algorithm provides excellent
guarantees.1 Thus, the algorithm we suggest is the following.
Pick a random pivot element u uniformly at random from V .
For each v 6= u, place v on the left2 of u if h(v, u) = 1, and
to its right otherwise. Proceed recursively with the array to
the left of u and the one to its right and return the concatena-
tion of the permutation returned by the left recursion, u, and
the permutation returned by the right recursion.

We will denote by Qh
s (V) the permutation resulting in

running QuickSort on V using preference function h, where
s is the random stream of bits used by QuickSort for the se-
lection of the pivots. As we shall see in the next two sec-
tions, this algorithm produces high-quality global rankings
in a time-efficient manner.

3.2 Ranking Quality Guarantees
The following theorems bound the ranking quality of the al-
gorithm described, for both loss and regret, in the general
and bipartite cases.

Theorem 1 (Loss bounds in general case) For any fixed sub-
set V ⊆ U , preference function h on V , and generalized
ranking τ∗ on V , the following bound holds:

E
s
[L(Qh

s (V), τ∗)] ≤ 2L(h, τ∗) . (10)

Taking the expectation of both sides, this implies immedi-
ately that

E
V,τ∗,s

[L(Qh
s (V), τ∗)] ≤ 2EV,τ∗ [L(h, τ∗)], (11)

where h could depend on V .

Theorem 2 (Loss and regret bounds in bipartite case) For
any fixed V ⊆ U , preference function h over V , and bipar-
tite generalized ranking τ∗, the following bound holds:

E
s
[L(Qh

s (V), τ∗] = L(h, τ∗) (12)

R′
rank(Qh

s (·), D) ≤ R′
class(h, D) . (13)

Taking the expectation of both sides of Equation 12, this im-
plies immediately that if (V, τ∗) is drawn from a bipartite
distribution D, then

E
V,τ∗,s

[L(Qh
s (V), τ∗)] = EV,τ∗ [L(h, τ∗)], (14)

where h can depend on V .
To present the proof of these theorems, we need some

tools helpful in the analysis of QuickSort, similar to those
originally developed by Ailon et al.(2005). The next section
introduces these tools.

1We are not assuming here transitivity as in standard textbook
presentations of QuickSort.

2We will use the convention that ranked items are written from
left to right, starting with the most preferred ones.

3.3 Analysis of QuickSort
Assume V is fixed, and let Qs = Qh

s (V) be the (random)
ranking output by QuickSort on V using the preference func-
tion h. During the execution of QuickSort, the order between
two elements u, v ∈ V is determined in one of two ways:

• Directly: u (or v) was selected as the pivot with v (resp.
u) present in the same sub-array in a recursive call to
QuickSort. We denote by puv = pvu the probability of
that event. In that case, the algorithm orders u and v
according to the preference function h.

• Indirectly: a third element w ∈ V is selected as pivot
with w, u, v all present in the same sub-array in a recur-
sive call to QuickSort, u is assigned to the left sub-array
and v to the right (or vice-versa).
Let puvw denote the probability of the event that u, v,
and w are present in the same array in a recursive call
to QuickSort and that one of them is selected as pivot.
Note that conditioned on that event, each of these three
elements is equally likely to be selected as a pivot since
the pivot selection is based on a uniform distribution.
If (say) w is selected among the three, then u will be
placed on the left of v if h(u, w) = h(w, v) = 1, and
to its right if h(v, w) = h(w, u) = 1. In all other
cases, the order between u, v will be determined only
in a deeper nested call to QuickSort.

Let X, Y : V × V → R be any two functions on ordered
pairs u, v ∈ V , and let Z :

(
V
2

)
→ R be a function on un-

ordered pairs. We define three functions α[X, Y] :
(
V
2

)
→ R,

β[X] :
(
V
3

)
→ R and γ[Z] :

(
V
3

)
→ R as follows:

α[X, Y]uv = X(u, v)Y (v, u) + X(v, u)Y (u, v),
β[X]uvw =

1
3
(h(u, v)h(v, w)X(w, u) + h(w, v)h(v, u)X(u, w))+

1
3
(h(v, u)h(u, w)X(w, v) + h(w, u)h(u, v)X(v, w))+

1
3
(h(u, w)h(w, v)X(v, u) + h(v, w)h(w, u)X(u, v)),

γ[Z]uvw =
1
3
(h(u, v)h(v, w) + h(w, v)h(v, u))Zuw+

1
3
(h(v, u)h(u, w) + h(w, u)h(u, v))Zvw+

1
3
(h(u, w)h(w, v) + h(v, w)h(w, u))Zuv .

Lemma 3 (QuickSort Decomposition)

1. For any Z :
(
V
2

)
→ R,∑

u<v

Zuv =
∑
u<v

puvZuv +
∑

u<v<w

puvwγ[Z]uvw .

2. For any X : V × V → R,

Es[
∑
u<v

α[Qs, X]uv] =∑
u<v

puvα[h, X]uv +
∑

u<v<w

puvwβ[X]uvw .

91

Proof: To see the first part, notice that for every unordered
pair u < v the expression Zuv is accounted for on the RHS
of the equation with total coefficient:

puv +
∑

w 6∈{u,v}

1
3
puvw(h(u, w)h(w, v) + h(v, w)h(w, u)) .

Now, puv is the probability that the order of (u, v) is deter-
mined directly (by definition), and

1
3
puvw(h(u, w)h(w, v) + h(v, w)h(w, u))

is the probability that their order is determined indirectly via
w as pivot. Since each pair’s ordering is accounted for ex-
actly once, these probabilities are for pairwise disjoint events
that cover the probability space. Thus, the total coefficient of
Zuv on the RHS is 1, as is on the LHS. The second part is
proved similarly.

3.4 Loss Bounds
This section proves Theorem 1 and the first part of Theo-
rem 2. For a fixed τ∗, the loss incurred by QuickSort is
L(Qs, τ

∗) =
(
n
2

)−1∑
u<v α[Qs, τ

∗]uv . By the second part
of Lemma 3, the expected loss is therefore

E
s
[L(Qs, τ

∗)] =(
n

2

)−1
(∑

u<v

puvα[h, τ∗]uv +
∑

u<v<w

puvwβ[τ∗]uvw

)
.

Also, the following holds by definition of L:

L(h, τ∗) =
(

n

2

)−1∑
u<v

α[h, τ∗]uv .

Thus, by the first part of Lemma 3,

L(h, τ∗) =(
n

2

)−1
(∑

u<v

puvα[h, τ∗]uv +
∑

u<v<w

γ[α[h, τ∗]]uvw

)
.

To complete the proof, it suffices to show that for all u, v, w,

β[τ∗]uvw ≤ 2γ[α[h, τ∗]]uvw , (15)

and that if τ∗ is bipartite, then

β[τ∗]uvw = γ[α[h, τ∗]]uvw . (16)

Up to symmetry, there are two cases to consider. The first
case assumes that h induces a cycle on u, v, w, the second
assumes that it doesn’t.

1. Without loss of generality, assume h(u, v) = h(v, w) =
h(w, u) = 1. Plugging in the definitions leads to

β[τ∗]uvw =
1

3
(τ∗(u, v)+ τ∗(v, w)+ τ∗(w, u)), and (17)

γ[α[h, τ∗]]uvw =
1

3
(τ∗(v, u) + τ∗(w, v) + τ∗(u, w)) .

(18)

If τ∗ is bipartite, then by (4) the right hand sides of (17)
and (18) are equal, giving (16). Otherwise we use (3) to
derive

τ∗(u, v) ≤ τ∗(u, w) + τ∗(w, v)
τ∗(v, w) ≤ τ∗(v, u) + τ∗(u, w)
τ∗(w, u) ≤ τ∗(w, v) + τ∗(v, u)

Summing up the three equations, this implies (15).

2. Without loss of generality, assume h(u, v) = h(v, w) =
h(u, w) = 1. Plugging in the definitions gives

β[τ∗]uvw = γ[α[h, τ∗]]uvw = τ∗(w, u)

as required.

We now examine a consequence of Theorem 1 for QuickSort
that can be compared with the bound given by Cohen et al.
(1999) for a greedy algorithm based on the tournament de-
gree. Let σoptimal be the ranking with the least amount of
pairwise disagreement with h:

σoptimal = argmin
σ

L(h, σ) .

Then, the following corollary bounds the expected pairwise
disagreement of QuickSort with respect to σoptimal by twice
that of the preference function with respect to σoptimal.

Corollary 4 For any V ⊆ U and preference function h over
V , the following bound holds:

E
s
[L(Qh

s (V), σoptimal)] ≤ 2 L(h, σoptimal) . (19)

The corollary is immediate since technically any ranking, in
particular σoptimal, can be taken as σ∗ in the proof of Theo-
rem 1.

Corollary 5 Let V ⊆ U be an arbitrary subset of U and let
σoptimal be as above. Then, the following bound holds for
the pairwise disagreement of the ranking Qh

s (V) with respect
to h:

E
s
[L(h, Qh

s (V))] ≤ 3 L(h, σoptimal). (20)

Proof: The result follows directly Corollary 4 and the appli-
cation of the triangle inequality.

This result is in fact known from previous work (Ailon
et al.2005; 2007) where it is proven directly without resort-
ing to the intermediate inequality (19). In fact, a better factor
of 2.5 is known to be achievable using a more complicated
algorithm, which gives hope for a 1.5 bound improving The-
orem 1.

3.5 Regret Bounds for Bipartite case
This section proves the second part of Theorem 2, that is the
regret bound. Since in the definition of R′

rank and R′
class

the expectation over V is outside the min operator, we may
continue to fix V . Let DV denote the distribution over the
bipartite τ∗ conditioned on V . By the definitions of R′

rank
and R′

class, it is now sufficient to prove that

E
τ∗|V,s

[L(Qh
s , τ∗)]−min

σ̃
E

τ∗|V
[L(σ̃, τ∗)]

≤ E
τ∗|V

[L(h, τ∗)]−min
h̃

E
τ∗|V

[L(h̃, τ∗)]. (21)

92

We let e(u, v) denote Eτ∗|V [τ∗(u, v)], then by the linear-
ity of expectation, Eτ∗|V [L(σ̃, τ∗)] = L(σ̃, e) and similarly
Eτ∗|V [L(h̃, τ∗)] = L(h̃, e). Thus, inequality 21 can be rewrit-
ten as

E
s
[L(Qh

s , e)]−min
σ̃

L(σ̃, e) ≤ L(h, e)−min
h̃

L(h̃, e). (22)

Now let σ̃ and h̃ be the minimizers of the min operators on
the left and right sides, respectively. Recall that for all u, v ∈
V , h̃(u, v) can be taken greedily as a function of e(u, v) and
e(v, u), as in (9):

h̃(u, v) =


1 e(u, v) > e(v, u)
0 e(u, v) < e(v, u)
1u>v otherwise (equality) .

(23)

Using Lemma 3 and linearity, the LHS of (22) can be rewrit-
ten as:(

n

2

)−1
(∑

u<v

puv α[h− σ̃, e]uv

+
∑

u<v<w

puvw(β[e]− γ[α[σ̃, e]])uvw

)
,

and the RHS of (22) as:(
n

2

)−1
(∑

u<v

puv α[h− h̃, e]uv

+
∑

u<v<w

puvwγ[α[h− h̃, e]]uvw

)
.

Now, clearly, for all (u, v) by construction of h̃, we must
have α[h − σ̃, e]uv ≤ α[h − h̃, e]uv . To conclude the proof
of the theorem, we define F :

(
n
3

)
→ R as follows:

F = β[e]− γ[α[σ̃, e]]− (γ[α[h, e]]− γ[α[h̃, e]]) . (24)

It now suffices to prove that Fuvw ≤ 0 for all u, v, w ∈ V .
Clearly F is a function of the values of

e(a, b) : {a, b} ⊆ {u, v, w}
h(a, b) : {a, b} ⊆ {u, v, w}
σ̃(a, b) : {a, b} ⊆ {u, v, w}.

(25)

Recall that h̃ depends on e. By (3) and (4), the e-variables
can take values satisfying the following constraints for all
u, v, w ∈ V :

∀ {a, b, c} = {u, v, w} , e(a, c) ≤ e(a, b) + e(b, c) (26)
e(u, v) + e(v, w) + e(w, u) = e(v, u)+ (27)

e(w, v) + e(u, w)
∀a, b ∈ {u, v, w} , e(a, b) ≥ 0 . (28)

Let P ⊆ R6 denote the polytope defined by (26-28) in the
variables e(a, b) for {a, b} ⊆ {u, v, w}. We subdivide P into
smaller subpolytopes on which the h̃ variables are constant.
Up to symmetries, we can consider only two cases: (i) h̃
induces a cycle on u, v, w and (ii) h̃ is cycle-free on u, v, w.

(i) Without loss of generality, assume h̃(u, v) = h̃(v, w) =
h̃(w, u) = 1. But this implies that e(u, v) ≥ e(v, u),
e(v, w) ≥ e(w, v) and e(w, u) ≥ e(u, w). Together
with (27) and (28), this implies that e(u, v) = e(v, u),
e(v, w) = e(w, v), and e(w, u) = e(u, w). Conse-
quently,

β[e]uvw = γ[α[σ̃, e]]uvw

= γ[α[h, e]]uvw = γ[α[h̃, e]]uvw

=
1
3
(e(u, v) + e(v, w) + e(w, u)) ,

and Fuvw = 0, as required.

(ii) Without loss of generality, assume h̃(u, v) = h̃(v, w) =
h̃(u, w) = 1. This implies that

e(u, v) ≥ e(v, u)
e(v, w) ≥ e(w, v)
e(u, w) ≥ e(w, u) .

(29)

Let P̃ ⊆ P denote the polytope defined by (29) and
(26)-(28). Clearly, F is linear in the 6 e variables when
all the other variables are fixed. Since F is also ho-
mogenous in the e variables, it suffices to prove that
F ≤ 0 for e taking values in P̃ ′ ⊆ P̃ , which is defined
by adding the constraint, say,∑

a,b∈{u,v,w}

e(a, b) = 2 .

It is now enough to prove that F ≤ 0 for τ∗ being a
vertex of of P̃ ′. This finite set of cases can be easily
checked to be:

(e(u, v), e(v, u), e(u, w),
e(w, u), e(w, v), e(v, w)) ∈ A ∪B ,

where

A = {(0, 0, 1, 0, 0, 1), (1, 0, 1, 0, 0, 0)}
B ={(.5, .5, .5, .5, 0, 0), (.5, .5, 0, 0, .5, .5),

(0, 0, .5, .5, .5, .5)} .

The points in B were already checked in case (i), which
is, geometrically, a boundary of case (ii). It remains to
check the two points in A.

• case (0, 0, 1, 0, 0, 1): plugging in the definitions,
one checks that:

β[e]uvw =
1
3
(h(w, v)h(v, u) + h(w, u)h(u, v))

γ[α[h, e]]uvw =
1
3
((h(u, v)h(v, w) + h(w, v)h(v, u))h(w, u)

+ (h(v, u)h(u, w) + h(w, u)h(u, v))h(w, v))

γ[α[h̃, e]]uvw = 0 .

Clearly F could be positive only of βuvw = 1,
which happens if and only if either h(w, v)h(v, u) =

93

1 or h(w, u)h(u, v) = 1. In the former case, we
obtain that

either h(w, v)h(v, u)h(w, u) = 1 (30)
or h(v, u)h(u, w)h(w, v) = 1 , (31)

both implying that γ[α[h, e]]uvw ≥ 1, thus F ≤ 0.
In the latter case,

either h(w, u)h(u, v)h(w, v) = 1 (32)
or h(u, v)h(v, w)h(w, u) = 1 , (33)

both implying again that γ[α[h, e]]uvw ≥ 1 and
thus F ≤ 0.

• case (1, 0, 1, 0, 0, 0): plugging in the definitions,
one checks that:

β[e]uvw =
1
3
(h(w, v)h(v, u) + h(v, w)h(w, u))

γ[α[h, e]]uvw =
1
3
((h(u, v)h(v, w) + h(w, v)h(v, u))h(w, u)

+ (h(u, w)h(w, v) + h(v, w)h(w, u))h(v, u)) .

γ[α[h̃, e]]uvw = 0 .

Now F could be positive if and only if

either h(w, v)h(v, u) = 1 (34)
or h(v, w)h(w, u) = 1 . (35)

In the former case, we obtain that

either h(w, v)h(v, u)h(w, u) = 1 (36)
or h(v, u)h(u, w)h(w, v) = 1 , (37)

both implying that γ[α[h, e]]uvw ≥ 1, and thus
F ≤ 0. In the latter case,

either h(v, w)h(w, u)h(v, u) = 1 (38)
or h(u, v)h(v, w)h(w, u) = 1 , (39)

both implying again that γ[α[h, e]]uvw ≥ 1 and
thus F ≤ 0.

This concludes the proof of the second part of Theorem 2.

3.6 Time Complexity
Running QuickSort does not entail Ω(|V |2) accesses to hu,v .
The following bound on the running time is proven in Sec-
tion 3.6.

Theorem 6 The expected number of times QuickSort accesses
to the preference function h is at most O(n log n). More-
over, if only the top k elements are sought then the bound is
reduced to O(k log k + n) by pruning the recursion.

It is well known that QuickSort on cycle-free tournaments
runs in time O(n log n), where n is the size of the set we
wish to sort. That this holds for QuickSort on general tourna-
ments is a simple extension (communicated by Heikki Man-
nila) which we present it here to keep this presentation self-
contained. The second part of the theorem requires some
more work.

Proof: Let T (n) be the maximum expected running time of
QuickSort on a possibly cyclic tournament on n vertices in
terms of number of comparisons. Let G = (V,A) denote a
tournament. The main observation is that each vertex v ∈
V is assigned to the left recursion with probability exactly
outdeg(v)/n and to the right with probability indeg(v)/n,
over the choice of the pivot. Therefore, the expected size
of both the left and right recursions is exactly (n − 1)/2.
The separation itself costs n− 1 comparisons. The resulting
recursion formula T (n) ≤ n − 1 + 2T ((n − 1)/2) clearly
solves to T (n) = O(n log n).

Assume now that only the k first elements of the output
are sought, that is, we are interested in outputting only ele-
ments in positions 1, . . . , k. The algorithm which we denote
by k-QuickSort is clear: recurse with min {k, nL}-QuickSort
on the left side and max {0, k − nL − 1}-QuickSort on the
right side, where nL, nR are the sizes of the left and right
recursions respectively and 0-QuickSort takes 0 steps by as-
sumption. To make the analysis simpler, we will assume
that whenever k ≥ n/8, k-QuickSort simply returns the out-
put of the standard QuickSort, which runs in expected time
O(n log n) = O(n + k log k), within the sought bound. Fix
a tournament G on n vertices, and let tk(G) denote the run-
ning time of k-QuickSort on G, where k < n/8. Denote the
(random) left and right sub-tournaments by GL and GR re-
spectively, and let nL = |GL|, nR = |GR| denote their sizes
in terms of number of vertices. Then, clearly,

tk(G) = n−1+ tmin{k,nL}(GL)+ tmax{0,k−nL−1}(GR). (40)

Assume by structural induction that for all {k′, n′ : k′ ≤
n′ < n} and for all tournaments G′ on n′ vertices,

E[tk′(G′)] ≤ cn′ + c′k′ log k′

for some global c, c′ > 0. Then, by conditioning on GL, GR,
taking expectations on both sides of (40) and by induction,

E[tk(G) | GL, GR] ≤ n− 1 + cnL+

c′ min{k, nL} log min{k, nL}+ cnR1nL<k−1+

c′ max{k − nL − 1, 0} log max{k − nL − 1, 0}.

By convexity of the function x 7→ x log x,

min{k, nL} log min{k, nL}+
max{k − nL − 1, 0} log max{k − nL − 1, 0}

≤ k log k. (41)

Thus,

E[tk(G) | GL, GR] ≤ n− 1 + cnL+

cnR1nL<k−1 + c′k log k. (42)

By conditional expectation,

E[tk(G)] ≤ n−1+c(n−1)/2+c′k log k+cE[nR1nL<k−1].

To complete the inductive hypothesis, we need to bound the
quantity E[nR1nL<k−1], which is bounded by n Pr[nL <
k−1]. The event {nL < k−1}, equivalent to {nR > n−k},
occurs when a vertex of out-degree at least n− k ≥ 7n/8 is
chosen as pivot. For a random pivot v ∈ V , where V is the
vertex set of G, E[outdeg(v)2] ≤ n2/3 + n/2 ≤ n2/2.9.

94

Indeed, each pair of edges (v, u1) ∈ A and (v, u2) ∈ A for
u1 6= u2 gives rise to a triangle which is counted exactly
twice in the cross-terms, hence n2/3 which upper-bounds
2
(
n
3

)
/n; n/2 bounds the diagonal. Thus, Pr[outdeg(v) ≥

7n/8] = Pr[outdeg(v)2 ≥ 49n2/64] ≤ 0.46 (by Markov).
Plugging in this value into our last estimate yields
E[tk(G)] ≤ n− 1 + c(n− 1)/2 + c′k log k + 0.46× cn,

which is at most cn + c′k log k for c ≥ 30, as required.

4 Lower Bounds
Let r denote the classification regret. Balcan et al. (2007)
proved a lower bound of 2r for the regret of the algorithm
MFAT defined as the solution to the minimum feedback arc-
set problem on the tournament V with an edge (u, v) when
h(u, v) = 1. More precisely, they showed an example of
fixed V , h, and bipartite generalized ranking τ∗ on V , such
that the classification regret of h tends to 1/2 of the ranking
regret of MFAT on V, h. Note that in this case, since τ∗ is
a fixed function of V , the regret and loss coincide both for
classification and for ranking.

Here we give a simple proof of a more general theorem
stating that same bound holds for any deterministic algo-
rithm, including of course MFAT.

Theorem 7 For any deterministic algorithm A taking as in-
put V ⊆ U and a preference function h on V and outputting
a ranking σ ∈ S(V), there exists a bipartite distribution D
on (V, τ∗) such that

Rrank(A,D) ≥ 2Rclass(h, D). (43)

Note that the theorem implies that, in the bipartite case, no
deterministic algorithm converting a preference function into
a linear ranking can do better than a randomized algorithm,
on expectation. Thus, randomization is essentially necessary
in this setting.

The proof is based on an adversarial argument. In our
construction, the support of D is reduced to a single pair
(V, τ∗) (deterministic input), thus the loss and both the weak
and strong regrets coincide and a similar argument applies to
the loss function and the weak regret functions.
Proof: Fix V = {u, v, w}, and let the support of D be
reduced to (V, τ∗), where the bipartite generalized ranking
τ∗ is one that we will select adversarially. Assume a cycle:
h(u, v) = h(v, w) = h(w, u) = 1. Up to symmetry, there
are two options for the output σ of A on V, h.

1. σ(u) < σ(v) < σ(w): in this case, the adversary can
choose τ∗ corresponding to the partition V + = {w}
and V − = {u, v}. Clearly, Rclass(h, D) now equals
1/2 since h is penalized only for misranking the pair
(v, w), but Rrank(A,D) = 1 since σ is misordering
both (u, w) and (v, w).

2. σ(w) < σ(v) < σ(u): in this case, the adversary can
choose τ∗ corresponding to the partition V + = {u}
and V − = {v, w}. Similarly, Rclass(h, D) now equals
1/2 since h is penalized only for misranking the pair
(u, w), while Rrank(A,D) = 1 since σ is misordering
both (u, v) and (u, w).

5 Discussion
5.1 History of QuickSort
The textbook algorithm, by now standard, was originally
discovered by Hoare (1961). Montague and Aslam (Mon-
tague & Aslam, 2002) experimented with QuickSort for in-
formation retrieval (IR) by aggregating rankings from differ-
ent sources of retrieval. They claimed an O(n log n) time
bound on the number of comparisons, although the proof
seemed to rely on the folklore QuickSort proof without ad-
dressing the non-transitivity problem. They proved certain
combinatorial bounds on the output of QuickSort and pro-
vided an empirical justification of its IR merits. Ailon et al.
(2005) also considered the rank aggregation problem and
proved theoretical cost bounds for many ranking problems
on weighted tournaments. They strengthened these bounds
by considering non-deterministic pivoting rules arising from
solutions to certain ranking LP’s. This work was later ex-
tended by Ailon (2007) to deal with rankings with ties, in
particular, top-k rankings. Hedge et al.(2007) and Williamson
and van Zuylen (2007) derandomized the random pivot se-
lection step in QuickSort for many of the combinatorial op-
timization problems studied by Ailon et al..

5.2 The decomposition technique
The technique developed in Lemma 3 is very general and can
be used for a wide variety of loss functions and variants of
QuickSort involving non-deterministic ordering rules (Ailon
et al. 2005; 2007). Such results would typically amount to
bounding β[X]uvw/γ[Z]uvw for some carefully chosen func-
tions X, Z depending on the application.

5.3 Combinatorial Optimization vs. Learning of
Ranking

QuickSort, sometimes referred to as FAS-Pivot in that con-
text, was used by Ailon et al. (2005; 2007) to approximate
certain NP-Hard weighted instances of the problem of min-
imum feedback arcset in tournaments (Alon, 2006). There
is much similarity between the techniques used in that work
and those of the analyses of this work, but there is also a
significant difference that should be noted.

In the minimum feedback arc-set problem, we are given
a tournament G and wish to find an acyclic tournament H on
the same vertex set minimizing ∆(G, H), where ∆ counts
the number of edges pointing in opposite directions between
G, H (or a weighted version thereof). However, the cost we
are considering is ∆(G, Hσ) for some fixed acyclic tourna-
ment Hσ induced by some permutation σ (the ground truth).
In this work, we showed in fact that if G′ is obtained from G
using QuickSort, then E[∆(G′,Hσ)] ≤ 2∆(G, Hσ) for any
σ (Theorem 1). If H is the optimal solution to the (weighted)
minimum feedback arc-set problem corresponding to G, then
it is easy to see that ∆(H,Hσ) ≤ ∆(G, H) + ∆(G, Hσ) ≤
2∆(G, Hσ). However, recovering G is NP-Hard in general.
Approximating ∆(G, H) modulo a constant factor 1 + ε us-
ing an acyclic tournament H ′, as in the combinatorial opti-
mization world, only guarantees a constant factor of 2 + ε:

∆(H ′,Hσ) ≤ ∆(G, H ′) + ∆(G, Hσ) ≤
(1 + ε)∆(G, H) + ∆(G, Hσ) ≤ (2 + ε)∆(G, Hσ) .

95

Thus, this work also adds a significant contribution to (Ailon
et al., 2005; Ailon, 2007; Kenyon-Mathieu & Schudy, 2007).

5.4 Weak vs. Strong Regret Functions
For the proof of the regret bound of Theorem 2 we used the
fact that the minimizer h̃ in the definition (5-6) of R′

class
could be determined independently for each pair u, v ∈ U ,
using (9). This could also be done for strong regrets if the
distribution D on V, τ∗ satisfied the following pairwise IIA
condition.

Definition 8 A distribution D on subsets V ⊆ U and gener-
alized rankings τ∗ on V satisfies the pairwise independence
on irrelevant alternatives (pairwise IIA) if for all u, v ∈ U
and for any two subsets V1, V2 ⊇ {u, v},

Eτ∗|V1 [τ
∗(u, v)] = Eτ∗|V2 [τ

∗(u, v)] .

Note: We chose the terminology IIA to match that used in
Arrow’s seminal work (Arrow, 1950) to describe a similar
notion.

When pairwise IIA holds, the average ground truth rela-
tion between u and v, conditioned on u, v included in V , is
independent of V .

Recall that a bipartite τ∗ is derived from a pair σ∗, ω,
where ω is defined using a term 1/m−m+, for compatibil-
ity with the definition of AUC. The numbers m+ and m−

depend on the underlying size of the positive and negative
sets partitioning of V and therefore cannot be inferred from
(u, v) alone. Thus, in the standard bipartite case, the pair-
wise IIA assumption is not natural. If, however, we replaced
our definitions in the bipartite case and used the following:

ω(i, j) =


1 (i ≤ m+) ∧ (j > m+)
1 (j ≤ m+) ∧ (i > m+)
0 otherwise,

(44)

instead of (2), then it would be reasonable to believe that
pairwise IIA does hold in the bipartite case. In fact, it would
be reasonable to make the stronger assumption that for any
fixed u, v ∈ U and V1, V2 ⊇ {u, v} the distribution of the
random variables τ∗(u, v)|V1 and τ∗(u, v)|V2 are equal. This
corresponds to the intuition that when comparing a pair u, v
in a context of a set V containing them, human labelers are
not as influenced by the irrelevant information V \{u, v} as
they would be by V \{u} if asked to evaluate single elements
u. The irrelevant information in V is often referred to as
anchor in experimental psychology and economics (Ariely
et al., 2008).

Our regret bounds would still hold if we used (44), but
we chose (2) to present our results in terms of the familiar
average pairwise misranking error or AUC loss.

Another possible assumption allowing usage of strong
regrets is to let the preference function learned in the first
stage depend on V . This is the assumption implicitly made
by Balcan et al. (2007) (based on our private communica-
tion). We do not further elaborate on this assumption.

6 Conclusion
We described a reduction of the learning problem of rank-
ing to classification. The efficiency of this reduction makes

it practical for large-scale information extraction and search
engine applications. A finer analysis of QuickSort is likely
to further improve our reduction bound by providing a con-
centration inequality for the algorithm’s deviation from its
expected behavior using the confidence scores output by the
classifier. Our reduction leads to a competitive ranking algo-
rithm that can be viewed as an alternative to the algorithms
previously designed for the score-based setting.

7 Acknowledgments
We thank Alina Beygelzimer and John Langford for helpful
discussions. Mehryar Mohri’s work was partially funded by
the New York State Office of Science Technology and Aca-
demic Research (NYSTAR).

References
Agarwal, S., Graepel, T., Herbrich, R., Har-Peled, S., &

Roth, D. (2005). Generalization bounds for the area under
the roc curve. Journal of Machine Learning Research, 6,
393–425.

Agarwal, S., & Niyogi, P. (2005). Stability and generaliza-
tion of bipartite ranking algorithms. COLT (pp. 32–47).

Ailon, N. (2007). Aggregation of partial rankings, p-ratings
and top-m lists. SODA.

Ailon, N., Charikar, M., & Newman, A. (2005). Aggregat-
ing inconsistent information: ranking and clustering. Pro-
ceedings of the 37th Annual ACM Symposium on Theory
of Computing, Baltimore, MD, USA, May 22-24, 2005 (pp.
684–693). ACM.

Alon, N. (2006). Ranking tournaments. SIAM J. Discrete
Math., 20, 137–142.

Ariely, D., Loewenstein, G., & Prelec, D. (2008). Coherent
arbitrariness: Stable demand curves without stable prefer-
ences. The Quarterly Journal of Economics, 118, 73–105.

Arrow, K. J. (1950). A difficulty in the concept of social
welfare. Journal of Political Economy, 58, 328–346.

Balcan, M.-F., Bansal, N., Beygelzimer, A., Coppersmith,
D., Langford, J., & Sorkin, G. B. (2007). Robust reduc-
tions from ranking to classification. COLT (pp. 604–619).
Springer.

Clémençon, S., & Vayatis, N. (2007). Ranking the best in-
stances. Journal of Machine Learning Research, 8, 2671–
2699.

Cohen, W. W., Schapire, R. E., & Singer, Y. (1999). Learning
to order things. J. Artif. Intell. Res. (JAIR), 10, 243–270.

Coppersmith, D., Fleischer, L., & Rudra, A. (2006). Order-
ing by weighted number of wins gives a good ranking for
weighted tournamnets. Proceedings of the 17th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA).

96

Cortes, C., Mohri, M., & Rastogi, A. (2007a). An Alterna-
tive Ranking Problem for Search Engines. Proceedings
of the 6th Workshop on Experimental Algorithms (WEA
2007) (pp. 1–21). Rome, Italy: Springer-Verlag, Heidel-
berg, Germany.

Cortes, C., Mohri, M., & Rastogi, A. (2007b). Magnitude-
Preserving Ranking Algorithms. Proceedings of the
Twenty-fourth International Conference on Machine
Learning (ICML 2007). Oregon State University, Corval-
lis, OR.

Cossock, D., & Zhang, T. (2006). Subset ranking using re-
gression. COLT (pp. 605–619).

Crammer, K., & Singer, Y. (2001). Pranking with rank-
ing. Advances in Neural Information Processing Systems
14 [Neural Information Processing Systems: Natural and
Synthetic, NIPS 2001, December 3-8, 2001, Vancouver,
British Columbia, Canada] (pp. 641–647). MIT Press.

Freund, Y., Iyer, R. D., Schapire, R. E., & Singer, Y. (2003).
An efficient boosting algorithm for combining prefer-
ences. Journal of Machine Learning Research, 4, 933–
969.

Hanley, J. A., & McNeil, B. J. (1982). The meaning and use
of the area under a receiver operating characteristic (roc)
curve. Radiology.

Hedge, R., Jain, K., Williamson, D. P., & van Zuylen, A.
(2007). ”deterministic pivoting algorithms for constrained
ranking and clustering problems”. Proceedings of the
ACM-SIAM Symposium on Discrete Algorithms (SODA).

Hoare, C. (1961). Quicksort: Algorithm 64. Comm. ACM,
4, 321–322.

Joachims, T. (2002). Optimizing search engines using click-
through data. KDD ’02: Proceedings of the eighth ACM
SIGKDD international conference on Knowledge discov-
ery and data mining (pp. 133–142). New York, NY, USA:
ACM Press.

Kenyon-Mathieu, C., & Schudy, W. (2007). How to rank
with few errors. STOC ’07: Proceedings of the thirty-ninth
annual ACM symposium on Theory of computing (pp. 95–
103). New York, NY, USA: ACM Press.

Lehmann, E. L. (1975). Nonparametrics: Statistical methods
based on ranks. San Francisco, California: Holden-Day.

Montague, M. H., & Aslam, J. A. (2002). Condorcet fu-
sion for improved retrieval. Proceedings of the 2002
ACM CIKM International Conference on Information and
Knowledge Management, McLean, VA, USA, November
4-9, 2002 (pp. 538–548). ACM.

Rudin, C., Cortes, C., Mohri, M., & Schapire, R. E.
(2005). Margin-based ranking meets boosting in the mid-
dle. Learning Theory, 18th Annual Conference on Learn-
ing Theory, COLT 2005, Bertinoro, Italy, June 27-30,
2005, Proceedings (pp. 63–78). Springer.

Williamson, D. P., & van Zuylen, A. (2007). ”determinis-
tic algorithms for rank aggregation and other ranking and
clustering problems”. Proceedings of the 5th Workshop
on Approximation and Online Algorithms (WAOA) (to ap-
pear).

97

98

Learning from Collective Behavior

Michael Kearns
Computer and Information Science

University of Pennsylvania
mkearns@cis.upenn.edu

Jennifer Wortman
Computer and Information Science

University of Pennsylvania
wortmanj@seas.upenn.edu

Abstract

Inspired by longstanding lines of research in soci-
ology and related fields, and by more recent large-
population human subject experiments on the In-
ternet and the Web, we initiate a study of the com-
putational issues in learning to model collective
behavior from observed data. We define formal
models for efficient learning in such settings, and
provide both general theory and specific learning
algorithms for these models.

1 Introduction

Collective behavior in large populations has been a subject
of enduring interest in sociology and economics, and a more
recent topic in fields such as physics and computer science.
There is consequently now an impressive literature on math-
ematical models for collective behavior in settings as di-
verse as the diffusion of fads or innovation in social net-
works [10, 1, 2, 18], voting behavior [10], housing choices
and segregation [22], herding behaviors in financial mar-
kets [27, 8], Hollywood trends [25, 24], critical mass phe-
nomena in group activities [22], and many others. The ad-
vent of the Internet and the Web have greatly increased the
number of both controlled experiments [7, 17, 20, 21, 8] and
open-ended systems (such as Wikipedia and many other in-
stances of “human peer-production”) that permit the logging
and analysis of detailed collective behavioral data. It is nat-
ural to ask if there are learning methods specifically tailored
to such models and data.

The mathematical models of the collective behavior liter-
ature differ from one another in important details, such as the
extent to which individual agents are assumed to act accord-
ing to traditional notions of rationality, but they generally
share the significant underlying assumption that each agent’s
current behavior is entirely or largely determined by the re-
cent behavior of the other agents. Thus the collective behav-
ior is asocialphenomenon, and the population evolves over
time according to its own internal dynamics — there is no
exogenous “Nature” being reacted to, or injecting shocks to
the collective.

In this paper, we introduce a computational theory of
learning from collective behavior, in which the goal is to
accurately model and predict the future behavior of a large

population after observing their interactions during a train-
ing phase of polynomial length. We assume that each agent
i in a population of sizeN acts according to a fixed but un-
known strategyci drawn from a known classC. A strategy
probabilistically maps the current population state to thenext
state or action for that agent, and each agent’s strategy may
be different. As is common in much of the literature cited
above, there may also be a network structure governing the
population interaction, in which case strategies may map the
local neighborhood state to next actions.

Learning algorithms in our model are given training data
of the population behavior, either as repeated finite-length
trajectories from multiple initial states (anepisodicmodel),
or in a single unbroken trajectory from a fixed start state (a
no-resetmodel). In either case, they must efficiently (poly-
nomially) learn to accurately predict or simulate (properties
of) the future behavior of the same population. Our frame-
work may be viewed as a computational model for learning
the dynamics of an unknown Markov process — more pre-
cisely, a dynamic Bayes net — in which our primary interest
is in Markov processes inspired by simple models for social
behavior.

As a simple, concrete example of the kind of system we
have in mind, consider a population in which each agent
makes a series of choices from a fixed set over time (such as
what restaurant to go to, or what political party to vote for).
Like many previously studied models, we consider agents
who have a desire to behave like the rest of the population
(because they want to visit the popular restaurants, or want
to vote for “electable” candidates). On the other hand, each
agent may also have different and unknown intrinsic prefer-
ences over the choices as well (based on cuisine and decor, or
the actual policies of the candidates). We consider models in
which each agent balances or integrates these two forces in
deciding how to behave at each step [12]. Our main question
is: Can a learning algorithm watching the collective behavior
of such a population for a short period produce an accurate
model of their future choices?

The assumptions of our model fit nicely with the litera-
ture cited in the first paragraph, much of which indeed pro-
poses simple stochastic models for how individual agents re-
act to the current population state. We emphasize from the
outset the difference between our interests and those com-
mon in multiagent systems and learning in games. In those
fields, it is often the case that the agents themselves are
acting according to complex and fairly general learning al-

99

gorithms (such as Q-learning [26], no-regret learning [9],
fictitious play [3], and so on), and the central question is
whether and when the population converges to particular,
“nice” states (such as Nash or correlated equilibria). In con-
trast, while the agent strategies we consider are certainly
“adaptive” in a reactive sense, they are much simpler than
general-purpose learning algorithms, and we are interested
in learning algorithms thatmodelthe full collective behavior
no matter what its properties; there is no special status given
either to particular states nor to any notion of convergence.
Thus our interest is not in learning by the agents themselves,
but at the higher level of an observer of the population.

Our primary contributions are:

• The introduction of a computational model for learning
from collective behavior.

• The development of some general theory for this model,
including a polynomial-time reduction of learning from
collective behavior to learning in more traditional,
single-target I.I.D. settings, and a separation between
efficient learnability in collective models in which the
learner does and does not see all intermediate popula-
tion states.

• The definition of specific classes of agent strategies,
including variants of the “crowd affinity” strategies
sketched above, and complementary “crowd aversion”
classes.

• Provably efficient algorithms for learning from collec-
tive behavior for these same classes.

The outline of the paper is as follows. In Section 2, we
introduce our main model for learning from collective be-
havior, and then discuss two natural variants. Section 3 in-
troduces and motivates a number of specific agent strategy
classes that are broadly inspired by earlier sociological mod-
els, and provides brief simulations of the collective behaviors
they can generate. Section 4 provides a general reduction of
learning from collective behavior to a generalized PAC-style
model for learning from I.I.D. data, which is used subse-
quently in Section 5, where we give provably efficient algo-
rithms for learning some of the strategy classes introducedin
Section 3. Brief conclusions and topics for further research
are given in Section 6.

2 The Model

In this section we describe a learning model in which the
observed data is generated from observations of trajectories
(defined shortly) of the collective behavior ofN interacting
agents. The key feature of the model is the fact that each
agent’s next state or action is alwaysdetermined by the recent
actions of the other agents, perhaps combined with some in-
trinsic “preferences” or behaviors of the particular agent. As
we shall see, we can view our model as one for learning cer-
tain kinds of factored Markov processes that are inspired by
models common in sociology and related fields.

Each agent may follow a different and possibly proba-
bilistic strategy. We assume that the strategy followed by
each agent is constrained to lie in a known (and possibly

large) class, but is otherwise unknown. The learner’s ulti-
mate goal is not to discover each individual agent strategy
per se, but rather to make accurate predictions of thecollec-
tivebehavior in novel situations.

2.1 Agent Strategies and Collective Trajectories

We now describe the main components of our framework:

• State Space.At each time step, each agenti is in some
statesi chosen from a known, finite setS of sizeK.
We often think ofK as being large, and thus want al-
gorithms whose running time scales polynomially inK
and other parameters. We viewsi as theactiontaken by
agenti in response to the recent population behavior.
The joint action vector~s ∈ SN describes the current
global state of the collective.

• Initial State Distribution. We assume that the initial
population state~s 0 is drawn according to a fixed but
unknown distributionP overSN . During training, the
learner is able to see trajectories of the collective behav-
ior in which the initial state is drawn fromP , and as in
many standard learning models, must generalize with
respect to this same distribution. (We also consider a
no-reset variant of our model in Section 2.3.)

• Agent Strategy Class. We assume that each agent’s
strategy is drawn from a known classC of (typically
probabilistic) mappings from the recent collective be-
havior into the agent’s next state or action inS. We
mainly consider the case in whichci ∈ C probabilisti-
cally maps the current global state~s into agenti’s next
state. However, much of the theory we develop ap-
plies equally well to more complex strategies that might
incorporate a longer history of the collective behavior
on the current trajectory, or might depend on summary
statistics of that history.

Given these components, we can now define what is meant
by acollective trajectory.

Definition 1 Let~c ∈ CN be the vector of strategies for the
N agents,P be the initial state distribution, andT ≥ 1 be an
integer. AT -trajectory of ~c with respect to P is a random
variable 〈~s 0, · · · , ~s T 〉 in which the initial state~s 0 ∈ SN

is drawn according toP , and for eacht ∈ {1, · · · , T}, the
componentst

i of the joint state~s t is obtained by applying
the strategyci to ~s t−1. (Again, more generally we may
also allow the strategiesci to depend on the full sequence
~s 0, . . . , ~s t−1, or on summary statistics of that history.)

Thus, a collective trajectory in our model is simply a
Markovian sequence of states thatfactorsaccording to the
N agent strategies — that is, a dynamic Bayes net [19]. Our
interest is in cases in which this Markov process is generated
by particular models of social behavior, some of which are
discussed in Section 3.

2.2 The Learning Model

We now formally define the learning model we study. In
our model, learning algorithms are given access to an oracle
OEXP(~c, P, T) that returns aT -trajectory〈~s 0, · · · , ~s T 〉 of

100

~c with respect toP . This is thus anepisodicor resetmodel,
in which the learner has the luxury of repeatedly observing
the population behavior from random initial conditions. It
is most applicable in (partially) controlled, experimental set-
tings [7, 17, 20, 21, 8] where such “population resets” can
be implemented or imposed. In Section 2.3 below we de-
fine a perhaps more broadly applicable variant of the model
in which resets are not available; the algorithms we provide
can be adapted for this model as well (Section 5.3).

The goal of the learner is to find agenerative modelthat
can efficiently produce trajectories from a distribution that
is arbitrarily close to that generated by the true population.
Thus, letM̂(~s 0, T) be a (randomized) model output by a
learning algorithm that takes as input a start state~s 0 and
time horizonT , and outputs a randomT -trajectory, and let
QM̂ denote the distribution over trajectories generated byM̂
when the start state is distributed according toP . Similarly,
let Q~c denote the distribution over trajectories generated by
OEXP(~c, P, T). Then the goal of the learning algorithm is to
find a modelM̂ making theL1 distanceε(QM̂ , Q~c) between
QM̂ andQ~c small, where

ε(QM̂ , Q~c) ≡
∑

〈~s 0,··· ,~s T 〉

|QM̂ (〈~s 0, · · · , ~s T 〉) − Q~c(〈~s 0, · · · , ~s T 〉)| .

A couple of remarks are in order here. First, note that
we have defined the output of the learning algorithm to be
a “black box” that simply produces trajectories from initial
states. Of course, it would be natural to expect that this black
box operates by having good approximations to every agent
strategy in~c, and using collective simulations of these to pro-
duce trajectories, but we choose to define the outputM̂ in a
more general way since there may be other approaches. Sec-
ond, we note that our learning criteria is both strong (see
below for a discussion of weaker alternatives) and useful,
in the sense that ifε(QM̂ , Q~c) is smaller thanε, then we can
sampleM̂ to obtainO(ε)-good approximations to the expec-
tation of any (bounded)functionof trajectories. Thus, for in-
stance, we can usêM to answer questions like “What is the
expected number of agents playing the plurality action after
T steps?” or “What is the probability the entire population
is playing the same action afterT steps?” (In Section 2.4 be-
low we discuss a weaker model in which we care only about
onefixedoutcome function.)

Our algorithmic results consider cases in which the agent
strategies may themselves already be rather rich, in which
case the learning algorithm should be permitted resources
commensurate with this complexity. For example, the crowd
affinity models have a number of parameters that scales with
the number of actionsK. More generally, we usedim(C) to
denote the complexity or dimension ofC; in all of our imag-
ined applicationsdim(·) is either the VC dimension for de-
terministic classes, or one of its generalizations to probabilis-
tic classes (such as pseudo-dimension [11], fat-shattering di-
mension [15], combinatorial dimension [11], etc.).

We are now ready to define our learning model.

Definition 2 Let C be an agent strategy class over actions
S. We say thatC is polynomially learnable from collective

behavior if there exists an algorithmA such that for any
population sizeN ≥ 1, any~c ∈ CN , any time horizonT ,
any distributionP overSN , and anyε > 0 andδ > 0, given
access to the oracleOEXP(~c, P, T), algorithmA runs in time
polynomial inN , T , dim(C), 1/ε, and1/δ, and outputs a
polynomial-time model̂M such that with probability at least
1 − δ, ε(QM̂ , Q~c) ≤ ε.

We now discuss two reasonable variations on the model
we have presented.

2.3 A No-Reset Variant

The model above assumes that learning algorithms are given
access to repeated, independent trajectories via the oracle
OEXP, which is analogous to theepisodicsetting of rein-
forcement learning. As in that field, we may also wish to
consider an alternative “no-reset” model in which the learner
has access only to asingle, unbroken trajectory of states gen-
erated by the Markov process. To do so we must formulate
an alternative notion of generalization, since on the one hand,
the (distribution of the) initial state may quickly become ir-
relevant as the collective behavior evolves, but on the other,
the state space is exponentially large and thus it is unrealistic
to expect to model the dynamics from anarbitrary state in
polynomial time.

One natural formulation allows the learner to observe any
polynomially long prefix of a trajectory of states for training,
and then to announce its readiness for the test phase. If~s is
the final state of the training prefix, we can simply ask that
the learner output a model̂M that generates accurateT -step
trajectoriesforward from the current state~s. In other words,
M̂ should generate trajectories from a distribution close to
the distribution overT -step trajectories that would be gener-
ated if each agent continued choosing actions according to
his strategy. The length of the training prefix is allowed to be
polynomial inT and the other parameters.

While aspects of the general theory described below are
particular to our main (episodic) model, we note here that the
algorithms we give for specific classes can in fact be adapted
to work in the no-reset model as well. Such extensions are
discussed briefly in Section 5.3.

2.4 Weaker Criteria for Learnability

We have chosen to formulate learnability in our model us-
ing a rather strong success criterion — namely, the ability to
(approximately) simulate the full dynamics of the unknown
Markov process induced by the population strategy~c. In or-
der to meet this strong criterion, we have also allowed the
learner access to a rather strong oracle, which returns allin-
termediatestates of sampled trajectories.

There may be natural scenarios, however, in which we
are interested only in specificfixed properties of collective
behavior, and thus a weaker data source may suffice. For in-
stance, suppose we have a fixed, real-valuedoutcome func-
tionF (~s T) of final states (for instance, the fraction of agents
playing the plurality action at timeT), with our goal being
to simply learn a functionG that maps initial states~s 0 and a
time horizonT to real values, and approximately minimizes

E~s 0∼P

[∣

∣G(~s 0, T) − E~s T [F (~s T)]
∣

∣

]

101

where~s T is a random variable that is the final state of a
T -trajectory of~c from the initial state~s 0. Clearly in such a
model, while it certainly would suffice, there may be no need
to directly learn a full dynamical model. It may be feasible
to satisfy this criterion without even observing intermediate
states, but only seeing initial state and final outcome pairs
〈~s 0, F (~s T)〉, closer to a traditional regression problem.

It is not difficult to define simple agent strategy classes
for which learning from only〈~s 0, F (~s T)〉 pairs is provably
intractable, yet efficient learning is possible in our model.
This idea is formalized in Theorem 3 below. Here the popu-
lation forms a rather powerful computational device map-
ping initial states to final states. In particular, it can be
thought of as a circuit of depthT with “gates” chosen from
C, with the only real constraint being that each layer of the
circuit is an identical sequence ofN gates which are applied
to the outputs of the previous layer. Intuitively, if only initial
states and final outcomes are provided to the learner, learn-
ing should be as difficult as a corresponding PAC-style prob-
lem. On the other hand, by observing intermediate state vec-
tors we can build arbitrarily accurate models for each agent,
which in turn allows us to accurately simulate the full dy-
namical model.

Theorem 3 LetC be the class of 2-inputAND andOR gates,
and one-inputNOT gates. ThenC is polynomially learnable
from collective behavior, but there exists a binary outcome
function F such that learning an accurate mapping from
start states~s 0 to outcomesF (~s T) without observing inter-
mediate state data is intractable.

Proof: (Sketch) We first sketch the hardness construction.
Let H be any class of Boolean circuits (that is, with gates in
C) that is not polynomially learnable in the standard PAC
model; under standard cryptographic assumptions, such a
class exists. LetD be a hard distribution for PAC learning
H. Let h ∈ H be a Boolean circuit withR inputs,S gates,
and depthD. To embed the computation byh in a collective
problem, we letN = R + S andT = D. We introduce
an agent for each of theR inputs toh, whose value after the
initial state is set according to an arbitraryAND, OR, or NOT
gate. We additionally introduce one agent for every gateg
in h. If a gateg in h takes as its inputs the outputs of gates
g′ andg′′, then at each time step the agent corresponding to
g computes the corresponding function of the states of the
agents corresponding tog′ andg′′ at the previous time step.
Finally, by convention we always have theN th agent be the
agent corresponding to the output gate ofh, and define the
output function asF (~s) = sN . The distributionP over ini-
tial states of theN agents is identical toD on theR agents
corresponding to the inputs ofh, and arbitrary (e.g., inde-
pendent and uniform) on the remainingS agents.

Despite the fact that this construction introduces a great
deal of spurious computation (for instance, at the first time
step, many or most gates may simply be computing Boolean
functions of the random bits assigned to non-input agents),it
is clear that if gateg is at depthd in h, then at timed in the
collective simulation of the agents, the corresponding agent
has exactly the value computed byg under the inputs toh
(which are distributed according toD). Because the outcome
function is the value of the agent corresponding to the output

gate ofh at timeT = D, pairs of the form〈~s 0, F (~s T)〉
provide exactly the same data as the PAC model forh under
D, and thus must be equally hard.

For the polynomial learnability ofC from collective be-
havior, we note thatC is clearly PAC learnable, since it is
just Boolean combinations of 1 or 2 inputs. In Section 4
we give a general reduction from collective learning of any
agent strategy class to PAC learning the class, thus giving the
claimed result.

Conversely, it is also not difficult to concoct cases in
which learning the full dynamics in our sense is intractable,
but we can learn to approximate a specific outcome func-
tion from only〈~s 0, F (~s T)〉 pairs. Intuitively, if each agent
strategy is very complex but the outcome function applied to
final states is sufficiently simple (e.g., constant), we cannot
but do not need to model the full dynamics in order to learn
to approximate the outcome.

We note that there is an analogy here to the distinc-
tion betweendirectandindirectapproaches to reinforcement
learning [16]. In the former, one learns a policy that is spe-
cific to a fixed reward function without learning a model of
next-state dynamics; in the latter, at possibly greater cost,
one learns an accurate dynamical model, which can in turn
be used to compute good policies for any reward function.
For the remainder of this paper, we focus on the model as we
formalized it in Definition 2, and leave for future work the
investigation of such alternatives.

3 Social Strategy Classes

Before providing our general theory, including the reduction
from collective learning to I.I.D. learning, we first illustrate
and motivate the definitions so far with some concrete exam-
ples of social strategy classes, some of which we analyze in
detail in Section 5.

3.1 Crowd Affinity: Mixture Strategies

The first class of agent strategies we discuss are meant to
model settings in which each individual wishes to balance
their intrinsic personal preferences with a desire to “follow
the crowd.” We broadly refer to strategies of this type as
crowd affinitystrategies (in contrast to thecrowd aversion
strategies discussed shortly), and examine a couple of natural
variants.

As a motivating example, imagine that there areK
restaurants, and each week, every member of a population
chooses one of the restaurants in which to dine. On the one
hand, each agent has personal preferences over the restau-
rants based on the cuisine, service, ambiance, and so on. On
the other, each agent has some desire to go to the currently
“hot” restaurants — that is, where many or most other agents
have been recently. To model this setting, letS be the set of
K restaurants, and suppose~s ∈ SN is the population state
vector indicating where each agent dined last week. We can
summarize the population behavior by the vector or distribu-
tion ~f ∈ [0, 1]K , wherefa is the fraction of agents dining
in restauranta in ~s. Similarly, we might represent the per-
sonal preferences of a specific agent by another distribution
~w ∈ [0, 1]K in whichwa represents the probability this agent
would attend restauranta in the absence of any information

102

(a)

20 40 60 80 100

100

200

300

400

500

600

700

800

900

1000

(b)

20 40 60 80 100

100

200

300

400

500

600

700

800

900

1000

(c)

20 40 60 80 100

20

40

60

80

100

120

140

160

180

200

Figure 1: Sample simulations of the (a) crowd affinity mixture model; (b) crowd affinity multiplicative model; (c) agent affinity model.
Horizontal axis is population state; vertical axis is simulation time. See text fordetails.

about what the population is doing. One natural way for the
agent to balance their preferences with the population behav-
ior would be to choose a restaurant according to the mixture
distribution(1 − α)~f + α~w for some agent-dependent mix-
ture coefficientα. Such models have been studied in the
sociology literature [12] in the context of belief formation.

We are interested in collective systems in which every
agenti has some unknown preferences~wi and mixture co-
efficient αi, and in each weekt chooses its next restaurant
according to(1 − αi)~f t + αi ~wi, which thus probabilisti-
cally yields the next population distribution~f t+1. How do
such systems behave? And how can we learn to model their
macroscopic properties from only observed behavior, espe-
cially when the number of choicesK is large?

An illustration of the rich collective behavior that can al-
ready be generated from such simple strategies is shown in
Figure 1(a). Here we show a single but typical 1000-step
simulation of collective behavior under this model, in which
N = 100 and each agent’s individual preference vector~w
puts all of its weight on just one of 10 possible actions (rep-
resented as colors); this action was selected independently at
random for each agent. All agents have anα value of just
0.01, and thus are selecting from the population distribution
99% of the time. Each row shows the population state at a
given step, with time increasing down the horizontal axis of
the image. The initial state was chosen uniformly at random.

It is interesting to note the dramatic difference between
α = 0 (in which rapid convergence to a common color
is certain) and this small value forα; despite the fact that
almost all agents play the population distribution at every
step, revolving horizontal waves of near-consensus to dif-
ferent choices are present, with no final convergence in
sight. The slight “personalization” of population-only be-
havior is enough to dramatically change the collective be-

havior. Broadly speaking, it is such properties we would like
a learning algorithm to model and predict from sufficient ob-
servations.

3.2 Crowd Affinity: Multiplicative Strategies

One possible objection to the crowd affinity mixture strate-
gies described above is that each agent can be viewed as
randomlychoosing whether toentirelyfollow the population
distribution (with probability1−α) or toentirelyfollow their
personal preferences (with probabilityα) at each time step.
A more realistic model might have each agent trulycombine
the population behavior with their preferences at every step.

Consider, for instance, how an American citizen might
alter their anticipated presidential voting decision overtime
in response to recent primary or polling news. If their first
choice of candidate — say, an Independent or Libertarian
candidate — appears over time to be “unelectable” in the
general election due to their inability to sway large num-
bers of Democratic and Republican voters, a natural and typ-
ical response is for the citizen to shift their intended voteto
whichever of the front-runners they most prefer or least dis-
like. In other words, the low popularity of their first choice
causes that choice to be dampened or eradicated; unlike the
mixture model above, where weightα is always given to per-
sonal preferences, here there may remainno weight on this
candidate.

One natural way of defining a general such class of
strategies is as follows. As above, let~f ∈ [0, 1]K , where
fa is the fraction of agents dining in restauranta in the
current state~s. Similar to the mixture strategies above, let
~wi ∈ [0, 1]K be a vector ofweightsrepresenting the intrinsic
preferences of agenti over actions. Then define the prob-
ability that agenti plays actiona to befa · wi,a/Z(~f, ~wi),
where the normalizing factor isZ(~f, ~wi) =

∑

b∈S fb · wi,b.

103

Thus, in suchmultiplicativecrowd affinity models, the prob-
ability the agent takes an action is always proportional to the
product of their preference for it and its current popularity.

Despite their similar motivation, the mixture and mul-
tiplicative crowd affinity strategies can lead to dramatically
different collective behavior. Perhaps the most obvious dif-
ference is that in the mixture case, if agenti has a strong
preference for actiona there isalwayssome minimum prob-
ability (αiwi,a) they take this action, whereas in the mul-
tiplicative case even a strong preference can be eradicated
from expression by small or zero values for the popularity
fa.

In Figure 1(b), we again show a single but typical 1000-
step, N = 100 simulation for the multiplicative model
in which agent’s individual preference distributions~w are
chosen to be random normalized vectors over 10 actions.
The dynamics are now quite different than for the additive
crowd affinity model. In particular, now there is never near-
consensus but a gradual dwindling of the colors represented
in the population — from the initial full diversity down to 3
colors remaining at approximatelyt = 100, until by t = 200
there is a stand-off in the population between red and light
green. Unlike the additive models, colors die out in the popu-
lation permanently. There is also clear vertical structurecor-
responding to strong conditional preferences of the agents
once the stand-off emerges.

3.3 Crowd Aversion and Other Variants

It is easy to transform the mixture or multiplicative crowd
affinity strategies intocrowd aversionstrategies — that is, in
which agents wish to balance or combine their personal pref-
erences with a desire to actdifferentlythan the population at
large. This can be accomplished in a variety of simple ways.
For instance, if~f is the current distributions over actions in
the population, we can simply define a kind of “inverse” to
the distribution by lettingga = (1 − fa)/(K − 1), where
K−1 =

∑

b∈S(1−fb) is the normalizing factor, and apply-

ing the strategies above to~g rather than~f . Now each agent
exhibits a tendency to “avoid the crowd”, moderated as be-
fore by their own preferences.

Of course, there is no reason to assume that the entire
population is crowd-seeking, or crowd-avoiding; more gen-
erally we would allow there to be both types of individuals
present. Furthermore, we might entertain other transforms
of the population distribution than justga above. For in-
stance, we might wish to still consider crowd affinity, but to
first “sharpen” the distribution by replacing eachfa with f2

a

and normalizing, then applying the models discussed above
to the resulting vector. This has the effect of magnifying the
attraction to the most popular actions. In general our algo-
rithmic results are robust to a wide range of such variations.

3.4 Agent Affinity and Aversion Strategies

In the two versions of crowd affinity strategies discussed
above, an agent has personal preferences over actions, and
also reacts to the current population behavior, but only in an
aggregate fashion. An alternative class of strategies thatwe
call agent affinitystrategies instead allows agents to prefer to
agree (or disagree) in their choice with specific other agents.

For a fixed agent, such a strategy can be modeled by a
weight vector~w ∈ [0, 1]N , with one weight for eachagent
in the population rather than each action. We define the prob-
ability that this agent takes actiona if the current global state
is ~s ∈ SN to be proportional to

∑

i:si=a wi. In this class of
strategies, the strength of the agent’s desire to take the same
action as agenti is determined by how large the weightwi

is. The overall behavior of this agent is then probabilistically
determined by summing over all agents in the fashion above.

In Figure 1(c), we show a single but typical simulation,
again withN = 100 but now with a much shorter time hori-
zon of 200 steps and a much larger set of 100 actions. All
agents have random distributions as their preferences over
other agents; this model is similar to traditional diffusion dy-
namics in a dense, random (weighted) network, and quickly
converges to global consensus.

We leave the analysis of this strategy class to future work,
but remark that in the simple case in whichK = 2, learning
this class is closely related to the problem of learning per-
ceptrons under certain noise models in which the intensity of
the noise increases with proximity to the separator [5, 4] and
seems at least as difficult.

3.5 Incorporating Network Structure

Many of the social models inspiring this work involve a net-
work structure that dictates or restricts the interactionsbe-
tween agents [18]. It is natural to ask if the strategy classes
discussed here can be extended to the scenario in which each
agent is influenced only by his neighbors in a given network.
Indeed, it is straightforward to extend each of the strategy
classes introduced in this section to a network setting. For
example, to adapt the crowd affinity and aversion strategy
classes, it suffices to redefinefa for each agenti to be the
fraction of agents in the local neighborhood of agenti choos-
ing actiona. To adapt the agent affinity and aversion classes,
it is necessary only to require thatwj = 0 for every agentj
outside the local neighborhood of agenti. By making these
simple modifications, the learning algorithms discussed in
Section 5 can immediately be applied to settings in which a
network structure is given.

4 A Reduction to I.I.D. Learning

Since algorithms in our framework are attempting to learn to
model the dynamics of a factored Markov process in which
each component is known to lie in the classC, it is natural
to investigate the relationship between learning just a single
strategy inC and the entire Markovian dynamics. One main
concern might be effects of dynamic instability — that is,
that even small errors in models for each of theN compo-
nents could be amplified exponentially in the overall popula-
tion model.

In this section we show that this can be avoided. More
precisely, we prove that if the component errors are all small
compared to1/(NT)2, the population model also has small
error. Thus fast rates of learning for individual compo-
nents are polynomially preserved in the resulting population
model.

To show this, we give a reduction showing that if a class
C of (possibly probabilistic) strategies is polynomially learn-
able (in a sense that we describe shortly) from I.I.D. data,

104

thenC is also polynomially learnable from collective behav-
ior. The key step in the reduction is the introduction of the
experimental distribution, defined below. Intuitively, the ex-
perimental distribution is meant to capture the distribution
over states that are encountered in the collective setting over
repeated trials. Polynomial I.I.D. learning on this distribu-
tion leads to polynomial learning from the collective.

4.1 A Reduction for Deterministic Strategies

In order to illustrate some of the key ideas we use in the
more general reduction, we begin by examining the simple
case in which the number of actionsK = 2 and and each
strategyc ∈ C is deterministic. We show that ifC is polyno-
mially learnable in the (distribution-free) PAC model, then C
is polynomially learnable from collective behavior.

In order to exploit the fact thatC is PAC learnable, it is
first necessary to define a single distribution over states on
which we would like to learn.

Definition 4 For any initial state distributionP , strategy
vector~c, and sequence lengthT , theexperimental distribu-
tion DP,~c,T is the distribution over state vectors~s obtained
by queryingOEXP(~c, P, T) to obtain〈~s 0, · · · , ~s T 〉, choos-
ing t uniformly at random from{0, · · · , T − 1}, and setting
~s = ~s t.

We denote this distribution simply asD whenP ,~c, andT
are clear from context. Given access to the oracleOEXP, we
can sample pairs〈~s, ci(~s)〉 where~s is distributed according
to D using the following procedure:

1. QueryOEXP(~c, P, T) to obtain〈~s 0, · · · , ~s T 〉.

2. Chooset ∈ {0, · · · , T − 1} uniformly at random.

3. Return〈~s t, s t+1
i 〉.

If C is polynomially learnable in the PAC model, then by
definition, with access to the oracleOEXP, for anyδ, ε > 0,
it is possible to learn a model̂ci such that with probability
1 − (δ/N),

Pr~s∼D[ĉi(~s) 6= ci(~s)] ≤
ε

NT

in time polynomial inN , T , 1/ε, 1/δ, and the VC dimension
of C using the sampling procedure above; the dependence
on N and T come from the fact that we are requesting a
confidence of1 − (δ/N) and an accuracy ofε/(TN). We
can learn a set of such strategiesĉi for all agentsi at the cost
of an additional factor ofN .

Consider a new sequence〈~s 0, · · · , ~s T 〉 returned by the
oracleOEXP. By the union bound, with probability1 − δ,
the probability that there exists any agenti and anyt ∈
{0, · · · , T − 1}, such that̂ci(~s

t) 6= ci(~s
t) is less thanε.

If this is not the case (i.e., if̂ci(~s
t) = ci(~s

t) for all i and
t) then the same sequence of states would have been reached
if we had instead started at state~s 0 and generated each ad-
ditional state~s t by lettingst

i = ci(~s
t−1). This implies that

with probability1 − δ, ε(QM̂ , Q~c) ≤ ε, andC is polynomi-
ally learnable from collective behavior.

4.2 A General Reduction

Multiple analogs of the definition of learnability in the PAC
model have been proposed for distribution learning settings.
The probabilistic concept model [15] presents a definition
for learning conditional distributions over binary outcomes,
while later work [13] proposes a definition for learning un-
conditional distributions over larger outcome spaces. We
combine the two into a single PAC-style model for learn-
ing conditional distributions over large outcome spaces from
I.I.D. data as follows.

Definition 5 LetC be a class of probabilistic mappings from
an input~x ∈ X to an outputy ∈ Y whereY is a finite set. We
say thatC is polynomially learnable if there exists an algo-
rithm A such that for anyc ∈ C and any distributionD over
X , if A is given access to an oracle producing pairs〈~x, c(~x)〉
with x distributed according toD, then for anyε, δ > 0, al-
gorithmA runs in time polynomial in1/ε, 1/δ, anddim(C)
and outputs a function̂c such that with probability1 − δ,

E~x∼D





∑

y∈Y

|Pr(c(~x) = y) − Pr(ĉ(~x) = y)|



 ≤ ε .

We could have chosen instead to require that the expected
KL divergence betweenc andĉ be bounded. Using Jensen’s
inequality and Lemma 12.6.1 of Cover and Thomas [6], it
is simple to show that if the expected KL divergence be-
tween two distributions is bounded byε, then the expected
L1 distance is bounded by

√

2 ln(2)ε. Thus any class that is
polynomially learnable under this alternate definition is also
polynomially learnable under ours.

Theorem 6 For any classC, if C is polynomially learnable
according to Definition 5, thenC is polynomially learnable
from collective behavior.

Proof: This proof is very similar in spirit to the proof of the
reduction for the deterministic case. However, several tricks
are needed to deal with the fact that trajectories are now ran-
dom variables, even given a fixed start state. In particular,it
is no longer the case that we can argue that starting at a given
start state and executing a set of strategies that are “closeto”
the true strategy vector usually yieldsthe samefull trajectory
we would have obtained by executing the true strategies of
each agent. Instead, due to the inherent randomness in the
strategies, we must argue that thedistributionover trajecto-
ries is similar when the estimated strategies are sufficiently
close to the true strategies.

To make this argument, we begin by introducing the idea
of sampling from a distributionP1 using a “filtered” version
of a second distributionP2 as follows. First, draw an out-
comeω ∈ Ω according toP2. If P1(ω) ≥ P2(ω), output
ω. Otherwise, outputω with probabilityP1(ω)/P2(ω), and
with probability1−P1(ω)/P2(ω), output an alternate action
drawn according to a third distributionP3, where

P3(ω) =
P1(ω) − P2(ω)

∑

ω′:P2(ω′)<P1(ω′) P1(ω′) − P2(ω′)

if P1(ω) > P2(ω), andP3(ω) = 0 otherwise.

105

It is easy to verify that the output of this filtering algo-
rithm is indeed distributed according toP1. Additionally,
notice that the probability that the output is “filtered” is

∑

ω:P2(ω)>P1(ω)

P2(ω)

(

1 − P1(ω)

P2(ω)

)

=
1

2
||P2 − P1||1 . (1)

As in the deterministic case, we make use of the experi-
mental distributionD as defined in Definition 4. IfC is poly-
nomially learnable as in Definition 5, then with access to the
oracleOEXP, for anyδ, ε > 0, it is possible to learn a model
ĉi such that with probability1 − (δ/N),

E~s∼D

[

∑

s∈S

|Pr(ci(~s)=s) − Pr(ĉi(~s)=s)|
]

≤
(ε

NT

)2

(2)

in time polynomial inN , T , 1/ε, 1/δ, anddim(C) using the
three-step sampling procedure described in the deterministic
case; as before, the dependence onN andT stem from the
fact that we are requesting a confidence of1− (δ/N) and an
accuracy that is polynomial in bothN andT . It is possible
learn a set of such strategiesĉi for all agentsi at the cost of
an additional factor ofN .

If Equation 2 is satisfied for agenti, then for anyτ ≥ 1,
the probability of drawing a state~s from D such that

∑

s∈S

|Pr(ci(~s) = s) − Pr(ĉi(~s) = s)| ≥ τ
(ε

NT

)2

(3)

is no more than1/τ .
Consider a new sequence〈~s 0, · · · , ~s T 〉 returned by the

oracleOEXP. For each~s t, consider the actionst+1
i chosen

by agenti. This action was chosen according to the distribu-
tion ci. Suppose instead we would like to choose this action
according to the distribution̂ci using a filtered version ofci

as described above. By Equation 1, the probability that the
action choice ofci is “filtered” (and thus not equal tost+1

i)
is half theL1 distance betweenci(~s

t) and ĉi(~s
t). From

Equation 3, we know that for anyτ ≥ 1, with probability at
least1 − 1/τ , this probability is less thanτ(ε/(NT))2, so
the probability of the new action being different fromst+1

i

is less thanτ(ε/(NT))2 + 1/τ . This is minimized when
τ = 2NT/ε, giving us a bound ofε/(NT).

By the union bound, with probability1 − δ, the proba-
bility that there exists any agenti and anyt ∈ {1, · · · , T},
such thats t+1

i is not equal to the action we get by sampling
ĉi(~s

t) using the filtered version ofci must then be less than
ε. As in the deterministic version, if this isnot the case, then
the same sequence of states would have been reached if we
had instead started at state~s 0 and generated each additional
state~s t by lettingst

i = ĉi(~s
t−1) filtered usingci. This im-

plies that with probability1 − δ, ε(QM̂ , Q~c) ≤ ε, andC is
polynomially learnable from collective behavior.

5 Learning Social Strategy Classes

We now turn our attention to efficient algorithms for learn-
ing some of the specific social strategy classes introduced in
Section 3. We focus on the two crowd affinity model classes.
Recall that these classes are designed to model the scenario

in which each agent has an intrinsic set of preferences over
actions, but simultaneously would prefer to choose the same
actions chosen by other agents. Similar techniques can be
applied to learn the crowd aversion strategies.

Formally, let ~f be a vector representing the distribution
over current states of the agents; if~s is the current state, then
for each actiona, fa = |{i : si = a}|/N is the fraction of the
population currently choosing actiona. (Alternately, if there
is a network structure governing interaction among agents,
fa can be defined as the fraction of nodes in an agent’s local
neighborhood choosing actiona.) We denote byDf the dis-
tribution over vectors~f induced by the experimental distri-
butionD over state vectors~s. In other words, the probability
of a vector ~f underDf is the sum over all state vectors~s
mapping to~f of the probability of~s underD.

We focus on the problem of learning the parameters of
the strategy of a single agenti in each of the models. We as-
sume that we are presented with a set of samplesM, where
each instanceIm ∈ M consists of a pair〈~fm, am〉. Here
~fm is the distribution over states of the agents andam is the
next action chosen by agenti. We assume that the state dis-
tributions ~fm of these samples are distributed according to
Df . Given access to the oracleOEXP, such samples could
be collected, for example, using a three-step procedure like
the one in Section 4.1. We show that each class is polyno-
mially learnable with respect to the distributionDf induced
by anydistributionD over states, and so by Theorem 6, also
polynomially learnable from collective behavior.

While it may seem wasteful to gather only one data in-
stance for each agenti from eachT -trajectory, we remark
that only small, isolated pieces of the analysis presented in
this section rely on the assumption that the state distributions
of the samples are distributed according toDf . In practice,
the entire trajectories could be used for learning with no im-
pact on the structure of the algorithms. Additionally, while
the analysis here is geared towards learning under the experi-
mental distribution, the algorithms we present can be applied
without modification in the no-reset variant of the model in-
troduced in Section 2.3. We briefly discuss how to extend
the analysis to the no-reset variant in Section 5.3.

5.1 Learning Crowd Affinity Mixture Models

In Section 3.1, we introduced the class of crowd affinity mix-
ture model strategies. Such strategies are parameterized by a
(normalized) weight vector~w and parameterα ∈ [0, 1]. The
probability that agenti chooses actiona given that the cur-
rent state distribution is~f is thenαfa + (1 − α)wa. In this
section, we show that this class of strategies is polynomially
learnable from collective behavior and sketch an algorithm
for learning estimates of the parametersα and ~w.

Let I(x) be the indicator function that is 1 ifx is true and
0 otherwise. From the definition of the model it is easy to
see that for anym such thatIm ∈ M, for any actiona ∈ S,
E[I(am = a)] = αfa + (1− α)wa, where the expectation is
over the randomness in the agent’s strategy. By linearity of
expectation,

E

[

∑

m:Im∈M

I(am = a)

]

=α
∑

m:Im∈M

fm,a+(1 − α)wa|M| . (4)

106

Standard results from uniform convergence theory say
that we can approximate the left-hand side of this equation
arbitrarily well given a sufficiently large data setM. Replac-
ing the expectation with this approximation in Equation 4
yields a single equation with two unknown variables,α and
wa. To solve for these variables, we must construct apair of
equations with two unknown variables. We do so by splitting
the data into instances wherefm,a is “high” and instances
where it is “low.”

Specifically, letM = |M|. For convenience of notation,
assume without loss of generality thatM is even; ifM is
odd, simply discard an instance at random. DefineMlow

a

to be the set containing theM/2 instances inM with the
lowest values offm,a. Similarly, defineMhigh

a to be the
set containing theM/2 instances with the highest values of
fm,a. ReplacingM with Mlow

a andMhigh
a respectively in

Equation 4 gives us two linear equations with two unknowns.
As long as these two equations are linearly independent, we
can solve the system of equations forα, giving us

α=
E
[

∑

m:Im∈Mhigh
a

I(am =a)−∑m:Im∈Mlow
a

I(am =a)
]

∑

m:Im∈Mhigh
a

fm,a −∑m:Im∈Mlow
a

fm,a

.

We can approximateα from data in the natural way, using

α̂=

∑

m:Im∈Mhigh
a

I(am=a)−∑m:Im∈Mlow
a

I(am=a)
∑

m:Im∈Mhigh
a

fm,a −∑m:Im∈Mlow
a

fm,a

. (5)

By Hoeffding’s inequality and the union bound, for any
δ > 0, with probability1 − δ,

|α − α̂| ≤
√

ln(4/δ)M
∑

m:Im∈Mhigh
a

fm,a −∑m:Im∈Mlow
a

fm,a

= (1/Za)
√

ln(4/δ)/M , (6)

where

Za =
1

M/2

∑

m:Im∈Mhigh
a

fm,a − 1

M/2

∑

m:Im∈Mlow
a

fm,a .

The quantityZa measures the difference between the
mean value offm,a among instances with “high” values of
fm,a and the mean value offm,a among instances with “low”
values. While this quantity is data-dependent, standard uni-
form convergence theory tells us that it is stable once the data
set is large. From Equation 6, we know that if there is an ac-
tion a for which this difference is sufficiently high, then it
is possible to obtain an accurate estimate ofα given enough
data. If, on the other hand, no sucha exists, it follows that
there is very little variance in the population distribution over
the sample. We argue below that it is not necessary to learn
α in order to mimic the behavior of an agenti if this is the
case.

For now, assume thatZa is sufficiently large for at least
one value ofa, and call this valuea∗. We can use the estimate
of α to obtain estimates of the weights for each action. From
Equation 4, it is clear that for anya,

wa =
E
[
∑

m:Im∈M I(am = a)
]

− α
∑

m:Im∈M fm,a

(1 − α)M
.

We estimate this weight using

ŵa =

∑

m:Im∈M I(am = a) − α̂
∑

m:Im∈M fm,a

(1 − α̂)M
. (7)

The following lemma shows that given sufficient data,
the error in these estimates is small whenZa∗ is large.

Lemma 7 Leta∗ = argmaxa∈S Za, and letα̂ be calculated
as in Equation 5 witha = a∗. For eacha ∈ S, let ŵa be
calculated as in Equation 7. For sufficiently largeM , for
anyδ > 0, with probability1 − δ,

|α − α̂| ≤ (1/Za∗)
√

ln((4 + 2K)/δ)/M ,

and for all actionsa,

|wa − ŵa|

≤ ((1 − α̂)Za∗/
√

2 + 2)
√

ln((4 + 2K)/δ)

Za∗(1 − α̂)2
√

M − (1 − α̂)
√

ln((4 + 2K)/δ)
.

The proof of this lemma, which is in the appendix,1,
relies heavily on the following technical lemma for bound-
ing the error of estimated ratios, which is used frequently
throughout the remainder of the paper.

Lemma 8 For any positiveu, û, v, v̂, k, and ε such that
εk < v, if |u − û| ≤ ε and|v − v̂| ≤ kε, then

∣

∣

∣

∣

u

v
− û

v̂

∣

∣

∣

∣

≤ ε(v + uk)

v(v − εk)
.

Now that we have bounds on the error of the estimated
parameters, we can bound the expectedL1 distance between
the estimated model and the real model.

Lemma 9 For sufficiently largeM ,

E~f∼Df

∑

a∈S

|(αfa + (1 − α)wa) − (α̂fa + (1 − α̂)ŵa)|

≤ 2
√

ln((4 + 2K)/δ)

Za∗

√
M

+min

{

K(Za∗/
√

2 + 2)
√

ln((4 + 2K)/δ)

Za∗(1 − α̂)
√

M −
√

ln((4 + 2K)/δ)
,

2(1 − α̂)
}

.

In this proof of this lemma, which appears in the appendix,
the quantity

∑

a∈S

|(αfa + (1 − α)wa) − (α̂fa + (1 − α̂)ŵa)|

is boundeduniformly for all ~f using the error bounds. The
bound on the expectation follows immediately.

It remains to show that we can still bound the error when
Za∗ is zero or very close to zero. We present a light sketch
of the argument here; more details appear in the appendix.

1An appendix containing omitted proofs can be found in the
long version of this paper available on the authors’ websites.

107

Let ηa andµa be the true median and mean of the dis-
tribution from which the random variablesfm,a are drawn.
Let fhigh

a be the mean value of the distribution overfm,a

conditioned onfm,a > ηa. Let f̄high
a be the empirical

average offm,a conditioned onfm,a > ηa. Finally, let
f̂high

a = (2/M)
∑

m:Im∈Mhigh
a

fm,a be the empirical av-
erage offm,a conditioned onfm,a being greater than the
empiricalmedian. We can calculatêfhigh

a from data.
We can apply standard arguments from uniform conver-

gence theory to show thatfhigh
a is close tof̄high

a , and in turn
that f̄high

a is close tof̂high
a . Similar statements can be made

for the analogous quantitiesf low
a , f̄ low

a , andf̂ low
a . By noting

thatZa = f̂high
a − f̂ low

a this implies that ifZa is small, then
the probability that a random value offm,a is far from the
meanµa is small. When this is the case, it is not necessary
to estimateα directly. Instead, we set̂α = 0 and

ŵa =
1

M

∑

m:Im∈M

I(am = a) .

Applying Hoeffding’s inequality again, it is easy to show
that for eacha, ŵa is very close toαµa + (1 − α)wa, and
from here it can be argued that theL1 distance between the
estimated model and the real model is small.

Thus for any distributionD over state vectors, regardless
of the corresponding value ofZa∗ , it is possible to build an
accurate model for the strategy of agenti in polynomial time.
By Theorem 6, this implies that the class is polynomially
learnable from collective behavior.

Theorem 10 The class of crowd affinity mixture model
strategies is polynomially learnable from collective behav-
ior.

5.2 Learning Crowd Affinity Multiplicative Models

In Section 3.2, we introduced the crowd affinity multiplica-
tive model. In this model, strategies are parameterized only
by a weight vector~w. The probability that agenti chooses
actiona is simplyfawa/

∑

b∈S fbwb.
Although the motivation for this model is similar to that

for the mixture model, the dynamics of the system are quite
different (see the simulations and discussion in Section 3),
and a very different algorithm is necessary to learn individ-
ual strategies. In this section, we show that this class is poly-
nomially learnable from collective behavior, and sketch the
corresponding learning algorithm. The algorithm we present
is based on a simple but powerful observation. In particular,
consider the following random variable:

χm
a =

{

1/fm,a if fm,a > 0 andam = a ,

0 otherwise.

Suppose that for allm such thatIm ∈ M, it is the case that
fm,a > 0. Then by the definition of the strategy class and
linearity of expectation,

E

[

∑

m:Im∈M

χm
a

]

=
∑

m:Im∈M

1

fm,a

(

fm,awa
∑

s∈S fm,sws

)

= wa

∑

m:Im∈M

1
∑

s∈S fm,sws

,

where the expectation is over the randomness in the agent’s
strategy. Notice that this expression is the product of two
terms. The first,wa, is precisely the value we would like
to calculate. The second term is something that depends on
the set of instancesM, but does notdepend on actiona.
This leads to the key observation at the core of our algorithm.
Specifically, if we have a second actionb such thatfm,b > 0
for all m such thatIm ∈ M, then

wa

wb

=
E
[
∑

m:Im∈M χm
a

]

E
[
∑

m:Im∈M χm
b

] .

Although we do not know the values of these expec-
tations, we can approximate them arbitrarily well given
enough data. Since we have assumed (so far) thatfm,a > 0
for all m ∈ M, and we know thatfm,a represents a fraction
of the population, it must be the case thatfm,a ≥ 1/N and
χm

a ∈ [0, N] for all m. By a standard application of Ho-
effding’s inequality and the union bound, we see that for any
δ > 0, with probability1 − δ,
∣

∣

∣

∣

∣

∑

m:Im∈M

χm
a − E

[

∑

m:Im∈M

χm
a

]∣

∣

∣

∣

∣

≤
√

N ln(2/δ)

2|M| . (8)

This leads to the following lemma. We note that the role of
β in this lemma may appear somewhat mysterious. It comes
the fact that we are bounding the error of a ratio of two terms;
an application of Lemma 8 using the bound in Equation 8
gives us a factor ofχa,b + χb,a in the numerator and a factor
of χb,a in the denominator. This is problematic only when
χa,b is significantly larger thanχb,a. The full proof appears
in the appendix.

Lemma 11 Suppose thatfm,a > 0 andfm,b > 0 for all m
such thatIm ∈ M. Then for anyδ > 0, with probability
1 − δ, for anyβ > 0, if χa,b ≤ βχb,a andχb,a ≥ 1, then if
|M| ≥ N ln(2/δ)/2, then
∣

∣

∣

∣

∣

wa

wb

−
∑

m:Im∈M χm
a

∑

m:Im∈M χm
b

∣

∣

∣

∣

∣

≤ (1 + β)
√

N ln(2/δ)
√

2|M| −
√

N ln(2/δ)
.

If we are fortunate enough to have a sufficient number of
data instances for whichfm,a > 0 for all a ∈ S, then this
lemma supplies us with a way of approximating the ratios
between all pairs of weights and subsequently approximating
the weights themselves. In general, however, this may not be
the case. Luckily, it is possible to estimate the ratio of the
weights of each pair of actionsa andb that are used together
frequently by the population using only those data instances
in which at least one agent is choosing each. Formally, define

Ma,b = {Im ∈ M : fm,a > 0, fm,b > 0} .

Lemma 11 tells us that ifMa,b is sufficiently large, and there
is at least one instanceIm ∈ Ma,b for which am = b, then
we can approximate the ratio betweenwa andwb well.

What if one of these assumptions does not hold? If we
are not able to collect sufficiently many instances in which
fm,a > 0 andfm,b > 0, then standard uniform convergence
results can be used to show that it is very unlikely that we
see a new instance for whichfa > 0 andfb > 0. This idea
is formalized in the following lemma, the proof of which is
in the appendix.

108

Lemma 12 For any M < |M|, for any δ ∈ (0, 1), with
probability1 − δ,

Pr~f∼Df [∃a, b ∈ S : fa > 0, fb > 0, |Ma,b| < M]

≤ K2

2

(

M

|M| +

√

ln(K2/(2δ))

2|M|

)

.

Similarly, if χa,b = χb,a = 0, then a standard uniform
convergence argument can be used to show that it is unlikely
that agenti would ever select actiona or b whenfm,a > 0
andfm,b > 0. We will see that in this case, it is not important
to learn the ratio between these two weights.

Using these observations, we can accurately model the
behavior of agenti. The model consists of two phases. First,
as a preprocessing step, we calculate a quantity

χa,b =
∑

m:Im∈Ma,b

χm
a

for each paira, b ∈ S. Then, each time we are presented
with a state~f , we calculate a set of weights for all actionsa
with fa > 0 on the fly.

For a fixed~f , letS ′ be the set of actionsa ∈ S such that
fa > 0. By Lemma 12, if the data set is sufficiently large,
then we know that with high probability, it is the case that
for all a, b ∈ S ′, |Ma,b| ≥ M for some thresholdM .

Now, leta∗ = argmaxa∈S′ |{b : b ∈ S ′, χa,b ≥ χb,a}|.
Intuitively, if there is sufficient data,a∗ should be the action
in S ′ with the highest weight, or have a weight arbitrarily
close to the highest. Thus for anya ∈ S ′, Lemma 11 can
be used to bound our estimate ofwa/wa∗ with a value ofβ
arbitrarily close to 1. Noting that

wa
∑

s∈S′ ws

=
wa/wa∗

∑

s∈S′ ws/wa∗

,

we approximate therelative weight of actiona ∈ S ′ with
respect to the other actions inS ′ using

ŵa =
χa,a∗/χa∗,a

∑

s∈S′ χs,a∗/χa∗,s

,

and simply letŵa = 0 for anya 6∈ S ′. Applying Lemma 8,
we find that for alla ∈ S ′, with high probability,

∣

∣

∣

∣

wa
∑

s∈S′ ws

− ŵa

∣

∣

∣

∣

≤ (1 + β)K
√

N ln(2K2/δ)√
2M − (1 + β)K

√

N ln(2K2/δ)
, (9)

whereM is the lower bound on|Ma,b| for all a, b ∈ S ′, and
β is close to 1. With this bound in place, it is straightforward
to show that we can apply Lemma 8 once more to bound the
expectedL1,

E~f∼Df

[

∑

a∈S

∣

∣

∣

∣

wafa
∑

s∈S wsfs

− ŵafa
∑

s∈S ŵsfs

∣

∣

∣

∣

]

,

and that the bound goes to 0 at a rate ofO(1/
√

M) as the
thresholdM grows. More details are given in the appendix.

Since it is possible to build an accurate model of the strat-
egy of agenti in polynomial time under any distributionD
over state vectors, we can again apply Theorem 6 to see that
this class is polynomially learnable from collective behavior.

Theorem 13 The class of crowd affinity multiplicative
model strategies is polynomially learnable from collective
behavior.

5.3 Learning Without Resets

Although the analyses in the previous subsections are tai-
lored to learnability in the sense of Definition 2, they can
easily be adapted to hold in the alternate setting in which
the learner has access only to a single, unbroken trajectory
of states. In this alternate model, the learning algorithm ob-
serves a polynomially long prefix of a trajectory of states for
training, and then must produce a generative model which
results in a distribution over the values of the subsequentT
states close to the true distribution.

When learning individual crowd affinity models for each
agent in this setting, we again assume that we are presented
with a set of samplesM, where each instanceIm ∈ M
consists of a pair〈~fm, am〉. However, instead of assuming
that the state distributions~fm are distributed according to
Df , we now assume that the state and action pairs represent
a single trajectory. As previously noted, the majority of the
analysis for both the mixture and multiplicative variants of
the crowd affinity model does not depend on the particular
way in which state distribution vectors are distributed, and
thus carries over to this setting as is. Here we briefly discuss
the few modifications that are necessary.

The only change required in the analysis of the crowd
affinity mixture model relates to handling the case in which
Za is small for alla. Previously we argued that when this is
the case, the distributionDf must be concentrated so that for
all a, fa falls within a very small range with high probability.
Thus it is not necessary to estimate the parameterα directly,
and we can instead learn a single probability for each action
that is used regardless of~f . A similar argument holds in
the no-reset variant. If it is the case thatZa is small for all
a, then it must be the case that for eacha, the value offa

has fallen into the same small range for the entire observed
trajectory. A standard uniform convergence argument says
that the probability thatfa suddenly changes dramatically is
very small, and thus again it is sufficient to learn a single
probability for each action that is used regardless of~f .

To adapt the analysis of the crowd affinity multiplicative
model, it is first necessary to replace Lemma 12. Recall that
the purpose of this lemma was to show that when the data
set does not contain sufficient samples in whichfa > 0 and
fb > 0 for a pair of actionsa andb, the chance of observing
a new state distribution~f with fa > 0 andfb > 0 is small.
This argument is actually much more straightforward in the
no-reset case. By the definition of the model, it is easy to
see that iffa > 0 for some actiona at timet in a trajectory,
then it must be the case thatfa > 0 at all previous points
in the trajectory. Thus iffa > 0 on any test instance, then
fa must have been non-negative oneverytraining instance,
and we do not have to worry about the case in which there is
insufficient data to compare the weights of a particular pair
of actions.

One additional, possibly more subtle, modification is
necessary in the analysis of the multiplicative model to han-
dle the case in whichχa,b = χb,a = 0 for all “active” pairs
of actionsa, b ∈ S ′. This can happen only if agenti has

109

extremely small weights for every action inS ′, and had pre-
viously been choosing an alternate action that is no longer
available, i.e., an actions for which fs had previously been
non-negative but suddenly is not. However, in order forfs

to become0, it must be the case that agenti himself chooses
an alternate action (say, actiona) instead ofs, which can-
not happen since the estimated weight of actiona used by
the model is0. Thus this situation can never occur in the
no-reset variant.

6 Conclusions and Future Work

We have introduced a computational model for learning from
collective behavior, and populated it with some initial gen-
eral theory and algorithmic results for crowd affinity models.
In addition to positive or negative results for further agent
strategy classes, there are a number of other general direc-
tions of interest for future research. These include exten-
sion of our model to agnostic [14] settings, in which we re-
lax the assumption that every agent strategy falls in a known
class, and to reinforcement learning [23] settings, in which
the learning algorithm may itself be a member of the popu-
lation being modeled, and wishes to learn an optimal policy
with respect to some reward function.

Acknowledgments

We thank Nina Balcan and Eyal Even-Dar for early discus-
sions on models of social learning, and Duncan Watts for
helpful conversations and pointers to relevant literature.

References
[1] S. Bikhchandani, D. Hirshleifer, and I. Welch. A theory of

fads, fashion, custom, and cultural change as informational
cascades.Journal of Political Economy, 100:992–1026, 1992.

[2] S. Bikhchandani, D. Hirshleifer, and I. Welch. Learning from
the behavior of others: Conformity, fads, and informational
cascades.The Journal of Economic Perspectives, 12:151–170,
1998.

[3] G. W. Brown. Iterative solutions of games by fictitious play.
In T.C. Koopmans, editor,Activity Analysis of Production and
Allocation. Wiley, 1951.

[4] T. Bylander. Learning noisy linear threshold functions. Tech-
nical Report, 1998.

[5] E. Cohen. Learning noisy perceptrons by a perceptron in poly-
nomial time. In38th IEEE Annual Symposium on Foundations
of Computer Science, 1997.

[6] T. Cover and J. Thomas.Elements of Information Theory.
John Wiley & Sons, New York, NY, 1991.

[7] P. Dodds, R. Muhamad, and D. J. Watts. An experimental
study of search in global social networks.Science, 301:828–
829, August 2003.

[8] M. Drehmann, J. Oechssler, and A. Roider. Herding and con-
trarian behavior in financial markets: An Internet experiment.
American Economic Review, 95(5):1403–1426, 2005.

[9] D. Foster and R. Vohra. Regret in the on-line decision prob-
lem. Games and Economic Behavior, 29:7–35, 1999.

[10] M. Granovetter. Threshold models of collective behavior.
American Journal of Sociology, 61:1420–1443, 1978.

[11] D. Haussler. Decision theoretic generalizations of the PAC
model for neural net and other learning applications.Infor-
mation and Computation, 100:78–150, 1992.

[12] P. Hedstrom. Rational imitation. In P. Hedstrom and R. Swed-
berg, editors,Social Mechanisms: An Analytical Approach to
Social Theory. Cambridge University Press, 1998.

[13] M. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R.E. Schapire,
and L. Sellie. On the learnability of discrete distributions. In
26th Annual ACM Symposium on Theory of Computing, pages
273–282, 1994.

[14] M. Kearns, R. Schapire, and L. Sellie. Towards efficient ag-
nostic learning.Machine Learning, 17:115–141, 1994.

[15] M. Kearns and R. E. Schapire. Efficient distribution-free
learning of probabilistic concepts.Journal of Computer and
System Sciences, 48(3):464–497, 1994.

[16] M. Kearns and S. Singh. Finite-sample rates of convergence
for Q-learning and indirect methods. InAdvances in Neural
Information Processing Systems 11, 1999.

[17] M. Kearns, S. Suri, and N. Montfort. A behavioral study of
the coloring problem on human subject networks.Science,
313(5788):824–827, 2006.

[18] J. Kleinberg. Cascading behavior in networks: Algorithmic
and economic issues. In N. Nisan, T. Roughgarden, E. Tar-
dos, and V. Vazirani, editors,Algorithmic Game Theory. Cam-
bridge University Press, 2007.

[19] S. Russell and P. Norvig.Artificial Intelligence: A Modern
Approach. Prentice Hall, 1995.

[20] M. Salganik, P. Dodds, and D. J. Watts. Experimental study of
inequality and unpredictability in an artificial cultural market.
Science, 331(5762):854–856, 2006.

[21] M. Salganik and D. J. Watts. Social influence, manipulation,
and self-fulfilling prophecies in cultural markets. Preprint,
2007.

[22] T. Schelling.Micromotives and Macrobehavior. Norton, New
York, NY, 1978.

[23] R. Sutton and A. Barto.Reinforcement Learning. MIT Press,
1998.

[24] A. De Vany. Hollywood Economics: How Extreme Uncer-
tainty Shapes the Film Industry. Routledge, London, 2004.

[25] A. De Vany and C. Lee. Quality signals in information cas-
cades and the dynamics of the distribution of motion picture
box office revenues.Journal of Economic Dynamics and Con-
trol, 25:593–614, 2001.

[26] C. Watkins and P. Dayan. Q-learning.Machine Learning,
8(3):279–292, 1992.

[27] I. Welch. Herding among security analysts.Journal of Finan-
cial Economics, 58:369–396, 2000.

110

Injective Hilbert Space Embeddings of Probability Measures

Bharath K. Sriperumbudur1∗, Arthur Gretton2, Kenji Fukumizu3, Gert Lanckriet1 and Bernhard Schölkopf2

1Department of ECE, UC San Diego, La Jolla, CA 92093, USA.
2MPI for Biological Cybernetics, Spemannstraße 38, 72076 Tübingen, Germany.

3Institute of Statistical Mathematics, 4-6-7 Minami-Azabu, Minato-ku, Tokyo 106-8569, Japan.
bharathsv@ucsd.edu, {arthur,bernhard.schoelkopf}@tuebingen.mpg.de

fukumizu@ism.ac.jp, gert@ece.ucsd.edu

Abstract

A Hilbert space embedding for probability mea-
sures has recently been proposed, with applications
including dimensionality reduction, homogeneity
testing and independence testing. This embedding
represents any probability measure as a mean ele-
ment in a reproducing kernel Hilbert space (RKHS).
The embedding function has been proven to be in-
jective when the reproducing kernel is universal.
In this case, the embedding induces a metric on the
space of probability distributions defined on com-
pact metric spaces.
In the present work, we consider more broadly the
problem of specifying characteristic kernels, de-
fined as kernels for which the RKHS embedding
of probability measures is injective. In particular,
characteristic kernels can include non-universal ker-
nels. We restrict ourselves to translation-invariant
kernels on Euclidean space, and define the asso-
ciated metric on probability measures in terms of
the Fourier spectrum of the kernel and characteris-
tic functions of these measures. The support of the
kernel spectrum is important in finding whether a
kernel is characteristic: in particular, the embed-
ding is injective if and only if the kernel spectrum
has the entire domain as its support. Characteristic
kernels may nonetheless have difficulty in distin-
guishing certain distributions on the basis of finite
samples, again due to the interaction of the ker-
nel spectrum and the characteristic functions of the
measures.

1 Introduction
The concept of distance between probability measures is a
fundamental one and has many applications in probability
theory and statistics. In probability theory, this notion is

∗The author wishes to acknowledge the support from the Max
Planck Institute (MPI) for Biological Cybernetics, National Science
Foundation (grant DMS-MSPA 0625409), the Fair Isaac Corpora-
tion and the University of California MICRO program. Part of this
work was done while the author was an intern at MPI.
The authors thank anonymous reviewers for their comments to im-
prove the paper.

used to metrize the weak convergence (convergence in dis-
tribution) of probability measures defined on a metric space.
Formally, let S be the set of all Borel probability measures
defined on a metric measurable space (M, ρ,Mρ) and let γ
be its metric, i.e., (S, γ) is a metric space. Then Pn is said to
converge weakly to P if and only if γ(Pn, P) n→∞−→ 0, where
P, {Pn}n≥1 ∈ S. When M is separable, examples for γ in-
clude the Lévy-Prohorov distance and the dual-bounded Lip-
schitz distance (Dudley metric) [Dud02, Chapter 11]. Other
popular examples for γ include the Monge-Wasserstein dis-
tance, total variation distance and the Hellinger distance,
which yield a stronger notion of convergence of probability
measures [Sho00, Chapter 19].

In statistics, the notion of distance between probability
measures is used in a variety of applications, including ho-
mogeneity tests (the two-sample problem), independence te-
sts, and goodness-of-fit tests. The two-sample problem in-
volves testing the null hypothesis H0 : P = Q versus the
alternative H1 : P 6= Q, using random samples {Xl}m

l=1
and {Yl}n

l=1 drawn i.i.d. from distributions P and Q on a
measurable space (M,M). If γ is a metric (or more gener-
ally a semi-metric1) on S, then γ(P, Q) can be used as a test
statistic to address the two-sample problem. This is because
γ(P,Q) takes the unique and distinctive value of zero only
when P = Q. Thus, the two-sample problem can be reduced
to testing H0 : γ(P,Q) = 0 versus H1 : γ(P, Q) > 0. The
problems of testing independence and goodness-of-fit can be
posed in an analogous form.

Several recent studies on kernel methods have focused on
applications in distribution comparison: the advantage being
that kernels represent a linear way of dealing with higher
order statistics. For instance, in homogeneity testing, dif-
ferences in higher order moments are encoded in mean dif-
ferences computed in the right reproducing kernel Hilbert
space (RKHS) [GBR+07]; in kernel ICA [BJ02, GHS+05],
general nonlinear dependencies show up as linear correla-
tions once they are computed in a suitable RKHS. Instru-
mental to these studies is the notion of a Hilbert space em-
bedding for probability measures [SGSS07], which involves
representing any probability measure as a mean element in
an RKHS (H, k), where k is the reproducing kernel [Aro50,

1Given a set M , a metric for M is a function ρ : M×M → R+

such that (i) ∀x, ρ(x, x) = 0, (ii) ∀x, y, ρ(x, y) = ρ(y, x), (iii)
∀x, y, z, ρ(x, z) ≤ ρ(x, y)+ρ(y, z), and (iv) ρ(x, y) = 0 ⇒ x =
y [Dud02, Chapter 2]. A semi-metric only satisfies (i), (ii) and (iv).

111

SS02]. For this reason, the RKHSs used have to be “suffi-
ciently large” to capture all nonlinearities that are relevant to
the problem at hand, so that differences in embeddings cor-
respond to differences of interest in the distributions. The
question of how to choose such RKHSs is the central focus
of the present paper.

Recently, Fukumizu et al. [FGSS08] introduced the con-
cept of a characteristic kernel, this being an RKHS kernel
for which the mapping Π : S → H from the space of Borel
probability measures S to the associated RKHS H is injec-
tive (H is denoted as a characteristic RKHS). Clearly, a char-
acteristic RKHS is sufficiently large in the sense we have de-
scribed: in this case γ(P, Q) = 0 implies P = Q, where γ is
the induced metric on S by Π, defined as the RKHS distance
between the mappings of P and Q. Under what conditions,
then, is Π injective? As discussed in [GBR+07, SGSS07],
when M is compact, the RKHS is characteristic when its ker-
nel is universal in the sense of Steinwart [Ste02, Definition
4]: the induced RKHS should be dense in the Banach space
of bounded continuous functions with respect to the supre-
mum norm (examples include the Gaussian and Laplacian
kernels). Fukumizu et al. [FGSS08, Lemma 1] considered
injectivity for non-compact M , and showed Π to be injective
if the direct sum of H and R is dense in the Banach space
of p-power (p ≥ 1) integrable functions (we denote RKHSs
satisfying this criterion as F-characteristic). In addition, for
M = Rd, Fukumizu et al. provide sufficient conditions on
the Fourier spectrum of a translation-invariant kernel for it
to be characteristic [FGSS08, Theorem 2]. Using this result,
popular kernels like Gaussian and Laplacian can be shown to
be characteristic on all of Rd.

In the present study, we provide an alternative means of
determining whether kernels are characteristic, for the case
of translation-invariant kernels on Rd. This addresses sev-
eral limitations of the previous work: in particular, it can
be difficult to verify the conditions that a universal or F-
characteristic kernel must satisfy; and universality is in any
case an overly restrictive condition because universal kernels
assume M to be compact. In other words, they induce a met-
ric only on the space of probability measures that are com-
pactly supported on M . In addition, there are compactly sup-
ported kernels which are not universal, e.g. B2n+1-splines,
which can be shown to be characteristic. We provide simple
verifiable rules in terms of the Fourier spectrum of the ker-
nel that characterize the injective behavior of Π, and derive a
relationship between the family of kernels and the family of
probability measures for which γ(P, Q) = 0 implies P = Q.
In particular, we show that a translation-invariant kernel on
Rd is characteristic if and only if its Fourier spectrum has the
entire domain as its support.

We begin our presentation in §2 with an overview of ter-
minology and notation. In §3, we briefly describe the ap-
proach of Hilbert space embedding of probability measures.
Assuming the kernel to be translation-invariant in Rd, in §4,
we deduce conditions on the kernel and the set of probabil-
ity measures for which the RKHS is characteristic. We show
that the support of the kernel spectrum is crucial: H is char-
acteristic if and only if the kernel spectrum has the entire do-
main as its support. We note, however, that even using such a
kernel does not guarantee that one can easily distinguish dis-

tributions based on finite samples. In particular, we provide
two illustrations in §5 where interactions between the kernel
spectrum and the characteristic functions of the probability
measures can result in an arbitrarily small γ(P, Q) = ε > 0
for non-trivial differences in distributions P 6= Q. Proofs of
the main theorems and related lemmas are provided in §6.
The results presented in this paper use tools from distribu-
tion theory and Fourier analysis: the related technical results
are collected in Appendix A.

2 Notation

For M ⊂ Rd and µ a Borel measure on M , Lp(M,µ) de-
notes the Banach space of p-power (p ≥ 1) µ-integrable
functions. We will also use Lp(M) for Lp(M,µ) and dx for
dµ(x) if µ is the Lebesgue measure on M . Cb(M) denotes
the space of all bounded, continuous functions on M . The
space of all q-continuously differentiable functions on M is
denoted by Cq(M), 0 ≤ q ≤ ∞. For x ∈ C, x represents
the complex conjugate of x. We denote as i the complex
number

√−1.
The set of all compactly supported functions in C∞(Rd)

is denoted by Dd and the space of rapidly decreasing func-
tions in Rd is denoted by Sd. For an open set U ⊂ Rd,
Dd(U) denotes the subspace of Dd consisting of the func-
tions with support contained in U . The space of linear con-
tinuous functionals on Dd (resp. Sd) is denoted by D ′

d (resp.
S ′

d) and an element of such a space is called as a distribu-
tion (resp. tempered distribution). md denotes the normal-
ized Lebesgue measure defined by dmd(x) = (2π)−

d
2 dx.

f̂ and f̌ represent the Fourier transform and inverse Fourier
transform of f respectively.

For a measurable function f and a signed measure P ,
Pf :=

∫
f dP =

∫
M

f(x) dP (x). δx represents the Dirac
measure at x. The symbol δ is overloaded to represent the
Dirac measure, the Dirac-delta function, and the Kronocker-
delta, which should be distinguishable from the context.

3 Maximum Mean Discrepancy

We briefly review the theory of RKHS embedding of prob-
ability measures proposed by Smola et al. [SGSS07]. We
lead to these embeddings by first introducing the maximum
mean discrepancy (MMD), which is based on the following
result [Dud02, Lemma 9.3.2], related to the weak conver-
gence of probability measures on metric spaces.

Lemma 1 ([Dud02]) Let (M,ρ) be a metric space with Borel
probability measures P and Q defined on M . Then P = Q
if and only if Pf = Qf, ∀ f ∈ Cb(M).

Originally, Gretton et al. [GBR+07] defined the maximum
mean discrepancy as follows.

Definition 2 (Maximum Mean Discrepancy) LetF = {f |
f : M → R} and let P, Q be Borel probability measures
defined on (M, ρ). Then the maximum mean discrepancy is
defined as

γF (P,Q) = sup
f∈F

|Pf −Qf | . (1)

112

With this definition, one can derive various metrics (men-
tioned in §1) that are used to define the weak convergence
of probability measures on metric spaces. To start with, it
is easy to verify that, independent of F , γF in Eq. (1) is a
pseudometric2 on S. Therefore, the choice of F determines
whether or not γF (P, Q) = 0 implies P = Q. In other
words, F determines the metric property of γF on S. By
Lemma 1, γF is a metric on S when F = Cb(M). When F
is the set of bounded, ρ-uniformly continuous functions on
M , by the Portmanteau theorem [Sho00, Chapter 19, The-
orem 1.1], γF is not only a metric on S but also metrizes
the weak topology on S. γF is a Dudley metric [Sho00,
Chapter 19, Definition 2.2] when F = {f : ‖f‖BL ≤ 1}
where ‖f‖BL = ‖f‖∞ + ‖f‖L with ‖f‖∞ := sup{|f(x)| :
x ∈ M} and ‖f‖L := sup{|f(x) − f(y)|/ρ(x, y) : x 6=
y in M}. ‖f‖L is called the Lipschitz seminorm of a real-
valued function f on M . By the Kantorovich-Rubinstein
theorem [Dud02, Theorem 11.8.2], when (M, ρ) is sepa-
rable, γF equals the Monge-Wasserstein distance for F =
{f : ‖f‖L ≤ 1}. γF is the total variation metric when
F = {f : ‖f‖∞ ≤ 1} while it is the Kolmogorov distance
when F = {1(−∞,t] : t ∈ Rd}. If F = {ei〈ω,.〉 : ω ∈
Rd}, then γF (P, Q) reduces to finding the maximal differ-
ence between the characteristic functions of P and Q. By
the uniqueness theorem for characteristic functions [Dud02,
Theorem 9.5.1], we have γF (P, Q) = 0 ⇔ φP = φQ ⇔
P = Q, where φP and φQ represent the characteristic func-
tions of P and Q, respectively.3 Therefore, the function class
F = {ei〈ω,.〉 : ω ∈ Rd} induces a metric on S. Gretton et
al. [GBR+07, Theorem 3] showed γF to be a metric on S
when F is chosen to be a unit ball in a universal RKHS H.
This choice of F yields an injective map, Π : S → H, as
proposed by Smola et al. [SGSS07]. A similar injective map
can also be obtained by choosing F to be a unit ball in an
RKHS induced by kernels satisfying the criteria in [FGSS08,
Lemma 1, Theorem 2] (which we denote F-characteristic
kernels).

We henceforth assume F to be a unit ball in an RKHS
(H, k) (not necessarily universal or F-characteristic) defined
on (M,M) with k : M × M → R, i.e., F = {f ∈ H :
‖f‖H ≤ 1}. The following result provides a different repre-
sentation for γF defined in Eq. (1) by exploiting the repro-
ducing property of H, and will be used later in deriving our
main results.

Theorem 3 Let F be a unit ball in an RKHS (H, k) defined
on a measurable space (M,M) with k measurable and bou-
nded. Then

γF (P,Q) = ‖Pk −Qk‖H, (2)

where ‖.‖H represents the RKHS norm.

Proof: Let TP : H → R be a linear functional defined as
TP [f] :=

∫
M

f(x) dP (x) with ‖TP ‖ := supf∈H
|TP [f]|
‖f‖H .

2A pseudometric only satisfies (i)-(iii) of the properties of a
metric (see footnote 1). Unlike a metric space (M, ρ), points in
a pseudometric space need not be distinguishable: one may have
ρ(x, y) = 0 for x 6= y [Dud02, Chapter 2].

3The characteristic function of a probability measure, P on Rd

is defined as φ(ω) :=
∫
Rd eiωT x dP (x), ∀ω ∈ Rd.

Consider

|TP [f]| =
∣∣∣∣
∫

M

f(x) dP (x)
∣∣∣∣ ≤

∫

M

|f(x)| dP (x)

=
∫

M

|〈f, k(·, x)〉H| dP (x) ≤
√

C‖f‖H,

where we have exploited the reproducing property and bound-
edness of the kernel to show TP is a bounded linear func-
tional on H. Here, C > 0 is the bound on k, i.e., |k(x, y)| ≤
C < ∞, ∀x, y ∈ M . Therefore, by the Riesz representation
theorem [RS72, Theorem II.4], there exists a unique λP ∈ H
such that TP [f] = 〈f, λP 〉H, ∀ f ∈ H. Let f = k(·, u) for
some u ∈ M . Then, TP [k(·, u)] = 〈k(·, u), λP 〉H = λP (u),
which implies λP = TP [k] = Pk =

∫
M

k(·, x) dP (x).
Therefore, with |Pf − Qf | = |〈f, λP − λQ〉H|, we have
γF (P, Q) = sup‖f‖H≤1 |Pf −Qf | = ‖λP − λQ‖H =
‖Pk −Qk‖H.

The representation of γF in Eq. (2) yields the embedding,
Π[P] =

∫
M

k(·, x) dP (x) as proposed in [SGSS07, FGSS08],
which is injective when k is characteristic. While the repre-
sentation of γF in Eq. (2) holds irrespective of the charac-
teristic property of k , it need not be a metric on S, as Π is
not guaranteed to be injective. The obvious question to ask
is “For what class of kernels is Π injective?”. To understand
this in detail, we are interested in the following questions
which we address in this paper.

Q1. Let D (S be a set of Borel probability measures de-
fined on (M,M). LetK be a family of positive definite
kernels defined on M . What are the conditions on D
and K for which Π : D → Hk, P 7→ ∫

M
k(·, x) dP (x)

is injective, i.e., γF (P,Q) = 0 ⇔ P = Q for P,Q ∈
D? Here, Hk represents the RKHS induced by k ∈ K.

Q2. What are the conditions on K so that Π is injective on
S?

Note that Q1 is a restriction of Q2 to D. The idea is that
the kernels that do not make γF as a metric on S may make
it as a metric on some restricted class of probability mea-
sures, D (S. Our next step, therefore, is to characterize
the relationship between classes of kernels and probability
measures, which is addressed in the following section.

4 Characteristic Kernels & Main Theorems
In this section, we present main results related to the behav-
ior of MMD. We start with the following definition of char-
acteristic kernels, which was recently introduced by Fuku-
mizu et al. [FGSS08] in the context of measuring conditional
(in)dependence using positive definite kernels.

Definition 4 (Characteristic kernel) A positive definite ker-
nel k is characteristic to a set D of probability measures de-
fined on (M,M) if γF (P, Q) = 0 ⇔ P = Q for P, Q ∈ D.

Remark 5 Equivalently, k is said to be characteristic to D
if the map, Π : D → H, P 7→ ∫

M
k(·, x) dP (x), is in-

jective. When M = Rd, the notion of characteristic kernel
is a generalization of the characteristic function, φP (ω) =∫
Rd eiωT x dP (x), ∀ω ∈ Rd, which is the expectation of the

113

complex-valued positive definite kernel, k(ω, x) = eiωT x.
Thus, the definition of a characteristic kernel generalizes the
well-known property of the characteristic function that φP

uniquely determines a Borel probability measure P on Rd.
See [FGSS08] for more details.

It is obvious from Definition 4 that universal kernels defined
on a compact M and F-characteristic kernels on M are char-
acteristic to the family of all probability measures defined
on (M,M). The characteristic property of the kernel re-
lates the family of positive definite kernels and the family
of probability measures. We would like to characterize the
positive definite kernels that are characteristic to S. Among
the kernels that are not characteristic to S, we would like to
determine those kernels that are characteristic to some appro-
priately chosen subset D, of S. Intuitively, the smaller the
set D, larger is the family of kernels that are characteristic to
D. To this end, we make the following assumption.

Assumption 1 k(x, y) = ψ(x − y) where ψ is a bounded
continuous real-valued positive definite function4 on M =
Rd.

The above assumption means that k is translation-invariant
in Rd. A whole family of such kernels can be generated as
the Fourier transform of a finite non-negative Borel measure,
given by the following result due to Bochner, which we quote
from [Wen05, Theorem 6.6].

Theorem 6 (Bochner) A continuous function ψ : Rd → C
is positive definite if and only if it is the Fourier transform of
a finite nonnegative Borel measure Λ on Rd, i.e.

ψ(x) =
∫

Rd

e−ixT ω dΛ(ω), ∀x ∈ Rd. (3)

Since the translation-invariant kernels in Rd are character-
ized by the Bochner’s theorem, it is theoretically interesting
to ask which subset in the Fourier images gives characteristic
kernels. Before we describe such kernels k that are charac-
teristic to S, in the following example, we show that there
exist kernels that are not characteristic to S. Here, S repre-
sents the family of all Borel probability measures defined on
(Rd,B(Rd)), where B(Rd) represents the Borel σ-algebra
defined by open sets in Rd (see Assumption 1).

Example 1 (Trivial kernel) Let k(x, y) = ψ(x − y) = C,
∀x, y ∈ Rd with C > 0. It can be shown that ψ is the
Fourier transform of Λ = Cδ0 with support {0}.

Consider Pk =
∫
Rd k(·, x) dP (x) = C

∫
Rd dP (x) =

C. Since Pk = C irrespective of P ∈ S, the map Π is
not injective. In addition, γF (P,Q) = 0 for any P, Q ∈ S.
Therefore, the trivial kernel, k is not characteristic to S.

4.1 Main theorems
The following theorem characterizes all translation-invariant
kernels in Rd that are characteristic to S.

4Let M be a nonempty set. A function ψ : M → R is called
positive definite if and only if

∑n
j,l=1 cjclψ(xj − xl) ≥ 0, ∀xj ∈

M, ∀ cj ∈ R, ∀n ∈ N.

Theorem 7 Let F be a unit ball in an RKHS (H, k) defined
on Rd. Suppose k satisfies Assumption 1. Then k is a char-
acteristic kernel to the family, S, of all probability measures
defined on Rd if and only if supp(Λ) = Rd.

We provide a sketch of the proof of the above theorem, which
is proved in §6.2.1 using a number of intermediate lemmas.
The first step is to derive an alternate representation for γF in
Eq. (2) under Assumption 1. Lemma 13 provides the Fourier
representation of γF in terms of the kernel spectrum, Λ and
the characteristic functions of P and Q. The advantage of
this representation over the one in Eq. (2) is that it is easy to
obtain necessary and sufficient conditions for the existence
of P 6= Q, P, Q ∈ S such that γF (P, Q) = 0, which are
captured in Lemma 15. We then show that if supp(Λ) = Rd,
the conditions mentioned in Lemma 15 are violated, mean-
ing @P 6= Q such that γF (P, Q) = 0, thereby proving the
sufficient condition in Theorem 7. Proving the converse is
equivalent to proving that k is not characteristic to S when
supp(Λ) (Rd. So, when supp(Λ) (Rd, the result is proved
using Lemma 19, which shows the existence of P 6= Q such
that γF (P, Q) = 0.

Theorem 7 shows that the embedding function Π, asso-
ciated with a positive definite translation-invariant kernel in
Rd is injective if and only if the kernel spectrum has the en-
tire domain as its support. Therefore, this result provides
a simple verifiable rule for Π to be injective, unlike the re-
sults in [SGSS07, FGSS08] where the universality and F-
characteristic properties of a given kernel are not easy to ver-
ify. In addition, the universality and F-characteristic proper-
ties are sufficient conditions for a kernel to induce an injec-
tive map Π, whereas Theorem 7 provides supp(Λ) = Rd as
the necessary and sufficient condition. Therefore, we have
answered question Q2 posed in §3. Examples of kernels that
are characteristic to S include the Gaussian, Laplacian and
B2n+1-splines. In fact, the whole family of compactly sup-
ported translation-invariant kernels on Rd are characteristic
to S, as shown by the following corollary of Theorem 7.

Corollary 8 Let F be a unit ball in an RKHS (H, k) defined
on Rd. Suppose k satisfies Assumption 1 and supp(ψ) is
compact. Then k is a characteristic kernel to S.

Proof: Since supp(ψ) is compact in Rd, by Lemma 25,
which is a corollary of the Paley-Wiener theorem (see also
[GW99, Theorem 31.5.2, Proposition 31.5.4]), we deduce
that supp(Λ) = Rd. Therefore, the result follows from The-
orem 7.

The above result is interesting in practice because of the
computational advantage in dealing with compactly supported
kernels. By Theorem 7, it is clear that kernels with supp(Λ) (
Rd are not characteristic to S. However, they can be charac-
teristic to some D (S (see Q1 in §3). The following result
addresses this setting.

Theorem 9 Let F be a unit ball in an RKHS (H, k) de-
fined on Rd. Let D be the set of all compactly supported
probability measures on Rd with characteristic functions in
L1(Rd) ∪ L2(Rd). Suppose k satisfies Assumption 1 and
supp(Λ) (Rd has a non-empty interior. Then k is a char-
acteristic kernel to D.

114

ψ(x), Ω = supp(Λ) D Characteristic γF Reference

Ω = Rd S Yes Metric Theorem 7

supp(ψ) is compact S Yes Metric Corollary 8

Ω (Rd has a {P : supp(P) is compact,
non-empty interior φP ∈ L1(Rd) ∪ L2(Rd)} Yes Metric Theorem 9

Ω (Rd S No Pseudometric Theorem 7

Table 1: k satisfies Assumption 1 and is the Fourier transform of a finite nonnegative Borel measure Λ on Rd. S is the set of all
probability measures defined on (Rd,B(Rd)). P represents a probability measure in Rd and φP is its characteristic function. If
k is characteristic to S, then (S, γF) is a metric space, where F is a unit ball in an RKHS (H, k).

The proof is given in §6.2.2 and the strategy is similar to
that of Theorem 7, where the Fourier representation of γF
(see Lemma 13) is used to derive necessary and sufficient
conditions for the existence of P 6= Q, P, Q ∈ D such
that γF (P, Q) = 0 (see Lemma 17). We then show that
if supp(Λ) (Rd has a non-empty interior, the conditions
mentioned in Lemma 17 are violated, which means @P 6=
Q, P,Q ∈ D such that γF (P,Q) = 0, thereby proving the
result.

Although, by Theorem 7, the kernels with supp(Λ) (Rd

are not characteristic to S, Theorem 9 shows that there ex-
ists D (S to which a subset of these kernels are charac-
teristic. This type of result is not available for the meth-
ods studied in [SGSS07, FGSS08]. An example of a kernel
that satisfies the conditions in Theorem 9 is the Sinc kernel,
ψ(x) = sin(σx)

x which has supp(Λ) = [−σ, σ]. The condi-
tion that supp(Λ) (Rd has a non-empty interior is impor-
tant for Theorem 9 to hold. If supp(Λ) has an empty interior
(examples include periodic kernels), then one can construct
P 6= Q, P,Q ∈ D such that γF (P,Q) = 0. See §6.2.2 for
the related discussion and an example.

We have shown that the support of the Fourier spectrum
of a positive definite translation-invariant kernel in Rd char-
acterizes the injective or non-injective behavior of Π. In par-
ticular, supp(Λ) = Rd is the necessary and sufficient con-
dition for the map Π to be injective on S, which answers
question Q2 posed in §3. We also showed that kernels with
supp(Λ) (Rd can be characteristic to some D (S even
though they are not characteristic to S, which in turn an-
swers question Q1 in §3. A summary of these results is given
in Table 1.

4.2 A result on periodic kernels and discrete
probability measures

Proposition 10 Let F be a unit ball in an RKHS (H, k) de-
fined on Rd where k satisfies Assumption 1. Let D = {P :
P =

∑∞
n=1 βnδxn ,

∑∞
n=1 βn = 1, βn ≥ 0, ∀n} be the

set of probability measures defined on M ′ = {x1, x2 . . .}
(Rd. Then ∃P 6= Q, P, Q ∈ D such that γF (P,Q) = 0 if
the following conditions hold:

(i) ψ is τ -periodic5 in Rd, i.e., ψ(x) = ψ(x + η • τ), η ∈
Zd, τ ∈ Rd

+,

(ii) xs − xt = lst • τ, lst ∈ Zd, ∀ s, t,

where • represents the Hadamard multiplication.

Proof: Let ψ be τ -periodic in Rd and xs − xt = lst •
τ, lst ∈ Zd, ∀ s, t. Consider P, Q ∈ D given by P =∑∞

n=1 p̃nδxn and Q =
∑∞

n=1 q̃nδxn such that p̃n, q̃n ≥
0, ∀n;

∑∞
n=1 p̃n = 1,

∑∞
n=1 q̃n = 1. Then γF (P, Q) =

‖Pk−Qk‖H = ‖ ∫
Rd ψ(.−x) d(P−Q)(x)‖H = ‖∑∞

n=1(p̃n

−q̃n)ψ(. − xn)‖H = ‖∑∞
n=1(p̃n − q̃n)ψ(. − x1 − ln1 •

τ)‖H = ‖ψ(.− x1)
∑∞

n=1(p̃n − q̃n)‖H = 0. This holds for
any P,Q ∈ D.

The converse of Proposition 10, if true, would make the re-
sult more interesting. This is because any non-periodic trans-
lation invariant kernel on Rd would then be characteristic
to the set of discrete probability measures on Rd. In or-
der to prove the converse, we would need to show that (i)
and (ii) in Proposition 10 hold when γF (P,Q) = 0 for
P 6= Q, P,Q ∈ D. However, this is not true as the triv-
ial kernel yields γF (P, Q) = 0 for any P, Q ∈ S and not
just P,Q ∈ D.

Let us consider γF (P, Q) = 0 for P, Q ∈ D. This is
equivalent to ‖∑∞

n=1(p̃n − q̃n)ψ(.− xn)‖H = 0. Squaring
on both sides and using the reproducing property of k, we
get

∑∞
s,t=1 r̃tr̃sψ(xs − xt) = 0 where {r̃n = p̃n − q̃n}∞n=1

satisfy
∑∞

s=1 r̃s = 0 and {r̃s}∞s=1 ∈ [−1, 1]. So, to prove
the converse, we need to characterize all ψ, {r̃n}∞n=1 and
{xn}∞n=1 that satisfy R = {∑∞

s,t=1 r̃tr̃sψ(xs − xt) = 0 :∑∞
s=1 r̃s = 0, {r̃s}∞s=1 ∈ [−1, 1]}, which is not easy. How-

ever, choosing some ψ, {r̃n}∞n=1 and {xn}∞n=1 is easy, as
shown in Proposition 10. Suppose there exists a class, K
of positive definite translation-invariant kernels in Rd with
supp(Λ) (Rd and a class, E ⊂ D of probability measures
that jointly violate R, then any k ∈ K is characteristic to E.

5A τ -periodic ψ in R is the Fourier transform of Λ =∑∞
n=−∞ αnδ 2πn

τ
, where δ 2πn

τ
is the Dirac measure at 2πn

τ
, n ∈ Z

with αn ≥ 0 and
∑∞

n=−∞ αn < ∞. Thus, supp(Λ) = { 2πn
τ

:

αn > 0, n ∈ Z} (R. {αn}∞−∞ are called the Fourier series
coefficients of ψ.

115

−8 −6 −4 −2 0 2 4 6 8
10

−4

10
−3

10
−2

10
−1

ν

γ2 F
,u
(m

,m
)

Uniform
Gaussian

(a)

−8 −6 −4 −2 0 2 4 6 8
0.05

0.1

0.15

0.2

0.25

0.3

ν

γ2 F
,u
(m

,m
)

Uniform
Gaussian

(b)

Figure 1: Behavior of the empirical estimate of γ2
F (P, Q) w.r.t. ν for the (a) B1-spline kernel and (b) Gaussian kernel. P is

constructed from Q as defined in Eq. (4). “Uniform” corresponds to Q = U [−1, 1] and “Gaussian” corresponds to Q = N (0, 2).
m = 1000 samples are generated from P and Q to estimate γ2

F (P, Q) through γ2
F,u(m,m). See Example 2 for details.

5 Dissimilar Distributions with Small Mean
Discrepancy

So far, we have studied the behavior of γF and have shown
that it depends on the support of the spectrum of the ker-
nel. As mentioned in §1, applications like homogeneity test-
ing exploit the metric property of γF to distinguish between
probability distributions. Since the metric nature of γF is
guaranteed only for kernels with supp(Λ) = Rd, tests based
on other kernels can fail to distinguish between different prob-
ability distributions. However, in the following, we show
that the characteristic kernels, while guaranteeing γF to be a
metric on S, may nonetheless have difficulty in distinguish-
ing certain distributions on the basis of finite samples. Be-
fore proving the result, we motivate it through the following
example.

Example 2 Let P be defined as

p(x) = q(x) + αq(x) sin(νπx), (4)

where q is a symmetric probability density function with α ∈
R, ν ∈ R\{0}. Consider a B1-spline kernel on R given by
k(x, y) = ψ(x− y) where

ψ(x) =
{

1− |x|, |x| ≤ 1
0, otherwise , (5)

with its Fourier transform given by Ψ(ω) = 2
√

2√
π

sin2 ω
2

ω2 (see
footnote 10 for the definition of Ψ). Since ψ is characteristic
to S, γF (P, Q) > 0 (see Theorem 7). However, it would be
of interest to study the behavior of γF (P,Q) as a function of
ν. We do this through an unbiased, consistent estimator6 of
γ2
F (P, Q) as proposed by Gretton et al. [GBR+07, Lemma

7].
6Starting from the expression for γF in Eq. (2), we get

γ2
F (P, Q) = EX,X′∼P k(X, X ′) − 2EX∼P,Y∼Qk(X, Y) +
EY,Y ′∼Qk(Y, Y ′), where X, X ′ are independent random vari-
ables with distribution P and Y, Y ′ are independent random
variables with distribution Q. An unbiased empirical estimate
of γ2

F , denoted as γ2
F,u(m, m) is given by γ2

F,u(m, m) =
1

m(m−1)

∑m
l6=j h(Zl, Zj), which is a one-sample U -statistic with

h(Zl, Zj) := k(Xl, Xj) + k(Yl, Yj) − k(Xl, Yj) − k(Xj , Yl),
where Z1, . . . , Zm are m i.i.d. random variables with Zj :=
(Xj , Yj) (see [GBR+07, Lemma 7]).

Figure 1(a) shows the behavior of the empirical estimate
of γ2

F (P, Q) as a function of ν for q = U [−1, 1] and q =
N (0, 2) using the B1-spline kernel in Eq. (5). Since the
Gaussian kernel, k(x, y) = e−(x−y)2 is also a characteristic
kernel, its effect on the behavior of γ2

F,u(m,m) is shown in
Figure 1(b) in comparison to that of the B1-spline kernel.

From Figure 1, we observe two circumstances under whi-
ch the mean discrepancy may be small. First, γ2

F,u(m,m)
decays with increasing |ν|, and can be made as small as de-
sired by choosing a sufficiently large |ν|. Second, in Fig-
ure 1(a), γ2

F,u(m,m) has troughs at ν = ω0
π where ω0 =

{ω : Ψ(ω) = 0}. Since γ2
F,u(m,m) is a consistent esti-

mate of γ2
F (P, Q), one would expect similar behavior from

γ2
F (P, Q). This means that though the B1-spline kernel is

characteristic to S, in practice, it becomes harder to distin-
guish between P and Q with finite samples, when P is con-
structed as in Eq. (4) with ν = ω0

π . In fact, one can observe
from a straightforward spectral argument that the troughs in
γ2
F (P, Q) can be made arbitrarily deep by widening q, when

q is Gaussian.

For characteristic kernels, although γF (P, Q) > 0 when
P 6= Q, Example 2 demonstrates that one can construct
distributions such that γ2

F,u(m,m) is indistinguishable from
zero with high probability, for a given sample size m. Below,
in Theorem 12, we investigate the decay mode of MMD for
large |ν| (see Example 2) by explicitly constructing P 6= Q
such that |Pϕl−Qϕl| is large for some large l, but γF (P, Q)
is arbitrarily small, making it hard to detect a non-zero value
of the population MMD on the basis of a finite sample. Here,
ϕl ∈ L2(M) represents the bounded orthonormal eigenfunc-
tions of a positive definite integral operator7 associated with
k.

Consider the formulation of MMD in Eq. (1). The con-
struction of P for a given Q such that γF (P, Q) is small,
though not zero, can be intuitively seen by re-writing Eq. (1)
as

γF (P, Q) = sup
f∈H

|Pf −Qf |
‖f‖H . (6)

7See [SS02, Theorem 2.10] for definition of positive definite
integral operator and its corresponding eigenfunctions.

116

When P 6= Q, |Pf − Qf | can be large for some f ∈ H.
However, γF (P, Q) can be made small by selecting P such
that the maximization of |Pf−Qf |

‖f‖H over H requires an f with
large ‖f‖H. More specifically, higher order eigenfunctions
of the kernel (ϕl for large l) have large RKHS norms, and
so if they are prominent in P, Q (i.e., highly non-smooth
distributions), one can expect γF (P,Q) to be small even
when there exists an l for which |Pϕl − Qϕl| is large. To
this end, we need the following lemma, which we quote
from [GSB+04, Lemma 6].

Lemma 11 ([GSB+04]) Let F be a unit ball in an RKHS
(H, k) defined on compact M . Let ϕl ∈ L2(M) be or-
thonormal eigenfunctions (assumed to be absolutely bounded),
and λl be the corresponding eigenvalues (arranged in a de-
creasing order for increasing l) of a positive definite integral
operator associated with k. Assume λ−1

l increases superlin-
early with l. Then for f ∈ F where f(x) :=

∑∞
j=1 f̃jϕj(x),

we have {|f̃j |}∞j=1 ∈ `1 and for every ε > 0, ∃ l0 ∈ N such
that |f̃l| < ε if l > l0.

Theorem 12 (P 6= Q can give small MMD) Assume the con-
ditions in Lemma 11 hold. Then there exists a probability
distribution P 6= Q defined on M for which |Pϕl −Qϕl| >
β − ε for some non-trivial β and arbitrarily small ε > 0, yet
for which γF (P, Q) < η for an arbitrarily small η > 0.

Proof: Let us construct p(x) = q(x) + αle(x) + βϕl(x)
where e(x) = 1M (x). For P to be a probability distribution,
the following conditions need to be satisfied:

∫

M

[αle(x) + βϕl(x)] dx = 0, (7)

min
x∈M

[q(x) + αle(x) + βϕl(x)] ≥ 0. (8)

Expanding e(x) and f(x) in the orthonormal basis {ϕl}∞l=1,
we get e(x) =

∑∞
l=1 ẽlϕl(x) and f(x) =

∑∞
l=1 f̃lϕl(x),

where ẽl := 〈e, ϕl〉L2(M) and f̃l := 〈f, ϕl〉L2(M). There-
fore, Pf −Qf =

∫
M

f(x)[αle(x) + βϕl(x)] dx reduces to

Pf −Qf = αl

∞∑

j=1

ẽj f̃j + βf̃l, (9)

where we used the fact that8 〈ϕj , ϕt〉L2(M) = δjt. Rewriting
Eq. (7) and substituting for e(x) gives

∫
M

[αle(x)+βϕl(x)] dx

=
∫

M
e(x)[αle(x) + βϕl(x)] dx = αl

∑∞
j=1 ẽ2

j + βẽl = 0,
which implies

αl = − βẽl∑∞
j=1 ẽ2

j

. (10)

Now, let us consider Pϕt−Qϕt = αlẽt +βδtl. Substituting
for αl gives

Pϕt −Qϕt = βδtl − β
ẽtẽl∑∞
j=1 ẽ2

j

= βδtl − βτtl, (11)

where τtl := ẽtẽl∑∞
j=1 ẽ2

j
. By Lemma 11, {|ẽl|}∞l=1 ∈ `1 ⇒∑∞

j=1 ẽ2
j < ∞, and choosing large enough l gives |τtl| <

8Here δ is used in the Kronecker sense.

ε, ∀ t, for any arbitrary ε > 0. Therefore, |Pϕt − Qϕt| >
β− ε for t = l and |Pϕt−Qϕt| < ε for t 6= l. By appealing
to Lemma 1, we therefore establish that P 6= Q. In the
following we prove that γF (P, Q) can be arbitrarily small,
though non-zero.

Recall that γF (P, Q) = sup‖f‖H≤1 |Pf −Qf |. Substi-
tuting for αl in Eq. (9), we have

γF (P, Q) = sup



β

∞∑

j=1

νjlf̃j :
∞∑

j=1

f̃2
j

λj
≤ 1



 , (12)

where we used the definition of RKHS norm as ‖f‖H :=
∑∞

j=1

f̃2
j

λj
and νjl := δjl− τjl. Eq. (12) is a convex quadratic

program in {f̃j}∞j=1. Solving the Lagrangian yields f̃j =
νjlλj√∑∞
j=1 ν2

jlλj
. Therefore, γF (P, Q) = β

√∑∞
j=1 ν2

jlλj =

β
√

λl − 2τllλl +
∑∞

j=1 τ2
jlλj → 0 as l →∞ because

(i) by choosing sufficiently large l, |τjl| < ε, ∀ j, for any
arbitrary ε > 0,
(ii) λl → 0 as l →∞ [SS02, Theorem 2.10].

6 Proofs of the Main Theorems
In this section, we prove the main theorems in Section 4.

6.1 Preliminary lemmas
Using the Fourier characterization of ψ given by Eq. (3), un-
der Assumption 1, we derive the following result that pro-
vides the Fourier representation of MMD. This result re-
quires tools from distribution theory related to the Fourier
transforms of distributions.9 We refer the reader to [Rud91,
Chapters 6,7] for the detailed treatment of distribution the-
ory. Another good and basic reference on distribution theory
is [Str03].

Lemma 13 (Fourier representation of MMD) Let F be a
unit ball in an RKHS (H, k) defined on Rd with k satisfying
Assumption 1. Let φP and φQ be the characteristic functions
of probability measures P and Q defined on Rd. Then

γF (P,Q) = ‖[(φP − φQ)Λ]∨‖H, (13)

where − represents complex conjugation, ∨ represents the
inverse Fourier transform and Λ represents the finite non-
negative Borel measure on Rd as defined in Eq. (3). (φP −
φQ)Λ represents a finite Borel measure defined by Eq. (26).

Proof: From Theorem 3, we have γF (P, Q) = ‖Pk−Qk‖H.
Consider Pk =

∫
Rd k(·, x) dP (x) =

∫
Rd ψ(·−x) dP (x). By

Eq. (23),
∫
Rd ψ(·−x) dP (x) represents the convolution of ψ

and P , denoted as ψ∗P . By appealing to the convolution the-
orem (Theorem 22), we have (ψ∗P)∧ = P̂Λ, where P̂ (ω) =

9Here, the term distribution should not be confused with proba-
bility distributions. In short, distributions refer to generalized func-
tions which cannot be treated as functions in the Lebesgue sense.
Classical examples of distributions are the Dirac-delta function and
Heaviside’s function, for which derivatives and Fourier transforms
do not exist in the usual sense.

117

∫
Rd e−iωT x dP (x), ∀ω ∈ Rd (by Lemma 20). Note that

P̂ = φP . Therefore, γF (P, Q) = ‖ψ ∗ P − ψ ∗Q‖H =∥∥(φP Λ)∨ − (φQΛ)∨
∥∥
H. Using the linearity of the Fourier

inverse, we get the desired result.

Remark 14 (a) If Ψ is the distributional derivative10 of Λ,
then Eq. (13) can also be written as

γF (P, Q) = ‖[(φP − φQ)Ψ]∨‖H, (14)

where the term inside the RKHS norm is the Fourier inverse
of a tempered distribution.

(b) By Assumption 1, ψ is real-valued and symmetric in Rd.
Therefore, by (ii) in Lemma 20, Λ and Ψ are real-valued,
symmetric tempered distributions.

The representation of MMD in terms of the kernel spectrum
as in Eq. (13) will be central to deriving our main theorems.
It is easy to see that characteristic kernels can be described
indirectly by deriving conditions for the existence of P 6= Q
such that γF (P,Q) = 0. Using the Fourier representation
of γF , the following result provides necessary and sufficient
conditions for the existence of P 6= Q such that γF (P, Q) =
0.

Lemma 15 Let F be a unit ball in an RKHS (H, k) defined
on Rd, and let P,Q be probability distributions on Rd such
that P 6= Q. Suppose that k satisfies Assumption 1 and
supp(Λ) ⊂ Rd. Then γF (P, Q) = 0 if and only if there
exists θ ∈ S ′

d that satisfies the following conditions:

(i) p− q = θ̌,
(ii) θΛ = 0,

where p and q represent the distributional derivatives of P
and Q respectively, and θΛ represents a finite Borel measure
defined by Eq. (26).

Proof: The proof follows directly from the formulation of
γF in Eq. (13).

(⇒) Let θ ∈ S ′
d satisfy (i) and (ii). Since θ ∈ S ′

d, we have

θ = ˆ̌θ = (p − q)∧ = p̂ − q̂ = φP − φQ. Therefore, by (ii),
we have γF (P,Q) = ‖[(φP −φQ)Λ]∨‖H = ‖[θΛ]∨‖H = 0.

(⇐) Let γF (P, Q) = ‖[(φP − φQ)Λ]∨‖H = 0, which im-
plies [(φP−φQ)Λ]∨ = 0. Since (φP−φQ)Λ is a finite Borel
measure as defined by Eq. (26), it is therefore a tempered dis-
tribution and so (φP −φQ)Λ = [[(φP −φQ)Λ]∨]∧ = 0. Let
θ := φP − φQ. Clearly θ ∈ S ′

d as by Lemma 20, φP , φQ ∈
S ′

d. So, p− q = (φP)∨ − (φQ)∨ = (φP − φQ)∨ = θ̌.

θ = 0 trivially satisfies (ii) in Lemma 15. However, it vio-
lates our assumption of P 6= Q when it is used in condition

10If Λ is absolutely continuous w.r.t. the Lebesgue measure,
then Ψ represents the Radon-Nikodym derivative of Λ w.r.t. the
Lebesgue measure. In such a case, ψ is the Fourier transform of
Ψ in the usual sense; i.e., ψ(x) =

∫
Rd e−ixT ωΨ(ω) dmd(ω). On

the other hand, if Ψ is the distributional derivative of Λ, then Ψ is a
symbolic representation of the derivative of Λ and will make sense
only under the integral sign.

(i). If we relax this assumption, then the result is trivial as
P = Q ⇒ γF (P, Q) = 0. For the results we derive later,
it is important to understand the properties of θ, which we
present in the following proposition.

Proposition 16 (Properties of θ) θ in Lemma 15 satisfies the
following properties:

(a) θ is a conjugate symmetric, bounded and uniformly con-
tinuous function on Rd.

(b) θ(0) = 0.

(c) supp(θ) ⊂ Rd\Ω where Ω := supp(Λ). In addition, if
Ω = {a1, a2, . . .}, then θ(aj) = 0, ∀ aj ∈ Ω.

Proof: (a) From Lemma 15, we have θ = φP − φQ. There-
fore, the result in (a) follows from Lemma 20, which shows
that φP , φQ are conjugate symmetric, bounded, and uni-
formly continuous functions on Rd.

(b) By Lemma 20, φP (0) = φQ(0) = 1. Therefore, θ(0) =
φP (0)− φQ(0) = 0.

(c) Let W := {x ∈ Rd | θ(x) 6= 0}. It suffices to show
that W ⊂ Rd\Ω. Suppose W is not contained in Rd\Ω.
Then there is a non-empty open subset U such that U ⊂
W ∩ (Ω ∪ ∂Ω). Fix further a non-empty open subset V
with V ⊂ U . Since V ⊂ Ω, there is ϕ ∈ Dd(V) with
Λ(ϕ) 6= 0. Take h ∈ Dd(U) such that h = 1 on V , and
define a continuous function % = hϕ

θ on Rd, which is well-
defined from supp(h) ⊂ U and θ 6= 0 on U . By (ii) of
Lemma 15, θΛ = 0, where θΛ is a finite Borel measure on
Rd as defined by Eq. (26). Therefore,

∫

Rd

%(x)θ(x) dΛ(x) = 0. (15)

The left hand side of Eq. (15) simplifies to
∫

Rd

%(x)θ(x) dΛ(x) =
∫

U

h(x)ϕ(x)
θ(x)

θ(x) dΛ(x)

=
∫

U

ϕ(x) dΛ(x) = Λ(ϕ) 6= 0,

resulting in a contradiction. So, supp(θ) ⊂ Rd\Ω.
If Ω = {a1, a2, . . .}, then Λ =

∑
aj∈Ω βjδaj , βj > 0

and
∑

j βj < ∞. θΛ = 0 implies
∫
Rd χ(x)θ(x) dΛ(x) =∑

j βjχ(aj)θ(aj) = 0 for any continuous function χ in Rd.
This implies θ(aj) = 0, ∀ aj ∈ Ω.

Lemma 15 provides conditions under which γF (P, Q) = 0
when P 6= Q. It shows that the kernel k cannot distinguish
between P and Q if P is related to Q by condition (i). Con-
dition (ii) in Lemma 15 says that θ has to be chosen such
that its support is disjoint with that of the kernel spectrum.
This is what is precisely captured by (c) in Proposition 16.
So, for a given Q, one can construct P such that P 6= Q and
γF (P, Q) = 0 by choosing θ that satisfies the properties in
Proposition 16. However, P should be a positive distribution
so that it corresponds to a positive measure.11 Therefore,

11A positive distribution is defined to be as the one that takes
nonnegative values on nonnegative test functions. So, D ∈ D ′

d(M)

118

θ should also be such that q + θ̌ is a positive distribution.
Imposing such a constraint on θ is not straightforward, and
therefore Lemma 15 does not provide a procedure to con-
struct P 6= Q given Q. However, by imposing some condi-
tions on P and Q, we obtain the following result wherein the
conditions on θ can be explicitly specified, yielding a proce-
dure to construct P 6= Q such that γF (P, Q) = 0.

Lemma 17 Let F be a unit ball in an RKHS (H, k) de-
fined on Rd. Let D be the set of probability measures on
Rd with characteristic functions either absolutely integrable
or square integrable, i.e., for any P ∈ D, φP ∈ L1(Rd) ∪
L2(Rd). Suppose that k satisfies Assumption 1 and supp(Λ) (
Rd. Then for any Q ∈ D, ∃P 6= Q, P ∈ D given by

p = q + θ̌ (16)

such that γF (P, Q) = 0 if and only if there exists a non-zero
function θ : Rd → C that satisfies the following conditions:

(i) θ ∈ (L1(Rd)∪L2(Rd))∩Cb(Rd) is conjugate symmet-
ric,

(ii) θ̌ ∈ L1(Rd) ∩ (L2(Rd) ∪ Cb(Rd)),

(iii) θΛ = 0,

(iv) θ(0) = 0,

(v) infx∈Rd{θ̌(x) + q(x)} ≥ 0.

Proof: (⇒) Suppose there exists a non-zero function θ sat-
isfying (i) – (v). We need to show that p = q + θ̌ is in D for
q ∈ D and γF (P, Q) = 0.

For any Q ∈ D, φQ ∈ (L1(Rd) ∪ L2(Rd)) ∩ Cb(Rd).
When φQ ∈ L1(Rd)∩Cb(Rd), the Riemann-Lebesgue lemma
(Lemma 23) implies that q = [φQ]∨ ∈ L1(Rd) ∩ Cb(Rd).
When φQ ∈ L2(Rd) ∩ Cb(Rd), the Fourier transform in the
L2 sense12 implies that q = [φQ]∨ ∈ L1(Rd) ∩ L2(Rd).
Therefore, q ∈ L1(Rd) ∩ (L2(Rd) ∪ Cb(Rd)). Define p :=
q+ θ̌. Clearly p ∈ L1(Rd)∩(L2(Rd)∪Cb(Rd)). In addition,
φP = p̂ = q̂ + ˆ̌θ = φQ + θ ∈ (L1(Rd)∪L2(Rd))∩Cb(Rd).
Since θ is conjugate symmetric, θ̌ is real valued and so is
p. Consider

∫
Rd p(x) dx =

∫
Rd q(x) dx +

∫
Rd θ̌(x) dx =

1+θ(0) = 1. (v) implies that p is non-negative. Therefore, P
represents a probability measure such that P 6= Q and P ∈
D. Since P, Q are probability measures, γF (P,Q) is com-
puted as γF (P,Q) = ‖[(φP −φQ)Λ]∨‖H = ‖[θΛ]∨‖H = 0.

(⇐) Suppose that P, Q ∈ D and p = q+θ̌ gives γF (P,Q) =
0. We need to show that θ satisfies (i) – (v).

is a positive distribution if D(ϕ) ≥ 0 for 0 ≤ ϕ ∈ Dd(M). If µ is
a positive measure that is locally finite, then Dµ(ϕ) =

∫
M

ϕ dµ de-
fines a positive distribution. Conversely, every positive distribution
comes from a locally finite positive measure [Str03, §6.4].

12If f ∈ L2(Rd), the Fourier transform z[f] := f̂ of f is
defined to be the limit, in the L2-norm, of the sequence {f̂n} of
Fourier transforms of any sequence {fn} of functions belonging to
Sd, such that fn converges in the L2-norm to the given function
f ∈ L2(Rd), as n → ∞. The function f̂ is defined almost every-
where on Rd and belongs to L2(Rd). Thus, z is a linear operator,
mapping L2(Rd) into L2(Rd).

P, Q ∈ D implies φP , φQ ∈ (L1(Rd) ∪ L2(Rd)) ∩
Cb(Rd) and p, q ∈ L1(Rd) ∩ (L2(Rd) ∪ Cb(Rd)). There-
fore, θ = φP − φQ ∈ (L1(Rd) ∪ L2(Rd)) ∩ Cb(Rd) and
θ̌ = p− q ∈ L1(Rd) ∩ (L2(Rd) ∪ Cb(Rd)). By Lemma 20,
φP and φQ are conjugate symmetric and so is θ. Therefore
θ satisfies (i) and θ̌ satisfies (ii). θ satisfies (iv) as θ(0) =∫
Rd θ̌(x) dx =

∫
Rd(p(x)− q(x)) dx = 0. Non-negativity of

p yields (v). γF (P, Q) = 0 implies (iii), with a proof similar
to that of Lemma 15.

Remark 18 Conditions (iii) and (iv) in Lemma 17 are the
same as those of Proposition 16. Conditions (i) and (ii) are
required to satisfy our assumption P, Q ∈ D and Eq. (16).
Condition (v) ensures that P is a positive measure, which
was the condition difficult to impose in Lemma 15.

In the above result, we restricted ourselves to probability
measures P with characteristic functions φP in L1(Rd) ∪
L2(Rd). This ensures that the inverse Fourier transform of
φP exists in the L1 or L2 sense. Without this assumption, φP

is not guaranteed to have a Fourier transform in the L1 or L2

sense, and therefore has to be treated as a tempered distribu-
tion for the purpose of computing its Fourier transform. This
implies θ = φP−φQ has to be treated as a tempered distribu-
tion, which is the setting in Lemma 15. Since we wanted to
avoid dealing with distributions where the required positiv-
ity constraint is difficult to impose, we restricted ourselves to
D.13 Though this result explicitly captures the conditions on
θ, it is a very restricted result as it only deals with continuous
(a.e.) probability measures. However, we use this result in
Lemma 19 to construct P 6= Q such that γF (P,Q) = 0.

Lemmas 15 and 17 are the main results that provide con-
ditions for the existence of P 6= Q such that γF (P,Q) = 0.
This means that if there exists a θ satisfying these condi-
tions, then k cannot distinguish between P and Q where P
is defined as in Eq. (16). Thus, the existence (resp. non-
existence) of θ results in a non-injective (resp. injective)
map Π. It is clear from Lemmas 15 and 17 that the de-
pendence of γF on the kernel appears in the form of the
support of the kernel spectrum. Therefore, two scenarios
exist: (a) supp(Λ) = Rd and (b) supp(Λ) (Rd. The
case of supp(Λ) = Rd is addressed by Theorem 7 while
that of supp(Λ) (Rd is addressed by Theorem 9. Us-
ing Lemma 17, the following result proves the existence of
P 6= Q such that γF (P, Q) = 0 while using a kernel with
supp(Λ) (Rd.

Lemma 19 Let F be a unit ball in an RKHS (H, k) de-
fined on Rd. Let D be the set of all non-compactly sup-
ported probability measures on Rd with characteristic func-
tions in L1(Rd)∪L2(Rd). Suppose k satisfies Assumption 1
and supp(Λ) (Rd. Then ∃P 6= Q, P, Q ∈ D such that
γF (P, Q) = 0.

13Choosing D to be the set of all probability measures with char-
acteristic functions in L1(Rd)∪L2(Rd) is the best possible restric-
tion that avoids treating θ as a tempered distribution. The classi-
cal Fourier transforms on Rd are defined for functions in Lp(Rd),
1 < p ≤ 2. For p > 2, the only reasonable way to define Fourier
transforms on Lp(Rd) is through distribution theory.

119

Proof: We claim that there exists a non-zero function, θ sat-
isfying (i) – (v) in Lemma 17 which therefore proves the
result. Consider the following function, gβ,ω0 ∈ C∞(Rd)
supported in [ω0 − β, ω0 + β],

gβ,ω0(ω) =
d∏

j=1

1[−βj ,βj](ωj −ω0,j) e
− β2

j

β2
j
−(ωj−ω0,j)2 , (17)

where ω = (ω1, . . . , ωd), ω0 = (ω0,1, . . . , ω0,d) and β =
(β1, . . . , βd). Since supp(Λ) (Rd, there exists an open
set U ⊂ Rd on which Λ is null. So, there exists β and
ω0 6= 0 with ω0 > β such that [ω0 − β, ω0 + β] ⊂ U .
Choose θ = α(gβ,ω0 + gβ,−ω0), α ∈ R\{0}, which im-
plies supp(θ) = [−ω0 − β,−ω0 + β] ∪ [ω0 − β, ω0 + β]
is compact. Therefore, by the Paley-Wiener theorem (The-
orem 24), θ̌ is a rapidly decaying function, i.e., θ̌ ∈ Sd.
Since θ(0) = 0 (by construction), θ̌ will take negative val-
ues. However, θ̌ decays faster than some Q ∈ D of the
form q(x) ∝ ∏d

j=1
1

1+|xj |l+ε , ∀ l ∈ N, ε > 0 where x =
(x1, . . . , xd). It can be verified that θ satisfies conditions (i)
– (v) in Lemma 17. We conclude, there exists a non-zero θ
as claimed earlier, which completes the proof.

The above result shows that k with supp(Λ) (Rd is not
characteristic to the class of non-compactly supported prob-
ability measures on Rd with characteristic functions in either
L1(Rd) or L2(Rd).

6.2 Main theorems: Proofs
We are now in a position to prove Theorems 7 and 9.

6.2.1 Proof of Theorem 7
(⇒) Let supp(Λ) = Rd. k is a characteristic kernel to S if
γF (P, Q) = 0 ⇔ P = Q for P, Q ∈ S. We only need to
show the implication γF (P, Q) = 0 ⇒ P = Q as the other
direction is trivial.

Assume that ∃P 6= Q such that γF (P,Q) = 0. Then
by Lemma 15, ∃ θ satisfying (i) and (ii) given in Lemma 15.
By Proposition 16, θΛ = 0 implies supp(θ) ⊂ Rd\supp(Λ).
Since supp(Λ) = Rd and θ is a uniformly continuous func-
tion in Rd, we have supp(θ) = ∅ which means θ = 0 a.e.
Therefore, by (i) of Theorem 15, we have P = Q, leading to
a contradiction. Thus, @P 6= Q such that γF (P, Q) = 0.

(⇐) Suppose k is characteristic to S. We then need to show
that supp(Λ) = Rd. This is equivalent to proving that k is not
characteristic to S when supp(Λ) (Rd. Let supp(Λ) (Rd.
Choose D (S as the set of all non-compactly supported
probability measures on Rd with characteristic functions in
L1(Rd)∪L2(Rd). By Lemma 19, ∃P 6= Q, P, Q ∈ D (S
such that γF (P,Q) = 0. Therefore, k is not characteristic to
S.

6.2.2 Proof of Theorem 9
Suppose ∃P 6= Q, P, Q ∈ D (S such that γF (P, Q) = 0.
Then by Lemma 15, there exists a θ ∈ S ′

d such that θ̌ = p−q
where p and q are the distributional derivatives of P and Q,
respectively. Since P, Q ∈ D, we can apply Lemma 17 and
so θ is a non-zero function that satisfies conditions (i) – (v)
in Lemma 17. The condition θΛ = 0 implies supp(θ) ⊂

Rd\supp(Λ). Since supp(Λ) has a non-empty interior, we
have supp(θ) (Rd. Thus, there exists an open set, U ⊂ Rd

such that θ(x) = 0, ∀x ∈ U . By Lemma 25, this means that
θ̌ is not compactly supported in Rd. Condition (iv) implies∫
Rd θ̌(x) dx = 0, which means that θ̌ takes negative values.

Since q is compactly supported in Rd, q(x) + θ̌(x) < 0
for some x ∈ Rd\supp(Q), which violates condition (v) in
Lemma 17. In other words, there does not exist a non-zero θ
that satisfies conditions (i) – (v) in Lemma 17, thereby lead-
ing to a contradiction.

As discussed in §4.1, the condition that supp(Λ) has a non-
empty interior is important for Theorem 9 to hold. This is be-
cause if supp(Λ) has an empty interior, then supp(θ) = Rd.
In principle, one can construct such a θ by selecting θ ∈ Sd

so that it satisfies conditions (i) – (iv) of Lemma 17 while sat-
isfying the decay conditions (Eq. (29) and Eq. (30)) given in
the Paley-Wiener theorem (see Theorem 24). Therefore, by
the Paley-Wiener theorem, θ̌ is a C∞ function with compact
support. If θ is chosen such that supp(θ̌) ⊂ supp(Q), then
condition (v) of Theorem 17 will be satisfied. Thus, one can
construct P 6= Q, P, Q ∈ D (D being defined in Theorem 9)
such that γF (P,Q) = 0. Note that conditions (i) and (ii) of
Lemma 17 are automatically satisfied (except for conjugate
symmetry) by choosing θ ∈ Sd. However, choosing θ such
that it is also an entire function (so that the Paley-Wiener the-
orem can be applied) is not straightforward. In the following,
we provide a simple example to show that P 6= Q, P, Q ∈ D
can be constructed such that γF (P, Q) = 0, where F corre-
sponds to a unit ball in an RKHS (H, k) induced by a pe-
riodic translation-invariant kernel for which supp(Λ) (Rd

has an empty interior.

Example 3 Let Q be a uniform distribution on [−β, β] ⊂ R,
i.e., q(x) = 1

2β1[−β,β](x) with its characteristic function,

φQ(ω) = 1
β
√

2π

sin(βω)
ω in L2(R). Let ψ be the Dirichlet ker-

nel with period τ , where τ ≤ β, i.e., ψ(x) = sin
(2l+1)πx

τ

sin πx
τ

and

Ψ(ω) =
∑l

j=−l δ
(
ω − 2πj

τ

)
with supp(Ψ) = { 2πj

τ , j ∈
{0,±1, . . . ,±l}}. Clearly, supp(Ψ) has an empty interior.
Let θ be

θ(ω) =
8
√

2α

i
√

π
sin

(ωτ

2

) sin2
(

ωτ
4

)

τω2
, (18)

with α ≤ 1
2β . It is easy to verify that θ ∈ L1(R) ∩ L2(R) ∩

Cb(R) and so θ satisfies (i) in Lemma 17. Since θ(ω) = 0 at
ω = 2πl

τ , l ∈ Z, θ also satisfies (iii) and (iv) in Lemma 17.
θ̌ is given by

θ̌(x) =





2α|x+ τ
2 |

τ − α, −τ ≤ x ≤ 0

α− 2α|x− τ
2 |

τ , 0 ≤ x ≤ τ
0, otherwise,

(19)

where θ̌ ∈ L1(R)∩L2(R)∩Cb(R) satisfies (ii) in Lemma 17.
Now, consider p = q + θ̌ which is given as

p(x) =





1
2β , x ∈ [−β,−τ] ∪ [τ, β]

2α|x+ τ
2 |

τ + 1
2β − α, x ∈ [−τ, 0]

α + 1
2β −

2α|x− τ
2 |

τ , x ∈ [0, τ]
0, otherwise.

120

Clearly, p(x) ≥ 0, ∀x and
∫
R p(x) dx = 1. φP = φQ +θ =

φQ + iθI where θI = Im[θ] and φP ∈ L2(R). We have
therefore constructed P 6= Q such that γF (P, Q) = 0, where
P and Q are compactly supported in R with characteristic
functions in L2(R).

The condition of the compact support for probability mea-
sures mentioned in Theorem 9 is also critical for the result to
hold. If this condition is relaxed, then k with supp(Λ) (Rd

is no longer characteristic to D, as shown in Lemma 19.

7 Concluding Remarks
Previous works have studied the Hilbert space embedding for
probability measures using universal kernels, which form a
restricted family of positive definite kernels. These works
showed that if the kernel is universal, then the embedding
function from the space of probability measures to a repro-
ducing kernel Hilbert space is injective. In this paper, we
extended this approach to a larger family of kernels which
are translation-invariant on Rd. We showed that the support
of the Fourier spectrum of the kernel determines whether the
embedding is injective. In particular, the necessary and suf-
ficient condition for the embedding to be injective is that the
Fourier spectrum of the kernel should have the entire domain
as its support. Our study in this paper was limited to ker-
nels and probability measures that are defined on Rd, and
the results have been derived using Fourier analysis in Rd.
Since Fourier theory is available for more general groups
apart from Rd, one direction for future work is to extend the
analysis to positive definite kernels defined on other groups.

Appendix A Supplementary Results
We show five supplementary results used to prove the re-
sults in §4 and §6. The first two are basic, and deal with
the Fourier transform of a measure and the convolution the-
orem. The remaining three (the Riemann-Lebesgue lemma,
the Paley-Wiener theorem, and its corollary) are stated with-
out proof.

Lemma 20 (Fourier transform of a measure) Let µ be a fi-
nite Borel measure on Rd. The Fourier transform of µ is a
tempered distribution given by

µ̂(ω) =
∫

Rd

e−iωT x dµ(x), ∀ω ∈ Rd (20)

which is a bounded, uniformly continuous function on Rd. In
addition, µ̂ satisfies the following properties:

(i) µ̂(ω) = µ̂(−ω), ∀ω ∈ Rd,

(ii) µ̂(ω) = µ̂(−ω), ∀ω ∈ Rd if and only if Dµ(ϕ) =
Dµ(ϕ̃), ∀ϕ ∈ Sd where Dµ is the tempered distribu-
tion defined by µ and ϕ̃(x) := ϕ(−x), ∀x ∈ Rd.

Proof: Let Dµ denote a tempered distribution defined by µ.
For ϕ ∈ Sd, we have D̂µ(ϕ) = Dµ(ϕ̂) =

∫
Rd ϕ̂(ω) dµ(ω) =∫

Rd

∫
Rd e−iωT xϕ(x) dmd(x) dµ(ω). From Fubini’s theorem,

D̂µ(ϕ) =
∫

Rd

[∫

Rd

e−ixT ω dµ(ω)
]

ϕ(x) dmd(x), (21)

which proves Eq. (20). Clearly µ̂ is bounded as |µ̂(ω)| ≤ 1.
By Lebesgue’s dominated convergence theorem, µ̂ is uni-
formly continuous on Rd as limh→0 |µ̂(ω + h) − µ̂(ω)| ≤
limh→0

∫
Rd |e−jhT x − 1| dµ(x) = 0, for any ω ∈ Rd.

(i) µ̂(ω) =
∫
Rd eiωT x dµ(x) = µ̂(−ω).

(ii) (⇒) For ϕ ∈ Sd, D̂µ(ϕ) = Dµ(ϕ̂) =
∫
Rd ϕ̂(x) dµ(x) =∫

Rd µ̂(x)ϕ(x) dmd(x). Since ϕ̂ ∈ Sd and Dµ(ϕ) = Dµ(ϕ̃),
∀ϕ ∈ Sd, we have Dµ(ϕ̂) = Dµ(˜̂ϕ) =

∫
Rd ϕ̂(−x) dµ(x).

Substituting for ϕ̂(−x), we get

Dµ(ϕ̂) =
∫

Rd

µ̂(−x)ϕ(x) dmd(x) =
∫

Rd

µ̂(x)ϕ(x) dmd(x),

for every ϕ ∈ Sd, which implies µ̂(x) = µ̂(−x), ∀x ∈ Rd.

(⇐) For ϕ ∈ Sd, we have Dµ(ϕ) = (D̂µ)∨(ϕ) = D̂µ(ϕ̌) =∫
Rd µ̂(x)ϕ̌(x) dmd(x) =

∫
Rd µ̂(−x)ϕ̌(x) dmd(x). Apply-

ing Fubini’s theorem after substituting for µ̂(−x) and ϕ̌(x)
gives

Dµ(ϕ) =
∫

Rd

∫

Rd

δ(y + ω)ϕ(y) dmd(y) dµ(ω)

=
∫

Rd

ϕ(−ω) dµ(ω) = Dµ(ϕ̃),

for every ϕ ∈ Sd.

Remark 21 (a) Property (i) in Lemma 20 shows that the
Fourier transform of a finite Borel measure on Rd is “conju-
gate symmetric”, which means that Re[µ̂] is an even function
and Im[µ̂] is an odd function.

(b) Property (ii) shows that real symmetric tempered distri-
butions have real symmetric Fourier transforms. This can be
easily understood when µ is absolutely continuous w.r.t. the
Lebesgue measure. Suppose dµ = Ψ dmd. Then property
(ii) implies that µ̂ is real and symmetric if and only if Ψ is
real and symmetric.

The following result is popularly known as the convolution
theorem. Before providing the result, we first define convo-
lution: if f and g are complex functions in Rd, their convo-
lution f ∗ g is

(f ∗ g)(x) =
∫

Rd

f(y)g(x− y) dy, (22)

provided that the integral exists for almost all x ∈ Rd, in the
Lebesgue sense. Let µ be a finite Borel measure on Rd and
f be a bounded measurable function on Rd. The convolution
of f and µ, f ∗ µ, which is a bounded measurable function,
is defined by

(f ∗ µ)(x) =
∫

Rd

f(x− y) dµ(y). (23)

Theorem 22 (Convolution Theorem) Let µ be a finite Borel
measure and f be a bounded function on Rd. Suppose f is
written as

f(x) =
∫

Rd

eixT ω dΛ(ω), (24)

121

with a finite Borel measure Λ on Rd. Then

(f ∗ µ)∧ = µ̂Λ, (25)

where the right hand side is a finite Borel measure14 and the
equality holds as a tempered distribution.

Proof: Since the Fourier and inverse Fourier transform give
one-to-one correspondence of S ′

d, it suffices to show

f ∗ µ = (µ̂Λ)∨. (27)

For an arbitrary ϕ ∈ Sd,

(µ̂Λ)∨(ϕ) = (µ̂Λ)(ϕ̌) =
∫

Rd

ϕ̌(x)µ̂(x) dΛ(x). (28)

Substituting for µ̂ in Eq. (28) and applying Fubini’s theorem,
we have (µ̂Λ)∨(ϕ) =

∫

Rd

∫

Rd

[∫

Rd

ei(ω−y)T x dΛ(x)
]

ϕ(ω) dmd(ω) dµ(y),

which reduces to
∫
Rd [

∫
Rd f(ω − y) dµ(y)]ϕ(ω) dmd(ω) =

(f ∗ µ)(ϕ) and therefore proves Eq. (27).

The following result, called the Riemann-Lebesgue lemma,
is quoted from [Rud91, Theorem 7.5].

Lemma 23 (Riemann-Lebesgue) If f ∈ L1(Rd), then f̂ ∈
Cb(Rd), and ‖f̂‖∞ ≤ ‖f‖1.

The following theorem is a version of the Paley-Wiener the-
orem for C∞ functions, and is proved in [Str03, Theorem
7.2.2].

Theorem 24 (Paley-Wiener) Let f be a C∞ function sup-
ported in [−β, β]. Then f̂(ω + iσ) is a entire function of
exponential type β, i.e., ∃C such that

∣∣∣f̂(ω + iσ)
∣∣∣ ≤ Ceβ|σ|, (29)

and f̂(ω) is rapidly decreasing, i.e., ∃ cn such that
∣∣∣f̂(ω)

∣∣∣ ≤ cn

(1 + |ω|)n
, ∀n ∈ N. (30)

Conversely, if F (ω + iσ) is an entire function of exponential
type β, and F (ω) is rapidly decaying, then F = f̂ for some
such function f .

The following lemma is a corollary of the Paley-Wiener the-
orem, and is proved in [Mal98, Theorem 2.6].

Lemma 25 ([Mal98]) If g 6= 0 has compact support, then
its Fourier transform ĝ cannot be zero on a whole interval.
Similarly, if ĝ 6= 0 has compact support, then g cannot be
zero on a whole interval.

14Let µ be a finite Borel measure and f be a bounded measurable
function on Rd. We then define a finite Borel measure fµ by

(fµ)(E) =

∫

Rd

IE(x)f(x) dµ(x), (26)

where E is an arbitrary Borel set and IE is its indicator function.

References
[Aro50] N. Aronszajn. Theory of reproducing kernels.

Trans. Amer. Math. Soc., 68:337–404, 1950.
[BJ02] F. R. Bach and M. I. Jordan. Kernel independent

component analysis. Journal of Machine Learn-
ing Research, 3:1–48, 2002.

[Dud02] R. M. Dudley. Real Analysis and Probability.
Cambridge University Press, Cambridge, UK,
2002.

[FGSS08] K. Fukumizu, A. Gretton, X. Sun, and
B. Schölkopf. Kernel measures of conditional
dependence. In J.C. Platt, D. Koller, Y. Singer,
and S. Roweis, editors, Advances in Neural In-
formation Processing Systems 20, pages 489–
496, Cambridge, MA, 2008. MIT Press.

[GBR+07] A. Gretton, K. M. Borgwardt, M. Rasch,
B. Schölkopf, and A. Smola. A kernel method
for the two sample problem. In B. Schölkopf,
J. Platt, and T. Hoffman, editors, Advances
in Neural Information Processing Systems 19,
pages 513–520. MIT Press, 2007.

[GHS+05] A. Gretton, R. Herbrich, A. Smola, O. Bousquet,
and B. Schölkopf. Kernel methods for measur-
ing independence. Journal of Machine Learning
Research, 6:2075–2129, December 2005.

[GSB+04] A. Gretton, A. Smola, O. Bousquet, R. Herbrich,
B. Schölkopf, and N. Logothetis. Behaviour
and convergence of the constrained covariance.
Technical Report 130, MPI for Biological Cy-
bernetics, 2004.

[GW99] C. Gasquet and P. Witomski. Fourier Analysis
and Applications. Springer-Verlag, New York,
1999.

[Mal98] S. G. Mallat. A Wavelet Tour of Signal Process-
ing. Academic Press, San Diego, 1998.

[RS72] M. Reed and B. Simon. Functional Analysis.
Academic Press, New York, 1972.

[Rud91] W. Rudin. Functional Analysis. McGraw-Hill,
USA, 1991.

[SGSS07] A. J. Smola, A. Gretton, L. Song, and
B. Schölkopf. A Hilbert space embedding for
distributions. In Proc. 18th International Con-
ference on Algorithmic Learning Theory, pages
13–31. Springer-Verlag, Berlin, Germany, 2007.

[Sho00] G. R. Shorack. Probability for Statisticians.
Springer-Verlag, New York, 2000.

[SS02] B. Schölkopf and A. J. Smola. Learning with
Kernels. MIT Press, Cambridge, MA, 2002.

[Ste02] I. Steinwart. On the influence of the kernel
on the consistency of support vector machines.
Journal of Machine Learning Research, 2:67–
93, 2002.

[Str03] R. S. Strichartz. A Guide to Distribution Theory
and Fourier Transforms. World Scientific Pub-
lishing, Singapore, 2003.

[Wen05] H. Wendland. Scattered Data Approximation.
Cambridge University Press, Cambridge, UK,
2005.

122

Almost Tight Upper Bound for Finding Fourier Coefficients of Bounded
Pseudo-Boolean Functions

Sung-Soon Choi∗ Kyomin Jung Jeong Han Kim†

Random Graph Research Center Department of Mathematics Department of Mathematics and
Yonsei University MIT Random Graph Research Center

Seoul, 120-749 Korea Cambridge, MA02139, USA Yonsei University
ss.choi@yonsei.ac.kr kmjung@mit.edu Seoul, 120-749 Korea

jehkim@yonsei.ac.kr

Abstract

A pseudo-Boolean function is a real-valued func-
tion defined on{0, 1}n. A k-bounded function is
a pseudo-Boolean function that can be expressed
as a sum of subfunctions each of which depends
on at mostk input bits. Thek-bounded functions
for constantk play an important role in a number
of research areas including molecular biology, bio-
physics, and evolutionary computation. In this pa-
per, we consider the problem of finding the Fourier
coefficients ofk-bounded functions with a series
of function evaluations at any input strings. Sup-
pose that ak-bounded functionf withm non-zero
Fourier coefficients is given. Our main result is to
present an adaptive randomized algorithm to find
the Fourier coefficients off with high probabil-
ity in O (m logn) function evaluations for con-
stantk. Up to date, the best known upper bound
isO (α(n,m)m logn), whereα(n,m) is between
n

1
2 andn depending onm. Thus, our bound im-

proves the previous bound by a factor ofΩ
(
n

1
2

)
.

Also, it is almost tight with respect to the known

lower boundΩ
(

m log n
log m

)
. To obtain the main re-

sult, we first show that the problem of finding the
Fourier coefficients of ak-bounded function is re-
duced to the problem of finding ak-bounded hy-
pergraph with a certain type of queries under an
oracle with one-sided error. For this, we devise a
method to test with one-sided error whether there
is a dependency within some set of input bits among
a collection of sets of input bits. Then, we give a
randomized algorithm for the hypergraph finding
problem and obtain the desired bound by analyz-
ing the algorithm based on a large deviation result
for a sum of independent random variables.

∗This work was supported by the Korea Science and Engineer-
ing Foundation (KOSEF) grant funded by the Korea government
(MOST) (No. R16-2007-075-01000-0).

†This work was partially supported by Yonsei University Re-
search Funds 2006-1-0078 and 2007-1-0025, and by the second
stage of the Brain Korea 21 Project in 2007, and by the Korea
Research Foundation Grant funded by the Korean Government
(MOEHRD) (KRF-2006-312-C00455).

1 Introduction

A pseudo-Booleanfunction is a real-valued function defined
on the set of binary strings of fixed length. If a pseudo-
Boolean function can be expressed as a sum of subfunctions
each of which depends on at mostk input bits, it is called
k-bounded. Given a2-SAT formula, for example, the num-
ber of clauses an assignment satisfies is a2-bounded pseudo-
Boolean function of the assignment. Note that ak-bounded
pseudo-Boolean function is a polynomial of Boolean vari-
ables of degreek or less, and vice versa. In this paper,
we consider the problem of finding the Fourier coefficients
of k-bounded pseudo-Boolean functions. In the problem,
we assume the oracle that, given any binary string, returns
the function value at the string. Our main concern is the
query complexity to solve the problem, i.e., the number of
function evaluations required to find the Fourier coefficients
of k-bounded pseudo-Boolean functions. (Unless otherwise
specified, ak-bounded function means ak-bounded pseudo-
Boolean function in this paper.)

Thek-bounded functions have played an important role
in molecular biology and biophysics. In those areas, a num-
ber of mathematical models have been proposed to study
the evolution of a population of organisms (or biological ob-
jects) [Ewe79, FL70, KL87, Lew74, MP89]. In many of the
models including the NK model [Kau89],k-bounded func-
tions have been used to measure the fitness of an organism
in an environment. In the NK model [Kau89], each sub-
function represents the contribution of a gene of the organ-
ism to the overall fitness, interacting with a fixed number
of other genes. Hence, ak-bounded function may be re-
garded as a sum of subfunctions each of which depends on
at mostk genes. Thek-bounded functions with smallk in
the NK model induce the fitness landscapes of reasonable
evolvability and complexity, which were used for describ-
ing the evolution of living systems [Kau93]. They were also
used as a benchmark for comparing the landscapes arising in
RNA folding [FSBB+93]. In this regard,k-bounded func-
tions with smallk have been paid attention.

Thek-bounded functions have been also used as testbed
problems for comparing the performance of heuristic algo-
rithms in the area of evolutionary computation [CC06, HG97,
MM99, MG99, PG00]. The problem of maximizing arbi-
traryk-bounded functions is NP-hard even fork = 2 as it is
at least as hard as the MAX-2-SAT problem [GJS76]. The
larger the value ofk is, the higher is the degree of the depen-

123

dency among the input bits in ak-bounded function. By con-
trolling the degree of the dependency (the value ofk), in gen-
eral, we may control the difficulty of the problem of maxi-
mizing thek-bounded functions. There are good heuristic al-
gorithms to approximate the maximum of ak-bounded func-
tion when the dependency among the input bits are known
[dBIV97, Gol89, MM99, PGCP00, Str04].

Fourier transform is a formal approach to define the de-
pendency among the input bits of a pseudo-Boolean func-
tion. There have been a number of papers addressing the
problem of finding the Fourier coefficients of ak-bounded
function f : {0, 1}n → R with constantk. Kargupta and
Park [KP01] presented a deterministic algorithm usingO(nk)
function evaluations. Later, Heckendorn and Wright [HW03,
HW04] proposed a randomized algorithm for the problem.
They analyzed the algorithm to show that, with negligible er-
ror probability, it finds the Fourier coefficients inO(n2 logn)
function evaluations on average for thek-bounded functions
with O(n) non-zero Fourier coefficients generated from a
random model. For thek-bounded functions withm non-
zero Fourier coefficients, Choi, Jung, and Moon [CJM08]

proved that any randomized algorithm requiresΩ
(

m log n
log m

)
function evaluations to find the Fourier coefficients with er-
ror probability at most a given constant. By analyzing the
algorithm of Heckendorn and Wright, they also proved that
O(α(n,m)m logn) function evaluations, whereα(n,m) is
betweenn

1
2 andn depending onm, are enough to find the

Fourier coefficients. Recently, for2-bounded functions of
which non-zero Fourier coefficients are betweenn−a andnb

in absolute value for some positive constantsa andb, Choi
and Kim [CK08] showed that there exists a deterministic

algorithm usingO
(

m log n
log m

)
function evaluations, provided

thatm ≥ nε for any constantε > 0. This algorithm is non-
adaptive while the previous algorithms are adaptive.1 How-
ever, an explicit construction of the algorithm is unknown.

Our main result is

Theorem 1 Suppose thatf is ak-bounded function defined
on{0, 1}n for constantk and thatf hasm non-zero Fourier
coefficients. Then, there exists an adaptive algorithm to find
the Fourier coefficients off in O (m logn) function evalua-
tions with probability1−O

(
1
n

)
.

We prove Theorem 1 by showing an explicit construction of
the desired algorithm. This result improves the best known

upper boundO (α(n,m)m logn) by a factor ofΩ
(
n

1
2

)
and

it is almost tight with respect to the lower boundΩ
(

m log n
log m

)
.

We should note that there have been a number of papers
addressing the problem of finding the Fourier coefficients of
Boolean functions [BJT04, BT96, Jac97, KM93, Man94].
The KM algorithm [KM93] is one of the most famous al-
gorithms for the problem and most of the subsequent algo-
rithms have been based on the algorithm. These algorithms
for Boolean functions can be extended to pseudo-Boolean
functions. However, the extensions of the algorithms do not

1An algorithm is calledadaptive if the algorithm uses a se-
quence of queries in which some queries depend on the previous
queries. Otherwise, it is callednon-adaptive.

give a good bound fork-bounded pseudo-Boolean functions.
One of the main reasons is that their query complexities de-
pend on the values of the target function. For example, for
a k-bounded functionf , (to the best of our knowledge) the
most efficient extension [BJT04] among those has the query

complexity ofΩ
(
r
(

B
θ

)2)
, wherer is the number of input

bits on whichf depends,B is the maximum absolute value
of f , andθ is the minimum absolute value of the non-zero
Fourier coefficients off . Thus, the query complexity may
be made arbitrarily large depending onB andθ.2 The query
complexity of our algorithm is independent of the values of
the target function.

To prove Theorem 1, we first show that the problem of
finding the Fourier coefficients of ak-bounded function is
reduced to the problem of finding ak-bounded hypergraph3

(with a certain type of queries under a probabilistic oracle).
For a pseudo-Boolean functionf defined on{0, 1}n, we con-
sider the hypergraph representing the dependency among the
input bits as follows. Suppose thatH is a subset of[n], where
[n] is the set of the integers from1 to n. We say that there is
a linkageamong the input bits inH if, for any additive ex-
pression off , f =

∑
i fi, there isj such thatH is included

in the support set offj .4 The linkage graphof f is a hy-
pergraphGf = ([n], E), where each bit in[n] represents a
vertex and a subsetH of [n] belongs to the edge setE if and
only if there is a linkage among the bits inH.

For example, consider the following function:

f(x1, x2, x3, x4, x5) = 5x1x2 − 3x2x3x4.

If we letf1(x1, x2) = 5x1x2 andf2(x2, x3, x4) = −3x2x3x4,
f can be represented as an additive expression,f = f1 + f2.
In this expression, each subfunction off has a support set of
which size is at most three and sof is 3-bounded. It can be
shown that the support sets off1 andf2, {1, 2} and{2, 3, 4},
are hyperedges ofGf . By definition of linkage, the non-
empty subsets of{1, 2} and{2, 3, 4} are also hyperedges of
Gf . Generally, if a set of vertices is a hyperedge ofGf , then
any non-empty subset of the set is also a hyperedge ofGf .
We call this property thehierarchical propertyamong hyper-
edges. The linkage graphGf has nine hyperedges:{1}, {2},
{3}, {4}, {1, 2}, {2, 3}, {2, 4}, {3, 4}, and{2, 3, 4}. There
is no hyperedge containing5 sincef does not depend onx5.

It is known that, for ak-bounded function with constant
k, the problem of finding the Fourier coefficients is asymp-
totically equivalent to the problem of finding the linkage graph
in terms of the number of function evaluations [HW03, HW04].

2To see a typical behavior of the complexity, we may consider
the NK model [Kau89]. The NK model with parametersN = n
andK = k − 1 generates a class ofk-bounded functions that are
expressed as a sum ofn subfunctions. Whenf is a function ran-
domly generated from the NK model with parametersN = n and
K = k− 1 for constantk, it is not difficult to show thatr = Θ(n),
B = Ω(n), andθ = O(1) with high probability. Thus, the query
complexity of the algorithm [BJT04] forf is Ω

`
n3

´
with high

probability while the query complexity of our algorithm forf is
O (n log n).

3A hypergraph isk-bounded if the order of each hyperedge is at
mostk.

4The term linkage is from genetics and it means the interaction
among the genes.

124

(The description of the asymptotic equivalence is provided in
Section 2.) In a hypergraph, we say that a hyperedgecrosses
amongcertain disjoint sets of vertices if the number of the
sets is equal to the order of the hyperedge and each of the
sets contains exactly one vertex in the hyperedge. (By def-
inition, a hyperedge of order one crosses among any set of
vertices including the hyperedge.) Our main contribution is
to show that, given a collection of disjoint sets of vertices,
the existence of a hyperedge of the linkage graph crossing
among those sets is testable with one-sided error by using a
constant number of function evaluations.

Theorem 2 Suppose thatf is ak-bounded function defined
on{0, 1}n andS1, . . . , Sj arej disjoint subsets of[n]. Then,
we can use2j function evaluations off to test the existence
of a hyperedge in the linkage graphGf crossing amongSi’s,
where the test result is correct with probability at least1

22k

if such a hyperedge exists and it is correct with probability1
otherwise.

Theorem 2 is an extension of a previous theorem of Heck-
endorn and Wright [HW04] (Proposition 1 in Section 2),
which holds only for the case when each ofSi’s is a sin-
gleton set of vertices. To prove Theorem 2, we devise a
random perturbation method for testing the existence of a
hyperedge. It tests the existence of a hyperedge by flipping
a randomly generated string at certain bit positions and eval-
uating the function values at the flipped strings. We obtain
the desired result by analyzing the method. The analysis ex-
tensively uses the properties of basis functions in the Fourier
transform of ak-bounded function.

Theorem 2 implies that the problem of finding the link-
age graph of ak-bounded function is reduced to the follow-
ing graph finding problem. Suppose that a hypergraphG
hasn vertices andm hyperedges and the hyperedges ofG
are unknown. Across-membership queryasks the existence
of a hyperedge crossing among certain disjoint sets of ver-
tices. We assume theoracle with one-sided errorδ as fol-
lows. Given a cross-membership query, the oracle correctly
answers with probability at least1− δ if the true answer for
the query is YES and it correctly answers with probability1
otherwise. The problem is to find the hyperedges ofG by
using as few queries to the oracle as possible.

In fact, it is enough for our purpose to consider the hyper-
graph finding problem for thek-bounded hypergraphs with
the hierarchical property. Since we think that the problem is
of self interest, however, we consider the problem for arbi-
trary k-bounded hypergraphs. We present an adaptive ran-
domized algorithm for the problem to show

Theorem 3 Suppose thatG is an unknownk-bounded hy-
pergraph withn vertices andm edges for constantk. Then,
for any constant0 ≤ δ < 1, the hyperedges ofG can be
found with probability1−O

(
1
n

)
by usingO (m logn) cross-

membership queries under the oracle with one-sided errorδ.
(The number of cross-membership queries is2O(k) in k.)

Our algorithm for Theorem 3 iteratively uses binary search to
find the hyperedges. In this sense, it is analogous to the algo-
rithm of Angluin and Chen [AC04, AC05, AC06] for the hy-
pergraph finding problem with edge-detecting queries or to
the algorithm of Reyzin and Srivastava [RS07] for the graph

finding problem with edge-counting (or additive) queries.5

On the other hand, since the answers of the oracle may con-
tain errors in our situation, we need to handle the error bound
more carefully, which is the main task in proving Theorem
3. A large deviation result for a sum of independent random
variables with geometric distribution is crucially used for the
task. (There have been a number of papers addressing the
problem of finding a graph or a hypergraph by using various
types of queries. For example, see [AA04, AA05, ABK+02,
ABK+04, AC06, BAA+01, BGK05, CK08, GK00].)

Theorem 1 is obtained from Theorems 2 and 3 and the
equivalence between the problems of finding the Fourier co-
efficients and the linkage graph.

The remainder of the paper is organized as follows. In
Section 2, we review some basic facts and previous results
for the problem of finding the Fourier coefficients ofk-bounded
functions. In Section 3, we prove Theorem 2, which states
the linkage testability of a linkage graph, by proving rele-
vant lemmas. Section 4 deals with the graph finding prob-
lem with cross-membership queries under the probabilistic
oracle as an independent problem. In the section, we give a
randomized algorithm for the problem and analyze it to ob-
tain Theorem 3. In Section 5, some remarks on the query
and time complexity of the proposed algorithm are provided
along with a factor of improving the complexity. Finally,
concluding remarks closes the paper in Section 6.

2 Preliminaries

2.1 Linkage Test Function

Munetomo and Goldberg [MG99] proposed a perturbation
method to test for the existence of linkage in a2-subset of
[n]. Given a2-subsetS and a stringx, it checks the non-
linearity between the two bits inH by flipping the two bits
of x individually and simultaneously and adding/subtracting
the function values at the flipped strings. Heckendorn and
Wright [HW04] generalized the method to detect linkage for
subsets of any order. Suppose thatf is a pseudo-Boolean
function defined on{0, 1}n, S is a subset of[n], andx is a
string in{0, 1}n. They considered thelinkage test function
L depending onf , S, andx as follows:

L(f, S, x) =
∑
A⊆S

(−1)|A|f (x⊕ 1A) .

Here,1A represents the string consisting of ones in the bit
positions ofA and zeros in the rest. For two stringsx, y ∈
{0, 1}n, x⊕ y means the bitwise addition modulo2 of x and
y. The linkage test functionL performs a series of function
evaluations atx and the strings obtained by flippingx in or-
der to detect the existence of the linkage among the bits inS.
Heckendorn and Wright [HW04] proved the following theo-
rem, which shows the usefulness of the linkage test function
in finding hyperedges ofGf .

5An edge-detecting query asks the existence of an edge (or a
hyperedge) in a set of vertices while an edge-counting query asks
the number of edges (or hyperedges) in a set of vertices.

125

Proposition 1 Suppose thatf is a k-bounded function de-
fined on{0, 1}n. Then, the followings hold:
(a) A subsetS of [n] is a hyperedge ofGf if and only if
L(f, S, x) 6= 0 for some stringx ∈ {0, 1}n.
(b) For a hyperedgeS of orderj in Gf , the probability that
L(f, S, x) 6= 0 for a string x chosen uniformly at random
from{0, 1}n is at least 1

2k−j .

Proposition 1 indicates that the linkage test function de-
termines the existence of a hyperedge with one-sided error.
Thus, by repeatedly evaluating the linkage test function for
randomly chosen strings, we can make the error arbitrarily
small. In particular, whenk is a constant, this implies that
a constant number of linkage tests (consequently, a constant
number of function evaluations) is enough for determining
the existence of a hyperedge with error probability at most a
given constant. The hierarchical property among hyperedges
implies that, forj ≥ 2, a j-subsetH can be a hyperedge
only if every(j − 1)-subset ofH is a hyperedge. Based on
this observation, Heckendorn and Wright [HW04] proposed
a randomized algorithm that performs linkage test only for
such a hyperedge candidate: The algorithm first detects the
hyperedges of order one by investigating all the singleton
subsets of[n]. Then, forj from 2 to k, it detects the hyper-
edges of orderj by performing linkage test for the hyperedge
candidates of orderj that have been identified from the in-
formation of the hyperedges of lower order. Recently, the
performance of the algorithm was fully analyzed by Choiet
al. [CJM08]. Given ak-bounded functionf with m hyper-
edges and a constantε > 0, they showed that the algorithm
finds the linkage graphGf in O (α(n,m)m logn) function
evaluations with error probability at mostε, whereα(n,m)
is betweenn

1
2 andn depending onm.

2.2 A Fourier Transform

Walsh transform is a Fourier transform for the space of pseudo-
Boolean functions in which a pseudo-Boolean function is
represented as a linear combination of2n basis functions
calledWalsh functions[Wal23]. For each subsetH of [n],
the Walsh function corresponding toH, ψH : {0, 1}n → R,
is defined as

ψH(x) = (−1)
P

i∈H x[i],

wherex[i] represents theith bit value inx. If we define an
inner product of two pseudo-Boolean functionsf andg as

〈f, g〉 =
∑

x∈{0,1}n

f(x) · g(x)
2n

,

the set of Walsh functions,{ψH | H ⊆ [n]}, becomes an or-
thonormal basis of the space of pseudo-Boolean functions.
Hence, a pseudo-Boolean functionf can be represented as

f =
∑

H⊆[n]

f̂(H) · ψH ,

wheref̂(H) = 〈f, ψH〉 is called theFourier coefficientcor-
responding toH. Specifically, iff̂(H) 6= 0 andf̂(H ′) = 0
for anyH ′) H, f̂(H) is called amaximal non-zero Fourier
coefficientof f . We refer to [HW99] for surveys of the prop-
erties of Walsh functions and Walsh transform in the space
of pseudo-Boolean functions.

Heckendorn and Wright [HW04] provided a number of
results to show the relation between the linkage test function
and the Fourier coefficients. Some of them are summarized
in the following proposition.

Proposition 2 Suppose thatf is a pseudo-Boolean function
defined on{0, 1}n. Then, the followings hold:
(a)For a subsetH of [n], f̂(H) is a maximal non-zero Fourier
coefficient off if and only ifH is a maximal hyperedge of
Gf .
(b) For a maximal hyperedgeH ⊆ [n],

f̂(H) =
L(f,H, 0n)

2|H| .

(c) For a subsetH of [n],

f̂(H) =
L(f,H, 0n)

2|H| −
∑

H(H′

f̂(H ′).

(d) For subsetsH andH ′ of [n] withH ⊆ H ′,

L(f,H ′, 0n) =
∑

A⊆H′\H

(−1)|A|L(f,H, 1A).

Proposition 2 (a) says that the subsets of[n] with maxi-
mal non-zero Fourier coefficients off are the maximal hy-
peredges in the linkage graph off . Thus, from Proposi-
tion 2 (b), the maximal non-zero Fourier coefficients off
are found by evaluating the linkage test function at the zero
string for each maximal hyperedge. Once the maximal non-
zero Fourier coefficients are found, the Fourier coefficients
corresponding to the subsets of lower orders can be found
by successively applying Proposition 2 (c). Proposition 2 (d)
implies that no additional function evaluations are required
for finding the Fourier coefficients corresponding to the sub-
sets of lower orders. Hence, iff is k-bounded for constant
k andm is the number of hyperedges inGf , O(m) addi-
tional function evaluations are enough to find the Fourier

coefficients off . On the other hand,Ω
(

m log n
log m

)
function

evaluations are required for finding the linkage graph of a
k-bounded function for constantk as shown in [CJM08].
Thus, the problem of finding the Fourier coefficients of a
k-bounded function for constantk is equivalent to the prob-
lem of finding the linkage graph in terms of the number of
function evaluations required up to a constant factor.

3 Generalized Linkage Test

3.1 Generalized Linkage Test Function

Let f be a pseudo-Boolean function defined on{0, 1}n, S
be a collection of disjoint subsets of[n], andx be a string in
{0, 1}n. We define thegeneralized linkage test functionL∗

depending onf , S, andx as follows:

L∗(f,S, x) =
∑
S′⊆S

(−1)|S
′|f

(
x⊕

(⊕
A∈S′

1A

))
.

If we let SH = {{a} | a ∈ H} for a subsetH of [n], we see
thatL∗(f,SH , x) = L(f,H, x) for anyx ∈ {0, 1}n.

The following lemmas describes the basic properties of
the generalized linkage test function.

126

Lemma 4 Suppose thatS is a collection of disjoint subsets
of [n]. Then, the followings hold:
(a) (Linearity) If f1, . . . , f` are pseudo-Boolean functions
defined on{0, 1}n andc1, . . . , c` are constants,

L∗

(∑̀
i=1

cifi,S, x

)
=
∑̀
i=1

ciL
∗(fi,S, x)

for all x ∈ {0, 1}n.
(b) (Recursion)If f is a pseudo-Boolean function defined on
{0, 1}n,

L∗(f,S, x) = L∗(f,S \ {A}, x)− L∗(f,S \ {A}, x⊕ 1A)

for anyA ∈ S and anyx ∈ {0, 1}n.

Proof: Omitted.

Lemma 5 Suppose thatf is a pseudo-Boolean function de-
fined on{0, 1}n andS is a collection of disjoint subsets of
[n]. If the support set off is disjoint with someA ∈ S,
L∗(f,S, x) = 0 for all x ∈ {0, 1}n.

Proof: Omitted.

3.2 Linkage Test Theorem

A collection of disjoint subsets of[n], R = {R1, . . . , Rj},
is called asetwise subcollectionof S if Ri ⊆ Si for all 1 ≤
i ≤ j. In this case, we denote byR b S. Note that a setwise
subcollectionR of S is allowed to contain multiple empty
sets from the definition. We consider a random modelΓ(S)
that generates a setwise subcollection ofS as follows: For
eachSi ∈ S, we select each element inSi independently
and with probability1

2 and put it intoRi. Then, we build a
setwise subcollectionR of S by lettingR = {Ri | 1 ≤ i ≤
j}. In the following, str(R) denotes the set of the strings,
x’s, such thatx has the same bit value in the bit positions in
Ri for all 1 ≤ i ≤ j:

str(R) = {x ∈ {0, 1}n | x[a] = x[b] for all a, b

such thata, b ∈ Ri for somei with 1 ≤ i ≤ j} .

Theorem 6 Suppose thatf is a k-bounded function andS
is a collection of disjoint subsets of[n]. Then, the followings
hold:
(a) The linkage graphGf contains a hyperedge crossing among
S if and only if there existR b S andx ∈ str(R) such that
L∗(f,R, x) 6= 0.
(b) If Gf contains a hyperedge crossing amongS, the proba-
bility that L∗(f,R, x) 6= 0 for a randomly generatedR from
Γ(S) and a stringx chosen uniformly at random fromstr(R)
is at least 1

22k .

Theorem 6 implies Theorem 2 and provides an efficient method
to test for the existence of a hyperedge crossing among a
given collection of sets of vertices in the linkage graph.

Proof: Since (b) implies the only-if part of (a), we first prove
the if part of (a) and then prove (b).

Suppose thatGf does not contain any hyperedge cross-
ing amongS. LetR be a setwise subcollection ofS and letx
be a string in{0, 1}n. SinceGf does not contain any hyper-
edge crossing amongS,Gf does not contain any hyperedge

crossing amongR. This implies thatf̂(H) = 0 for all H
such thatH ∩A 6= ∅ for all A ∈ R, by definition ofGf and
Proposition 2. Thus, by Lemma 4 (a),

L∗(f,R, x) =
∑
H

f̂(H)L∗ (ψH ,R, x) ,

where the summation is over the subsets,H ’s, such thatH ∩
A = ∅ for someA ∈ R. Since the support set ofψH isH for
anyH ⊆ [n], L∗ (ψH ,R, x) = 0 for H ’s in the summation
by Lemma 5 and soL∗(f,R, x) = 0.

Now, consider the proof of (b). LetS = {S1, . . . , Sj}.
For a setwise subcollectionR of S, letR = {R1, . . . , Rj},
whereRi ⊆ Si for all 1 ≤ i ≤ j. Let ri = |Ri| and
r =

∑j
i=1 ri. For eachRi, set a distinct bit positionai ∈

[n − r + j] and, for eachi′ ∈ [n] \ (
⋃

iRi), set a distinct
bit position bi′ ∈ [n − r + j]. For eachH ⊆ [n], define
ϕH,R : {0, 1}n−r+j → R as follows: If |H ∩ Ri| is odd for
all 1 ≤ i ≤ j,

ϕH,R(y) = (−1)
Pj

i=1 y[ai]+
P

i′∈H\(
S

i Ri)
y[bi′]

for anyy ∈ {0, 1}n−r+j . Otherwise,ϕH,R is the zero func-
tion that assigns zero value to all input stringsy ∈ {0, 1}n−r+j .
For eachx ∈ str(R), assign the stringyx,R ∈ {0, 1}n−r+j

such thatyx,R[ai] = x[a] for somea ∈ Ri for all 1 ≤ i ≤ j
andyx,R[bi′] = x[i′] for all i′ ∈ [n] \ (

⋃
iRi). Note that

{yx,R|x ∈ str(R)} = {0, 1}n−r+j and the setsstr(R) and
{yx,R|x ∈ str(R)} are in one-to-one correspondence. Let-
ting SR = {{ai} | 1 ≤ i ≤ j}, we have

Claim 7 For anyH ⊆ [n],

L∗(ψH ,R, x) = L∗(ϕH,R,SR, yx,R)

for all x ∈ str(R).

Proof: Suppose that|H∩Ri| is odd for all1 ≤ i ≤ j. Letui

be a bit position inH∩Ri for 1 ≤ i ≤ j. For allx ∈ str(R),∑
u∈H∩Ri

x[u] = |H ∩ Ri| · x[ui] = x[ui] (mod 2) for all
1 ≤ i ≤ j and so

ψH(x) = (−1)
P

i

P
u∈H∩Ri

x[u]+
P

i′∈H\(
S

i Ri)
x[i′]

= (−1)
P

i x[ui]+
P

i′∈H\(
S

i Ri)
x[i′]

= (−1)
P

i yx,R[ai]+
P

i′∈H\(
S

i Ri)
yx,R[bi′]

= ϕH,R(yx,R).

Let xR′ = x ⊕
(⊕

A∈R′ 1A

)
for R′ ⊆ R. If x ∈ str(R),

xR′ ∈ str(R) and yxR′ ,R = yx,R ⊕
(⊕

i:Ri∈R′ 1{ai}
)
.

127

Hence, for allx ∈ str(R),

L∗(ψH ,R, x)

=
∑
R′⊆R

(−1)|R
′|ψH

(
x⊕

(⊕
A∈R′

1A

))
=
∑
R′⊆R

(−1)|R
′|ψH (xR′)

=
∑
R′⊆R

(−1)|R
′|ϕH,R

(
yxR′ ,R

)
=
∑
R′⊆R

(−1)|{ai|Ri∈R′}|ϕH,R

(
yx,R ⊕

(⊕
i:Ri∈R′

1{ai}

))

=
∑

S′⊆SR

(−1)|S
′|ϕH,R

(
yx,R ⊕

(⊕
B∈S′

1B

))
= L∗(ϕH,R,SR, yx,R).

Now, suppose that|H∩Ri| is even for somei. For allx ∈
{0, 1}n, L∗(ψH ,R\{Ri}, x) = L∗(ψH ,R\{Ri}, x⊕1Ri

)
and soL∗(ψH ,R, x) = 0 by Lemma 4 (b). SinceϕH,R is
the zero function, on the other hand,L∗(ϕH,R,SR, y) = 0
for all y ∈ {0, 1}n−r+j . Hence,

L∗(ψH ,R, x) = L∗(ϕH,R,SR, yx,R)

for all x ∈ str(R).

Define the pseudo-Boolean functiongf,R : {0, 1}n−r+j →
R by

gf,R =
∑

H⊆[n]

f̂(H) · ϕH,R.

Claim 8 For all x ∈ str(R),

L∗(f,R, x) = L∗(gf,R,SR, yx,R).

Proof: By Lemma 4 (a) and Claim 7,

L∗(f,R, x) =
∑

H⊆[n]

f̂(H) · L∗(ψH ,R, x)

=
∑

H⊆[n]

f̂(H) · L∗(ϕH,R,SR, yx,R)

= L∗(gf,R,SR, yx,R),

for all x ∈ str(R).

Suppose thatGf contains a hyperedge crossing among
S.

Claim 9 Suppose that a setwise subcollectionR is randomly
generated fromΓ(S). Then, the probability that the linkage
graph ofgf,R has the hyperedge crossing amongSR is at
least 1

2k+j .

Proof: SinceGf contains a hyperedge crossing amongS,
there exist subsetsH ’s such thatf̂(H) 6= 0 andH ∩ Si 6= ∅
for all Si ∈ S. Among those subsets, we choose a maximal
subsetH∗ in viewpoint of the size of intersection withSi’s:
For each1 ≤ i ≤ j, |H∗ ∩ Si| ≥ |H ∩ Si| for anyH such
that f̂(H) 6= 0, H ∩ Si 6= ∅ for all Si ∈ S, and|H ∩ Sl| =

|H∗ ∩ Sl| for all 1 ≤ l ≤ i − 1. LetAi be a set consisting
of an element inH∗ ∩ Si and letBi = (H∗ ∩ Si) \ Ai. Let
R = {R1, . . . , Rj}, whereRi ⊆ Si for all 1 ≤ i ≤ j. Since
Ai ∪ Bi = H∗ ∩ Si and

∑
i |Ai ∪ Bi| =

∑
i |H∗ ∩ Si| ≤

|H∗| ≤ k, the probability thatRi ⊇ Ai andRi 6⊇ Bi for all
1 ≤ i ≤ j is at least 1

2k .
Consider the condition thatRi ⊇ Ai andRi 6⊇ Bi for all

1 ≤ i ≤ j. Denote

H∗ = {H ⊆ [n] | f̂(H) 6= 0,
H ⊇ (∪iBi) ∪ (H∗ \ (∪iSi)) ,
and|H ∩ Si| = |H∗ ∩ Si| for all i}.

It is clear thatH∗ ∈ H∗. Given the condition, ifϕH,R =
ϕH∗,R,H should be inH∗. Thus, in the Walsh transform of
gf,R, the Walsh coefficient corresponding to the Walsh func-
tion ϕH∗,R is equal to

∑
H f̂(H), where the summation is

overH ’s such thatH ∈ H∗ and(H ∩ Si \Bi) ⊆ Ri for all
i. SinceH∗ was chosen in a maximal sense as mentioned, for
anyH ∈ H∗, |H∩Si\Bi| = 1 for all 1 ≤ i ≤ j. Thus, when
we choose each element inSi \(Ai ∪Bi) independently and
with probability 1

2 and put it intoRi, the conditional proba-

bility that
∑

H f̂(H) 6= 0, where the summation is overH ’s
such thatH ∈ H∗ and(H ∩ Si \Bi) ⊆ Ri for all i, is at
least 1

2j . In this case,ϕH∗,R may be expressed asψH′ for
H ′ ⊆ [n− r + j] such that

H ′ = {ai | 1 ≤ i ≤ j}∪{bi′ | i′ ∈ (∪iBi)∪(H∗ \ (∪iSi))}
and the Walsh coefficient corresponding toψH′ in the Walsh
transform ofgf,R is non-zero. At this time, the linkage graph
of gf,R has thej-hyperedge crossing amongSR = {{ai} |
1 ≤ i ≤ j}.

Therefore, the probability that the linkage graph ofgf,R
has the hyperedge crossing amongSR for a setwise subcol-
lectionR randomly generated fromΓ(S) is at least 1

2k+j and
the proof is completed.

Sincef is a k-bounded function,gf,R is alsok-bounded.
Thus, when the linkage graph ofgf,R has the hyperedge
crossing amongSR, the probability thatL∗(gf,R,SR, y) 6=
0 for a stringy chosen uniformly at random from{0, 1}n−r+j

is at least 1
2k−j by Proposition 1 (b). Hence, by Claim 9, the

probability thatL∗(gf,R,SR, y) 6= 0 for a setwise subcollec-
tionR randomly generated fromΓ(S) and a stringy chosen
uniformly at random from{0, 1}n−r+j is at least 1

22k . Since
the setsstr(R) and{0, 1}n−r+j = {yx,R | x ∈ str(R)}
are in one-to-one correspondence, we have the part (b) of the
theorem by Claim 8.

4 Finding Graphs with Cross-Membership
Queries

In this section, we focus on the problem to find an unknown
hypergraph with cross-membership queries under the oracle
with one-sided errorδ. Recall that, given a cross-membership
query, the oracle with one-sided errorδ correctly answers
with probability at least1−δ if the true answer for the query
is YES and it correctly answers with probability1 otherwise.
Section 4.1 presents a randomized algorithm for the graph
finding problem. The algorithm is analyzed in Section 4.2,
which induces Theorem 3.

128

GRAPHFINDINGALGORITHM(n,k,δ)
// Ej : the set of the hyperedges of orderj found so far
// Q : the set of the vertices in the hyperedges of orderj found so far
// W : the set of the verticesv such that all the hyperedges of orderj containingv have been found by the algorithm

for j from 1 to k
Q← ∅,W ← ∅;
Ej ← ∅;
repeat

(Si)
j
i=1 ← CHECKEXISTENCE(∅,W ,j);

if (Si)
j
i=1 = NULL, break;

v ← BINARY SEARCH((Si)
j
i=1,1);

Q← Q ∪ {v};
whileQ \W 6= ∅

choose a vertexv in Q \W ;
Ev,j ← FINDHYPEREDGES({v},W ,j);
Ej ← Ej ∪ Ev,j ;

Q← Q ∪
(⋃

H∈Ev,j
H
)

;

W ←W ∪ {v};
E ←

⋃k
j=1Ej ;

returnE;

Figure 1: Main procedure of the algorithm GFA (The output of GFA is the set of the hyperedges of the input graph that have
been found. For the subprocedures, CHECKEXISTENCE, BINARY SEARCH, and FINDHYPEREDGES, see Figures 2, 3, and 4,
respectively.)

4.1 Algorithm for Finding Graphs

In this section, we present the algorithm to find an unknown
hypergraph with cross-membership queries under the oracle
with one-sided errorδ, theGraph Finding Algorithm(GFA).
The algorithm GFA takes three arguments: The number of
vertices of the unknown hypergraphn, the order of the hy-
pergraphk, and the error bound for the answer of the ora-
cle 0 ≤ δ < 1. It returns the set of the hyperedges of the
hypergraph that have found. The algorithm GFA consists
of the main procedure GRAPHFINDINGALGORITHM (Fig-
ure 1) and the three subprocedures CHECKEXISTENCE(Fig-
ure 2), BINARY SEARCH (Figure 3), and FINDHYPEREDGES
(Figure 4). In the pseudocode, the values ofn, k, andδ can
be accessed by any procedure. All other variables are local
to the given procedure.

Suppose thatG is an unknown hypergraph given to GFA
and letGj be the induced subgraph ofG consisting of the hy-
peredges of orderj for 1 ≤ j ≤ k. The algorithm GFA suc-
cessively finds the hyperedges ofG1, G2, and so on. After
the algorithm finally finds the hyperedges ofGk, it returns all
the hyperedges found so far. To find the hyperedges ofGj for
j = 1, . . . , k, the algorithm iteratively checks whether there
is a hyperedge of orderj that has not been found and, if such
a hyperedge exists, the algorithm finds all the hyperedges in
the connected component that the hyperedge belongs to. It
continues this process until there is no more hyperedge that
can be found.

In the main procedure GRAPHFINDINGALGORITHM, the
variableQ contains the vertices in the hyperedges found so
far. The variableW contains the verticesv such that all the
hyperedges of orderj containingv have been found by the

algorithm. The variableEj contains the hyperedges of order
j found so far. To check the existence of a new connected
component of two or more vertices in the subgraph consist-
ing of the hyperedges of orderj, GRAPHFINDINGALGO-
RITHM calls the subprocedure CHECKEXISTENCE.

Given sets of verticesU andW and a positive integer
j, the procedure CHECKEXISTENCEperforms a randomized
test for whether there is a hyperedge of orderj that contains
all the vertices inU and does not contain the vertices inW .
For the purpose, it iteratively generates a collection of dis-
joint sets of vertices(Si)

j
i=1 for a cross-membership query

as follows. LettingU = {v1, . . . , v|U |}, the setSi is fixed
with Si = {vi} for 1 ≤ i ≤ |U |. The setsS|U |+1, . . . , Sj

are generated as a uniform random partition of vertices in
[n] \ (U ∪W). If the oracle answers YES for the cross-
membership query with some(Si)

j
i=1, there is a hyperedge

of orderj crossing amongSi’s, which contains the vertices
in U and does not contain the vertices inW . In this case,
CHECKEXISTENCEreturns the generated sets(Si)

j
i=1. If the

oracle answers NO for all the generated collections of dis-
joint sets, CHECKEXISTENCE returns NULL regarding that
there is no such a hyperedge.

If CHECKEXISTENCE returns NULL, GRAPHFINDIN -
GALGORITHM regards that there is no hyperedge of order
j and continues to find the hyperedges of orderj + 1. If
CHECKEXISTENCE returns a (non-NULL) collection of dis-
joint sets of vertices, this implies that there is a hyperedge
of orderj. To find a vertex in the hyperedge, GRAPHFIND-
INGALGORITHM calls the subprocedure BINARY SEARCH.
Given a collection of disjoint sets of vertices(Si)

j
i=1 and a

positive integerr between1 andj, the procedure BINARY-

129

CHECKEXISTENCE(U ,W ,j)
label the vertices inU asv1, . . . , v|U |;
for i from 1 to |U |

Si ← {vi};
for i from |U |+ 1 to j

Si ← ∅;
repeatd ej√j+1

1−δ logne times
for eachv ∈ [n] \ (U ∪W)

choosei uniformly at random from{|U |+ 1, . . . , j};
Si ← Si ∪ {v};

if CMQ(S1, . . . , Sj) = YES
return(Si)

j
i=1;

return NULL;

Figure 2: Procedure to check the existence of a hyperedge of orderj that contains all the vertices inU and does not contain the
vertices inW (Here, CMQ((Si)

j
i=1) is the answer of the oracle for the cross-membership query(Si)

j
i=1.)

BINARY SEARCH((Si)
j
i=1,r)

if |Sr| = 1, return the vertex inSr;
repeatd 6(j+1)

1−δ logne times

choose a subsetS′r of Sr uniformly at random among the subsets of orderb |Sr|
2 c;

if CMQ(S1, . . . , Sr−1, S
′
r, Sr+1, . . . , Sj) = YES,

Sr ← S′r;
if |Sr| = 1, return the vertex inSr;

return a vertex inSr;

Figure 3: Procedure to search a vertex inSr that is contained in a hyperedge of orderj crossing amongS1, . . . , Sj (Here,
CMQ((Si)

j
i=1) is the answer of the oracle for the cross-membership query(Si)

j
i=1.)

SEARCH returns a vertex that is inSr and in one of the hy-
peredges crossing amongSi’s. Among the subsets ofSr of
orderb |Sr|

2 c, it chooses a subsetS′r uniformly at random. For
the sets of vertices(Si)

j
i=1 in whichSr is replaced withS′r,

it asks the cross-membership query to check whether there
is a hyperedge crossing among the sets. If the answer of the
oracle is YES, i.e., if it turns out that there is a hyperedge
crossing among the sets, it replacesSr with S′r. The proce-
dure BINARY SEARCH repeats this process at most a speci-
fied number of times until there remains one vertex inSr. If
there remains one vertex inSr before the specified number of
iterations, BINARY SEARCH returns the vertex. Otherwise, it
fails to exactly search the desired vertex and returns an arbi-
trary vertex inSr.

Once a vertex in the new connected component is found
by BINARY SEARCH, GRAPHFINDINGALGORITHM puts the
vertex intoQ and repeats the following process whileQ \
W 6= ∅. It chooses a vertexv in Q \ W and finds all the
hyperedges of orderj containingv by calling the subproce-
dure FINDHYPEREDGES. Given two sets of verticesU and
W and a positive integerj, FINDHYPEREDGESreturns the
set of the hyperedges of orderj that contain the vertices inU
and do not contain the vertices inW . In the procedure FIND-
HYPEREDGES, the variableA contains the vertices such that
the desired hyperedges of orderj containing the vertices inA

have been found. Initially,A is set to be empty. If|U | = j,
U is the only hyperedge of orderj containing the vertices
in U and FINDHYPEREDGESreturns the set consisting of
U . Otherwise, it recursively finds the desired hyperedges of
order j as follows. By calling CHECKEXISTENCE, It first
checks whether there is a hyperedge of orderj that contains
the vertices inU and does not contain the vertices inW . If
CHECKEXISTENCE returns NULL, FINDHYPEREDGESre-
gards that there is no such a hyperedge and returns the set
of the hyperedges found so far. Otherwise, it chooses a ver-
tex v in the hyperedge by calling BINARY SEARCH. Then,
it finds the hyperedges of orderj that contain the vertices in
U∪{v} and does not contain the vertices inW∪A by calling
FINDHYPEREDGESrecursively. After that, it putsv into A
and continues to find the desired hyperedges of orderj not
containing the vertices inA.

After all the hyperedges of orderj containingv are found,
they are put intoEj . The vertices contained in the hyper-
edges are put intoQ to mark that they are in the connected
component being searched. The vertexv is put intoW to
prevent the hyperedges of orderj containingv from being
searched again.

4.2 Algorithm Analysis

In this section, we analyze the algorithm GFA to obtain The-
orem 3. We first analyze the number of cross-membership

130

FINDHYPEREDGES(U ,W ,j)
if |U | = j, return{U};
EU,j ← ∅,A← ∅;
repeat

(Si)
j
i=1 ← CHECKEXISTENCE(U ,W ∪A,j);

if (Si)
j
i=1 = NULL, break;

v ← BINARY SEARCH((Si)
j
i=1,|U|+ 1);

EU,j ← EU,j∪ FINDHYPEREDGES(U ∪ {v},W ∪A,j);
A← A ∪ {v};

returnEU,j ;

Figure 4: Procedure to find the hyperedges of orderj that contain all the vertices inU and do not contain the vertices inW

queries used in GFA.

Lemma 10 Suppose thatG is an unknownk-bounded hy-
pergraph withn vertices andm hyperedges for constantk.
Then, for any constant0 ≤ δ < 1, GFA usesO (m logn)
cross-membership queries forG under the oracle with one-
sided errorδ.

Proof: Omitted.

To analyze the error probability of GFA, we need a large
deviation result for a sum of independent random variables
following geometric distributions. A random variableX fol-
lows the geometric distribution with parameterp if, for a coin
of which HEAD appears with probabilityp,X is the number
of coin tosses until the first HEAD appears. It is easy to show
that the expectation ofX is 1

p . We obtain the desired result
by using the Chernoff bound as follows [Che52, MR95].

Proposition 3 Suppose that, for some0 < p ≤ 1,X1, . . . , X`

are independent random variables such thatPr[Xi = 1] = p
and Pr[Xi = 0] = 1 − p for all 1 ≤ i ≤ `. Let X =∑`

i=1Xi. Then, for any0 ≤ α < 1,

Pr [X ≤ (1− α)E[X]] ≤ exp
(
−E[X]α2

2

)
.

Now, we present the result for a sum of independent random
variables following geometric distributions.

Lemma 11 Suppose that, for some0 < p ≤ 1, X1, . . . , X`

are independent random variables each of which follows the
geometric distribution with parameterp. LetX =

∑`
i=1Xi.

Then, for anyα > 0,

Pr [X > (1 + α)E[X]] ≤ exp
(
− α2`

2(1 + α)

)
.

Proof: Omitted.

Lemma 12 Suppose thatG is an unknownk-bounded hy-
pergraph withn vertices andm hyperedges for constantk.
Then, for any0 ≤ δ < 1, GFA correctly finds the hyper-
edges ofG with probability1−O

(
1
n

)
under the oracle with

one-sided errorδ.

Proof: We will show that the probability that GFA does not
find all the hyperedges ofGj is O

(
1
n

)
for eachj with 1 ≤

j ≤ k. Then, the lemma follows by the union bound.
We first consider the probability that CHECKEXISTENCE

performs incorrectly for given argumentsU ,W , andj. Sup-
pose that there is no hyperedge of orderj in G that con-
tains the vertices inU and does not contain the vertices in
W . In this case, CHECKEXISTENCE returns NULL and the
probability of CHECKEXISTENCE being incorrect is zero.
Suppose that there is a hyperedge of orderj in G that con-
tain the vertices inU and does not contain the vertices in
W . Let U = {v1, . . . , v|U |} and let the hyperedge of or-
derj be{v1, . . . , v|U |, v|U |+1, . . . , vj}. The probability that

v|U |+1, . . . , vj are put into differentSi’s is (j−|U |)!
(j−|U |)j−|U| . When

v|U |+1, . . . , vj are put into differentSi’s, the probability that

the oracle answers YES for the cross-membership query(Si)
j
i=1

is at least1− δ. Thus, for each iteration of the repeat loop in
CHECKEXISTENCE, the probability that the hyperedge is not
detected is at most1− (j−|U |)!

(j−|U |)j−|U| (1− δ). Hence, the prob-

ability that the hyperedge is not detected ford ej√j+1
1−δ logne

iterations of the repeat loop is at most(
1− (j − |U |)!

(j − |U |)j−|U | (1− δ)
) ej√j+1

1−δ log n

.

By using the fact that1− x ≤ e−x for any realx, this value
is at most

exp
(
− (j − |U |)!ej

√
j + 1

(j − |U |)j−|U | logn
)
.

After some calculation using the facts that(j−|U |)!
(j−|U |)j−|U| ≥ j!

jj

andj! >
√

2πj
(

j
e

)j
e

1
12j+1 , we have

exp
(
− (j − |U |)!ej

√
j + 1

(j − |U |)j−|U | logn
)

≤ exp (−(j + 1) log n)

=
1

nj+1
.

Thus, the probability of CHECKEXISTENCE being incorrect
is at most 1

nj+1 .
Now, we bound the probability that BINARY SEARCHper-

forms incorrectly for given arguments(Si)
j
i=1 and r. To

131

this end, we consider an imaginary procedure BS’ that is
the same as BINARY SEARCH except that, in the procedure
BS’, the repeat loop continues until the size ofSr becomes
one. In the repeat loop of BS’,Sr is iteratively halved and
updated. Suppose that the size ofSr becomes one afterSr

is halved and updatedt times. For1 ≤ i ≤ t, letXi be the
number of iterations of the repeat loop between the(i− 1)th
update and theith update ofSr. Let v be a vertex of a hy-
peredge crossing amongSi’s that is in the initialSr. When
v is in the(i− 1) times updatedSr, the probability thatv is
chosen as an element ofS′r is at least13 . (The extreme case is
when the order ofSr is three.) Thus,Xi follows a geometric
distribution with the parameter at least1

3 (1 − δ). If we let
X =

∑t
i=1Xi, by linearity of expectation,

E [X] ≤ 3t
1− δ

.

Thus,

Pr
[
X >

6(j + 1)
1− δ

logn
]

= Pr
[
X >

(
2(j + 1) log n

t

)(
3t

1− δ

)]
≤ Pr

[
X >

(
2(j + 1) log n

t

)
E[X]

]
.

SinceXi’s are independent, letting1 + α = 2(j+1) log n
t , we

apply Lemma 11 to the above inequality to obtain

Pr
[
X >

6(j + 1)
1− δ

logn
]
≤ exp

(
− α2t

2(1 + α)

)
≤ exp (−(j + 1) log n)

=
1

nj+1
.

Thus, the probability of BINARY SEARCH performing incor-
rectly is at most 1

nj+1 as it is at most the probability ofX

being more thand 6(j+1)
1−δ logne.

The number of CHECKEXISTENCEand BINARY SEARCH
being called for GFA to find the hyperedges ofGj are at
mostj2m, respectively. Thus, in the process of GFA find-
ing the hyperedges ofGj , the probability that CHECKEX-
ISTENCE or BINARY SEARCH incorrectly perform once or

more times is at most2j2m
nj+1 ≤ 2j2nj

nj+1 = 2j2

n , which isO
(

1
n

)
sincej ≤ k for constantk. This means that, with probability
1 − O

(
1
n

)
, CHECKEXISTENCE and BINARY SEARCH per-

forms correctly throughout the process of GFA finding the
hyperedges ofGj .

Suppose the condition that CHECKEXISTENCE and BI-
NARYSEARCH correctly perform throughout the process of
GFA finding the hyperedges ofGj . We show that, given
U , W , and j, FINDHYPEREDGEScorrectly return the set
of the hyperedges of orderj containing the vertices inU
and not containing the vertices inW . Suppose that, for any
u ∈ A, the hyperedges of orderj containing the vertices
in U ∪ {u} and not containing the vertices inW have been
found by FINDHYPEREDGES. At this time, any hyperedge
that has not been found is a hyperedge containing the ver-
tices inU ∪{v} and not containing the vertices inW ∪A for

somev 6∈ U ∪W ∪A. Thus, it must be found by a recursive
call of FINDHYPEREDGESlater.

Returning to the main procedure GRAPHFINDINGAL-
GORITHM, for each vertexv ∈ [n], the hyperedges of order
j containingv are found by FINDHYPEREDGESin the while
loop and so all the hyperedges ofGj are found by GFA. It
is clear that the set of the hyperedges of orderj returned by
GFA is included in the set of the hyperedges ofGj . Thus,
GFA finds the hyperedges ofGj correctly, given the condi-
tion that CHECKEXISTENCEand BINARY SEARCH correctly
perform. Therefore, GFA correctly finds the hyperedges of
Gj with probability1−O

(
1
n

)
.

Theorem 3 follows from Lemmas 10 and 12. Here, we
mention that it is more straightforward to obtainO

(
m log2 n

)
algorithm for the hypergraph finding problem (and hence
O
(
m log2 n

)
algorithm for finding the Fourier coefficients)

by querying the oracleΘ(log n) times for each cross-mem-
bership query to make the error probabilityO (1/poly(n)).

For thek-bounded hypergraph finding problem, it is not
difficult to show that any randomized algorithm requires
Ω (m logn) cross-membership queries for constantk to make
the error probability at most a given constant, provided that
m ≤ nk−ε for any constantε > 0. (To obtain the lower
bound, we may use Yao’s minimax principle [Yao77] and
the information-theoretic arguments based on the fact that,
for a cross-membership query, the oracle returns one of two
values.) Thus, GFA is optimal up to a constant factor, pro-
vided thatm ≤ nk−ε for any constantε > 0. Note that
this does not mean the optimality of the proposed algorithm
for the problem of finding Fourier coefficients. While the
oracle for the hypergraph finding problem gives binary val-
ues, function evaluations for the problem of finding Fourier
coefficients give real values that may give more information
about the Fourier coefficients.

5 Remarks on Query and Time Complexity

Suppose that we are given ak-bounded functionf defined
on{0, 1}n with m non-zero Fourier coefficients. To find the
Fourier coefficients off , we first find the hyperedges of the
linkage graph off . From Theorem 6, we have the oracle with
one-sided errorδ = 1− 1

22k that gives the answer for a cross-
membership query by using2k function evaluations. Since
f hasm non-zero Fourier coefficients, the linkage graph of
f has at most2km hyperedges. Given ak-bounded hyper-
graph withn vertices and at most2km hyperedges, GFA uses

O
(

(2e)kk3.5

1−δ m logn
)

cross-membership queries as shown

in the proof of Lemma 10. Thus, we can find the hyper-
edges of the linkage graph off (with high probability) by
usingO

(
(16e)kk3.5m logn

)
function evaluations.

Once the linkage graph off is obtained, the Fourier co-
efficients can be found by usingO

(
2km

)
additional func-

tion evaluations from Proposition 2. Thus, the overall query
complexity of finding the Fourier coefficients off (with high
probability) isO

(
(16e)kk3.5m logn

)
. This isO (m logn)

for constantk and Theorem 1 follows. Another important
issue in practical applications is the time complexity of the
algorithm. From the pseudocode of the proposed algorithm,
we can check that the time complexity of the algorithm is

132

O (nm log n) for constantk. (It is exponential ink.)
We should note that GFA does not assume the hierarchi-

cal property among the hyperedges. The query complexity
of GFA can be improved for the restricted class of thek-
bounded hypergraphs with the hierarchical property. Thus,
the query complexity of finding the Fourier coefficients of
a k-bounded function can be improved for generalk. More
concretely, to find the hyperedges of orderj, we consider
only the subsets of orderj that contain some hyperedge of
order j − 1 that have been already found. This reduces it

toO
(

j
1−δ logn

)
the number of iterations of the repeat loop

in CHECKEXISTENCE for checking the existence of a hy-
peredge of orderj. (It also reduces the number of CHECK-
EXISTENCE and BINARY SEARCH being called toO (km).)
By this modification, the query complexity of GFA for find-
ing a k-bounded hypergraph withn vertices and at most

2km hyperedges is reduced toO
(

2kk2

1−δ m logn
)

. If we use

this modified version of GFA, the query complexity of find-
ing the Fourier coefficients is to beO

(
(16)kk2m logn

)
for

a k-bounded function defined on{0, 1}n with m non-zero
Fourier coefficients.

6 Conclusion

In this paper, we showed that the Fourier coefficients of ak-
bounded function withm non-zero Fourier coefficients can
be found inO (m logn) function evaluations for constantk.
To this end, we first showed that the problem of finding the
Fourier coefficients of ak-bounded function is reduced to
the problem of finding ak-bounded hypergraph with cross-
membership queries under the oracle with one-sided error.
Then, we gave a randomized algorithm for the hypergraph
finding problem and analyzed it to obtain the desired bound.

As shown in the previous section, the query (and time)
complexity of the proposed algorithm is exponential ink.
Although the main concern of this paper is the case when
k is constant, it would be worth trying to find an algorithm
with better query (and time) complexity for generalk.

References

[AA04] N. Alon and V. Asodi. Learning a hidden
subgraph. InProceedings of the 31st Inter-
national Colloquium on Automata, Languages
and Programming (ICALP 2004), pages 110–
121, 2004.

[AA05] N. Alon and V. Asodi. Learning a hidden sub-
graph.SIAM Journal on Discrete Mathematics,
18(4):697–712, 2005.

[ABK +02] N. Alon, R. Beigel, S. Kasif, S. Rudich, and
B. Sudakov. Learning a hidden matching. In
Proceedings of the 43rd Annual IEEE Sym-
posium on Foundations of Computer Science
(FOCS 2002), pages 197–206, 2002.

[ABK +04] N. Alon, R. Beigel, S. Kasif, S. Rudich, and
B. Sudakov. Learning a hidden matching.SIAM
Journal on Computing, 33(2):487–501, 2004.

[AC04] D. Angluin and J. Chen. Learning a hidden
graph usingO(logn) queries per edge. In
Proceedings of the 17th Annual Conference on

Learning Theory (COLT 2004), pages 210–
223, 2004.

[AC05] D. Angluin and J. Chen. Learning a hidden hy-
pergraph. InProceedings of the 18th Annual
Conference on Learning Theory (COLT 2005),
pages 561–575, 2005.

[AC06] D. Angluin and J. Chen. Learning a hidden
hypergraph.Journal of Machine Learning Re-
search, 7:2215–2236, 2006.

[BAA +01] R. Beigel, N. Alon, M. S. Apaydin, L. Fort-
now, and S. Kasif. An optimal procedure for
gap closing in whole genome shotgun sequenc-
ing. In Proceedings of the Fifth Annual Inter-
national Conference on Computational Molec-
ular Biology (RECOMB 2001), pages 22–30,
2001.

[BGK05] M. Bouvel, V. Grebinski, and G. Kucherov.
Combinatorial search on graphs motivated by
bioinformatics applications: A brief survey.
In the 31st International Workshop on Graph-
Theoretic Concepts in Computer Science (WG
2005), pages 16–27, 2005.

[BJT04] N. H. Bshouty, J. C. Jackson, and C. Ta-
mon. More efficient PAC-learning of DNF with
membership queries under the uniform distri-
bution. Journal of Computer and System Sci-
ences, 68(1):205–234, 2004.

[BT96] N. H. Bshouty and C. Tamon. On the Fourier
spectrum of monotone functions.Journal of the
ACM, 43(4):747–770, 1996.

[CC06] D. J. Coffin and C. D. Clack. gLINC: Identify-
ing composability using group perturbation. In
Proceedings of the Genetic and Evolutionary
Computation Conference, pages 1133–1140,
2006.

[Che52] H. Chernoff. A measure of asymptotic effi-
ciency for tests of a hypothesis based on the
sum of observations.Annals of Mathematical
Statistics, 23:493–509, 1952.

[CJM08] S. S. Choi, K. Jung, and B. R. Moon. Lower
and upper bounds for linkage discovery.IEEE
Trans. on Evolutionary Computation, 2008. In
press.

[CK08] S. S. Choi and J. H. Kim. Optimal query com-
plexity bounds for finding graphs. InProceed-
ings of the 40th Annual ACM Symposium on
Theory of Computing (STOC 2008), 2008. To
appear.

[dBIV97] J. S. de Bonet, C. L. Isbell, Jr., and P. Viola.
MIMIC: Finding optima by estimating proba-
bility densities. InProceedings of the Advances
in Neural Information Processing Systems, vol-
ume 9, pages 424–430. The MIT Press, 1997.

[Ewe79] W. Ewens.Mathematical Population Genetics.
Springer Verlag, 1979.

[FL70] I. Franklin and R. Lewontin. Is the gene the unit
of selection ?Genetics, 65:707–734, 1970.

[FSBB+93] W. Fontana, P. Stadler, E. Bornberg-Bauer,
T. Griesmacher, I. Hofacker, M. Tacker, P. Tara-
zona, E. Weinberger, and P. Schuster. RNA

133

folding and combinatory landscapes.Physical
Review E, 47(3):2083–2099, 1993.

[GJS76] M. R. Garey, D. S. Johnson, and L. Stock-
meyer. Some simplified NP-complete graph
problems. Theoretical Computer Science,
1:237–267, 1976.

[GK00] V. Grebinski and G. Kucherov. Optimal recon-
struction of graphs under the additive model.
Algorithmica, 28:104–124, 2000.

[Gol89] D. E. Goldberg.Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison
Wesley, 1989.

[HG97] G. R. Harik and D. E. Goldberg. Learning link-
age. In Foundations of Genetic Algorithms,
volume 4, pages 247–262. Morgan Kaufmann,
1997.

[HW99] R. B. Heckendorn and D. Whitley. Predict-
ing epistasis directly from mathematical mod-
els. Evolutionary Computation, 7(1):69–101,
1999.

[HW03] R. B. Heckendorn and A. H. Wright. Ef-
ficient linkage discovery by limited probing.
In Proceedings of the Genetic and Evolution-
ary Computation Conference (GECCO 2003),
pages 1003–1014, 2003.

[HW04] R. B. Heckendorn and A. H. Wright. Efficient
linkage discovery by limited probing.Evolu-
tionary Computation, 12(4):517–545, 2004.

[Jac97] J. Jackson. An efficient membership-query al-
gorithm for learning DNF with respect to the
uniform distribution.Journal of Computer and
System Sciences, 55(3):42–65, 1997.

[Kau89] S. A. Kauffman. Adaptation on rugged fitness
landscapes. In D. Stein, editor,Lectures in the
Sciences of Complexity, pages 527–618. Addi-
son Wesley, 1989.

[Kau93] S. A. Kauffman. The Origins of Order: Self-
Organization and Selection in Evolution. Ox-
ford University Press, 1993.

[KL87] S. A. Kauffman and S. Levin. Towards a
general theory of adaptive walks on rugged
landscapes. Journal of Theoretical Biology,
128:11–45, 1987.

[KM93] E. Kushilevitz and Y. Mansour. Learning
decision trees using the Fourier spectrum.
SIAM Journal on Computing, 22(6):1331–
1348, 1993.

[KP01] H. Kargupta and B. Park. Gene expression
and fast construction of distributed evolution-
ary representation.Evolutionary Computation,
9(1):1–32, 2001.

[Lew74] R. Lewontin. The Genetic Basis of Evolution-
ary Change. Columbia University Press, 1974.

[Man94] Y. Mansour. Learning Boolean functions via
the Fourier transform. In V. Roychowdhury,
K. Y. Siu, and A. Orlitsky, editors,Theoretical
Advances in Neural Computation and Learn-
ing, pages 391–424. Kluwer Academic, 1994.

[MG99] M. Munetomo and D. E. Goldberg. Iden-
tifying linkage groups by nonlinearity/non-

monotonicity detection. InProceedings of the
Genetic and Evolutionary Computation Con-
ference, pages 433–440, 1999.

[MM99] H. M ühlenbein and T. Mahnig. FDA – A scal-
able evolutionary algorithm for the optimiza-
tion of additively decomposed functions.Evo-
lutionary Computation, 7(1):45–68, 1999.

[MP89] C. A. Macken and A. S. Perelson. Protein evo-
lution on rugged landscapes. InProceedings
of the National Academic of Science, USA, vol-
ume 86, pages 6191–6195, 1989.

[MR95] R. Motwani and P. Raghavan.Randomized Al-
gorithms. Cambridge University Press, 1995.

[PG00] M. Pelikan and D. E. Goldberg. Hierarchical
problem solving by the Bayesian optimization
algorithm. InProceedings of the Genetic and
Evolutionary Computation Conference, pages
267–274, 2000.

[PGCP00] M. Pelikan, D. E. Goldberg, and E. Cantú-Paz.
Linkage problem, distribution estimation, and
Bayesian networks. Evolutionary Computa-
tion, 8(3):311–340, 2000.

[RS07] L. Reyzin and N. Srivastava. Learning and veri-
fying graphs using queries with a focus on edge
counting. In Proceedings of the 18th Inter-
national Conference on Algorithmic Learning
Theory (ALT 2007), pages 285–297, 2007.

[Str04] M. J. Streeter. Upper bounds on the time and
space complexity of optimizing additively sep-
arable functions. InProceedings of the Ge-
netic and Evolutionary Computation Confer-
ence (GECCO 2004), pages 186–197, 2004.

[Wal23] J. L. Walsh. A closed set of orthogonal func-
tions.American Journal of Mathematics, 55:5–
24, 1923.

[Yao77] A. C. Yao. Probabilistic computations: Toward
a unified measure of complexity. InProceed-
ings of the 18th Annual IEEE Symposium on
Foundations of Computer Science, pages 222–
227, 1977.

134

Teaching Dimensions Based on Cooperative Learning

Sandra Zilles1, Steffen Lange2, Robert Holte1, and Martin Zinkevich3

1 University of Alberta, Dept. of Computing Science, Edmonton, AB, Canada, {zilles,holte}@cs.ualberta.ca
2 Darmstadt University of Applied Sciences, Dept. of Computer Science, Darmstadt, Germany, s.lange@fbi.h-da.de

3 Yahoo! Research, Mission College, CA, USA, maz@yahoo-inc.com

Abstract

The problem of how a teacher and a learner can
cooperate in the process of learning concepts from
examples in order to minimize the required sample
size without “coding tricks” has been widely ad-
dressed, yet without achieving teaching and learn-
ing protocols that meet what seems intuitively an
optimal choice for selecting samples in teaching.

We introduce the model of subset teaching sets,
based on the idea that both teacher and learner can
exploit the assumption that the partner is cooper-
ative. We show how this can reduce the sample
size drastically without using coding tricks. For
instance, monomials can be taught with only two
examples independent of the number of variables.

The corresponding variant of the teaching dimen-
sion (STD) turns out to be nonmonotonic with re-
spect to subclasses of concept classes. We dis-
cuss why this nonmonotonicity might be inherent
in optimal cooperative teaching scenarios. Never-
theless, trying to overcome nonmonotonicity, we
introduce a second variant, the recursive teaching
dimension (RTD), which is monotonic and yields
the same positive results for some concept classes,
such as the class of all monomials, yet can be arbi-
trarily worse than the STD.

1 Introduction
1.1 Motivation and approach
One major branch of learning theory and machine learning is
the theory and practice of learning concepts from examples.
Considering a finite instance space and a class of (thus fi-
nite) concepts over that space, it is obvious that each concept
can be uniquely determined if enough examples are known.
Much less obvious is how to minimize the number of exam-
ples required to identify a concept, and with this aim in mind
models of cooperative learning and learning from good ex-
amples were designed and analyzed. The selection of good
examples to be presented to a learner is often modeled using
a teaching device (teacher) that is assumed to be benevolent
by selecting examples expediting the learning process (see
for instance [AK97, JT92, GM96, Mat97]).

Throughout this paper we assume that teaching/learning
proceeds stepwise; in each step the teacher presents an exam-
ple (that is, an instance paired with a label 1 or 0, according
to whether or not the instance belongs to the target concept)
to the learner and the learner returns a concept it believes
to be the target concept. If the learner’s conjecture is right
the process ends, otherwise both proceed to the next step.
This process will terminate successfully for any concept c
in a given concept class C if the following three conditions
hold: (1) the teacher never presents any example twice, (2)
the teacher labels the examples correctly according to the
current target concept, and (3) the learner always returns a
concept consistent with the examples seen so far. The sam-
ple size, i.e., the number of examples the teacher presents
to the learner enroute to termination, is the object of opti-
mization; in particular we are concerned with the worst case
sample size measured over all concepts in C. Other than
that, computational complexity issues are not the focus of
this paper.

A typical question is How can a teacher and a learner
cooperatively minimize the worst case sample size without
using coding tricks?—a coding trick being, e.g., any a pri-
ori agreement on encoding concepts in examples, depending
on the concept class C. For instance, if teacher and learner
agreed on a specific order for the concept representations and
the instances and agreed to use the jth instance in this order-
ing to teach the jth concept, that would be a coding trick.1

A considerable amount of the learning theory literature
deals with the teaching dimension of concept classes (and
variants thereof, see, e.g., [SM91, GK95, ABCS92]). The
teaching dimension of a concept c ∈ C is the size of the
minimum sample that is consistent with c but not with any
other concept in C. Obviously teacher and learner can suc-
ceed with such a sample without coding tricks.

The teaching dimension however does not always seem
to capture the intuitive idea of cooperation in teaching and
learning. Consider the following simple example. Let C0

consist of the empty concept and all singleton concepts over
a given instance space X = {x1, . . . , xn}. Each single-
ton concept {xi} has a teaching dimension of 1, since the
single positive example (xi, 1) is sufficient for determining

1There is so far no generally accepted definition of what a cod-
ing trick (sometimes also called “collusion”) in general is. The
reader is referred to [AK97, OS02, GM96] for a treatment of this
question in different learning models.

135

{xi}. In contrast to that, the empty concept has a teaching
dimension of n—every example has to be presented. How-
ever, if the learner assumed the teacher was cooperative—
and would therefore present a positive example if the target
concept was non-empty—the learner could confidently con-
jecture the empty concept upon seeing just one negative ex-
ample.

Let us extend this reasoning to a slightly more complex
example, the class of all boolean functions that can be rep-
resented as a monomial over m variables (m = 4 in this
example). Imagine yourself in the role of a learner knowing
your teacher will present helpful examples. If the teacher
sent you the examples

(0100, 1), (0111, 1) ,

what would be your conjecture? Presumably most people
would conjecture the monomial M ≡ v1 ∧ v2, as does for
instance the algorithm proposed in [Val84]. Note that this
choice is not uniquely determined by the data: the empty
monomial and the monomials v1 and v2 are also consistent
with these examples. And yet M seems the best choice, be-
cause we’d think the teacher would not have kept any bit in
the two examples constant if it was not in the position of a
relevant variable. In this example, the natural conjecture is
the most specific concept consistent with the sample, but that
does not, in general, capture the intuitive idea of cooperative
learning. For example, consider the concept class consisting
of just the three concepts {β}, {α, β}, {α, γ}. If the teacher
presented (α, 1) as an example, there would be two most
specific consistent concepts. But a learner that assumed the
teacher was cooperative could confidently guess {α, β} to be
the target concept, because a cooperative teacher would have
presented the unambiguous (γ, 1) if {α, γ} was the target
concept.

Could the learner’s reasoning about the teacher’s behav-
ior in these examples be implemented without a coding trick?
We will show below that no coding trick is necessary to
achieve exactly this behavior of teacher and learner; there
is a general principle that teachers and learners can indepen-
dently implement to cooperatively learn any finite concept
class. When applied to the class of monomials this principle
enables any monomial to be learned from just two examples,
regardless of the number m of variables.

Our approach is to define a new model of cooperation
in learning, based on the idea that each partner in the co-
operation tries to reduce the sample size by exploiting the
assumption that the other partner does so. If this idea is iter-
atively propagated by both partners, one can refine teaching
sets iteratively ending up with a framework for highly effi-
cient teaching and learning without any coding tricks. It is
important to note that teacher and learner do not agree on any
order of the concept class or any order of the instances. All
they know about each others’ strategies is a general assump-
tion about how cooperation should work independent of the
concept class or its representation.

We show that the resulting variant of the teaching dimen-
sion—called the subset teaching dimension (STD)—is not
only a uniform lower bound of the teaching dimension but
can be constant where the original teaching dimension is ex-
ponential, even in cases where only one iteration is needed.
For example, as illustrated above, the STD of the class of

monomials over m variables is 2, in contrast to its original
teaching dimension of 2m.

Some examples however will reveal a nonmonotonicity
of the subset teaching dimension: some classes possess sub-
classes with a higher subset teaching dimension, which is at
first glance not very intuitive. We will explain below why in
a cooperative model such a nonmonotonicity does not have
to contradict intuition; additionally we introduce a second
model of cooperative teaching and learning, that results in a
monotonic dimension, called the recursive teaching dimen-
sion (RTD). Comparing our complexity notions in terms of
the sample size required for teaching and learning shows that
achieving monotonicity here results in a loss in terms of sam-
ple efficiency; however, even though the RTD has some defi-
ciencies compared to the STD, it still significantly improves
on previously studied variants of the teaching dimension.

1.2 Related work
The problem of defining good or helpful examples in learn-
ing has been studied in different fields of learning theory.
Various learning models that involve one particular teacher
can be found in [AK97, JT92, GM96, Mat97]; these mostly
focus on learning boolean functions.

The teaching dimension has been analyzed in the context
of online learning [BE98, RY95] and in the model of learn-
ing from queries, e.g., in [Heg95] and in [Han07], with a
focus on active learning in the PAC framework. In contrast
to these models, in inductive inference the learning process is
not necessarily considered to be finite. Approaches to defin-
ing learning infinite concepts from good examples [FKW93,
LNW98] do not focus on the size of a finite sample of good
examples, but rather on characterizing the cases in which
learners can identify concepts from only finitely many ex-
amples.

The approach we present in this paper is mainly based
on an idea by Balbach [Bal08]. He defined and analyzed
a model in which, under the premise that the teacher uses
a minimal teaching set as a sample, a learner can reduce the
size of a required sample by eliminating concepts which pos-
sess a teaching set smaller than the number of examples pro-
vided by the teacher so far. Iterating this idea, the size of
the teaching sets might be gradually reduced significantly.
Though our approach is syntactically quite similar to Bal-
bach’s, the underlying idea is a different one (we do not con-
sider elimination by the sample size but elimination by the
sample content as compared to all possible teaching sets).
The resulting variant of the teaching dimension in general
yields a much better performance in terms of sample size
than Balbach’s model does.

2 Preliminaries
Let N denote the set of all non-negative integers, ∅ denote
the empty set, and |A| denote the cardinality of a finite setA.
Concerning the teaching framework, we will mostly follow
the notation used in [Bal08].

In the models of teaching and learning to be defined be-
low, we will always assume that the goal in an interaction
between a teacher and a learner is to make the learner iden-
tify a (finite) concept c over a (finite) instance space X . To
formalize this, let n > 0 be a natural number and let X =

136

{x1, . . . , xn} be an instance space. A concept c is a subset of
X and a concept class C is a set of concepts. Consequently,
concepts and concept classes considered below will always
be finite. As a special case we sometimes consider boolean
functions over variables v1, . . . , vm as concepts, which just
means to represent the instance space X by {0, 1}m.

We identify every concept c with its membership func-
tion given by c(xi) = 1 if xi ∈ c, and c(xi) = 0 if xi /∈
c, where 1 ≤ i ≤ n. Given a sample, i.e., a set S =
{(y1, b1), . . . , (yj , bj)} ⊆ X × {0, 1} of labeled examples,
we say that c is consistent with S if c(yi) = bi for all i ∈
{1, . . . , j}. If C is a concept class then we define

Cons(S,C) = {c ∈ C | c is consistent with S} .

The sample S is called a teaching set for c with respect to
C if Cons(S,C) = {c}. A teaching set allows a learning
algorithm to uniquely identify a concept in the concept class
C. Striving for sample efficiency, one is particularly inter-
ested in teaching sets of minimal size, called minimal teach-
ing sets. The teaching dimension of c in C is the size of
such a minimal teaching set, i.e., TD(c, C) = min{|S| |
Cons(S,C) = {c}}, the worst case of which defines the
teaching dimension of C, i.e., TD(C) = max{TD(c, C) |
c ∈ C}. To refer to the set of all minimal teaching sets of c
with respect to C, we use

TS (c, C) = {S | Cons(S,C)={c} and |S|=TD(c, C)} .

The reader is referred to [GK95, SM91] for original stud-
ies on teaching sets.

Recall our assumptions concerning the learning process:
it proceeds stepwise; in each step the teacher presents a sin-
gle example to the learner and the learner returns a conjec-
ture about the target concept. The process stops when and
only when a correct conjecture is made by the learner. Our
minimal requirements on cooperative partners here is that
teachers never present any example twice and always label
the examples correctly according to the target concept, and
that every conjecture a learner returns is consistent with the
information seen up to that step.

The teaching dimension [GK95] then gives a measure of
the worst case sample size needed by a learner if the teacher
uses only minimal teaching sets for teaching. The reason is
that a teaching set eliminates all but one concept due to in-
consistency. However, if the learner knows TD(c, C) for ev-
ery c ∈ C then sometimes concepts could also be eliminated
by the mere number of examples presented to the learner. For
instance, assume a learner knows that all but one concept
c ∈ C have a teaching set of size one and that the teacher
will teach using teaching sets. After having seen 2 exam-
ples, no matter what they are, the learner could eliminate all
concepts but c. This idea, referred to as elimination by sam-
ple size, was introduced in [Bal08]. If a teacher knew that a
learner eliminates by consistency and by sample size then the
teacher could consequently reduce some teaching sets (e.g,
here, if TD(c, C) ≥ 3, a new “teaching set” for c could be
built consisting of only 2 examples).

More than that—this idea is iterated by Balbach [Bal08]:
if the learner knew that the teacher uses such reduced “teach-
ing sets” then the learner could adapt his assumption on the
size of the samples to be expected for each concept, which

could in turn result in a further reduction of the “teaching
sets” by the teacher and so on. The following definition cap-
tures this idea formally.

Definition 1 (Balbach teaching dimension [Bal08])
Let C be a concept class, c ∈ C, and S a sample. Let
BTD0(c, C) = TD(c, C). We define iterated dimensions
for all k ∈ N as follows.

• Conssize(S,C, k)
= {c ∈ Cons(S,C) | BTDk(c, C) ≥ |S|}.
• BTDk+1(c, C)

= min{|S| | Conssize(S,C, k) = {c}}

Let z be minimal such that BTDz+1(c, C) = BTDz(c, C)
for all c ∈ C. The iterated Balbach teaching dimension
of c in C is defined by BTD(c, C) = BTDz(c, C) and
the iterated Balbach teaching dimension of the class C is
BTD(C) = max{BTD(c, C) | c ∈ C}.2

Obviously, BTD(C) ≤ TD(C) for every concept class
C. How much the sample complexity can actually be re-
duced by a cooperative teacher/learner pair according to this
“elimination by sample size” principle, is illustrated by the
concept class C0 consisting of the empty concept and all sin-
gleton concepts overX . The teaching dimension of this class
is n, whereas the BTD is 2. A more interesting example is
the class of monomials, which contains only one concept for
which the BTD-iteration yields an improvement.

Theorem 2 (Balbach [Bal08]) Let m ∈ N and C the class
of all boolean functions over m ≥ 2 variables that can be
represented by a monomial. Let c0 = ∅ be the concept rep-
resented by a contradictory monomial.

1. BTD(c0, C) = m+ 2 < 2m = TD(c0, C).
2. BTD(c, C) = TD(c, C) for all c ∈ C with c 6= c0.

The intuitive reason why BTD(c0, C) = m+2 in Theo-
rem 2 is that samples for c0 of size m+1 or smaller are con-
sistent also with monomials different from c0. These other
monomials hence cannot be eliminated—neither by size nor
by inconsistency.

3 Teaching and learning using subset
teaching sets

3.1 The model
The approach studied by Balbach [Bal08] does not fully meet
the intuitive idea of teacher and learner exploiting the knowl-
edge that either partner behaves cooperatively. Consider for
instance one more time the class C0 containing the empty
concept and all singletons over X = {x1, . . . , xn}. Each
concept {xi} has the unique minimal teaching set {(xi, 1)}
in this class, whereas the empty concept only has a teach-
ing set of size n, namely {(x1, 0), . . . , (xn, 0)}. The idea of
elimination by size allows a learner to conjecture the empty

2 [Bal08] denotes this by IOTTD, called iterated optimal teacher
teaching dimension; we deviate from this notation for the sake of
convenience.

137

concept as soon as two examples have been provided, due to
the fact that all other concepts possess a teaching set of size
one. This is why the empty concept has an BTD equal to 2
in this example.

However, as we have argued in the introduction, it would
also make sense to devise a learner in a way to conjecture
the empty concept as soon as a first example for that concept
is provided—knowing that the teacher would not use a neg-
ative example for any other concept in the class. In terms of
teaching sets this means to reduce the teaching sets to their
minimal subsets that are not contained in minimal teaching
sets for other concepts in the given concept class.

Formally, we define this refinement operator and its iter-
ation as follows.

Definition 3 Let C be a concept class, c ∈ C, and S a sam-
ple. Let STD0(c, C)=TD(c, C), STS 0(c, C)=TS (c, C).
We define iterated sets for all k ∈ N as follows.

• Conssub(S,C, k) = {c ∈ C | S ⊆ S′ for some S′ ∈
STSk(c, C)}.

• STDk+1(c, C) = min{|S| | Conssub(S,C, k) = {c}}
• STSk+1(c, C) = {S | Conssub(S,C, k) = {c}, |S| =

STDk+1(c, C)}.

Let z be minimal such that STS z+1(c, C) = STS z(c, C)
for all c ∈ C.3

A sample S with Conssub(S,C, z) = {c} is called a
subset teaching set for c in C. The subset teaching dimen-
sion of c in C is defined as STD(c, C) = STDz(c, C) and
we denote by STS (c, C) = STS z(c, C) the set of all min-
imal subset teaching sets for c in C. The subset teaching
dimension of C is STD(C) = max{STD(c, C) | c ∈ C}.

For illustration, consider again the concept class C0, i.e.,
C0 = {ci | 0 ≤ i ≤ n}, where c0 = ∅ and ci = {xi} for all
i ∈ {1, . . . , n}. Obviously, for k ≥ 1,

STSk(ci) = {{(xi, 1)}} for all i ∈ {1, . . . , n}

and
STSk(c0) = {{(xi, 0)} | 1 ≤ i ≤ n} .

Hence STD(C0) = 1.
The definition of STS (c, C) induces a protocol for teach-

ing and learning: for a target concept c, a teacher presents
the examples in a subset teaching set for c to the learner. The
learner will also be able to pre-compute all subset teaching
sets for all concepts and determine the target concept from
the sample provided by the teacher.4

Protocol 4 Let C be a concept class.

0. Teacher and learner both compute STS (c, C) for all
c ∈ C.

Let c ∈ C be a target concept known to the teacher.

3Such a z exists because STD0(c, C) is finite and can hence be
reduced only finitely often.

4Note that we focus on sample size here, but neglect efficiency
issues arising from the pre-computation of all subset teaching sets.

1. The teacher chooses a set S ∈ STS (c, C) at random.
2. The teacher presents S to the learner (stepwise/batch).
3. The learner looks up and identifies the unique concept
c ∈ C for which S ∈ STS (c, C).

It is important to note at this point that Definition 3 as
such is independent of the particular shape or structure of the
concept class. It does not presume any special order of the
concept representations or of the instances, i.e., teacher and
learner do not have to agree on any such order to make use
of the teaching and learning protocol. That means, given a
special concept class C, the computation of its subset teach-
ing sets does not involve any special coding trick depending
on C—it just follows a general rule.

3.2 Comparison to the Balbach teaching dimension
Obviously, Protocol 4 based on the subset teaching dimen-
sion never requires a sample larger than a teaching set; often
a smaller sample is sufficient. Similarly, the subset teaching
dimension compares to the Balbach teaching dimension as
follows.

Proposition 5 1. STD(C) ≤ BTD(C) for every concept
class C.

2. There is a concept class C with STD(C) < BTD(C).

Proof. Assertion (1) immediately follows from the defini-
tions. Informally, if a (Balbach) teaching set S in one itera-
tion for a concept c is going to be reduced according to the
BTD-rule (see Definition 1), then |S| ≥ |S′| + 2 for ev-
ery (Balbach) teaching set S′ on the current state of iteration
for some concept c′ 6= c consistent with S. In particular,
if the Balbach teaching dimension of c is reduced to some
value u < |S|, then S has got a subset of size u (or even
smaller) that is not contained in any teaching set for any con-
cept c′ 6= c in C. The minimal such subset has cardinality at
most u and is at least as big as a minimal subset teaching set
for c.

Assertion (2) is witnessed by the class C0 containing the
empty concept and all singletons over X .

The second assertion of this proposition even holds in a
stronger form, see Theorem 6.

Theorem 6 For each u ∈ N there is a concept class C such
that STD(C) = 1 and BTD(C) = u.

Proof. Let n = 2u + u be the number of instances in X .
Define a concept class C = Cu

0/1 as follows. For every s =
(s1, . . . , su) ∈ {0, 1}u, C contains the concepts cs,0 = {xi |
1 ≤ i ≤ u and si = 1} and cs,1 = cs,0 ∪ {xu+1+int(s)}.
Here int(s) ∈ N is defined by int(s) =

∑u−1
i=0 si+1 · 2i. We

claim that STD(C) = 1 and BTD(C) = u.
Let s = (s1, . . . , su) ∈ {0, 1}u. Then

TS (cs,0, C) = {{(xi, si) | 1 ≤ i ≤ u}
∪ {(xu+1+int(s), 0)}}

TS (cs,1, C) = {{(xu+1+int(s), 1)}}
Since for each c ∈ C the minimal teaching set for c with

respect to C contains an example that does not occur in the

138

minimal teaching set for any other concept c′ ∈ C, one ob-
tains STD(C) = 1 in just one iteration. See Table 1 for the
case u = 2.

In contrast to that, we obtain BTD0(cs,0, C) = u + 1,
BTD1(cs,0, C) = u, and BTD0(cs,1, C) = 1 for all s ∈
{0, 1}u. Consider any s ∈ {0, 1}u and any sample S ⊆
{(x, cs,0(x)) | x ∈ X} with |S| = u − 1. Clearly there is
some s′ ∈ {0, 1}u with s′ 6= s such that cs′,0 ∈ Cons(S,C).
So |Cons(S,C, 1)| > 1 and in particular Cons(S,C, 1) 6=
{cs,0}. Hence BTD2(cs,0, C) = BTD1(cs,0, C), which fi-
nally implies BTD(C) = u.

concept STS0 STS1

∅ {(x1, 0), (x2, 0), (x3, 0)} {(x3, 0)}
{x3} {(x3, 1)} {(x3, 1)}
{x2} {(x1, 0), (x2, 1), (x4, 0)} {(x4, 0)}
{x2, x4} {(x4, 1)} {(x4, 1)}
{x1} {(x1, 1), (x2, 0), (x5, 0)} {(x5, 0)}
{x1, x5} {(x5, 1)} {(x5, 1)}
{x1, x2} {(x1, 1), (x2, 1), (x6, 0)} {(x6, 0)}
{x1, x2, x6} {(x6, 1)} {(x6, 1)}

Table 1: Iterated subset teaching sets for the class Cu
0/1 with

u = 2, where Cu
0/1 = {c00,0, c00,1 . . . , c11,0, c11,1} with

c00,0 = ∅, c00,1 = {x3}, c01,0 = {x2}, c01,1 = {x2, x4},
c10,0 = {x1}, c10,1 = {x1, x5}, c11,0 = {x1, x2}, c11,1 =
{x1, x2, x6}.

3.3 Teaching monomials
This section provides an analysis of the STD for a more nat-
ural example, the monomials, showing that the very intuitive
example given in the introduction is indeed what a cooper-
ative teacher and learner in our model would come up with.
The main result is that the STD of the class of all monomi-
als is 2, independent on the number m of variables, whereas
its teaching dimension is exponential in m and its BTD is
linear in m, cf. [Bal08].

Theorem 7 Let m ∈ N and C the class of all boolean func-
tions over m variables that can be represented by a mono-
mial. Then STD(C) = 2.

Proof. Let m ∈ N and s = (s1, . . . , sm), s′ = (s′1, . . . , s
′
m)

elements in {0, 1}m. Let 4(s, s′) denote the Hamming dis-
tance of s and s′, i.e.,4(s, s′) =

∑
1≤i≤m |s(i)− s′(i)|.

We distinguish the following types of monomialsM over
m variables.

Type 1: M is the empty monomial.
Type 2: M has got m variables, M 6≡ v1 ∧ v1.
Type 3: M has got k variables, 1 ≤ k < m,M 6≡ v1∧v1.
Type 4: M is contradictory, i.e., M ≡ v1 ∧ v1.
The following facts state some properties of the corre-

sponding minimal teaching sets.
Fact 1: If M is of type 1 and S ∈ STS 0(M,C), then S

contains two positive examples of Hamming distance m.
Fact 2: If M is of type 2 and S ∈ STS0(M,C), then

S contains (i) one positive example and (ii) m negative ex-
amples, where the Hamming distance between two negative
examples is less than m.

Fact 3: If M is of type 3 and S ∈ STS 0(M,C), then
S contains (i) two positive examples of Hamming distance
m − k and (ii) k negative examples, where the Hamming
distance between each two negative examples is less than m.

Fact 4: If M is of type 4 and S ∈ STS0(M,C), then
S = {(s, 0) | s ∈ {0, 1}m}.

Fact 5: For every s ∈ {0, 1}m there are two different
monomials M,M ′ of type 3 such that (s, 1) ∈ S ∩ S′ for
some S ∈ STS0(M,C) and some S′ ∈ STS 0(M ′, C).

Fact 6: For every s ∈ {0, 1}m there are two different
monomials M,M ′ of type 3 such that (s, 0) ∈ S ∩ S′ for
some S ∈ STS0(M,C) and some S′ ∈ STS 0(M ′, C).

Fact 7: For every s ∈ {0, 1}m there are two different
monomials M,M ′ of type 2 such that (s, 0) ∈ S ∩ S′ for
some S ∈ STS0(M,C) and some S′ ∈ STS 0(M ′, C).

Fact 8: If M is of type 2, S ∈ STS 0(M,C) and S′ ⊂ S,
then there is a monomial M3 of type 3 such that S′ ⊆ S3 for
some S3 ∈ STS 0(M3, C).

After the first iteration we obtain the following facts.
Fact 9: If M is of type 1 and S ∈ STS1(M,C), then

S ∈ STS 0(M,C).
Fact 10: If M is of type 2 and S ∈ STS 1(M,C), then

S ∈ STS 0(M,C).
Fact 11: If M is of type 3 and S ∈ STS 1(M,C), then S

contains two positive examples.
Fact 12: If M is of type 4 and S ∈ STS1(M,C), then S

contains two negative examples of Hamming distance m.
After the second iteration we obtain the following facts.
Fact 13: If M is of type 1 and S ∈ STS2(M,C), then

S ∈ STS 1(M,C).
Fact 14: If M is of type 2 and S ∈ STS 2(M,C), then S

contains one positive and one negative example. Moreover,
for every s ∈ {0, 1}m, there is a monomialM of type 2 such
that (s, 0) ∈ S for some S ∈ STS2(M,C).

Fact 15: If M is of type 3 and S ∈ STS 1(M,C), then
S ∈ STS 2(M,C).

Fact 16: If M is of type 4 and S ∈ STS 2(M,C), then
S ∈ STS 1(M,C).

Combining the insights achieved so far, it is easily seen
that STD3(M,C) = STD2(M,C) = 2 for all M ∈ C.

For illustration of this proof in case m = 2 see Table 2.
A further simple example showing that the STD can be

constant as compared to an exponential teaching dimension,
this time with an STD of 1, is the following.

Let Cm
∨DNF contain all boolean functions over m vari-

ables that can be represented by a 2-term DNF of the form
v1 ∨ M , where M is a monomial that contains, for each i
with 2 ≤ i ≤ m, either the literal vi or the literal vi. More-
over, Cm

∨DNF contains the boolean function that can be rep-
resented by the monomial M ′ ≡ v1.

Theorem 8 Let m ∈ N.

1. TD(Cm
∨DNF) = 2m−1.

2. STD(Cm
∨DNF) = 1.

139

STS0 STS1

v1 {(10,1),(11,1),(00,0)} {(10,1),(11,1)}
{(10,1),(11,1),(01,0)}

v1 {(00,1),(01,1),(10,0)} {(00,1),(01,1)}
{(00,1),(01,1),(11,0)}

v2 {(01,1),(11,1),(00,0)} {(01,1),(11,1)}
{(01,1),(11,1),(10,0)}

v2 {(00,1),(10,1),(01,0)} {(00,1),(10,1)}
{(00,1),(10,1),(11,0)}

v1 ∧ v2 {(11,1),(01,0),(10,0)} {(11,1),(01,0),(10,0)}
v1 ∧ v2 {(10,1),(00,0),(11,0)} {(10,1),(00,0),(11,0)}
v1 ∧ v2 {(01,1),(00,0),(11,0)} {(01,1),(00,0),(11,0)}
v1 ∧ v2 {(00,1),(01,0),(10,0)} {(00,1),(01,0),(10,0)}
v1 ∧ v1 {(00,0),(01,0),(10,0),(11,0)} {(00,0),(01,0)}

{(00,0),(10,0)}
{(01,0),(11,0)}
{(10,0),(11,0)}

λ {(00,1),(11,1)} {(00,1),(11,1)}
{(01,1),(10,1)} {(01,1),(10,1)}

STS2 STS3

v1 {(10,1),(11,1)} {(10,1),(11,1)}
v1 {(00,1),(01,1)} {(00,1),(01,1)}
v2 {(01,1),(11,1)} {(01,1),(11,1)}
v2 {(00,1),(10,1)} {(00,1),(10,1)}
v1 ∧ v2 {(11,1),(01,0)} {(11,1),(01,0)}

{(11,1),(10,0)} {(11,1),(10,0)}
v1 ∧ v2 {(10,1),(00,0)} {(10,1),(00,0)}

{(10,1),(11,0)} {(10,1),(11,0)}
v1 ∧ v2 {(01,1),(00,0)} {(01,1),(00,0)}

{(01,1),(11,0)} {(01,1),(11,0)}
v1 ∧ v2 {(00,1),(01,0)} {(00,1),(01,0)}

{(00,1),(10,0)} {(00,1),(10,0)}
v1 ∧ v1 {(00,0),(01,0)} {(00,0),(01,0)}

{(00,0),(10,0)} {(00,0),(10,0)}
{(01,0),(11,0)} {(01,0),(11,0)}
{(10,0),(11,0)} {(10,0),(11,0)}

λ {(00,1),(11,1)} {(00,1),(11,1)}
{(01,1),(10,1)} {(01,1),(10,1)}

Table 2: Iterated subset teaching sets for the class of all
monomials over m = 2 variables. Here λ denotes the empty
monomial.

Proof. The straightforward details concerning the proof of
Assertion (2) are omitted; Assertion (1) can be verified as
follows.

Let S be a sample that is consistent with M ′. Assume
that for some s ∈ {0, 1}m, the sample S does not contain the
negative example (s, 0). Obviously, there is a 2-term DNF
D ≡ v1 ∨M such that D is consistent with S ∪ {(s, 1)}.
Hence S is not a teaching set for M ′. Since there are exactly
2m−1 2-term DNFs that represent different functions in C, a
teaching set for M ′ must contain at least 2m−1 examples.

4 Nonmonotonicity and the recursive
teaching dimension

4.1 Nonmonotonicity versus redundancy of variables
Interpreting the subset teaching dimension as a measure of
complexity of a concept class in terms of cooperative teach-

ing and learning, we observe a fact that is worth discussing,
namely the nonmonotonicity of this complexity notion, as
stated by the following theorem.

Theorem 9 There is a concept class C with STD(C ′) >
STD(C) for some subclass C ′ ⊂ C.

Sketch of proof. This is witnessed by the concept classes
C = Cu

0/1 and their subclasses C ′ = {cs,0 | s ∈ {0, 1}u}
used in the proof of Theorem 6 (see Table 1 for u = 2).

Note that this nonmonotonicity result holds with a fixed
number of instances n. In fact, if n was not considered fixed
then every concept class C ′ would have a superset C (via
addition of instances) of lower subset teaching dimension.
However, the same even holds for the teaching dimension
itself which we yet consider monotonic since it is monotonic
given fixed n. So whenever we speak of monotonicity we
assume a fixed instance space X .

Of course such an instance space X might contain re-
dundant instances the removal of which would not affect the
subset teaching dimension and would retain a non-redundant
subset of the set of all subset teaching sets. In the follow-
ing subsection, where we discuss a possible intuition behind
the nonmonotonicity of the STD , redundancy conditions on
instances will actually play an important role and show the
usefulness of the following technical discussion. However, it
is not straightforward to impose a suitable redundancy con-
dition characterizing when an instance can be removed.

We derive such a condition starting with a redundancy
condition for the original variant of teaching sets. For that
purpose we introduce the notion C−x for the concept class
resulting from C after removing the instance x from the in-
stance space X . Here C is any concept class over X and
x ∈ X is any instance. For example, if X = {x1, x2, x3}
and C = {{x1}, {x1, x2}, {x2, x3}} then

C−x3 = {{x1}, {x1, x2}, {x2}}

considered over the instance space {x1, x2}.

Lemma 10 Let C be a concept class over X and x ∈ X . If
for all c ∈ C and for all S ∈ TS (c, C)

(x, c(x)) ∈ S ⇒
∃y 6= x [(S \ {(x, c(x))}) ∪ {(y, c(y))} ∈ TS (c, C)] ,

then for all c ∈ C and for all samples S

S ∈ TS (c, C−x) ⇐⇒ [S ∈ TS (c, C) ∧ (x, c(x)) /∈ S] .

Proof. Note that |C−x| = |C|. Let c ∈ C be an arbitrary
concept and let S be any sample over X .

First assume S ∈ TS (c, C) and (x, c(x)) /∈ S. Since
obviously TD(c, C−x) ≥ TD(c, C) we immediately obtain
S ∈ TS (c, C−x).

Second assume S ∈ TS (c, C−x). By definition, we have
(x, c(x)) /∈ S. Hence it remains to prove that S ∈ TS (c, C).
If S /∈ TS (c, C) then there exists some T ∈ TS (c, C) with
|T | < |S|. We distinguish two cases.

Case 1. (x, c(x)) /∈ T .
Then T ∈ TS (c, C−x) in contradiction to the facts S ∈

TS (c, C−x) and |S| 6= |T |.

140

Case 2. (x, c(x)) ∈ T .
Then by the premise of the lemma there exists a y 6= x

such that

A
def= (S \ {(x, c(x))}) ∪ {(y, c(y))} ∈ TS (c, C) .

Since (x, c(x)) /∈ A we have A ∈ TS (c, C−x) and |A| =
|T | 6= |S|. This again contradicts S ∈ TS (c, C−x).

Since both cases reveal a contradiction, we obtain S ∈
TS (c, C).

For illustration see Table 3. In this example the instances
x4 and x5 meet the redundancy condition. After eliminating
x5, x4 still meets the condition and can be removed as well.
The new representation of the concept class then involves
only the instances x1, x2, x3.

concept in C TS

∅ {(x1, 0), (x3, 0)}, {(x1, 0), (x4, 0)},
{(x1, 0), (x5, 0)}

{x1} {(x1, 1), (x2, 0)}, {(x1, 1), (x5, 0)}
{x3, x4, x5} {(x2, 0), (x3, 1)}, {(x2, 0), (x4, 1)},

{(x2, 0), (x5, 1)}
{x2, x3, x4, x5} {(x1, 0), (x2, 1)}, {(x2, 1), (x4, 1)}
{x1, x2, x5} {(x2, 1), (x3, 0)}, {(x3, 0), (x5, 1)}
{x1, x2, x3, x5} {(x1, 1), (x3, 1)}, {(x3, 1), (x4, 1)}

concept in (C−x5)−x4 TS

∅ {(x1, 0), (x3, 0)}
{x1} {(x1, 1), (x2, 0)}
{x3} {(x2, 0), (x3, 1)}
{x2, x3} {(x1, 0), (x2, 1)}
{x1, x2} {(x2, 1), (x3, 0)}
{x1, x2, x3} {(x1, 1), (x3, 1)}

Table 3: Teaching sets for a class C before and after elimi-
nation of two redundant instances.

Lemma 10 provides a condition on an instance x. If that
instance is eliminated from the instance space then the result-
ing concept class C−x does not only have the same teaching
dimension as C but, even more, for each of its concepts c the
teaching sets are exactly those that are teaching sets for c in
C and do not contain an example involving the eliminated
instance x. Note that even though several instances might
meet that condition at the same time, only one at a time may
be removed. For the remaining instances it has to be checked
whether the condition still holds after elimination of the first
redundant instance.

So one legitimate redundancy condition for instances—
considering teaching sets—is the one given in the premise of
Lemma 10.

This condition can be extended to a redundancy condi-
tion with respect to subset teaching sets.

Theorem 11 Let C be a concept class over X and x ∈ X .
If for all k ∈ N, for all c ∈ C, and for all S ∈ STSk(c, C)

(x, c(x)) ∈ S ⇒
∃y 6= x [(S \ {(x, c(x))}) ∪ {(y, c(y))} ∈ STSk(c, C)] ,

then for all k ∈ N, for all c ∈ C, and for all samples S

S ∈ STSk(c, C−x)
⇐⇒

[S ∈ STSk(c, C) ∧ (x, c(x)) /∈ S] .

Proof. Note that |C−x| = |C|. We prove the theorem by
induction on k.

For k = 0 this follows immediately from Lemma 10.
So assume that the claim is proven for some k (induction
hypothesis). It remains to show that it then also holds for
k + 1.

For that purpose note that

∀c ∈ C ∀A ∈ STSk(c, C) ∃B ∈ STSk(c, C−x)
[|A| = |B| ∧ A \ {(x, c(x))} ⊆ B] (∗)

by combination of the induction hypothesis with the premise
of the theorem.

Choose an arbitrary c ∈ C.
First assume S ∈ STSk+1(c, C) and (x, c(x)) /∈ S.

By the definition of subset teaching sets, there is an S′ ∈
STSk(c, C) with

S ⊆ S′ . (1)
Using (∗) we can assume without loss of generality that

S′ ∈ STSk(c, C−x) . (2)

Moreover, again by the definition of subset teaching sets,
one obtains S 6⊆ S′′ for every S′′ ∈ STSk(c′, C) with c′ 6=
c. The induction hypothesis then implies

S 6⊆ S′′ for every S′′ ∈ STSk(c′, C−x) with c′ 6= c . (3)

Due to (1), (2), (3) we get either S ∈ STSk+1(c, C−x)
or |S| > STDk+1(c, C−x). In the latter case there would be
a set T ∈ STSk+1(c, C−x) with |T | < |S|. T is a subset
of some set in STSk(c, C−x) and thus also of some set in
STSk(c, C) by induction hypothesis. If T was contained in
some T ′ ∈ STSk(c′, C) for some c′ 6= c then we could again
assume without loss of generality, using (∗) and (x, c(x)) /∈
T , that T is contained in some set in STSk(c′, C−x)—in
contradiction to T ∈ STSk+1(c, C−x). Therefore T ∈
STSk+1(c, C) and so |T | = |S|—a contradiction. This im-
plies S ∈ STSk+1(c, C−x).

Second assume that S ∈ STSk+1(c, C−x). Obviously,
(x, c(x)) /∈ S, so that it remains to show S ∈ STSk+1(c, C).

Because of S ∈ STSk+1(c, C−x) there exists some set
S′ ∈ STSk(c, C−x) such that

S ⊆ S′ . (4)

The induction hypothesis implies

S′ ∈ STSk(c, C) . (5)

Moreover, by the definition of subset teaching sets, one
obtains S 6⊆ S′′ for every S′′ ∈ STSk(c′, C−x) with c′ 6=
c. If there was a set S′′ ∈ STSk(c′, C) with c′ 6= c and
S ⊆ S′′ then (∗) would imply that without loss of generality
S′′ ∈ STSk(c′, C−x). So we have

S 6⊆ S′′ for every S′′ ∈ STSk(c′, C) with c′ 6= c . (6)

141

Combining (4), (5), (6) we get either S ∈ STSk+1(c, C)
or |S| > STDk+1(c, C). In the latter case there would be
a set T ∈ STSk+1(c, C) with |T | < |S|. T is a subset of
some set T ′ ∈ STSk(c, C). We can assume without loss of
generality, using (∗), that T ′ ∈ STSk(c, C−x). If T was
contained in some set in STSk(c′, C−x) for some c′ 6= c
then by induction hypothesis T would be contained in some
set in STSk(c′, C) for some c′ 6= c. This is a contradiction
to T ∈ STSk+1(c, C). So T ∈ STSk+1(c, C−x) and hence
|T | = |S|—a contradiction. Thus S ∈ STSk+1(c, C).

4.2 The reason for nonmonotonicity

The idea about why the teaching dimension can decrease
when a concept class increases is best illustrated by an ex-
ample in which the addition of a single concept has this ef-
fect. In a simple such example, the instance space consists
of three elements α, β, γ. First, consider the four distinct
concepts that all contain γ, c001 = {γ}, c011 = {β, γ},
c101 = {α, γ}, c111 = {α, β, γ}. When these four concepts
are the only ones in the class the teaching sets for them all
are necessarily size two—elements α and β and their respec-
tive labels—because γ is a member of all of them, it cannot
be part of any teaching set. If one more concept is added to
the class the subset teaching sets all become size 1. Table 4
shows the computation when c000 = ∅ is added.

concept STS0 STS1

∅ {(γ, 0)} {(γ, 0)}
{γ} {(α, 0), (β, 0), (γ, 1)} {(γ, 1)}
{β, γ} {(α, 0), (β, 1)} {(α, 0), (β, 1)}
{α, γ} {(α, 1), (β, 0)} {(α, 1), (β, 0)}
{α, β, γ} {(α, 1), (β, 1)} {(α, 1), (β, 1)}

concept STS2 STS3

∅ {(γ, 0)} {(γ, 0)}
{γ} {(γ, 1)} {(γ, 1)}
{β, γ} {(α, 0)} {(α, 0)}
{α, γ} {(β, 0)} {(β, 0)}
{α, β, γ} {(α, 1), (β, 1)} {(β, 1)}

Table 4: Illustration of the nonmonotonicity of STD .

From a more general point of view, it is not obvious how
to explain why a teaching dimension resulting from a coop-
erative model should be nonmonotonic.

First of all, this is a counter-intuitive observation when
considering STD as a notion of complexity—intuitively any
subclass of C should be at most as complex for teaching and
learning as C.

However, there is in fact an intuitive explanation for the
nonmonotonicity of the complexity in cooperative teaching
and learning: when teaching c ∈ C, instead of providing
examples that eliminate all concepts in C \ {c} (as is the
idea underlying minimal teaching sets) cooperative teach-
ers would rather pick only those examples that distinguish
c from its “most similar” concepts in C. Similarity here is
measured by the number of instances on which two concepts
agree (i.e., dissimilarity is given by the Hamming distance
between the concepts, where a concept c is represented as a

bit vector (c(x1), . . . , c(xn))). This is reflected in the subset
teaching sets in all illustrative examples considered above.

Considering a classC = Cu
0/1, one observes that a subset

teaching set for a concept cs,0 contains only the negative ex-
ample (xu+1+int(s), 0) distinguishing it from cs,1 (its nearest
neighbor in terms of Hamming distance). A learner will rec-
ognize this example as the one that separates only that one
pair (cs,0, cs,1) of nearest neighbors. In contrast to that, if
we consider only the subclass C ′ = {cs,0 | s ∈ {0, 1}u},
the nearest neighbors of each cs,0 are different ones, and ev-
ery single example separating one nearest neighbor pair also
separates other nearest neighbor pairs. Thus no single exam-
ple can be recognized by the learner as a separating example
for one unique pair of concepts.

This intuitive idea of subset teaching sets being used for
distinguishing a concept from its nearest neighbors has to
be treated with care though. The reason is that the concept
class may contain “redundant” instances, i.e., instances that
could be removed from the instance space according to The-
orem 11.

Such redundant instances might on the other hand affect
Hamming distances and nearest neighbor relations. Only af-
ter their elimination the notion of nearest neighbors in terms
of Hamming distance becomes well-defined. Consider for
instance Table 3. In the concept class C over 5 instances the
only nearest neighbor of ∅ is {x1} and an example distin-
guishing ∅ from {x1} would be (x1, 0). Moreover, no other
concept is distinguished from its nearest neighbors by the
instance x1. According to the intuition explained here, this
would suggest {(x1, 0)} being a subset teaching set for ∅ al-
though the subset teaching sets here equal the teaching sets
and are all of cardinality 2.

After instance elimination of x4, x5 there is only one sub-
set teaching set for ∅, namely {(x1, 0), (x3, 0)}. This is still
of cardinality 2 but note that now ∅ has two nearest neigh-
bors, namely {x1} and {x3}. The two examples in the sub-
set teaching set are those that distinguish ∅ from its nearest
neighbors. Note that either one of these two examples is not
unique as an example used for distinguishing a concept from
its nearest neighbors: (x1, 0) would be used by {x2, x3} for
distinguishing itself from its nearest neighbor {x1, x2, x3};
(x3, 0) would be used by {x1, x2} for distinguishing itself
from its nearest neighbor {x1, x2, x3}. So the subset teach-
ing set for ∅ has to contain both examples.

This shows that in general a subclass of a class C can
have a higher complexity than C if crucial nearest neighbors
of some concepts are missing.

To summarize,

• nonmonotonicity has an intuitive reason and is not an
indication for an ill-defined version of the teaching di-
mension,

• nonmonotonicity is in fact required if we want to cap-
ture the idea that the existence of specific concepts to
distinguish a target concept from is beneficial for teach-
ing and learning.

So, the STD captures certain intuitions about teaching
and learning that monotonic dimensions cannot capture; at
the same time monotonicity might in other respects itself be

142

an intuitive property of teaching and learning which then the
STD cannot capture.

In particular there are two underlying intuitive proper-
ties that seem to not be satisfiable by a single variant of the
teaching dimension.

So in contrast one may wish to have a cooperative teach-
ing and learning model going along with a monotonic com-
plexity measure. It is not hard to show that BTD in fact is
monotonic, see Theorem 12.

Theorem 12 If C is a concept class and C ′ ⊆ C a subclass
of C, then BTD(C ′) ≤ BTD(C).

Proof. Fix C and C ′ ⊆ C. We will prove by induction on k
that

BTDk(c, C ′) ≤ BTDk(c, C) for all c ∈ C (7)

for all k ∈ N.
k = 0: Property (7) holds because of BTD0(c, C ′) =

TD(c, C ′) ≤ TD(c, C) = BTD0(c, C) for all c ∈ C.
Induction hypothesis: assume (7) holds for a fixed k.
k k + 1: First, observe that

Conssize(S,C ′, k)
= {c ∈ Cons(S,C ′) | BTDk(c, C ′) ≥ |S|}
⊆ {c ∈ Cons(S,C ′) | BTDk(c, C) ≥ |S|} (ind. hyp.)

⊆ {c ∈ Cons(S,C) | BTDk(c, C) ≥ |S|}
= Conssize(S,C, k)

Second, for all c ∈ C we obtain

BTDk+1(c, C ′)
= min{|S| | Conssize(S,C ′, k) = {c} }
≤ min{|S| | Conssize(S,C, k) = {c} }
≤ BTDk+1(c, C)

This completes the proof.

So, on the one hand, we have the teaching framework
based on the subset teaching dimension which results in a
nonmonotonic dimension, and on the other hand we have a
monotonic dimension in the BTD framework, which unfor-
tunately does not always meet our idea of a best possible
cooperative teaching and learning protocol. That raises the
question whether nonmonotonicity is necessary to achieve
certain positive results. In fact, the nonmonotonicity con-
cerning the class Cu

0/1 is not counter-intuitive, but would a
dimension that is monotonic also result in a worse sample
complexity than the STD in general, such as, e.g., for the
monomials?

In other words, is there a teaching/learning framework

• resulting in a monotonic variant of a teaching dimen-
sion and

• achieving similarly good results as the subset teaching
dimension?

At this point of course it is difficult to define what “similarly
good” means. However, we would like to have a constant
dimension for the class of all monomials, as well as, e.g., a

teaching set of size 1 for the empty concept in our often used
concept class C0.

We will now via several steps introduce at least a mono-
tonic variant of the teaching dimension and show that for
most of the examples studied above, it is as low as the subset
teaching dimension. General comparisons will be made in
Section 5, in particular in order to show that this new frame-
work is uniformly at least as efficient as the BTD frame-
work (or better), while sometimes being less efficient than
the STD framework. This reflects to a certain extent that
monotonicity constraints might affect sample efficiency.

4.3 The teaching plan model
We will first define the notion for our variant of teaching di-
mension and show its monotonicity. The nonmonotonicity
of STD is caused by considering every STSk-set for every
concept when computing an STSk+1-set for a single con-
cept. Hence the idea in the following approach is to impose
an order onto the concept class, in terms of the “teaching
complexity” of the concepts. This is what the teaching di-
mension does as well, but our design principle is a recursive
one. After selecting a concept which is “easy to teach” be-
cause of possessing a small minimal teaching set, we elim-
inate this concept from our concept class and consider only
the remaining concepts. Again we determine the one with
the lowest teaching dimension, now however measured with
respect to the class of remaining concepts, and so on. The re-
sulting notion of dimension is therefore called the recursive
teaching dimension.

Definition 13 Let C be a concept class, |C| = N . A teach-
ing plan for C is a sequence p = ((c1, S1), . . . , (cN , SN)) ∈
(C × 2X×{0,1})N such that

1. C = {c1, . . . , cN}.
2. Sj ∈ TS (cj , {cj , . . . , cN}) for 1 ≤ j ≤ N − 1.

3. SN = {(x, 1− b) | (x, b) ∈ SN−1}.5

The order of p is given by ord(p) = max{|Sj | | 1 ≤ j ≤
N}. The recursive teaching dimension of C is defined by
RTD(C) = min{ord(p) | p is a teaching plan for C}.

The desired monotonicity property, see Proposition 14,
follows immediately from the definition.

Proposition 14 If C is a concept class and C ′ ⊆ C is a
subclass of C, then RTD(C ′) ≤ RTD(C).

We can define a set of canonical teaching plans for any
finite concept class C. As it will turn out, their order always
equals RTD(C).

Definition 15 Let C be a concept class, p = ((c1, S1), . . . ,
(cN , SN)) a teaching plan for C. p is called a canonical
teaching plan for C, if for any i, j ∈ {1, . . . , N}:

i < j ⇒ TD(ci, {ci, . . . , cN}) ≤ TD(cj , {ci, . . . , cN}) .

Theorem 16 Let C be a concept class and p a canonical
teaching plan for C. Then ord(p) = RTD(C).

5Note that the cardinality of both SN−1 and SN must be 1.

143

Proof. LetC and p as in the theorem be given, p = ((c1, S1),
. . . , (cN , SN)). Let p′ = ((c′1, S

′
1), . . . , (c′N , S

′
N)) be any

teaching plan for C. It remains to prove that ord(p) ≤
ord(p′).

For that purpose choose the minimal j ∈ {1, . . . , N}
such that |Sj | = ord(p). By definition of a teaching plan,
TD(cj , {cj , . . . , cN}) = ord(p). Let i ∈ {1, . . . , N} be
minimal such that c′i ∈ {cj , . . . , cN}. Let k ∈ {1, . . . , N}
fulfill ck = c′i. By definition of a canonical teaching plan,
TD(ck, {cj , . . . , cN}) ≥ TD(cj , {cj , . . . , cN}) = ord(p).
This obviously yields ord(p′) ≥ TD(c′i, {c′i, . . . , c′N}) ≥
TD(ck, {cj , . . . , cN}) ≥ ord(p).

To summarize briefly, the recursive teaching dimension
is a monotonic complexity notion which in fact has got some
of the properties we desired; e.g., it is easily verified that
RTD(C0) = 1 (by any teaching plan in which the empty
concept occurs last) and that the RTD of the class of all
monomials equals 2 (see below). Thus the RTD overcomes
some of the weaknesses of BTD , while at the same time
preserving monotonicity.

As it will turn out later, there are some interesting rela-
tions between BTD , STD , and RTD .

A property that might be relevant for establishing these
relations is based on the following definition.

Definition 17 Let C be a concept class, |C| = N . A TS -
teaching plan for C is a sequence

p = ((c1, S1
1), . . . , (cN , SN

1 , . . . , S
N
N))

such that

1. C = {c1, . . . , cN}.
2. Sj

k ∈ TS (cj , {ck, . . . , cN}) for 1 ≤ k ≤ j ≤ N .

3. Sj
k ⊆ S

j
k−1 for 1 < k ≤ j ≤ N .

The order of p is given by ord(p) = max{|Sj
j | | 1 ≤ j ≤

N}. The recursive TS -teaching dimension ofC is defined by
RTTD(C)=min{ord(p) | p is a TS -teaching plan for C}.

TS -teaching plans differ from original teaching plans in
that they require their sets being built up in stages as subsets
of those in previous stages, starting from teaching sets.

However, as it turns out, concerning the RTD it suffices
to consider this restricted form of teaching plans.

Lemma 18 Let C be a concept class. Then RTTD(C) =
RTD(C). In particular, there is a TS -teaching plan p =
((c1, S1

1), . . . , (cN , SN
1 , . . . , S

N
N)) for C such that ord(p) =

RTD(C) and ((c1, S1
1), . . . , (cN , SN

N)) is a canonical teach-
ing plan for C.

The proof is omitted.

4.4 Monomials revisited
In this subsection, we will pick up the two examples from
Subsection 3.3 again, this time to determine the recursive
teaching dimension.

Theorem 19 Letm ∈ N andC the class of all boolean func-
tions over m variables that can be represented by a mono-
mial. Then RTD(C) = 2.

Proof. Fix m and C. For all i ∈ {0, . . . ,m} let Ci be the
subclass of all c ∈ C that can be represented by a non-
contradictory monomial M that has got i variables. There
is exactly one concept in C not belonging to any subclass Ci

of C, namely the concept c∗ representable by a contradictory
monomial.

The proof is based on the following observation.
Observation. For any i ∈ {0, . . . ,m} and any c ∈ Ci:

TD(c, C ′ ∪ {c∗}) ≤ 2, where C ′ =
⋃

i≤j≤m Cj .
Now it is easily seen that ord(p) ≤ 2 for every teach-

ing plan p = ((c1, S1), . . . , (cN , SN)) for C that meets the
following requirements:

(a) c1 ∈ C0 and cN = c∗.

(b) For any k, k′ ∈ {0, . . . , N−1}: If k < k′, then ck ∈ Ci

and ck′ ∈ Cj for some i, j ∈ {0, . . . ,m} with i ≤ j.

Since obviously TD(c, C) ≥ 2 for all c ∈ C, we obtain
RTD(C) = 2.

For illustration of the case m = 2 see Table 5.

TS

λ C0 {(00,1),(11,1)}
v1 C1 {(10,1),(11,1)}
v1 C1 {(00,1),(01,1)}
v2 C1 {(01,1),(11,1)}
v2 C1 {(00,1),(10,1)}
v1 ∧ v2 C2 {(11,1)}
v1 ∧ v2 C2 {(10,1)}
v1 ∧ v2 C2 {(01,1)}
v1 ∧ v2 C2 {(00,1)}
v1 ∧ v1 {(00,0)}

Table 5: Recursive teaching sets in a teaching plan of order
2 for the class of all monomials over m = 2 variables. λ
denotes the empty monomial.

For the sake of completeness, note RTD(Cm
∨DNF) = 1

where Cm
∨DNF is the class of boolean functions over m vari-

ables as defined in Subsection 3.3.

Theorem 20 RTD(Cm
∨DNF) = 1 for all m ∈ N.

Sketch of proof. This follows straightforwardly from the fact
that TD(c, Cm

∨DNF) = 1 for every concept c corresponding
to a 2-term DNF of form v1 ∨M .

For illustration see Table 2.

5 Comparison of teaching dimension notions
This section provides an analysis of the relationships be-
tween RTD , BTD , and STD .

Theorem 21 1. If C is a concept class then RTD(C) ≤
BTD(C).

2. There is a concept class C with RTD(C) < BTD(C).

Proof. Assertion (2) is witnessed by the concept class C0

containing the empty concept and all singletons. Obviously,
RTD(C0) = 1 and BTD(C0) = 2.

144

To prove Assertion (1), let C be a concept class with
RTD(C) = u. By Theorem 16 there is a canonical teaching
plan p = ((c1, S1), . . . , (cN , SN)) for C with ord(p) = u.
Fix j ≤ N minimal such that |Sj | = u and define C ′ =
{cj . . . , cN}. Obviously, RTD(C ′) = u. Moreover, us-
ing Theorem 12, BTD(C ′) ≤ BTD(C). Thus it suffices to
prove u ≤ BTD(C ′).

To achieve this, we will prove by induction on k that u ≤
BTDk(c, C ′) for all k ∈ N for all c ∈ C ′.

k = 0: BTD0(c, C ′) = TD(c, C ′) ≥ u for all c ∈ C ′.
Induction hypothesis: assume u ≤ BTDk(c, C ′) for all

c ∈ C ′ holds for a fixed k.
k k + 1: Suppose by way of contradiction that there

is a concept c∗ ∈ C ′ with u > BTDk+1(c∗, C ′). In par-
ticular, there exists a sample S∗ such that |S∗| < u and
Conssize(S∗, C ′, k) = {c∗}.

By induction hypothesis, the set Conssize(S∗, C ′, k) de-
fined by {c ∈ Cons(S∗, C ′) | BTDk(c, C ′) ≥ |S∗|} is
equal to Cons(S∗, C ′). Note that TD(c, C ′) ≥ u for all c ∈
C ′ implies either |Cons(S∗, C ′)| ≥ 2 or Cons(S∗, C ′) = ∅.
We obtain a contradiction to Conssize(S∗, C ′, k) = {c∗}.

This completes the proof.

Comparing the STD to the RTD turns out to be a bit
more complex. We can show that the recursive teaching di-
mension can be arbitrarily larger than the subset teaching di-
mension; it can even be larger than the maximal STD com-
puted over all subsets of the concept class.

Theorem 22 1. For each u ∈ N there is a concept class
C such that STD(C) = 1 and RTD(C) = u.

2. There is a concept class C such that max{STD(C ′) |
C ′ ⊆ C} < RTD(C).

Sketch of proof. Assertion (1) is witnessed by the classes
Cu

0/1 defined in the proof of Theorem 6.
To verify Assertion (2), consider the concept class C =

{c1, . . . , c6} given by c1 = ∅, c2 = {x1}, c3 = {x1, x2},
c4 = {x2, x3}, c5 = {x2, x4}, c6 = {x2, x3, x4}. It is
not hard to verify that TD(c, C) = 2 for all c ∈ C and
thus ord(p) = 2 for every teaching plan p for C. Therefore
RTD(C) = 2. Moreover STD(C ′) = 1 for all C ′ ⊆ C (the
computation of STD(C) is shown in Table 6; further details
are omitted).

concept STS0 STS1 STS2

∅ {(x1, 0), (x2, 0)} {(x1, 0)} {(x1, 0)}
{x1} {(x1, 1), (x2, 0)} {(x1, 1), (x2, 0)} {(x1, 1)}

{(x2, 0)}
{x1, x2} {(x1, 1), (x2, 1)} {(x2, 1)} {(x2, 1)}
{x2, x3} {(x3, 1), (x4, 0)} {(x4, 0)} {(x4, 0)}
{x2, x4} {(x3, 0), (x4, 1)} {(x3, 0)} {(x3, 0)}
{x2, x3, x4} {(x3, 1), (x4, 1)} {(x3, 1), (x4, 1)} {(x3, 1)}

{(x4, 1)}

Table 6: Iterated subset teaching sets for the class C =
{c1, . . . , c6} given by c1 = ∅, c2 = {x1}, c3 = {x1, x2},
c4 = {x2, x3}, c5 = {x2, x4}, c6 = {x2, x3, x4}.

We conjecture moreover that STD(C) ≤ RTD(C) for
all concept classes C, however, we cannot prove that at the

time of writing. However, we can provide a general proof
idea that solely relies on a lemma that we conjecture.

Lemma 23 (Conjecture) Let C be a concept class and p =
((c1, S1), . . . , (cN , SN)) a teaching plan for C. Let j fulfill
ord(p) = |Sj | and STD(cj , C) ≥ ord(p). Then there is a
teaching plan

p = ((c1, S′1), . . . , (cN , S
′
N))

for C and a sample S ∈ STS (cj , C) such that S′j ⊆ S.

The proof of the following theorem, which helps to sum-
marize the relations between our different variants of teach-
ing dimensions, relies on this lemma—hence in fact the the-
orem is also a conjecture at the time of writing. Note that
its correctness, together with Theorem 21 and Lemma 18,
would imply

STD(C) ≤ RTD(C) = RTTD(C) ≤ BTD(C)

for all concept classes C. Here all inequalities are necessary
since proven to not be equalities.

Theorem 24 (Based on conjecture Lemma 23) Let C be a
concept class. Then STD(C) ≤ RTD(C).

Sketch of proof (relying on Lemma 23). Prove property (Pj)
by induction for all j ≥ 1.

(Pj):
If C is a concept class of at least j concepts and p
is any teaching plan for C (not necessarily canon-
ical), then STD(cj , C) ≤ ord(p) where cj is the
jth concept in the teaching plan p.

For j = 1 this is obvious, because

STD(c1, C) ≤ TD(c1, C) ≤ ord(p) .

The induction hypothesis is that (Pi) holds for all i ≤ j,
j fixed.

To prove (Pj+1), choose a concept class C and a teach-
ing plan p = ((c1, S1), . . . , (cN , SN)) for C. Consider the
j + 1st concept cj+1 in p.

Case 1. |Sj+1| < ord(p).
If |Sj+1| < ord(p), then we swap cj and cj+1 and get a

new teaching plan

p = ((c1, S1), . . . , (cj−1, Sj−1),
(cj+1, T), (cj , T ′), . . . , (cn, SN))

for C. Note that |T ′| ≤ |Sj |. Now cj+1 is in jth posi-
tion and its corresponding set T , due to the swap, fulfills
|T | ≤ |Sj+1|+ 1 ≤ ord(p). By induction hypothesis we get
STD(cj+1, C) ≤ ord(p).

Case 2. |Sj+1| = ord(p).
This is the more difficult case. Using Lemma 18 we can

prove that Sj+1 is a subset of a teaching set of cj+1 with
respect to any of the classes {ci, . . . , cN} where i ≤ j + 1.

But in fact we would need Lemma 23 to tell us that Sj+1

is a subset of a subset teaching set of cj+1 with respect to C.
Assume that STD(cj+1, C) > ord(p). This implies that

Sj+1 is a subset of some subset teaching set for cj+1 with-
out being contained in any other subset teaching set for any

145

other concept. Then Sj+1 would itself be a subset teaching
set for cj+1 in contradiction to its size being smaller than
STD(cj+1, C).

To see why Sj+1 couldn’t be contained in any subset
teaching set for any c 6= cj+1, c ∈ C, note that cj+2, . . . ,
cN are not consistent with Sj+1 and the concepts c1, . . . , cj
by induction hypothesis have a too low subset teaching di-
mension in C.

6 Conclusions and open problems
We have introduced a new model of teaching and learning,
based on what we call subset teaching sets. This model cap-
tures the idea of a teacher and a learner cooperating in order
to learn concepts in finite classes from small samples.

This model avoids coding tricks and provides a generally
applicable procedure for a uniform protocol of cooperative
learning. It achieves results that are, for a specific concept
class, such as the monomials, no less efficient than known
algorithms that are designed especially for that one concept
class (and perform inefficiently in terms of sample size on
others).

The resulting subset teaching dimension turns out to be
nonmonotonic—a fact that is illustrated and explained by the
nature of the underlying definition.

In order to compare this subset teaching dimension to
monotonic variants of teaching dimensions related to coop-
eration in learning, we introduced two equivalent notions of
“recursive teaching dimensions”, being monotonic by defi-
nition. They turn out to be very helpful in providing bounds
for previous notions (they are significantly better than the
original teaching dimension and variants thereof). However,
even though they behave so well, the nonmonotonic subset
teaching dimension in general seems to be better.

Examples have shown that even the recursive teaching
dimensions cannot always compete with the subset teaching
dimension, though our conjecture that the recursive teach-
ing dimension can never be lower than the subset teaching
dimension is still open.

We plan to close this gap in our proof, to find character-
izations for these teaching dimensions, and to provide evi-
dence to another conjecture, namely that, for reasonable def-
initions of the term “coding trick”, there is no teaching and
learning model that avoids coding tricks and is better than
the model based on the subset teaching dimension.

Acknowledgments
We gratefully acknowledge the support of Laura Zilles and
Michael Geilke who developed and provided a software tool
for computing subset teaching sets and teaching plans.

Many thanks are due to the anonymous referees for their
helpful comments.

This work was partly funded by the Alberta Ingenuity
Centre for Machine Learning.

References
[ABCS92] M. Anthony, G. Brightwell, D.A. Cohen, and

J. Shawe-Taylor. On exact specification by
examples. In Proc. of 5th Annual Workshop

on Computational Learning Theory (COLT’92),
pages 311–318. ACM, New York, 1992.

[AK97] D. Angluin and M. Krikis. Teachers, learners
and black boxes. In Proc. of the 10th Annual
Conference on Computational Learning Theory
(COLT’97), pages 285–297. ACM, New York,
1997.

[Bal08] F. Balbach. Measuring teachability using vari-
ants of the teaching dimension. Theoret. Com-
put. Sci., 397(1-3):94–113, 2008.

[BE98] S. Ben-David and N. Eiron. Self-directed learn-
ing and its relation to the VC-dimension and to
teacher-directed learning. Machine Learning,
33(1):87–104, 1998.

[FKW93] R. Freivalds, E.B. Kinber, and R. Wiehagen. On
the power of inductive inference from good ex-
amples. Theoret. Comput. Sci., 110(1):131–144,
1993.

[GK95] S.A. Goldman and M.J. Kearns. On the com-
plexity of teaching. J. Comput. Syst. Sci.,
50(1):20–31, 1995.

[GM96] S.A. Goldman and H.D. Mathias. Teaching a
smarter learner. J. Comput. Syst. Sci., 52(2):255–
267, 1996.

[Han07] S. Hanneke. Teaching dimension and the com-
plexity of active learning. In Proc. of the 20th
Annual Conference on Learning Theory (COLT
2007), pages 66–81. LNCS 4539, Springer,
Berlin, 2007.

[Heg95] T. Hegedüs. Generalized teaching dimensions
and the query complexity of learning. In Proc.
of the 8th Annual Conference on Computational
Learning Theory (COLT’95), pages 108–117.
ACM, New York, 1995.

[JT92] J. Jackson and A. Tomkins. A computational
model of teaching. In Proc. of 5th Annual
Workshop on Computational Learning Theory
(COLT’92), pages 319–326. ACM, New York,
1992.

[LNW98] S. Lange, J. Nessel, and R. Wiehagen. Learning
recursive languages from good examples. Ann.
Math. Artif. Intell., 23(1-2):27–52, 1998.

[Mat97] H.D. Mathias. A model of interactive teaching.
J. Comput. Syst. Sci., 54(3):487–501, 1997.

[OS02] Matthias Ott and Frank Stephan. Avoiding cod-
ing tricks by hyperrobust learning. Theoret.
Comput. Sci., 284(1):161–180, 2002.

[RY95] R.L. Rivest and Y.L. Yin. Being taught can be
faster than asking questions. In Proc. of the 8th
Annual Conference on Computational Learning
Theory (COLT’95), pages 144–151. ACM, New
York, 1995.

[SM91] A. Shinohara and S. Miyano. Teachability in
computational learning. New Generation Com-
put., 8(4):337–348, 1991.

[Val84] L.G. Valiant. A theory of the learnable. Com-
mun. ACM, 27(11):1134–1142, 1984.

146

On The Power of Membership Queries in Agnostic Learning

Vitaly Feldman∗
IBM Almaden Research Center

650 Harry rd.
San Jose, CA 95120

vitaly@post.harvard.edu

Abstract

We study the properties of the agnostic learning
framework of Haussler [Hau92] and Kearns, Schapire
and Sellie [KSS94]. In particular, we address the
question: is there any situation in which member-
ship queries are useful in agnostic learning?

Our results show that the answer is negative for
distribution-independent agnostic learning and pos-
itive for agnostic learning with respect to a specific
marginal distribution. Namely, we give a simple
proof that any concept class learnable agnostically
by a distribution-independent algorithm with ac-
cess to membership queries is also learnable ag-
nostically without membership queries. This re-
solves an open problem posed by Kearns et al.
[KSS94]. For agnostic learning with respect to
the uniform distribution over {0, 1}n we show a
concept class that is learnable with membership
queries but computationally hard to learn from ran-
dom examples alone (assuming that one-way func-
tions exist).

1 Introduction
The agnostic framework [Hau92, KSS94] is a natural gen-
eralization of Valiant’s PAC learning model [Val84]. In this
model no assumptions are made on the labels of the exam-
ples given to the learning algorithm, in other words, the learn-
ing algorithm has no prior beliefs about the target concept
(and hence the name of the model). The goal of the agnos-
tic learning algorithm for a concept class C is to produce a
hypothesis h whose error on the target concept is close to
the best possible by a concept from C. This model reflects
a common empirical approach to learning, where few or no
assumptions are made on the process that generates the ex-
amples and a limited space of candidate hypothesis functions
is searched in an attempt to find the best approximation to the
given data.

Designing algorithms that learn efficiently in this model
is notoriously hard and very few positive results are known

∗Part of the work done while the author was at Harvard Uni-
versity supported by grants from the National Science Foundation
NSF-CCF-04-32037 and NSF-CCF-04-27129.

[KSS94, LBW95, GKS01, KKMS05, GKK08, KMV08]. Fur-
thermore, strong computational hardness results are known
for agnostic learning of even the simplest classes of functions
such as parities, monomials and halfspaces [Hås01, Fel06,
FGKP06, GR06] (albeit only for proper learning). Reduc-
tions from long-standing open problems for PAC learning to
agnostic learning of simple classes of functions provide an-
other indication of the hardness of agnostic learning [KSS94,
KKMS05, FGKP06].

A membership oracle allows a learning algorithm to ob-
tain the value of the unknown target function f on any point
in the domain. It can be thought of as modeling the access
to an expert or ability to conduct experiments. Learning
with membership queries in both PAC and Angluin’s exact
models [Ang88] was studied in numerous works. For ex-
ample monotone DNF formulas, finite automata and deci-
sion trees are only known to be learnable with membership
queries [Val84, Ang88, Bsh95]. It is well-known and easy to
prove that the PAC model with membership queries is strictly
stronger than the PAC model without membership queries (if
one-way functions exist).

Membership queries are also used in several agnostic learn-
ing algorithms. The first one is the famous algorithm of Gol-
dreich and Levin introduced in a cryptographic context (even
before the definition of the agnostic learning model) [GL89].
Their algorithm learns parities agnostically with respect to
the uniform distribution using membership queries. Kushile-
vitz and Mansour used this algorithm to PAC learn decision
trees [KM93] and it has since found numerous other signif-
icant applications. More efficient versions of this algorithm
were also given by Levin [Lev93], Bshouty, Jackson and
Tamon [BJT99] and Feldman [Fel07]. Recently, Gopalan,
Kalai and Klivans gave an elegant algorithm that learns deci-
sion trees agnostically over the uniform distribution and uses
membership queries [GKK08].

1.1 Our Contribution
In this work we study the power of membership queries in
the agnostic learning model. This question was posed by
Kearns et al. [KSS94] and, to the best of our knowledge,
has not been addressed prior to our work. In this work we
present two results on this question. In the first result we
prove that every concept class learnable agnostically with
membership queries is also learnable agnostically without
membership queries (see Theorem 6 for a formal statement).
This proves the conjecture of Kearns et al. [KSS94]. The

147

reduction we give modifies the distribution of examples and
therefore is only valid for distribution-independent learning,
that is, when a single learning algorithm is used for every dis-
tribution over the examples. The simple proof of this result
explains why the known distribution-independent agnostic
learning algorithm do not use membership queries [KSS94,
KKMS05, KMV08].

The proof of this result also shows equivalence of two
standard agnostic models: the one in which examples are
labeled by an unrestricted function and the one in which ex-
amples come from a joint distribution over the domain and
the labels.

Our second result is a proof that there exists a concept
class that is agnostically learnable with membership queries
over the uniform distribution on {0, 1}n but hard to learn in
the same setting without membership queries. This result is
based on the most basic cryptographic assumption, namely
the existence of one-way functions. Note that an uncondi-
tional separation of these two models would imply NP 6= P.
Cryptographic assumptions are essential for numerous other
hardness results in learning theory (cf. [KV94, Kha95]). Our
construction is based on the use of pseudorandom function
families, list-decodable codes and a variant of an idea from
the work of Elbaz, Lee, Servedio and Wan [ELSW07]. Sec-
tions 4.1 and 4.2 describe the technique and its relation to
prior work in more detail.

This results is, perhaps, unsurprising since agnostic learn-
ing of parities with respect to the uniform distribution from
random examples only is commonly considered hard and is
known to be equivalent to decoding of random linear codes,
a long-standing open problem in coding theory. The best
known algorithm for this problem runs in time O(2n/ log n)
[FGKP06]. It is therefore natural to expect that membership
queries are provably helpful for uniform distribution agnos-
tic learning. The proof of this result however is substan-
tially less straightforward than one might expect (and than
the analogous separation for PAC learning). Here the main
obstacle is the same as in proving positive results for agnos-
tic learning: the requirements of the model impose severe
limits on concept classes for which the agnostic guarantees
can be provably satisfied.

1.2 Organization
Following the preliminaries, our first result is described in
Section 3. The second result appears in Section 4.

2 Preliminaries
Let X denote the domain or the input space of a learning
problem. The domain of the problems that we study is {0, 1}n,
or the n-dimensional Boolean hypercube. A concept over X
is a {−1, 1} function over the domain and a concept class C
is a set of concepts over X . The unknown function f ∈ C
that a learning algorithm is trying to learn is referred to as
the target concept.

A parity function is a function equal to the XOR of some
subset of variables. For a Boolean vector a ∈ {0, 1}n we
define the parity function χa(x) as χa(x) = (−1)a·x =
(−1)⊕i≤naixi . We denote the concept class of parity func-
tions {χa | a ∈ {0, 1}n} by PAR. A k-junta is a function
that depends only on k variables.

A representation class is a concept class defined by pro-
viding a specific way to represent each function in the con-
cept class. All of the above concept classes are in fact rep-
resentation classes. For a representation class F we say that
an algorithm outputs f ∈ F if the algorithm outputs f in the
representation associated with F .

2.1 PAC Learning Model
The learning models discussed in this work are based on
Valiant’s well-known PAC model [Val84]. In this model, for
a concept f and distribution D over X , an example oracle
EX(D, f) is the oracle that, upon request, returns an exam-
ple (x, f(x)) where x is chosen randomly with respect to D.
For ε ≥ 0 we say that function g ε-approximates a function f
with respect to distribution D if PrD[f(x) = g(x)] ≥ 1− ε.
In the PAC learning model the learner is given access to
EX(D, f) where f is assumed to belong to a fixed concept
class C.

Definition 1 For a concept class C, we say that an algorithm
Alg PAC learns C, if for every ε > 0, δ > 0, f ∈ C, and
distribution D over X , Alg, given access to EX(D, f), out-
puts, with probability at least 1 − δ, a hypothesis h that ε-
approximates f .

The learning algorithm is efficient if its running time and the
time to compute h are polynomial in 1/ε, 1/δ and the size
σ of the learning problem. Here by the size we refer to the
maximum description length of an element in X (e.g. n when
X = {0, 1}n) plus a bound on the length of the description
of a concept in C in the representation associated with C.

An algorithm is said to weakly learn C if it produces a
hypothesis h that (1

2 − 1
p(σ))-approximates f for some poly-

nomial p.

2.2 Agnostic Learning Model
The agnostic learning model was introduced by Haussler
[Hau92] and Kearns et al. [KSS94] in order to model sit-
uations in which the assumption that examples are labeled
by some f ∈ C does not hold. In its least restricted ver-
sion the examples are generated from some unknown distri-
bution A over X × {−1, 1}. The goal of an agnostic learn-
ing algorithm for a concept class C is to produce a hypoth-
esis whose error on examples generated from A is close to
the best possible by a concept from C. Class C is referred
to as the touchstone class in this setting. More generally,
the model allows specification of the assumptions made by a
learning algorithm by describing a setA of distributions over
X×{−1, 1} that restricts the distributions over X×{−1, 1}
seen by a learning algorithm. SuchA is referred to as the as-
sumption class. Any distribution A over X × {−1, 1} can
be described uniquely by its marginal distribution D over
X and the expectation of b given x. That is, we refer to a
distribution A over X × {−1, 1} by a pair (DA, φA) where
DA(z) = Pr(x,b)∼A[x = z] and

φA(z) = E(x,b)∼A[b | z = x].

Formally, for a Boolean function h and a distribution
A = (D,φ) over X × {−1, 1}, we define

∆(A, h) = Pr
(x,b)∼A

[h(x) 6= b] = ED[|φ(x)− h(x)|/2] .

148

Similarly, for a concept class C, define

∆(A, C) = inf
h∈C

{∆(A, h)} .

Kearns et al. define agnostic learning as follows [KSS94].

Definition 2 An algorithm Alg agnostically learns a con-
cept class C by a representation class H assuming A if for
every ε > 0, δ > 0, A ∈ A, Alg given access to examples
drawn randomly from A, outputs, with probability at least
1−δ, a hypothesis h ∈ H such that ∆(A, h) ≤ ∆(A, C)+ε.

The learning algorithm is efficient if it runs in time poly-
nomial 1/ε, log (1/δ) and σ (the size of the learning prob-
lem). If H = C then, by analogy with the PAC model, the
learning is referred to as proper. We drop the reference to H
to indicate that C is learnable for some H.

A number of versions of the agnostic model are com-
monly considered (and often referred to as the agnostic learn-
ing model). In fully agnostic learning A is the set of all
distributions over X × {−1, 1}. Another version assumes
that examples are labeled by an unrestricted function. That
is, the set A contains distribution A = (D, f) for every
Boolean function f and distribution D. Note that access to
random examples from A = (D, f) is equivalent to access
to EX(D, f). Following Kearns et al. , we refer to this ver-
sion as agnostic PAC learning [KSS94] (they also require
that H = C but this constraint is unrelated and is now gener-
ally referred to as properness). Theorem 6 implies that these
versions are essentially equivalent. In distribution-specific
versions of this model for every (D,φ) ∈ A, D equals to
some fixed distribution known in advance.

We also note that the agnostic PAC learning model can
also be thought of as a model of adversarial classification
noise. By definition, a Boolean function g differs from some
function f ∈ C on ∆(g, C) fraction of the domain. Therefore
g can be thought of as f corrupted by noise of rate ∆D(f, C).
Unlike in the random classification noise model the points
on which a concept can be corrupted are unrestricted and
therefore we refer to it as adversarial noise.

Uniform Convergence
A natural approach to agnostic learning is to first draw a sam-
ple of fixed size and then choose a hypothesis that best fits
the observed labels. The conditions in which this approach
is successful were studied in works of Dudley [Dud78], Pol-
lard [Pol84], Haussler [Hau92], Vapnik [Vap98] and others.
They give a number of conditions on the hypothesis class H
that guarantee uniform convergence of empirical error to the
true error. That is, existence of a function mH(ε, δ) such that
for every distribution A over examples, every h ∈ H, ε > 0,
δ > 0, the empirical error of h on sample of mH(ε, δ) ex-
amples randomly chosen from A is, with probability at least
1− δ, within ε of ∆(A, h). We denote the empirical error of
h on sample S by ∆(S, h). In the Boolean case, the follow-
ing result of Vapnik and Chervonenkis will be sufficient for
our purposes [VC71].

Theorem 3 Let H be a concept class over X of VC dimen-
sion d. Then for every distribution A over X × {−1, 1},

every h ∈ H, ε > 0, δ > 0, and sample S of size m =
O(d/ε2 · log (1/δ)) randomly drawn with respect to A,

Pr[|∆(A, h)−∆(S, h)| ≥ ε] ≤ δ.

In fact a simple uniform convergence result based on the car-
dinality of the function class follows easily from Chernoff
bounds (cf. [Hau92]). That is Theorem 3 holds for m =
O(log |H|/ε2·log (1/δ)). This result would also be sufficient
for our purposes but might give somewhat weaker bounds.

2.3 Membership Queries
A membership oracle for a function f is the oracle that,
given any point z ∈ {0, 1}n, returns the value f(z) [Val84].
We denote it by MEM(f). We refer to agnostic PAC learn-
ing with access to MEM(f) where f is the unknown func-
tion that labels the examples as agnostic PAC+MQ learning.
Similarly, one can extend the definition of a membership or-
acle to fully agnostic learning. For a distribution A over
X × {−1, 1}, let MEM(A) be the oracle that, upon query
z, returns b ∈ {−1, 1} with probability PrA[(x, b) | x = z].
We say that MEM(A) is persistent if given the same query
the oracle responds with the same label.

2.4 Fourier Transform
Our separation result uses Fourier-analytic techniques intro-
duced to learning theory by Linial, Mansour and Nisan [LMN93].
It is used primarily in the context of learning with respect to
the uniform distribution and therefore in the discussion be-
low all probabilities and expectations are taken with respect
to the uniform distribution U unless specifically stated oth-
erwise.

Define an inner product of two real-valued functions over
{0, 1}n to be 〈f, g〉 = Ex[f(x)g(x)]. The technique is based
on the fact that the set of all parity functions {χa(x)}a∈{0,1}n

forms an orthonormal basis of the linear space of real-valued
functions over {0, 1}n with the above inner product. This
fact implies that any real-valued function f over {0, 1}n can
be uniquely represented as a linear combination of parities,
that is f(x) =

∑
a∈{0,1}n f̂(a)χa(x). The coefficient f̂(a)

is called Fourier coefficient of f on a and equals Ex[f(x)χa(x)];
a is called the index of f̂(a). We say that a Fourier coefficient
f̂(a) is θ-heavy if |f̂(a)| ≥ θ. Let L2(f) = Ex[(f(x))2]1/2.
Parseval’s identity states that

(L2(f))2 = Ex[(f(x))2] =
∑

a

f̂2(a) .

Let A = (U, φ) be a distribution over {0, 1}n × {−1, 1}
with uniform marginal distribution over {0, 1}n. Fourier co-
efficient φ̂(a) can be easily related to the error of χa(x) on
A. That is,

PrA[b 6= χa(x)] = (1− φ̂(a))/2. (1)

Therefore, agnostic learning of parities amounts to finding
the largest (within ε) Fourier coefficient of φ(x). The first
algorithm for this task was given by Goldreich and Levin
[GL89]. Given access to membership oracle, for every ε > 0
their algorithm can efficiently find all ε-heavy Fourier coef-
ficients.

149

Theorem 4 ([GL89]) There exists an algorithm GL that for
every distribution A = (U, φ) and every ε, δ > 0, given ac-
cess to MEM(A), GL(ε, δ) returns, with probability at least
1 − δ, a set of indices T ⊆ {0, 1}n that contains all a such
that |φ̂(a)| ≥ ε and for all a ∈ T , |φ̂(a)| ≥ ε/2. Further-
more, the algorithm runs in time polynomial in n,1/ε and
log (1/δ).

Note that by Parseval’s identity, the condition |φ̂(a)| ≥ ε/2
implies that there are at most 4/ε2 elements in T .

2.5 Pseudo-random Function Families
A key part of our construction in Section 4 will be based
on the use of pseudorandom functions families defined by
Goldreich, Goldwasser and Micali [GGM86].

Definition 5 A function family F = {F}∞n=1 where Fn =
{πz}z∈{0,1}n is a pseudorandom function family if

• For every n and z ∈ {0, 1}n, πz is an efficiently evalu-
atable Boolean function on {0, 1}n.

• Any adversary M whose resources are bounded by a
polynomial in n can distinguish between a function πz

(where z ∈ {0, 1}n is chosen randomly and kept secret)
and a totally random function from {0, 1}n to {−1, 1}
only with negligible probability. That is, for every prob-
abilistic polynomial time M with an oracle access to a
function from {0, 1}n to {−1, 1} and a negligible func-
tion ν(n),
|Pr[Mπz (1n) = 1]−Pr[Mρ(1n) = 1]| ≤ ν(k),

where πz is a function randomly and uniformly cho-
sen from Fn and ρ is a randomly chosen function from
{0, 1}n to {−1, 1}. The probability is taken over the
random choice of πz or ρ and the coin flips of M .

Håstad et al. give a construction of pseudorandom func-
tion families based on the existence of one-way functions
[HILL99].

3 Distribution-Independent Agnostic
Learning

In this section we show that in distribution-independent ag-
nostic learning membership queries do not help. In addi-
tion, we prove that fully agnostic learning is equivalent to
agnostic PAC learning. Our proof is based on two simple
observations about agnostic learning via empirical error min-
imization. Values of the unknown function on points outside
of the sample can be set to any value without changing the
best fit by a function from the touchstone class. Therefore
membership queries do not make empirical error minimiza-
tion easier. In addition, points with contradicting labels do
not influence the complexity of empirical error minimization
since any function has the same error on pairs of contradict-
ing labels. We will now provide the formal statement of this
result.

Theorem 6 Let Alg be an algorithm that agnostically PAC+MQ
learns a concept class C by a representation class H in time
T (σ, ε, δ) and outputs a hypothesis from a class H of VC di-
mension d(σ, ε). Then C is (fully) agnostically learnable by
H in time T (σ, ε/2, δ/2) + O(d(σ, ε/2) · ε−2 log (1/δ)).

Proof: Let A = (D,φ) be a distribution over X × {−1, 1}.
Our reduction works as follows. Start by drawing m exam-
ples from A for m to be defined later. Denote this sample by
S. Let S′ be S with all contradicting pairs of examples re-
moved, that is for each example (x, 1) we remove it together
with one example (x,−1). Every function has the same er-
ror rate of 1/2 with examples in S \ S′. Therefore for every
function h,

∆(S, h) =
∆(S′, h)|S′|+ |S \ S′|/2

|S|
=∆(S′, h)

|S′|
m

+
m− |S′|

2m
(2)

and hence

∆(S, C) = ∆(S′, C)
|S′|
m

+
m− |S′|

2m
(3)

Let f(x) denote the function equal to b if (x, b) ∈ S′
and equal to 1 otherwise. Let DS′ denote the uniform dis-
tribution over S′. Given the sample S′ we can easily simu-
late the example oracle EX(DS′ , f) and MEM(f). We run
Alg(ε/2, δ/2) with theses oracles and denote its output by h.
Note, that this simulates A in the agnostic PAC+MQ setting
over distribution (DS′ , f).

By the definition of DS′ , for any Boolean function g(x),

PrDS′ [f(x) 6= g(x)] =
1
|S′| |{x ∈ S′ | f(x) 6= g(x)}|

=∆(S′, g).
That is, the error of any function g on DS′ is exactly the
empirical error of g on sample S′. Thus ∆((DS′ , f), h) =
∆(S′, h) and ∆((DS′ , f), C) = ∆(S′, C). By the correct-
ness of Alg, with probability at least 1 − δ/2, ∆(S′, h) ≤
∆(S′, C) + ε/2. By equations (2) and (3) we thus obtain
that

∆(S, h) = ∆(S′, h)
|S′|
m

+
m− |S′|

2m

≤ (∆(S′, C) +
ε

2
)
|S′|
m

+
m− |S′|

2m
= ∆(S, C) +

ε

2
|S′|
m

Therefore ∆(S, h) ≤ ∆(S, C) + ε/2. We can apply the VC
dimension-based uniform convergence results for H [VC71]
(Theorem 3) to conclude that for

m(ε/4, δ/4) = O

(
d(σ, ε/2) log (1/δ)

ε2

)
,

with probability at least 1−δ/2, ∆(A, h) ≤ ∆(S, h)+ ε
4 and

∆(S, C)+ ε
4 ≤ ∆(A, C) (we can always assume that C ⊆ H.

Finally, we obtain that with probability at least 1− δ,

∆(A, h) ≤ ∆(S, h) +
ε

4
≤ ∆(S, C) +

3ε

4
≤ ∆(A, C) + ε.

It easy to verify that the running time and hypothesis space
of this algorithm are as claimed.

Note that if Alg is efficient then d(σ, ε/2) is polynomial
in σ and 1/ε and, in particular, the obtained algorithm is ef-
ficient. In addition, in place of VC-dim one can the uniform
convergence result based on the cardinality of the hypothesis
space. The description length of a hypothesis output by Alg
is polynomial in σ and 1/ε and hence in this case a polyno-
mial number of samples will be required to simulate Alg.

150

Remark 7 We note that while this proof is given for the
strongest version of agnostic learning in which the error of
an agnostic algorithm is bounded by ∆(A, C) + ε, it can be
easily extended to weaker forms of agnostic learning, such as
algorithms that only guarantee error bounded by α·∆(A, C)+
β+ε for some α ≥ 1 and β ≥ 0. This is true since the reduc-
tion adds at most ε/2 to the error of the original algorithm
(and the additional time required is polynomial in 1/ε).

4 Learning with Respect to the Uniform
Distribution

In this section we show that when learning with respect to
the uniform distribution over {0, 1}n, membership queries
are helpful. Specifically, we show that if one-way functions
exist, then there exists a concept class C that is not agnosti-
cally PAC learnable (even weakly) with respect to the uni-
form distribution but is agnostically learnable over the uni-
form distribution given membership queries. Our agnostic
learning algorithm is successful only when ε ≥ 1/p(n) for
a polynomial p fixed in advance (the definition of C depends
on p). While this is slightly weaker than required by the
definition of the model it still exhibits the gap between ag-
nostic learning with and without membership queries. We
remark that a number of known PAC and agnostic learning
algorithms are efficient only for restricted values of ε (cf.
[KKMS05, OS06, GKK08]).

4.1 Background
We first show why some of the known separation results will
not work in the agnostic setting. It is well-known that the
PAC model with membership queries is strictly stronger than
the PAC model without membership queries (under the same
cryptographic assumption). The separation result is obtained
by using a concept class C that is not PAC learnable and
augmenting each concept f ∈ C with the encoding of f in
a fixed part of the domain. This encoding is readable us-
ing membership queries and therefore an MQ algorithm can
“learn” the augmented C by querying the points that contain
the encoding. On the other hand, with overwhelming proba-
bility this encoding will not be observed in random examples
and therefore does not help learning from random examples.
This simple approach would fail in the agnostic setting. The
unknown function might be random on the part of the do-
main that contains the encoding and equal to a concept from
C elsewhere. The agreement of the unknown function with
a concept from C is almost 1 but membership queries on the
points of encoding will not yield any useful information.

A similar problem arises with encoding schemes used in
the separation results of Elbaz et al. [ELSW07] and Feldman,
Shah and Wadhwa [FSW07]. There too the secret encoding
can be rendered unusable by a function that agrees with a
concept in C on a significant fraction of the domain.

4.2 Outline
We start by presenting some of the intuition behind our con-
struction. As in most other separation results our goal is to
create a concept class that is not learnable from uniform ex-
amples but includes an encoding of the unknown function
that is readable using membership queries. We first note that

in order for this approach to work in the agnostic setting the
secret encoding has to be “spread” over at least 1−2ε fraction
of {0, 1}n. To see this let f be a concept and let S ⊆ {0, 1}n

be the subset of the domain where the encoding of f is con-
tained. Assume, for simplicity, that without the encoding the
learning algorithm cannot predict f on S̄ = {0, 1}n \S with
any significant advantage over random guessing. Let f ′ be a
function equal to f on S̄ and truly random on S. Then

Pr[f = f ′] = (|S̄|+ |S|/2)/2n = 1/2 +
|S̄|

2n+1
.

On the other hand, f ′ does not contain any information about
the encoding of f and therefore, by our assumption, no ef-
ficient algorithm can produce a hypothesis with advantage
significantly higher than 1/2 on both S and S̄. This means
that the error of any efficient algorithm will be higher by at
least |S̄|/2n+1 than the best possible. To ensure that this
difference is at most ε, we need |S| ≥ (1− 2ε)2n.

Another requirement that the construction has to satisfy
is that the encoding of the secret has to be resilient to almost
any amount of noise. In particular, since the encoding is a
part of the function, we also need to be able to reconstruct
an encoding that is close to the best possible. An encod-
ing with this property is in essence a list-decodable binary
code. In order to achieve the strongest separation result we
will use the code of Guruswami and Sudan that is the con-
catenation of Reed-Solomon code with the binary Hadamard
code [GS00]. However, to simplify the presentation, we will
use the more familiar binary Hadamard code in our construc-
tion. In Section 4.6 we provide the details on the use of the
Guruswami-Sudan code in place of the Hadamard code.

The Hadamard code is equivalent to encoding a vector
a ∈ {0, 1}n as the values of the parity function χa on all
points in {0, 1}n. That is, n bit vector a is encoded into 2n

bits given by χa(x) for every x ∈ {0, 1}n. This might appear
quite inefficient since a learning algorithm will not be able
to read all the bits of the encoding. However the Goldreich-
Levin algorithm provides an efficient way to recover the in-
dices of all the parities that agree with a given function with
probability significantly higher than 1/2 [GL89]. Therefore
the Hadamard code can be decoded by reading the code in
only a polynomial number of (randomly-chosen) locations.

The next problem that arises is that the encoding should
not be readable from random examples. As we have ob-
served earlier, we cannot simply “hide” it on a negligible
fraction of the domain. Specifically, we need to make sure
that our Hadamard encoding is not recoverable from ran-
dom examples. While it is not known how to learn parities
with noise from random examples alone and this problem
is conjectured to be very hard, for all we know, it is possi-
ble that one-way functions exist whereas learning of parities
with noise is tractable. It is known however that if learn-
ing of parities with noise is hard then one-way functions
exist [BFKL93]. Our solution to this problem is to use a
pseudo-random function to make values on random exam-
ples indistinguishable from random coin flips. Specifically,
let a ∈ {0, 1}n be the vector we want to encode and let
b : {0, 1}n → {−1, 1} be a pseudo-random function. We
define a function g : {0, 1}n × {0, 1}n → {−1, 1} as

g(z, x) = b(z)⊕ χa(x) .

151

(⊕ is simply the product in {−1, 1}). The label of a random
example (z, x) ∈ {0, 1}2n is a XOR of a pseudorandom bit
with an independent bit and therefore is pseudorandom. Val-
ues of a pseudorandom function b on any polynomial set of
distinct points are pseudorandom and therefore random ex-
amples will have pseudorandom labels as long as their z parts
are distinct. In a sample of polynomial in n size of random
and uniform points from {0, 1}2n this happens with over-
whelming probability and therefore g(z, x) is not learnable
from random examples. On the other hand, for a fixed z,
b(z) ⊕ χa(x) gives a Hadamard encoding of a or its nega-
tion. Hence it is possible to find a using membership queries
with the same prefix. A construction based on a similar idea
was used by Elbaz et al. in their separation result [ELSW07].

Finally, the problem with the construction we have so
far is that while a membership query learning algorithm can
find the secret, it cannot predict the encoding of the secret
g(z, x) without knowing b(z). This means that we also need
to provide a description of b(z) to the learning algorithm. It
is tempting to use the Hadamard code to encode the descrip-
tion of b(z) together with a. However, a bit of the encoding
of b is no longer independent of b(z), and therefore the pre-
vious argument does not hold. We refer to the vector that de-
scribes b(z) by d(b). We are unaware of any constructions of
pseudorandom functions that would remain pseudorandom
when the value of the function is “mixed” with the descrip-
tion of the function. An identical problem also arises in the
construction of Elbaz et al. [ELSW07]. They used another
pseudorandom function b1 to encode d(b), then used another
pseudorandom function b2 to encode d(b1) and so on. The
fraction of the domain used up for the encoding of d(bi) is
becoming progressively smaller as i grows. In their construc-
tion a PAC learning algorithm can recover as many of the
encodings as is required to reach accuracy ε. This method
would not be effective in our case. First, in the agnostic set-
ting all the encodings but the one using the largest fraction of
the domain can be corrupted. This makes the largest encod-
ing unrecoverable and implies that the best ε achievable is at
most half of the fraction of the domain used by the largest
encoding. In addition, in the agnostic setting the encoding of
d(bi) for every odd i can be completely corrupted making all
the other encodings unrecoverable. To solve this problem in
our construction we use a pseudorandom function bi to en-
code d(bj) for all j < i. We also use encodings of the same
size. In this construction at most one of the encodings that
are not completely corrupted cannot be recovered. It is the
encoding with bi(z) such that the encodings with bj(z) are
completely corrupted for all j > i (since those are the ones
that contain the encoding of d(bi)). Therefore by making the
number of encodings larger than 1/ε, we can make sure that
there exists an efficient algorithm that finds a hypothesis with
the error within ε of the optimum.

4.3 The Construction
We will now describe the construction formally and give a
brief proof of its correctness. Let p = p(n) be a polynomial,
let ` = log p(n) (we assume for simplicity that p(n) is a
power of 2) and let m = ` + n · p. We refer to an element of
{0, 1}m by triple (k, z, x̄) where k ∈ [p], z ∈ {0, 1}n, and

x̄ = (x1, x2, . . . , xp−1) ∈ {0, 1}n×(p−1).

Here k indexes the encodings, z is the input to the k-th pseu-
dorandom function and x̄ is the input to a parity function on
n(p − 1) variables that encodes the secret keys for all pseu-
dorandom functions used for encodings 1 through k−1. For-
mally, let

d̄ = (d1, d2, . . . , dp−1)

be a vector in {0, 1}n×(p−1) (where each di ∈ {0, 1}n) and
for k ∈ [p] let

d̄(k) = (d1, d2, . . . , dk−1, 0n, . . . , 0n).

Let F = {πy}y∈{0,1}∗ be a pseudorandom function family
(Definition 5). We define gd̄ : {0, 1}m → {−1, 1} as fol-
lows:

gd̄(k, z, x̄) = πdk(z)⊕ χd̄(k)(x̄) (4)
Denote

Cp
n =

{
gd̄ | d̄ ∈ {0, 1}n×(p−1)

}
.

4.4 Hardness of Learning Cp
n From Random Examples

We start by showing that Cp
n is not agnostically learnable

from random and uniform examples only. In fact, we will
show that it is not even weakly PAC learnable. Our proof
is analogous to the proof by Elbaz et al. who show that the
same holds for the concept class they define [ELSW07].

Theorem 8 There exists no efficient algorithm that weakly
PAC learns Cp

n with respect to the uniform distribution over
{0, 1}m.

Proof: In order to prove the claim we show that a weak PAC
learning algorithm for Cp

n can be used to distinguish a pseu-
dorandom function family from a truly random function. A
weak learning algorithm for Cp

n implies that every function
in Cp

n can be distinguished from a truly random function
on {0, 1}m. If, on the other hand, in the computation of
gd̄(k, z, x̄) we used a truly random function in place of each
πdk(z) then the resulting labels would be truly random and,
in particular, unpredictable.

Formally, let Alg be a weak learning algorithm for Cp
n

that, with probability at least 1/2, produces a hypothesis with
error of at most 1/2 − 1/q(m) and runs in time polynomial
in t(m) for some polynomials t and q. Our concept class Cp

n
uses numerous pseudorandom functions from Fn and there-
fore we use a so-called “hybrid” argument to show that one
can replace a single πdk(z) with a truly random function to
cause Alg to fail.

For 0 ≤ i ≤ p, let O(i) denote an oracle randomly
chosen according to the following procedure. First choose
randomly and uniformly πd1 , πd2 , . . . , πdi ∈ Fn and then
choose randomly and uniformly ρi+1, ρi+2, . . . , ρk from the
set of all Boolean functions over {0, 1}n. Upon request such
an oracle returns an example ((k, z, x̄), b) where (k, z, x̄) is
chosen randomly and uniformly from {0, 1}m and

b =
{

πdk(z)⊕ χd̄(k)(x̄) k ≤ i
ρk(z) k > i

We note that in order to simulate such an oracle it is not
needed to explicitly choose ρi+1, ρi+2, . . . , ρk. Instead their
values can be generated upon request by flipping a fair coin.

152

This means that for every i,O(i) can be chosen and then sim-
ulated in time polynomial in m and the number of examples
requested. We denote by δi the probability of the follow-
ing event: Alg with oracle O(i) outputs a hypothesis that
has error of at most 1/2 − 2/(3q(m)) relative to O(i). We
refer to this condition as success. The error is obtained by
estimating it on new random examples from O(i) to within
1/(3q(m)) and with probability at least 7/8. The probability
is taken over the random choice and simulation of O(i) and
the coin flips of Alg. The bounds on the running time of Alg
and Chernoff bounds imply that this test can be performed in
time polynomial in m.

Claim 9 δp − δ0 ≥ 1/4.

Proof: To see this we first observe that O(0) is a truly ran-
dom oracle and therefore the error of the hypothesis pro-
duced by Alg is at least 1/2 − ν(m) for some negligible
ν. This means that the error estimate can be lower than
1/2− 2/(3q(m)) only if the estimation fails. By the defini-
tion of our error estimation procedure this implies that δ0 ≤
1/8. On the other hand, O(p) is equivalent to EX(U, gd̄) for
a randomly chosen d̄. This implies that with probability at
least 1/2, Alg outputs a hypothesis with error of at most
1/2− 1/q(m). With probability at least 7/8 the estimate of
the error is correct and therefore δp ≥ 3/8. (Cl.9)

We now describe our distinguisher M . Let π(x) denote
the function given to M as an oracle. Our distinguisher
chooses a random i ∈ p and a random oracle O(i) as de-
scribed above but using the oracle π in place of πdi . That is
it generates examples ((k, z, x̄), b) where (k, z, x̄) is chosen
randomly and uniformly from {0, 1}m and

b =





πdk(z)⊕ χd̄(k)(x̄) k < i
π(z)⊕ χd̄(k)(x̄) k = i
ρk(z) k > i

Denote this oracle by Oπ(i). The distinguisher simulates
Alg with examples from Oπ(i) and outputs 1 whenever the
test of the output of Alg is successful.

We first observe that if π is chosen randomly from Fn

then choosing and simulating a random Oπ(i) is equivalent
to choosing and simulating a random O(i). Therefore M
will output 1 with probability

1
p(n)

∑

i∈[p]

δi.

On the other hand, if π is a truly random function thenOπ(i)
is equivalent to O(i− 1) and hence the simulator will output
1 with probability

1
p(n)

∑

i∈[p]

δi−1.

Therefore, by Claim 9 this implies that M distinguishes Fn

from a truly random function with probability at least

1
p(n)


∑

i∈[p]

δi − δi−1


 ≥ 1

p(n)
(δp − δ0) ≥ 1/4p(n).

The efficiency of M follows readily from the efficiency of
the test we demonstrated above and gives us the contradic-
tion to the properties of F . (Th.8)

4.5 Agnostic Learning of Cp
n with Membership Queries

We now describe a (fully) agnostic learning algorithm for
Cp

n that uses membership queries and is successful for any
ε ≥ 1/p(n).

Theorem 10 There exists a randomized algorithm AgnLearn
that for every distribution A = (U, φ) over {0, 1}m and ev-
ery ε ≥ 1/p(n), δ > 0, given access to MEM(A), with prob-
ability at least 1−δ, finds h such that ∆(A, h) ≤ ∆(A, Cp

n)+
ε. The probability is taken over the coin flips of MEM(A)
and AgnLearn. AgnLearn runs in time polynomial in m
and log (1/δ).

Proof: Let gē for ē = (e1, e2, . . . , ep−1) ∈ {0, 1}(p−1)×n

be the function for which ∆(A, gē) = ∆(A, Cp
n). The goal

of our algorithm is to find the largest j such that on random
examples from the j-th encoding A agrees with the encoding
of ē(j) = (e1, e2, . . . , ej−1, 0n, . . . , 0n) with probability at
least 1/2+ε/4. Such j can be used to find ē(j) and therefore
allows us to reconstruct gē on all points (k, z, x̄) for k < j.
For points with k ≥ j our hypothesis is either constant 1
or constant -1, whichever has the higher agreement with A.
This guarantees that the error on this part is at most 1/2. By
the definition of j, gē has error of at least

1/2− ε/4− 1/(2p) ≥ 1/2− ε

on this part of the domain and therefore the hypothesis has
error close to that of gē.

We now describe AgnLearn formally. For every i ∈
[p], AgnLearn chooses y ∈ {0, 1}n randomly and uni-
formly. Then AgnLearn runs Goldreich-Levin algorithm
over {0, 1}(p−1)×n using MEM(Ai,y). When queried on a
point x̄ ∈ {0, 1}(p−1)×n MEM(Ai,y) returns the value of
MEM(A) on query (i, y, x̄). That is MEM(Ai,y) is a restric-
tion of A to points in {0, 1}m with prefix i, y. Let T denote
the set of indices of heavy Fourier coefficients returned by
GL(ε/4, 1/2). For each vector d̄ ∈ T and b ∈ {−1, 1}, let
hd̄,i,b be defined as

hd̄,i,b(k, z, x̄) =
{

πdk(z)⊕ χd̄(k)(x̄) k < i
b k ≥ i

(Here πdk is an element of the pseudorandom function fam-
ily F used in the construction.) Next AgnLearn approx-
imates ∆(A, hd̄,i,b) to within accuracy ε/8 with confidence
1 − δ/t using random samples from A (for t to be defined
later). We denote the estimate obtained by ∆̃d̄,i,b. AgnLearn
repeats this r times (generating new y each time) and returns
hd̄,i,b for which ∆̃d̄,i,b is the smallest. For i = 1 and any d̄,
hd̄,1,b ≡ b. Therefore for i = 1 instead of the above proce-
dure AgnLearn tests two constant hypotheses h1 ≡ 1 and
h−1 ≡ −1.

Claim 11 For t = O(p·log (1/δ)/ε3) and r = O(log (1/δ)/ε),
with probability at least 1 − δ, AgnLearn returns h such
that ∆(A, h) ≤ ∆(A, Cp

n) + ε.

Proof: We show that among the hypotheses considered by
AgnLearn there will be a hypothesis h′ such that ∆(A, h′) ≤
∆(A, gē)+3ε/4 (with sufficiently high probability). The es-
timates of the error of each hypothesis are within ε/8 of the

153

true error and therefore the hypothesis h with the smallest
estimated error will satisfy

∆(A, h) ≤ ∆(A, h′) + ε/4 ≤ ∆(A, gē) + ε .

For i ∈ [p], denote

∆i = Pr((k,z,x̄),b)∼A[b 6= gē(k, z, x̄) | k = i] .

By the definition,

1
p

∑

i∈[p]

∆i = ∆(A, gē).

Let j be the largest i such that ∆i′ ≤ 1/2 − ε/4 and for
all i′ > i, ∆i′ > 1/2 − ε/4. If such j does not exist then
∆(A, gē) > 1/2− ε/4. Either h1 or h−1 has error of at most
1/2 on A and therefore for i = 1 AgnLearn will find a
hypothesis h′ such that ∆(A, h′) ≤ ∆(A, gē) + 3ε/4.

We can now assume that j as above exists. Denote

∆i,y = Pr((k,z,x̄),b)∼A[b 6= gē(k, z, x̄) | k = i, z = y] .

By the definition,

Ey∈{0,1}n∆i,y = ∆i.

This implies that for a randomly and uniformly chosen y,
with probability at least ε/4, ∆j,y ≤ 1/2− ε/8. This is true
since otherwise

∆j ≥ (1− ε

4
)(

1
2
− ε

8
) >

1
2
− ε

4
,

contradicting the choice of j. We now note that by the defi-
nition of Ai,y ,

∆i,y = Pr(x̄,b)∼Ai,y
[b 6= gē(i, y, x̄)].

The function gē(i, y, x̄) equals πdj (y)⊕χē(j)(x̄), and there-
fore if ∆i,y ≤ 1/2− ε/8 then by equation (1),

|Âi,y(ē(j))| ≥ ε/4.

This implies that GL(ε/4, 1/2) with MEM(Ai,y) will return
ē(j) (possibly, among other vectors). Let

bj = sign(E((k,z,x̄),b)∼A[b | k ≥ j])

be the constant with the lowest error on examples from A
for which k ≥ j. Clearly, this error is at most 1/2. The
hypothesis hē(j),j,bj

equals gē on points for which k < j and
equals bj on the rest of the points. Therefore

∆(A, hē(j),j,bj
) ≤ 1

p


∑

i<j

∆i +
p− j + 1

2


 .

On the other hand, by the properties of j, for all i > j, ∆i ≥
1/2− ε/4 and thus

∆(A, gē) =
1
p


∑

i∈[p]

∆i




≥1
p


∑

i<j

∆i + (p− j)
(

1
2
− ε

4

)
 .

By combining these equations we obtain that

∆(A, hē(j),j,bj
)−∆(A, gē) ≤ 1

2p
+

ε

4
≤ 3ε

4
.

All that is left to show now are the choices of r and t for
which the desired h will be found with probability at least
1 − δ. As we have observed, for a randomly and uniformly
chosen y, with probability at least ε/4, ∆j,y ≤ 1/2−ε/8 and
in this case GL(ε/4, 1/2) will find ē(j) with probability at
least 1/2. By repeating this procedure O(log (1/δ)/ε) times
we can ensure that ē(j) is found with probability at least
1 − δ/2. By Parseval’s identity there are O(1/ε2) elements
in each set of vectors returned by GL. Hence the number of
error estimations performed by AgnLearn is O(p · r/ε2).
This means that for t = O(p · log (1/δ)/ε3) all estimations
will be within ε/8 with probability 1− δ/2. (Cl.11)

Given Claim 11, we only need to check that the running
time of AgnLearn is polynomial in m and log (1/δ). This
follows easily from the polynomial bound on the running
time of GL and computation of each π ∈ Fn, and polyno-
mial number of samples required to estimate the errors of
the candidate hypotheses. (Th.10)

4.6 Bounds on ε

Theorem 10 shows that Cp
n is defined over {0, 1}m for m =

n · p(n) + log p(n) and is learnable agnostically for any ε ≥
1/p(n). This means that this construction cannot achieve
dependence on ε beyond 1/m. To improve this dependence
we can use a more efficient encoding scheme in place of
Hadamard code. Let C : {0, 1}k → {0, 1}v be a binary
code of message length k and block length v. The following
properties of the code are required by our construction:

• Efficient encoding algorithm. For any z ∈ {0, 1}k and
j ≤ v, C(z)j (the jth bit of C(z)) is computable in
time polynomial in k and log v.

• Efficient local list decoding from (1/2 − γ)v errors in
time polynomial in k and 1/γ for any γ ≥ ε/8. That is,
an algorithm that given oracle access to the bits of string
y ∈ {0, 1}v produces the list of all messages z such that
Prj∈[v][C(z)j 6= yj] ≤ 1/2− γ (in time polynomial in
k and 1/γ).

Guruswami and Sudan gave a list decoding algorithm for
Reed-Solomon code concatenated with Hadamard code that
has the desired properties for v = O(k2/ε4) [GS00] (see
also [Tre05, Lecture 14] for a simplified presentation). Note
that this is exponentially more efficient than Hadamard code
for which v = 2k. In fact for this code we can afford to read
the whole codeword in polynomial time. This means that we
can assume that the output of the list-decoding algorithm is
exact (and not approximate as in the case of list decoding
using Goldreich-Levin algorithm).

In our construction k = n(p(n) − 1). To apply the
above code we index a position in the code using log v =
O(log(n/ε) bits. Further we can use pseudorandom func-
tions over {0, 1}n/2 instead of {0, 1}n in the definition of
Cp

n. We would then obtain that the dimension of Cp
n is m =

n/2 + log v + log p(n) ≤ n for any polynomial p(n) and

154

ε ≥ 1/p(n). This implies that our learning algorithm is suc-
cessful for every ε ≥ 1/p(n) ≥ 1/p(m). It is easy to verify
that Theorems 8 and 10 still hold for this variant of the con-
struction.

5 Discussion

Our results clarify the role of membership queries in agnostic
learning. They imply that in order to extract any meaning-
ful information from membership queries the learner needs
to have significant prior knowledge about the distribution of
examples. Specifically, either the set of possible classifica-
tion functions has to be restricted (as in the PAC model) or
the set of possible marginal distributions (as in distribution-
specific agnostic learning).

A interesting result in this direction would be a demon-
stration that membership queries are useful for distribution-
specific agnostic learning of a natural concept class such as
halfspaces.

Acknowledgments

We thank Parikshit Gopalan, Salil Vadhan and David Woodruff
for valuable discussions and comments on this research.

References
[Ang88] D. Angluin. Queries and concept learning. Ma-

chine Learning, 2:319–342, 1988.
[BFKL93] A. Blum, M. Furst, M. Kearns, and R. J. Lipton.

Cryptographic primitives based on hard learn-
ing problems. In Proceedings of International
Cryptology Conference on Advances in Cryptol-
ogy (CRYPTO), pages 278–291, 1993.

[BJT99] N. Bshouty, J. Jackson, and C. Tamon. More ef-
ficient PAC learning of DNF with membership
queries under the uniform distribution. In Pro-
ceedings of COLT, pages 286–295, 1999.

[Bsh95] N. Bshouty. Exact learning via the mono-
tone theory. Information and Computation,
123(1):146–153, 1995.

[Dud78] R. Dudley. Central limit theorems for empirical
measures. Annals of Probability, 6(6):899–929,
1978.

[ELSW07] A. Elbaz, H. Lee, R. Servedio, and A. Wan. Sep-
arating models of learning from correlated and
uncorrelated data. Journal of Machine Learning
Research, 8:277–290, 2007.

[Fel06] V. Feldman. Optimal hardness results for max-
imizing agreements with monomials. In Pro-
ceedings of Conference on Computational Com-
plexity (CCC), pages 226–236, 2006.

[Fel07] V. Feldman. Attribute efficient and non-
adaptive learning of parities and DNF expres-
sions. Journal of Machine Learning Research,
(8):1431–1460, 2007.

[FGKP06] V. Feldman, P. Gopalan, S. Khot, and
A. Ponuswami. New results for learning noisy
parities and halfspaces. In Proceedings of
FOCS, pages 563–574, 2006.

[FSW07] V. Feldman, S. Shah, and N. Wadhwa. Separat-
ing models of learning with faulty teachers. In
Proceedings of ALT, pages 94–106, 2007.

[GGM86] O. Goldreich, S. Goldwasser, and S. Micali.
How to construct random functions. Journal of
the ACM, 33(4):792–807, 1986.

[GKK08] P. Gopalan, A. Kalai, and A. Klivans. Agnosti-
cally learning decision trees. To appear in Pro-
ceedings of STOC, 2008.

[GKS01] S. A. Goldman, S. Kwek, and S. D. Scott. Ag-
nostic learning of geometric patterns. Journal of
Computer and System Sciences, 62(1):123–151,
2001.

[GL89] O. Goldreich and L. Levin. A hard-core predi-
cate for all one-way functions. In Proceedings
of STOC, pages 25–32, 1989.

[GR06] V. Guruswami and P. Raghavendra. Hardness of
learning halfspaces with noise. In Proceedings
of FOCS, pages 543–552, 2006.

[GS00] G. Guruswami and M. Sudan. List decoding al-
gorithms for certain concatenated codes. In Pro-
ceedings of STOC, pages 181–190, 2000.

[Hås01] J. Håstad. Some optimal inapproximability re-
sults. Journal of the ACM, 48(4):798–859,
2001.

[Hau92] D. Haussler. Decision theoretic generalizations
of the PAC model for neural net and other learn-
ing applications. Information and Computation,
100(1):78–150, 1992.

[HILL99] J. Håstad, R. Impagliazzo, L. Levin, and
M. Luby. A pseudorandom generator from any
one-way function. SIAM Journal on Comput-
ing, 28(4):1364–1396, 1999.

[Kha95] M. Kharitonov. Cryptographic lower bounds for
learnability of boolean functions on the uniform
distribution. Journal of Computer and System
Sciences, 50:600–610, 1995.

[KKMS05] A. Kalai, A. Klivans, Y. Mansour, and R. Serve-
dio. Agnostically learning halfspaces. In Pro-
ceedings of FOCS, pages 11–20, 2005.

[KM93] E. Kushilevitz and Y. Mansour. Learning de-
cision trees using the Fourier spectrum. SIAM
Journal on Computing, 22(6):1331–1348, 1993.

[KMV08] A. Kalai, Y. Mansour, and E. Verbin. Agnos-
tic boosting and parity learning. To appear in
Proceedings of STOC, 2008.

[KSS94] M. Kearns, R. Schapire, and L. Sellie. Toward
efficient agnostic learning. Machine Learning,
17(2-3):115–141, 1994.

[KV94] M. Kearns and L. Valiant. Cryptographic limi-
tations on learning boolean formulae and finite
automata. Journal of the ACM, 41(1):67–95,
1994.

[LBW95] W. S. Lee, P. L. Bartlett, and R. C. Williamson.
On efficient agnostic learning of linear combi-
nations of basis functions. In Proceedings of
COLT, pages 369–376, 1995.

[Lev93] L. Levin. Randomness and non-determinism.
Journal of Symbolic Logic, 58(3):1102–1103,
1993.

155

[LMN93] N. Linial, Y. Mansour, and N. Nisan. Constant
depth circuits, Fourier transform and learnabil-
ity. Journal of the ACM, 40(3):607–620, 1993.

[OS06] R. O’Donnell and R. Servedio. Learning mono-
tone decision trees in polynomial time. In Pro-
ceedings of IEEE Conference on Computational
Complexity, pages 213–225, 2006.

[Pol84] D. Pollard. Convergence of Stochastic Pro-
cesses. Springer-Verlag, 1984.

[Tre05] L. Trevisan. Pseudorandomness and combina-
torial constructions (lecture notes). Available at
http://www.cs.berkeley.edu/˜luca/pacc/, 2005.

[Val84] L. G. Valiant. A theory of the learnable. Com-
munications of the ACM, 27(11):1134–1142,
1984.

[Vap98] V. Vapnik. Statistical Learning Theory. Wiley-
Interscience, New York, 1998.

[VC71] V. Vapnik and A. Chervonenkis. On the uniform
convergence of relative frequencies of events to
their probabilities. Theory of Probab. and its
Applications, 16(2):264–280, 1971.

156

Dimension and Margin Bounds
for Reflection-invariant Kernels ∗

Thorsten Doliwa, Michael Kallweit, and Hans Ulrich Simon

Fakultät für Mathematik, Ruhr-Universität Bochum, D-44780 Bochum, Germany
{thorsten.doliwa,michael.kallweit,hans.simon}@rub.de

Abstract

A kernel over the Boolean domain is said
to be reflection-invariant, if its value does
not change when we flip the same bit in
both arguments. (Many popular kernels
have this property.) We study the geo-
metric margins that can be achieved when
we represent a specific Boolean function f
by a classifier that employs a reflection-

invariant kernel. It turns out ‖f̂‖∞ is an
upper bound on the average margin. Fur-

thermore, ‖f̂‖−1
∞ is a lower bound on the

smallest dimension of a feature space as-
sociated with a reflection-invariant kernel
that allows for a correct representation of
f . This is, to the best of our knowledge,
the first paper that exhibits margin and
dimension bounds for specific functions (as
opposed to function families). Several gen-
eralizations are considered as well. The
main mathematical results are presented
in a setting with arbitrary finite domains
and a quite general notion of invariance.

1 Introduction

There has been much interest in margin and di-
mension bounds during the last decade. The sim-
plest way to cast (most of) the existing results in
this direction is offered by the notion of margin
and dimension complexity associated with a given
sign matrix A ∈ {−1, 1}m×n. A linear arrange-
ment, given by unit vectors u1, . . . , um; v1, . . . , vn

(taken from an inner product space), is said to rep-
resent A if, for all i = 1, . . . , m and j = 1, . . . , n,
Ai,j = sign(〈ui, vj〉). The dimension complexity of

∗This work was supported in part by the IST Pro-
gramme of the European Community, under the PAS-
CAL Network of Excellence, IST-2002-506778. This
publication only reflects the authors’ views. This work
was furthermore supported by the Deutsche Forschungs-
gemeinschaft Grant SI 498/8-1.

A is the smallest dimension of an inner product
space that allows for such a representation. The
margin complexity is obtained similarly by look-
ing for the linear arrangement that leads to the
maximum average margin (or, alternatively, to the
maximum margin that can be guaranteed for all
choices of i and j). Applying counting arguments,
Ben-David, Eiron, and Simon [1] have shown that,
loosely speaking, an overwhelming majority of sign
matrices of small VC-dimension do not allow for a
linear arrangement whose margin or dimension is
significantly better than what can be guaranteed in
a trivial fashion. Starting with Forster’s celebrated
exponential lower bound on the dimension complex-
ity of the Walsh-Hadamard matrix [4], there has
been a series of papers [5, 6, 10, 7, 13, 15] present-
ing (increasingly powerful) techniques for deriving
upper margin bounds or lower dimension bounds on
the complexity of sign matrices.

Note that a sign matrix represents a family of
Boolean functions, one Boolean function per col-
umn say. The lack of non-trivial margin or dimen-
sion bounds for a specific Boolean function has a
simple explanation: a specific function f(x) can
always trivially be represented in a 1-dimensional
space with geometric margin 1 by mapping an in-
stance x ∈ {−1, 1}n to f(x) ∈ {−1, 1}. The cor-
responding kernel would map a pair (x, x′) of in-
stances to 1 if f(x) = f(x′), and to −1 otherwise.
Clearly, the 1-dimensional “linear arrangement” for
f does not say much about the ability of kernel-
based large margin classifier systems to “learn” f
because we would need to know f perfectly prior
to the choice of the kernel. (If we had this knowl-
edge, there would be nothing to learn anymore.)
Nevertheless, this discussion shows that one cannot
expect non-trivial margin or dimension bounds for
specific functions that hold uniformly for all ker-
nels.

In this paper, we introduce the concept of dis-
tributed functions that are invariant under a group
G of transformations. We present the mathemati-
cal results about invariant distributed functions in
a quite general setting (because it does not make

157

sense to impose unnecessary restrictions). In par-
ticular, we derive non-trivial margin and dimen-
sion bounds for specific Boolean functions that are
valid for all linear arrangements resulting from G-
invariant kernels. If the domain of the distributed
function can be cast as a finite Abelian group, the
margin and dimension bounds for a function f can
be nicely expressed in terms of f ’s Fourier-spectrum.

As always, ‖f̂‖∞ denotes the largest absolute value
found in the spectrum of f ’s Fourier-coefficients.

We show that ‖f̂‖∞ is an upper bound on the largest

possible average margin, and ‖f̂‖−1
∞ is a lower bound

on the smallest possible dimension. Our general re-
sults easily apply to a special case of high learning-
theoretic relevance, namely the reflection-invariant
kernels. Their relevance comes from the fact that,
as demonstrated in the paper, many popular kernels
actually happen to be reflection-invariant.

The remainder of the paper is structured as fol-
lows. In Section 2, we fix some notation and re-
call some facts about Fourier-expansions over finite
Abelian groups and kernel-based classification. In
Section 3, we present our results for arbitrary fi-
nite domains and a quite general notion of invari-
ance. In Section 4, we introduce the concept of
rotation-invariance and mention some connections
between the Fourier-expansion over an arbitrary fi-
nite Abelian group and the spectral decomposition
of such functions. In Section 5, we consider dis-
tributed functions over the Boolean domain and
the concept of reflection-invariance, which is simply
rotation-invariance over a Boolean domain. Sec-
tion 6 presents the margin and dimension bounds
that are valid for reflection-invariant kernels. Sec-
tion 7 offers a possible interpretation of our results,
and mentions a connection to a recent paper by
Haasdonk and Burkhardt [8] along with some open
problems.

2 Definitions and Notations

We assume familiarity with basics in matrix and
learning theory. For example, notions like

• singular values, eigenvalues, spectral norm

• kernels, feature map, Reproducing Kernel Hil-
bert Space

are assumed as known (although we shall occasion-
ally refresh the readers memory). Some central def-
initions and facts concerning

• linear arrangements representing a given sign
matrix,

• margin and dimension associated with such a
linear arrangement,

will be given later in the paper at the place where
it is required. In the following we fix some notation

and recall the Fourier-expansion over finite Abelian
groups as well as the notion of margin in kernel-
based classification.

2.1 Preliminaries

Throughout the paper, δ denotes the Kronecker-
symbol, i.e., δ(a, b) = 1 if a = b and δ(a, b) = 0
otherwise. For two n-dimensional vectors x, y, we
define x◦y to be the vector obtained by multiplying
x and y componentwise, i.e., (x ◦ y)i := xiyi for
i = 1, . . . , n. The n-dimensional “all-ones vector” is
given by

~e = (1, . . . , 1) .

The vector with 1 in component k and zeros else-
where is denoted as ~ek. We consider functions over
a finite domain D with values in R (or in C, resp.).
These functions form a |D|-dimensional vector space.
A distributed function over D is a function over the
domain D ×D. We will occasionally identify a dis-
tributed function f over D with the (D×D)-matrix
F given by Fx,y = f(x, y).

2.2 Fourier-expansions over Finite Abelian

Groups

Let (D, +) be a finite Abelian group of size d = |D|.
A function χ : D → C is called a character over D
if, for every x, y ∈ D,

χ(x + y) = χ(x) · χ(y) .

It is well-known that there are exactly d characters,
and they form an orthonormal basis of the vector
space CD with respect to the inner product

〈f, g〉 :=
1

d
·
∑

x∈D

f(x) · g(x) . (1)

We may fix a bijection between D and the set of
characters and write χz for the character that cor-
responds to z ∈ D. Every function f : D → C can
be written in the form

f(x) =
∑

z∈D

f̂(z) · χz(x) (2)

where

f̂(z) := 〈f, χz〉 =
1

d
·
∑

y∈D

f(y) · χz(y) .

Equation (2) is referred to as the Fourier expansion

of f , and f̂(z) is called the Fourier-coefficient of f
at z.

According to the “Fundamental Theorem for Fi-
nitely Generated Abelian Groups”, every finite Abelian
group is, up to isomorphism, of the form

D = Zq1
× · · · × Zqn

(3)

for some sequence q1, . . . , qn of prime powers. Equa-
tion (3) is assumed henceforth so that

d = |D| =
n
∏

k=1

qk .

158

It is well-known that the characters over Zm are
given by

χ
(m)
k (j) = ωjk

m ,

where

ωm = exp

(

2πi

m

)

is a primitive root of unity of order m. The charac-
ters over D are then given by

χz(x) =

n
∏

k=1

χ(qk)
zk

(xk) .

Consider now the matrix H = (Hx,z)x,z∈D given
by

Hx,z = χz(x) . (4)

It is obvious that H is symmetric. By the orthonor-
mality of the characters with respect to the inner
product in (1), it follows that

H∗ · H = H · H∗ = d · I ,

where I denotes the identity matrix.

2.3 Kernel-based Classification

Let K : D × D → R be a valid kernel over a fi-
nite domain D. In other words, K(x, y) is a real-
valued distributed function over D which, consid-
ered as matrix, is symmetric and positive semidef-
inite. LetΦK be the feature map and 〈·, ·〉K the
inner product that represent K in the Reproducing
Kernel Hilbert Space, and let ‖ · ‖K be the norm
induced by 〈·, ·〉K .1 Then Φ satisfies

∀x, y ∈ D : K(x, y) = 〈Φ(x), Φ(y)〉 .

With every “dual vector” α : D → R, we associate
the “weight vector”

w(α) :=
∑

x∈D

α(x)Φ(x) . (5)

In the context of “large margin classification”, α
is considered as a classifier that assigns the label
sign(〈w(α), Φ(x)〉) to input x. Consider a target
function f : D → {−1, 1} for a binary classification
task. Then, a negative sign of f(x) · 〈w(α), Φ(x)〉
indicates a “classification error” on x. So this ex-
pression should be positive and it is intuitively even
better when it leads to a large positive value. Thus,
the following number, called the (geometric) mar-
gin achieved by α on x w.r.t. target function f and
kernel K, is of interest:

µK(f |α, x) :=
f(x) · 〈w(α), Φ(x)〉
‖w(α)‖ · ‖Φ(x)‖ (6)

By averaging over all x ∈ D, we obtain the function

µK(f |α) := 2−n
∑

x∈D

µK(f |α, x) .

1In the sequel, we drop index K unless we would like
to stress the dependence on K.

Focusing on the margin that is guaranteed for every
x ∈ D, we should consider the function

µK(f |α) := min
x∈D

µK(f |α, x) .

By taking the supremum over all α : D → R, we get
the respective parameters of a large margin classifier
employing kernel function K:

µK(f) := sup
α:D→RµK(f |α)

µK(f) := sup
α:D→RµK(f |α)

Finally, taking the supremum ranging over all K
from a given kernel class C, we get the respective
parameters of a best possible large margin classifier
among those that employ a kernel from C:

µC(f) := sup
K∈C

µK(f)

µC(f) := sup
K∈C

µK(f)

We briefly note that, obviously, the guaranteed mar-
gin is upper bounded by the average margin:

µK(f |α) ≤ µK(f |α)

µK(f) ≤ µK(f)

µC(f) ≤ µC(f)

3 A General Notion of Invariance

Throughout this section, D denotes an arbitrary
finite domain, S(D) is the group of permutations
over D, and G ≤ S(D) is an arbitrary but fixed
subgroup. A distributed function over D with val-
ues in V ⊆ C is said to be G-invariant if, for all
x, y ∈ D and every σ ∈ G, the following holds:

f(σ(x), σ(y)) = f(x, y)

We clearly have the

Pointwise Closure Property: The pointwise limit
of G-invariant functions is a G-invariant func-
tion. Furthermore, if f1, . . . , fd are G-invariant
functions and g : V d → W is an arbitrary func-
tion with values in W ⊆ C, then

g(f1(x, y), . . . , fd(x, y))

is G-invariant too.

More interesting is the the following result:

Lemma 1 G-invariant distributed functions over a
finite domain D are closed under the usual ma-
trix product and under the tensor-product of ma-
trices. More precisely, let F (x, y) and G(x, y) be
two G-invariant distributed functions (here viewed
as matrices). Then, the functions (F ·G)(x, y) is G-
invariant and the function (F ⊗ G)[(u, x), (v, y)] is
invariant over G×G (as subgroup of S(D)×S(D)).

159

Proof: Consider first the function (F · G)(x, y).
Let x, y ∈ D and σ ∈ G be arbitrary but fixed. The
following calculation shows that it is G-invariant:

(F · G)σ(x),σ(y) =
∑

z∈D

Fσ(x),z · Gz,σ(y)

=
∑

z∈D

Fx,σ−1(z) · Gσ−1(z),y

=
∑

z∈D

Fx,z · Gz,y

= (F · G)x,y

Now consider the tensor-product (F⊗G)[(u, x), (v, y)],
which is a distributed function over D × D, i.e., a
function over domain (D ×D) × (D × D). The fol-
lowing calculation shows that it is (G×G)-invariant:

(F ⊗ G)[(σ(u), τ(x)), (σ(v), τ(y))] =

F (σ(u), σ(v)) · G(τ(x), τ(y)) =

F (u, v) · G(x, y) =

(F ⊗ G)[(u, x), (v, y)]

In this section, we shall show the following. If
f : D → {−1, 1} is a function on domain D and G
is a subgroup of S(D), then the largest average (or
largest guaranteed, resp.) margin that can be ob-
tained when f is represented by a G-invariant kernel
is upper-bounded by the largest average (or largest
guaranteed, resp.) margin that can be obtained for
the family

Gf := {fσ : σ ∈ G}
where

fσ(x) := f(σ(x)) .

Since there are classical margin bounds that apply
to the family Gf , we obtain corresponding bounds
that apply to the single function f . An analogous
remark holds for dimension bounds. Details follow.

Assume that K(x, y) is a G-invariant kernel and
consider the feature map Φ = ΦK that represents
K in the Reproducing Kernel Hilbert Space. Then,
for all x, y ∈ D and every σ ∈ G, Φ satisfies

〈Φ(σ(x), Φ(σ(y)〉 = 〈Φ(x), Φ(y)〉 . (7)

Lemma 2 If kernel K is G-invariant, then the fol-
lowing holds for every x ∈ D and every σ ∈ G:

‖ΦK(σ(x))‖K = ‖ΦK(x)‖K

‖w(α)‖K = ‖w(ασ)‖K

In other words, the norm ‖·‖K is constant on feature
vectors of instances taken from the same orbit

xG := {σ(x) : σ ∈ G}
and it assigns the same value to all dual vectors
from the set

{w(ασ) : σ ∈ G} .

Proof: Let Φ = ΦK , ‖·‖ = ‖·‖K , and 〈·, ·〉 = 〈·, ·〉K .
Clearly, ‖Φ(σ(x))‖ = ‖Φ(x)‖ because of

‖Φ(σ(x))‖2 = 〈Φ(σ(x)), Φ(σ(x))〉
(7)
= 〈Φ(x), Φ(x)〉
= ‖Φ(x)‖2 .

As for the second statement, see the following cal-
culation:

‖w(ασ)‖2 = 〈w(ασ), w(ασ)〉
(5)
=

〈

∑

x∈D

ασ(x)Φ(x),
∑

y∈D

ασ(y)Φ(y)

〉

=
∑

x,y∈D

α(σ(x))α(σ(y))〈Φ(x), Φ(y)〉

=
∑

x,y∈D

α(x)α(y)
〈

Φ(σ−1(x)), Φ(σ−1(y))
〉

(7)
=

∑

x,y∈D

α(x)α(y)〈Φ(x), Φ(y)〉

= ‖w(α)‖2

Lemma 3 For every G-invariant kernel K, and ev-
ery choice of f : D → {−1, 1}, x ∈ D, σ ∈ G, and
α : D → R, the following holds:

µK(fσ|ασ, x) = µK(f |α, σ(x))

Proof: The proof starts as follows:

fσ(x) · 〈w(ασ), Φ(x)〉 (5)
=

fσ(x)

〈

∑

y∈D

ασ(y)Φ(y), Φ(x)

〉

=

f(σ(x))
∑

y∈D

α(σ(y))〈Φ(y), Φ(x)〉 (7)
=

f(σ(x))
∑

y∈D

α(σ(y))〈Φ(σ(y)), Φ(σ(x))〉 =

f(σ(x))

〈

∑

y∈D

α(σ(y))Φ(σ(y)), Φ(σ(x))

〉

=

f(σ(x))

〈

∑

y∈D

α(y)Φ(y), Φ(σ(x))

〉

=

f(σ(x))〈w(α), Φ(σ(x))〉
Using this calculation in combination with Lemma 2,
the proof is easy to accomplish:

µK(fσ|ασ, x)
(6)
=

fσ(x) · 〈w(ασ), Φ(x)〉
‖w(ασ)‖ · ‖Φ(x)‖

=
f(σ(x)) · 〈w(α), Φ(σ(x))〉

‖w(α)‖ · ‖Φ(σ(x))‖
(6)
= µK(f |α, σ(x))

160

Corollary 4 For every G-invariant kernel K, and
every choice of f : D → {−1, 1}, σ ∈ G, and α :
D → R, the following holds:

µK(fσ|ασ) = µK(f |α)

µK(fσ|ασ) = µK(f |α)

µK(fσ) = µK(f)

µK(fσ) = µK(f)

µG(fσ) = µG(f)

µG(fσ) = µG(f)

Note that the last two equations in Corollary 4 ba-
sically say that the largest (average or guaranteed)
margin that can be achieved for a function f by a
large margin classifier is invariant under G (provided
that the underlying kernel is G -invariant).

Let M ∈ {−1, 1}r×s be a sign matrix. Con-
sider a linear arrangement A given by unit vectors
u1, . . . , ur; v1, . . . , vs ∈ Rd. The average margin
achieved by this arrangement for sign matrix M is
defined as follows:

µ(M |A) :=
1

rs
·

r
∑

i=1

s
∑

j=1

Mi,j〈ui, vj〉

The largest average margin that can be achieved for
sign matrix M by any linear arrangement is then
given by

µ(M) := sup
A

µ(M |A) ,

where the supremum ranges over all linear arrange-
ments A for M . Forster and Simon [7] have shown
that, for every M ∈ Rr×s, every d ≥ 1, and every
choice of unit vectors u1, . . . , ur; v1, . . . , vs in a real
inner-product space, the following holds:

r
∑

i=1

s
∑

j=1

Mi,j〈ui, vj〉 ≤
√

rs‖M‖ .

From that, we conclude that

µ(M) ≤ ‖M‖√
rs

.

Consider the sign matrix Mf,G given by

Mf,G
x,σ := fσ(x) . (8)

In combination with Corollary 4, we arrive at the
following

Theorem 5 Let D be a finite domain, and let G be
a subgroup of S(D). Then, every function f : D →
{−1, 1} satisfies

µG(f) ≤ ‖Mf,G‖
√

|D| · |G|
.

In other words, no large margin classifier that em-
ploys a G-invariant kernel can achieve an average

margin for f which exceeds ‖Mf,G‖√
|D|·|G|

.

As our input space D is finite, we can assume
without loss of generality that the Reproducing Ker-
nel Hilbert Space for a kernel K on D coincides withRd(K) for some suitable 1 ≤ d(K) ≤ |D|. We say
that α : D → R represents target function f cor-
rectly w.r.t. kernel K if

∀x ∈ D : µK(f |α, x) > 0 .

Corollary 6 Let dG(f) denote the smallest dimen-
sion of a feature space associated with a G-invariant
kernel K that allows for a correct representation of
f . Then,

dG(f) ≥
√

|D| · |G|
‖Mf,G‖ .

Proof: According to Lemma 3, a kernel that al-
lows for a correct representation of f allows also for
a correct representation of all fσ. According to a re-
sult by Forster [4], the corresponding feature space

must have dimension at least
√

|D| · |G|/‖Mf,G‖.
Corollary 6 can be strengthened slightly:

Corollary 7 Let σi denote the i-th singular value
of Mf,G, where σ1, σ2, . . . are in decreasing order.
Then, dG(f) satisfies the following lower bound:

dG(f) ·
dG(f)
∑

i=1

σ2
i ≥ 1 (9)

Proof: Let A ∈ {−1, 1}r×s be a matrix whose
columns are viewed as binary functions f1, . . . , fs.
It has been shown by Forster and Simon [7] that
the dimension d of a feature space which allows for
a correct representation of f1, . . . , fs satisfies

d ·
d
∑

i=1

σ2
i (A) ≥ rs .

This trivially implies (9).

4 Rotation-invariant Functions

In Section 4.1 we will derive some facts about dis-
tributed functions over a finite Abelian group via
the Fourier-expansion. Section 4.2 ties everything
together and presents the resulting margin and di-
mension bounds obtained in this restricted setting.

4.1 Distributed Functions over Finite

Abelian Groups

We apply the results of the preceding section to the
case where D is a Abelian group of finite size d,
and Grot is the subgroup of S(D) consisting of all
permutations of the form x 7→ x + a. Note that
d = |D| = |Grot|.

161

We are interested in distributed functions f :
D ×D → C and arrange the d2 Fourier-coefficients
of such a function as a matrix as follows:

̂Fa,b = ̂f(a,−b) (10)

= d−2
∑

(x,y)∈D×D

f(x, y)χ(a,−b)(x, y) (11)

= d−2 ·
∑

x∈D

∑

y∈D

f(x, y)χa(x)χb(y) (12)

In matrix notation, this reads as

̂F = d−2 · H∗ · F · H , (13)

where H is the matrix from (4).
A distributed function f(x, y) over D is said to

be rotation-invariant if, for all x, y, a ∈ D, the fol-
lowing holds:

f(x + a, y + a) = f(x, y)

In the sense of the previous section, f is meant to
be Grot-invariant.

Here are some examples for rotation-invariant
functions:

• A distributed function of the form f(x, y) =
g(x − y) is obviously rotation-invariant. Con-
versely, any rotation-invariant function f(x, y)
can be written in this form by setting g(x) :=
f(x, 0) because rotation-invariance implies that

f(x, y) = f(x − y, 0) = g(x − y) .

• Because of the obvious identity

χz(x − y) = χz(x) · χz(y) ,

the distributed function χz(x)·χz(y) is rotation-
invariant too.

The fact that f(x, y) = g(x − y) is a rotation-
invariant function can be restated as follows: any
function f(x, y) that can be cast as a function in
x1 − y1 mod q1, . . . , xn − yn mod qn is rotation-in-
variant.

In terms of the matrix of Fourier-coefficients, F̂ ,
rotation-invariant functions over D can be charac-
terized as follows:

Lemma 8 A distributed function f(x, y) over D is

rotation-invariant iff F̂ is a diagonal matrix.

Proof: Assume first that f(x, y) is rotation-invariant.

Consider a Fourier-coefficient in F̂ outside the main
diagonal, say ̂Fa,b so that ak 6= bk. Every pair (x, y)
can be put into the equivalence class

{(x + j ~ek, y + j ~ek) : j = 0, . . . , qk − 1} .

We show that every equivalence class contributes 0
to (12):

qk−1
∑

j=0

f(x + j ~ek, y + j ~ek)χa(x + j ~ek) · χb(y + j ~ek) =

f(x, y)χa(x) · χb(y)

qk−1
∑

j=0

χ
(qk)
ak

(j)χ
(qk)
bk

(j)

The latter sum vanishes because it equals

qk−1
∑

j=0

ω(bk−ak)j
qk

.

Recall that δ denotes the Kronecker symbol and it
is well-known that

m−1
∑

j=0

ω(l′−l)j
m = m · δl,l′ .

This shows that ̂Fa,b = 0.

Now assume that F̂ is a diagonal matrix. We con-
clude from (13) that

F = H · F̂ · H∗ , (14)

which implies that

Fx,y =
∑

z∈D

̂Fz,z · χx(z) · χy(z) .

Rotation-invariance is now easily obtained:

f(x + a, y + a) =
∑

z∈D

̂Fz,z · χx+a(z) · χy+a(z)

=
∑

z∈D

̂Fz,z · χz(x + a) · χz(y + a)

=
∑

z∈D

̂Fz,z · χz(x) · χz(y)

= f(x, y)

In the second-last equation, we used the rotation-

invariance of χz(x) · χz(y).

Corollary 9 Assume that f(x, y) is a rotation-in-
variant distributed function over D and let Fx,y =
f(x, y) denote the corresponding matrix. Then the
(complex) eigenvalues of d−1 · F are found on the

main diagonal of F̂ .

Proof: Rewrite (14) as

d−1F = (d−1/2H) · F̂ · (d−1/2H∗)

and observe that this is nothing but the spectral
decomposition of d−1F (since F̂ is a diagonal matrix
and d−1/2H is unitary).

We briefly note the following result:

162

Lemma 10 Let F̂ be the (diagonal) matrix that
contains the Fourier-coefficients of the (rotation-
invariant) distributed function f(x − y). Then, for

every z ∈ D, f̂(z) = ̂Fz,z.

Proof: Consider the function fy(x) := f(x − y).
We shall show below that the Fourier coefficients of
f and fy are related as follows:

̂fy(z) = f̂(z) · χy(z) . (15)

The proof is now obtained by the following calcula-
tion:

̂Fz,z = d−2 ·
∑

x,y∈D

f(x − y) · χz(x) · χz(y)

= d−1 ·
∑

y∈D

(

d−1 ·
∑

x∈D

fy(x)χz(x)

)

χz(y)

= d−1 ·
∑

y∈D

̂fy(z) · χz(y)

(15)
= f̂(z) · d−1 ·

∑

y∈D

χy(z)χz(y)
︸ ︷︷ ︸

=1

= f̂(z)

The following calculation verifies (15):

̂fy(z) = d−1 ·
∑

x∈D

f(x − y) · χx(x)

= d−1 ·
∑

x∈D

∑

w∈D

̂f(w) · χw(x − y) · χz(x)

= d−1 ·
∑

x∈D

∑

w∈D

̂f(w) · χw(x) · χw(y) · χz(x)

= d−1 ·
∑

w∈D

(

∑

x∈D

χw(x) · χz(x)

)

︸ ︷︷ ︸

=d·δw,z

̂f(w) · χw(y)

= ̂f(z) · χz(y)

Corollary 9 and Lemma 10 yield the following.2

Corollary 11 Let F denote the matrix with entries
Fx,y = f(x − y). Then the spectrum of (complex)
eigenvalues of d−1 · F coincides with the spectrum
of (complex) Fourier-coefficients of f .

Consider the sign matrix Mf,Grot . From (8) and
the definition of Grot, we conclude that

Mf,Grot

x,y = f(x + y) .

It follows that Mf,Grot is a symmetric matrix. If f is
real-valued, then Mf,Grot has real eigenvalues. Note

2This result might be known, but we are not aware
of an appropriate pointer to the literature.

that Mf,Grot coincides with matrix Fx,y = f(x− y)
up to a permutation of columns (where the column
indexed y is exchanged with the column indexed
−y). Since the spectrum of eigenvalues (or singular
values, resp.) of a matrix is left invariant under a
permutation of columns, we obtain the following

Corollary 12 Let f(x − y) be real-valued, and let
F be the matrix with entries Fx,y = f(x−y). Then,
the following holds:

1. F coincides with the symmetric matrix Mf,Grot

up to a permutation of columns.

2. The spectrum of eigenvalues of d−1 · F coin-
cides with the spectrum of (real) eigenvalues of
d−1 ·Mf,Grot and with the spectrum of Fourier-
coefficients of f .

4.2 Margin and Dimension Bounds for

Rotation-invariant Kernels

For every function f : D → {−1, 1},
µrot(f) := µGrot

(f)

denotes the largest possible average margin that can
be achieved by a linear arrangement for f resulting
from a rotation-invariant kernel. As for the smallest
possible dimension, parameter drot(f) is understood
analogously.

Corollary 13 Let D be a finite Abelian group of
size d. Every function f : D → {−1, 1} satisfies

µrot(f) ≤ ‖f̂‖∞ . (16)

In other words, no large margin classifier that em-
ploys a rotation-invariant kernel can achieve an av-

erage margin for f which exceeds ‖f̂‖∞.

Proof: According to Theorem 5,

µrot(f) ≤ ‖Mf,Grot‖
√

|D| · |Grot|
=

‖Mf,Grot‖
d

.

We conclude from Corollary 12 that

‖Mf,Grot‖ = ‖F‖ = d · ‖f̂‖∞ ,

which leads us to inequality (16).

Corollary 6 and 7 combined with Corollary 11
lead us to the following results:

Corollary 14 Let drot(f) denote the smallest di-
mension of a feature space associated with a rotation-
invariant kernel K that allows for a correct repre-

sentation of f . Then, drot(f) ≥ ‖f̂‖−1
∞ .

Proof: According to Corollary 6, the corresponding
feature space for the kernel must have dimension at
least

√

|D| · |Grot|/‖Mf,Grot‖ = d/‖Mf,Grot‖. Ac-
cording to Corollary 12, the latter expression eval-

uates to ‖f̂‖−1
∞ .

163

Corollary 15 Let ̂fi denote the i-th Fourier-coefficient

of f , where | ̂f1|, . . . , | ̂fd| are in decreasing order.
Then,

drot(f) ·
drot(f)
∑

i=1

∣

∣

∣

̂fi

∣

∣

∣

2

≥ 1

Proof: From (9), we obtain

drot(f) ·
drot(f)
∑

i=1

σ2
i ≥ 1

where σi denotes the i-th largest singular value of
Mf,Grot . We conclude from Corollary 12, that σi

coincides with | ̂fi|.

5 Reflection-invariant Functions

In this section, we consider real-valued functions
only. A distributed function f(x, y) over {−1, 1}n

is said to be reflection-invariant if, for all x, y, a ∈
{−1, 1}n, the following holds:

f(x ◦ a, y ◦ a) = f(x, y) (17)

Note that reflection-invariance corresponds to
rotation-invariance with (Zn

2 , +) as the underlying
(additive) Abelian group is or, equivalently, with
({−1, 1}n, ·) as the underlying (multiplicative) Abelian
group. This is because the subgroup Grot of S(D)
that we have used for rotation-invariant distributed
functions collapses for D = {−1, 1}n (with a multi-
plicative group structure) to the following subgroup
of S({−1, 1}n):

Gref = {x 7→ x ◦ a : a ∈ {−1, 1}n}
Thus, reflection-invariant functions inherit all

closure properties that hold, in general, for G-invariant
distributed functions (see the Pointwise Closure Prop-
erty and Lemma 1 in Section 3):

Corollary 16 1. The pointwise limit of reflection-
invariant functions is a reflection-invariant func-
tion. Furthermore, if f1, . . . , fd are reflection-
invariant functions and g : Rd → R is an ar-
bitrary function, then

g(f1(x, y), . . . , fd(x, y))

is reflection-invariant too.

2. Reflection-invariant distributed functions over
{−1, 1}n are closed under the usual matrix prod-
uct and under the tensor-product of matrices.

Furthermore, reflection-invariant functions inherit
all properties that hold, in general, for distributed
functions over a finite Abelian group:

• A reflection-invariant function f(x, y) can be
decomposed according to (2). Since D = {−1, 1}n,
the character χz coincides with the parity func-
tion induced by z, i.e., χz(x) =

∏

zi=−1 xi.

• The matrix F̂ whose entries are the Fourier co-
efficients of f satisfies (13) where H is the ma-
trix from (4). Since D = {−1, 1}n, H equals
the well-known (2n×2n)-Walsh-Hadamard ma-
trix.

Distributed functions f(x, y) overRn that satisfy (17)
for all x, y ∈ Rn and every a ∈ {−1, 1}n are said to
be reflection-invariant in the Euclidean space. Here
are some examples (with some overlap to our ex-
emplification of rotation-invariant functions in Sec-
tion 4):

• A distributed function of the form f(x, y) =
g(x◦y) is reflection-invariant (in the Euclidean
space provided that the domain is Rn):

g((x ◦ a) ◦ (y ◦ a)) = g(x ◦ y ◦ (a ◦ a)) = g(x ◦ y)

Conversely, any reflection-invariant function f(x, y)
(over domain {−1, 1}n) can be written in this
form by setting g(x) := f(x,~e) because reflection-
invariance implies that

f(x, y) = f(x◦y, y◦y) = f(x◦y,~e) = g(x◦y) .

• Because of the obvious identity

χz(x ◦ y) = χz(x) · χz(y) ,

the distributed function χz(x)·χz(y) is reflection-
invariant too.

• The metric

Lp(x − y) =

(

n
∑

i=1

|xi − yi|p
)1/p

induced by the Lp-norm is clearly reflection-
invariant in the Euclidean space.

In Section 6, we shall see that many popular kernel
functions happen to be reflection-invariant.

The fact that f(x, y) = g(x ◦ y) is a reflection-
invariant function can be restated as follows: any
function f(x, y) that can be cast as a function in
x1 · y1, . . . , xn · yn is reflection-invariant. Similarly,
any function f(x, y) that can be cast as a function in
Lp(x−y) (or, more generally, in |x1−y1|, . . . , |xn−
yn|) is reflection-invariant.

6 Reflection-invariant Kernels

In this section, we consider kernel functions K(x, y)
over the Boolean or over the Euclidean domain. In
other words, K(x, y) is a distributed function over
{−1, 1}n or over Rn with the additional property
that every finite principal sub-matrix of K is sym-
metric and positive semidefinite. In Section 6.1, we
demonstrate that the family of reflection-invariant
kernels is quite rich and contains many popular ker-
nels. In Section 6.2, we derive margin and dimen-
sion bounds for reflection-invariant kernels.

164

6.1 Examples and Closure Properties

Let us start with some examples. The following
(quite popular) kernels (overRn except for the DNF-
Kernel that has a Boolean domain) can be cast as
functions in x1 · y1, . . . , xn · yn or as functions in
‖x − y‖2 and are therefore reflection-invariant:

Polynomial Kernels: K(x, y) = p(x⊤y) for an
arbitrary polynomial p with positive coefficients.

All-subsets Kernel: K(x, y) =
∏n

i=1(1 + xiyi).

ANOVA Kernel: Let 1 ≤ s ≤ n and define

Ks(x, y) =
∑

1≤i1<···<is≤n

s
∏

j=1

xij
yij

.

DNF-Kernel: K(x, y) = −1+2−n
∏n

i=1(xiyi +3).

Exponential Kernels: K(x, y) = ep(x⊤y) for an
arbitrary polynomial p with positive coefficients.

Gaussian Kernel: K(x, y) = e−‖x−y‖2

2
/σ2

for an
arbitrary σ > 0.

These kernels have the usual nice properties like be-
ing efficiently evaluable although the number of (im-
plicitly represented) features is exponentially large
(or even infinite). Polynomial, Exponential, and
Gaussian Kernels (first used in [2]) are found in al-
most any basic text-book that is relevant to the
subject (e.g. [3]). The All-subsets Kernel is found
in [18], and the ANOVA Kernel is found in [19]. As
for the latter two kernels, see also [17]. The DNF-
Kernel has been proposed in [16].3 The reader inter-
ested in more information about these (and other)
kernels may consult the relevant literature. Here,
we simply point to the fact that all kernels men-
tioned above are reflection-invariant.

We move on and consider the possibility of mak-
ing new reflection-invariant kernels from kernels that
are already known to be reflection-invariant. To this
end, we briefly call into mind some basic closure
properties of kernels:

Lemma 17 Let K, K1, K2 be kernels, and let c > 0
be a positive constant. Then, the distributed func-
tions

K1(x, y) + K2(x, y) , c · K(x, y)

K1(x, y) · K2(x, y) , (K1 ⊗ K2)[(u, x), (v, y)]

are kernels too. Moreover, the pointwise limit of
kernels yields a kernel.

3In [16], the kernel is defined over the Boolean do-
main {0, 1}n. Our formula above is obtained from the
formula in [16] by plugging in the affine transformation
that identifies 1 with −1 and 0 with 1. A similar remark
applies to the Monotone DNF-Kernel discussed at the
end of this section.

The proof of Lemma 17 can be looked-up in [3], for
example.

Corollary 18 If K1, . . . , Kd are kernels and P :Rd → R is a polynomial (or a converging power
series) with positive coefficients, then

P (K1(x, y), . . . , Kd(x, y))

is a kernel too.

Note that closure properties of reflection-invariant
functions (see Corollary 16) are comparably strong
so that Lemma 17 and Corollary 18 remain valid
(mutatis mutandis) for reflection-invariant kernels.

The following kernels (proposed in [11] and [9],
respectively) define a new kernel-matrix K in terms
of a given symmetric matrix B (called “similarity
matrix” in this context):

Exponential Diffusion Kernel: For λ ∈ R, de-
fine

K = eλ·B =
∑

k≥0

λk

k!
· Bk .

von Neumann Diffusion Kernel: For 0 ≤ λ <
‖B‖−1, define

K = (I − λ · B)−1 =
∑

k≥0

λk · Bk .

It follows from the closure properties of reflection-
invariant functions that both diffusion kernels would
inherit reflection-invariance from the underlying sim-
ilarity matrix B.

The family of reflection-invariant kernels is quite
rich. But here are two kernels (the first-one from [16],
and the second-one from [12]) which are counterex-
amples:

Monotone DNF-Kernel:

K(x, y) = −1 + 2−2n
n
∏

i=1

(xjyj − xj − yj + 5) .

Spectrum Kernel: Here, x, y ∈ {−1, 1}n are con-
sidered as binary strings. For 1 ≤ p ≤ n and
for every substring u ∈ {−1, 1}p,

Φp
v(x) = |{(u, w) : x = uvw}|

counts how often v occurs as a substring of x.
The p-Spectrum Kernel is then given by

K(x, y) =
∑

v∈{−1,1}p

Φp
v(x) · Φp

v(y) .

It is easy to see that both kernels are not reflection-
invariant. More generally, string kernels (measuring
similarity between strings) often violate reflection-
invariance.

165

6.2 Margin and Dimension Bounds for

Reflection-invariant Kernels

For every function f : {−1, 1}n → {−1, 1},
µref (f) := µGref

(f)

denotes the largest possible average margin that
can be achieved by a linear arrangement for f re-
sulting from a reflection-invariant kernel. Because
reflection-invariance is a special case of rotation-
invariance, the following result immediately follows
from Corollaries 13, 14, and 15:

Corollary 19 1. Every Boolean function f sat-
isfies

µref (f) ≤ ‖f̂‖∞ .

In other words, no large margin classifier that
employs a reflection-invariant kernel can achieve

an average margin for f which exceeds ‖f̂‖∞.

2. Let dref (f) denote the smallest dimension of a
feature space associated with a reflection-invariant
kernel K that allows for a correct representa-

tion of f . Then, dref (f) ≥ ‖f̂‖−1
∞ .

3. Let ̂fi denote the i-th Fourier-coefficient of f ,

where | ̂f1|, . . . , | ̂f2n | are in decreasing order. Then,
dref (f) satisfies the following lower bound:

dref (f) ·
dref (f)
∑

i=1

∣

∣

∣

̂fi

∣

∣

∣

2

≥ 1

7 Conclusions and Open Problems

We start with some remarks which offer a possible
interpretation of our results. Finally, some open
problems are mentioned.

7.1 Discussion of our Results

Ideally the invariance-properties of a kernel reflect
symmetries in the data. For example, assume that
there exists a set of transformations, say T , so that,
for every instance x ∈ D and every transformation
t ∈ T , the label assigned to x by target function
f equals the label assigned to t(x) by f . Then,
it looks desirable to apply a kernel that is invari-
ant under the transformations from T . It would
be surprising if our results implied that such ker-
nels (that sort of perfectly model the symmetries
in the data) would inherently lead to small mar-
gins or high-dimensional feature spaces. It is, how-
ever, easy to argue that (as expected) the contrary
is true and our margin and dimension bounds trivi-
alize whenever the invariance of the kernel perfectly
matches with symmetries in the data. To see this,
consider again (compare with the introduction) the
“super-kernel”

K(x, y) =

{

+1 if f(x) = f(y)
−1 otherwise

that allows for a 1-dimensional halfspace represen-
tation of f with margin 1, and note that K actually
is invariant under all transformations from T . Thus,
no upper margin bound that holds uniformly for all
T -invariant kernels can be smaller than 1. Simi-
larly, no lower dimension bound can be larger than
1. Note that this is no contradiction to the main re-
sults in this paper because the family {ft : t ∈ T }
of functions ft(x) = f(t(x)) collapses to the sin-
gleton {f}. Thus Forster’s margin and dimension
bounds applied to this family do not lead to non-
trivial values.

Viewed from this perspective, our results can be
interpreted as follows: one should not use a kernel
that is invariant under a set T of transformations if
T does not reflect symmetries in the data. The ker-
nel becomes very poor especially when the family
{ft : t ∈ T } contains much “orthogonality” (which
is sort of the opposite of collapsing to a singleton or
to a family of highly correlated functions) because
Forster’s bounds, applied to pairwise (almost) or-
thogonal functions, are extremely strong.

This interpretation makes clear that our results
are not particularly surprising but, on the other
hand, quantify (in terms of small margin and large
dimension bounds) in a meaningful and rigorous
fashion an existing mismatch between a kernel and
the (missing or existing) symmetries in the data.

7.2 Open Problems

Haasdonk and Burkhardt [8] consider two notions
of invariance: “simultaneous invariance” and “to-
tal invariance”. Simultaneous invariance very much
corresponds to the notion of invariance that we dis-
cussed in Section 3 so that our margin and dimen-
sion bounds apply. Total invariance is a stronger
notion so that our bounds apply more than ever.
But the obvious challenge is to find stronger margin
and dimension bounds for totally invariant kernels.

The basic idea behind our paper is roughly as
follows. For a family of kernels (e.g., polynomial
kernels), we argue that the existence a “good rep-
resentation” for a particular target function implies
the existence of a “good representation” for a whole
family of target functions (so that classical margin
and dimension bounds can be brought into play).
We think that invariance under a group operation
(the notion considered in this paper) is just the first
obvious thing one should consider. We would like
to develop more versatile techniques that, while fol-
lowing the same basic idea, lead to strong margin
and dimension bounds for a wider class of kernels.

References

[1] Shai Ben-David, Nadav Eiron, and Hans Ulrich
Simon. Limitations of learning via embeddings
in euclidean half-spaces. Journal of Machine
Learning Research, 3:441–461, 2002.

166

[2] Bernhard E. Boser, Isabelle M. Guyon, and
Vladimir N. Vapnik. A training algorithm for
optimal margin classifiers. In Proceedings of the
5th Annual ACM Workshop on Computational
Learning Theory, pages 144–152, 1992.

[3] Nello Cristianini and John Shawe-Taylor.
An Introduction to Support Vector Machines.
Cambridge University Press, 2000.

[4] Jürgen Forster. A linear lower bound on
the unbounded error communication complex-
ity. Journal of Computer and System Sciences,
65(4):612–625, 2002.

[5] Jürgen Forster, Matthias Krause, Satya-
narayana V. Lokam, Rustam Mubarakzjanov,
Niels Schmitt, and Hans Ulrich Simon. Rela-
tions between communication complexity, lin-
ear arrangements, and computational complex-
ity. In Proceedings of the 21’st Annual Confer-
ence on the Foundations of Software Technol-
ogy and Theoretical Computer Science, pages
171–182, 2001.

[6] Jürgen Forster, Niels Schmitt, Hans Ulrich Si-
mon, and Thorsten Suttorp. Estimating the
optimal margins of embeddings in euclidean
half spaces. Machine Learning, 51(3):263–281,
2003.

[7] Jürgen Forster and Hans Ulrich Simon. On
the smallest possible dimension and the largest
possible margin of linear arrangements repre-
senting given concept classes. Theoretical Com-
puter Science, 350(1):40–48, 2006.

[8] Bernard Haasdonk and Hans Burkhardt. In-
variant kernel functions for pattern analysis
and machine learning. Machine Learning,
68(1):35–61, 2007.

[9] Jaz S. Kandola, John Shawe-Taylor, and Nello
Cristianini. Learning semantic similarity. In
Advances in Neural Information Processing
Systems 15, pages 657–664. MIT Press, 2003.

[10] Eike Kiltz and Hans Ulrich Simon. Thresh-
old circuit lower bounds on cryptographic func-
tions. Journal of Computer and System Sci-
ences, 71(2):185–212, 2005.

[11] Risi I. Kondor and John D. Lafferty. Diffu-
sion kernels on graphs and other discrete input
spaces. In Proceedings of the 19th International
Conference on Machine Learning, pages 315–
322, 2002.

[12] Christina Leslie, Eleazar Eskin, and William S.
Noble. The spectrum kernel: A string kernel
for SVM protein classification. In Pacific Sym-
posium on Biocomputing, pages 564–575, 2002.

[13] Nathan Linial, Shahar Mendelson, Gideon
Schechtman, and Adi Shraibman. Complex-
ity measures of sign matrices. Combinatorica.
To appear.

[14] Nati Linial and Adi Shraiman. Lower bounds
in communication complexity based on fac-
torization norms. In Proceedings of the 39th

Annual Symposium on Theory of Computing,
pages 699–708, 2007.

[15] Alexander A. Razborov and Alexander A.
Sherstov. The sign-rank of AC0. Personal
Communication.

[16] Ken Sadohara. Learning of boolean functions
using support vector machines. In Proceedings
of the 12th International Conference on Algo-
rithmic Learning Theory, pages 106–118, 2001.

[17] John Shawe-Taylor and Nello Cristianini. Ker-
nel Methods for Pattern Analysis. Cambridge
University Press, 2004.

[18] Eiji Takimoto and Manfred K. Warmuth.
Pathe kernels and multiplicative updates.
Journal of Machine Learning Research, 4:773–
818, 2003.

[19] Vladimir Vapnik, Christopher J. C. Burges,
Bernhard Schoelkopf, and R. Lyons. A new
method for constructing artificial neural net-
works. Interim ARPA Technical Report,
AT&T Bell Laboratories, 1995.

167

168

Learning Acyclic Probabilistic Circuits Using Test Paths

Dana Angluin1 and James Aspnes1,∗and Jiang Chen2,† and David Eisenstat3 and Lev Reyzin1,‡

1 Computer Science Department, Yale University
{angluin,aspnes}@cs.yale.edu, lev.reyzin@yale.edu

2 Yahoo! Inc., 701 First Avenue, Sunnyvale, CA 94086
criver@gmail.com

3 eisenstatdavid@gmail.com

Abstract

We define a model of learning probabilistic acyclic
circuits using value injection queries, in which an
arbitrary subset of wires is set to fixed values, and
the value on the single output wire is observed.
We adapt the approach of using test paths from
the Circuit Builder algorithm [AACW06] to show
that there is a polynomial time algorithm that uses
value injection queries to learn Boolean probabilis-
tic circuits of constant fan-in and log depth. In
the process, we discover that test paths fail utterly
for circuits over alphabets of size greater than two
and establish upper and lower bounds on the atten-
uation factor for general and transitively reduced
Boolean probabilistic circuits of test paths versus
general experiments. To overcome the limitations
of test paths for non-Boolean alphabets, we intro-
duce function injection queries, which allow the
symbols on a wire to be mapped to other symbols
rather than just to themselves or constants.

1 Introduction
Probabilistic networks are used as models in a variety of do-
mains, for example, gene interaction networks, social net-
works and causal reasoning. In a binary model of gene in-
teraction, the state of each gene is either active or inactive,
and the state of each gene is determined as a function of the
states of some number of other genes, its inputs. In a proba-
bilistic variant of the model, the activation function specifies,
for each possible combination of the states of the inputs, the
probability that the gene will be active. In the independent
cascade model of social networks, the state of each agent is
active or inactive and for each pair (u, v) of agents, there is
a probability that the activation of u will cause v to become
active. Kempe, Kleinberg and Tardos study the problem of
maximizing influence in this and related models of social
networks [KKET03, KKT05]. In a Bayesian network there

∗Supported in part by NSF grant CNS-0435201.
†Supported in part by a research contract from Consolidated

Edison.
‡This material is based upon work supported under a National

Science Foundation Graduate Research Fellowship.

is an acyclic directed graph and a joint probability distribu-
tion over the node values such that the joint distribution is
simply the product of each of the marginal distributions for
each node given the values of the parents (in-neighbors) of
the node.

A fundamental question is how much we can infer about
the properties and structure of such networks from observ-
ing and experimenting with their behaviors. Prior research
suggests that there is no polynomial time algorithm to learn
Boolean functions represented by acyclic circuits of constant
fan-in and depth O(log n) when we can set only the inputs
of the circuit and observe only the output [AK95]. In this pa-
per we consider a different setting, value injection queries,
in which we can fix the values on any subset of wires in the
target circuit, but still only observe the output of the circuit.

The idea of value injection queries was inspired by mod-
els of gene suppression and gene overexpression in the study
of gene interaction networks [AKMM98, ITK00] and was
proposed in [AACW06]. They show that with value injec-
tion queries, acyclic deterministic circuits with constant-size
alphabets, constant fan-in and depth O(log n) are learnable
up to behavioral equivalence in polynomial time. To extend
these results to analog circuits, Angluin et al. [AACR07]
consider circuits with polynomial-size alphabets. Larger al-
phabets make the learning problem significantly harder, ne-
cessitating structural restrictions on the graphs of the circuits
to achieve polynomial time learnability. They show that with
value injection queries, acyclic deterministic circuits that are
transitively reduced (or in general, have constant shortcut
width) and have polynomial-size alphabets, constant fan-in
and unbounded depth are learnable up to behavioral equiva-
lence in polynomial time.

In this paper we investigate how well the above positive
results can be extended to the case of acyclic probabilistic
circuits. The key technique in the previous work has been
the idea of a test path for an arbitrary wire w in the circuit.
Informally speaking, a test path is a directed path of wires
from w to the output wire in which each wire is an input of
the next wire on the path, and the other (non-path) inputs of
wires on the path are fixed to constant values, thus isolating
the wires along the path from the rest of the circuit. Ideally,
the choice of constant values is made in such a way as to
maximize the effect on the output of the circuit of changing
w from one value to another. A test path thus functions as a
kind of “microscope” for viewing the effects of different val-
ues on the wire w. The primary focus of this paper is to un-

169

derstand the properties of test paths in probabilistic circuits,
and the extent to which they can be used to give polynomial
time algorithms for learning probabilistic acyclic circuits.

In Section 2 we formally define our model of acyclic
probabilistic circuits, value injection queries and distribution
injection queries, behavioral equivalence, and the learning
problem that we consider. In Section 3 we establish some
basic results about probabilistic circuits and value and distri-
bution injection experiments. In Section 4 we review the test
path lemma used in previous work and show that it fails ut-
terly in probabilistic circuits with alphabet size greater than
two. However, for Boolean probabilistic circuits, we show
that the test path lemma holds with an attenuation factor
that depends on the structure of the circuit. (Lemma 10
treats general acyclic circuits and Corollary 11 specializes
the bound to transitively reduced circuits.) In Section 5 we
apply the test path lemma in the Boolean case to adapt the
Circuit Builder algorithm [AACW06] to find using value in-
jection queries, with high probability, in time polynomial in
n and 1/ε, a circuit that is ε-behaviorally equivalent to a tar-
get acyclic Boolean probabilistic circuit of size n with con-
stant fan-in and depth bounded by a constant times log n. In
Section 6, we consider lower bounds on the attenuation of
paths; Lemma 15 shows that our bound is tight for transi-
tively reduced circuits and Lemma 17 gives a lower bound
for the case of general acyclic circuits. In Section 7 we in-
troduce a stronger kind of query, a function injection query,
and show that test paths with function injections overcome
the limitations of test paths for circuits with alphabets of size
greater than two.

2 Model
2.1 Probabilistic Circuits
We extend the circuit learning model studied in [AACR07,
AACW06]. to probabilistic gates. An unusual feature of this
model is that circuits do not have distinguished inputs—since
the learning algorithm seeks to predict the output behavior
of value injection experiments that override the values on an
arbitrary subset of wires, each wire is a potential input. Prob-
abilistic circuits are closely related to Bayesian networks as
well; we have chosen, however, to retain the conventions of
the previous works.

A probabilistic circuit C of size n ≥ 1 has n wires,
of which one is the distinguished output wire. We call the
set of C’s wires W , and these wires take values in a finite
alphabet Σ with |Σ| ≥ 2. If Σ = {0, 1}, then C is Boolean.
The value on a wire is ordinarily determined by the output
of an associated probabilistic gate, whose distribution is a
function of the values on other wires.

Formally, an value distribution D is a probability distri-
bution over Σ, that is, a map from Σ to the real interval [0, 1]
such that

∑
σ∈Σ D(σ) = 1. The support of D is the set of

values σ ∈ Σ such that D(σ) > 0, and when this set is a sin-
gleton {σ} for some σ ∈ Σ, we say D is deterministic. For
nonempty sets of values S ⊆ Σ, the uniform distribution
U(S) is the distribution such that U(S)(σ) = [σ ∈ S]/|Σ|.

A k-ary probabilistic gate function f maps each k-tuple
(σ1, . . . , σk) ∈ Σk of values to a value distribution. When
C is Boolean, we can specify f by a truth table giving the

expected value for each Boolean vector of inputs. A proba-
bilistic gate function is deterministic if it maps k-tuples to
deterministic value distributions only.

A probabilistic gate g of fan-in k pairs a k-ary proba-
bilistic gate function f with a k-tuple (w1, . . . , wk) ∈ W k of
input wires. g is deterministic if f is deterministic. When
k = 0, the gate g has no inputs, and we can regard it as a
value distribution, or, when C is Boolean, a biased coin flip.

A probabilistic circuit C maps wires to probabilistic
gates. C is deterministic if all of its gates are determinis-
tic. The fan-in of C is the maximum fan-in over C’s gates.
The circuit graph of C has nodes W and a directed edge
(w, u) if w is one of the input wires of the gate associated
with u. It is important to distinguish between wires in the
circuit and edges in the circuit graph. For example, if wire w
is an input of wires u and v, then there will be two directed
edges, (w, u) and (w, v), in the circuit graph.

Wire u is reachable from wire w if there is a directed
path from w to u in the circuit graph. A wire is relevant if
the output wire is reachable from it. The depth of a wire w is
the number of edges in the longest simple path from w to the
output wire in the circuit graph. The depth of the circuit is
maximum depth of any relevant wire. The circuit is acyclic
if the circuit graph contains no directed cycles. The circuit
is transitively reduced if its circuit graph is transitively re-
duced, that is, if it contains no edge (w, u) such that there
is a directed path of length at least two from w to u. In this
paper we assume all circuits are acyclic.

2.2 Experiments

In an experiment some wires are constrained to be particular
symbols or value distributions and the other wires are left
free. The behavior of a circuit consists of its responses to all
possible experiments. For probabilistic circuits we consider
both value injection experiments and distribution injection
experiments.

A distribution injection experiment e is a function with
domain W that maps each wire w to a special symbol ∗ or
to a value distribution. A value injection experiment e is a
distribution injection experiment for which every value dis-
tribution assigned is deterministic – that is, always generates
the same symbol. To simplify notation, we think of a value
injection experiment as a mapping from W to (Σ ∪ {∗}). If
e is either kind of experiment, we say that e leaves w free if
e(w) = ∗; otherwise we say that e constrains w to e(w). If
e(w) is a single symbol, then we say e fixes w to e(w).

We define a partial ordering≤ on the set containing ∗ and
all value distributions D as follows: D ≤ ∗ for every value
distribution D, and for two value distributions, D1 ≤ D2

if the support of D1 is a subset of the support of D2. This
ordering is extended to experiments on the same set of wires
W as follows: e1 ≤ e2 if for every w ∈ W , e1(w) ≤ e2(w)
The intuitive meaning of e1 ≤ e2 is that e1 is at least as
constraining as e2 for every wire.

If e is any experiment, w is a wire, and a is ∗ or an ele-
ment of Σ or a value distribution, then the experiment e|w=a

is defined to be the experiment e′ such that e′(w) = a and
e′(u) = e(u) for all u ∈ W such that u 6= w.

170

2.3 Behavior
Let C be a probabilistic circuit. Then a distribution injec-
tion experiment e determines a joint distribution over assign-
ments of elements of Σ to all of the wires of the circuit, as
follows. If wire w is constrained then w is randomly and
independently assigned a value in Σ drawn according to the
value distribution e(w); in the case of a value injection ex-
periment, this just assigns a fixed element of σ to w. If wire
w is free, has probabilistic gate function f and its inputs
u1, . . . , uk have been assigned the values σ1, . . . , σk, then
w is randomly and independently assigned a value from Σ
according to the value distribution f(σ1, . . . , σk).

Constrained gates and gates of fan-in zero give the base
cases for the above recursive definition, which assigns an el-
ement of Σ to every wire because the circuit is acyclic. Let
C(e, w) denote the (marginal) value distribution of the as-
signments of values to w for the above process. The output
distribution of the circuit, denoted C(e), is the distribution
C(e, z), where z is the output wire of the circuit. The behav-
ior of a circuit C is the function that maps value injection
experiments e to output distributions C(e).

2.4 Example: C1

We give an example of a simple Boolean probabilistic circuit,
which we will also refer to later. The 2-input averaging gate
A(b1, b2) outputs 1 with probability (b1+b2)/2. We define a
circuit C1 of 4 wires as follows: w4 = A(w2, w3), w3 = w1,
w2 = w1, and w1 = U({0, 1}). The output wire is w4. C1

is depicted in Figure 1.

w1 = U({0,1})

w2 = w1 w3 = w1

w4 = A(w2,w3)

Figure 1: The circuit C1; w4 is the output wire.

To illustrate the behavior of this circuit, we consider two
value injection experiments. Define the experiment e1 to
leave every wire in C1 free, that is, e1(wi) = ∗ for 1 ≤ i ≤
4. Given e1, we construct one random outcome as follows.
The wire w1 is assigned a value as the result of an unbiased
coin flip – say it is assigned 0. Then the values assigned to
w2 and w3 are determined because they are each the output
of an identity gate with w1 as input: both are 0. Finally, be-
cause both its input wires have been assigned values, w4 can
be assigned a value according to A(0, 0), which is determin-
istically 0. It is easy to see that this is one of two possible
outcomes for experiment e1; either all wires are assigned 0
or all wires are assigned 1, and these each occur with proba-
bility 1/2. The output distribution C1(e1) is just an unbiased
coin flip.

Now consider experiment e2 = e1|w2=1 that fixes w2

to 1 and leaves the other wires free. Once again, the value
of w1 is determined by a coin flip – say it is assigned 0.
Since w2 is fixed to 1, that is its assignment. Wire w3 is
free, and is therefore assigned the value of w1, that is 0.
Now the inputs of w4 have been assigned values, so we con-
sider A(1, 0), which randomly and equiprobably selects 0 or
1. If, instead, the coin flip for w1 had returned 1, all wires
would be assigned 1. There are three possible assignments
to (w1, w2, w3, w4) for experiment e2: (1, 1, 1, 1) with prob-
ability 1/2, (0, 1, 0, 0) with probability 1/4 and (0, 1, 0, 1)
with probability 1/4. The output distribution C1(e2) is a bi-
ased coin flip that is 1 with probability 3/4.

2.5 Behavioral Equivalence
Two circuits C and C ′ are behaviorally equivalent if they
have the same set of wires, the same output wire and the
same behavior, that is, for every value injection experiment
e, C(e) = C ′(e). We also need a concept of approximate
equivalence. The (statistical) distance between value distri-
butions D and D′ is d(D,D′) = (1/2)

∑
σ |D(σ)−D′(σ)|,

which takes values in [0, 1]. Note that when D and D′ are
deterministic, d(D,D′) is 0 if D = D′ and 1 otherwise. For
ε ≥ 0, C is ε-behaviorally equivalent to C ′ if they contain
the same wires and the same output wire, and for every value
injection experiment e, d(C(e), C ′(e)) ≤ ε, where d is the
distance between value distributions defined above.

In Lemma 2 we show that the behavioral equivalence of
C and C ′ implies C(e) = C ′(e) for all distribution injection
experiments as well. Note that even when all the gates are
Boolean, deterministic and relevant, the circuit graph of the
target circuit may not be uniquely determined by its behav-
ior [AACW06].

2.6 Queries
The learning algorithm gets information about the target cir-
cuit by specifying a value injection experiment e and observ-
ing the element of Σ assigned to the output wire. Such an ac-
tion is termed a value injection query, abbreviated VIQ. A
value injection query does not return complete information
about the value distribution C(e), but instead returns an ele-
ment of Σ selected according to the distribution C(e). Thus,
in order to approximate the distribution C(e), the learner
must repeatedly make value injection queries with experi-
ment e. In this case, the goal of learning is approximate be-
havioral equivalence.

2.7 The Learning Problem
The learning problem is ε-approximate learning: by mak-
ing value injection queries to a target circuit C drawn from
a known class of probabilistic circuits, find a circuit C ′ that
is ε-behaviorally equivalent to C. The inputs to the learning
algorithm are the names of the wires in C, the name of the
output wire and positive numbers ε and δ, where the learn-
ing algorithm is required to succeed with probability at least
(1− δ).

3 Preliminary Results
In this section we establish some basic results about proba-
bilistic circuits. We first note that if C is a probabilistic cir-

171

cuit, e is a distribution injection experiment and either e(w)
is a value distribution or e deterministically fixes all the in-
put wires of w, then there is a value distribution D such that
the value of w in C(e) is determined by a random choice ac-
cording to D, independent of the values chosen for any other
wires. We make systematic use of this observation to reduce
the number of experiments under consideration.

Lemma 1 Let C1 and C2 be probabilistic circuits on wires
W with the same output wire, let w ∈ W be a wire, let
D be a value distribution, and let e1 and e2 be distribution
injection experiments such that e1(w) = e2(w) = D. Then
there exists a value σ ∈ support(D) such that

d(C1(e1|w=σ), C2(e2|w=σ)) ≥ d(C1(e1), C2(e2)).

Proof: We have

d(C1(e1), C2(e2))

=
1
2

∑
τ∈Σ

∣∣∣C1(e1)(τ)− C2(e2)(τ)
∣∣∣

=
1
2

∑
τ∈Σ

∣∣∣∣∣∣
∑
ρ∈Σ

C1(e1|w=ρ)(τ)D(ρ)

−
∑
ρ∈Σ

C2(e2|w=ρ)(τ)D(ρ)

∣∣∣∣∣∣
≤ 1

2

∑
ρ∈Σ

D(ρ)
∑
τ∈Σ

∣∣∣C1(e1|w=ρ)(τ)

− C2(e2|w=ρ)(τ)
∣∣∣

=
∑
ρ∈Σ

D(ρ)d(C(e1|w=ρ), C(e2|w=ρ))

by the triangle inequality. Let

σ = arg max
ρ∈support(D)

d(C(e1|w=ρ), C(e2|w=ρ)),

so that

d(C(e1|w=σ), C(e2|w=σ)) ≥ d(C(e1), C(e2))

by an averaging argument.

Lemma 2 Let C1 and C2 be probabilistic circuits on wires
W with the same output wire and let e be a distribution in-
jection experiment. Then there exists a value injection exper-
iment e′ ≤ e such that

d(C1(e′), C2(e′)) ≥ d(C1(e), C2(e)).

Proof: By induction on |V |, where V ⊆ W is the set of
wires that e constrains to nonconstant distributions. If |V | >
0, then let w ∈ V . By Lemma 1, there exists a value σ ∈ Σ
such that

d(C1(e|w=σ), C2(e|w=σ)) ≥ d(C1(e), C2(e)).

Since e|w=σ constrains one fewer wire to a nonconstant dis-
tribution, the existence of e′ follows from the inductive hy-
pothesis.

Corollary 3 If circuits C1 and C2 are ε-behaviorally equiv-
alent with respect to value injection experiments, then C1

and C2 are ε-behaviorally equivalent with respect to distri-
bution injection experiments.

Suppose that C is a probabilistic circuit and e1 and e2 are
distribution injection experiments. For each wire w, we say
that e1 and e2 agree on w if either

• e1 and e2 constrain w to the same distribution, or

• w is free in e1 and e2, and e1 and e2 agree on all of w’s
inputs.

If e1 and e2 agree on a wire w, then the marginal distributions
of w in e1 and e2 are identical, that is, C(e1, w) = C(e2, w).

Lemma 4 Let C be a probabilistic circuit on wires W and
let e1 and e2 be distribution injection experiments that agree
on wires V ⊆ W . Then there exist distribution injection ex-
periments e′1 ≤ e1 and e′2 ≤ e2 such that for each wire w ∈
V , there exists a value σ ∈ Σ such that e′1(w) = e′2(w) = σ,
and

d(C(e′1), C(e′2)) ≥ d(C(e1), C(e2)).

Proof: By induction on the number of unfixed wires w ∈
V . If there is such a wire, choose v to be one that is not
reachable from the others. If e1(v) = e2(v) = ∗, then e1

and e2 agree on all of v’s inputs, and by the choice of v, all
of v’s inputs are fixed. As such, we may assume without
loss of generality that e1 and e2 in fact constrain v to the
distribution D = C(e1, v) = C(e2, v). By Lemma 1, there
exists a value σ ∈ support(D) such that

d(C(e1|v=σ), C(e2|v=σ)) ≥ d(C(e1), C(e2)).

The existence of e′1 and e′2 follows from the inductive hy-
pothesis.

Lemma 5 Let C be a probabilistic circuit on wires W , let
e be a distribution injection experiment, let w ∈ W be a
wire free in e, and let D be a value distribution. Then e and
e|w=D agree on all wires u ∈ W to which there is no path
on free wires from w.

Proof: If u is constrained, then the conclusion follows. Oth-
erwise, since u is free and has no free path from w, none of
u’s inputs have free paths from w. We proceed by induction
on the length of the longest path to u. If this length is zero,
then u does not have any inputs. Otherwise, the inductive hy-
pothesis applies to all of u’s inputs, on which e and e|w=D

then must agree. It follows that they also agree on u.

Lemma 6 Let C be a probabilistic circuit on wires W , let
w ∈ W be a wire, and let D1, D2 be value distributions.
There exist value distributions D′

1, D
′
2 with support(D′

1) ∩
support(D′

2) = ∅ such that for all experiments e,

d(C(e|w=D1), C(e|w=D2))
= d(D1, D2)d(C(e|w=D′

1
), C(e|w=D′

2
)).

172

Proof: We have

d(C(e|w=D1), C(e|w=D2))

=
1
2

∑
σ∈Σ

∣∣∣C(e|w=D1)(σ)− C(e|w=D2)(σ)
∣∣∣

=
1
2

∑
σ∈Σ

∣∣∣∣∣∑
τ∈Σ

C(e|w=τ)(σ)(D1(τ)−D2(τ))

∣∣∣∣∣ .

If we let

D̂1(τ) = D1(τ)−min(D1(τ), D2(τ))

D̂2(τ) = D2(τ)−min(D1(τ), D2(τ)),

then

d(C(e|w=D1), C(e|w=D2))

=
1
2

∑
σ∈Σ

∣∣∣∣∣∑
τ∈Σ

C(e|w=τ)(σ)(D̂1(τ)− D̂2(τ))

∣∣∣∣∣ .

Since
∑

τ∈Σ D̂1(τ) = 1 −
∑

τ∈Σ min(D1(τ), D2(τ)) and
likewise for D2,

d(D1, D2) =
1
2

∑
τ∈Σ

∣∣∣D1(τ)−D2(τ)
∣∣∣

=
1
2

∑
τ∈Σ

∣∣∣D̂1(τ)− D̂2(τ)
∣∣∣

=
∑
τ∈Σ

D̂1(τ) =
∑
τ∈Σ

D̂2(τ).

If d(D1, D2) > 0, then the distributions D′
1 and D′

2 where

D′
1(τ) = D̂1(τ)/d(D1, D2)

D′
2(τ) = D̂2(τ)/d(D1, D2)

satisfy the requisite properties. Otherwise, any two distribu-
tions with disjoint support will do.

4 Test Paths
The concept of a test path has been central in previous work
on learning deterministic circuits by means of value injec-
tion queries [AACR07, AACW06]. A test path for a wire w
is a value injection experiment in which the free gates form a
directed path in the circuit graph from w to the output wire.
All the other wires in the circuit are fixed; this includes the
inputs of w. A side wire with respect to a test path p is a
wire fixed by p that is input to a free wire in p. A test path
may help the learning algorithm determine the effects of as-
signing different values to the wire w. The test-path lemmas
from [AACR07, AACW06] may be re-stated as follows.

Lemma 7 Let C be a deterministic circuit. If for some value
injection experiment e, wire w and alphabet symbols σ and
τ it is the case that

C(p|w=σ) = C(p|w=τ)

for every test path p ≤ e then also

C(e|w=σ) = C(e|w=τ).

Nontrivial complications arise in attempting to carry over
this test path lemma to general probabilistic circuits, as we
now show. The following lemma shows that for alphabets
of size at least four, there are transitively reduced probabilis-
tic circuits for which the test-path lemma fails completely.
(A less intuitive version of this construction shows that this
phenomenon occurs also at alphabet size three.)

Lemma 8 If |Σ| = 4, there exists a probabilistic circuit C,
value injection experiment e, wire w and alphabet symbols
σ and τ such that although for every test path p ≤ e for w,
d(C(p|w=σ), C(p|w=τ)) = 0, it is nevertheless the case that
d(C(e|w=σ), C(e|w=τ)) = 1.

Proof: Assume Σ = {00, 01, 10, 11}, and define probabilis-
tic gate functions T , L, R, and X as follows.

T (00) =T (11) = U({00, 11}),
T (01) =T (10) = U({01, 10}),
L(00) =L(01) = 00,

L(10) =L(11) = 01,

R(00) =R(10) = 00,

R(01) =R(11) = 01,

and X(ab, cd) = 0(b⊕ d), where ⊕ is sum modulo 2.
The circuit C has 5 wires, connected as in Figure 2. The

output wire is w5; note that C is transitively reduced.

w1 = U({00,01})

w2 = T(w1)

w3 = L(w2) w4 = R(w2)

w5 = X(w3,w4)

Figure 2: The circuit C; w5 is the output wire.

Consider the experiment e that leaves all the wires free.
We have C(e|w1=00) = 00 and C(e|w1=01) = 01, and thus
d(C(e|w1=00), C(e|w1=01)) = 1. However, the only test
paths for w1 fix w3 and leave all other wires free or fix w4

and leave all other wires free. Calculation verifies that fixing
w3 or w4 to any value and leaving the other wires free yields
the output distribution U({00, 01}) regardless of whether w1

is fixed to 00 or 01. Thus, for every test path p for w1, we
have d(C(p|w1=00), C(p|w1=01)) = 0.

4.1 A Bound for Boolean Probabilistic Circuits
Surprisingly, for Boolean probabilistic circuits there is a use-
ful quantitative relationship between the differences exposed
by test paths and the differences exposed by arbitrary exper-
iments.

173

Let e be an experiment and w a wire. Define Π(e, w) to
be the set of all directed paths from w to the output wire on
free wires in e. Let S(e) be the set of wires that originate a
free shortcut, that is, the set of free wires w such that there
exists a path p ∈ Π(e, w) with two free wires to which w is
an input. Define

κ(e, w) =
∑

p∈Π(e,w)

2|p∩S(e)|.

Lemma 9 Let C be a probabilistic circuit, e be a distribu-
tion injection experiment, w and u be free wires where w is
an input to u, and D0 be a value distribution. Let β = 2 if
w ∈ S(e) and β = 1 otherwise. Then

κ(e, w) = κ(e|u=D0 , w) + κ(e|w=1, u) · β.

Proof: The first term of the sum counts paths that don’t con-
tain u, and the second counts paths that do. Let e′ = e|u=D0

and e′′ = e|w=1. We have

κ(e, w) =
∑

p∈Π(e,w)

2|p∩S(e)|

=
∑

p∈Π(e,w)
u6∈p

2|p∩S(e)| +
∑

p∈Π(e,w)
u∈p

2|p∩S(e)|

=
∑

p∈Π(e′,w)

2|p∩S(e′)| +
∑

p∈Π(e′′,u)

2|p∩S(e′′)|β

= κ(e′, w) + κ(e′′, u) · β,

since each path p 3 u from w corresponds to the path p\{w}
from u.

Lemma 10 Let C be a Boolean probabilistic circuit, e be a
distribution injection experiment, w be a wire, and D1, D2

be value distributions. If there exists ε ≥ 0 such that for all
w-test paths p ≤ e,

d(C(p|w=D1), C(p|w=D2)) ≤ ε,

then

d(C(e|w=D1), C(e|w=D2)) ≤ κ(e, w) · ε.

Proof: By induction on φ(e), the number of free wires in e.
By Lemma 6, assume that support(D1)∩support(D2) = ∅.
The critical feature of the Boolean case is that it follows that
D1 = 0 and D2 = 1 without loss of generality—it is impor-
tant to the following proof that D1 and D2 be deterministic.

If φ(e) = 1, then either

d(C(e|w=0), C(e|w=1)) = 0,

or w is the output, e is a w-test path, and κ(e, w) = 1. Oth-
erwise, the inductive hypothesis is that the lemma holds for
all experiments e′ with φ(e′) < φ(e).

Except for w, the experiments e|w=0 and e|w=1 agree on
all constrained wires, so by Lemmas 4 and 5, assume without
loss of generality that every wire with no free path from w is
in fact fixed. Since C is acyclic, there exists a free wire u 6=
w whose only unfixed input is w. Let g be the gate assigned

by C to u and let B0 = g(e|w=0) and B1 = g(e|w=1), so
that

C(e|w=0) = C(e|w=0,u=B0)
C(e|w=1) = C(e|w=1,u=B1).

By the triangle inequality,

d(C(e|w=0), C(e|w=1))
≤ d(C(e|w=0,u=B0), C(e|w=1,u=B0))

+ d(C(e|w=1,u=B0), C(e|w=1,u=B1)).

The inductive hypothesis bounds the first term of the sum by
κ(e′, w) · ε, where e′ = e|u=B0 . We now derive a bound
on u-test paths so that the inductive hypothesis applies to the
second term as well. Let β = 2 if w ∈ S(e) and β = 1
otherwise. Let e′′ = e|w=1 and suppose p ≤ e′′ is a u-test
path. Then

d(C(p|u=B0), C(p|u=B1))
≤ d(C(p|w=1,u=B0), C(p|w=0,u=B0))

+ d(C(p|w=0,u=B0), C(p|w=1,u=B1))
= d(C(p|w=0,u=B0), C(p|w=1,u=B0))

+ d(C(p|w=0,u=∗), C(p|w=1,u=∗))
≤ βε,

since both terms of the sum are bounded by ε, and the first
is nonzero only if w is an input to some free wire in p other
than u. Thus

d(C(e′′|u=0), C(e′′|u=1)) ≤ κ(e′′, u) · βε,

and,

d(C(e|w=0), C(e|w=1))

≤ κ(e′, w) · ε + κ(e′′, u) · βε

= κ(e, w) · ε,
by Lemma 9.

In the case of transitively reduced circuits, S(e) = ∅, and
κ(e, w) = π(e, w), where π(e, w) = |Π(e, w)|, the number
of directed paths on free wires in e from w to the output wire.

Corollary 11 Let C be a transitively reduced Boolean prob-
abilistic circuit, e be a distribution injection experiment, and
w be a wire. If there exists ε ≥ 0 such that for all w-test
paths p ≤ e,

d(C(p|w=0), C(p|w=1)) ≤ ε,

then
d(C(e|w=0), C(e|w=1)) ≤ π(e, w) · ε.

5 Learning Boolean Probabilistic Circuits
The amount of attenuation given by Lemma 10 allows us
to adapt the CircuitBuilder algorithm [AACW06] to learn
Boolean probabilistic circuits with constant fan-in and log
depth in polynomial time.

Theorem 12 Given constants c and k there is a nonadap-
tive learning algorithm that with probability at least (1− δ)
successfully ε-approximately learns any Boolean probabilis-
tic circuit with n wires, gates of fan-in at most k and depth
at most c log n using value injection queries in time bounded
by a polynomial in n, 1/ε and log(1/δ).

174

We adapt the Circuit Builder algorithm from [AACW06]
to prove Theorem 12 and call the resulting algorithm Prob-
abilistic Circuit Builder (PCB). The algorithm constructs a
set U of experiments such that every test path is equivalent
to some experiment in U , obtains a sufficiently good estimate
of the output distribution for each experiment in U , and then
builds a circuit approximately behaviorally equivalent to the
target circuit by repeatedly adding sufficiently accurate gates
all of whose inputs are in the partially constructed circuit.

Let the target circuit be C and let positive constants δ, ε,
k and c be given such that the fan-in of C is bounded by k
and the depth of C is bounded by c log n. For such a circuit,
π(e, w) is bounded above by kc log n, so the quantity κ(e, w)
is bounded above by

κ(n) = kc log n · 2c log n = nc(log k+1) = nO(1).

The PCB algorithm is nonadaptive: it computes a set
U of value injection experiments, repeats each value injec-
tion query for e ∈ U sufficiently many times to estimate
the expected value of C(e) with enough accuracy, and then
uses the results of the queries to build a circuit C ′ that is
ε-behaviorally equivalent to C.

In choosing the experiments U , the goal is that for every
potential test path, U includes an equivalent experiment. The
structure of the circuit, however, is not known a priori, a dif-
ficulty that we overcome by the same method as [AACW06].
Let U∗ be a universal set of value injection experiments such
that for every set of kc log n wires and every assignment
of symbols from Σ ∪ {∗} to those wires, some experiment
e ∈ U∗ agrees with the values assigned to those wires. As
in [AACW06], it is possible to construct such a set U of size

2O(kc log n) log n = nO(kc)

in time polynomial in its size.
For every wire w and test path p for w, there is an exper-

iment in U∗ that leaves the path wires of p free and fixes the
side wires of p to their values in p. Consequently, p and this
experiment agree on the output wire. Although it is tempting
now to set U = U∗, there is no easy way to determine which
experiment a test path corresponds to, making it difficult for
PCB to perform comparisons where w is fixed to different
values. For b = 0, 1, then, let Ub contain every experiment
e|w=b such that e ∈ U∗ and w is free in e. Now we can take
U = U∗ ∪ U0 ∪ U1.

For each e ∈ U , PCB repeatedly makes a value injec-
tion query with e to estimate the distribution of C(e). By
Hoeffding’s bound, we have that

m = O((nκ(n)/ε)2 log(|U |/δ))

trials per experiment e suffice to guarantee that with proba-
bility at least 1− δ, for all e ∈ U ,

d(C(e), Ĉ(e)) ≤ ε/(5nκ(n)). (1)

If (1) holds, then we can compute good estimates for a class
of distribution experiments. Let e ∈ U∗ be a value injection
experiment, w be a wire that e leaves free, and D be a value
distribution. Then let

Ĉ(e|w=D) =
∑
σ∈Σ

D(σ)Ĉ(e|w=σ).

We have

d(C(e|w=D), Ĉ(e|w=D))

≤
∑
σ∈Σ

D(σ)d(C(e|w=σ), Ĉ(e|w=σ))

≤ ε/(5nκ(n)).

From this point on, we assume that the estimates are cor-
rect and show that PCB successfully builds a circuit C ′ that
is ε-behaviorally equivalent to C.

PCB builds the circuit C ′ one gate at a time. Initially C ′

has no gates assigned to wires. The algorithm tries repeat-
edly to find a wire w and a gate g such that g is ε/n-correct
for w in C and all of g’s inputs are in C′. When this is no
longer possible, PCB outputs C ′ and halts.

To prove the correctness of PCB, we first establish two
lemmas connecting gates, paths and experiments. Given a
Boolean probabilistic circuit C and a probabilistic gate g, g
is η-correct for wire w with respect to C if for every value
injection experiment e that fixes the input wires for g we have
d(C(e), C(e|w=g(e))) ≤ η, where g(e) denotes the coin flip
determined by g when its inputs are fixed as in e. Recall that
φ(e) denotes the number of free wires in experiment e.

Lemma 13 Let C and C ′ be probabilistic circuits on wires
W , and let e be a distribution injection experiment. If for
every wire w, the gate g for w in C ′ is η-correct for w with
respect to C, then

d(C(e), C ′(e)) ≤ φ(e) · η.

Proof: By induction on φ(e), the number of free wires in e.
If φ(e) = 0, then e constrains the output wire, and trivially,
d(C(e), C ′(e)) = 0. Otherwise, the inductive hypothesis is
that C and C ′ are η-behaviorally equivalent with respect to
all experiments with fewer free gates.

By Lemma 2, assume that e is in fact a value injection
experiment. Since C ′ is acyclic, there exists a free wire w
in e such that the inputs to w in C ′ are fixed in e to some k-
tuple (σ1, . . . , σk) ∈ Σk. Letting f be the probabilistic gate
function for w in C ′, we have C ′(e) = C ′(e|w=f(σ1,...,σk)),
and

d(C(e), C ′(e))
≤ d(C(e), C(e|w=f(σ1,...,σk))

+ d(C(e|w=f(σ1,...,σk)), C ′(e|w=f(σ1,...,σk)))

≤ η + (φ(e)− 1) · η = φ(e) · η

by the fact that f is η-correct and the inductive hypothesis.

Next we show that test paths are sufficient to determine
whether a gate is η-correct for a wire in C.

Lemma 14 Let C be a Boolean probabilistic circuit, w a
wire and g′ a probabilistic gate. If for every test path p for
w that fixes all the inputs of g′, d(C(p), C(p|w=g′(p))) ≤
η/κ(C), where κ(C) is the maximum value of κC′(e, w)
over all circuits C ′ with the same set of wires, all experi-
ments e, and all wires w, then g′ is η-correct for w with
respect to C.

175

Proof: Let g be the actual gate that C assigns to w. Let e
be a value injection experiment that fixes every input of g′. e
may not fix all of g’s inputs, but since C is acyclic, g’s inputs
are not reachable from w. By Lemmas 4 and 5, there exists
an experiment e′ ≤ e that fixes g’s inputs, with

d(C(e′), C(e′|w=g′(e′))) ≥ d(C(e), C(e|w=g′(e))).

Since e′ fixes all of g’s inputs, C(e′) = C(e′|w=g(e′)). It is
given that for all test paths p that fix all inputs of g and g′

that

d(C(p|w=g(p)), C(p|w=g′(p))) ≤ η/κ(C),

so it follows by Lemma 10 that

d(C(e′|w=g(e′)), C(e′|w=g′(e′)))

≤ κ(e′, w) · η/κ(C)
≤ η,

and g′ is η-correct for w.

To prove the correctness of PCB, we argue as follows.
Let V be the set of wires to which C ′ does not assign a gate.
Then since C is acyclic, there is some wire w ∈ V such that
none of w’s inputs in C belong to V . PCB looks for a gate g′

such that for each experiment e ∈ U∗ that leaves w free and
fixes all inputs of g′,

d(Ĉ(e), Ĉ(e|w=g′(e))) ≤ 3ε/(5nκ(n)). (2)

Then

d(C(e), Ĉ(e)) ≤ ε/(5nκ(n))

d(Ĉ(e|w=g′(e)), C(e|w=g′(e))) ≤ ε/(5nκ(n)),

and

d(C(e|w=g′(e)), C(e|w=g(e))) ≤ ε/(nκ(n))

by (1) and the triangle inequality. It follows by Lemma 14
that g′ is ε/n-correct for w in C. Let g be the gate that C
assigns to w and suppose that d(g(e), g′(e)) ≤ ε/(5nκ(n))
for all experiments e that fix g’s inputs. Then

d(Ĉ(e), C(e)) ≤ ε/(5nκ(n))
d(C(e), C(e|w=g(e))) = 0

d(C(e|w=g(e)), C(e|w=g′(e))) ≤ ε/(5nκ(n))

d(C(e|w=g′(e)), Ĉ(e|w=g′(e))) ≤ ε/(5nκ(n))

and g′ satisfies (2). Therefore, PCB will continue to make
progress.

To bound the running time of PCB we argue as follows.
The set U of experiments is of cardinality nO(kc) and can be
constructed in time polynomial in its size. Each experiment
in U is repeated

O((nκ(n)/ε)2 log(|U |/δ))

times; recall that κ(n) = O(nc(log k+1)). PCB chooses a
gate for a wire n times. Each gate it tests must be subjected
to a polynomial number of experiments; in order to be as-
sured of a sufficiently good approximation, it must iterate
over O(nk) sets of inputs times |Σ|k entries times a poly-
nomial number of points in [0, 1]Σ to be assured of finding
a sufficiently good approximation to a true gate. Thus the
running time of PCB is polynomial in n, 1/ε and 1/δ.

6 Lower Bounds
We consider lower bounds on the path attenuation factors for
Boolean probabilistic circuits. The following lemma shows
that the bound of π(e, w) for transitively reduced Boolean
probabilistic circuits in Corollary 11 is tight infinitely often.

Lemma 15 There is an infinite set of transitively reduced
probabilistic Boolean circuits such that for each circuit C in
the family, there exists a value injection experiment e and a
wire w such that

d(C(e|w=0), C(ew=1)) = 1

and for every test path p for w we have

d(C(p|w=0), C(p|w=1)) = 1/π(e, w).

Proof: For each positive integer `, define the circuit C` to be
a chain of ` copies of the circuit C1 in Figure 1 with wire w4

of one copy identified with wire w1 of the next copy. More
formally, the 3d + 1 wires are w0,4 and wi,j for i = 1, . . . , d
and j = 2, 3, 4. The output wire is wd,4. The wire w0,4

has no inputs and is determined by an unbiased coin flip,
that is, U({0, 1}). The wires wi,2 and wi,3 are the outputs
of deterministic identity gates with input wi−1,4. The wire
wi,4 = A(wi,2, wi,3) is the result of applying the two-input
averaging gate A to the wires wi,2 and wi,3.

The experiment e leaves all of the wires free. Let w de-
note the wire w0,4. Clearly there are 2` paths on free gates
in e from w to the output gate, that is, π(w, e) = 2`. For
experiment e we have C(e|w=0) = 0 and C(e|w=1) = 1,
so d(C(e|w=0), C(e|w=1) = 1. However, any test path p
for w must fix one of the wires wi,2 or wi,3 for each i =
1, . . . , d. As the signal proceeds through each level, it is at-
tenuated by 1/2, so the final result for any test path p for w
is d(C(p|w=0), C(p|w=1)) = 1/2` = 1/π(e, w).

A generalization of this construction shows that for any
transitively reduced circuit graph, there is an assignment of
Boolean probabilistic functions that matches the attenuation
factor of π(e, w).

Lemma 16 Let G be a transitively reduced directed graph
with a designated output node in which there is a path from
every node to the output node. There is a Boolean proba-
bilistic circuit C whose circuit graph is G such that for every
value injection experiment e and for every test path p ≤ e
and every wire w,

d(C(e|w=1), C(e|w=0))
≥ π(e, w) · d(C(p|w=1), C(p|w=0)).

Proof: (Proof omitted in this abstract.)

Can the general bound in Lemma 10 be improved to the
bound for transitively reduced circuits in Corollary 11? The
following example shows that the better bound is in general
not attainable if the circuit is not transitively reduced. It gives
a family of circuits of depth 2d for which the worst-case ratio
of the differences shown for w by an experiment e and the
best path for w is (5/4)dπ(e, w).

176

Lemma 17 There exists an infinite set of Boolean proba-
bilistic circuits D1, D2, . . . such that for each ` there ex-
ists a value injection experiment e and a wire w such that
π(e, w) = 4` and

d(D`(e|w=0), D`(e|w=1)) = (5/7)`,

but for any test path p for w,

d(D`(p|w=0), D`(p|w=1)) = (1/7)`.

Proof: We first define a Boolean probabilistic circuit D1 and
then connect ` copies of it in series to get D`. The wires of
D1 are w1, . . . , w5. They are connected as in Figure 3; the
output wire is w5. Note that the edge (w1, w5) means that the
circuit graph is not transitively reduced. The gate function G

w1 = U({0,1})

w2 = w1 w3 = w1 w4 = w1

w5 = G(w1,w2,w3,w4)

Figure 3: The circuit D1; w5 is the output wire.

is defined by giving its expected value as a function of its
inputs:

E[G(w1, w2, w3, w4)] = ((1−w1)+2w2 +2w3 +2w4)/7.

Let e be the experiment that leaves all five wires free. It is
clear that

d(D1(e|w=0), D1(e|w=1)) = 5/7.

We now show that for any test path p for w1,

d(D1(pw=0), D1(p|w=1)) = 1/7.

The possible test paths p for w1 either fix all of w2, w3, w4

or all but one of them. Thus, as we change from w1 = 0
to w1 = 1 in such a test path, the assignments to wires
(w1, w2, w3, w4) change in one of four possible ways:

(0, b2, b3, b4) to (1, b2, b3, b4)

(0, 0, b3, b4) to (1, 1, b3, b4)

(0, b2, 0, b4) to (1, b2, 1, b4)

(0, b2, b3, 0) to (1, b2, b3, 1)

Checking each of these possible changes against the defini-
tion of G, we see that each change produces a difference of
1/7, as claimed. (This example can be modified to give a dif-
ference of 1 versus 1/5; details are omitted in this abstract.)
Thus, D1 gives the base case of the claim in the lemma.

To construct D`, we take ` copies of D1 and identify
wire w5 in one copy with wire w1 in the next copy, making
the wire w5 of the final copy the output wire of the whole

circuit. Let w denote the wire w1 in the first such copy. Then
π(e, w) = 4` and

d(D`(e|w=0), D`(ew=1)) = (5/7)`.

For any test path p, the signal is attenuated by a factor of 1/7
for each level, and we have

d(D`(p|w=0), D`(p|w=1)) = 1/7`.

The construction can be generalized to k+1 wires for any
odd k+1, which increases the attenuation. In the base circuit
there are k paths and an attenuation factor of 1/(2k−3), and
the worst-case ratio of differences for an experiment and its
test paths in D` approaches 2`π(e, w) as k goes to infinity.

7 Non-Boolean Circuits Revisited
The sharp contrast in results for transitively reduced circuits
with alphabet size at least three, for which test paths may
show no difference (Lemma 8) and those with alphabet size
two, for which test paths must show a significant difference
(Lemma 10) motivate us to consider a generalization of the
kinds of experiments we consider, to function injection ex-
periments. This generalization allows us to extend the results
of Lemma 10 to non-Boolean alphabets.

In a value injection experiment, each wire is either fixed
to a constant value or left free. In a function injection ex-
periment, these possibilities are expanded to permit a trans-
formation of the value that the wire would take if it were
left free. As an example, consider a transformation in which
the values are linearly ordered and all values below a certain
threshold are mapped to the minimum value and all other
values are mapped to the maximum value. It is conceivable
that this kind of transformation could be feasible in some do-
mains; in any case, the theoretical consequences are quite in-
teresting. We first give a general definition of function injec-
tion, but in the results below we are primarily concerned with
2-partitions, that is, transformations that are like the above
example in that they partition the values into two blocks and
map each block to a fixed element of the block.

An alphabet transformation is a function f that maps
symbols to distributions over symbols. An alphabet transfor-
mation is deterministic if it assigns only deterministic dis-
tributions, in which case we think of it as a map from sym-
bols to symbols. A deterministic alphabet transformation f
is a k-partition if there exists a partition of Σ into at most
k disjoint nonempty sets Σi such that for each i there exists
σi ∈ Σi such that f(Σi) = {σi}. We use 2-partitions to re-
duce the case of larger alphabets to the binary case. Note that
the 2-partitions of a binary alphabet include the identity and
the two constant functions, but not the negation function.

If D is a value distribution and f is an alphabet transfor-
mation, then f(D) is the value distribution in which

(f(D))(σ) =
∑
τ∈Σ

D(τ)(f(τ))(σ).

A function injection experiment is a mapping e with do-
main W that assigns to each wire the symbol ∗ or a symbol
from Σ or an alphabet transformation f . Then e leaves w
free if e(w) = ∗, fixes w if e(w) ∈ Σ, and transforms

177

w if e(w) is an alphabet transformation f . We extend the
ordering ≤ on experiments by stipulating that each alpha-
bet transformation f ≤ ∗. A 2-partition experiment is a
function injection experiment in which every alphabet trans-
formation is a 2-partition.

We now define the joint probability distribution on as-
signments of symbols from Σ to wires determined by a func-
tion injection experiment e. If e fixes w, then w is just as-
signed e(w). Otherwise, if the inputs of w have been as-
signed the values σ1, . . . , σk and f is the gate function for
w, we randomly and independently choose a symbol σ ac-
cording to the value distribution f(σ1, . . . , σk). If w is free
in e, then σ is the symbol assigned to w; however, if e(w) is
an alphabet transformation, then a symbol τ is chosen ran-
domly and independently according to the value distribution
e(σ) and assigned to w. That is, when e(w) is an alphabet
transformation, we generate the symbol for w as though it
were free, and then use the distribution e(w) to transform
that symbol. Because C is acyclic, this process assigns a
symbol to every wire of C.

In a function injection query (FIQ), the learning algo-
rithm gives a function injection experiment e and receives a
symbol σ assigned to the output wire of C by the probabil-
ity distribution defined above. A functional test path for a
wire w is a function injection experiment in which the free
and transformed wires are a directed path in the circuit graph
from w to the output wire, and all other wires are fixed.

As an example of how functional test paths help in learn-
ing non-Boolean probabilistic circuits, consider the circuit in
the proof of Lemma 8. We specify a functional test path p
by p(w1) = p(w3) = p(w5) = ∗, p(w4) = 00 and p(w2) is
the alphabet transformation 00 → 00, 01 → 01, 10 → 01,
and 11 → 00. Note that the alphabet transformation is a
2-partition. Then C(p|w1=00) = 00 but C(p|w1=01) = 01
deterministically, so this functional test path witnesses a dif-
ference of 1, as large as the experiment that leaves all the
wires free. Test paths with functions allow us to carry over
the results of Lemma 10 to non-Boolean alphabets.

Lemma 18 Let C be a probabilistic circuit, e be a function
injection experiment, w be a wire, and D1, D2 be value dis-
tributions. If there exists ε ≥ 0 such that for all functional
w-test paths p ≤ e,

d(C(p|w=D1), C(p|w=D2)) ≤ ε,

then

d(C(e|w=D1), C(e|w=D2)) ≤ κ(e, w) · ε.

Proof: The obstacle in Lemma 10 is that when the alpha-
bet is non-Boolean, we may assume only that D1 and D2

have disjoint support, not that they are deterministic. This
obstacle can be overcome by injecting a 2-partition at w. Let
Σ1 = support(D1) and Σ2 = support(D2) and assume
Σ1 ∩ Σ2 = ∅. Then

d(C(e|w=D1), C(e|w=D2))

≤
∑

ρ1∈Σ1
ρ2∈Σ2

D1(ρ1)D2(ρ2)d(C(e|w=ρ1), C(e|w=ρ2))

by the triangle inequality. Let

(σ, τ) = arg max
ρ1∈Σ1
ρ2∈Σ2

d(C(e|w=ρ1), C(e|w=ρ2))

so that

d(C(e|w=D1), C(e|w=D2))
≤ d(D1, D2)d(C(e|w=σ), C(e|w=τ)).

Let f be an alphabet transformation that maps Σ1 to σ and
Σ2 to τ and all other symbols to either σ or τ . Then f is a
2-partition, and

d(C(e|w=D1), C(e|w=D2))
≤ d(C(e|w=f(D1)), C(e|w=f(D2))).

Since f(D1) = σ and f(D2) = τ , the rest of the proof goes
through.

Corollary 19 Let C be a transitively reduced probabilistic
circuit, e be a function injection experiment, w be a wire,
and D1, D2 be value distributions. If there exists ε ≥ 0 such
that for all functional w-test paths p ≤ e,

d(C(p|w=D1), C(p|w=D2)) ≤ ε,

then

d(C(e|w=D1), C(e|w=D2)) ≤ π(e, w) · ε.

Certain natural questions arise in response to the intro-
duction of function injection experiments. We can define
circuits C and C ′ to be strongly behaviorally equivalent
if C(e) = C ′(e) for every function injection query e. Does
behavioral equivalence imply strong behavioral equivalence?
Once again, alphabet size determines the answer: no for al-
phabet size greater than two, yes for alphabet size two.

Lemma 20 For Σ = {0, 1, 2}, there exist deterministic cir-
cuits C1 and C2 that are behaviorally equivalent but not
strongly behaviorally equivalent.

Proof: In both C1 and C2 there are two wires w1 and w2,
where w2 is the output wire. In both circuits the gate for
w2 has input w1 and deterministically maps 0 to 0 and maps
1 and 2 to 1. In C1, w1 is the constant 1 and C2 it is the
constant 2.

Then if e is the value injection experiment that leaves
both wires free, C1(e) = 1 = C2(e). If e fixes either w1

or w2, then also C1(e) = C2(e). Thus C1 is behaviorally
equivalent to C2.

However, the 2-partition function injection experiment e
that leaves w2 free and maps the output of w1 according to
the transformation 0 → 0, 1 → 0, 2 → 2 yields C1(e) = 0
and C2(e) = 1. Thus C1 is not strongly behaviorally equiv-
alent to C2.

However, 2-partition function experiments suffice to es-
tablish strong behavioral equivalence.

Lemma 21 Let C and C ′ be probabilistic circuits with the
same alphabet Σ, the same set of wires and the same output
wire. If C(e) = C ′(e) for every 2-partition function experi-
ment e then C and C ′ are strongly behaviorally equivalent.

178

Proof: By another modification of the proof of Lemma 10.

Because in the Boolean case every 2-partition function
injection query is a value injection query, we have the fol-
lowing.

Corollary 22 For Boolean probabilistic circuits C and C ′,
if C is behaviorally equivalent to C then C ′ is strongly be-
haviorally equivalent to C ′.

8 Discussion and Open Problems
These results concern general probabilistic acyclic circuits,
with no restriction other than fan-in on the kinds of prob-
abilistic gates considered. Particular domains may warrant
specific assumptions about the gates, which may make the
learning problems more tractable. For example, for the prob-
lem of learning the structure of an independent cascade so-
cial network using exact value injection queries, a query-
optimal algorithm is presented in [AAR]. Note that the net-
works in this domain may contain cycles, which complicates
their analysis.

Initial work suggests that Corollary 11 allows us to adapt
the Distinguishing Paths algorithm [AACR07] to learn tran-
sitively reduced Boolean probabilistic circuits, given a bound
on the number of paths in the circuit graph. We would like
to adapt Circuit Builder to use functional test paths to learn
non-Boolean circuits; in this case the universal set must map
wires to the set containing all alphabet symbols from Σ and
all 2-partitions of Σ, of which there are fewer than |Σ|22|Σ|.
Thus, the universal set will still be of size nO(1), suggesting
that a polynomial time algorithm may be attainable in this
case. An open question is whether not-injection reduces the
maximum path attenuation to just the number of paths for
general Boolean probabilistic circuits. A very interesting di-
rection of future work is whether there are computationally
feasible approaches to learning probabilistic circuits that use
experiments more general than paths and thereby avoid the
problem of path attenuation.

9 Acknowledgments
This work was done while Jiang Chen was a member of the
Center for Computational Learning Systems, Columbia Uni-
versity. The authors thank the reviewers of the present paper
for their thoughtful comments.

References
[AACR07] Dana Angluin, James Aspnes, Jiang Chen, and

Lev Reyzin. Learning large-alphabet and ana-
log circuits with value injection queries. In the
20th Annual Conference on Learning Theory,
pages 51–65, 2007.

[AACW06] Dana Angluin, James Aspnes, Jiang Chen, and
Yinghua Wu. Learning a circuit by injecting
values. In Proceedings of the Thirty-Eighth
Annual ACM Symposium on Theory of Com-
puting, pages 584–593, New York, NY, USA,
2006. ACM Press.

[AAR] Dana Angluin, James Aspnes, and Lev Reyzin.
Optimally learning social networks with acti-
vations and supressions. Submitted to COLT
2008.

[AK95] Dana Angluin and Michael Kharitonov. When
won’t membership queries help? J. Comput.
Syst. Sci., 50(2):336–355, 1995.

[AKMM98] Tatsuya Akutsu, Satoru Kuhara, Osamu
Maruyama, and Satoru Miyano. Identifica-
tion of gene regulatory networks by strate-
gic gene disruptions and gene overexpressions.
In SODA ’98: Proceedings of the Ninth An-
nual ACM-SIAM Symposium on Discrete Al-
gorithms, pages 695–702, Philadelphia, PA,
USA, 1998. Society for Industrial and Applied
Mathematics.

[ITK00] T. Ideker, V. Thorsson, and R Karp. Discov-
ery of regulatory interactions through pertur-
bation: Inference and experimental design. In
Pacific Symposium on Biocomputing 5, pages
302–313, 2000.

[KKET03] David Kempe, Jon Kleinberg, and Éva Tardos.
Maximizing the spread of influence through a
social network. In KDD ’03: Proceedings of
the Ninth ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Min-
ing, pages 137–146, New York, NY, USA,
2003. ACM.

[KKT05] David Kempe, Jon M. Kleinberg, and Éva Tar-
dos. Influential nodes in a diffusion model for
social networks. In ICALP, pages 1127–1138,
2005.

179

180

Learning Random Monotone DNF Under the Uniform Distribution

Linda Sellie∗
University of Chicago, Chicago IL
lmsellie@uchicago.edu

Abstract

We show that randomly generated monotone
c log(n)-DNF formula can be learned exactly in
probabilistic polynomial time. Our notion of ran-
domly generated is with respect to a uniform dis-
tribution. To prove this we identify the class of
well behaved monotone c log(n)-DNF formulae,
and show that almost every monotone DNF for-
mula is well-behaved, and that there exists a prob-
abilistic Turing machine that exactly learns all well
behaved monotone c log(n)-DNF formula.

1 Introduction
Intuitively, a monotone c log(n)-DNF, f , is well behaved if it
satisfies three smoothness criteria—the “small”, “medium,”
and “large” z properties—that collectively rule out having an
unexpectedly large number of terms having a common subset
of the variables. Thus by removing terms we maintain our
well-behaved criteria and we have:

Theorem (Subset property of the set of well-behaved func-
tions). If f is well-behaved and f ′ contains a subset of the
terms of f then f ′ is also well-behaved.

The question of what is meant by “a randomly generated
monotone c log(n)-DNF formula” is somewhat application
specific, but because of the subset property of the set of well-
behaved functions, our learning algorithm and proof of cor-
rectness is quite robust. We imagine a process that randomly
selects m terms of size c log(n); we show that such a func-
tion will be well behaved with high probability as long as
m ≤ 2 log log(n)nc (where roughly 1

log(n) of the exam-
ples will be false when m = 2 log log(n)nc.) This sub-
sumes standard notions of randomness that are intended to
generate formula which are expected to be true with fixed
probability less than one. For functions with the small and
medium smoothness properties and for a set of variables,
s, of bounded size, we can efficiently determine by sam-
pling whether or not there exists a term t ∈ f such that
s ⊂ t with high probability. Our algorithm considers all
subsets of variables, s, of a given, fixed size. To extend s
we make multiple trials of random extension of s, through

∗Computer Science Department, University of Chicago.

|s| = β(n) = log log 3
√

n. The medium and small subset
properties guarantee that with high probability, if s′ ⊃ s has
size at most β(n) and there exists a term t ∈ f such that
s′ ⊂ t, then s′ is generated by this process. At this point, the
large smoothness property comes into play and guarantees
that the previous t is unique, and therefore can be efficiently
found. In this way, we find all terms t of f in polynomial
time.

1.1 Motivation and Past Work
Mentioning DNF, Valiant [12] states:

The possible importance of disjunctions of con-
junctions as a knowledge representation stems from
the observations that on the one hand humans ap-
pear to like using it, and, on the other, that there
is circumstantial evidence that significantly larger
classes may not be learnable in polynomial time.

Many learning theorist have considered learning mono-
tone DNF formula. Angluin [2] completely solved this prob-
lem for the case of exact learning using membership queries
— all monotone DNF are learnable in polynomial time in
this model for all distributions. This problem has proven
more difficult if the learner is restricted to sampling, i.e.
learning by example. The obstacle seems to be “cluster struc-
ture” within the formula, specifically a relatively large set of
variables common to a relatively large number of clauses.
Existing results in the literature tackle this obstacle in two
different ways. (1) allow the running time of the learner
to explode in the face of such clusters, e.g. Verbeurgt [13]
learns any poly(n)-size DNF in time nO(log(n)) from uni-
form examples. Or (2) consider classes of formula that do
not contain such clusters, specifically by random generation
and limited number of terms, e.g. Servedio [9] learns any
2
√

log(n)-term DNF in polynomial time from a product dis-
tribution. Other researchers have used similar approaches to
other problems, [10], [8], and [6].

The results of this paper belong to group (2). Our result
is distinguished from Servedio [9] in that our definition of
well behaved represents an initial attempt to formalize the
obstacle, and to obtain the best possible result based on that
formalization. From this, we obtain conditions of greater
generality.

Despite the difficulty of learning monotone DNF with
random examples drawn from the uniform distribution, the

181

naturalness of the class suggests in some restricted form, it
must be possible to learn. In their 1994 paper, Aizenstein and
Pitt proposed learning most DNF instead of all DNF. They
defined “most” as the DNF generated randomly with certain
parameters set, one parameter is choosing the variables in a
term with probability 1

2 . They left as an open question a more
natural setting of those parameters. Jackson and Servedio
in 2006 started answering the open question of Aizenstein
and Pitt in their paper [7]. They learned “most” monotone
DNF where the number of terms is bounded by O(n2−γ)
with fixed term size, log m, where m is the number of terms.
We continue this work left open by Aizenstein and Pitt, and
Jackson and Servedio.

We expand the approach used by Jackson and Servedio
in their paper [7]. To learn random monotone DNF with
O(n2−γ) number of terms, they use a clustering algorithm
after using an inclusion/exclusion pair finding algorithm. In
our paper, we learn O(nc) number of terms in polynomial
time for any constant c, and fixed term size, c log(n).

Similar results are independently obtained by Jackson,
Lee, Servedio and Wan [5] but are slightly weaker. They
use a similar algorithm but significantly different underlying
proofs.

Theorem 1. Given a random monotone DNF, f , Algorithm
Learn Random Monotone DNF finds f in polynomial time
with high probability.

1.2 Our Model and Random Functions

Continuing the work of Aizenstein and Pitt [1] and Jackson
and Servedio [7], we explore learning a function chosen ran-
domly from a large class of functions. Jackson and Servedio
learn a monotone DNF formula chosen randomly from a sub-
class of monotone DNF; we do the same except we choose a
larger subclass of monotone DNF. As in Jackson and Serve-
dio, we randomly choose the terms for our function from

(
n
k

)
possible terms of size k. We differ from Jackson and Serve-
dio’s choice of a class of functions in two ways. The most
important is that we learn functions with nc terms for any c,
while they learn only for c ≤ 2 − γ for γ > 0. The second
way we differ is by loosening Jackson and Servedio’s restric-
tion which bounds the function away from 0 and 1 by a con-
stant; we restrict our attention to functions that are bounded
away from one by a slow growing function in n, and without
restriction on how close the function is to zero. Even in the
case of c ≤ 2, for large n, the set of functions they learn is
a subset of the functions we learn. They allow the number
of terms, m, to be α2k ≤ m ≤ 2k+1 ln 2

α for a constant α,
(0 < α < 0.09). Instead, we restrict the number of terms,
m, to be m ≤ 2k+1c log log(n).

As Jackson and Servedio in [7]; we learn in the uniform
distribution model; where each example is chosen uniformly
at random and labeled according to the unknown function.

Our goal is stronger than theirs, in that we exactly learn
with probability 1 − δ. (They learn a function which is ε
close with probability 1 − δ.) We run in time polynomial
in the probability of an example satisfying a term, (i.e. time
polynomial in 2k.)

The model for our class of random monotone DNF for-
mulas is as follows, let Fn,k,m be the set of monotone DNF

over n variables, with terms of size k, and m terms. Or in-
terest is when with m ≤ 2k+1c log log(n) where c = k

log(n) .
Each term is selected independently and uniformly from the
set of all k-variable terms.

2 Notation and Definitions
Our function will be defined on n variables; we let X =
{x1, x2, . . . , xn} be the set of variables. For s ⊂ X we
define X\s = {x ∈ X | x 6∈ s}. Let t ⊂ X be a term,
and k = |t| = c log(n) be the size of a term. Let m be the
number of terms; where m ≤ mmax = 2k+1c log log(n) =
2nc log log(n). Let f = ∪

i=1...m
ti. We define f\t = {t′ ∈

f | t′ 6= t}.
Let E = {0, 1}n be the set of all examples, and E+ =

{e ∈ E | f(e)} be the set of all positive examples. Let s ⊂
X , and let as be a partial assignment of the variables in s.
For x ∈ s, and as a partial assignment, then by an abuse of
notation, we define x(as) = 1 iff the assignment to x is 1
and 0 otherwise. Let Xas = {x ∈ s | x(as)} be the set of
variables in s that as satisfies.

We use as to partition the set of examples, E+, and the
set terms in f . We then explore the relationship between
these sets in the paper with an inclusion/exclusion algorithm
that allows us to find subsets of terms in f . Let Eas =
{e ∈ E | ∀x ∈ s, x(as) = x(e)} be the set of assignments
who agree with as on all the variables s. Let E+

as
= Eas ∩

E+ be the set of positive assignments who agree with as on
all the variables s. Let Tas = {t ∈ f | t ∩ s = Xas}.

Let Te = {t ∈ f | t(e)} be the set of terms satisfying
an example e. Let #0(as) = | {x ∈ s | x(as) = 0} |, e.g.
#0(10110) = 2.

Let β(n) = log log(3
√

n). We use β(n) throughout the
paper as a bound that is not constant – and not too large. For
technical ease we chose this value of β(n), we could have
chosen other values for β(n), such as β(n) = log log(n).

For ease of notation, we define ij = i!
(i−j)! .

For e and as, we define a transformation, e′ = es←as
to

be ∀x 6∈ s, x(e′) = x(e) and ∀x ∈ s, x(e′) = x(as). For e
and x′ we define e′ = eflip(x′) to be ∀x ∈ (X\ {x′}), x(e′) =
x(e) and x′(e′) = 1− x′(e).

Our algorithm discovers f by finding subsets of terms in
f . We use the knowledge that a set of variables, s, is a subset
of a term iff there is a positive example, e, which becomes
false for eflip(x) for any x ∈ s.

Definition 2. e is s-minimal for f iff

• e ∈ E+, and

• ∀x ∈ s, ex←0 6∈ E+.

We define the set of s-minimal examples:

Definition 3. Let Υs = {e ∈ E+ | e is s-minimal}.

Thus, given any e ∈ Υs and t ∈ f , if t(e) = 1 then
s ⊂ t.

The idea behind our proof is that we can determine if Υs

is non-empty for any s of cardinality greater than c + 1 and
less than or equal to β(n)+1, thus finding a subset of a term.

182

Function Distinguishing Subsets

• S =
{

s ⊂ X | |s| = c + 2, and Is > 2n · 1

nc+ 1
5

}
• For i = (c + 3) to β(n)

– S′ = ∅
– For s ∈ S and x ∈ X

∗ If Is∪{x} > 2n · 1

nc+ 1
5

then add (s ∪ {x}) to

S′

– S = S′

• Return S

Figure 1: Function Distinguishing Subsets

From this knowledge we build the rest of the term. Our goal
is to exactly learn f with probability 1− δ.

Unfortunately we don’t know how to compute the size of
Υs. Instead we estimate |Υs|.

Definition 4. Let Is =
∑

as
(−1)#0(as)|E+

as
|.

Our paper focuses on proving that most monotone k-
DNF are well behaved, that for well behaved functions Is ap-
proximates |Υs| for c+2 ≤ |s| ≤ β(n)+1, and if s ⊂ t ∈ f
then Υs is sufficiently large.

The organization of our paper is as follows: in Section
3 we present a simple algorithm that exploits the knowledge
that we can find a subset of at term. In Subsection 4.1 we
partition the set of positive examples and use this partition to
define how Is miscounts the size of Υs. In Subsection 4.2
we prove most f ∈ Fn,k,m are well behaved. In Subsection
4.3 we bound by how much Is misclassifies |Υs| for well
behaved functions. In Subsection 4.4 we prove that for well-
behaved f ∈R Fn,k,m, if s ⊂ t ∈ f then Υs is sufficiently
large enabling us to discover if s ⊂ t.

We put some of the technical details into the appendix.
In Appendix 1A, we provide some observations and sim-
plifications of algebraic expressions used in our proofs. In
Appendix 1B, we prove that most f ∈R Fn,k,m are well
behaved. In Appendix 1C, we bound Υt for well behaved
DNF. In Appendix 2A, we use standard sampling techniques
to prove we can approximate |E+

as
| sufficiently. In Appendix

2B, for the sake of completeness, we provide the details that
show our algorithm finds the unknown monotone DNF in
polynomial time with high probability.

3 The Algorithm for Finding f Using Is

Using Is as our estimate for |Υs|, our algorithm builds terms
in three stages. First our algorithm tests all subsets of size
c + 2, selecting those that are a subset of a term in f . Next,
it builds upon these subsets, variable by variable, till it has
found all subsets of terms of f of size β(n). Finally, having a
subset unique to a single term in f (we prove the uniqueness
of terms of size β(n) later in the paper in Corollary 46,) we
find the rest of variables for this term. The steps of the first
two stages are in Figure 1 and the steps for the third stage are
in Figure 2.

Algorithm Learn Random Monotone DNF

• S = Distinguishing Subsets

• f = ∅

• For s ∈ S

– t = ∅
– For x ∈ X

∗ If Is∪{x} > 2n · 1

nc+ 1
5

then add x to t

– add t to f

• Return f

Figure 2: Algorithm Learn Random Monotone DNF

4 Approximating Υs by Is

In this section, we show that with high probability Is ap-
proximates |Υs| for c + 2 ≤ |s| ≤ β(n) + 1 to within

2n · 4k log6(n)n2/3

nc+1 (i.e. |Is − |Υs|| < 2n · 4k log6(n)n2/3

nc+1 .) We
use Subsections 4.1 through 4.3 to prove this main theorem.
In Subsection 4.4, we prove that |Υs| ≥ 2n · 1

8 log4c(n)
1

nc if
and only if s ⊂ t ∈ f .

4.1 Observations about Is

To explore how Is relates to the size of Υs, we partition the
set E+ of positive examples. We partition E+ by grouping
examples that “map” under s to the same example in E+

1s
.

Observing the behavior of a partition during the calculation
of Is, we bound how Is misjudges the size of Υs. (We bound
the size of the miscalculation in Subsection 4.3.)

Definition 5. For s ⊂ X , and e ∈ E+
1s

, we define a set
of partial assignments, Ae,s = {as | es←as

∈ E+} , which
map e to another positive example under s.

Next, using this partition of the set of positive examples,
we define a criteria for e ∈ E+

1s
to be correctly counted.

Definition 6. For e ∈ E+
1s

we define

Ie =
∑

as∈Ae,s

(−1)#0(as).

Observation 7. Is =
∑

e∈E+
1s

Ie.

Definition 8. An e ∈ E+
1s

is correctly counted iff e ∈ E+
1s
\Υs

then Ie = 0, and if e ∈ Υs then Ie = 1.

Note, if all examples in E+
1s

are counted correctly then
Is = |Υs|. We observe that e ∈ Υs is correctly counted.

Lemma 9. For all e ∈ Υs then Ie = 1.

Proof: Ae,s = {1s} .
By characterizing examples which are correctly counted,

we restrict the number of examples that could be incorrectly
counted. We describe two ways examples are correctly counted.

183

Lemma 10. An example, e ∈ E+
1s

, is correctly counted if
∃x ∈ s such that ∀as ∈ Ae,s, (as)flip(x) ∈ Ae,s.

Proof: Let x be such that ∀as ∈ Ae,s and (as)flip(x) ∈
Ae,s then (−1)#0(as) and (−1)#0((as)flip(x)) are included in
the sum, where the parity of #0(as) and #0((as)flip(x)) are
opposite. Thus Ie = 0 and e is counted correctly.

Corollary 11. An example, e ∈ E+
1s

, is correctly counted if
∃t ∈ f such that t(e) and t ∩ s = ∅.

Proof: The Corollary follows from Lemma 10 and the
definition of Ie since all partial assignments are contained in
Ae,s.

If e is not known to be correctly counted by Lemma 10
and Corollary 11, it may or may not be correctly counted,
but our proof will not need to consider this option.

Definition 12. Let s ⊂ X , we define the set of miscounted
examples by

Ms =
{
e ∈ E+

1s
\Υs | Ie 6= 0

}
.

Partitioning Ms based on sets of partial assignments, we
simplify bounding the number of miscounted examples.

Definition 13. Let s ⊂ X , and A ⊂ {0, 1}|s|; we define
Ms,A = {e ∈ Ms | Ae,s = A}.

We define a partial order by a′s ≺ a′′s iff ∀x ∈ s then
x(a′s) ≤ x(a′′s) and a′s 6= a′′s . The smallest partial assign-
ments are very important to our proof; they determine if an
example e ∈ E+

1s
is miscounted.

Definition 14. Let A ⊆ {0, 1}|s|, we define

L(A) = {as ∈ A | ∀a′s ∈ A, a′s 6≺ as} .

Lemma 15. Let e ∈ Ms,A, then ∀as ∈ L(A),∃t ∈ Tas

where t(e).

Proof: By definition 5, given any e ∈ Ms,A and ∀as ∈
L(A), ∃e′ ∈ E+

as
such that e′ maps under s to e (i.e. e =

e′s←1s
) which implies e′ = es←as

. Because e′ is Xas
-mini-

mal, we know ∃t ∈ Tas
such that t(e′) which implies t(e)

since f is monotone.
We have now proved in Lemmas 10 and 15 that every

miscounted example is satisfied by a set of terms whose union
contains s. We will use this fact in Lemma 24 where we
bound the number of miscounted examples in Ms,A.

Knowing A is a subset of the partial assignments to s, we
calculate by how much an example has been miscounted.

Observation 16. Let e ∈ Ms,A then |Ie| < |A| ≤ 2|s|.

Definition 17. Let As = {A|A = Ae,s for an e ∈ Ms}.

Observation 18.

Is − |Υs| =
∑

e∈Ms

Ie =
∑

A∈As

∑
e∈Ms,A

Ie.

4.2 Properties of Well Behaved Functions
In this subsection, we describe the properties a function needs
for our proof to hold; our algorithm works for functions that
are not “clustered” together. We prove that with high prob-
ability these properties hold for f ∈R Fn,k,m. We will call
DNF formulas that have this property “well behaved.”

Definition 19. A monotone DNF function, f ∈ Fn,k,m is
well behaved iff for all s ⊂ t ∈ f where |s| ≤ β(n) + 1, and
∀as where z = #1(as) then

• Small z property:
if 0 < z ≤ c then |Tas

| < 3mmaxk
z/nz ,

• Medium z property:
if c < z < β(n) then |Tas | < β(n), and

• Large z property:
if z ≥ β(n) then |Tas

| ≤ 1.

Using Chernoff bounds we prove random monotone DNF
are well behaved with high probability.

Theorem 20. For a fixed c and sufficiently large n, if f ∈R
Fn,k,m for m ≤ 2k+1c log log(n) then f is well behaved
with probability at least 1− n2c log(n)

(
1
n

)β(n)
.

Proof: This follows from Corollaries 42, 44,and 46 (found
in the appendix,) and noting that the probability of small,
medium and large z properties of being well behaved are not
satisfied with probability at most 1

3n2c log(n)
(

1
n

)β(n)−1 +
1
3n2c log(n)/3

(
1
n

)β(n)−1+ 1
3n2c log(n)/3

(
1
n

)β(n)−1
. Con-

sequently f ∈R Fn,k,m is well behaved with probability at
least 1− n2c log(n)

(
1
n

)β(n)
.

4.3 Observations about well behaved Monotone DNF
Formulas

In this subsection, we derive some properties of well behaved
functions. First, we bound the number of variables that occur
in more than one term from a set of terms, T ⊂ f for f ∈R
Fn,k,m. Next we bound the probability an example satisfies
every term in T . Third, we bound the size of Ms,A, using
the probability an example satisfies a term in Tas

for every
as ∈ L(A). At the end of this subsection we bound |Ms| and
Is − |Ms|.

Corollary 21. Let f be a well behaved monotone k-DNF
formula and T ⊂ f , then |{x | x ∈ (t ∩ t′) for some t, t′ ∈
T}| < |T |2β(n).

Proof: For f , a well behaved monotone k-DNF, we know
that a pair of terms t, t′ ∈ f have in common at most β(n)
variables. Since the number of pairs is

(|T |
2

)
, we bound the

total number of variables used by more that one term by(|T |
2

)
β(n). Note that what we’ve proved is stronger than

what we’ve claimed. The form of our claim is for our subse-
quent technical convenience.

Knowing an upper bound on the number of variables oc-
curring in a set of terms, we bound the probability an exam-
ple satisfies every term in this set of terms.

184

Lemma 22. Let f be a well behaved monotone k-DNF, and
T ⊂ f a subset of terms then

| {e ∈ E | ∀t ∈ T, t(e)} | ≤ 2n · 1
2(|T |k−|T |2β(n))

.

Proof: The T terms share at most |T |2β(n) variables out
|T |k variables by Corollary 21. Thus the number of variables
that need to be satisfied is at least |T |k − |T |2β(n).

We note that if we restrict our examples to have the bits
in s set to one, we get the following corollary.

Corollary 23. For s ⊂ X and | {e ∈ E | ∀t ∈ T, t(e)} | ≤
2n · 1

2(|T |k−|T |2β(n)) then

| {e ∈ E1s | ∀t ∈ T, t(e)} | ≤ 2n · 1
2(|T |k−|T |2β(n))

.

Proof: The size of the set E1s
is 2n−|s|. Given that

| {e ∈ E | ∀t ∈ T, t(e)} | ≤ 2n · 1
2(|T |k−|T |2β(n)) , the restric-

tion of the variables to be from the set E1s
reduces the num-

ber of variables that must be satisfied to at least (|T |k −
|T |2β(n) − |s|). (i.e. at most |s| bits were forced to one.)
Thus | {e ∈ E1s | ∀t ∈ T, t(e)} | ≤ 2n−|s|· 1

2(|T |k−|T |2β(n)−|s|)

= 2n · 1
2(|T |k−|T |2β(n)) .

We now bound the number of examples in Ms,A.

Lemma 24. For fixed c and sufficiently large n, let f be a
well behaved monotone k-DNF, s ⊂ X where c + 2 ≤ |s| ≤
β(n) + 1, and A ∈ As then |Ms,A| < 2n · k log5(n)

nc+1 .

Proof: Let v = |L(A)|.
As noted in Lemma 15, e ∈ Ms,A are satisfied by at least

one term from every Tas
for every as ∈ L(A). From Corol-

lary 23, we know that the probability an example satisfies a
set of v terms in E1s

is at most 2n · 1
2vk−v2β(n)

Therefore we bound |Ms,A| by bounding the number of
e ∈ Ms,A which is satisfied by at least one term from every
Tas

for every as ∈ L(A). We create this bound by using a
Bonferroni type argument.

|Ms,A|
= | {e ∈ Ms | ∀as ∈ L(A),∃t ∈ Tas

, t(e)} | (Def. 13.)

≤ 2n · 1
2vk−v2β(n)

∏
as∈L(A)

|Tas
| (Lemma 15.)

In counting the number of possible ways an example e ∈
Ms,A could be satisfied by one term from every Tas

, for ev-
ery as ∈ L(A), we consider two cases.

In the first case, we assume that for all as ∈ L(A) that
#1(as) ≤ c. Using the assumption that f is well defined,
we know that |Tas | < 3mmax

(
k#1(as)

n#1(as)

)
, we compute the

probability as follows.

|Ms,A| ≤ 2n · 1
2vk−v2β(n)

∏
as∈L(A)

3mmax

(
k#1(as)

n#1(as)

)
.

By Lemma 10 and Corollary 11, s ⊆
(
∪

t∈Te

t

)
and ∀as ∈

Ae,s,#1(as) ≥ 1. Let w =
∑

as∈L(A) #1(as) ≥

max {|L(A)|, |s|} (and since v = |L(A)|.) This implies that

|Ms,A| ≤ 2n · 3vmv
max

2vk−v2β(n)

kw

nw

≤ 2n · 2v2β(n)(6c log log(n))vncv

2vk

kw

nw

= 2n · 2v2β(n)(6c log log(n))v kw

nw
(ncv = 2kv.)

≤ 2n · 3
√

n(6c log log(n))c+2 kc+2

nc+2

(From Obs. 35, w ≥ v, and w ≥ |s| ≥ c + 2.)

≤ 2n · 1
nc+1

(From Observation 33.)

In the second case, there exists an a′s ∈ L(A) such that
#1(a′s) > c; by f being well behaved we know that |Ta′s | <
β(n). Let v′ = | {a′s ∈ L(A)|#1(a′s) > c} |. If as ∈ L(A)
where #1(as) ≤ c then by f being well behaved we know
that |Tas

| < 3mmax

(
k#1(as)

n#1(as)

)
. Using these bounds, we

compute an upper bound by again noting that e′ ∈ Ms,A

is satisfied by one from each Tas for all as ∈ L(A).

|Ms,A| ≤ 2n · (β(n))v′

2vk−v2β(n)

∏
as∈L(A),#1(as)≤c

3mmax ·
k#1(as)

n#1(as)
.

By Lemma 11, we know #1(as) ≥ 1 for all as ∈ L(A),
and

(
k#1(as)

n#1(as)

)
≤
(

k
n

)
. we reduce the formula so that

|Ms,A|

≤ 2n · (β(n))v′

2vk−v2β(n)
(3mmax)v−v′

(
k

n

)(v−v′)

≤ 2n · (β(n))v′

2vk−v2β(n)
(6c log log(n)2k)(v−v′)

(
k

n

)(v−v′)

(since nc(v−v′) = 2k(v−v′).)

≤ 2n · (β(n))v′2v2β(n)

2v′k
(6c log log(n))(v−v′)

(
k

n

)(v−v′)

We now break the calculations down into two sub-cases.
If v = 2 then the equation is largest if v′ = 1. In this case
we bound |Ms,A| by 2n · β(n)24β(n)

2k (6c log log(n))
(

k
n

)
≤

2n · β(n) log4(3√n)
2k (6c log log(n))

(
k
n

)
< 2n · log5(n)k

n2k .

If v ≥ 3, we note 1 this equation is again largest if v′ = 1,
and using Observation 35, we reduce the formula to:

2n · β(n) 3
√

n

2k
(6c log log(n))(v−1)

(
k

n

)(v−1)

≤ 2n · 1
n2k

.

Therefore |Ms,A| ≤ 2n · k log5(n)
nc+1 .

Having computed an upper bound on the number of mis-
counted examples in Ms,A, we now bound |Ms|.

1Argument here passes over a minor potential difficulty. i.e. if
v′ is large, Corollary 23 does not come into play — but the crucial
fact is the nevertheless true as we show in Observation 32.

185

Corollary 25. Let f be a well behaved monotone k-DNF,
and let s ⊂ X where c + 2 ≤ |s| ≤ β(n) + 1 then |Ms| <

2n · 4k log5(n)n2/3

nc+1 .

Proof: This follows from |Ms| =
∑

A∈As
|Ms,A| <

|As|
(
2n · k log5(n)

nc+1

)
. We note that |As| is bounded by the

number of subsets of the subsets of s, i.e. 22|s| ≤ 22β(n)+1
=

22log log(3√n)+1 ≤ 4n2/3.
Thus |Ms| < 2n · 4k log5(n)n2/3

nc+1 .
Knowing |Ms|, we now compute the difference between

Is and |Υs|. This bound is computed by multiplying |Ms|
and a bound of how large the misclassification is for an ex-
ample.

Theorem 26. Let f be a well behaved monotone k-DNF for-
mula, and s ⊂ X where c + 2 ≤ |s| ≤ β(n) + 1 then

|Is − |Υs|| < 2n · 4k log6(n)n2/3

nc+1 .

Proof: As noted earlier, Is − |Υs| =
∑

e∈Ms
Ie.

Using Corollary 25, we know |Ms| < 2n · 4k log5(n)n2/3

nc+1 .
From Observation 16, we know that that for all e, |Ie| ≤
log(3

√
n).

Consequently,

|Is − |Υs|| ≤ |Ms|log(3
√

n) < 2n · 4k log6(n)n2/3

nc+1
.

4.4 Bounding |Υs|
Definition 27. Let Ef\t = {e ∈ E | ∃t′ ∈ f\t, t′(e)}.

Next we prove that every term has a high probability of
being uniquely satisfied. Jackson and Servedio have a similar
lemma, Lemma (3.6).

Lemma 28. Let f ∈ Fn,k,m be a well behaved monotone k-
DNF function, t ∈ f then |E+

1t
−Ef\{t}| ≥ 2n · 1

8 log4c(n)
1

nc

The proof of this lemma is found in Appendix 1 in Sub-
section C.

We note that if f is a monotone DNF and e ∈ (Et −
Ef\{t}), then e ∈ Υt.

Corollary 29. Let f ∈ Fn,k,m be a well behaved monotone
k-DNF, and s ⊂ t ∈ f then |Υs| > 2n · 1

8 log4c(n)
1

nc .

The following theorem is crucial; it is the key compu-
tation we use in our algorithm Learn Random Monotone
DNF.

Theorem 30. Let f ∈ Fn,k,m be well behaved, and let c +
2 ≤ |s| ≤ β(n) + 1:

• if s ⊂ t ∈ f then Is ≥ 2n· 1
8 log4c(n)

1
nc−2n· 4k log6(n)n2/3

nc+1 ,

• if s 6⊂ t ∈ f then Is ≤ 2n · 4k log6(n)n2/3

nc+1 .

The previous theorem shows there exists a large gap that
reliably determines if s ⊂ t ∈ f for c+2 ≤ |s| ≤ β(n)+1 by
computing Is. This means that given a small set s ⊂ t ∈ f
and x ∈ X\s we can determine whether or not s∪x ⊂ t ∈ f ,
and this is the key to our algorithm.

In this section, we proved we could determine if a set, s,
is a subset of a term if c + 2 ≤ |s| ≤ β(n) + 1 by com-
puting Is. Unfortunately, we cannot efficiently compute Is

since we cannot compute |E+
as
| in polynomial time. Instead

we approximate Is using standard sampling techniques. We
estimate this value by sampling gs = n2c+32k+|s| uniformly
chosen labeled examples from E. Thus we can effectively
estimate Is with high probability. Details can be seen in Ap-
pendix 2 in Subsection A. Our fairly straightforward algo-
rithm is easily adapted to use our sampled values of Is, and
thus runs in polynomial time in n and 2k. Details can be
found in Appendix 2 in Subsection B.

5 Future Work
Extensions of the ideas presented here can also handle the
non-monotone case. We are currently writing up this case
and checking the proofs. We are also working on relaxing
the requirement that k is fixed.

Acknowledgement
I would like to thank Stuart Kurtz for many conversations
and help with the presentation, and Carsten Lund for help
with polishing the paper.

References
[1] H. Aizenstein and L. Pitt. On the Learnability of Dis-

junctive Normal Form Formulas. Machine Learning,
19:183, 1995.

[2] D. Angluin. Queries and concept learning. Machine
Learning, 2(4):319–342, 1988.

[3] Canny. Lecture 10 CS 174
www.cs.berkeley.edu/ jfc/cs174/lecs/lec10/lec10.pdf.

[4] J. Jackson. An efficient membership-query algorithm for
learning DNF with respect to the uniform distributon.
Journal of Computer and System Sciences, 55(3):414–
440, 1997.

[5] J. Jackson, H. Lee, R. Servedio and A. Wan. Learn-
ing random monotone DNF. Electronic Colloquium on
Computational Complexity, Report No. 129, 2007.

[6] J. Jackson and R. Servedio. Learning Random Log-
Depth Decision Trees under Uniform Distribution.
SIAM J. on Computing, 34(5), 2005.

[7] J. Jackson and R. Servedio. On Learning Random DNF
Formulas Under the Uniform Distribution. Theory of
Computing, 2(8):147–172, 2006.

[8] E. Mossel, R. O’Donnell,R. Servedio. Learning juntas.
STOC 206–212, 2003.

[9] R. Servedio. On learning monotone DNF under product
distributions. Information and Computation, 193(1):57–
74, 2004.

[10] S. Smale. On the average number of steps of the sim-
plex method of linear programming. Math. Programming
27: 241–267, 1983.

186

[11] Valiant, L.G. (1984). A theory of the learnable. Com-
munications of the ACM, 27(11):1134–1142.

[12] Valiant, L.G. Learning disjunctions of conjunctions. In
Proceedings of the 9th n International Joint Conference
on Artificial Intelligence, Vol. 1, pages 560–566, 1985.

[13] K. Verbeurgt. Learning DNF under the uniform dis-
tribution in quasi-polynomial time. In Proceedings of
the Third Annual Workshop on Computational Learning
Theory, pp. 314326, 1990. [ACM:92571.92657]. 1.1, 2.2

APPENDIX 1

A Useful Observations
We use the following observations and simplifications of al-
gebraic expressions in our proofs.
Observation 31. For f a well behaved monotone k-DNF,
T ⊂ f where |T | ≥ 2 log log(n) then |{e ∈ E1s | t(e)∀t ∈
T}| < 2n · 1

nlog log(n) for sufficiently large n.

Proof: First, we observe that if T ′ ⊂ T then {e ∈ E1s |
t(e),∀t ∈ T ′} ⊃ {e ∈ E1s | t(e),∀t ∈ T}.

Therefore, using Corollary 23 we know given any T ′ ⊂
T where |T ′| = 2 log log(n), then |{e ∈ E1s

| t(e),∀t ∈
T ′} ≤ 2n · 1

22 log log(n)k−(2 log log(n))2β(n) < 2n · 1
nlog log(n) .

Observation 32. For a well-behaved monotone k-DNF, given
A ⊂ {0, 1}|s| where |{as ∈ A | #1(as) > c}| ≥ 2 log log(n)
then |Ms,A| < β(n)2 log log(n)

nlog log(n) .

Proof: Let A′ = {as ∈ A | #1(as) > c}. Using Obser-
vation 31, if |A′| ≥ 2 log log(n) then |Ms,A| ≤ |{e ∈ E1s

|
∀as ∈ A′,∃t ∈ Tas

such that t(e)}|
≤ 2n · 1

nlog log(n)

∏
as∈A′ |Tas | ≤ 2n · β(n)2 log log(n)

nlog log(n) . The last
inequality follows from noting that ∀#1(as) > c, |Tas

| ≤
β(n) by the large z property, and from noting that the prod-
uct is maximized for |A′| = 2 log log(n).
Observation 33. For c a constant, then nc+1 = n(n −
1) · · · (n− c) > nc+1 −

(
(c(c+1))

2

)
nc and nc+1 < nc+1 −(

(c(c+1))
2

)
nc +

(
(c(c+1))

2

)2

nc−1 .

Observation 34. Let s ⊂ X , e ∈ E+, and as = e|s if

#1(as) ≤ c,∀as ∈ L(Ae,s) then |L(Ae,s)| < |s|
(c+1)c

2 .

Proof: This follows from observing that
(|s|

c

)
≤ |s|c.

Observation 35. Let s ⊂ X where |s| ≤ β(n) + 1, and e ∈
E+ then if #1(as) ≤ c,∀as ∈ L(Ae,s) then 2|L(Ae,s)|2β(n) <
3
√

n for large enough n.

Proof: Let s ⊂ X where |s| ≤ β(n) + 1, and Ae,s be
such that #1(as) ≤ c,∀as ∈ L(Ae,s). Then using Observa-
tion 34 we know |L(Ae,s)| < |s|

(c+1)c
2 .

2|L(Ae,s)|2β(n) ≤ 2

„
(β(n)+1)

(c+1)c
2

«2

β(n)

= 2(β(n)+1)(c+1)cβ(n)

< 2(log log 3√n+1)(c+1)c log log 3√n

< (log 3
√

n)(log log 3√n+1)(c+1)c

< 3
√

n.

Lemma 36. For a positive integer a ≥ β(n) and
c ≤ log(n)/(3 log log(n)) then(

m

a

)(
kc+1

nc+1

)a

>

(
m

a + 1

)(
kc+1

nc+1

)a+1

.

Proof: The proof follows from expanding the formulas:(
m

a

)(
kc+1

nc+1

)a

>

(
m

a + 1

)(
kc+1

nc+1

)a+1

⇔

ma

a!

(
1(

nc+1
)a
)

>
ma+1

(a + 1)!

(
kc+1(

nc+1
)a+1

)
⇔

1 >
m− a

a + 1

(
kc+1

nc+1

)
.

Observation 37. For positive integer k,
(
1− 1

2k

)2k

≥ 1
4

Proof: The proof follows from expanding the formula
and noting that(

2k

2i

)(
− 1

2k

)2i

+
(

2k

2i + 1

)(
− 1

2k

)2i+1

≥ 0,

and (
2k

2

)(
− 1

2k

)2

+
(

2k

3

)(
− 1

2k

)3

≥ 1
4
.

Thus (
1− 1

2k

)2k

=
∑

i=0...2k

(
2k

i

)(
− 1

2k

)i

≥ 1
4
.

Observation 38. For constant c and sufficiently large n,

log(n)
(

m
β(n)

) (
kc+1

nc+1

)β(n)

+m
(

m
log(n)

) (
kc+1

nc+1

)log(n)

< 1
nβ(n)−1 .

Proof: The proof follows from the following calcula-
tions:

log(n)
(

m

β(n)

)(
kc+1

nc+1

)β(n)

+m

(
m

log(n)

)(
kc+1

nc+1

)log(n)

<
log(n)(2c log log(n))β(n)ncβ(n)k(c+1)β(n)

(nc+1 − (c+1)(c+2)
2 nc)β(n)

+
(2c log log(n))log(n)+1nc(log(n)+1)k(c+1) log(n)(

nc+1 − (c+1)(c+2)
2 nc

)log(n)

≤ log(n)(2c log log(n))β(n)k(c+1)β(n)(
n− (c+1)(c+2)

2

)β(n)

+
(2c log log(n))log(n)+1nck(c+1) log(n)(

n− (c+1)(c+2)
2

)log(n)

<
1

nβ(n)−1
.

187

The first inequality follows from Observation 33 and substi-
tution using m ≤ 2c log log(n)nc and

(
m
i

)
≤ mi. The sec-

ond inequality can be seen by multiplying the first summand
by 1/ncβ(n)

1/ncβ(n) and the second summand by 1/nc log(n)

1/nc log(n) . The last

inequality can be seen by:
(
n− (c+1)(c+2)

2

)β(n)

> nβ(n) −
β(n)(c+1)(c+2)

2 nβ(n)−1 and
(
n− (c+1)(c+2)

2

)log(n)

> nlog(n)−
log(n)(c+1)(c+2)

2 nlog(n)−1 and log(n)(2c log log(n))β(n)k(c+1)β(n)

(1− β(n)(c+1)(c+2)
2n)

+

(2c log log(n))log(n)+1nck(c+1) log(n)„
nlog(n)−β(n)− β(n)(c+1)(c+2)nlog(n)−β(n)−1

2

« < n.

B Proving Random Monotone Functions are
Well Behaved with High Probability

In this sections we prove that most monotone DNF inFn,k,m

are well behaved.
For the small z property of being well behaved, bounding

|Tas
| for #1(as) ≤ c, we first find the expected value of

|Tas
|. Next we use Chernoff bounds to give an upper bound

on how far |Tas
| is away from the expected value with high

probability.

Observation 39. For s ⊂ X , as where z = #1(as), and
|s| ≤ k ≤ log2(n) then

m
kz

2nz
< Ef∈RFn,k,m {|Tas

|} < m
kz

nz
.

Proof: We first observe that

Ef∈RFn,k,m {|Tas
|} = m

(
n−|s|
k−z

)(
n
k

) = m
kz(n− k)|s|−z

n|s|
.

The upper bound follows by observing that

(n− k)|s|−z

n|s|
=

(n− k)|s|−z

nz(n− z)|s|−z
≤ 1

nz

(remember z ≤ k,) and thus

Ef∈RFn,k,m {|Tas
|} ≤ m

kz

nz
.

The lower bound follows from
(n− k)|s|−z

n|s|
=

1
nz

∏
i=0...|s|−z−1

n− k − i

n− z − i

=
1
nz

∏
i=0...|s|−z−1

(
1− k − z

n− z − i

)

≥ 1
nz

(
1− k − z

n− |s|

)|s|
By
(

1− k − z

n− |s|

)|s|
> 1− |s| k − z

n− |s|
.

> 1/2
1
nz

,

and thus m kz

2nz < mkz(n−k)|s|−z

n|s|
.

Next, we state the simplified Chernoff upper bound from
Canny’s lecture notes [3]; we use this Chernoff bound to
bound the expected value.

Lemma 40 (Chernoff). Let δ < 2e − 1, µ be the expected
value, and χ be a series of independent Poisson trials, then
Pr {χ > (1 + δ)µ} < e(−µδ2/4).

We now bound the number of terms in Tas
for #1(as) ≤

c, with high probability.

Lemma 41. Fix s ⊂ X , as where z = #1(as) ≤ c, and
k ≤ log2(n), then

Prf∈RFn,k,m

{
|Tas | > 3mmax

kz

nz

}
< e−c log log(n)kc

.

Proof: We note that z ≤ c < c log(n) = k, thus we
know the bounds of Observation 39 hold. Let f ′ be a random
extension of f to mmax terms.

Prf∈RFn,k,m {|Tas
| ≥ 3mmaxk

z/nz}
≤ Prf ′∈RFn,k,mmax

{
|T ′as

| ≥ 3mmaxk
z/nz

}
≤ Prf ′∈RFn,k,mmax

{
|T ′as

| ≥ (1 + δ)E{T ′as
}
}

≤ e−u′δ2/4,

where µ′ = E{T ′as
} by Chernoff.

We can obtain an upper bound for this expression from a
lower bound for its unnegated exponent. Let δ = 2.

µ′δ2/4 = µ′

> mmaxk
z/2nz

> 2ncc · log log(n)kz/2nz

> c · log log(n)kc Since kz/2nz ≥ kc/2nc.

Therefore

Prf∈RFn,k,m

{
|Tas

| > 3mmax
kz

nz

}
≤ e−c log log(n)kc

.

Corollary 42 (The Small z Property Holds with High Prob-
ability). Therefore for s ⊂ t ∈ f where |s| ≤ β(n) + 1
and z = #1(as) then Prf∈RFn,k,m{∃as, 0 < #1(as) ≤
c, |Tas

| > 3mmax
kz

nz } < n2c log(n)
(

1
n

)β(n)−1
.

Proof: We assume c ≥ 1; if c < 1 then there does not
exist a z since 0 < z ≤ c < 1 and z is an integer.

If c ≥ 1 then the number of s ⊂ t and as where z =
#1(as) ≤ c is bounded by

m
∑

|s|=1,...,β(n)+1

(
k

|s|

) ∑
z=1,...,c

(
|s|
z

)
< mmax · β(n)kβ(n)+1 · 2β(n)

<
1
3
nc+1.

(i.e. For a given term, the number of different sets of size s
is
(

k
|s|
)
. The number of terms is m. For a given set, s, the

number of ways to choose z items from the set is
(|s|

z

)
.)

188

Thus, by Lemma 41:

Prf∈RF{∃as,#1(as) ≤ c, |Tas | > 3mmax
kz

nz
}

<
1
3
nc+1e−c log log(n)kc

<
1
3
n2c log(n)

(
1
n

)β(n)−1

.

Therefore, with high probability, the small z property for
f ∈R Fn,k,m is proved.

Next we prove the medium z property: that for #1(as)
where c < #1(as) < β(n) then |Tas

| < β(n) with high
probability.

Lemma 43. For fixed c, and sufficiently large n, let s ⊂ X ,
and as with #1(as) > c then

Prf∈RFn,k,m {|Tas | ≥ β(n)} <

(
1
n

)β(n)−1

.

Proof: Let z = #1(as).
If z > k then |Tas

| = 0, since there does not exist a term
with more that k variables.

If z ≤ k then the probability a random term t ∈ Tas
is

(n−|s|
k−z)
(n

k)
< kz

nz . Consequently,

Prf∈RFn,k,m {|Tas | ≥ β(n)}

<
∑

j=β(n)...m

(
m

j

)(
kz

nz

)j (
1− kz

nz

)m−j

<
∑

j=β(n)... log(n)−1

(
m

j

)(
kz

nz

)j (
1− kz

nz

)m−j

+
∑

j=log(n)...m

(
m

j

)(
kz

nz

)j (
1− kz

nz

)m−j

< log(n)
(

m

β(n)

)(
kc+1

nc+1

)β(n)

+m

(
m

log(n)

)(
kc+1

nc+1

)log(n)

<

(
1
n

)β(n)−1

.

The third inequality follows from the observation that the
sum is maximized for z = c + 1, and from Lemma 36. The
fourth inequality follows from Observation 38.

Corollary 44 (The Medium z Property Holds with High Prob-
ability). Therefore for s ⊂ t ∈ f where |s| ≤ β(n) + 1,
Prf∈RFn,k,m{∃as, c < #1(as) < β(n), |Tas | ≥ β(n)} <
1
3n2c log(n)

(
1
n

)β(n)−1
for sufficiently large n.

Proof: The number of s ⊂ t and as where c < #1(as) <

β(n) is bounded by

m
∑

|s|=dce,...,β(n)+1

(
k

|s|

) ∑
z=c+1,...,bβ(n)c

(
|s|
z

)
< mmax · β(n)kβ(n)+1 · 2β(n)

≤ nc+1

<
1
3
n2c log(n).

(i.e.
∑
|s|=dce,...,β(n)+1

(
k
|s|
)

is the number of ways to find a
subset of t ∈ f of size greater than c and less than or equal
to β(n) + 1. The sum

∑
z=c+1,...,bβ(n)c

(|s|
z

)
is the number

of ways to choose a set of size z from |s| elements.)
Therefore using Lemma 43, we know

Prf∈RFn,k,m{∃as, c < #1(as) < β(n), |Tas | ≥ β(n)} ≤
1
3n2c log(n)

(
1
n

)β(n)−1
.

Consequently, the medium z property is also satisfied by
a random f ∈R Fn,k,m with high probability.

The large z property is that two terms in f overlap by at
most β(n); we prove this with a counting argument. Jackson
and Servedio’s paper [7] has a similar lemma, Lemma (3.5).

Lemma 45. Let s, s′ ⊆ X be sets of k ≤ 3
√

n variables cho-
sen independently at random, then the Pr{|s ∩ s′| ≥ β(n)} <(

1
n

)β(n)−1
.

Proof
Pr {|s ∩ s′| ≥ β(n)}

=
k∑

j=β(n)

(
n
j

)(
n−j
k−j

)(
n−k
k−j

)(
n
k

)2
=

k∑
j=β(n)

(kj)2(n− k)k−j

j!nk

(The sum is maximized for j = β(n).)

< k
(kβ(n))2

β(n)!nβ(n)

<
1

nβ(n)−1
.

Corollary 46 (The Large z Property Holds with High Proba-
bility). Therefore, Prf∈RFn,k,m{∃t, t′ ∈ f, |t∩t′| ≥ β(n)} <
1
3n2c log(n)

(
1
n

)β(n)−1
.

Proof: The proof follows from noting that
Prf∈RFn,k,m{∃t, t′ ∈ f, |t ∩ t′| ≥ β(n)} ≤

(
m
2

)
1

nβ(n)−1 ≤(
mmax

2

)
1

nβ(n)−1 <
(
mmax

2

)
1

nβ(n)−1
1

1− β(n)(β(n)−1)
2n

< 1
3n2c log(n)

(
1
n

)β(n)−1
.

The third inequality follows from Observation 33 and
nβ(n)−1− (β(n)−1)β(n)

2 nβ(n)−2 = nβ(n)−1
(
1− (β(n)−1)β(n)

2n

)
.

Since two terms in f ∈R Fn,k,m share less than β(n)
variables with high probability, a random f ∈R Fn,k,m sat-
isfies the large z property in being well behaved with high
probability.

189

Recalling Corollaries 42, 44, and 46 and the definition of
“well behaved,” we note that f ∈R Fn,k,m is well behaved
with high probability.

C Bounding Υs

Next we present the proof of Lemma 28 that for f a well
behaved monotone k-DNF function, m ≤ 2k+1c log log n
and t ∈ f then |E+

1t
− E+

f\{t}| ≥ 2n · 1
8 log4c(n)

1
nc .

Proof: Divide f\ {t} into three disjoint sets,

• Tdisjoint = {t′ ∈ f\ {t} | t ∩ t′ = ∅} ,

• Tsmall = {t′ ∈ f\ {t} | 1 ≤ |t′ ∩ t| ≤ c} and

• Tnot small = f\(Tdisjoint ∪ Tsmall).

Looking only at examples in E+
1t

, we now calculate the prob-
ability that each of these sets is not satisfied. Remember-
ing that f is monotone, we note that if one set is not satis-
fied, it increases the chance another set is not satisfied. (i.e.
Pre∈E {¬t | ¬t′} ≥ Pre∈E {¬t} since if we know at least
one variable is set to zero that increases the odds of another
term to be set to zero if they share a variable.)

In the first case for Tdisjoint,
Pre∈E1t

{∀t′ ∈ Tdisjoint,¬t′(e)} > (1− 1
2k)m

≥ (1 − 1
2k)2

k+1c log log (n) =
(
(1− 1

2k)2
k
)2c log log (n)

≥
1

42c log log(n) = 1
log4c(n)

, by Observation 37.
In the second case, if t′ ∈ Tsmall and r = t ∩ t′ with at

such that Xat = r then by f being well behaved we know
that |Tat | ≤ 3mmax

(
k|r|

n|r|

)
. Therefore

Pre∈E+
1t

{∀t′ ∈ Tsmall,¬t′(e)}

>
∏

r⊂t,1≤|r|≤c

(
1− 2|r|

2k

)3mmax

„
k
|r|

n
|r|

«

≥
∏

1≤|r|≤c

(
1− 2|r|

2k

)2k+3c log log(n)

„
k
|r|

n
|r|

«
(k
|r|)

≥
∏

1≤|r|≤c

(
1− 2|r|

2k

)2(k−|r|)2|r|+3c log log(n)

„
k
|r|

n
|r|

«
(k
|r|)

≥
∏

1≤|r|≤c

(
1
4

)2|r|+3c log log(n)

„
k
|r|

n
|r|

«
(k
|r|)

By Obs. 37.

≥
(

1
4

) 16c2 log log(n)k2

n

.

The last inequality follows from noticing the product is max-
imized for |r| = 1, thus

Pre∈E+
1t

{
e ∈R E+

1t
| ∀t′ ∈ Tsmall,¬t′(e)

}
>

1
4
.

We now bound the third case. Since f is well behaved,
we know that a term in f overlaps another term by at most

β(n) variables, and the number of terms overlapping by a set
r ⊂ t in Tnot small is at most β(n). Therefore
Pre∈E+

1t

{∀t′ ∈ Tnot small,¬t′(e)}

>
∏

r⊂t,c<|r|≤β(n)

(
1− 2|r|

2k

)β(n)

>
(
1− 2β(n)

2k

)β2(n)(k
β(n)) ≥ 1

2 , (since
(

k
|r|
)
≤
(

k
β(n)

)
.)

Therefore (remembering 2k = nc)

|
{
e ∈R E+

1t
| ∀t′ ∈ f\ {t} ,¬t′(e)

}
|

> 2n−k ·
(

1
4

)(
1

log4 c(n)

)(
1
2

)
= 2n · 1

8 log4c(n)
1
nc

.

APPENDIX 2

In the next two sections we present the standard arguments
for the sake of completeness. In Section A we prove that we
can sample to find a sufficient approximation to Is(E+). In
Section B we prove that our very straightforward algorithm
runs in polynomial time and produces f .

A Sampling and Approximating Is

In Section 4, we proved we could determine if a set, s, is a
subset of a term if c + 2 ≤ |s| ≤ β(n) + 1 by computing
Is. Unfortunately, we cannot efficiently compute Is since
we cannot efficiently compute |E+

as
|. Instead, we show how

to approximate Is. We estimate this value by sampling gs

uniformly chosen labeled examples from E.

Definition 47. For s ⊂ X , let ESample(gs) ⊂ E be a random
sample of gs labeled examples drawn uniformly from E.

Definition 48. Given ESample(gs) ⊂ E, let E+
Sample(gs) =

ESample(gs)∩E+ be the set of positive examples in ESample(gs).
Similary, let ΥSamples(gs) = ESample(gs) ∩ Υs be the set of
positive examples from ESample(gs) which satisfy only terms
in T1s

.

Observation 49. Let s ⊂ X , we note that E
(∣∣ΥSamples(gs)

∣∣)
= gs · |Υs|

|E| = gs

2n |Υs|.

Using sampled labeled examples, we compute the fol-
lowing function to approximate Is.

Definition 50. Let s ⊂ X , we define Is,Sample(gs) =∑
e∈E+

Sample(gs)
(−1)#0(as(e)) to be our approximation of Is,

where as(e) is e|s .

Observation 51. We note that the E
(
Is,Sample(gs)

)
= gs

2n Is.

This observation follows since the expected value of

|ESample(gs) ∩ E+
as
| is gs

|E+
as |
|E| and

E
(
Is,Sample(gs)

)
=
∑

as
(−1)(#0(as))gs

|E+
as
|

|E| .

Next, we bound how different our sampled Is,Sample(gs)

is from the expected value, As we have not yet provided a
lower tail bound, we state it next, as it is described in Canny
[3].

190

Lemma 52 (Chernoff). Let δ ∈ (0, 1], µ be the expected
value, and χ be a series of independent Poisson trials then
Pr {χ < (1− δ)µ} < e−µδ2/2.

Applying the lower and upper Chernoff bounds from Lem-
mas 40 and 52, we prove that Is,Sample(gs) is within 2gs

nc+1

fraction of E
(
Is,Sample(gs)

)
.

Lemma 53. For gs = n2c+32k+|s| and given access to ex-
amples drawn from a well behaved monotone k-DNF then∣∣Is,Sample(gs) −E

(
Is,Sample(gs)

)∣∣ < gs · 2
nc+1 with proba-

bility 1− 4e−n/4.

Proof: To apply the Chernoff bounds, our main diffi-
culty is our sum has both positive and negative values, we
overcome this difficulty by bounding the positive and neg-
ative values separately. We define two indicator functions.
Let reven(e) = 1 iff f(e) = 1 and #0(e|s) is even, and let
rodd(e) = 1 iff f(e) = 1 and #0(e|s) is odd.

Let ESample(g) be a randomly generated set of gs exam-
ples from E. Let Xeven =

∑
e∈ESample(gs) reven(e). (Simi-

larly for Xodd.)
We observe that Is,Sample(gs) = Xeven −Xodd.

If ∃as such that E+
as

6= ∅, then there is a term consis-
tent with at least one as. This term satisfies the examples
in Eas

with probability at least 1
2k . There are 2|s| different

as, thus if #0(as) is even, we expect at least 1
2|s|2k frac-

tion of total examples are set to one by reven. Therefore in
gs = n2c+32k+|s| examples, the expected value of the indi-
cator function is either zero, or the expected value is at least
n2c+3. (Similarly for the case where #0(as) is odd.)

Using the Chernoff bounds with δ = 1
nc+1 , we bound

E(Xeven), in the cases where the expected value is not zero.

Pr {|Xeven − (1± δ)E(Xeven)} ≤ 2e−
n2c+3

4n2c+2 = 2e−n/4.
(Similarly for E(Xodd).) Consequently, the indicator func-
tions will be 1

nc+1 close to their respective expected value
functions.

Therefore we know |(Xeven−Xodd)−E(Is,Sample(gs))| ≤
1

nc+1 (E(Xeven) + E(Xodd)) ≤ gs
2

nc+1 . Thus Is,Sample(gs)

differs from E
(
Is,Sample(gs)

)
by at most gs · 2

nc+1 with high
probability.

Using the previous Lemma 53, Theorem 26, and Obser-
vation 49, we note that we can determine if s ⊂ X is a sub-
set of a term in a well behaved monotone k-DNF function by
sampling labeled examples from the uniform distribution.

Lemma 54. Let f be a well behaved monotone k-DNF for-
mula, s ⊂ X where c + 2 ≤ |s| ≤ β(n) + 1, and gs =
n2c+32k+|s|;

• if s ⊂ t ∈ f then Is,Sample(gs) > gs · 1

nc+ 1
5

with proba-

bility 1− 4e−n/4.

• If s 6⊂ t ∈ f then Is,Sample(gs) < gs · 1

nc+ 1
5

with proba-

bility 1− 4e−n/4.

Proof: From Lemma 53 and Observation 51, we know

− 2gs

nc+1
+

gs

2n
Is ≤ Is,Sample(gs) ≤

2gs

nc+1
+

gs

2n
Is

Algorithm Learn Random Monotone DNF

1. S = Distinguishing Subsets

2. f = ∅

3. For s ∈ S

(a) t = ∅
(b) For x ∈ X

• If Is∪{x},Sample(gs) > gs · 1

nc+ 1
5

then add x

to t

(c) add t to f

4. Return f

Figure 3:

Function Distinguishing Subsets

1. S = {s ⊂ X | |s| = c + 2,
: and Is,Sample(gs) > gs · 1

nc+ 1
5
}

2. For i = (c + 3) to β(n)

(a) S′ = ∅
(b) For s ∈ S and x ∈ X

• If Is∪{x},Sample(gs) > gs · 1

nc+ 1
5

then add (s∪
{x}) to S′

(c) S = S′

3. Return S

Figure 4:

with probability greater than 1− 4e−n/4.
By Theorem 30, Observation 51, and Lemma 53 we know:

• if s ⊂ t ∈ f then Is ≥ 2n· 1
8 log4c(n)

1
nc−2n· 4k log6(n)n2/3

nc+1 .

Thus, Is,Sample(gs) ≥ −gs · 2
nc+1 +gs ·Is ≥ −gs · 2

nc+1 +

gs · 1
8 log4c(n)

1
nc − gs · 4k log6(n)n2/3

nc+1 > gs · 1

nc+ 1
5

with

probability greater than 1− 4e−n/4.

• If s 6⊂ t ∈ f then Is ≤ 2n · 4k log6(n)n2/3

nc+1 . Thus,
Is,Sample(gs) ≤ gs · 2

nc+1 + gs · Is ≤ gs · 2
nc+1 + gs ·

4k log6(n)n2/3

nc+1 < gs · 1

nc+ 1
5

with probability greater than

1− 4e−n/4.

B Learning Random Monotone DNF by
Finding Terms in Polynomial Time

Next, we restate our algorithm to use ISample(gs).
Referring to our algorithm in Figures 3 and 4, the lem-

mas, and theorems in the previous sections, we prove our

191

algorithm discovers the unknown well behaved monotone k-
DNF from random examples drawn from the uniform dis-
tribution with high probability in polynomial time. We show
this by following the steps our algorithm takes; first our algo-
rithm finds all (c+2)-sized subsets of s in time O(gc+2n

c+2)
with probability greater than 1−4nc+2e−n/4. Next, given all
(c+2)-sized subsets of terms in f , our algorithm grows those
subsets till they are of size β(n) with probability greater
than 1−4nmkβ(n)e−n/4 in time O(nmgβ(n)k

β(n)). Finally,
given a subset of a term of size β(n), our algorithm discovers
all the variables in that term in time mngβ(n)+1k

β(n) with
probability at least 1−mnkβ(n)(4en/4).

Observation 55. For s ⊂ X , computing Is,Sample(gs) takes
time O(gs).

In step 1, our algorithm finds all the (c+2)-sized subsets
of terms in f .

Lemma 56. Given a well behaved f ∈ Fn,k,m, our function
Distinguishing Subsets finds {s | s ⊂ t ∈ f, |s| = c +
2} in time O(gc+2n

c+2) with probability greater than 1 −
4nc+2e−n/4 in step 1.

Proof: Let s ⊂ X where |s| = c + 2. By Lemma 54, iff
s ⊂ t ∈ f then Is,Sample(gs) ≥ gs · 1

nc+ 1
5

with probability

greater than 1 − 4e−n/4. Function Distinguishing Subsets
tests all subsets of size c + 2, thus our function has correctly
selected the sets which are subset of terms in f with proba-
bility greater than 1−4nc+2e−n/4 in time O(gc+2n

c+2).
Having found all subsets of t ∈ f of size c + 2 with high

probability, our algorithm builds these sets till all the subsets
of terms has size β(n).

Lemma 57. Given a well behaved f ∈ Fn,k,m, and T =
{s | s ⊂ t ∈ f, |s| = c + 2}, function Distinguishing
Subsets in step 2 returns {s | s ⊂ t ∈ f, |s| = β(n)} with
probability greater than 1− 4mnkβ(n)e−n/4 in time bound-
ed by O(nmgβ(n)k

β(n)).

Proof: Using the result of Lemma 54, each iteration
of our loop is given a set S = {s | s ⊂ t ∈ f, |s| = i} and
produces S′ = {s | s ⊂ t ∈ f, |s| = i + 1} with probability
more than 1−4nm

(
k
i

)
e−n/4 for i = c+2 . . . β(n)−1 in time

bounded by O(ginmki). Thus in β(n)−1−(c+2) iterations
our algorithm produces S = {s | s ⊂ t ∈ f, |s| = β(n)}with
probability greater than 1− 4β(n)nmkβ(n)−1e−n/4 in time
bounded by O(nmgβ(n)k

β(n)−1).
Given all β(n)-sized subsets of t ∈ f , algorithm Learn

Random Monotone DNF finds all the terms of f.

Lemma 58. Given a well behaved f ∈ Fn,k,m, and S =
{s | s ⊂ t ∈ f, |s| = β(n)} our algorithm, Learn Random
Monotone DNF, finds f in time bounded by
O(mngβ(n)+1k

β(n)) with probability greater than
1− nmkβ(n)(4e−n/4) in step 3.

Proof: Algorithm Learn Random Monotone DNF uses
Corollary 46 and Lemma 54.

Corollary 46 states that, for a well behaved monotone k-
DNF, ∀s ∈ S where |s| ≥ β(n) then |{t | s ⊂ t ∈ f}| ≤ 1.
Thus every s ∈ S is associated with at most one term t ∈ f .

Lemma 54 states that for a given s ⊂ X and x ∈ X
where |s∪{x}| = β(n)+1 iff Is∪{x},Sample(gs) ≥ gs · 1

nc+ 1
5

then s ∪ {x} ⊂ t ∈ f with probability at least 1 − 4e−n/4.
Thus for |s| = β(n), ∃!t such that s ⊂ t, we can determine
if x ∈ t with high probability.

Combining these ideas, given s ∈ S we can find a term in
the inside loop of step 3 by testing every x ∈ X to determine
if {x} ∪ s ⊂ t ∈ f , and thus find {x | Is∪{x},Sample(gs) ≥
gs · 1

nc+ 1
5
} = t ∈ f in time O(gβ(n)+1n) with probability

greater than 1− 4ne−n/4.
Together, the outside loop in step 3 selects every s ∈ S

and the inside loop finds t where s ⊂ t. Since ∀t ∈ f , there
exists s ∈ S such that s ⊂ t, Algorithm Learn Random
Monotone DNF produces f .

The time it takes to do this is the time is bounded by
O(gβ(n)+1nmkβ(n)) with probability bounded by

1− 4nmkβ(n)e−n/4.

Theorem 59. Given a well behaved f ∈ Fn,k,m, Algorithm
Learn Random Monotone DNF finds f in time bounded
by O(mngβ(n)+1k

β(n)) with probability greater than 1 −
9mnkβ(n)e−n/4.

Proof: Using Lemmas 56, 57, 58 we have proven that
our algorithm finds all subsets of size c + 2 of terms in f
in Lemma 56, and having found these subsets it builds upon
till our algorithm has found all subsets of terms of f of size
β(n) in Lemma 57; it then uses the uniqueness of terms of
size β(n) to find all the variables of a term in f ; thus finding
the entire function.

The algorithm runs in time bounded by

O(mngβ(n)+1k
β(n))

with probability greater than 1− 9mnkβ(n)e−n/4.

192

Polynomial regression under arbitrary product distributions

Eric Blais∗and Ryan O’Donnell and Karl Wimmer
Carnegie Mellon University

{eblais@cs,odonnell@cs,kwimmer@andrew}.cmu.edu

Abstract

In recent work, Kalai, Klivans, Mansour, and Serve-
dio [KKMS05] studied a variant of the “Low-Degree
(Fourier) Algorithm” for learning under the uni-
form probability distribution on{0, 1}n. They showed
that theL1 polynomial regression algorithm yields
agnostic(tolerant to arbitrary noise) learning algo-
rithms with respect to the class of threshold func-
tions — under certain restricted instance distribu-
tions, including uniform on{0, 1}n and Gaussian
on R

n. In this work we show howall learning re-
sults based on the Low-Degree Algorithm can be
generalized to give almost identical agnostic guar-
antees underarbitrary product distributions on in-
stance spacesX1×· · ·×Xn. We also extend these
results to learning undermixturesof product distri-
butions.

The main technical innovation is the use of (Ho-
effding) orthogonal decomposition and the exten-
sion of the “noise sensitivity method” to arbitrary
product spaces. In particular, we give a very sim-
ple proof that threshold functions over arbitrary
product spaces haveδ-noise sensitivityO(

√
δ), re-

solving an open problem suggested by Peres [Per04].

1 Introduction

In this paper we study binary classification learning prob-
lems over arbitrary instance spacesX = X1 × · · · × Xn. In
other words, each instance hasn “categorical attributes”, the
ith attribute taking values in the setXi. For now we assume
that eachXi has cardinality at mostpoly(n).1

It is convenient for learning algorithms to encode instances
fromX as vectors in{0, 1}|X1|+···+|Xn| via the “one-out-of-
k encoding”; e.g., an attribute fromX1 = {red, green, blue}
is replaced by one of(1, 0, 0), (0, 1, 0), or (0, 0, 1). Consider
now the following familiar learning algorithm:

∗Supported in part by a scholarship from the Fonds québécois
de recherche sur la nature et les technologies.

1Given real-valued attributes, the reader may think of bucketing
them intopoly(n) buckets.

Given m examples of training data
(~x1, y1), . . . , (~xm, ym) ∈ X × {−1, 1},

1. Expand each instance~xi into a vector
from {0, 1}|X1|+···+|Xn| via the “one-out-
of-k” encoding.

2. Consider “features” which are products of
up tod of the new0-1 attributes.

3. Find the linear functionW in the feature
space that best fits the training labels un-
der some loss measureℓ: e.g., squared
loss, hinge loss, orL1 loss.

4. Output the hypothesissgn(W − θ), where
θ ∈ [−1, 1] is chosen to minimize the hy-
pothesis’ training error.

We will refer to this algorithm as “degree-d polynomial
regression (with lossℓ)”. When ℓ is the hinge loss, this
is equivalent to the soft margin SVM algorithm with the
degree-d polynomial kernel and no regularization [CV95].2

Whenℓ is the squared loss and the data is drawn i.i.d. from
the uniform distribution onX = {0, 1}n, the algorithm is ef-
fectively equivalent to the Low-Degree Algorithm of Linial,
Mansour, and Nisan [LMN93] — see [KKMS05]. Using
techniques from convex optimization (indeed, linear program-
ming for L1 or hinge loss, and just basic linear algebra for
squared loss), it is known that the algorithm can be per-
formed in timepoly(m, nd). For all known proofs of good
generalization for the algorithm,m = nΘ(d)/ǫ training ex-
amples are necessary (and sufficient). Hence we will view
the degree-d polynomial regression algorithm as requiring
poly(nd/ǫ) time and examples. (Because of this, whether or
not one uses the “kernel trick” is a moot point.)

Although SVM-based algorithms are very popular in prac-
tice, the scenarios in which theyprovablylearn successfully
are relatively few (see Section 1.2 below) — especially when
there is error in the labels. Our goal in this paper is to broaden
the class of scenarios in which learning with polynomial re-
gression has provable, polynomial-time guarantees.

2Except for the minor difference of choosing an optimalθ rather
than fixingθ = 0.

193

1.1 The learning framework

We study binary classification learning in the natural “ag-
nostic model” [KSS94] (sometimes described as the model
with arbitrary classification noise). We assume access to
training data drawn i.i.d. from some distributionD on X ,
where the labels are provided by an arbitrary unknown “tar-
get” function t : X → {−1, 1}. The task is to output
a hypothesish : X → {−1, 1} which is a good predic-
tor on future examples fromD. We define the “error of
h” to be err(h) = Prx∼D[h(x) 6= t(x)].3 We compare
the error of an algorithm’s hypothesis with the best error
achievable among functions in a fixed classC of functions
X → {−1, 1}. DefineOpt = inff∈C err(f). We say that an
algorithmA “agnostically learns with respect toC” if, given
ǫ > 0 and access to training data, it outputs a hypothesis
h which satisfiesE[err(h)] ≤ Opt + ǫ. Here the expecta-
tion is with respect to the training data drawn.4 The running
time (and number of training examples) used are measured
as functions ofn andǫ.

Instead of an instance distributionD onX and a targett :
X → {−1, 1}, one can more generally allow a distribution
D′ onX×{−1, 1}; in this case,err(h) = Pr(x,y)∼D′ [h(x) 6=
y]. Our learning results also hold in this model just as in
[KKMS05]; however we use the simpler definition for ease
of presentation, except in Section 5.3.

In the special case whent is promised to be inC we are
in the scenario of PAC learning [Val84]. This corresponds to
the caseOpt = 0. SinceC is usually chosen (by necessity)
to be a relatively simple class, the PAC model’s assumption
that there is a perfect classifier inC is generally considered
somewhat unrealistic. This is why we work in the agnostic
model.

Finally, since strong hardness results are known [KSS94,
LBW95, KKMS05, GR06] for agnostic learning under gen-
eral distributionsD, we are forced to make some distribu-
tional assumptions. The main assumption in this paper is
thatD is aproduct probability distributiononX ; i.e., then
attributes are independent. For a discussion of this assump-
tion and extensions, see Section 1.3.

1.2 When polynomial regression works

Although the SVM algorithm is very popular in practice, the
scenarios in which it provably learns successfully are rela-
tively few. Let us consider the SVM algorithm with degree-
d polynomial kernel. The traditional SVM analysis is pred-
icated on the assumption that the data is perfectly linearly
separable in the polynomial feature space. Indeed, the heuris-
tic arguments in support of good generalization are predi-
cated on the data being separablewith large margin. Even
just the assumption of perfect separation may well be unrea-
sonable. For example, suppose the targett is the very simple

3In this paper, boldface denotes random variables.
4The definition of agnostic learning is sometimes taken to re-

quire error at mostOpt + ǫ with high probability, rather than in
expectation. However this is known [KKMS05] to require almost
negligible additional overhead.

function given by the intersection of two homogeneous lin-
ear threshold functions overR

n; i.e.,

t : R
n → {−1, 1}, t(x) = sgn(w1 · x) ∧ sgn(w2 · x).

It is known [MP69] that this target cannot be classified by the
sign of a degree-d polynomial in the attributes foranyfinite
d; this holds even whenn = 2. Alternatively, whent is the
intersection of two linear threshold functions over{0, 1}n, it
is not currently known ift can be classified by the sign of a
degree-d polynomial for anyd < n − 1. [OS03]

Because of this problem, one usually considers the “soft
margin SVM algorithm” [CV95]. As mentioned, when this
is run with no “regularization”, the algorithm is essentially
equivalent to degree-d polynomial regression with hinge loss.
To show that this algorithm even has a chance of learning
efficiently, one must be able to show that simple target func-
tions can at least beapproximatelyclassified by the sign of
low-degree polynomials. Of course, even stating any such
result requires distributional assumptions. Let us make the
following definition:

Definition 1.1 LetD be a probability distribution on{0, 1}N

and let t : {0, 1}N → R. We say thatt is ǫ-concentrated
up to degreed (underD) if there exists a polynomialp :
{0, 1}N → R of degree at mostd which has squared loss at
mostǫ underD; i.e.,Ex∼D[(p(x) − t(x))2] ≤ ǫ.

It is well known that under the above conditions,h := sgn(p)
has classification error at mostǫ underD. Further, it is rel-
atively easy to show that ifC is a class of functions each
of which isǫ-concentrated up to degreed, then the degree-d
polynomial regression algorithm with squared loss will PAC-
learnC to accuracyO(ǫ) underD.

The first result along these lines was due to Linial, Man-
sour, and Nisan [LMN93] who introduced the “Low-Degree
Algorithm” for PAC-learning under the uniform distribution
on {0, 1}n. They showed that iff : {0, 1}n → {−1, 1}
is computed by a circuit of sizes and depthc then it is ǫ-
concentrated up to degree(O(log(s/ǫ)))c under the uniform
distribution. Some generalizations of this result [FJS91, Hås01]
are discussed in Section 4.

Another result using this idea was due to Klivans, O’Donnell,
and Servedio [KOS04]. They introduced the “noise sensi-
tivity method” for showing concentration results under the
uniform distribution on{0, 1}n. In particular, they showed
that anyt : {0, 1}n → {−1, 1} expressible as a function of
k linear threshold functions isǫ-concentrated up to degree
O(k2/ǫ2) under the uniform distribution.

These works obtained PAC learning guarantees for the
polynomial regression algorithm — i.e., guarantees only hold-
ing under the somewhat unrealistic assumption thatOpt =
0. A significant step towards handling noise was taken in
[KKMS05]. Therein it was observed that low-degreeL2

2-
approximability bounds implyL1-approximability bounds
(and hinge loss bounds), and further, such bounds imply that
the polynomial regression algorithm works in theagnostic
learning model. Specifically, their work contains the follow-
ing theorem:

194

Theorem 1.2 ([KKMS05]) LetD be a distribution on{0, 1}N

and letC be a class of functions{0, 1}N → {−1, 1} each
of which isǫ2-concentrated up to degreed underD. Then
the degree-d polynomial regression algorithm withL1 loss
(or hinge loss [Kal06]) usespoly(Nd/ǫ) time and examples,
and agnostically learns with respect toC underD.

Thus one gets agnostic learning algorithms under the uni-
form distribution on{0, 1}n with respect to the class of AC0

circuits (timenpolylog(n/ǫ)) and the class of functions ofk
thresholds (timenO(k2/ǫ4)) — note that the latter is poly-
nomial time assumingk and ǫ are constants. Kalai et al.
also obtained related results for agnostically learning with
respect to single threshold functions under Gaussian and log-
concave distributions onRn.

1.3 Overview of our learning results

We view the work of [KKMS05] as the first provable guaran-
tee that one can learn interesting, broad classes of functions
under the realistic noise model of agnostic learning (and in
particular, that SVM-type methods can have this guarantee).
One shortcoming of the present state of knowledge is that we
have good concentration bounds for classes essentially only
with respect to the uniform distribution on{0, 1}n and the
Gaussian distribution onRn.5

In this work we significantly broaden the class of distri-
butions for which we can prove good concentration bounds,
and hence for which we can prove the polynomial regres-
sion algorithm performs well. Roughly speaking, we show
how to generalize any concentration result for the uniform
distribution on{0, 1}n into the same concentration result for
arbitrary product distributionsD on instance spacesX =
X1 × · · · × Xn.

We believe this is a significant generalization for several
reasons. First, even just for the instance space{0, 1}n the
class of arbitrary product distributions is much more reason-
able than the single distribution in which each attribute is0 or
1 with probability exactly1/2. Our results are even stronger
than this, though: they give an algorithm that works simulta-
neously for any product distribution overany instance space
X = X1 × · · · × Xn where each|Xi| ≤ poly(n).

Because we can handle non-binary attributes, the restric-
tion to product spaces becomes much less severe. A com-
mon criticism of learning results under the uniform distri-
bution or product distributions on{0, 1}n is that they make
the potentially unreasonable assumption that attributes are
independent. However with our results, one can somewhat
circumvent this. Suppose one believes that the attributes
X1, . . . , Xn are mostly independent, but some groups of them
(e.g., height and weight) have mutual dependencies. One
can then simply group together any dependent attribute sets
Xi1 , . . . , Xit

into a single “super-attribute” set(Xi1 × · · · ×
Xit

). Assuming that this eliminates dependencies — i.e., the
new (super-)attributes are all independent — and that each

5[FJS91] gives bounds for AC0 under constant-bounded product
distributions on{0, 1}n; [KKMS05] gives inexplicit bounds for a
single threshold function under log-concave distributions onR

n.

|Xi1 × · · · × Xit
| is still at mostpoly(n), one can proceed

to use the polynomial regression algorithm. Here we see the
usefulness of being able to handle arbitrary product distribu-
tions on arbitrary product sets.

In many reasonable cases our results can also tolerate
the attribute setsXi having superpolynomial size. What is
really necessary is that the probability distribution on each
Xi is mostly concentrated on polynomially many attributes.
Indeed, we can further handle the common case when at-
tributes are real-valued. As long as the probability distri-
butions on real-valued attributes are not extremely skewed
(e.g., Gaussian, exponential, Laplace, Pareto, chi-square, . . .)
our learning results go through after doing a naive “bucket-
ing” scheme.

Finally, being able to learn under arbitrary product dis-
tributions opens the door to learning undermixtures of prod-
uct distributions. Such mixtures — especially mixtures of
Gaussians — are widely used as data distribution models
in learning theory. We show that agnostic learning under
mixtures can be reduced to agnostic learning under single
product distributions. If the mixture distribution is precisely
known to the algorithm, it can learn even under a mixture of
polynomially many product distributions. Otherwise, when
the mixture is unknown, we first need to use an algorithm
for learning (or clustering) a mixture of product distributions
from unlabeled examples. This is a difficult but well-studied
problem. Using results of Feldman, O’Donnell, and Serve-
dio [FOS05, FOS06] we can extend all of our agnostic learn-
ing results to learning under mixtures of constantly many
product distributions with each|Xi| ≤ O(1) and constantly
many (axis-aligned) Gaussian distributions.

1.4 Outline of technical results

In Section 2 we recall the orthogonal decomposition of func-
tions on product spaces, as well as the more recently-studied
notions of concentration and noise sensitivity on such spaces.
In particular, we observe that if one can prove a good noise
sensitivity bound for a classC under a product distribution
Π, then [KKMS05] implies that the polynomial regression
algorithm yields a good agnostic learner with respect toC
underΠ.

Section 3 contains the key reduction from noise sensi-
tivity in general product spaces to noise sensitivity under the
uniform distribution on{0, 1}n. It is carried out in the model
case of linear threshold functions, which Peres [Per04] proved
haveδ-noise sensitivity at mostO(

√
δ). We give a surpris-

ingly simple proof of the following:

Theorem 3.2 Let f : X → {−1, 1} be a linear threshold
function, whereX = X1 × · · · × Xn has the product distri-
butionΠ = π1 × · · · × πn. ThenNSδ(f) ≤ O(

√
δ).

Proving this just in the case of ap-biased distribution on
{0, 1}n was an open problem suggested in [Per04]. This
noise sensitivity bound thus gives us the following learning
result:

195

Theorem 3.4 Let Π = π1 × · · · × πn be any product dis-
tribution over an instance spaceX = X1 × · · ·×Xn, where
we assume|Xi| ≤ poly(n) for eachi. Let C denote the
class of functions ofk linear threshold functions overX .
Takingd = O(k2/ǫ4), the degree-d polynomial regression
algorithm withL1 loss (or hinge loss) usesnO(k2/ǫ4) time
and examples and agnostically learns with respect toC.

In Section 4 we discuss how to extend concentration re-
sults for other concept classes from uniform on{0, 1}n to
arbitrary product distributions on product spacesX = X1 ×
· · · ×Xn. Of course, it’s not immediately clear, given a con-
cept classC of functions on{0, 1}n, what it even means for it
to be generalized to functions onX . We discuss a reasonable
such notion based on one-out-of-k encoding, and illustrate it
in the case ofAC0 functions. The idea in this section is sim-
ple: any concentration result under uniform on{0, 1}n eas-
ily implies a (slightly weaker) noise sensitivity bound; this
can be translated into the same noise sensitivity bound under
any product distribution using the methods of Section 3. In
turn, that implies a concentration bound in the general prod-
uct space. As an example, we prove the following:

Theorem 4.2 Let C be the class of functionsX1 × · · · ×
Xn → {−1, 1} computed by unbounded fan-in circuit of
size at mosts and depth at mostc (under the one-out-of-k
encoding). Assume|Xi| ≤ poly(n) for eachi. LetΠ be any
product distribution onX1 × · · · × Xn. Then polynomial
regression agnostically learns with respect toC under arbi-
trary product distributions in timen(O(log(s/ǫ)))c−1/ǫ2 .

Section 5 describes extensions of our learning algorithm
to cases beyond those in which one has exactly a product
distribution on an instance spaceX = X1 × · · · × Xn with
each|Xi| ≤ poly(n): these extensions include distributions
“bounded by” or “close to” product distributions, as well as
certain cases when theXi’s have superpolynomial cardinal-
ity or areR. We end Section 5 with a discussion of learning
under mixtures of product distributions. Here there is a dis-
tinction between learning when the mixture distribution is
knownto the algorithm and when it isunknown. In the for-
mer case we prove, e.g.:

Theorem 5.16 Let D be anyknown mixture ofpoly(n)
product distributions over an instance spaceX = X1×· · ·×
Xn, where we assume|Xi| ≤ poly(n) for eachi. Then there
is a nO(k2/ǫ4)-time algorithm for agnostically learning with
respect to the class of functions ofk linear threshold func-
tions overX underD.

In the latter case, by relying on algorithms for learning
mixture distributions from unlabeled data, we prove:

Theorem 5.18 Let D be anyunknownmixture ofO(1)
product distributions over an instance spaceX = X1×· · ·×
Xn, where we assume either: a)|Xi| ≤ O(1) for eachi; or
b) eachXi = R and each product distribution is a mixture of
axis-aligned (poly(n)-bounded) Gaussians. Then there is a
nO(k2/ǫ4)-time algorithm for agnostically learning with re-
spect to the class of functions ofk linear threshold functions
overX underD.

2 Product probability spaces

In this section we consider functionsf : X → R, where
X = X1×· · ·×Xn is a product set. We will also assumeX
is endowed with some product probability distributionΠ =
π1 × · · · × πn. All occurrences ofPr[·] andE[·] are with
respect to this distribution unless otherwise noted, and we
usually writex for a random element ofX drawn fromΠ.
For simplicity we assume that each setXi is finite.6 The
vector spaceL2(X , Π) of all functionsf : X → R is viewed
as an inner product space under the inner product〈f, g〉 =
E[f(x)g(x)]. We will also use the notation

‖f‖2 =
√

〈f, f〉 =
√

E[f(x)2].

2.1 Orthogonal decomposition

As eachXi is just an abstract set, there is not an inher-
ent notion of a degree-d polynomial onX . Ultimately the
polynomial regression algorithm identifiesX with a subset
of {0, 1}|X1|+···+|Xn| via the“one-out-of-k encoding” and
works with polynomials over this space. However to prove
concentration results, we need to take a more abstract ap-
proach and consider the “(Hoeffding) orthogonal decompo-
sition” of functions on product spaces; see [vM47, Hoe48,
KR82, Ste86]. In this section we recall this notion with our
own notation.

Definition 2.1 We say a functionf : X1 × · · · × Xn → R

is a simple function of orderd if it depends on at mostd
coordinates.

Definition 2.2 We say a functionf : X1 × · · · × Xn → R

is a function of orderd if it is a linear combination of simple
functions of orderd. The set of all such functions is a linear
subspace ofL2(X , Π) and we denote it byH≤d(X , Π).

Definition 2.3 We say a functionf : X1 × · · ·×Xn → R is
a function of order exactlyd if it is a function of orderd and
it is orthogonal to all functions of orderd−1; i.e., 〈f, g〉 = 0
for all g ∈ H≤d−1(X , Π). This is again a linear subspace
of L2(X , Π) and we denote it byH=d(X , Π).

Proposition 2.4 The spaceL2(X , Π) is the orthogonal di-
rect sum of theH=d(X , Π) spaces,

L2(X , Π) =

n
⊕

d=0

H=d(X , Π).

Definition 2.5 By virtue of the previous proposition, every
functionf : X1 × · · · ×Xn → R can be uniquely expressed
as

f = f=0 + f=1 + f=2 + · · · + f=n,

wheref=d : X1×· · ·×Xn → R denotes the projection off
into H=d(X , Π). We callf=d theorderd part off . We will
also write

f≤d = f=0 + f=1 + f=2 + · · · + f=d.

6In fact, we will only need that eachL2(Xi, πi) has a countable
basis.

196

In the sequel we will write simplyH=d in place ofH=d(X , Π),
etc. Although we will not need it, we recall a further refine-
ment of this decomposition:

Definition 2.6 For eachS ⊆ [n] we defineH≤S to be the
subspace consisting of all functions depending only on the
coordinates inS. We defineHS to be the further subspace
consisting of those functions inH≤S that are orthogonal to
all functions inH≤R for eachR (S.

Proposition 2.7 The spaceL2(X , Π) is the orthogonal di-
rect sum of theHS spaces,L2(X , Π) =

⊕

S⊆[n] HS . Hence
every functionf : X1 × · · · × Xn → R can be uniquely ex-
pressed asf =

∑

S⊆[n] f
S , wherefS : X1×· · ·×Xn → R

denotes the projection off into HS . Denoting alsof≤S =
∑

R⊆S fR for the projection off into H≤S , we have the
following interpretations:

f≤S(y1, . . . , yn) = E[f(x1, . . . ,xn) | xi = yi ∀ i ∈ S];

fS(x1, . . . , xn) =
∑

R⊆S

(−1)|S|−|R|f≤R.

Finally, we connect the orthogonal decomposition of func-
tionsf : X → R with their analogue under the one-out-of-k
encoding:

Proposition 2.8 A functionf : X → R is of orderd if and
only if its analoguef : {0, 1}|X1|+···+|Xn| → R under the
one-out-of-k encoding is expressible as a polynomial of de-
gree at mostd.

2.2 Low-order concentration

As in the previous section we consider functionsf : X → R

under a product distributionΠ. We will be especially inter-
ested in classifiers, functionsf : X → {−1, 1}. Our goal
is to understand and develop conditions under which suchf
can be approximated in squared loss by low-degree polyno-
mials.

By basic linear algebra, we have the following:

Proposition 2.9 Givenf : X → R, the best order-d ap-
proximator tof under squared loss isf≤d. I.e.,

min
g of orderd

E[(f(x)−g(x))2] = ‖f−f≤d‖2
2 =

n
∑

i=d+1

‖f=i‖2
2.

Definition 2.10 Given f : X → R we say thatf is ǫ-
concentrated up to orderd if

∑n
i=d+1 ‖f=i‖2

2 ≤ ǫ.

By Proposition 2.8 we conclude the following:

Proposition 2.11 Letf : X → R and identifyf with a func-
tion {0, 1}N → R under the one-out-of-k encoding. Then
there exists a polynomialp : {0, 1}N → R of degree at most
d which ǫ-approximatesf in squared loss underΠ if and
only if f is ǫ-concentrated up to orderd.

Combining this with the KKMS Theorem 1.2, we get the
following learning result about polynomial regression:

Theorem 2.12 Let Π = π1 × · · · × πn be a product dis-
tribution onX = X1 × · · · × Xn. Write N for the total
number of possible attribute values,N = |X1|+ · · ·+ |Xn|.
LetC be a class of functionsX → {−1, 1} each of which is
ǫ2-concentrated up to orderd underΠ. Then the degree-d
polynomial regression algorithm withL1 loss (or hinge loss)
usespoly(Nd/ǫ) time and examples, and agnostically learns
with respect toC underΠ.

We will now show how to prove low-order concentration
results by extending the “noise sensitivity method” of [KOS04]
to general product spaces.

2.3 Noise sensitivity

We recall the generalization of noise sensitivity [BKS99] to
general product spaces, described in [MOO05].

Definition 2.13 Givenx ∈ X1 × · · · × Xn and0 ≤ ρ ≤ 1,
we define aρ-noisy copy ofx to be a random variabley
with distributionNρ(x), where this denotes that eachyi is
chosen to equalxi with probability ρ and to be randomly
drawn fromπi with probability1 − ρ, independently across
i.

Definition 2.14 Thenoise operatorTρ on functionsf : X →
R is given by

(Tρf)(x) = Ey∼Nρ(x)[f(y)].

Thenoise stabilityof f at ρ is

Sρ(f) = 〈f, Tρf〉.
Whenf : X → {−1, 1} we also define thenoise sensitivity
of f at δ ∈ [0, 1] to be

NSδ(f) = 1
2 − 1

2S1−δ(f) = Pr
x∼Π

y∼N1−δ(x)

[f(x) 6= f(y)].

The connection between noise stability, sensitivity, and
concentration comes from the following two facts:

Proposition 2.15 ([MOO05]) For anyf : X → R,

Sρ(f) =

n
∑

i=0

ρi‖f=i‖2
2.

Proposition 2.16 ([KOS04]) SupposeNSδ(f) ≤ ǫ. Thenf
is 2

1−1/e ǫ-concentrated up to order1/δ.

For example, Peres proved the following theorem:

Theorem 2.17 ([Per04]) If f : {0, 1}n → {−1, 1} is a lin-
ear threshold function then

NSδ(f) ≤ O(1)
√

δ

(under the uniform distribution on{0, 1}n). From [O’D03]
we have that theO(1) can be taken to be54 for every value
of n andδ.

It clearly follows that iff is any function ofk linear thresh-
old functions thenNSδ(f) ≤ 5

4k
√

δ. Combining this with
Proposition 2.16:

Theorem 2.18 ([KOS04]) Let f : {0, 1}n → {−1, 1} be
any function ofk linear threshold functions. Thenf is (4k/

√
d)-

concentrated up to orderd under the uniform distribution,
for anyd ≥ 1. In particular, f is ǫ2-concentrated up to or-
derO(k2/ǫ4).

197

3 Noise sensitivity of threshold functions in
product spaces

In this section we show that Peres’s theorem can be extended
to hold for linear threshold functions in all product spaces.

Definition 3.1 We say a functionf : X1 × · · · × Xn →
{−1, 1} is a linear threshold functionif its analoguef :
{0, 1}N → {−1, 1} under one-out-of-k encoding is express-
ible as a linear threshold function. Equivalently,f is a linear
threshold function if there exist weight functionswi : Xi →
R, i = 1 . . . n, and a numberθ ∈ R such that

f(x1, . . . , xn) = sgn

(

n
∑

i=1

wi(xi) − θ

)

.

No version of Peres’s Theorem 2.17 was previously known
to hold even in the simple case of linear threshold func-
tions on{0, 1}n under ap-biased product distribution with
p 6= 1/2. Understanding just this nonsymmetric case was
left as an open question in [Per04]. We now show that thresh-
old functions over general product spaces are no more noise
sensitive than threshold functions over{0, 1}n under the uni-
form distribution.

Theorem 3.2 Let f : X → {−1, 1} be a linear threshold
function, whereX = X1 × · · · × Xn has the product distri-
butionΠ = π1 × · · · × πn. ThenNSδ(f) ≤ 5

4

√
δ.

Proof: For a pair of instancesz0, z1 ∈ X and a vector
x ∈ {0, 1}n, we introduce the notationzx for the instance
whoseith attribute(zx)i is theith attribute ofzxi

. For any
fixed z0, z1 ∈ X we can definegz0,z1

: {0, 1}n → {−1, 1}
such thatgz0,z1

(x) = f(zx). Note that this function is a lin-
ear threshold function in the traditional binary sense.

Let z0, z1 now denote independent random draws from
Π, and letx denote a uniformly random vector from{0, 1}n.
We have thatzx is distributed as a random draw fromΠ.
Further picky ∈ {0, 1}n to be aδ-noisy copy ofx, i.e.
y ∼ Nδ(x). Thenzy is distributed asNδ(zx). We now
have

NSδ(f) = Pr
z0,z1,x,y

[f(zx) 6= f(zy)]

= E
z0,z1

[

Pr
x,y

[f(zx) 6= f(zy)]

]

= E
z0,z1

[

Pr
x,y

[gz0,z1
(x) 6= gz0,z1

(y)]

]

.

Oncez0 andz1 are fixed, the quantity in the expectation is
just the noise sensitivity atδ of the binary linear threshold
functiongz0,z1

, which we can bound by54
√

δ using Theo-
rem 2.17. So

NSδ(f) = E
z0,z1

[

Pr
x,y

[gz0,z1
(x) 6= gz0,z1

(y)]

]

≤ E
z0,z1

[

5
4

√
δ
]

= 5
4

√
δ,

which is what we wanted to show.2

As with Theorem 2.18, we conclude:

Theorem 3.3 Let f : X → {−1, 1} be any function ofk
linear threshold functions, whereX = X1×· · ·×Xn has the
product distributionΠ = π1×· · ·×πn. Thenf is (4k/

√
d)-

concentrated up to orderd, for anyd ≥ 1. In particular,f is
ǫ2-concentrated up to orderO(k2/ǫ4).

By combining Theorem 3.3 with our main learning theo-
rem, Theorem 2.12, we conclude:

Theorem 3.4 LetΠ = π1 × · · · × πn be any product distri-
bution over an instance spaceX = X1 × · · · × Xn, where
we assume|Xi| ≤ poly(n) for eachi. Let C denote the
class of functions ofk linear threshold functions overX .
Takingd = O(k2/ǫ4), the degree-d polynomial regression
algorithm withL1 loss (or hinge loss) usesnO(k2/ǫ4) time
and examples and agnostically learns with respect toC.

4 Concentration for other classes under
product distributions

In this section we illustrate how essentially any result about
ǫ-concentration of classes of functions under the uniform dis-
tribution on{0, 1}n can be translated into a similar result for
general product distributions. Besides linear threshold func-
tions, the other main example of concentration comes from
the original application of the Low Degree Algorithm [LMN93]:
learning AC0 functions in quasipolynomial time. Recall that
AC0 is the class of functions computed by unbounded fan-in
circuits of constant depth and polynomial size. We will use
this as a running example.

SupposeC is a class of functionsX → {−1, 1}, where
X = X1 × · · · × Xn. As usual, under the one-out-of-k en-
coding we can think ofC as a class of functions{0, 1}N →
{−1, 1}. In our example, this gives a reasonable notion of
“AC0 circuits on general product setsX ”. Suppose further
that C ⊇ C is any class of functions{0, 1}N → {−1, 1}
which is closed under negation of inputs and closed under
fixing inputs to0 or 1. In our example, the class of AC0

circuits indeed has this basic property (as does the more pre-
cisely specified class of all circuits with size at mosts and
depth at mostc).

Now by repeating the proof of Theorem 3.2, it is easy
to see that any upper bound one can prove on the noise sen-
sitivity of functions inC under the uniform distribution on
{0, 1}N immediately translates an identical bound on the
noise sensitivity of functions inC on X under any product
distribution. The only thing to notice is that the functions
gz0,z1

arising in that proof will be in the classC. Thus we
are reduced to proving noise sensitivity bounds for functions
on{0, 1}n under the uniform distribution.

Furthermore, any result onǫ-concentration of functions
on{0, 1}n under the uniform distribution can be easily trans-
lated into a noise sensitivity bound which is not much worse:

Proposition 4.1 Suppose thatf : {0, 1}n → {−1, 1} is ǫ-
concentrated up to degreed under the uniform distribution
on{0, 1}n. ThenNSǫ/d(f) ≤ ǫ.

198

Proof: Using traditional Fourier notation instead of orthog-
onal decomposition notation, we have

S1−ǫ/d(f) =
∑

S⊆[n]

(1 − ǫ/d)|S|f̂(S)2

≥ (1 − ǫ/d)d(1 − ǫ) ≥ (1 − ǫ)2,

where the first inequality used the fact thatf is ǫ-concentrated
up to degreed. Thus

NS1−ǫ/d(f) = 1
2 − 1

2S1−ǫ/d(f) ≤ 1
2 − 1

2 (1 − ǫ)2 ≤ ǫ.

2

Finally, applying Proposition 2.16, we getO(ǫ)-concentration
up to orderd/ǫ for the original classC of functionsX →
{−1, 1}, under any product distribution onX . This leads to
an agnostic learning result forC under arbitrary product dis-
tributions which is the same as the one would get forC under
the uniform distribution on{0, 1}n, except for an extra fac-
tor of ǫ in the running time’s exponent.

For example, with regard to AC0 functions, [LMN93,
Hås01] proved the following:

Theorem 4.2 Let f : {0, 1}n → {−1, 1} be computable
by an unbounded fan-in circuit of size at mosts and depth at
most c. Then f is ǫ-concentrated up to degree
d = (O(log(s/ǫ)))c−1.

We therefore may conclude:

Theorem 4.3 Let C be the class of functionsX1 × · · · ×
Xn → {−1, 1} computed by unbounded fan-in circuit of
size at mosts and depth at mostc (under the one-out-of-k
encoding). Assume|Xi| ≤ poly(n) for eachi. LetΠ be any
product distribution onX1 × · · · ×Xn. Then everyf ∈ C is

2
1−1/e ǫ-concentrated up to orderd = (O(log(s/ǫ)))c−1/ǫ.
As a consequence, polynomial regression agnostically learns
with respect toC under arbitrary product distributions in
timen(O(log(s/ǫ)))c−1/ǫ2 .

This result should be compared to the following theorem
from Furst, Jackson, and Smith [FJS91] for PAC-learning
under bounded product distributions on{0, 1}n:

Theorem 4.4 ([FJS91])The classC of functions{0, 1}n →
{−1, 1} computed by unbounded fan-in circuit of size at most
s and depth at mostc can be PAC-learned under any product
distribution in timen(O((1/p) log(s/ǫ)))c+O(1)

, assuming the
mean of each coordinate is in the range[p, 1 − p].

The advantage of the result from [FJS91] is that it does
not pay the extra1/ǫ2 in the exponent. The advantages of
our result is that it holds under arbitrary product distributions
on product sets. (Our result is in the agnostic model, but
the result of [FJS91] could also be by applying the results
of [KKMS05].)

5 Extensions

5.1 Distributions close to or dominated by product
distributions

We begin with some simple observations showing that the
underlying distribution need not bepreciselya product distri-
bution. First, the following fact can be considered standard:

Proposition 5.1 Suppose that under distributionD, algo-
rithm A agnostically learns with respect to classC, usingm
examples to achieve errorǫ. If D′ is any distribution satisfy-
ing‖D′−D‖1 ≤ ǫ/m, thenA also agnostically learns under
D′, usingm examples to achieve error2ǫ + 2ǫ/m ≤ 4ǫ.

Proof: The key fact we use is that ifX is a random variable
with |X| ≤ 1 always, then|ED′ [X] − ED[X]| ≤ ‖D′ −
D‖1. This implies that for any hypothesish, |errD′(h) −
errD(h)| ≤ ǫ/m. In particular, it follows thatOptD′ ≤
OptD + ǫ/m. Further, leth be the random variable denoting
the hypothesisA produces when given examples fromD⊗m.
By assumption, we have

E
D⊗m

[errD(h)] ≤ OptD + ǫ

which is at mostOptD′+ǫ+ǫ/m. Since‖D′⊗m−D⊗m‖1 ≤
m(ǫ/m) = ǫ, the key fact applied toerrD(h) implies

E
D′⊗m

[errD(h)] ≤ OptD′ + ǫ + ǫ/m + ǫ.

Finally, as we saw,errD′(h) ≤ errD(h)+ǫ/m always. Thus

E
D′⊗m

[errD′(h)] ≤ OptD′ + 2ǫ + 2ǫ/m,

completing the proof.2

We will use the above result later when learning under
mixtures of product distributions.

A simple extension to the case when the distribution is
“dominated” by a product distribution was already pointed
out in [KKMS05]:

Observation 5.2 LetD be a distribution onX which is “C-
dominated” by a product probability distributionΠ = π1 ×
· · · × πn; i.e., for all x ∈ X , D(x) ≤ CΠ(x). If f is ǫ-
concentrated up to degreed underΠ, thenf isCǫ-concentrated
up to degreed underD.

Hence:

Theorem 5.3 Suppose we are in the setting of Theorem 3.4
except thatΠ is any distribution which isC-dominated by
a product probability distribution. Then the degree-d poly-
nomial regression algorithm learns with respect toC with
d = O(C2k2/ǫ4) and hencenO(C2k2/ǫ4) time and exam-
ples.

5.2 Larger attribute domains

So far we have assumed that each attribute spaceXi is only
of polynomial cardinality. This can fairly easily be relaxed
to the assumption that most of the probability mass in each
(Xi, πi) is concentrated on polynomially many atoms. Let
us begin with some basic preliminaries:

199

Notation 5.4 Given a distributionπ on a setX , as well as a
subsetX ′ ⊆ X , we use the notationπ′ for the distribution on
X ′ given by conditioningπ on this set. (We always assume
π(X ′) 6= 0.)

Fact 5.5 LetX = X1×· · ·×Xn and letΠ = π1×· · ·×πn

be a product distribution onX . Let X ′
i ⊆ Xi, i = 1 . . . n,

and writeΠ′ for the distributionΠ conditioned on the set
X ′ = X ′

1 × · · · × X ′
n. ThenΠ′ is the product distribution

π′
1 × · · · × π′

n.

We now observe that ifX ′ is a “large” subset ofX , then
any two functions which are close inL2(X , Π) are also close
in L2(X ′, Π′):

Proposition 5.6 In the setting of Fact 5.5, suppose that
Prxi∼πi

[xi 6∈ X ′
i] ≤ 1/(2n) for all i. Then for any two

functionsf : X → R andg : X → R,

‖f |X ′ − g|X ′‖2
2,Π′ ≤ 2 · ‖f − g‖2

2,Π

wheref |X ′ : X ′ → R denotes the restriction off toX ′, and
similarly for g|X ′.

Proof: Writing h = f − g, we have

‖h‖2
2,Π = E

x∼Π
[h(x)2]

= Pr
x∼Π

[x ∈ X ′] · E
x∼Π

[h(x)2 | x ∈ X ′]

+ Pr
x∼Π

[x /∈ X ′] · E
x∼Π

[h(x)2 | x /∈ X ′].

UsingEx∼Π[h(x) | x /∈ X ′] ≥ 0, we have

‖h‖2
2,Π ≥ Pr

x∼Π
[x ∈ X ′] · E

x∼Π
[h(x)2 | x ∈ X ′]

= Pr
x∼Π

[x ∈ X ′] · E
x∼Π′

[h(x)2].

But by the union bound

Pr
x∼Π

[x /∈ X ′] ≤
n
∑

i=1

Pr
xi∼Πi

[xi /∈ X ′
i] ≤ n · 1/(2n) = 1/2,

soPrx∼Π[x ∈ X ′] ≥ 1/2. Thus

2 · ‖h‖2
2,Π ≥ E

x∼Π′
[h(x)2] = ‖f |X ′ − g|X ′‖2

2,Π′ ,

completing the proof.2

Corollary 5.7 In the setting of the previous proposition, if
f is ǫ-concentrated up to orderd underΠ, thenf |X ′ is 2ǫ-
concentrated up to orderd underΠ′.

Proof: It suffices to observe that ifg : X → R is a function
of orderd, theng|X ′ is also a function of orderd. 2

We can now describe an extended learning algorithm which
works when the attribute spaces are mostly supported on sets
of polynomial cardinality:

Definition 5.8 We say that a finite probability space(X, π)
is (η, r)-boundedif there exists a subsetX ′ ⊆ X of cardi-
nality at most|X ′| ≤ r such thatPrx∼π[x /∈ X ′] ≤ η.

Our algorithm will learn whenever alln attribute sets are,
say,(ǫ/n, poly(n))-bounded. The first step of the algorithm
will be to determine a set of attribute values which contain
almost all of the probability mass.

Lemma 5.9 Let (X, π) be an (η, r)-bounded probability
space. LetZ be a set ofm = r ln(r/δ)/η samples drawn
independently fromπ. DefineY to be the set{x ∈ X :
x was sampled inZ}. Then with probability at least1 − δ,
the setY satisfiesPrx∼π[x /∈ Y] ≤ 2η.

Proof: In fact, we will prove the slightly stronger state-
ment that with probability at least1 − δ the setY satisfies
Prx∼π[x /∈ Y ∩X ′] ≤ 2η, whereX ′ is any set fulfilling the
(η, r)-boundedness condition of(X, π).

To prove the claim, we split the sampling procedure into
r epochs, where we drawln(r/δ)/η samples in each epoch.
Let Yi be the set of all atoms inX sampled among the first
i epochs, withY0 denoting the empty set. We will prove
that with probability at least1 − δ, the following holds for
all epochsi ∈ [r]: eitherYi−1 satisfiesPrx∼π[x /∈ Yi−1 ∩
X ′] ≤ 2η, or (Yi∩X ′)\Yi−1 6= ∅ (i.e., we see a “new” atom
from X ′ in theith epoch).

Let’s first note that satisfying the above conditions im-
plies that in the endPrx∼π[x /∈ Y ∩ X ′] ≤ 2η. This is
straightforward: if at any epochYi−1 satisfiesPrx∼π[x /∈
Yi−1∩X ′] ≤ 2η then we’re done becauseY ⊇ Yi−1. Other-
wise, in allr epochs we see a new atom fromX ′, and hence
at the end of the sampling we will have seenr distinct atoms
of X ′; then|X ′| ≤ r implies that our finalY ⊇ X ′.

Now to complete the proof let us bound the probability
that for a giveni ∈ [r] theYi−1 does not satisfyPrx∼π[x /∈
Yi−1 ∩ X ′] ≤ 2η and we do not see a new element ofX ′ in
theith epoch. Note that ifPrx∼π[x /∈ Yi−1∩X ′] > 2η, then
the fact thatPrx∼π[x /∈ X ′] ≤ η implies thatPrx∼π[x ∈
X ′ \ Yi−1] > η. So the probability that we do not observe
any element ofX ′ \ Yi−1 in ln(r/δ)/η samples is

Pr
x∼π

[x /∈ X ′ \ Yi−1]
ln(r/δ)/η ≤ (1 − η)ln(r/δ)/η

≤ e−η·ln(r/δ)/η = δ/r.

By applying the union bound, we see that there is probability
at mostδ that any of ther epochs fails, so we’re done.2

We now give our extended learning algorithm:

1. Draw a setZ1 of m1 unlabeled examples.

2. Draw a setZ2 of m2 labeled examples.

3. Delete fromZ2 any instance/label pair
where the instance contains an attribute
value not appearing inZ1.

4. Run the degree-d polynomial regression
algorithm onZ2.

200

Theorem 5.10 LetΠ = π1×· · ·×πn be a product distribu-
tion on the setX = X1 × · · · × Xn and assume each prob-
ability space(Xi, πi) is (ǫ/n, r)-bounded. WriteN = nr.
Let C be a class of functionsX → {−1, 1} each of which
is ǫ2-concentrated up to orderd. Setm1 = poly(N/ǫ) and
m2 = poly(Nd/ǫ). The above algorithm usespoly(Nd/ǫ)
time and examples and agnostically learns with respect toC
underΠ.

Proof: For simplicity we will equivalently prove that the al-
gorithm outputs a hypothesis with error at mostOpt+O(ǫ),
rather thanOpt + ǫ.

We first want to establish that with probability at least
1 − ǫ, the set of attributes observed in the sampleZ1 covers
almost all of the probability mass ofΠ. For eachi ∈ [n],
let X ′

i be the set of attribute values fromXi observed in at
least one of the samples inZ1. Using the fact that each
(Xi, πi) is (ǫ/n, r)-bounded, Lemma 5.9 implies that for
sufficiently largem1 = poly(N/ǫ) log(1/ǫ), eachX ′

i will
satisfyPrxi∼πi

[xi /∈ X ′
i] ≤ 2ǫ/n except with probability at

mostǫ/n. Applying the union bound, allX ′
i simultaneously

satisfy the condition with probability at least1−ǫ. We hence-
forth assume this happens. WritingX ′ = X ′

1 × · · · × X ′
n,

we note that, by the union bound,Prx∼Π[x 6∈ X ′] ≤ 2ǫ.

The second thing we establish is that we do not throw
away too many examples in Step 3 of the algorithm. We
have just observed that the probability a given example in
Z2 is deleted is at most2ǫ. We may assume2ǫ ≤ 1/2, and
then a Chernoff bound (andm2 ≫ log(1/ǫ)) easily implies
that with probability at least1 − ǫ, at most, say, two-thirds
of all examples are deleted. Assuming this happens, we have
that even after deletion,Z2 still contains at leastpoly(Nd/ǫ)
many examples.

We now come to the main part of the proof, which is
based on the observation that the undeleted examples inZ2

are distributed as i.i.d. draws from the restricted product dis-
tributionΠ′ gotten by conditioningΠ onX ′. Thus we are in
a position to apply our main learning result, Theorem 2.12.
The polynomial regression part of the above algorithm in-
deed usespoly(Nd/ǫ) time and examples, and it remains to
analyze the error of the hypothesis it outputs.

First, we use the fact that each functionf in C is ǫ2-
concentrated up to orderd to conclude that each function
f |X ′ in “C|X ′” is 2ǫ2-concentrated up to orderd. This uses
Proposition 5.6 and the fact that we may assume2ǫ ≤ 1/2.
Next, the guarantee of Theorem 2.12 is that when learning
the target classifiert (viewed as a functionX → {−1, 1} or
X ′ → {−1, 1}), the expected error underΠ′ of the hypothe-
sish produced is at mostOpt′ + O(ǫ), where

Opt′ = min
f ′∈C|X′

Pr
x∼Π′

[f ′(x) 6= t(x)].

By definition, there is a functionf ∈ C satisfying

Pr
x∼Π

[f(x) 6= t(x)] = Opt.

SincePrx∼Π[x /∈ X ′] ≤ 2ǫ, it is easy to see thatf |X ′ has
error at mostOpt+2ǫ ont underΠ′. ThusOpt′ ≤ Opt+2ǫ,

and we conclude that the expected error underΠ′ of h on t is
at mostOpt + 2ǫ + O(ǫ) = Opt + O(ǫ). Finally, the same
observation implies that the expected error underΠ of h on
t is at mostOpt + 2ǫ + O(ǫ) = Opt + O(ǫ).

We have thus established that with probability at least
1−2ǫ, the polynomial regression part of the above algorithm
outputs a hypothesis with expected error at mostOpt+O(ǫ).
It follows that the overall expected error is at mostOpt +
O(ǫ), as desired.2

5.3 Real-valued attributes

We next consider the particular case of learning with re-
spect to linear threshold functions, but when some of the at-
tributes arereal-valued. This case is relatively easily handled
by discretizing the ranges of the distributions and using the
previously discussed techniques. Our approach works for a
very wide variety of distributions onR; these distributions
need not even be continuous. We only need the distributions
to satisfy “polynomial boundedness and anti-concentration”
bounds.

Definition 5.11 We say that a distributionD over R is B-
polynomially boundedif for all η > 0, there is an intervalI
of length at mostpoly(B/η) such thatPrx∼D[x 6∈ I] ≤ η.

Definition 5.12 Given a real-valued random variablex with
distributionD, recall that theLévy (anti-)concentration func-
tion Q(x; λ) is defined by

Q(x; λ) = sup
t∈R

Pr
x∼D

[x ∈ [t − λ/2, t + λ/2]] .

We say thatD hasB-polynomial anti-concentrationif Q(D; λ) ≤
poly(B) ·λc for some positivec > 0. Note that ifD is a con-
tinuous distribution with pdf everywhere at mostB then it
hasB-polynomial anti-concentration (withc = 1 in fact).

Having polynomial boundedness and concentration is an
extremely mild condition; for example, the following famil-
iar continuous distributions are allB-polynomial bounded
and haveB-polynomial anti-concentration:Gaussianswith
1/B ≤ σ2 ≤ B; exponentialdistributions with1/B ≤
λ ≤ B; Laplacedistributions with scale parameter with
1/B ≤ b ≤ B; Pareto distributions with shape param-
eter 1/B ≤ k ≤ B; chi-squaredistributions with vari-
ance1/B ≤ σ2 ≤ B (for 1 degree of freedom, the anti-
concentration “c” needs to be1/2); etc.

(Furthermore, in most cases even the condition on the
parameter being in[1/B, B] can be eliminated. For exam-
ple, suppose the first coordinate has a Gaussian distribution
with standard deviationσ. With O(log(1/δ)) examples, one
can with probability at least1 − δ estimateσ to within a
multiplicative factor of2. Having done so, one can multi-
ply all examples’ first coordinate by an appropriate constant
so as to get a Gaussian distribution with standard deviation
in [1/2, 2]. Further, this does not change the underlying ag-
nostic learning problem, since the class of linear threshold
functions is closed under scaling a coordinate. For clarity of
exposition, we leave further considerations of this sort to the

201

reader.)

We now describe the effect that discretizing a real-valued
distribution can have with respect to functions of linear thresh-
old functions. It is convenient to switch from working with
a distribution onX and target functionX → {−1, 1} to just
having a distributionD onX ×{−1, 1}— see the discussion
after definition of agnostic learning in Section 1.1. As usual,
assume thatX = X1×· · ·×Xn is a product set and that the
marginal distribution ofD onX is a product distribution.

Suppose we have one coordinate with a real-valued dis-
tribution; without loss of generality, sayX1 = R, and write
D1 for the marginal distribution ofD on X1. When we re-
fer to a “linear threshold function” onX , we assume that the
“weight function” w1 : X1 → R for coordinate1 is just
w1(x1) = c1x1 for some nonzero constantc1.

Lemma 5.13 LetC denote the class of functions ofk linear
threshold functions overX . As usual, write

Opt = inf
f∈C

errD(f), whereerrD(f) = Pr
(x,y)∼D

[f(x) 6= y].

Consider discretizingX1 = R by mapping eachx1 ∈ R to
rdτ (x1), the nearest integer multiple ofτ to xi. WriteX ′

1 =
τZ and letD′ denote the distribution onX ′

1×X2×· · ·Xn×
{−1, 1} induced fromD by the discretization.7 Write Opt′

for the quantity analogous toOpt for D′. Then ifD1 hasB-
polynomial anti-concentration, it holds thatOpt′ ≤ Opt +
k · poly(B) · τΩ(1).

Proof: It suffices to show that for anyf ∈ C,

k · poly(B) · τΩ(1) ≥ |errD(f) − errD′(f)|

=

∣

∣

∣

∣

Pr
(x,y)∼D

[f(x) 6= y] − Pr
(x,y)∼D′

[f(x) 6= y]

∣

∣

∣

∣

.

Writing Π for the marginal ofD on X , we can prove the
above by proving

Pr
x∼Π

[f(x) 6= f(rdτ (x1), x2, . . . ,xn)] ≤ k ·poly(B)·τΩ(1) .

Sincef is a function of somek linear threshold functions,
by the union bound it suffices to show

Pr
x∼Π

[h(x) 6= h(rdτ (x1), x2, . . . ,xn)] ≤ poly(B) · τΩ(1)

for any linear threshold functionh. We can do this by show-
ing

Pr
x1∼D1

Y

[sgn(c1x1+Y) 6= sgn(c1rdτ (x1)+Y)] ≤ poly(B)·τΩ(1),

whereY is the random variable distributed according to the
other part of the linear threshold functionh. Note thatY and
x1 are independent becauseΠ is a product distribution. Now
since|x1−rdτ (x1)| is always at mostτ/2, we can only have
sgn(c1x1 + Y) 6= sgn(c1rdτ (x1) + Y) if

|c1x1 + Y | ≤ |c1|τ/2 ⇔ |x1 + Y /c1| ≤ τ/2.

7This can lead to inconsistent labels, which is why we switched
toD rather than have a target function.

It is an easy and well-known fact that ifx andy are indepen-
dent random variables thenQ(x + y; λ) ≤ Q(x; λ); hence

Pr
x1∼D1

Y

[|x1 + Y /c1| ≤ τ/2] ≤ Q(x1; τ/2).

ButD1 hasB-polynomial anti-concentration, soQ(x1; τ/t) ≤
poly(B) · τΩ(1), as needed.2

By repeating this lemma up ton times, it follows that
even if alln coordinate distributions are real-valued, so long
as they havepoly(n)-polynomial anti-concentration we will
suffer little error. Specifically (assumingk ≤ poly(n) as
well), by takingτ = poly(ǫ/n) we get that discretization
only leads to an additional error ofǫ.

Finally, note that if a distributionDi ispoly(n)-polynomially
bounded then its discretized version is(ǫ/n, poly(n/ǫ))-bounded
in the sense of Section 5.2; this lets us apply Theorem 5.10.
Summarizing:

Theorem 5.14 LetΠ = π1×· · ·×πn be a product distribu-
tion on the setX = X1 × · · · × Xn. For the finiteXi’s, as-
sume each is(ǫ/n, poly(n/ǫ))-bounded. For the realXi’s,
assume the associatedπi is poly(n)-polynomially bounded
and haspoly(n)-polynomial anti-concentration. LetC de-
note the class of functions of at mostk ≤ poly(n) linear
threshold functions overX . Then there is apoly(n/ǫ)k2/ǫ4

time algorithm which agnostically learns with respect toC
underΠ.

5.4 Mixtures of product distributions

So far we have only considered learning under distributions
D that are product distributions. In this section we show how
to handle the commonly-studied case of mixtures of product
distributions.

The first step is to show a generic learning-theoretic re-
duction: Roughly speaking, if we can agnostically learn with
respect to any one of a family of distributions, then we can
agnostically learn with respect to aknownmixture of distri-
butions from this family — even a mixture of polynomially
many such distributions. (In our application the family of
distributions will be the product distributions, but our reduc-
tion does not rely on this.) Although the following theorem
uses relatively standard ideas, we do not know if it has ap-
peared previously in the literature:

Theorem 5.15 Let D be a family of distributions over an
instance spaceX . There is a generic reduction from the
problem of agnostically learning under aknownmixture of
c distributions fromD to the problem of agnostically learn-
ing under a single known distribution fromD. The reduction
incurs a running time slowdown ofpoly(cT)/γ for an addi-
tional error ofγ, whereT denotes the maximum time needed
to computeD(x) for a mixture componentD.

Proof: Suppose we are agnostically learning (with respect to
some classC) under the distributionD which is a mixture of
c distributionsD1, . . . ,Dc with mixing weightsp1, . . . , pc.
We make the assumption that the learning algorithm knows
each of the mixing weightspi, each of the distributionsDi,

202

and can compute any of the probabilitiesDi(x) in time T .
We assume in the following that theDi’s are discrete distri-
butions, but the case of absolutely continuous distributions
could be treated in essentially the same way.

First, we claim that the algorithm can simulate learn-
ing under any of the single distributionsDi, with slowdown
poly(cT)/pi. This is a standard proof based on rejection
sampling: given an examplex, the algorithm retains it with
probability

ri(x) := pi
Di(x)

D(x)
, (1)

a quantity the algorithm can compute in timepoly(cT). One
can check that this leads to the correct distributionDi on in-
stances. The probability of retaining an example is easy seen
to be precisely1/pi, leading to the stated slowdown.

The main part of the proof now involves showing that
if the algorithm agnostically learns under eachDi, it can
combine the hypotheses produced into an overall hypothe-
sis which is good underD. We will deal with the issue of
running time (in particular, very smallpi’s) at the end of the
proof. LetOpt denote the minimal error achievable among
functions inC underD, and writeOpti for the analogous
quantity underDi, i = 1 . . . c. Since one could use the same
f ∈ C for eachDi, clearlyOpt ≥ ∑c

i=1 piOpti. By reduc-
tion, the algorithm produces hypothesesh1, . . . ,hc satisfy-
ing E[errDi

(hi)] ≤ Opti + ǫ.

We allow our overall algorithm to output arandomized
hypothesish. We will then show thatE[errD(h)] ≤ Opt+ǫ.
where the expectation is over the subalgorithms’ production
of thehi’s plus the “internal coins” ofh. Having shown this,
it follows that our algorithm could equally well produce a de-
terministic hypothesis, just by (randomly) fixing a setting of
h’s internal coins as its last step.

Assume for a moment that the subalgorithms’ hypothe-
ses are fixed,h1, . . . , hc. The randomized overall hypothesis
h : X → {−1, 1} is defined by takingh(x) = hi(x) with
probability exactlyri(x), where the probabilitiesri(x) are as
defined in (1). (Note that they indeed sum to1 and are com-
putable in timepoly(cT).) Writing t for the target function,
we compute:

E
h’s coins

[errD(h)]

= E
x∼D

[Pr
h’s coins

[h(x) 6= t(x)]]

= E
x∼D





∑

i:hi(x) 6=t(x)

ri(x)





= E
x∼D





∑

i:hi(x) 6=t(x)

pi(x)
Di(x)

D(x)





=
∑

x∈X

∑

i:hi(x) 6=t(x)

pi(x)Di(x)

=

c
∑

i=1

pi

∑

x:hi(x) 6=t(x)

Di(x) =

c
∑

i=1

pierrDi
(hi).

We now take the expectation over the production of the sub-
hypotheses and conclude

E
h
[errD(h)] =

c
∑

i=1

piE[errDi
(hi)] ≤

c
∑

i=1

pi(Opti + ǫ)

=

c
∑

i=1

piOpti + ǫ ≤ Opt + ǫ, (2)

as claimed.

It remains to deal with smallpi’s and analyze the run-
ning time slowdown. We modify the overall algorithm so
that it only simulates and learns underDi if pi ≥ γ/c. Thus
the simulation slowdown we incur is onlypoly(cT)/γ, as
desired. For anyi with pi < γ/c we use an arbitrary hypoth-
esishi in the above analysis and assume onlyerrDi

(hi) ≤ 1.
It is easy to see that this incurs an additional error in (2) of at
most

∑

i:pi<γ/c pi ≤ γ, as necessary.2

Combining Theorem 5.15 with, say, Theorem 3.4 (for
simplicity), we may conclude:

Theorem 5.16 LetD be anyknownmixture ofpoly(n) prod-
uct distributions over an instance spaceX = X1×· · ·×Xn,
where we assume|Xi| ≤ poly(n) for eachi. Then there is a
nO(k2/ǫ4)-time algorithm for agnostically learning with re-
spect to the class of functions ofk linear threshold functions
overX underD.

When the mixture of product distributions is not known
a priori, we can first run an algorithm for learning mixtures
of product distributions from unlabeled examples. For ex-
ample, Feldman, O’Donnell, and Servedio [FOS05] proved
the following:

Theorem 5.17 ([FOS05])LetD be an unknown mixture of
c = O(1) many product distributions over an instance space
X = X1 × · · · × Xn, where we assume|Xi| ≤ O(1) for
eachi. There is an algorithm which, given i.i.d. examples
fromD andη > 0, runs in timepoly(n/η) log(1/δ) and with
probability at least1− δ outputs the parameters of a mixture
of c product distributionsD′ satisfying‖D′ −D‖1 ≤ η.

(The theorem was originally stated in terms of KL-divergence
but also holds withL1-distance [FOS05].) In [FOS06] the
same authors gave an analogous result for the case when each
Xi = R and each product distribution is a product of Gaus-
sians with means and variances in[1/poly(n), poly(n)].

We conclude:

Theorem 5.18 LetD be anyunknownmixture ofO(1) prod-
uct distributions over an instance spaceX = X1×· · ·×Xn,
where we assume either: a)|Xi| ≤ O(1) for eachi; or b)
eachXi = R and each product distribution is a mixture of
axis-aligned (poly(n)-bounded) Gaussians. Then there is a
nO(k2/ǫ4)-time algorithm for agnostically learning with re-
spect to the class of functions ofk linear threshold functions
overX underD.

203

Proof: First use the results of [FOS05, FOS06] withη =

ǫ/nO(k2/ǫ4), producing a known mixture distributionD′ with
‖D′ − D‖1 ≤ ǫ/nO(k2/ǫ4). Then run the algorithm from
Theorem 5.18. The conclusion now follows from Proposi-
tion 5.1.2

6 Conclusions

In this work, we have shown how to perform agnostic learn-
ing under arbitrary product distributions and even under lim-
ited mixtures of product distributions. The main technique
was showing that noise sensitivity bounds under the uni-
form distribution on{0, 1}n yield the same noise sensitivity
bounds under arbitrary product distributions. The running
time and examples required by our algorithm are virtually
the same as those required for learning under the uniform
distribution on{0, 1}n.

While we have established many interesting scenarios for
which polynomial regression works, there is still significant
room for extension. One direction is to seek out new concept
classes and/or distributions for which polynomial regression
achieves polynomial-time agnostic learning. Our work has
dealt mostly in the case where all the attributes are mutually
independent; it would be especially interesting to get learn-
ing under discrete distributions that are far removed from this
assumption.

References

[BKS99] Itai Benjamini, Gil Kalai, and Oded Schramm.
Noise sensitivity of Boolean functions and ap-
plications to percolation. Publ. Math. de
l’IH ÉS, 90(1):5–43, 1999.

[CV95] Corinna Cortes and Vladimir Vapnik. Support-
vector networks.Machine Learning, 20(3):273–
297, 1995.

[FJS91] Merrick Furst, Jeffrey Jackson, and Sean Smith.
Improved learning of AC0 functions. In
Proc. 4th Workshop on Comp. Learning Theory,
pages 317–325, 1991.

[FOS05] Jonathan Feldman, Ryan O’Donnell, and Rocco
Servedio. Learning mixtures of product distri-
butions over discrete domains. InProc. 46th
IEEE Symp. on Foundations of Comp. Sci.,
pages 501–510, 2005.

[FOS06] Jonathan Feldman, Ryan O’Donnell, and Rocco
Servedio. Pac learning mixtures of gaussians
with no separation assumption. InProc. 19th
Workshop on Comp. Learning Theory, pages
20–34, 2006.

[GR06] Venkatesan Guruswami and Prasad Raghaven-
dra. Hardness of learning halfspaces with noise.
In Proc. 47th IEEE Symp. on Foundations of
Comp. Sci., pages 543–552, 2006.

[Hås01] J. Håstad. A slight sharpening of LMN.J. of
Computing and Sys. Sci., 63(3):498–508, 2001.

[Hoe48] Wassily Hoeffding. A class of statistics with
asymptotically normal distribution.Ann. Math.
Stat., 19(3):293–325, 1948.

[Kal06] Adam Kalai. Machine learning theory course
notes. http://www.cc.gatech.edu/∼atk/teaching/
mlt06/lectures/mlt-06-10.pdf, 2006.

[KKMS05] Adam Kalai, Adam Klivans, Yishay Mansour,
and Rocco Servedio. Agnostically learning
halfspaces. InProc. 46th IEEE Symp. on Foun-
dations of Comp. Sci., pages 11–20, 2005.

[KOS04] Adam Klivans, Ryan O’Donnell, and Rocco
Servedio. Learning intersections and thresholds
of halfspaces.J. of Computing and Sys. Sci.,
68(4):808–840, 2004.

[KR82] Samuel Karlin and Yosef Rinott. Applications
of Anova type decompositions for comparisons
of conditional variance statistics including jack-
knife estimates. Ann. Stat., 10(2):485–501,
1982.

[KSS94] Michael Kearns, Robert Schapire, and Linda
Sellie. Toward efficient agnostic learning.Ma-
chine Learning, 17(2):115–141, 1994.

[LBW95] Wee Sun Lee, Peter Bartlett, and Robert
Williamson. On efficient agnostic learning
of linear combinations of basis functions. In
Proc. 8th Workshop on Comp. Learning Theory,
pages 369–376, 1995.

[LMN93] Nathan Linial, Yishay Mansour, and Noam
Nisan. Constant depth circuits, Fourier trans-
form, and learnability. Journal of the ACM,
40(3):607–620, 1993.

[MOO05] Elchanan Mossel, Ryan O’Donnell, and
Krzysztof Oleszkiewicz. Noise stability of
functions with low influences: invariance and
optimality. In Proc. 46th IEEE Symp. on
Foundations of Comp. Sci., pages 21–30, 2005.

[MP69] Marvin Minsky and Symour Papert.Percep-
trons. MIT Press, 1969.

[O’D03] Ryan O’Donnell. Computational aspects of
noise sensitivity. PhD thesis, MIT, 2003.

[OS03] Ryan O’Donnell and Rocco Servedio. New de-
gree bounds for polynomial threshold functions.
In Proc. 35th ACM Symp. on the Theory of Com-
puting, pages 325–334, 2003.

[Per04] Y. Peres. Noise stability of weighted majority.
arXiv:math/0412377v1, 2004.

[Ste86] J. Michael Steele. An Efron-Stein inequality for
nonsymmetric statistics.Ann. Stat., 14(2):753–
758, 1986.

[Val84] Leslie Valiant. A theory of the learnable.Comm.
of the ACM, 27(11):1134–1142, 1984.

[vM47] Richard von Mises. On the asymptotic distribu-
tion of differentiable statistical functions.Ann.
Math. Stat., 18(3):309–348, 1947.

204

How Local Should a Learning Method Be?

Alon Zakai ∗
Interdisciplinary Center for Neural Computation

Hebrew University of Jerusalem
Jerusalem, Israel 91904

alon.zakai@mail.huji.ac.il

Ya’acov Ritov ∗
Department of Statistics

Hebrew University of Jerusalem
Jerusalem, Israel 91905

yaacov.ritov@huji.ac.il

Abstract

We consider the question of why modern machine
learning methods like support vector machines out-
perform earlier nonparametric techniques like k-
NN. Our approach investigates the locality of learn-
ing methods, i.e., the tendency to focus mainly on
the close-by part of the training set when construct-
ing a new guess at a particular location. We show
that, on the one hand, we can expect all consis-
tent learning methods to be local in some sense;
hence if we consider consistency a desirable prop-
erty then a degree of locality is unavoidable. On
the other hand, we also claim that earlier meth-
ods like k-NN are local in a more strict manner
which implies performance limitations. Thus, we
argue that a degree of locality is necessary but that
this should not be overdone. Support vector ma-
chines and related techniques strike a good balance
in this matter, which we suggest may partially ex-
plain their good performance in practice.

1 Introduction
It is commonly seen in practice that modern methods in ma-
chine learning – such as kernel machines and more specifi-
cally support vector machines – outperform older techniques
in nonparametric statistics such as k-NN [for a concrete ex-
ample, see, e.g., Joa98]. The main approaches to explaining
this phenomenon are margin-based bounds on the general-
ization error and that margin maximization in effect mini-
mizes the VC dimension, again, arriving at a favorable bound
on the generalization error [Vap98, STC00]. In this work we
consider an alternative approach to investigating this matter,
in hopes of showing the underlying issues in a different light.

We will focus on local learning, i.e., the property of
a learning method that it uses mainly the close-by part of
the training set to construct new guesses. That is, when
an estimate is generated at a point x using a training set
Sn = {(xi, yi)}i=1..n (i.e., we are trying to guess a corre-
sponding value of y for x, using x and the training set), then
a local method is one that is influenced mostly by the points

∗We would like to acknowledge support for this project from the
Israel Science Foundation as well as partial support from NSF grant
DMS-0605236.

(xi, yi) for which xi is close to x. Many classical meth-
ods in nonparametric statistics are clearly of this sort, e.g.,
k-NN. This is often stated as a detriment of such methods,
in particular since local learning is susceptible to the curse
of dimensionality – in high-dimensional spaces, one needs a
great many points in the training set in order for a sufficient
amount to end up close-by to the point x currently being es-
timated. On the other hand, methods like support vector ma-
chines appear non-local in their definition – the separating
hyperplane is determined by the entire training set, and fur-
thermore does not depend on the particular point we intend
to estimate at – and thus one might suspect that the superior
performance of support vector machines and related tech-
niques is connected to this matter.

However, whether this is the case is not immediately ob-
vious. In fact, we might suspect that many kernel machines
behave locally: consider that a typical kernel machine can
be written as

∑
i αiyik(xi, x), where k is a kernel function,

e.g., the RBF kernel kRBF(x, x′) = exp(−γ||x− x′||2) (we
do not write the sign operation, which would appear here if
our goal is classification and not regression, but the issue is
the same in that case). This appears outwardly similar to
weighted k-NN, whose general form is

P
i yis(xi,x)P
i s(xi,x)

, where
the sum is taken over the K nearest neighbors of x and s is a
similarity measure; in fact, we can take s = kRBF. Also sim-
ilar in form is another classical statistical technique, kernel
estimators, which can be written as

P
i yik(||xi−x||)P
i k(||xi−x||)

where
k : R→ R has compact support. It appears that the main dif-
ference between kernel machines and the earlier techniques
lies in the coefficients; for kernel machines, αi is determined
in a manner based on the entire training set, and not just the
local subset of it. Perhaps, then, this might lead to non-local
behavior of some sort, and in conclusion it is not immedi-
ately obvious whether kernel machines behave locally or not.
We are therefore in need of an analysis to give us an answer.

For convenience, we will from now on refer to kernel ma-
chines as ‘modern methods’; we mean mainly support vec-
tor machines and related techniques, specifically, ones that
use both maximal-margin separation and the ‘kernel trick’
[Vap98], but to a lesser degree also boosting [FS99], which
similarly appears to have good performance due to margin
maximization [SFBL97]. By ‘classical methods’ we will
refer to older techniques studied in the statistical literature,
the prime examples of which are, as mentioned in the previ-
ous paragraph, k-NN and kernel estimators; another example

205

is local regression [CL95]. Using this terminology, our goal
is to explain, at least in part, the performance advantage of
modern methods over classical ones.

As we have seen, we are in need of an analysis to tell us
whether modern methods behave locally or not. One such
analysis was carried out in [BDR06], with the conclusion
that kernel machines do in fact behave locally in some sense.
If so, then it might appear that being local cannot explain
the performance advantage of modern methods over classi-
cal ones, since apparently both approaches have that prop-
erty. We will argue against this notion, while at the same
time agreeing with the results in [BDR06]. Specifically, we
will first show that indeed both modern and classical meth-
ods behave locally in some sense, but that the underlying
cause is the property of consistency, i.e., that the method is
able to successfully learn given any distribution (we leave a
formal definition to the next section). Importantly, however,
classical methods are local in a far stricter manner, and we
will show that such strict locality implies performance lim-
itations. Thus, a degree of locality is necessary for consis-
tency, but is detrimental if taken to excess. We hypothesize
that modern methods in fact strike a good balance in this mat-
ter, which may help to explain their superior performance.

In more general terms, based on our results we will argue
in the discussion (Section 7) that the challenge in devising
useful learning methods is to combine a local aspect, which
is necessary for consistency, with a global aspect, which is
useful for improving performance; the prime example of such
a performance-improving global aspect is of course maximal-
margin separation. To see this point, consider first that k-NN
is defined in a simple manner that immediately ensures it is
local (from its very definition), which allows it to be consis-
tent, as we will see, with little additional work. However,
it is hard to incorporate into such a local technique a non-
local regularization method like maximal-margin separation.
On the other hand, if we start with a method using maximal-
margin separation then it is not trivial to ensure that it be-
haves locally, which we will see is a precondition for con-
sistency. In other words, we want our learning methods to
(1) be local, so that they may be consistent, and (2) apply
a global regularization method, since this improves perfor-
mance in practice. Devising a method having both of these
properties at the same time is not trivial to achieve, but sup-
port vector machines and related methods do manage to do
so: on the one hand they utilize maximal-margin separation,
while on the other via the ‘kernel trick’ they end up having
sufficiently local behavior in order to be consistent (assum-
ing we choose an appropriate kernel and so forth). We will
discuss this argument more at length in the discussion at the
end of this work.

Technically speaking, the analysis that we conduct in or-
der to arrive at the conclusions just mentioned is based on
definitions inspired by those in [ZR07]. The main differ-
ence from that work is that local behavior was defined there
by comparing a method’s response on the entire training set
to the ‘local training set’, which contains only the close-by
points. This approach has the advantage of having practi-
cal applications in that it can answer what might occur if we
‘localize’, say, a support vector machine (i.e., show it only
close-by points, as done in k-NN). However, the comparison

of a method’s response on two training sets of different size
(the local one is in all reasonable cases smaller) has the dis-
advantage that it is hard to talk about subtle degrees of local-
ity, since the change in the size of the training set introduces
a source of variability. Our goal in the present work is in
fact to speak about such differences of degree. We therefore
define locality differently, by considering changes to far-off
points instead of removing them from the training set, which
keeps the size of the training set fixed. Why this is helpful
will become clear later on.

The structure of the rest of this work is as follows. In
Section 2 we describe the formal setting of the problem and
lay out notation. In Section 3 we define locality and other
concepts and give an overview of our results. In Section 4
we present our results for consistency and its connection to
weak locality. In Section 5 we turn to strict locality and its
drawbacks. In Section 6 we deal with the application of our
results to classification. Finally, in Section 7 we summarize
and discuss our results.

2 Formal Setting
We now complete the formal description of the setting. We
are given an i.i.d sample Sn = {(xi, yi)}i=1..n from some
distribution P ; then a new (independent) pair (x, y) is drawn
from the same P and our goal is to predict y when shown
only x. Our prediction (also called estimate, or guess) of y
is written f(Sn, x), some measurable function that depends
both on the training set and the point to be estimated (note
that this notation, where the training set and new observation
are of equal standing as inputs to f , is slightly atypical, but
is very convenient in our setting, as will become clear later).
We call f a learning method (sometimes method or estima-
tor); note that it can produce guesses for any size training
set and any x. One specific context is that of classification
(also called pattern recognition) where y ∈ {−1,+1}; we
call learning methods in this context classifiers and call y the
class. While our results apply to classification, we will not
focus on it in most of this work, since a regression-type set-
ting is simpler to deal with. Later on, in Section 6, we will
show how to apply our results to classification.

Our goal is to estimate f∗(x) = E(y|x), that is, the ex-
pected value of y conditioned on x, or the regression of y on
x. Our hope is that f(Sn, x) is close to f∗(x). We say that f
is consistent on a distribution P iff

Ln,P (f) ≡ ESn,x∼P |f(Sn, x)− f∗(x)| −→
n→∞

0

where the expected value is taken over all training sets Sn
and observations x both distributed according to P . We will
omit P from Ln,P when the distribution is clear from the
context, and we will generally further shorten our notation
to write expressions of the form

Ln(f) ≡ ESn,x |f(Sn, x)− f∗(x)|
when, again, the distribution is clear from the context. (Note
that the choice of the absolute value in the Ln loss – i.e., the
L1 norm – is only for convenience; our results hold in the
more typical L2 norm as well.)

If a method is consistent on all P then we call it con-
sistent (this is sometimes called universal consistency). Im-
portantly for us, methods like support vector machines and

206

boosting are consistent [Ste02, Zha04], or at least can be if
the parameters are chosen accordingly. In fact such choices
often turn out to lead to good performance in practice, and
therefore we are interested in consistent versions of modern
methods. We will return to this matter in the discussion.

The following notation will be used. Denote by µP (or
just µ, if P is clear from the context) the marginal measure
on x of a distribution P . We denote random variables by, for
example, (x, y) ∼ P and Sn ∼ P where the latter indicates
a random i.i.d sample of n elements from the distribution P .
We will often abbreviate and write x ∼ P where we mean
x ∼ µP . To prevent confusion we always use x and y to
indicate a pair (x, y) sampled from P .

As already implied, we write expected values in the form
Ev∼VH(v) where v is a random variable distributed accord-
ing to V . We denote probabilities by, e.g., Pv∼V (U(v)),
which is the probability of an event U(v) taken over a ran-
dom variable v. In both cases we will omit V when it is clear
from the context.

For any set B ⊆ X , denote by PB the conditioning of P
on B, that is, the conditioning of µP on B (and the limiting
of f∗’s domain to B). We denote Bx,r = {x′ ∈ Rd :
||x − x′|| ≤ r}, the ball of radius r around x (using the
Euclidean norm). Let Px,r = PBx,r .

Finally, we make the following assumptions which are
mainly for convenience. Our distributions P are on (X,Y)
where X ⊂ Rd, Y ⊂ R (i.e., we work in Euclidean spaces).
We assume that X,Y are bounded

sup
x∈X
||x|| , sup

y∈Y
|y| ≤M1

for some M1 > 0 which is the same for all distributions.
Thus, when we say ‘all distributions’ we mean all distri-
butions bounded by the same value of M1. We also as-
sume that our learning methods return bounded responses,
|f(Sn, x)| ≤ M2 for some M2 > 0.1 Let M be a constant
fulfilling M ≥M1,M2.

3 Definitions and Overview
We will now define the main concepts that concern us, start-
ing first with some convenient notation. For any training set
Sn = {(xi, yi)} and values x ∈ X , r ≥ 0 , {ỹi} ∈ Y n, let

Sn(x, r, {ỹi}) ={ (
xi , 1{||x− xi|| ≤ r}yi + 1{||x− xi|| > r}ỹi

) }
That is, Sn(x, r, {ỹi}) does not change the locations xi, and
has the original y values yi close-by to x (up to distance r),
while replacing far-off labels with ỹi. We can now define one
sense of locality: we call a method f local on a distribution
P iff there exists a sequence {Rn}, Rn ↘ 0, for which

E{xi},x sup
{yi},{eyi} |f(Sn, x)− f(Sn(x,Rn, {ỹi}), x)| −→

n→∞
0

1Note that this is a minor assumption since for essentially all
modern and classical methods we have supx |f(Sn, x)| ≤ C ·
maxi |yi| for some C > 0, and the yi values are already assumed to
be bounded. Furthermore, we are concerned with consistent meth-
ods, i.e., that behave similarly to f∗ in the limit, and f∗ is bounded.

(Here Sn = {(xi, yi)}, following our usual notation, i.e., Sn
is constructed from {xi} in the expectation and {yi} in the
sup.)

This definition is fairly straightforward: a method is lo-
cal if, asymptotically speaking, it returns very similar re-
sults when we change far-off labels. Thus, the method is
influenced mainly by the close-by part of the training set,
which is the intuition behind a local method. Note that, since
Rn → 0, in effect the method is influenced only by the lo-
cal part of the training set in a strong sense. Note also that
the definition speaks of locality on a single distribution P ; as
with consistency, if a method f is local on all P then we say
that f is local (i.e., if P is not specified, we mean all P). We
will use this convention with other definitions as well.

It turns out that there are more useful ways to define lo-
cality, for reasons which we will see later. One such defini-
tion of locality is weaker than that given before, and one is
stronger. We start with the weaker:

Definition 1 Call a method f weakly local on a distribution
P iff, for every distribution P̃ for which µP = µ eP , there
exists a sequence {Rn}, Rn ↘ 0 for which

E{xi},xE{yi}∼P | {xi} , {eyi}∼ eP | {xi}
|f(Sn, x)− f(Sn(x,Rn, {ỹi}), x)| −→

n→∞
0

(Here {yi} ∼ P | {xi} means that each yi has distribution
P conditioned on xi.)

Thus, a weakly local method is one which, if we replace
far-off labels with labels from another distribution, is asymp-
totically not influenced by that change (note that we keep µ,
the measure on x, fixed; we care only about changes to y
values). This definition is weaker than the one given before
in that instead of the supremum over all y, we sample alter-
nate y values from a fixed distribution. However, since we
require that this property occur for all distributions P̃ , we
still have the essential behavior of being most influenced by
the close-by part of the training set.

In one of our main results we will see that all consistent
learnings methods are in fact very close to being weakly lo-
cal (we will require a minor technical relaxation of the defini-
tion given above). Hence this is true for, e.g., support vector
machines, assuming the kernel and parameters ensure con-
sistency.

It is obvious that classical methods like k-NN and kernel
estimators are weakly local, both because they are consistent
[see DGKL94, GKP84, respectively], and by direct inspec-
tion, see Section 5. However, they seem to be local in a
stronger sense than that appearing in weak locality. In fact
they have the following stronger property:

Definition 2 Call a method f strictly local on a distribution
P iff there exists a sequence {Rn}, Rn ↘ 0, for which

P{xi},x

(
∀{yi}, {ỹi} f(Sn, x) = f(Sn(x,Rn, {ỹi}), x)

)
−→
n→∞

1

Thus, a strictly local estimator is one for which we can re-
place far-off labels and this, with probability going to 1,
will not affect our estimates at all (this is easily seen to be

207

stronger than the original definition of locality due to the
boundedness assumption on f). Note that we can consider
stricter notions of locality, however, this definition is strict
enough, since classical methods fulfill it.

We will see later in Section 5 that, unlike classical meth-
ods, many (if not all) modern methods are not strictly local,
and that this has potentially important consequences, since
strictly local methods have performance limitations.

In [ZR07] similar definitions appeared. In that work, lo-
cal behavior was defined by comparing f ’s response to the
response it would have given had far-off points been removed
from the training set, whereas in the definitions given above
we consider changes to their y values instead. As mentioned
in the introduction, the reason for this is the need to consider
varying degrees of locality. In our definitions, we can either
change the y values to values sampled from a fixed distribu-
tion (weak locality) or consider all possible changes (local-
ity, and, in a stronger sense, strict locality). We will see that
these differences can in fact be of importance. A further rea-
son for preferring our definitions over ones in which far-off
examples are removed is that the latter approach changes the
size of the training set, and in a data-dependent manner. This
introduces a source of variability which then makes it hard to
talk about concepts like strict locality, where we require that
with high probability there be no change in the response; if n
changes, this itself may cause an alteration (e.g., this occurs
in the common case where a regularization constant is used
whose value depends on n). Alternatively, we might have re-
moved a fixed number of far-off observations depending on
n (as in k-NN, in fact), but this causes other inconveniences
in that the radius in which the remaining observations lie is
now a random variable (which is, as before, a source of vari-
ability). Replacing far-off y values, as we have chosen to do,
therefore seems the most productive choice.

We now survey other related work. Research regarding
locality was done in the context of learning methods that
work by minimizing a loss function. Such loss functions can
be ‘localized’ by re-weighting them so that close-by points
are more influential; see [BV92], [VB93] for such an ap-
proach in the setting of Empirical Risk Minimization [ERM;
Vap98] and [CL95] and references therein for the specific
case of linear regression; see [AMS97] for a survey of appli-
cations in this area. The approach we follow differs from this
one in that we focus on consistency in the sense of asymptot-
ically arriving at the lowest possible loss achievable by any
measurable function – i.e., in the nonparametric sense – and
not in the sense of minimizing the loss within a set of finite
VC dimension. The nonparametric sense is, we believe, the
one most relevant to locality, and the best context in which
to compare modern and classical methods.

We now briefly summarize our two main results. First,
regarding the connection between consistency and weak lo-
cality, let us consider now a property weaker than consis-
tency. Define the means of f and f∗ by

En(f) ≡ En,P (f) ≡ ESn,xf(Sn, x)

E(f∗) ≡ EP (f∗) ≡ Exf∗(x) = ExE(y|x) = Ey

the latter expression which is just the global mean of y, and
define f, f∗’s Mean Absolute Deviations (MADs) by

MADn(f) ≡ MADn,P (f) ≡ ESn,x |f(Sn, x)− En(f)|
MAD(f∗) ≡ MADP (f∗) ≡ Ex |f∗(x)− E(f∗)|

(we prefer the MAD over the variance due to the choice of
the L1 norm). We define

Definition 3 Call a method f Weakly Consistent in Mean
(WCM) iff there exists a function H : R → R, H(0) = 0,
limt→0H(t) = 0, for which, ∀P ,{

lim supn→∞ |En(f)− E(f∗)|
lim supn→∞MADn(f)

}
≤ H (MAD(f∗))

(Note that the same H is used for all P .)
A WCM learning method is required only to do ‘reason-

ably’ well in estimating the global properties of the distri-
bution – the mean and MAD, which are two scalar values –
in a way that depends on the MAD, i.e., on the difficulty;
we only require that performance be good when the learn-
ing task is overall quite easy, in the sense of f∗(x) being
almost constant. Note that when H(MAD(f∗)) ≥ 2M we
require nothing of f for such f∗ (since |f |, |f∗| ≤ M), and
that also for small MAD(f∗) we may allow the MAD of f to
be significantly larger than that of f∗ (consider, for example,
H(t) = c · (

√
t+ t) for large c > 0).

It is easy to see that WCM is weaker than consistency
and implied by it. Assuming consistency,

|En(f)− E(f∗)| =
∣∣ESn,x(f(Sn, x)− f∗(x)

)∣∣
≤
∣∣ESn,x |f(Sn, x)− f∗(x)|

∣∣ (1)

= |Ln(f)| → 0

(note that here even H(t) ≡ 0 would have worked), and

lim sup
n

MADn(f) = lim sup
n

ESn,x |f(Sn, x)− En(f)|

≤ lim sup
n

{
ESn,x |f(Sn, x)− f∗(x)|

+ Ex |f∗(x)− E(f∗)|

+ |E(f∗)− En(f)|
}

= MAD(f∗)

using the consistency of f and (1); thus, H(t) = t shows
that the WCM property holds for all consistent methods.

We can now ask, what is missing in WCM that is present
in consistency? Since WCM is a ‘global’ property (con-
cerned only with two scalar values that are functions of the
entire space), it seems apparent that what is missing in WCM
is some ‘local’ aspect, i.e., of correctly learning in each small
area separately. We will see that in fact a property very sim-
ilar to weak locality can fill that role; we will call that def-
inition Uniform Approximate Weak Locality (UAWL). We
will then prove that consistency is logically equivalent to
the combination of UAWL and WCM. From our definitions
it will be easy to see that the UAWL and WCM properties
are ‘independent’ in the sense that neither implies the other.
Thus, we can see consistency as comprised of two indepen-
dent properties, which might be presented as

Consistency ⇐⇒ UAWL ⊕WCM

208

Thus, our first conclusion is that a form of local behavior is
fundamental to consistency; any consistent method must be
in a sense local, no matter how it is defined. In fact, the dif-
ference between consistency and locality comes down to the
additional requirement in consistency that we also are not far
from estimating global properties of the distribution, as for-
malized by the WCM property.2 This means that if we start
with a method defined in an explicitly local manner, like k-
NN, then we get ‘for free’ the property of UAWL. Then all
we need to do to get consistency is to ensure the WCM prop-
erty, which is relatively simple (we just need the scalar value
representing our global mean to converge to the accurate one,
and our MAD to not be too large). Since consistency is a de-
sirable property, this explains some of the attractiveness of
classical methods: achieving consistency with them is rela-
tively simple.

Our second main result will show the drawbacks of this
simplicity of classical methods, and will concern strict local-
ity. To show the limitations of strict locality, we define the
following property: call a method g preferable to another
method f , over a set of distributions P , iff, for every P ∈ P ,

Ln(g) < Ln(f)

for large enough n (possibly depending on P). That is, no
matter what the true distribution is out of those in P , g is
eventually better than f . Our claim is then that, for ev-
ery strictly local method f , we can always construct a non-
strictly local g which is preferable to f . For convenience we
will show this on a specific example, but argue that the result
is a quite general one.

4 Weak Locality and Consistency
As hinted at before, it turns out that a slight complication
of our definition of weak locality is necessary. To present
the improved definition, we start with some preparatory no-
tation. For any q ≥ 0 and distribution P , let

f̄q(Sn, x) = Ex′∼Px,qf(Sn, x′)

That is, f̄q applies a ‘smoothing’ operation performed around
the x being estimated (recall that Px,q is P conditioned on
the ball of radius q around x). Note that if q = 0 then we
interpret the expected value as a delta function and we get
f̄0 = f . Note also that we require the actual unknown dis-
tribution P in the definition of f̄q , i.e., f̄q cannot be directly
implemented in practice – f̄q is a construction for theoretical
purposes.

We define the following set of sequences:

T = {{Tn} : Tn ↘ 0}

and, for any sequence T = {Tn} ∈ T , we define the set of
its infinite subsequences and selection functions on them by

R(T) = {{Rn} : {Rn} ⊆ T , Rn ↘ 0}

Q(T) = {Q : T → T : Q(Tn) = o(Tn)}
2Note that we need both the mean and the MAD to behave in an

appropriate way, as appearing in the definition of the WCM prop-
erty, because if only the mean is accurate then due to the variance
we may estimate the global properties very poorly.

We now motivate these definitions. First, regarding T :
instead of allowing any possible value in [0,∞) for Rn and
Q, we limit them to a countable set T . The reason for this is
that due to [0,∞) being an uncountable set it is not clear to
the authors if additional conditions are not required to prove
our results in that case. In any event, a countable set of pos-
sible values is of sufficient interest for any practical learning-
theoretical purpose, since we end up using only a countable
number of Rn, Q values (since n ∈ N). Note that the set
of possible values T can be chosen in whatever manner is
desired, so long as this is done in advance.
R(T) contains localizing sequences, sequences of radii

that determine how far off we alter the data shown when we
perform Sn(x,Rn, {ỹi}). We require thatRn ↘ 0, as we are
interested in learning methods that focus on the truly local
part of the training set, i.e., having radius 0 asymptotically.
Q(T) contains functions of the possible values T that

become negligibly small when Tn is small. We will use the
values Q(Rn) to determine radii on which to smooth, via
Q(Rn), which we might call the smoothing radius; note
that since Q(Rn) = o(Rn), we smooth on a radius much
smaller than Rn, hence this is a fairly minor operation.

Finally, we define

R+(T) = {{Rn} : {Rn} ⊆ T}

Q+(T) = {Q : T → T}
which are the same as before, but without the requirement
of converging to 0. We now arrive at our main definition for
this section, whose description is unavoidably technical:

Definition 4 Call a learning method f Uniformly Approxi-
mately Weakly Local (UAWL) iff

∀P , P̃ , µP = µ eP
∀T ∈ T
∃Q ∈ Q(T)

∀Q′ ∈ Q+(T) , Q′ ≥ Q
∃{Rn} ∈ R(T)

∀{R′n} ∈ R+(T) , R′n ≥ Rn
E{xi},xE{yi}∼P | {xi} , {eyi}∼ eP | {xi}
|f(Sn, x)− f̄Q

′(R′
n)(Sn(x,R′n, {ỹi}), x)| −→

n→∞
0

(Here the expression R′n ≥ Rn simply implies an inequality
for the entire series, i.e., for all n. Q′ ≥ Q impliesQ′(Tk) ≥
Q(Tk) for all k.)

Thus, a UAWL method returns similar values even when
we replace far-off data with different values of y; essentially
the same idea as with weak locality, but allowing for mi-
nor smoothing, and requiring uniformity in Q,Rn. With
a UAWL method, loosely speaking, for any large enough
Q,Rn we get local behavior. Note that the notion of Rn
being large enough is a natural one since taking Rn to 0 very
quickly is problematic (doing so may lead to us getting few
or no points in radius Rn, i.e., few or no points from the
important distribution).

The reason for including smoothing in this definition is
that, if all we assume is that learning methods are measurable

209

(and not smooth in some strong sense), then odd counterex-
amples exist to the connection between locality and consis-
tency; see [ZR07] for details. By incorporating smoothing
in our definition we remove the need to require it of the
learning methods we consider, which lets us apply our re-
sults to any method known to be consistent. The reason for
the second new aspect in this definition, that of allowing all
large-enough Q′, R′n, is that this leads to an exact equiva-
lence with consistency, as we will see in Theorem 5; further-
more, it would be odd for the locality of a method to depend
much on the specific Q,Rn used for it. To make the mat-
ter concrete, note that the proof of Theorem 5 requires using
the same Q,Rn over multiple distributions; without allow-
ing all large-enough Q′, R′n there exist odd counterexamples
in which each distribution has some appropriate Q,Rn but
none exist that are appropriate for all of them simultaneously.

Our result for consistency is the following:

Theorem 5 A learning method f is consistent iff f is both
UAWL and WCM.

We prove the ⇐ direction, that UAWL and WCM im-
ply consistency, in Appendix A. Note that it is clear from
the proof that we can replace P̃ in the definition of UAWL
with all distributions having y constant, but we believe the
definition given before is clearer.

For the⇒ direction, that consistency implies UAWL and
WCM, it is immediately obvious that consistency implies
WCM. Regarding UAWL, a proof of a slightly simpler claim
(without uniformity inRn, Q) appears in [ZR07]; using meth-
ods from other proofs in [ZR07], it is trivial to extend the
proof to showing uniformity as well. For completeness we
give a brief sketch of the proof appearing there: for fixed r, q
instead of Rn, Q, we can use the consistency of f on the ef-
fective distributions seen (i.e., distributions that are altered
to P̃ far away from x) to see that the appropriate loss con-
verges to 0, for every x separately. Since, again for every x,
the overall loss converges to 0, this also occurs in the area
with radius q, which is the one relevant to us. We then take
Rn, Q to 0 slowly enough to complete the proof.

Theorem 5 can be summarized as follows:
Consistency ⇐⇒ UAWL ⊕WCM

Here we use the symbol⊕ because each of the two properties
UAWL and WCM can exist without the other: consider the
following two methods,

fy(Sn, x) =
1
n

n∑
i=1

yi f0(Sn, x) = 0

fy (called thus because it considers only the y values) is
WCM, since En(fy) → E(f∗) and clearly fy’s MAD con-
verges to 0. (In fact, fy is WCM with H ≡ 0, i.e., in the
strongest sense. That is, there are even ‘weaker’ methods that
are WCM.) On the other hand, fy is clearly not UAWL (con-
sider, e.g., two distributions having f∗(x) ≡ −1, f∗(x) ≡
+1). On the other hand, f0 is trivially UAWL, but not WCM.

5 Strict Locality
In this section we will deal with strict locality and its conse-
quences.

It is immediately clear that kernel estimators are strictly
local (use Rn equal to the bandwidth, and recall that k has
compact support). For k-NN things are less obvious, but still
fairly simple: k-NN is consistent if the number of neighbors
kn fulfills kn → ∞, knn → 0 [DGKL94]. From inspecting
the proof of consistency it is clear that these conditions en-
sure that the kn neighbors will fall in an area of radius going
to zero, with probability going to 1. Thus (unsurprisingly) k-
NN is strictly local: just like kernel estimators, it completely
ignores far-off points, but it does so with very high probabil-
ity instead of certainty (since there is always a chance, even
though it becomes negligibly small, that we will need to look
far for the kn nearest neighbors).

We have seen that any consistent method must be in some
sense local, specifically, UAWL. We can now ask, must a
consistent method also be strictly local? It turns out that the
answer is no. Consider, for example, kernel ridge regression
[SGV98], which can be written in the kernel-induced space
(via a transformation φ) as

L(w) =
1
n

∑
i

(w′φ(xi)− yi)2 + λ||w||2 (2)

It is clear that under mild regularity conditions we will not
get strict locality, since any change to the yi values can cause
a change to the resulting w, as is obvious from looking at the
solution to (2); thus, kernel ridge regression is not strictly
local. It appears clear that a similar phenomenon occurs for
other types of kernel machines, as well as methods such as
boosting (but we do not supply a formal proof), simply be-
cause there is always the possibility of influence by far-off
points (as is also clear from these methods minimizing a
global loss function which is an average of losses at individ-
ual points; any change to a point influences the overall loss,
with potential consequences on the entire space). While the
influence of far-off points wanes as n converges to infinity –
which is necessary, as we have seen, in order for the method
to be consistent – the far-off points are not simply ignored as
with classical methods like k-NN. There is always the possi-
bility of being influenced by the farther points, even if this is
a rare occurrence.

We will now see that the property of potentially being
influenced by far-off points can, in fact, be important. The
reason is that strictly local methods have performance limi-
tations. As is well known, to talk in a meaningful way about
performance, we cannot make comparisons on the set of all
distributions [see, e.g., DGL96]. We therefore consider lim-
ited sets of distributions, as is done in the minimax setting in
statistics. We first begin with a brief reminder of the setting
and how minimax losses can be achieved.

Assume for simplicity a Lipschitz set of functions f∗ ∈
L(L) on [0, 1]d,

|f∗(x1)− f∗(x2)| ≤ L · ||x1 − x2||
and take x uniform on X = [0, 1]d; let y = f∗(x) + ε, ε ∼
N(0, σ2). Consider a simple kernel estimator with radius r,

f(Sn, x) =
∑
i 1{||xi − x|| ≤ r}yi∑
i 1{||xi − x|| ≤ r}

For every x0, we receive on average on the order of nrd
points in radius r to estimate f∗(x0), so we can estimate

210

Ef∗(x) in that area up to precision σ√
nrd

. It is also clear that
Ef∗(x) differs from f∗(x0) by up to Lr, giving us roughly
Ln(f) ≤ σ√

nrd
+ Lr, an example of a bias-variance trade-

off (the bias is due to estimating Ef∗(x) on Bx0,r and not
f∗(x0) directly, and the variance is due to having only the
order of nrd points). From this simple analysis it can be
concluded that a choice of r = rn = O(n−1/(d+2)) is appro-
priate, and that this will give us a loss ofO(n−1/(d+2)). This
is in fact the minimax rate, i.e., the best-possible achievable
rate, as shown in [Sto80, Sto82].

Importantly, notice how we must consider close-by points
in order to arrive at the rate: if we look only at points at dis-
tance r or more, then f∗(x0) may differ by up to Lr and
we would not be able to overcome this issue in a minimax
sense. Furthermore, it is also obvious from the analysis that
the close-by points are enough in order to achieve the rate,
i.e., to be up to a constant factor of the actual minimax loss.
This can be directly seen by the equality of the bias and vari-
ance factors when we minimize their sum.

Thus, even a strictly local method like kernel estimators
can achieve the minimax rate; in that sense, there is nothing
to improve upon. In the example above the rate is n−1/(d+2),
and kernel estimators can achieve it, but we have no assur-
ance that they do so with a low constant factor; since such
constant factors are hard to analyze, they are for the most part
ignored in statistics. While this is reasonable in the sense that
the rate is arguably the most important aspect in an asymp-
totic analysis, in actual practice – i.e., when working with
some fixed finite n – the constant factor can be critical, since
for fixed finite n we do not care about the asymptotic rate but
only about the actual value of Ln. We will now make such a
comparison of the actual values of Ln and claim that strictly
local methods are limited in their ability to minimize it.

As defined previously, call a method g preferable to an-
other method f , over a set of distributions P , iff, for every
P ∈ P ,

Ln(g) < Ln(f)

for large enough n (possibly depending on P). We will now
see that in fact it is simple to construct a method preferable
to any strictly local method, thus showing that strict local-
ity brings with it performance limitations. The reason for
the limitation is easy to see: by completely ignoring far-
off points, there is no ability to adapt to rare occurrences in
which those far-off points are in fact necessary for good per-
formance. In statistical terms, while we have lower bias with
the close-by points, we have lower variance with the farther-
off ones due to their greater number. On average we prefer to
balance these two out, as shown above, but in specific cases
we can do better than such an average; consider, for exam-
ple, the unlikely but possible case where the close-by points
have bizarre values (e.g., their empirical variance is much
larger than σ2 in the example above); in such a case, based
on the empirical sample we can tell that it would probably be
better to focus on slightly farther off points. That is, while
on average the close-by points are most relevant, there is a
minority of cases in which they are in fact misleading, and in
at least some of those cases we can tell when they occur, at
least with high probability. We will now formalize this no-
tion in a concrete result in a specific setting. While only one

example, the underlying issue just mentioned should hold in
a wide range of cases.

The following definition will make our result easier to
state: call a method f reasonable iff, when all yi in Sn have
the same value, f returns that value. Note that practically
every existing learning method has this property, including
those of interest to us, and that in fact all consistent methods
must have this property in an asymptotic sense in order to
be consistent on distributions having a constant value of y.
Then we claim the following:

Proposition 6 Let L be the following set of distributions.
Assume X = [0, 1] and that µ is uniform on X . Let Y =
{−1,+1}, assume that all f∗(x) are Lipschitz with constant
≤ L, and that

µ
(
f∗(x) ∈ {−1, 0,+1}

)
= 0 (3)

Assume that f is a strictly local method and that f is reason-
able. Then there exists a reasonable method g for which, for
every P ∈ L, for large enough n we have

Ln(g) < Ln(f)

That is, g is preferable to f .

(Note that the assumption (3) is for convenience, and leaves
us to deal with the most interesting cases.) The proof of the
proposition appears in Appendix B.

Thus, any strictly local method can be improved upon
due to its ignorance of far-off points. Given that support vec-
tor machines and other techniques used in machine learning
are in fact local but not strictly local, there is the possibility
(which we concede that we only argue towards, but do not
prove) that this helps to explain their performance advantage
over classical methods which are strictly local.

6 Classification
We will now show how our results apply to classification.
First, we note that many theoretical analyses of classifica-
tion methods such as support vector machines and boosting
in fact work on the real-valued response of such methods,
i.e., before the sign operation; see, e.g., [Zha04, BJM06]. In
that sense these classification methods are treated similarly
to regression estimators, and our results are of relevance to
them. However, this connection is only an informal one, and
therefore in this section we will show how it can be formal-
ized.

In classification [see, e.g., DGL96] we deal with learning
methods c(Sn, x) which return values in {−1,+1}. The loss
of interest is the 0-1 loss,

R0−1(c) = P (c(Sn, x) 6= y) = ESn,(x,y)1{c(Sn, x) 6= y}

which is usually compared to the lowest possible loss (also
known as the Bayesian loss), giving the excess loss, which is
well-known to be equivalent to

L̃n(c) ≡ ESn,x|c(Sn, x)− c∗(x)| · |2η(x)− 1|

where η(x) = P (y = 1|x) and c∗(x) = sign(f∗(x)). This
differs from the loss Ln studied in the main part of this work,

211

but as shown in [ZR07], consistency-related results such as
Theorem 5 can be adapted to classification, using a method
that we now briefly summarize. The idea is to note that

L̃n(c) ≡ ESn,x|c(Sn, x)− c∗(x)| · |2η(x)− 1|
= ESn,x|c(Sn, x)− c∗(x)| · |f∗(x)|

= ESn,x

∣∣∣c(Sn, x) · |f∗(x)| − f∗(x)
∣∣∣ (4)

≡ ESn,x|f∗c (Sn, x)− f∗(x)|
= Ln(f∗c)

where we define f∗c (Sn, x) ≡ c(Sn, x) · |f∗(x)|. Now, a
classifier c can be seen as estimating sign(f∗). For every
such c we define a learning method fc that estimates f∗, by

fc(Sn, x) = c(Sn, x)f| |(Sn, x)

where f| | is the absolute value of some pre-determined con-
sistent method, i.e., a consistent estimator of |f∗| (that is, c
estimates the sign of f∗ and f| | estimates the absolute value;
together they estimate f∗). It is then straightforward to show
that c is consistent (as a classifier) on a set of distributions
precisely when fc is consistent (as a regression-type estima-
tor) on that same set, since fc is asymptotically equivalent to
f∗c , and using L̃n(c) = Ln(f∗c) from (4).

Regarding our result for strict locality, Proposition 6, the
proof can be modified to apply to classification as follows.
First, note that already Y = {−1,+1}, and that if we re-
place f with a classifier c (i.e., a function into {−1,+1})
then g defined in the proof is also a classifier (in fact, the
setting was chosen for its relevance to classification). De-
note d = g to avoid confusion; thus, our goal is to show that
L̃n(d)− L̃n(c) < 0. Now, as shown in (4) we have L̃n(c) =
Ln(f∗c), so our goal is to evaluate Ln(f∗d) − Ln(f∗c). Note
that, when event A occurs as defined in the proof, then in-
stead of a response of 1 for f∗ we now have a response of
1 for c, giving an overall response of f∗c (Sn, x) = |f∗(x)|
(and vice versa for a response of −1), which leads to replac-
ing |1− f∗(x)| with

∣∣∣|f∗(x)| − f∗(x)
∣∣∣ and of | − 1− f∗(x)|

with
∣∣∣− |f∗(x)| − f∗(x)

∣∣∣. In (5) we then get∣∣∣|f∗(x)| − f∗(x)
∣∣∣− ∣∣∣− |f∗(x)| − f∗(x)

∣∣∣ = −2f∗(x)

and −2f∗(x) happens to be the exact same result as in the
original proof. All the rest of the proof can remain as before,
thus proving the claim in the context of classification.

7 Discussion
We have argued that (1) some degree of locality is unavoid-
able in learning, but that (2) if this is taken to an extreme
then it brings with it performance limitations. We speculate
that the superior performance of modern methods over clas-
sical ones may, in part, be due to the former striking a proper
balance in this matter.

Regarding the unavoidability of local learning, this is a
direct result of locality being implied by consistency. In fact,
in consistency we require the ability to do well on all distri-
butions, which includes distributions that only differ in very

small localized ways. Thus, a consistent method must end
up trusting only close-by points. The only way to avoid this
issue is to dismiss consistency as a useful property. While in
theory such an approach might make sense – say, if we know
in advance that the true distribution belongs to some limited
set – in practice many effective methods in machine learning
are useful precisely because they make as few as possible as-
sumptions on the distribution. In fact, this is the reason non-
parametric methods are often more effective on real-world
problems than parametric ones. Thus, generally speaking,
consistency appears to be a property that we cannot easily
discard. Since consistency implies a form of locality, local-
ity is unavoidable as well.

As we have seen, the difference between consistency and
the relevant form of locality, UAWL, turns out to be a fairly
minor property, WCM. This means that if one of our goals
is consistency then it makes sense to focus on achieving the
UAWL property, since it is generally more difficult to en-
sure than WCM (ensuring WCM amounts to checking that
two scalar values are within some reasonable bound). This
may explain the historical appearance of and focus on clas-
sical methods like k-NN and kernel estimators: by defining
them in an explicitly local manner, which is simple to do,
the UAWL property is easily taken care of. Consequently,
defining such local methods is convenient and proving their
consistency relatively easy as well.

Such definitions, however, make the resulting methods
not only local in the necessary sense, but also strictly local.
As we have seen, strict locality is not necessary for consis-
tency and in fact implies some limitations on performance.
Thus, being motivated by convenient definitions and proofs
may lead to deficits in practice.

On the other hand, we can start with improving real-
world performance. The primary method of doing so which
we intend here is maximal-margin separation, which turns
out to be very effective in practice, and has an appealing
geometric intuition (keeping the classes as far apart as pos-
sible). This approach is clearly not a local one, since the
maximal-margin hyperplane depends on the entire training
set. Furthermore, in some sense it is reasonable to expect
an effective regularization technique to in fact be non-local:
if, as in soft-margin support vector machines, we consider
the sum of deviations across the margin (i.e., of observations
on the wrong side of it), then it would be hard to do so in
a local manner. That is, if we expect to allow some total
amount of deviations based on some rationale, it is hard to
enforce this locally; if we do work locally, then we need to
apply the same approach in every area, instead of being able
to accept more deviations in some areas in return for smaller
deviations elsewhere as well as a larger overall margin.

Thus, techniques like maximal-margin separation are ef-
fective and desirable, but non-local in their definition. This
appears problematic if we also want the property of consis-
tency, which as we have seen requires a degree of locality.
Hence, in devising learning methods we come up against
a difficulty: we want our learning methods to (1) be local,
so that they may be consistent, but we also want to (2) ap-
ply some performance-improving technique like maximal-
margin separation, which is non-local.

We can now try to explain the success of modern ma-

212

chine learning methods by their combining these two prop-
erties in an effective manner: by using the ‘kernel trick’ and
choosing a universal kernel [Ste02] we can get sufficiently
local behavior for consistency, while at the same time we
are still applying the maximal-margin principle in a global
manner, thus improving performance. It is this combined
approach which may be missing from classical methods.3

A Proof of⇐ in Theorem 5
Denote Sn(x, r, a) = Sn(x, r, {ai}) where ai = a, i.e.,
Sn(x, r, a) replaces the y values of all far-off points with a.

Fix some T ∈ T and some r, q ∈ T . For any α ∈ R, we
have the trivial fact that

|f(Sn, x)− f∗(x)| ≤∣∣f(Sn, x)− f̄q(Sn(x, r, α), x)
∣∣

+
∣∣f̄q(Sn(x, r, α), x)− f∗(x)

∣∣
Let A = {αm} be a countable set and let mn be a sequence.
Write
|f(Sn, x)− f∗(x)|

≤ inf
m≤mn

(∣∣f(Sn, x)− f̄q(Sn(x, r, αm), x)
∣∣

+
∣∣f̄q(Sn(x, r, αm), x)− f∗(x)

∣∣)
≤ sup
m≤mn

∣∣f(Sn, x)− f̄q(Sn(x, r, αm), x)
∣∣

+ inf
m≤mn

∣∣f̄q(Sn(x, r, αm), x)− f∗(x)
∣∣

and thus
ESn,x |f(Sn, x)− f∗(x)|
≤ ESn,x sup

m≤mn

∣∣f(Sn, x)− f̄q(Sn(x, r, αm), x)
∣∣

+ ESn,x inf
m≤mn

∣∣f̄q(Sn(x, r, αm), x)− f∗(x)
∣∣

≤
∑

m≤mn

ESn,x
∣∣f(Sn, x)− f̄q(Sn(x, r, αm), x)

∣∣
+ ESn,x inf

m≤mn

∣∣f̄q(Sn(x, r, αm), x)− f∗(x)
∣∣

By the UAWL property, for any αm ∈ A we have

ESn,x

∣∣∣f(Sn, x)− f̄Q(Rn)(Sn(x,Rn, αm), x)
∣∣∣→ 0

for appropriate Q,Rn, since Sn(x,Rn, α) can be seen as
sampled from a situation where P̃ in the definition of UAWL
has y constant and equal to α. This is then true in particu-
lar for Q ≡ q,Rn ≡ r, since by keeping these values fixed
they necessarily eventually become appropriate in the sense
of the definition of UAWL (i.e., as constants, they eventu-
ally become larger than the sequences from the definition of
UAWL – both of which tend to 0 – that we compare them
with in order to check if they are appropriate). It is therefore
also clear that there exists a sequence mn →∞ for which∑

m≤mn

ESn,x
∣∣f(Sn, x)− f̄q(Sn(x, r, αm), x)

∣∣→ 0

3Note that an additional advantage of kernel machines is that we
can easily make them non-consistent, by choosing an appropriate
kernel, i.e., a non-universal one.

(by taking mn →∞ slowly enough, e.g., by keeping mn =
k fixed and raising it to k + 1 only when the sum of the first
k + 1 elements will, for all n′ ≥ n, be smaller than k−1,
which must eventually occur since the sum is of elements
converging to 0). For this mn we therefore have

lim sup
n→∞

ESn,x |f(Sn, x)− f∗(x)|

≤ lim sup
n→∞

ESn,x inf
m≤mn

∣∣f̄q(Sn(x, r, αm), x)− f∗(x)
∣∣

We now pick A = {αm} to be dense in [−M,M] (recall
that M is a bound on f∗ and f), and turn to analyzing the
expression on the last line. Fix some x ∈ supp(P), and
consider the expression corresponding to x in the expected
value. Then for large enough n we can find some m(x) ∈
{1, ...,mn} for which |αm(x) −EPx,r (f∗)| < ε, for any ε >
0 (due to A being dense). Then

ESn inf
m≤mn

∣∣f̄q(Sn(x, r, αm), x)− f∗(x)
∣∣

≤ ESn
∣∣f̄q(Sn(x, r, αm(x)), x)− f∗(x)

∣∣
≤ ESn

∣∣Ex′∼Px,q
[
f(Sn(x, r, αm(x)), x′)− f∗(x′)

]∣∣
+
∣∣Ex′∼Px,qf

∗(x′)− f∗(x)
∣∣

≤ ESnEx′∼Px,q
∣∣f(Sn(x, r, αm(x)), x′)− f∗(x′)

∣∣
+ Ex′∼Px,q |f∗(x′)− f∗(x)|

The expression on the last line converges to 0 (for almost all
x) when q → 0, by the corollary to the following lemma:

Lemma 7 [[Dev81]; Lemma 1.1] For any distribution P
and measurable g, if Ex∼P |g(x)| <∞ then

lim
q→0

Ex′∼Px,qg(x′) = g(x)

for almost all x.

Corollary 8 For any distribution P and measurable g, if
Ex∼P |g(x)| <∞ then

lim
q→0

Ex′∼Px,q |g(x′)− g(x)| = 0

for almost all x.

Thus, we arrive at

lim sup
n

ESn inf
m≤mn

∣∣f̄q(Sn(x, r, αm), x)− f∗(x)
∣∣

≤ lim sup
n

ESnEx′∼Px,q
∣∣f(Sn(x, r, αm(x)), x′)− f∗(x′)

∣∣
+ ε1

where ε1 > 0 can be made arbitrarily small by picking q
small enough.

Note that we can see Sn(x, r, α) as sampled from the
distribution Px,r,α, by which we mean a distribution having
the same µ as P , equal to P on Bx,r, and having constant y

213

equal to α elsewhere. Then

ESnEx′∼Px,q
∣∣f(Sn(x, r, αm(x)), x′)− f∗(x′)

∣∣
=

1
µ (Bx,q)

ESn,x′∼P∣∣f(Sn(x, r, αm(x)), x′)− f∗(x′)
∣∣ 1 {x′ ∈ Bx,q}

≤ 1
µ (Bx,q)

ESn,x′∼P
∣∣f(Sn(x, r, αm(x)), x′)− f∗(x′)

∣∣
=

1
µ (Bx,q)

ESn,x′∼Px,r,αm(x)
|f(Sn, x′)− f∗(x′)|

=
1

µ (Bx,q)
ESn,x′∼Px,r,αm(x)∣∣f(Sn, x′)− En(f) + En(f)− E(f∗)+

E(f∗)− f∗(x′)
∣∣

≤ 1
µ (Bx,q)

[
MADn,Px,r,αm(x)

(f)+∣∣∣En,Px,r,αm(x)
(f)− EPx,r,αm(x)

(f∗)
∣∣∣+

MADPx,r,αm(x)
(f∗)

]
where the expected valuesEn(f), E(f∗) on the equation be-
fore last are w.r.t Px,r,αm(x) (the omission is for clarity).

Using the WCM property, we can therefore bound

lim sup
n

ESn inf
m≤mn

∣∣f̄q(Sn(x, r, αm), x)− f∗(x)
∣∣

≤ 1
µ (Bx,q)

[
MADPx,r,αm(x)

(f∗)+

2H
(

MADPx,r,αm(x)
(f∗)

)]
+ ε1

We now turn to consider the MAD of Px,r,,αm(x) . Notice
first that

MAD(Px,r,αm(x)) ≤ MAD(Px,r) + ε

because |αm(x) − EPx,r (f∗)| < ε. Consider now the effect
of changing r. First, by Lemma 7 we have, for almost every
x,

lim
r→0

Ex′∼Px,rf
∗(x′) = f∗(x)

so, for almost every x,

lim
r→0

MADPx,r (f
∗)

= lim
r→0

Ex′∼Px,r |f∗(x′)− Ex′′∼Px,rf
∗(x′′)|

≤ lim
r→0

Ex′∼Px,r |f∗(x′)− f∗(x)|+

|f∗(x)− Ex′′∼Px,rf
∗(x′′)|

= lim
r→0

Ex′∼Px,r |f∗(x′)− f∗(x)|

= 0

using Corollary 7 for the last equality, and thus

lim sup
r→0

MAD(Px,r,αm(x)) ≤ ε

We can pick q to make ε1 arbitrarily small, and then r to
make MAD(Px,r,αm(x)) arbitrarily small as well (note that

we thus counter the 1
µ(Bx,q)

factor), and therefore, for almost
every x,

lim
n→∞

ESn |f(Sn, x)− f∗(x)| = 0

where we also use the continuity of H at 0. This in turn
implies, along with the dominated convergence theorem, that

lim
n→∞

Ln(f) = 0

thus proving that f is consistent.

B Proof of Proposition 6
Denote Sn ∩ B = {(xi, yi) ∈ Sn : xi ∈ B}. Fix some
P ∈ L as in the statement of the proposition. Let Rn be the
radii from the definition of strict locality for f . Note that, by
the definition of strict locality, we can replace Rn with any
R′n ≥ Rn, R′n ↘ 0 and strict locality will still hold. WLOG
we can therefore assume that nRn →∞.

Define R(Sn, x, r) as the property that

∀{yi}, {ỹi} f(Sn, x) = f(Sn(x, r, {ỹi}), x)

That is, R is the property that strict locality in fact occurs; by
the definition of strict locality we know that the probability
of R(Sn, x,Rn) rises to 1.

We define the following additional properties. Denote by
AX = AX(x, r) the property that x ∈ (

√
r, 1−

√
r) (which

makes sense for r ≤ 1/4, and is indeed the case concerning
us as the values replacing r will tend to 0). Denote by A0 =
A0(Sn, x, r) the property that

|Sn ∩Bx,r| ∈ [nr, 3nr]∣∣Sn ∩ (Bx,√r \Bx,r)∣∣ ∈ [n
√
r, 3n

√
r]

and that R(Sn, x, r) holds. Note that A0(Sn, x,Rn) occurs
with probability going to 1, due to the marginal distribution
µ being uniform on [0, 1] (and using Bernstein’s Inequality),
i.e., A0 implies that the number of observations in the re-
gions Bx,Rn , Bx,√Rn are in the ranges of values we would
expect them to be, up to a constant. The additional require-
ment that R(Sn, x,Rn) holds does not change the proba-
bility of A0(Sn, x,Rn) going to 1, since the probability of
R(Sn, x,Rn) goes to 1.

Define alsoA+(Sn, x, r) as the property whereAX(x, r),
A0(Sn, x, r) hold, and in addition we have

(xi, yi) ∈ Sn ∩Bx,r −→ yi = −1

(xi, yi) ∈ Sn ∩
(
Bx,
√
r \Bx,r

)
−→ yi = +1

i.e., the majority of points in Bx,√r have label +1, while the
minority in the smaller enclosed region Bx,r have label −1,
and strict locality occurs. Hence if f were applied to Sn, x,
its response would be −1 (due to f being reasonable), de-
spite the numerous slightly farther-off points with label +1.
Likewise define A−(Sn, x, r) as the same property with re-
versed signs. Finally, let A(Sn, x, r) be the property that ei-
ther A+(Sn, x, r) or A−(Sn, x, r) holds. Note that for small
Rn we expect that the probability of A(Sn, x,Rn) be very
small, i.e., it is an odd occurrence.

We define a new method g as follows:

g(Sn, x) =
{
f(Sn, x) ¬A(Sn, x,Rn)
−f(Sn, x) A(Sn, x,Rn)

214

(i.e., we return one value if the property A(Sn, x,Rn) holds,
and another otherwise). That is, on ‘normal’ training sets g
is the same as f ; however, on odd training sets with property
A, g guesses the opposite of f : it trusts the large number
of points within radius (Rn,

√
Rn) over the smaller num-

ber in radius (0, Rn); g also behaves the same as f for x
close to the boundaries 0, 1 and only changes f ’s behavior
when g takes into account the points in radius Rn and ig-
nores the rest. Note that g is strictly local, like f , albeit with
larger radius. This suffices to prove the proposition and thus
make the claim that strict locality has performance limita-
tions, since it shows that we would always want to raise Rn
to improve performance. In fact we can continue to raise Rn
while the close-by points comprise an ‘odd’ training set in
a sense similar to that mentioned above, which will lead to
a non-strictly local method (since we may end up with large
Rn, even O(1), albeit with small probability).

We will now prove that g has the property described in
the proposition, i.e., that it is preferable to f . Consider some
fixed x ∈ (0, 1), then the corresponding element for x from
the loss Ln(g) = ESn,x|g(Sn, x)− f∗(x)| obeys

ESn |g(Sn, x)− f∗(x)| =
ESn1{A(Sn, x,Rn)}|g(Sn, x)− f∗(x)|
+ ESn1{¬A(Sn, x,Rn)}|g(Sn, x)− f∗(x)|

The last expression is equal to
ESn1{¬A(Sn, x,Rn)}|f(Sn, x)− f∗(x)|

so when comparing Ln(f) to Ln(g) it cancels out. We are
left with evaluating

lx(g) ≡ ESn1{A(Sn, x,Rn)}|g(Sn, x)− f∗(x)|
which we compare to

lx(f) ≡ ESn1{A(Sn, x,Rn)}|f(Sn, x)− f∗(x)|
As mentioned before, when A+(Sn, x, r) holds then f

returns −1, because f considers only the points in radius
r, all of whom have label −1, and because f is reasonable.
Consequently in this case g returns +1, and vice versa for
A−. To consider the difference Ln(g) − Ln(f), which we
want to prove is negative, we can then write

lx(g)− lx(f) (5)
= ESn1{A(Sn, x,Rn)}

(|g(Sn, x)− f∗(x)| − |f(Sn, x)− f∗(x)|)
= ESn1{A+(Sn, x,Rn)}

(|1− f∗(x)| − | − 1− f∗(x)|)
+ ESn1{A−(Sn, x,Rn)}

(| − 1− f∗(x)| − |1− f∗(x)|)
= ESn |1− f∗(x)|

(1{A+(Sn, x,Rn)} − 1{A−(Sn, x,Rn)})
− ESn | − 1− f∗(x)|

(1{A+(Sn, x,Rn)} − 1{A−(Sn, x,Rn)})
= ESn [1{A+(Sn, x,Rn)} − 1{A−(Sn, x,Rn)}]

(|1− f∗(x)| − | − 1− f∗(x)|)

= −2f∗(x)
[
PSn

(
A+(Sn, x,Rn)

)
− PSn

(
A−(Sn, x,Rn)

)]

Our goal is to show that the expected value over x of this
last expression is negative. For convenience we will write
A(Sn, x,Rn) ≡ A,A+(Sn, x,Rn) ≡ A+ and likewise for
A−. Note that, for any x fulfilling 1{AX}, we have that the
probability of A0 converges to 1 as mentioned before. Thus,
we are left to consider the sign of

− Ex1{AX}f∗(x)
[
PSn(A+|A0)− PSn(A−|A0)

]
Denote

Fn(K, k) = PSn(A+|A0,K, k)− PSn(A−|A0,K, k)

where K is the number of observations in radius (Rn,
√
Rn)

and k is the number in (0, Rn), both around x; hence the
relevant set of values for K is [n

√
Rn, 3n

√
Rn], and for k is

[nRn, 3nRn]. Note that Fn depends on x, but we omit it for
clarity for reasons which will soon be obvious.

Let pn(K, k) be the probability of the valuesK, k for any
x fulfilling 1{AX}. Then

− Ex1{AX}f∗(x)
[
PSn(A+|A0)− PSn(A−|A0)

]
= −

∑
K,k

pn(K, k)Ex1{AX}f∗(x)Fn(K, k)

where the sum is over the set of relevant values for K, k as
mentioned before.

We will now show that large enough n we have, for all
relevant K, k, that Ex1{AX}f∗(x)Fn(K, k) > 0; note that
this is enough to finish the proof.

Consider some fixed K, k and some fixed x fulfilling
1{AX}. Assume WLOG that 0 < f∗(x) < 1 (due to the
symmetry in the problem, the other case arrives at the same
result). Using the Lipschitz property of f∗, and since P (y =
1|x) = 1

2 (1+f∗(x)), we can bound the conditional probabil-
ities on A0,K, k (and assuming x fulfills 1{AX}) in the fol-
lowing manner (note that the conditional probabilities only
depend on the behavior of yi values):

PSn(A+|A0,K, k) ≥(
1 + f∗(x)−

√
RnL

)K (1− f∗(x)−RnL)k

2K+k

PSn(A−|A0,K, k) ≤

(1 + f∗(x) +RnL)k
(
1− f∗(x) +

√
RnL

)K
2K+k

Note that these bounds depend only on f∗(x) and not x itself.
Note also that in particular

Fn(K, k) ≥ −
(2 +RnL)k

(
1 +
√
RnL

)K
2K+k

(6)

Now, consider 2K+kEx1{AX}f∗(x)Fn(K, k). We claim
that according to the bounds above, for every x fulfilling
1{AX} we have

inf
K,k

2K+kFn(K, k)→∞ (7)

where the infimum is taken over all relevant K, k. To see
this, recall the assumption that 0 < f∗(x) < 1, and consider

215

the behavior of the bound for 2K+kPSn(A+|A0,K, k): by
taking the logarithm we get

K log(1 + f∗(x)−
√
RnL) + k log(1− f∗(x)−RnL)

which clearly converges to infinity, even when taking the in-
fimum over K, k, since Rn → 0 and all relevant K con-
verge to infinity faster than all k (recall the ranges of values
of K, k, and that nRn → ∞, so they all converge to in-
finity). Similarly we can see that 2K+kPSn(A−|A0,K, k)
converges to 0, thus showing (7).

In a similar manner we can see that, for every x fulfilling
1{AX}, for large enough n we have

inf
K,k

2K+kFn(K, k) > sup
K,k

(2 +RnL)k
(

1 +
√
RnL

)K
(8)

Note that the RHS is related to the lower bound of Fn(K, k)
as shown in (6).

Taken together, the facts just stated imply that the mea-
sure of points x fulfilling both (7) and (8) converges to 1
(formally, using the dominated convergence theorem on the
identifier function on that set). Due to (6), it is clear that the
values of the other points cannot overcome them from caus-
ing the overall integral to be positive, and we conclude that
Ex1{AX}f∗(x)Fn(K, k) > 0 for large enough n in a man-
ner that does not depend upon K, k (since we have used the
sup, inf over relevant K, k values), proving the result.

References
[AMS97] C. G. Atkeson, A. W. Moore, and S. Schaal. Lo-

cally weighted learning. Artificial Intelligence
Review, 11:11–73, 1997.

[BDR06] Y. Bengio, O. Delalleau, and N. Le Roux. The
curse of highly variable functions for local ker-
nel machines. In Advances in Neural Infor-
mation Processing Systems 18, pages 107–114.
MIT Press, Cambridge, MA, 2006.

[BJM06] P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe.
Convexity, classification, and risk bounds. Jour-
nal of the American Statistical Association,
101(473):138–156, 2006.

[BV92] L. Bottou and V. N. Vapnik. Local learning al-
gorithms. Neural Computation, 4(6):888–900,
1992.

[CL95] W. Cleveland and C. Loader. Smoothing
by local regression: Principles and methods.
Technical report, AT&T Bell Laborato-
ries, Murray Hill, NY., 1995. Available at
http://citeseer.ist.psu.edu/
194800.html.

[Dev81] L. Devroye. On the almost everywhere conver-
gence of nonparametric regression function esti-
mates. Annals of Statistics, 9:1310–1319, 1981.

[DGKL94] L. Devroye, L. Gyorfi, A. Krzyzak, and G. Lu-
gosi. On the strong universal consistency of
nearest neighbor regression function estimates.
Annals of Statistics, 22:1371–1385, 1994.

[DGL96] L. Devroye, L. Gyorfi, and G. Lugosi. A Proba-
bilistic Theory of Pattern Recognition. Springer-
Verlag, New York, NY, 1996.

[FS99] Y. Freund and R. Schapire. A short introduc-
tion to boosting. J. Japan. Soc. for Artif. Intel.,
14(5):771–780, 1999.

[GKP84] W. Greblicki, A. Krzyzak, and M. Pawlak.
Distribution-free pointwise consistency of ker-
nel regression estimate. Annals of Statistics,
12(4):1570–1575, 1984.

[Joa98] T. Joachims. Text categorization with sup-
port vector machines: learning with many rel-
evant features. In Proceedings of ECML-98,
10th European Conference on Machine Learn-
ing, volume 1398, pages 137–142. Springer Ver-
lag, Heidelberg, DE, 1998.

[SFBL97] Robert E. Schapire, Yoav Freund, Peter Bartlett,
and Wee Sun Lee. Boosting the margin: a new
explanation for the effectiveness of voting meth-
ods. In Proc. 14th International Conference
on Machine Learning, pages 322–330. Morgan
Kaufmann, 1997.

[SGV98] G. Saunders, A. Gammerman, and V. Vovk.
Ridge regression learning algorithm in dual vari-
ables. In Proc. 15th International Conf. on Ma-
chine Learning, pages 515–521. Morgan Kauf-
mann, San Francisco, CA, 1998.

[STC00] J. Shawe-Taylor and N. Cristianini. An Intro-
duction to Support Vector Machines and other
Kernel-based Learning Methods. Cambridge
University Press, Cambridge, 2000.

[Ste02] I. Steinwart. Support vector machines are uni-
versally consistent. Journal of Complexity,
18:768–791, 2002.

[Sto80] C. J. Stone. Optimal rates of convergence for
nonparametric estimators. Annals of Statistics,
8:1348–1360, 1980.

[Sto82] C. J. Stone. Optimal global rates of convergence
for nonparametric regression. Annals of Statis-
tics, 10:1040–1053, 1982.

[Vap98] V. N. Vapnik. Statistical Learning Theory. John
Wiley and Sons, New York, NY, 1998.

[VB93] V. N. Vapnik and L. Bottou. Local algorithms
for pattern recognition and dependencies esti-
mation. Neural Computation, 5(6):893–909,
1993.

[Zha04] T. Zhang. Statistical behavior and consistency
of classification methods based on convex risk
minimization. Annals of Statistics, 32(1):56–
134, 2004.

[ZR07] A. Zakai and Y. Ritov. Local behavior of con-
sistent learning methods, 2007. Submitted for
Publication.

216

Learning coordinate gradients with multi-task kernels

Yiming Ying and Colin Campbell∗

Department of Engineering Mathematics, University of Bristol
Queens Building, University Walk, Bristol, BS8 1TR, UK.

{enxyy, C.Campbell}@bris.ac.uk

Abstract

Coordinate gradient learning is motivated by the
problem of variable selection and determining vari-
able covariation. In this paper we propose a novel
unifying framework for coordinate gradient learn-
ing (MGL) from the perspective of multi-task learn-
ing. Our approach relies on multi-task kernels to
simulate the structure of gradient learning. This
has several appealing properties. Firstly, it allows
us to introduce a novel algorithm which appropri-
ately captures the inherent structure of coordinate
gradient learning. Secondly, this approach gives
rise to a clear algorithmic process: a computational
optimization algorithm which is memory and time
efficient. Finally, a statistical error analysis en-
sures convergence of the estimated function and
its gradient to the true function and true gradient.
We report some preliminary experiments to vali-
date MGL for variable selection as well as deter-
mining variable covariation.

1 Introduction
Let X ⊆ Rd be compact, Y ⊆ R, Z = X × Y , and
Nn = {1, 2 . . . , n} for any n ∈ N. A common theme in
machine learning is to learn a target function f∗ : X → Y
from a finite set of input/output samples z = {(xi, yi) : i ∈
Nm} ⊆ Z. However, in many applications, we not only wish
to learn the target function, but also want to find which vari-
ables are salient and how these variables interact with each
other. This problem has practical motivations: to facilitate
data visualization and dimensionality reduction, for exam-
ple. Such a motivation is important when there are many
redundant variables and we wish to find the salient features
among these. These problems can occur in many contexts.
For example, with gene expression array datasets, the vast
majority of features may be redundant to a classification task
and we need to find a small set of genuinely distinguishing
features. These motivations have driven the design of vari-
ous statistical and machine learning models [8, 11, 21, 22]
for variable (feature) selection.
Here, we build on previous contributions [15, 16, 17] by ad-
dressing coordinate gradient learning and its use for variable

∗We acknowledge support from EPSRC grant EP/E027296/1.

selection and covariation learning, the interaction between
variables. Specifically, for any x ∈ X , we denote x by
(x1, x2, . . . , xd). The target is to learn the gradient of f∗
(if it exists) denoted by a vector-valued function ∇f∗(x) =(

∂f∗
∂x1 , . . . , ∂f∗

∂xd

)
. The intuition behind gradient learning for

variable selection and coordinate covariation is the follow-
ing. The inner product between components of ∇f∗ indi-
cates the interaction between coordinate variables. Specific
norms of ∂f∗

∂xp can indicate the salience of the p-th variable:
the smaller the norm is, the less important this variable will
be.
In this paper we propose a novel unifying formulation of co-
ordinate gradient learning from the perspective of multi-task
learning. Learning multiple tasks together has been exten-
sively studied both theoretically and practically in several
papers [1, 2, 5, 7, 13, 14]. One way to frame this problem
is to learn a vector-valued function where each of its compo-
nents is a real-valued function and corresponds to a particu-
lar task. A key objective in this formulation is to capture an
appropriate structure among tasks so that common informa-
tion is shared across tasks. Here we follow this methodol-
ogy and employ a vector-valued function −→f = (f1,

−→
f2) =

(f1, f2, . . . , fd+1), where f1 is used to simulate f∗, and −→f2

is used to simulate its gradient ∇f∗. We assume that −→f
comes from a vector-valued reproducing kernel Hilbert space
(RKHS) associated with multi-task (matrix-valued) kernels,
see [14]. The rich structure of RKHS space reflects the latent
structure of multi-task gradient learning, i.e. the pooling of
information across components (tasks) of ∇f∗ using multi-
task kernels.
The paper is organized as follows. In Section 2, we first re-
view the definition of multi-task kernels and vector-valued
RKHS. Then, we propose a unifying formulation of coor-
dinate gradient learning from the perspective of multi-task
learning which is referred to as multi-task gradient learning
(MGL). The choices of multi-task kernels motivate different
learning models [11, 15, 16, 17]. This allows us to introduce
a novel choice of multi-task kernel which reveals the inherent
structure of gradient learning. Kernel methods [19, 20] usu-
ally enjoy the representer theorem which paves the way for
designing efficient optimization algorithms. In Section 3 we
explore a representer theorem for MGL algorithms. Subse-
quently, in Section 4 we discuss computational optimization
approaches for MGL algorithms, mainly focusing on least
square loss and the SVM counterpart for gradient learning.

217

A statistical error analysis in Section 5 ensures the conver-
gence of the estimated function and its gradient to the true
function and true gradient. Finally, in Section 6 preliminary
numerical experiments are reported to validate our proposed
approach.

1.1 Related work

A number of machine learning and statistical models have
been proposed for variable (feature) selection. Least abso-
lute shrinkage and selection operator (LASSO) [21] and ba-
sis pursuit denoising [8] suggest use of `1 regularization to
remove redundant features. Weston et al [22] introduced a
method for selecting features by minimizing bounds on the
leave-one-out error.
Guyon et al [11] proposed recursive feature elimination (RFE)
which used a linear kernel SVM: variables with least influ-
ence on the weights 1

2‖w‖2 are considered least important.
Although these algorithms are promising, there remain un-
resolved issues. For example, they do not indicate variable
covariation and the extension of these algorithms to the non-
linear case was marginally discussed. Our method outlined
here covers variable covariation and nonlinear feature selec-
tion. As such, in Section 2, we show that RFE-SVM is a
special case of our multi-task formulation.
Motivated by the Taylor expansion of a function at samples
{xi : i ∈ Nm}, Mukherjee et al [15, 16, 17] proposed an
algorithm for learning the gradient function. They used the
norm of its components for variable (feature) selection and
spectral decomposition of the covariance of the learned gra-
dient function for dimension reduction [16]. Specifically, let
HG be a scalar RKHS (see e.g. [3]) and use f1 ∈ HG to sim-
ulate f∗. For any p ∈ Nd, a function fp+1 ∈ HG is used to
learn ∂f∗/∂xp. The results presented by Mukherjee et al are
quite promising both theoretically and practically, but there
is no pooling information shared across the components of
the gradient. This may lead to less accurate approximation
to the true gradient. We will address all these issues in our
unifying framework.

2 Multi-task kernels and learning gradients

In this section we formulate the gradient learning problem
from the perspective of multi-task learning. Specifically, we
employ a vector-valued RKHS to simulate the target func-
tion and its gradient. The abundant structure of vector-valued
RKHS enables us to couple information across components
of the gradient in terms of multi-task kernels.

2.1 Multi-task model for gradient learning

We begin with a review of the definition of multi-task kernels
and introduce vector-valued RKHS (see [14] and the refer-
ence therein). Throughout this paper, we use the notation
〈·, ·〉 and ‖ · ‖ to denote the standard Euclidean inner product
and norm respectively.

Definition 1 We say that a function K : X ×X → Rd+1 ×
Rd+1 is a multi-task (matrix-valued) kernel on X if, for any
x, t ∈ X ,K(x, t)T = K(t, x), and it is positive semi-definite,
i.e., for any m ∈ N, {xj ∈ X : j ∈ Nm} and {yj ∈ Rd+1 :

j ∈ Nm} there holds
∑

i,j∈Nm

〈yi,K(xi, xj)yj〉 ≥ 0. (1)

In the spirit of Moore-Aronszjain’s theorem, there exists a
one-to-one correspondence between the multi-task kernel K
with property (1) and a vector-valued RKHS of functions−→
f : X → Rd+1 with norm 〈·, ·〉K denoted by HK, see e.g.
[14]. Moreover, for any x ∈ X , y ∈ Rd+1 and −→f ∈ HK,
we have the reproducing property

〈−→f (x),y〉 = 〈−→f ,Kxy〉K (2)

where Kxy : X → Rd+1 is defined, for any t ∈ X , by
Kxy(t) := K(t, x)y.
In the following we describe our multi-task kernel-based frame-
work for gradient learning. Following Mukherjee et al [15,
17], the derivation of gradient learning can be motivated by
the Taylor expansion of f∗: f∗(xi) ≈ f∗(xj)+∇f∗(xj)(xi−
xj)T . Since we wish to learn f∗ with f1 and ∇f∗ with −→f2 ,
replacing f∗(xi) by yi, the error1

yi ≈ f1(xj) +−→
f2(xj)(xi − xj)T

is expected to be small whenever xi is close to xj . To enforce
the constraint that xi is close to xj , we introduce a weight
function produced by a Gaussian with deviation s defined by

wij = 1
sd+2 e

−‖xi−xj‖2
2s2 . This implies that wij ≈ 0 if xi is far

away from xj .
We now propose the following multi-task formulation for
gradient learning (MGL):

−→
fz = arg min−→

f ∈HK

{ 1
m2

∑

i,j

wijL(yi,

f1(xj) +−→
f2(xj)(xi − xj)T) + λ‖−→f ‖2K

}
.

(3)

where L : R × R → [0,∞) is a prescribed loss function
and λ is usually called the regularization parameter. The
minimum is taken over a vector-valued RKHS with multi-
task kernel K. The first component f1,z of the minimizer −→fz

of the above algorithm is used to simulate the target function
and the other components −→f2z := (f2,z, . . . , fd+1,z) to learn
its gradient function. In Section 6, we will discuss how to use
the solution −→fz for variable selection as well as covariation
measurement.
Different choice of loss functions yield different gradient
learning algorithms. For instance, if the loss function L(y, t) =
(y − t)2 then algorithm (3) leads to the least-square multi-
task gradient learning (LSMGL):

arg min−→
f ∈HK

{ 1
m2

∑

i,j∈Nm

wij

[
yi − f1(xj)

−−→f2(xj)(xi − xj)T
]2 + λ‖−→f ‖2K

}
.

(4)

In classification, the choice of loss function L(y, t) = (1 −
yt)+ in algorithm (3) yields the support vector machine for
multi-task gradient learning (SVMMGL):

1Our form of Taylor expansion is slightly different from that
used in [15, 17]. However, the essential idea is the same.

218

arg min−→
f ∈HK

b∈R

{ 1
m2

∑
i,j∈Nm

wij

[
1− yi(f1(xj)

+b +−→
f2(xj)(xi − xj)T)

]
+

+ λ‖−→f ‖2K
}

.

(5)

Here, f1(x) + b is used to learn the target function and −→f2 ,
simulating the gradient of the target function. Hence b plays
the same role of offset as in the standard SVM formulation.
In this case, at each point xi the error between the output yi

and f(xi) is now replaced by the error between yi and the
first order Taylor expansion of f(xi) at xj , i.e., f1(xj) +−→
f2(xj)(xi − xj)T .

2.2 Choice of multi-task kernels
We note that if K is a diagonal matrix-valued kernel, then
each component of a vector-valued function in the associ-
ated RKHS of K can be represented, independently of the
other components, as a function in the RKHS of a scalar ker-
nel. Consequently, for a scalar kernel G if we choose the
multi-task kernel K given, for any x, t ∈ X , by K(x, t) =
G(x, t)Id+1 then the MGL algorithm (3) is reduced to the
gradient learning algorithm proposed in [15, 16, 17] using
(d + 1)-folds of scalar RKHS. There, under some condi-
tions on the underlying distribution ρ, it has been proven
that f1,z → f∗ and −→f2z → ∇f∗ when the number of sam-
ples tends to infinity. Although their results are promising
both theoretically and practically, a more inherent structure
would be −→f2z = ∇f1,z. In our MGL framework (3), we can
recover this structure by choosing the multi-task kernel ap-
propriately.
Our alternative choice of multi-task kernel is stimulated by
the Hessian of Gaussian kernel proposed in [7]. For any
scalar kernel G and any x, t ∈ X , we introduce the func-
tion

K(x, t) =
(

G(x, t), (∇tG(x, t))T

∇xG(x, t) ∇2
xtG(x, t)

)
(6)

which we will show to be a multi-task kernel. To see this,
let `2 be the Hilbert space with norm ‖w‖2`2 =

∑∞
j=1 w2

j .

Suppose that G has a feature representation, i.e., G(x, t) =
〈φ(x), φ(t)〉`2 and, for any f ∈ HG, there exits a vector
w ∈ `2 such that f(x) = 〈w, φ(x)〉`2 and

‖f‖G = ‖w‖`2 .

Indeed, if the input space X is compact and G : X ×X →
R is a Mercer kernel, i.e., it is continuous, symmetric and
positive semi-definite, then, according to Mercer theorem, G
always has the above feature representation (see e.g. [9]).
Now we have the following proposition about K defined by
equation (6). Let ẽp be the p-th coordinate basis in Rd+1.

Theorem 2 For any smooth scalar Mercer kernel G, define
function K by equation (6). Then, K is a multi-task kernel
and, for any −→f = (f1,

−→
f2) ∈ HK there holds

−→
f2 = ∇f1. (7)

Proof: Since G is a scalar kernel, for any x, t ∈ X we have
that G(x, t) = G(t, x). Therefore, K(x, t)T = K(t, x).
Moreover, G is assumed to be a Mercer kernel which implies
that it has a feature representation G(x, t) = 〈φ(x), φ(t)〉`2 .
Consequently,∇tG(x, t) = (φ(x),∇φ(t)) and∇xG(x, t) =
(∇φ(x), φ(t)), and ∇2

xtG(x, t) = 〈∇φ(x),∇φ(t)〉`2 . Then,
we introduce, for any w ∈ `2, x ∈ X,y ∈ Rd+1, the feature
map Φ(x) : `2 → Rd+1 defined by

Φ(x)w := (〈φ(x), w〉`2 , 〈∂1φ(x), w〉`2 , . . . , 〈∂dφ(x), w〉`2)T
.

Its adjoint map Φ∗ is given, for any t ∈ X and y ∈ Rd+1, by
Φ∗(t)y := φ(x)y1+

∑
p∈Nd

∂pφ(x)yp+1. Hence,K(x, t)y =
Φ(x)Φ∗(t)y. Consequently, for any m ∈ N, any i, j ∈ Nm

and yi,yj ∈ Rd+1, it follows
∑

i,j∈Nm
〈yi,K(xi, xj)yj〉 =

‖∑
i∈Nm

Φ∗(xi)yi‖2`2 is nonnegative which tells us that K
is a multi-task kernel.
We turn to the second assertion. When −→f is in the form of a
finite combination of kernel section {Kxy : y ∈ Rd+1, x ∈
X}, the second assertion follows directly from the definition
of K. For the general case, we use the fact that the vector-
valued RKHS is the closure of the span of kernel sections,
see [14]. To this end, assume that there exists a sequence
{−→fj = (f j

1 , f j
2 , . . . , f j

d+1)} of finite combination of kernel
sections such that −→fj → −→

f ∈ HK w.r.t. the RKHS norm.
Hence, by the reproducing property (2), for any x ∈ X and
p ∈ Nd, |f j

p+1(x) − fp+1(x)| = |〈ẽp+1,
−→
fj (x) − −→f (x)〉| =

|〈−→fj − −→
f ,Kxẽp+1〉K| ≤ ‖−→fj − −→

f ‖K
√

ẽT
p+1K(x, x)ẽp+1

which tends to zeros as j tends to infinity. Consequently, it
follows, for any x ∈ X ,

f j
p+1(x) → fp+1(x), as j →∞. (8)

Let δp ∈ Rd be a vector with its p-th component δ > 0
and others equal zero. Applying the reproducing property
(2) yields that

∣∣∣ [fj
1 (x+δp)−fj

1 (x)]−[f1(x+δp)−f1(x)]
δ

∣∣∣
=

∣∣∣ 1
δ 〈
−→
fj −−→f ,Kx+δp

ẽ1 −Kxẽ1〉K
∣∣∣

≤ ‖−→fj −−→f ‖K〈ẽ1,
1
δ2

[K(x + δp, x + δp)
+K(x, x)−K(x, x + δp)−K(x + δp, x)

]
ẽ1〉 1

2

= ‖−→fj −−→f ‖K
(

1
δ2

[
G(x + δp, x + δp)

G(x, x)−G(x, x + δp)−G(x + δp, x)
]) 1

2
.

Since G is smooth and X is compact there exists an absolute
constant c̃ > 0 such that, for any δ > 0, the above equation
is furthermore bounded by

∣∣∣ [fj
1 (x+δp)−fj

1 (x)]−[f1(x+δp)−f1(x)]
δ

∣∣∣
≤ c̃ ‖−→fj −−→f ‖K.

Consequently, letting δ → 0 in the above equation it follows
|∂pf

j
1 (x) − ∂pf1(x)| → 0 as j tends to infinity. Combining

this with equation (8) and the fact that f j
p+1(x) = ∂pf

j
1 (x)

implies that ∂pf1(x) = fp+1(x) which completes the theo-
rem.

219

The scalar kernel G plays the role of a hyper-parameter to
produce the multi-task kernel K given by equation (6). By
the above theorem, if we choose K to be defined by equation
(6) then any solution fz = (f1,z,

−→
f2z) of algorithm (3) enjoys

the structure −→f2z = ∇f1,z.
Further specifying the kernel G in the definition (6) of multi-
task kernel K, we can recover the RFE feature ranking algo-
rithm for a linear SVM [11]. To see this, let G be a linear ker-
nel. In the next section, we will see that, for any solution −→fz

of MGL algorithm (3), there exists {cj,z ∈ Rd+1 : j ∈ Nm}
such that −→fz =

∑
j∈Nm

Kxj
cj,z. Since G is linear, com-

bining this with Theorem 2 we know that f1,z(x) = WT
z x

with Wz =
∑

j(x
T
j , 1)cj,z ∈ R and −→f2z = ∇f1,z = WT

z .
Consequently, in the case we have that

f1,z(xj) +−→
f2z(xj)(xi − xj) = WT

z xi = f1,z(xi).

Moreover, by the reproducing property (2) we can check that

‖−→fz‖2K = ‖f1,z‖2G = ‖Wz‖2.
Putting the above equations together, in this special case we
know that the SVMMGL algorithm (5) is reduced, with the
choice of wij = 1, to the classical learning algorithm:

min
W∈Rd

{ 1
m

∑

i∈Nm

(1− yi(WT xi + b))+ + λ‖W‖2
}

.

Hence, our formulation of gradient learning (3) can be re-
garded as a generalization of RFE-SVM [11] to the nonlinear
case.
In the subsequent sections we discuss a general representa-
tion theorem and computational optimization problems mo-
tivated by MGL algorithms.

3 Representer theorem
In this section we investigate the representer theorem for the
MGL algorithm (3). This forms a foundation for the deriva-
tion of a computationally efficient algorithm for MGL in
Section 4.
Recall that ẽp is the p-th coordinate basis in Rd+1 and, for
any x ∈ Rd, denote the vector x̃T by (0, xT). By the repro-
ducing property (2), we have that f1(xj) = 〈−→f (xj), ẽ1〉 =
〈−→f ,Kxj ẽ1〉K and likewise,−→f2(xj)(xi−xj)T = 〈−→f (xj), x̃i−
x̃j〉 = 〈−→f ,Kxj (x̃i − x̃j)〉K. Then, the algorithm (3) can be
rewritten by

arg min−→
f ∈HK

{
1

m2

∑
i,j∈Nm

wijL
(
yi, 〈−→f ,

Kxj (ẽ1 + x̃i − x̃j)〉K
)

+ λ‖−→f ‖2K
}

.

(9)

In analogy with standard kernel methods [19, 20], we have
the following representer theorem for MGL by using the prop-
erties of multi-task kernels.

Theorem 3 For any multi-task kernel K, consider the gra-
dient learning algorithm (3). Then, there exists representer
coefficients {cj,z ∈ Rd+1 : j ∈ Nm} such that

−→
fz =

∑

j∈Nm

Kxj
cj,z

and, for every j ∈ Nm, the representer coefficient cj,z ∈
span{ẽ1, x̃i : i ∈ Nm}.

Proof: We can write any minimizer−→fz ∈ HK as−→fz = −→
f ‖+

−→
f ⊥ where −→f ‖ is in the span

{Kxj
ẽ1,Kxj

x̃i, i, j ∈ Nm

}

and −→f ⊥ is perpendicular to this span space. By the repro-
ducing property (2), we have that 〈−→f (xj), ẽ1 + x̃i − x̃j〉 =
〈−→f ,Kxj

(ẽ1 + x̃i − x̃j)〉K = 〈−→f ‖,Kxj
(ẽ1 + x̃i − x̃j)〉K.

Hence, −→f ⊥ makes no contribution to the loss function in
the MGL algorithm (9) (i.e. algorithm (3)). However, the
norm ‖−→f ‖2K = ‖−→f ‖‖2K + ‖−→f ⊥‖2K > ‖f‖‖2K unless f⊥ =
0. This implies, any solution −→fz belongs to the span space{Kxj

ẽ1,Kxj
x̃i, i, j ∈ Nm

}
and the corresponding represen-

ter coefficients belong to the span of {ẽ1, x̃i : i ∈ Nm}.

The representer theorem above tells us that the optimal so-
lution −→fz of algorithm (3) lives in the finite span of training
samples which paves the way for designing efficient opti-
mization algorithms for multi-task gradient learning.

4 Optimization and solution
In this section, by the above representer theorem, we ex-
plore efficient algorithms for computing the representer coef-
ficients. For clarity, we mainly focus on least-square multi-
task gradient learning algorithms (LSMGL). At the end of
this section, the support vector machine for gradient learning
(SVMMGL) in classification will be briefly discussed. One
can apply the subsequent procedures to other loss functions.

4.1 Computation of representer coefficients
To specify the solution of LSMGL, we denote the column
vector Cz ∈ Rm(d+1) by consecutively catenating all col-
umn vectors {cj,z ∈ Rd+1 : j ∈ Nm} and, likewise we
define a column vector Y ∈ Rm(d+1) by catenating column
vectors {yi ∈ Rd+1 : i ∈ Nm}. Moreover, we introduce an
m(d+1)×m(d+1) matrix by catenating all (d+1)×(d+1)
matrix K(xi, xj) denoted by

Kx = (K(xi, xj))i,j∈Nm
.

Finally, we introduce a system of equations

m2λcj + Bj

∑
l∈Nm

K(xj , xl)cl = yj , ∀j ∈ Nm (10)

where Bj =
∑

i∈Nm
wij(ẽ1+x̃i−x̃j)(ẽ1+x̃i−x̃j)T , yj =∑

i∈Nm
wijyi(ẽ1 + x̃i − x̃j).

We now can solve the LSMGL algorithm by the following
theorem.

Theorem 4 For any j ∈ Nm, the vectors Bj ,yj be defined
by equation (10). Then, the representer coefficients Cz for
the solution of the LSMGL algorithm are given by the fol-
lowing equation

Y =
(
m2λIm(d+1) + diag

(
B1, . . . , Bm

)Kx

)m

i,j=1

)
Cz.

(11)

Proof: By Theorem 3, there exists {cj,z ∈ Rd+1 : j ∈
Nm} such that −→fz =

∑
j∈Nm

Kxj
cj,z. However, taking the

220

functional derivative of algorithm (3) with respective to f

yields that 1
m2

∑
i,j∈Nm

wij

(〈−→fz,Kxj
(ẽ1 + x̃i − x̃j)〉K −

yi

)Kxj
(ẽ1 + x̃i − x̃j) + λ

−→
fz = 0 which means that cj,z =

1
m2λ

∑
i∈Nm

wij(yi− 〈−→fz,Kxj
(ẽ1 + x̃i− x̃j)〉K)(ẽ1 + x̃i−

x̃j). Equivalently, equation (10) holds true, and hence com-
pletes the assertion.

Solving equation (11) involves the inversion of an m(d +
1) × m(d + 1) matrix whose time complexity is usually
O((md)3). However, it is computationally prohibitive since
the coordinate (feature) dimension d is very large in many
applications. Fortunately, as suggested in Theorem 3, the
representer coefficients {cj,z : j ∈ Nm} can be represented
by the span of column vectors of matrix

M̃x = {ẽ1, x̃1, . . . , x̃m−1, x̃m}.
This observation suggests the possibility of reduction of the
original high dimensional problem in Rd+1 to the low di-
mensional space spanned by M̃x. This low dimensional space
can naturally be introduced by singular vectors of M̃x.
To this end, we consider the representation of the matrix M̃x

by its singular vectors. It will be proven to be useful to
represent matrix M̃x from the singular value decomposition
(SVD) of the data matrix defined by

Mx =
[
x1, x2, . . . , xm−1, xm

]
.

Apparently, the rank s of Mx is at most min(m, d). The
SVD of Mx tells us that there exists orthogonal matrices
Vd×d and Um×m such that

Mx = [V1, . . . , Vd] Σ




U1

...
Um




T

= [V1, . . . , Vs] (β1, . . . , βm)

(12)

Here, the d×m matrix Σ =
[

diag
{
σ1, . . . , σs

}
0

0 0

]
. For

any j ∈ Nm, we use the notation Uj = (U1j , . . . , Umj) and
βT

j = (σ1U1j , σ2U2j , . . . , σsUsj) ∈ Rs. From now on we
also denote

V = [V1, . . . , Vs] (13)
Hence, we have, for any j ∈ Nm, that xj = Vβj .

We are now ready to specify the representation of M̃x from
the above SVD of Mx, To see this, for any l ∈ Ns and j ∈
Nm, let Ṽ T

l = (0, V T
l), β̃T

j = (0, βT
j). In addition, we

introduce the (d + 1)× (s + 1) matrix

Ṽ =
(

1 0
0 V

)
=

[
ẽ1, Ṽ1, . . . , Ṽs

]
(14)

which induces a one-to-one mapping Ṽ : Rs+1 → Rd+1

defined, for any β ∈ Rs+1, by x = Ṽβ ∈ Rd+1 since column
vectors in Ṽ are orthogonal to each other. Consequently, it
follows that

M̃x = Ṽ [e1, β̃1, . . . , β̃m],
where e1 is the standard first coordinate basis inRs+1. Equiv-
alently, for any i, j ∈ Nm,

ẽ1 = Ṽe1, x̃j = Ṽβ̃j . (15)

We now assemble all material to state the reduced system
associated with equation (11). For this purpose, firstly we
define the kernel K̃, for any x, t ∈ X , by

K̃(x, t) := ṼTK(x, t)Ṽ,

and introduce the m(s+1)×m(s+1) matrix by catenating
all (s + 1)× (s + 1) matrices K̃(xi, xj):

K̃x =
(K̃(xi, xj)

)
i,j∈Nm

. (16)

Secondly, for any j ∈ Nm, set Bj =
∑

i∈Nm
wij(e1 + β̃i −

β̃j)(e1 + β̃i − β̃j)T and Yj =
∑

i∈Nm
wijyi(e1 + β̃i − β̃j).

Thirdly, associated with the system (10), for any j ∈ Nm and
γj ∈ Rs+1, we define the system in reduced low dimensional
space Rs+1

m2λγj + Bj

∑

l∈Nm

K̃(xj , xl)γl = Yj . (17)

Finally, in analogy with the notation Y, the column vector
Y ∈ Rm(s+1) is defined by successively catenating column
vectors {Yi ∈ Rs+1 : i ∈ Nm}. Likewise we can define γz

by catenating column vectors {γj,z ∈ Rs+1 : j ∈ Nm}.
With the above preparation we have the following result.

Theorem 5 If the {γj,z ∈ Rs+1 : j ∈ Nm} is the solution
of system (17), i.e.,

Y =
(
m2λIm(s+1) + diag

(
B1, . . . ,Bm

)K̃x

)
γ, (18)

then the coefficient Cz defined, for any j ∈ Nm, by cj,z =
Ṽγj,z is one of the solution of system (11), and thus yields
representation coefficients of the solution−→f z for the LSMGL
algorithm (3).

Proof: Let γz is the solution of system (17). Since Ṽ is
orthogonal, the system (17) is equivalent to the following
equation

m2λṼγjz + ṼBj

∑

l∈Nm

K̃(xj , xl)γlz = ṼYj .

Recall, for any j ∈ Nm, that Bj = ṼBjṼT , Ṽe1e1ṼT =
ẽ1ẽ

T
1 , ṼT Ṽ = Is+1, and Yj = ṼYj . Hence, the above sys-

tem is identical to system (11) (i.e. system (10)) with Cj

replaced by Ṽγj,z which completes the assertion.

We end this subsection with a brief discussion of the solu-
tion of the SVMMGL algorithm. Since the hinge loss is not
differentiable, we cannot use the above techniques to derive
an optimization algorithm for SVMMGL. Instead, we can
consider its dual problem. To this end, we introduce slack
variables {ξij : i, j ∈ Nm} and rewrite SVMMGL as fol-
lows:





arg min−→
f ,ξ,b

{ 1
m2

∑

i,j∈Nm

wijξij + λ‖−→f ‖2K
}

s.t. yi(〈−→f ,Kxj
(ẽ1 + x̃i − x̃j)〉K + b) ≥ 1− ξij ,

ξij ≥ 0, ∀i, j ∈ Nm.
(19)

221

Given a multi-task kernel K produced by scalar kernel G, λ > 0 and inputs {(xi, yi) : i ∈ Nm}
1. Compute projection mapping Ṽ and reduced vector β̃j from equations (12), (13), and (14).
2. Compute K̃(xj , xi) = ṼTK(xj , xi)Ṽ (i.e. equation (16))
3. Solving equation (18) to get coefficient γz, see Theorem 5 (equivalently, equation (25)

when G is linear or RBF kernel, see Theorem 6).
4. Output vector-valued function: −→fz(·) =

∑
j∈Nm

K(·, xj)(Ṽγj,z).
5. Compute variable covariance and ranking variables using Proposition 1 in Section 6.

Table 1: Pseudo-code for least square multi-task gradient learning

Parallel to the derivation of the dual problem of standard
SVM (e.g. [20, 23]), using Lagrangian theory we can ob-
tain the following dual problem of SVMMGL:




arg max
α

∑

i,j∈Nm

αij − 1
4m2λ

∑

i,j,i′,j′∈Nm

αijyiαi′j′yi′

× [
(ẽ1 + x̃i − x̃j)TK(xj , xj′)(ẽ1 + x̃i′ − x̃j′)

]

s.t.
∑

i,j∈Nm
yiαij = 0, 0 ≤ αij ≤ wij , ∀i, j ∈ Nm.

(20)
Moreover, if the solution of dual problem is αz = {αij,z :
i, j ∈ Nm} then the solution of SVMMGL can be repre-
sented by

−→
fz =

1
2m2λ

∑

i,j∈Nm

yiαij,zKxj
(ẽ1 + x̃i − x̃j).

Note that
(
(ẽ1 + x̃i − x̃j)TK(xj , xj′)(ẽ1 + x̃i′ − x̃j′)

)
(i,j),(i′,j′)

is a scalar kernel matrix with double indices (i, j) and (i′, j′).
Then, when the number of samples is small the dual prob-
lem of SVMMGL can be efficiently solved by quadratic pro-
gramming with α ∈ Rm2

.

4.2 Further low dimensional formulation
Consider the multi-task kernel K defined by equation (6)
with scalar kernel G. In this section, by further specify-
ing G we show that LSMGL algorithm (4) with input/output
{(xi, yi) : i ∈ Nm} can be reduced to its low dimensional
formulation with input/output {(βi, yi) : i ∈ Nm}, where βj

is defined by equation (12). This clarification will provide a
more computationally efficient algorithm.
To this end, consider the scalar kernel G defined on Rd ×
Rd. By definition of kernels (called restriction theorem in
[3]), we can see that G is also a reproducing kernel on Rs ×
Rs. Hence, K defined by equation (6) on Rd is also a multi-
task kernel on the underlying space Rs; we use the same
notation K when no confusion arises. Therefore, associated
with the LSMGL algorithm (4) in Rd we have an LSMGL in
low dimensional input space Rs:

−→gz = arg min−→g ∈HK
{

1
m2

∑
i,j

wij

[
yi−

g1(βj)−−→g2(βj)(βi − βj)T
]2 + λ‖−→g ‖2K

}
.

(21)

In analogy with the derivation of the system (10), for any
j ∈ Nm and γj ∈ Rs+1, we know that the representer coeffi-
cients of the LSMGL algorithm (21) in reduced low dimen-
sional space Rs+1 satisfy that

m2λγj + Bj

∑

l∈Nm

K(βj , βl)γl = Yj . (22)

We are now ready to discuss the relation between represen-
ter coefficients of the LSMGL algorithm (4) and those of re-
duced LSMGL algorithm (21). For this purpose, let G to sat-
isfy, for any d× s matrix V , that V T V = Is and β, β′ ∈ Rs,
that

G(V β, V β′) = G(β, β′). (23)
There exists abundant functions G satisfying the above prop-
erty. For instance, linear product kernel G(x, t) = xT t,
Gaussian kernel G(x, t) = e−‖x−t‖2/2σ , and sigmoid kernel
G(x, t) = tanh(axT t + r) with parameters a, r ∈ R. More
generally, kernel G satisfies property (23) if it is produced by
a radial basis function (RBF) h : (0,∞) → R defined, for
any x, t ∈ X , by

G(x, t) = h(‖x− t‖2). (24)
We say a function h : (0,∞) → R is complete monotone if it
is smooth and, for any r > 0 and k ∈ N, (−1)kf (k)(r) ≥ 0.
Here h(k) denotes the k-th derivative of h. According to
the well-known Schoenberg’s theorem [18], if h is complete
monotone then the function G defined by equation (24) is
positive semi-definite, and hence becomes a scalar kernel.
For instance, the choice of h(t) = e

−‖t‖
2σ with standard devi-

ation σ > 0 and h(t) = (σ2 + ‖x − t‖2)−α with parameter
α > 0 yield Laplacian kernel and inverse polynomial kernel
respectively.
Now we are in a position to summarize the reduction the-
orem for multi-task kernels (6) produced by scalar kernels
G satisfying (23). Here we also use the convention that
Kβ =

(K(βi, βj)
)
i,j∈Nm

.

Theorem 6 Let G have the property (23) and K be defined
by equation (6). Suppose {γj,z : j ∈ Nm} are the represen-
ter coefficients of algorithm (21), i.e., γz solves the equation

Y =
(
m2λIm(s+1) + diag

(
B1, . . . ,Bm

)Kβ

)
γz, (25)

Then, the representer coefficients {cj,z : j ∈ Nm} of algo-
rithm (4) are given by

cj,z = Ṽγj,z.

222

Proof: Suppose the multi-task kernel K is produced by G
with property (23). Recall that VTV = Is with V given by
(14). Then, kernel K satisfies, for any x = Vβ and t = Vβ′
with V , that

K(x, t) = K(Vβi,Vβj)

=
(

G(β, β′), (V∇βi
G(βi, βj))T

V∇βj G(βi, βj), V(∇βi∇βj G(βi, βj))VT

)
.

Hence, it follows, for any xi, xj ∈ X and i, j ∈ Nm, that

K̃(xi, xj) =
(

1 0
0 V

)T

K(xi, xj)
(

1 0
0 V

)
= K(βi, βj).

Therefore, the system (17) is identical to the system (22).
Consequently, the desired assertion follows directly from The-
orem 5.

Equipped with Theorem 6, the time complexity and com-
puter memory can be further reduced by directly computing
m(s + 1) ×m(s + 1) matrix Kβ instead of first computing
m(d + 1)×m(d + 1) matrix Kx and then K̃x in Theorem 5.
Theorem 6 also gives an appealing insight into multi-task
gradient learning framework. Roughly speaking, learning
gradient in the high dimensional space is equivalent to learn-
ing them in the low dimensional projection space spanned by
the input data.

5 Statistical error analysis
In this section we give an error analysis for least square MGL
algorithms. Our target is to show that the learned vector-
valued function from our algorithm statistically converges to
the true function and true gradient.
For the least square loss, denote by ρX(·) the marginal dis-
tribution on X and, for any x ∈ X , let ρ(·|x) to be the con-
ditional distribution on Y . Then, the target function is the
regression function fρ minimizing the generalization error

E(f) =
∫

Z

(y − f(x))2dρ(x, y).

Specifically, the regression function is defined, for any x ∈
X , by

fρ(x) = arg min
t∈R

∫

Y

(y − t)2ρ(y|x) =
∫

Y

ydρ(y|x).

Hence, in this case the purpose of error analysis is to show
that solution −→fz of LSMGL algorithm (4) statistically con-
verges to −→fρ = (fρ,∇fρ) as m → ∞, s = s(m) → 0 and
λ = λ(m) → 0.
To this end, we introduce some notations and the follow-
ing hypotheses are assumed to be true throughout this sec-
tion. Firstly, we assume that Y ⊆ [−M, M] with M > 0.
Since X is compact the diameter of X denoted by D =
supx,u∈X ‖x − u‖2 is finite. Secondly, denote by L2

ρX
the

space of square integral functions −→f : X → Rd+1 with
norm ‖−→f ‖2ρX

=
∫

X
‖−→f (x)‖2dρX(x). Finally, denote the

boundary of X by ∂X . We assume, for some constant cρ >
0, that the marginal distribution satisfies that

ρX

(
x ∈ X : dist(x, ∂X) < s

)
≤ cρs, ∀0 < s < D. (26)

and, for some parameter 0 < θ ≤ 1, the density function
p(x) of ρX satisfies θ-Hölder continuous condition, i.e., for
any x, u ∈ X there holds

|p(x)− p(u)| ≤ cρ‖x− u‖θ, ∀x, u ∈ X. (27)

Of course, p is a bounded function on X since it is contin-
uous and X is compact. For instance, if the boundary of X
is piecewise smooth and ρX is the uniform distribution over
X then the marginal distribution ρX satisfies conditions (26)
and (27) with parameter θ = 1.
We are ready to present our statistical error analysis of LSMGL
algorithms. Recall here we used the notation−→fρ = (fρ,∇fρ).

Theorem 7 Suppose that the marginal distribution ρX sat-
isfies (26) and (27). For any multi-task kernel K, let −→fz be
the solution of LSMGL algorithm. If −→fρ ∈ HK then there
exists a constant c such that, for any m ∈ N, with the choice
of λ = s2θ and s = m− 1

3(d+2)+4θ , there holds

E
[‖−→fz −−→fρ‖2ρX

] ≤ cm− θ
3(d+2)+4θ .

If moreover ρX is a uniform distribution then, choosing λ =
sθ and s = m− 1

3(d+2)+5θ , there holds

E
[‖−→fz −−→fρ‖2ρX

] ≤ cm− θ
3(d+2+θ) .

The proof of this theorem needs several steps which are post-
poned to the appendix. More accurate error rates in terms of
probability inequality are possible using techniques in [17,
15]. It would also be interesting to extend this theorem to
other loss functions such as the SVMMGL algorithm.

6 Experimental validation
In this section we will only preliminarily validate the MGL
algorithm (3) on the problem of variable selection and co-
variance measurement.
By the representer Theorem 3 in Section 3, the solution of
MGL denoted by−→fz = (f1,z,

−→
f2z) = (f1,z, f2,z, . . . , fd+1,z)

can be rewritten as −→fz =
∑

j∈Nm
Kxj

cj,z. Since it only be-
longs to a vector-valued RKHS HK, we need to find a com-
mon criterion inner product (norm) 〈·, ·〉r to measure each
component of the learned gradient −→f2z = (f2,z, . . . , fd+1,z).
Once we find the criterion inner product 〈·, ·〉r, we can use
the coordinate covariance

Cov(−→f2z) =
(
〈fp+1,z, fq+1,z〉r

)
p,q∈Nd

(28)

to measure how the variables covary. Also, the variable (fea-
ture) ranking can be done according to the following relative
magnitude of norm of each component of −→f2z:

sp =
‖fp+1,z‖r

(
∑

q∈Nd
‖fq+1,z‖2r)1/2

. (29)

If the scalar kernel G is a linear kernel then every component
of −→f2z is a constant. In this case, we can choose the stan-
dard Euclidean inner product to be the criterion inner prod-
uct (norm). When the kernel G is an RBF kernel, we show
in the following proposition that we can select the criterion
inner product 〈·, ·〉r to be the RKHS inner product 〈·, ·〉G in
HG. The computation is summarized in the following propo-
sition.

223

Proposition 1 Suppose the scalar kernel G has a feature
representation and the multi-task kernelK is defined by equa-
tion (6). Then, for any solution −→fz =

∑
j∈Nm

Kxj
cj,z ∈ HK

of MGL algorithm (3), the following hold true.
1. If G is a linear kernel then the coordinate covariance is
defined by

Cov(−→f2z) = −→
f2z

T−→
f2z =

∑

i,j∈Nm

(xi, Id)ci,zc
T
j,z(xj , Id)T .

Moreover, for LSMGL algorithm the above equation can be
more efficiently computed by

Cov(−→f2z) = V
[∑

i,j∈Nm

(βi, Is)γiγ
T
j (βj , Is)T

]
VT .

2. If G is a smooth RBF kernel then fp+1,z ∈ HG and the
coordinate covariance Cov(−→f2z) =

(〈(fp+1,z, fq+1,z〉G
)
p,q∈Nd

can be computed by

〈fp+1,z, fq+1,z〉G = CT
z (Kpq(xi − xj))m

i,j=1Cz, (30)

where the kernel matrix Kpq(xi − xj) defined, for any i, j ∈
Nm, by

(−(∂2
pqG)(xi − xj), ((∇∂2

pqG)(xi − xj))T

−(∇∂2
pqG)(xi − xj), (∇2∂2

pqG)(xi − xj)

)
.

The proof is postponed to the appendix where the computa-
tion of Kpq is also given if G is a Gaussian.
We run our experiment on two artificial datasets and one
gene expression dataset following [17]. In the first experi-
ment, the target function fρ : Rd → R with notation x =
(x1, . . . , xd) ∈ Rd and d = 80. The output y is contami-
nated by a Gaussian noise

y = fρ(x) + ε, ε ∼ N (0, σy).

As depicted in Figure 1 (leftmost), the thirty inputs whose
relevant features are [1, 10]∪ [11, 20]∪ [41, 50] are generated
as follows:
1. For samples from 1 to 10, xp ∼ N (1, 0.05), for p ∈
[1, 10] and xp ∼ N (0, 0.1), for p ∈ [11, 80].
2. For samples from 11 to 30, xp ∼ N (1, 0.05), for p ∈
[11, 20] and xp ∼ N (0, 0.1), for p ∈ [1, 10] ∪ [31, 80].
3. For samples from 11 to 30, features are in the form of
xp ∼ N (1, 0.05), for p ∈ [41, 50], and xp ∼ N (0, 0.1), for
p ∈ [1, 40]

⋃
[51, 80].

We let the regression function fρ to be a linear function.
Specifically, we choose a noise parameter σy = 3 and the
regression function is defined by fρ(xi) = wT

1 xi for i ∈
[1, 10], fρ(xi) = wT

2 xi for i ∈ [11, 20], and fρ(xi) = wT
3 xi

for i ∈ [21, 30], where, wk
1 = 2 + 0.5sin(2πk/10) for k ∈

[1, 10] and otherwise zero, wk
2 = −2 − 0.5sin(2πk/10) for

k ∈ [11, 20] and zero otherwise. The vector w3 is defined
by wk

3 = −2 − 0.5sin(2πk/10) for k ∈ [41, 50] and zero
otherwise.
In this linear case, we use the kernel G(x, t) = xT t as a ba-
sic scalar kernel and the multi-task kernel K defined by (6)
in LSMGL algorithm (4). As in [11, 15], the regularization
parameter λ is set to be a fixed number such as 0.1 (variation

in this parameter made little difference to feature ranking).
The parameter s in the weight coefficients wij is set to be the
median pairwise distance between inputs. In Figure 1, the re-
sult of LSMGL is shown in (b) for variable covariation and
in (c) for feature selection respectively. We also ran the al-
gorithm (3) with the choice of kernel K(x, t) = G(x, t)Id+1

([15, 16, 17]). The results are shown in (d) and (e) of Figure
1. We see that both algorithms worked well. The LSMGL
algorithm works slightly better: the reason maybe be that it
captures the inherent structure of gradient learning as men-
tioned before. We also ran LSMGL algorithm on this dataset;
the result is no essentially different from SVMMGL.

In the second experiment, we use the SVMMGL algorithm
for classification. For this dataset, only the first two features
are relevant to the classification task. The remaining 78 re-
dundant features are distributed according to a small Gaus-
sian random deviate. The distribution for the first two fea-
tures is shown in (f). In SVMMGL, the parameter s and λ
are the same as those in the first example. The scalar kernel is
set to be a Gaussian G(x, t) = e−‖x−t‖2/2σ2

where σ is also
the median pairwise distance between inputs. The feature se-
lection results for the SVMMGL algorithm are illustrated re-
spectively in (g) and (h) with different choices of multi-task
kernels K given by equation (6) and K(x, t) = G(x, t)Id+1.
Both algorithms picked up the two important features.

Finally, we apply our LSMGL algorithm to a well-studied
expression dataset. This dataset has two classes: acute myeloid
leumekia (AML) and acute lymphoblastic leukemia (ALL),
see e.g. [10]. There are a total of 7129 genes (variables) and
72 patients, split into a training set of 38 examples and a test
set of 34 examples. In the training set, 27 examples belong
to ALL and 11 belong to AML, and the test set is composed
of 20 ALL and 14 AML. Various variable selection algo-
rithms have been applied to this dataset by choosing features
based on training set, and then performing classification on
the test set with the selected features. We ran LSMGL with
the choice of multi-task K given by equation (6) where G is
a linear kernel. The solution −→fz is learned from the training
set for ranking the genes according to the values of sp de-
fined by equation (29). Then, ridge regression is run on the
training set with truncated features to build a classifier to pre-
dict the labels on the test set. The regularization parameter
of LSMGL is fixed to be 0.1 while the regularization param-
eter in ridge regression is tuned using leave-one-out cross-
validation in the training set. The test error with selected top
ranked genes is reported in Table 2. The classification accu-
racy is quite comparable to the gradient learning algorithm
using individual RKHSs [15, 17]. However, [11, 15, 17]
did the recursive techniques to rank features and employed
SVM for classification while our method showed that ridge
regression for classification and non-recursive technique for
feature ranking also worked well in this data set. It would be
interesting to further explore this issue.

The preliminary experiments above validated our proposed
MGL algorithms. However further experiments need to be
performed to evaluate our multi-task framework for gradient
learning.

224

Sample

C
o

o
rd

in
a

te

Data matrix

5 10 15 20 25 30

10

20

30

40

50

60

70

80

−0.2

0

0.2

0.4

0.6

0.8

1

Coordinate Covariance for LSMGL

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80
−4

−2

0

2

4

6

8

0 10 20 30 40 50 60 70 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Coordinate

R
e
la

ti
v
e

n
o
rm

LSMGL Features ranks Coordinate Covariance LSDGL

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80 −0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(a) (b) (c) (d)

0 10 20 30 40 50 60 70 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Coordinate

R
e
la

ti
v
e

n
o
rm

LSDGL Features ranks

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

0 10 20 30 40 50 60 70 80
0.11

0.112

0.114

0.116

0.118

0.12

0.122

0.124
MTKGL

Coordinate

R
e
la

ti
v
e
 R

K
H

S
 n

o
rm

0 10 20 30 40 50 60 70 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
DFKGL

Coordinate

R
e
la

ti
v
e
 R

K
H

S
 n

o
rm

(e) (f) (g) (h)

Figure 1: LSMGL and SVMMGL feature ranking

genes 10 40 80 100 200 500
test error 2 1 0 0 1 1
genes 1000 2000 3000 4000 6000 7129
test error 2 1 1 1 1 1

Table 2: Number of test error using ridge regression algo-
rithm versus the number of top ranked genes selected by
LSMGL algorithm.

7 Conclusions

In this paper, our main contribution was to provide a novel
unifying framework for gradient learning from the perspec-
tive of multi-task learning. Various variable selection meth-
ods in the literature can be recovered by the choice of multi-
task kernels. More importantly, this framework allows us to
introduce a novel choice of multi-task kernel to capture the
inherent structure of gradient learning. An appealing repre-
senter theorem was presented which facilitates the design of
efficient optimization algorithms, especially for datasets with
high dimension and few training examples. Finally, a statis-
tical error analysis was provided to ensure the convergence
of the learned function to true function and true gradient.
Here we only preliminarily validated the method. A more ex-
tensive benchmark study remains to be pursued. In future we
will explore more experiments on biomedical datasets and
compare our MGL algorithms with previous related meth-
ods for feature selection, such as those in [21, 22] etc. It
will be interesting to implement different loss functions in
the MGL algorithms for regression and classification, apply
the spectral decomposition of the gradient outer products to
dimension reduction (see e.g. [16]), and possible use for net-
work inference from the covariance of the learned gradient

function.

References

[1] R. K. Ando & T. Zhang. A framework for learning pre-
dictive structures from multiple tasks and unlabeled data.
J. Machine Learning Research, 1817–1853, 2005

[2] A. Argyriou, T. Evgeniou, & M. Pontil. Multi-task fea-
ture learning. NIPS, 2006.

[3] N. Aronszajn. Theory of reproducing kernels. Trans.
Amer. Math. Soc. 68: 337–404, 1950.

[4] P. L. Bartlett & S. Mendelson. Rademacher and Gaus-
sian complexities: Risk bounds and structural results. J.
of Machine Learning Research, 3:463–482, 2002.

[5] S. Ben-David & R. Schuller. Exploiting task relatedness
for multiple task learning. COLT, 2003.

[6] D. R. Chen, Q. Wu, Y. Ying, & D. X. Zhou. Support
vector machine soft margin classifiers: Error analysis. J.
of Machine Learning Research, 5:1143–1175, 2004.

[7] A. Caponnetto, C.A. Micchelli, M. Pontil, & Y. Ying.
Universal multi-task kernels, Preprint, 2007.

[8] S.S. Chen, D.L. Donoho & M.A. Saunders. Atomic de-
composition pursuits. SIAM J. of Scientific Computing,
20: 33-61,1999.

[9] F. Cucker & S.Smale. On the mathematical foundations
of learning, Bull. Amer. Math. Soc. 39: 149, 2001.

[10] T. R. Golub et. al. Molecular classification of cancer:
class discovery and class prediction by gene expression
monitoring, Science, 286: 531-537, 1999.

[11] I. Guyon, J.Weston, S. Barnhill, & V. Vapnik. Gene se-
lection for cancer classification using support vector ma-
chines. Machine learning 46: 389–422, 2002.

[12] V.I. Koltchinskii & D. Panchenko. Rademacher pro-
cesses and bounding the risk of function learning. In J.

225

Wellner E. Gine, D. Mason, editor, High Dimensional
Probability II, pages 443459, 2000.

[13] T. Evgeniou, C. A. Micchelli & M. Pontil. Learning
multiple tasks with kernel methods. J. Machine Learning
Research, 6: 615–637, 2005.

[14] C. A. Micchelli & M. Pontil. On learning vector-valued
functions. Neural Computation, 17: 177-204, 2005.

[15] S. Mukherjee & Q. Wu. Estimation of gradients and
coordinate covariation in classification. J. of Machine
Learning Research 7: 2481-2514, 2006.

[16] S. Mukherjee, Q. Wu, & D. X. Zhou. Learning gradi-
ents and feature selection on manifolds. Preprint, 2007.

[17] S. Mukherjee & D. X. Zhou. Learning coordinate co-
variances via gradients, J. of Machine Learning Research
7: 519-549, 2006.

[18] I. J. Schoenberg. Metric spaces and completely mono-
tone functions, Ann. of Math. 39: 811-841, 1938.

[19] B. Schölkopf & A. J. Smola. Learning with Kernels.
The MIT Press, Cambridge, MA, USA, 2002.

[20] J. Shawe-Taylor and N. Cristianini. Kernel Methods
for Pattern Analysis. Cambridge University Press, Cam-
bridge, 2004.

[21] R. Tibshirani. Regression shrinkage and selection via
the lasso. J. Royal. Statist. Soc B. 58: 267-288, 1996.

[22] J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T.
Poggio, & V. Vapnik. Feature selection for SVMs, NIPS,
2001.

[23] V. N. Vapnik. Statistical learning theory. Wiley, New
York, 1998.

Appendix

Let G be a scalar kernel, we use the convention ∂
(2)
p G to

denote the p-th partial derivative of G with respect to the
second argument, and so is the gradient ∇(2)G.

Proof of Proposition 1.
When G is a linear kernel, by the definition (6) of multi-
task kernelK, we have that−→f2z =

∑
j∈Nm

(xj , Id)cj,z which
implies that

Cov(−→f2z) = −→
f2z
−→
f2z

T
=

∑

i,j∈Nm

(xi, Id)ci,zc
T
j,z(xj , Id)T .

For the LSMGL algorithm, in Section 4 we showed that cj,z =
Ṽγj,z and, for any j ∈ Nm, xj = Vβj , the above equation
can be further simplified to the following:

Cov(−→f2z) = V
[∑

i,j∈Nm

(βi, Is)γi,zγ
T
j,z(βj , Is)T

]
VT .

When G is an RBF kernel, for any x, t ∈ Rd and p, q ∈ Nd,
G(x, t) = G(x − t) and ∂tq∂xpG(x, t) = −(∂p∂qG)(x, t).
Hence, for any p ∈ Nd and x ∈ Rd, we have that

fp+1,z(x) =
∑

j∈Nm

(−∂(2)
p G(x, xj),−∇(2)∂(2)

p G(x, xj)
)
cj

Since G has a feature representation, i.e., for any x, t ∈ X ,
there holds that G(x, t) = 〈φ(x), φ(t)〉`2 . Also, observe that
∂

(2)
p G(x, xj) = 〈φ(x), (∂pφ)(xj)〉`2 and ∂

(2)
q ∂

(2)
p G(x, xj) =

〈φ(x), (∂p∂qφ)(xj)〉`2 . Denote cj by (c1
j , . . . , c

d+1
j)T . Con-

sequently, for any p ∈ Nd, fp+1,z(·) = 〈wp, φ(·)〉`2 with
wp = −∑

j∈Nm
(∂pφ(xj)c1

j+
∑

q∈Nd
∂q∂pφ(xj)c

q+1
j). There-

fore, for any p, q ∈ Nd we have that fp+1,z ∈ HG and

〈fp+1,z, fq+1,z〉G = 〈wp, wq〉`2 =
∑

i,j∈Nm

cT
i Kpq(xi−xj)cj

which completes the assertion. ¤

Computation of kernel K.
If G is a Gaussian kernel with standard variation σ, that is,
for any x, t ∈ Rd, G(x, t) = G(x − t) = e−

‖x−t‖2
2σ , the

computation of K is listed as follows.

1. (∂2
pqG)(x) =

[
xpxq

σ2 − δpq

σ

]
G(x)

2. For any q′ ∈ Nd, ∂q′∂p∂qG(x) = [xqσpq′+xpδqq′+xq′δpq

σ2 −
xpxqxq′

σ3]G(x). Hence,

∇∂2
pqG(x) =

[
epxq + eqxp

σ2
+

xδpq

σ2
− xpxqx

σ3

]
G(x)

3. For any p′, q′ ∈ Nd, ∂p′∂q′∂
2
pqG(x) = G(x)

[
δpq′δqp′

σ2 +
δpp′δqq′+δp′q′δpq

σ2 − 1
σ3

(
xqxq′σpp′+xpxqδp′q′+xpxq′δp′q

)
+

xp′
σ

(xpxqxq′
σ3 − xqδpq′+xq′δpq+xpδqq′

σ2

)]
. Hence,

∇2∂2
pqG(x) = G(x)

[
eT

q ep+eT
p eq+δpqId

σ2

− 1
σ3

(
xq(epx

T + xeT
p) + xp(xeT

q + eqx
T)

)

− xpxqId

σ3 + xxT

σ3

(xpxq

σ − σpq

)]
.

Proof of Theorem 7
We turn our attention to the proof of Theorem 7. We begin
with some notations and background materials. First denote
by Erz the empirical loss in LSMGL algorithm, i.e.,

Erz(
−→
f) = 1

m2

∑
i,j w(xi − xj)

×(yi − f1(xj)−−→f2(xj)(xi − xj)T)2,

and the modified form of its expectation

Er(−→f) =
∫

Z

∫
X

w(x− u)
[
y − f1(u)

−−→f2(u)(x− u)
]2

dρ(x, y)dρX(u).

Since the Gaussian weight w(x − u) = ws(x − u) is de-
pendent on s, the above definition of Er(−→f) is depending on
the parameter s. In addition, define the Lipschitz constant∣∣∇fρ

∣∣
Lip to be the minimum constant c such that ‖∇fρ(x+

u) − ∇fρ(x)‖ ≤ c‖u‖, ∀x, u ∈ X. We say that ∇fρ is
Lipschitz continuous if

∣∣∇fρ

∣∣
Lip is finite.

The error analysis here is divided into two main steps moti-
vated by the techniques in [15]. The first step is to bound the
square error ‖−→fz−−→fρ‖2ρX

by the excess error Er(−→fz)−Er(−→fρ).
In the second step, we employ standard error decomposition
[6] and Rademacher complexities [4, 12] to estimate the ex-
cess error. These two steps will be respectively stated in the

226

following two propositions. Before we do that, we introduce
an auxiliary functional Qs defined by

Qs(
−→
f ,
−→
f ρ) =

∫ ∫
w(x− u)

[
fρ(u)− f1(u)

+(−→f2(u)−∇fρ(u))(u− x)T
]2

dρX(x)dρX(u).

We are ready to present the first step of the error analysis:
bounding the square error ‖−→fz − −→fρ‖2ρX

by the excess error
Er(−→fz)−Er(−→fρ) which is stated as the following proposition.

Proposition 2 If 0 < s, λ < 1 then there exists a constant
c′ρ such that

E
[
‖−→fz −−→fρ‖2ρX

]
≤ c′ρ

(
min

[
s−θ,max

x∈X
p−1(x)

]

×E[
Er(−→fz)− Er(−→fρ)

]

+sθ
(
E

[‖−→fz‖2K
]
+ ‖−→fρ‖∞ +

∣∣∇fρ

∣∣2
Lip

))
.

The proof of this proposition follows directly from the fol-
lowing Lemmas 8 and 9. For this purpose, let the subset Xs

of X be

Xs =
{
u ∈ X : dist(u, ∂X) > s, |p(u)| ≥ (1 + cρ)sθ

}
(31)

and

cp(s) := min{p(x) : ‖u− x‖ ≤ s, u ∈ Xs}.
Recall that ẽ1 is the first coordinate basis in Rd+1 and, for
any x ∈ Rd, x̃T = (0, x)T ∈ Rd+1.

Lemma 8 If 0 < s < 1 then there exists a constant c′ρ such
that

E
[
‖−→fz −−→fρ‖2ρX

]
≤ c′ρ

(
sθ

[
E[‖−→fz‖2K] + ‖−→fρ‖∞

]

+min
[
s−θ,max

x∈X
p−1(x)

]
E

[
Qs(

−→
fz,

−→
fρ)

])
.

Proof: Write ‖−→fz −−→fρ‖2ρX
by

‖−→fz −−→fρ‖2ρX
=

∫
X\Xs

‖−→fz(u)−−→fρ(u)‖2dρX(u)
+

∫
Xs
‖−→fz(u)−−→fρ(u)‖2dρX(u)

(32)
By the definition of Xs, we have that ρX(X\Xs) ≤ cρs +
cρ(1 + cρ)|X|sθ ≤ c′ρs

θ where |X| is the Lebesgue measure
of X . Hence, the first term of the above equation is bounded
by

2c′ρ(‖−→fz‖2∞ + ‖−→fρ‖2∞)sθ ≤ 2c′ρ(‖−→fz‖2K + ‖−→fρ‖2∞)sθ.

For the second term on the right-hand side of equation (32),
observe that, for any u ∈ Xs, dist(u, ∂X) > s and {u :
‖u− x‖ ≤ s, x ∈ Xs} ⊆ X . Moreover, for any x ∈ X such
that ‖u− x‖ ≤ s, by the definition of Xs there holds

p(x) = p(u)−(p(u)−p(x)) ≥ (1+cρ)sθ−cρ‖u−x‖θ ≥ sθ.

Consequently, it follows that

cp(s) ≥ max(sθ, min
x∈X

p(x)), (33)

and
Qs(

−→
fz,

−→
fρ) =

∫
X

∫
X

w(x− u)
×[

(−→fρ(u)−−→fz(u))(ẽ1 + ũ− x̃)
]2

dρX(x)dρX(u)
≥ ∫

Xs

[∫
‖u−x‖≤s

(
(−→fρ(u)−−→fz(u))(ẽ1 + ũ− x̃)

)2

×dρX(x)
]
dρX(u)

≥ cρ(s)
∫

Xs

[∫
‖u−x‖≤s

(
(−→fρ(u)−−→fz(u))(ẽ1 + ũ− x̃)

)2

×dx
]
dρX(u).

(34)
The integral w.r.t. x on the right-hand side of the above in-
equality can be written as (−→fρ(u) − −→

fz(u))W (s)(−→fρ(u) −−→
fz(u))T with (d + 1)× (d + 1) matrix W (s) defined by

W (s) =
∫

‖u−x‖≤s

[
(ẽ1 + ũ− x̃)(ẽ1 + ũ− x̃)T

]
dx.

Here, (ẽ1 + ũ− x̃)(ẽ1 + ũ− x̃)T equals that
(1 (u− x)T

u− x (u− x)(u− x)T

)

Observe that
∫
‖u−x‖≤s

w(x − u)dx = s−2
∫
‖t‖≤1

e−
‖t‖2

2 dt

and
∫
‖u−x‖≤s

w(x− u)(u− x)dx = 0. In addition, for any
p 6= q ∈ Nd,

∫
‖u−x‖≤s

w(x− u)(up − xp)(uq − xq)dx = 0
∫
‖u−x‖≤s

w(x − u)(xp − up)2dx =
∫
‖t‖≤1

e−
‖t‖2

2 (tp)2dt

From the above observations, there exists a constant c such
that
(−→fρ(u)−−→fz(u))W (s)(−→fρ(u)−−→fz(u))T ≥ c‖−→fρ(u)−−→fz(u)‖2.
Recalling the definition of W (s) and substituting this back
into equation (34) implies, for any 0 < s < 1, that

c cρ(s)
∫

Xs

‖−→fz(u)−−→fρ(u)‖2dρX(u) ≤ Qs(
−→
fz,

−→
fρ).

Plugging this into equation (34), the desired estimate follows
from the estimation of cρ(s), i.e., equation (33).

Now we can bound Qs by the following lemma.

Lemma 9 If 0 < s < 1 then there exists a constant c such
that, for any −→f ∈ HK, the following equations hold true.
1. Qs(

−→
f ,
−→
fρ) ≤ c

(
s2

∣∣∇fρ

∣∣2
Lip +

[
Er(−→f)− Er(−→fρ)

])
.

2. Er(−→f)− Er(−→fρ) ≤ c
(
s2

∣∣∇fρ

∣∣2
Lip +Qs(

−→
f ,
−→
fρ)

)
.

Proof: Observe that
[
y − f1(u)−−→f2(u)(x− u)T

]2 =
[
y −

fρ(u) − ∇fρ(u)(x − u)T
]2 + 2

[
y − fρ(u) − ∇fρ(u)(x −

u)T
][

fρ(u)−f1(u)+(−→f2(u)−∇fρ(u))(u−x)T
]
+

[
fρ(u)−

f1(u) + (−→f2(u) − ∇fρ(u))(u − x)T
]2

. Then, taking the
integral of both sides of the above equality and using the fact
that fρ(x) =

∫
Y

ydρX(x) we have that

Er(−→f)− Er(−→fρ) = Qs(
−→
f ,
−→
fρ) + 2

∫
X

∫
X

w(x− u)
[
fρ(x)

−fρ(u)−∇fρ(u)(x− u)T
][

fρ(u)− f1(u)+
(−→f2(u)−∇fρ(u))(u− x)T

]
dρX(x)dρX(u)

≥ Qs(
−→
f ,
−→
fρ)− 2

(∫
X

∫
X

w(x− u)
[
fρ(x)− fρ(u)

−∇fρ(u)(x− u)T
]2

dρX(x)dρX(u)
) 1

2
(
Qs(

−→
f ,
−→
fρ)|

) 1
2
.

227

Applying the inequality, for any a, b > 0, that−2a2− 1
2b2 ≤

−2ab, from the above equality we further have that

Er(−→f) − Er(−→fρ) ≥ 1
2Qs(

−→
f ,
−→
fρ)− 2

∫
X

∫
X

w(x− u)[
fρ(x)− fρ(u)−∇fρ(u)(x− u)T

]2
dρX(x)dρX(u).

(35)
Likewise,

Er(−→f)− Er(−→fρ) = Qs(
−→
f ,
−→
fρ) + 2

∫
X

∫
X

w(x− u)
[
fρ(x)

−fρ(u)−∇fρ(u)(x− u)T
][

fρ(u)− f1(u)+
(−→f2(u)−∇fρ(u))(u− x)T

]
dρX(x)dρX(u)

≤ Qs(
−→
f ,
−→
fρ) + 2

(∫
X

∫
X

w(x− u)
[
fρ(x)− fρ(u)

−∇fρ(u)(x− u)T
]2

dρX(x)dρX(u)
) 1

2
(
Qs(

−→
f ,
−→
fρ)|

) 1
2
.

Applying the inequality 2ab ≤ a2 + b2 to the above inequal-
ity yields that

Er(−→f) − Er(−→fρ) ≤ 2Qs(
−→
f ,
−→
fρ) +

∫
X

∫
X

w(x− u)[
fρ(x)− fρ(u)−∇fρ(u)(x− u)T

]2
dρX(x)dρX(u)

(36)
However, |fρ(x)−fρ(u)−∇fρ(u)(x−u)T | = ∣∣∫ 1

0

(∇fρ(tx+

(1−t)u)−∇fρ(u)
)(

x−u
)T

dt
∣∣ ≤ |∇fρ|Lip‖x−u‖2 and the

density p(x) of ρX is a bounded function since we assume it
is θ-Hölder continuous and X is compact. Therefore,

∫
X

∫
X

w(x− u)
[
fρ(x)− fρ(u)−∇fρ(u)(x− u)T

]2
×dρX(x)dρX(u)

≤ ‖p‖∞|∇fρ|2Lip

[∫
Rd

1
sd+2 e−

‖x‖2
2s2 ‖x‖4dx

]

≤ c‖p‖∞|∇fρ|2Lip s2.

Putting this into Equations (35) and (36) and arranging the
terms involved yields the desired result.

From Property (1) of Lemma 9, for any −→f ∈ HK we have
that

Er(−→f) − Er(−→fρ) ≥ −cs2|∇fρ|2Lip. (37)

We now turn our attention to the second step of the error
analysis: the estimation of the excess error Er(−→fz)−Er(−→fρ)+
λ‖−→fz‖2K. To do this, let

−→
fλ = arg inf−→

f ∈HK

{
Er(−→f) + λ‖−→f ‖2K

}

By the error decomposition technique in [6], we get the fol-
lowing estimation.

Proposition 3 If −→fλ is defined above then there exists a con-
stant c such that

Er(−→fz)− Er(−→fρ) + λ‖−→fz‖2K ≤ S(z)
+c

(
s2

∣∣∇fρ

∣∣2
Lip +A(λ, s)

)
,

where

S(z) = Er(−→fz)− Erz(
−→
fz) + Erz(

−→
fλ)− Er(−→fλ)

is referred to the sample error and

A(λ, s) = inf−→
f ∈HK

{
Qs(

−→
f ,
−→
fρ) + λ‖−→f ‖2K

}

is called the approximation error.

Proof: Note that Er(−→fz) − Er(−→fρ) + λ‖−→fz‖2K =
[
Er(−→fz) −

Erz(
−→
fz) + Erz(

−→
fλ) − Er(−→fλ)

]
+

[(
Erz(

−→
fz) + λ‖−→fz‖2K

) −(
Erz(

−→
fλ)+λ‖−→fλ‖2K

)]
+

[
Er(−→fλ)−Er(−→fρ)+λ‖−→fλ‖2K

]
. By the

definition of −→fz , we know that the second term in parenthe-
sis on the right-hand side of the above equation is negative.
Hence, by the definition of fλ, we get that Er(−→fz)−Er(−→fρ)+
λ‖−→fz‖2K ≤ S(z) + inff∈HK

{
Er(−→f)− Er(−→fρ) + λ‖−→f ‖2K

}
.

By the property (2) in Lemma 9, we also have, for any −→f ∈
HK, that Er(−→f)− Er(−→fρ) ≤ c

(
(s2

∣∣∇fρ

∣∣2
Lip +Qs(

−→
f ,
−→
fρ)

)

which implies that

inf{Er(−→f)−Er(−→fρ)+λ‖−→f ‖2K} ≤ c
(
s2

∣∣∇fρ

∣∣2
Lip+A(λ, s)

)
.

This completes the proposition.

Now it suffice to estimate the sample error S(z). To this
end, observe that Erz(

−→
fz) + λ‖−→fz‖2K ≤ Erz(0) + λ‖0‖2K ≤

M2

sd+2 which implies that ‖−→fz‖K ≤ Ms−(d+2)/2. Likewise,
Er(−→fλ) + λ‖−→fλ‖2K ≤ Er(0) + λ‖0‖2K‖

−→
fλ‖K ≤ M2

sd+2 which
tells us that ‖−→fz‖K ≤ Ms−(d+2)/2. Using these bounds on
‖−→fz‖K + ‖−→fλ‖K, we can use the Rademacher averages (see
e.g. [4, 12]) for its definition and properties) to get the fol-
lowing estimation for the sample error.

Lemma 10 For any 0 < λ < 1, there exists a constant c
such that, for any m ∈ N, there holds

E
[S(z)

] ≤ c
(1

s2(d+2)λm
+

1
s3(d+2)/2

√
λm

)
.

Since the proof of the above lemma is rather a standard ap-
proach and indeed parallel to the proof of Lemma 26 (replac-
ing r = Ms−(d+2)/2 there) in the appendix of [15], for the
simplicity we omit the details here.

We have assembled all the materials to prove Theorem 7.

Proof of Theorem 7
Since we assume that −→fρ ∈ HK, for any

∣∣∂pfρ(x + u) −
∂p
−→
fρ(u)

∣∣ =
∣∣〈ẽp+1,

−→
fρ(x+u)−−→fρ(u)〉∣∣ =

∣∣〈−→fρ,Kx+uẽp+1−
Kuẽp+1〉K

∣∣ ≤ ‖−→fρ‖K
[
ẽT
p+1

(K(x + u, x + u) + K(u, u) −

K(x+u, u)−K(u, x+u)
)
ẽp+1

] 1
2 ≤ c‖−→fρ‖K‖u‖, and hence

|∇fρ|Lip ≤ c‖−→fρ‖K. Moreover,

A(λ, s) ≤ Q(−→fρ,
−→
fρ) + λ‖−→fρ‖2K = λ‖−→fρ‖2K.

Hence, we know from Proposition 3 and equation (37) that
λ‖−→fz‖2K ≤ S(z) + c′

(
s2 + λ

)
.

Combining the above equations with Propositions 2 and 3,
there exists a constant c such that
E

[‖−→fz −−→fρ‖2ρX

] ≤ c
([

min(s−θ,maxx∈X p−1(x)) + sθ

λ

]

× [
E

[S(z)
]
+ s2 + λ

]
+ sθ

)
.

If we choose λ = s2θ and s = m− 1
3(d+2)+4θ yields the first

assertion.
If ρX is the uniform distribution over X , then we have that
min(s−θ, min

x∈X
p(x)) = 1. Hence, choosing λ = sθ and

s = m− 1
3(d+2)+5θ we have the desired second assertion. This

completes the theorem.

228

Sparse Recovery in Large Ensembles of Kernel Machines

Vladimir Koltchinskii∗
School of Mathematics, Georgia Institute of Technology

vlad@math.gatech.edu

Ming Yuan†
School of Industrial and Systems Engineering, Georgia Institute of Technology

myuan@iyse.gatech.edu

Abstract

A problem of learning a prediction rule that
is approximated in a linear span of a large
number of reproducing kernel Hilbert spaces
is considered. The method is based on pe-
nalized empirical risk minimization with `1-
type complexity penalty. Oracle inequalities
on excess risk of such estimators are proved
showing that the method is adaptive to un-
known degree of “sparsity” of the target func-
tion.

1 Introduction

Let (X,Y) be a random couple in S×T, where (S,S), (T, T)
are measurable spaces. Usually, T is either a finite set,
or a subset of R (in the first case, T can be also identi-
fied with a finite subset of R). Most often, S is a com-
pact domain in a finite dimensional Euclidean space, or
a compact manifold. Let P denote the distribution of
(X,Y) and Π denote the distribution of X. In a general
framework of prediction, X is an observable instance
and Y is an unobservable label which is to be predicted
based on an observation of X. Let ` : T × R 7→ R+

be a loss function. It will be assumed in what follows
that, for all y ∈ T, the function `(y; ·) is convex. Given
f : S 7→ R, denote

(` • f)(x, y) := `(y, f(x))

and define the (true) risk of f as

E`(Y ; f(X)) = P (` • f).

The prediction problem then can be formulated as con-
vex risk minimization problem with the optimal predic-
tion rule f∗ defined as

f∗ := argminf :S 7→RP (` • f)

where the minimum is taken over all measurable func-
tions f : S 7→ R. It will be assumed in what follows that
∗Partially supported by NSF grant DMS-0624841.
†Partially supported by NSF grant DMS-0624841.

f∗ exists and it is uniformly bounded. We shall also as-
sume the uniqueness of f∗ in the following discussion.

In the case when the distribution P of (X,Y) is
unknown, it has to be estimated based on the training
data which (in the simplest case) consists of n inde-
pendent copies (X1, Y1), . . . , (Xn, Yn) of (X,Y). Let Pn
denote the empirical distribution based on the training
data. Then the risk P (` • f) can be estimated by the
empirical risk

n−1
n∑
j=1

`(Yj , f(Xj)) = Pn(` • f).

The direct minimization of the empirical risk over
a large enough family of function f : S 7→ R almost in-
evitably leads to overfitting. To avoid it, a proper com-
plexity regularization is needed. In this paper, we will
study a problem in which the unknown target function
f∗ is being approximated in a linear span H of a large
dictionary consisting of N reproducing kernel Hilbert
spaces (RKHS) H1, . . . ,HN . It will be assumed that we
are given N symmetric nonnegatively definite kernels
Kj : S×S 7→ R, j = 1, . . . , N and that Hj is the RKHS
generated by Kj : Hj = HKj

. Suppose, for simplicity,
that

Kj(x, x) ≤ 1, x ∈ S, j = 1, . . . , N.
The space

H := l.s.
(N⋃
j=1

Hj
)

consists of all functions f : S 7→ R that have the follow-
ing (possibly, non-unique) additive representation

f = f1 + . . . fN , fj ∈ Hj , fj ∈ Hj , j = 1, . . . , N

and it can be naturally equipped with the `1-norm:

‖f‖`1 := ‖f‖`1(H) := inf
{ N∑
j=1

‖fj‖Hj : f

=
N∑
j=1

fj , fj ∈ Hj , j = 1, . . . , N
}
.

Additive models are a well-known special case of
this formulation. In additive models, S is a subset of

229

RN , i.e., X = (x1, . . . , xN)′, and Hj represents a func-
tional space defined over xj . Several approaches have
been proposed recently to exploit the sparsity in addi-
tive models (Lin and Zhang, 2006; Ravikumar et al.,
2007; Yuan, 2007). In this paper, we consider an exten-
sion of `1 penalization technique to a more general class
of problem.

In particular, we study the following penalized em-
pirical risk minimization problem:

f̂ε := argminf∈H

[
Pn(` • f) + ε‖f‖`1

]
, (1.1)

where ε > 0 is a small regularization parameter. Equiv-
alently, this problem can be written as

(f̂ε1 , . . . , f̂
ε
N) := argminfj∈Hj ,j=1,...,N (1.2)[

Pn(` • (f1 + · · ·+ fN)) + ε

N∑
j=1

‖fj‖Hj

]
.

According to the representer theorem (Wahba, 1990),
the components of the minimizer f̂εj have the following
representation:

f̂εj (x) =
n∑
i=1

ĉijKj(Xi, x)

for some real vector ĉj = (ĉij : i = 1, . . . , n). In other
words, (1.2) can be rewritten as a finite dimensional con-
vex minimization problem over (cij : i = 1, . . . , n; j =
1, . . . , N).

It is known (see, e.g., Micchelli and Pontil, 2005)
that

‖f‖`1(H) = inf
{
‖f‖K : K ∈ conv{Kj : j = 1, . . . , N}

}
,

where ‖ · ‖K denote the RKHS-norm generated by sym-
metric nonnegatively definite kernel K and

conv{Kj : j = 1, . . . , N} :=
{ N∑
j=1

cjKj :

cj ≥ 0,
N∑
j=1

cj = 1
}
.

Therefore (1.2) can be also written as

(f̂ε, K̂ε) := argminK∈conv(Kj ,j=1,...,N)argminf∈HK
(1.3)[

Pn(` • f) + ε‖f‖K
]
,

leading to an interpretation of the problem as the one
of learning not only the target function f∗, but also the
kernel K in the convex hull of a given dictionary of ker-
nels (which can be viewed as “aggregation” of kernel
machines). Similar problems have been studied recently
by Bousquet et al. (2003), Cramer et al. (2003), Lanck-
riet et al. (2004), Micchelli and Pontil (2005) and Srebro
and Ben-David (2006) among others.

The choice of `1-norm for complexity penalization
is related to our interest in the case when the total num-
ber N of spaces Hj in the dictionary is very large, but
the target function f∗ can be approximated reasonably
well by functions from relatively small number d of such
spaces. The `1-penalization technique has been com-
monly used to recover sparse solutions in the case of sim-
ple dictionaries that consist of one-dimensional spaces
Hj (see, e.g, Koltchinskii (2007) and references therein).
The goal is to extend this methodology to more general
class of problems that include aggregation of large en-
sembles of kernel machines and sparse additive models.
In the case of additive models with the quadratic loss,
(1.1) becomes the so-called COSSO estimate recently
introduced by Lin and Zhang (2006).

For f ∈ H, define the excess risk of f as

E(f) = P (` • f)− P (` • f∗) = P (` • f)− inf
g:S 7→R

P (` • g).

Our main goal is to control the excess risk of f̂ε, E(f̂ε).
Throughout the paper, we shall also make the fol-

lowing assumption

nγ ≤ N ≤ en

for some γ > 0.
It will also be assumed that the loss function `

satisfies the following properties: for all y ∈ T, `(y, ·) is
twice differentiable, `′′u is a uniformly bounded function
in T × R,

sup
y∈T

`(y; 0) < +∞, sup
y∈T

`′u(y; 0) < +∞

and

τ(R) :=
1
2

inf
y∈T

inf
|u|≤R

`′′u(y, u) > 0, R > 0. (1.4)

We also assume without loss of generality that, for all
R, τ(R) ≤ 1. These assumptions imply that

|`′u(y, u)| ≤ L1 + L|u|, y ∈ T, u ∈ R

with some constants L1, L ≥ 0 (if `′u is uniformly bounded,
one can take L = 0).

The following bound on the excess risk holds under
the assumptions on the loss:

τ(‖f‖∞ ∨ ‖f∗‖∞)‖f − f∗‖2L2(Π)

≤ E(f) ≤ C‖f − f∗‖2L2(Π) (1.5)

with a constant C > 0 depending only on `. This bound
easily follows from a simple argument based on Taylor
expansion and it will be used later in the paper.

The quadratic loss `(y, u) := (y − u)2 in the case
when T ⊂ R is a bounded set is one of the main exam-
ples of such loss functions. In this case, τ(R) = 1 for all
R. In regression problems with a bounded response vari-
able, more general loss functions of the form `(y, u) :=
φ(y − u) can be also used, where φ is an even non-
negative convex twice continuously differentiable func-
tion with φ′′ uniformly bounded in R, φ(0) = 0 and

230

φ′′(u) > 0, u ∈ R. In classification problems, the loss
function of the form `(y, u) = φ(yu) is commonly used,
with φ being a nonnegative decreasing convex twice con-
tinuously differentiable function such that, again, φ′′ is
uniformly bounded in R and φ′′(u) > 0, u ∈ R. The loss
function φ(u) = log2(1 + e−u) (often referred to as the
logit loss) is a specific example.

We will assume in what follows that H is dense in
L2(Π), which, together with (1.5), implies that

inf
f∈H

P (` • f) = inf
f∈L2(Π)

P (` • f) = P (` • f∗).

We also need several basic facts about RKHS which
can be found in, for example, Wahba (1990). Let K be
a symmetric nonnegatively definite kernel on S×S with

sup
x∈S

K(x, x) ≤ 1

and HK be the corresponding RKHS. Given a probabil-
ity measure Π on S, let φk, k ≥ 1 be the orthonormal
system of fuctions in L2(Π) such that the following spec-
tral representation (as in Mercer’s theorem) holds:

K(x, y) =
∞∑
k=1

λkφk(x)φk(y), x, y ∈ S,

which is true under mild regularity conditions. Without
loss of generality we can and do assume that {λk} is a
decreasing sequence, λk → 0. It is well known that for
f, g ∈ HK ,

〈f, g〉HK
=
∞∑
k=1

〈f, φk〉L2(Π)〈g, φk〉L2(Π)

λk
.

Denote HD ⊂ HK the linear span of functions f ∈ HK
such that

∞∑
k=1

〈f, φk〉2L2(Π)

λ2
k

<∞

and let D : HD 7→ L2(Π) be a linear operator defined
as follows:

Df :=
∞∑
k=1

〈f, φk〉L2(Π)

λk
φk, f ∈ HD.

Then we obviously have

〈f, g〉HK
= 〈Df, g〉L2(Π), f ∈ HD, g ∈ HK .

Given a dictionary {H1, . . . ,HN} of RKHS, one
can quite similarly define spectral representations of ker-
nelsKj with nonincreasing sequences of eignevalues {λ(j)

k :
k ≥ 1} and orthonormal in L2(Π) eigenfunctions {φ(j)

k :
k ≥ 1}. This also defines spaces HDj

and linear opera-
tors Dj : HDj

7→ L2(Π) such that

〈f, g〉Hj = 〈Djf, g〉L2(Π), f ∈ HDj , g ∈ HKj .

2 Bounding the `1-norm

Our first goal is to derive upper bounds on ‖f̂ε‖`1 that
hold with a high probability. In what follows we use the
notation

(`′ • f)(x, y) := `′u(y, f(x)),

where `′u(y, u) is the derivative of ` with respect to the
second variable.

Theorem 1 There exists a constant D > 0 depending
only on ` such that for all A ≥ 1 and for all ε > 0 and
f ∈ H satisfying the condition

ε ≥ D‖`′•f‖∞

√
A logN

n

∨
4 max

1≤k≤N
sup

‖hk‖Hk
≤1

|P ((`′ • f)hk) |,

the following bound holds

P
{
‖f̂ε‖`1 ≥ 3‖f‖`1

}
≤ N−A. (2.1)

In particular, if ε ≥ D‖`′ • fε/4‖∞
√

A logN
n , then

P
{
‖f̂ε‖`1 ≥ 3‖fε/4‖`1

}
≤ N−A. (2.2)

Proof. By the definition of f̂ε, for all f ∈ H,

Pn(` • f̂ε) + ε‖f̂ε‖`1 ≤ Pn(` • f) + ε‖f‖`1 .

The convexity of the functional f 7→ Pn(` • f) implies
that

Pn(` • f̂ε)− Pn(` • f) ≥ Pn
(

(`′ • f)(f̂ε − f)
)
.

As a result,

ε‖f̂ε‖`1 ≤ ε‖f‖`1 + Pn

(
(`′ • f)(f − f̂ε)

)
≤ ε‖f‖`1 + max

1≤k≤N
sup

‖hk‖Hk
≤1

|Pn ((`′ • f)hk) | ×

×‖f̂ε − f‖`1 .

It follows that(
ε− max

1≤k≤N
sup

‖hk‖Hk
≤1

|Pn ((`′ • f)hk) |
)
‖f̂ε‖`1

≤
(
ε+ max

1≤k≤N
sup

‖hk‖Hk
≤1

|Pn ((`′ • f)hk) |
)
‖f‖`1 .

Under the assumption

ε > max
1≤k≤N

sup
‖hk‖Hk

≤1

|Pn ((`′ • f)hk) |,

this yields

‖f̂ε‖`1 ≤
ε+ max1≤k≤N sup‖hk‖Hk

≤1 |Pn ((`′ • f)hk) |
ε−max1≤k≤N sup‖hk‖Hk

≤1 |Pn ((`′ • f)hk) |
‖f‖`1 .

(2.3)

231

Note that

max
1≤k≤N

sup
‖hk‖Hk

≤1

|Pn ((`′ • f)hk) |

≤ max
1≤k≤N

sup
‖hk‖Hk

≤1

|(Pn − P)(`′ • f)hk|+

+ max
1≤k≤N

sup
‖hk‖Hk

≤1

|P ((`′ • f)hk) |.

Also, for any i = 1, . . . , N

sup
‖hi‖Hi

≤1

|(Pn − P)(`′ • f)hi|

= sup
‖hi‖Hi

≤1

∣∣∣∣n−1
n∑
j=1

(
(`′ • f)(Xj , Yj)〈hi,Ki(Xj , ·)〉Hi

−E(`′ • f)(Xj , Yj)〈hi,Ki(Xj , ·)〉Hi

)∣∣∣∣
=

∥∥∥∥n−1
n∑
j=1

(
(`′ • f)(Xj , Yj)Ki(Xj , ·)

−E(`′ • f)(Xj , Yj)Ki(Xj , ·)
)∥∥∥∥
Hi

.

Using Bernstein’s type inequality in Hilbert spaces, we
are easily getting the bound

max
1≤k≤N

sup
‖hk‖Hk

≤1

|(Pn − P)(`′ • f)hk| ≤

C‖`′ • f‖∞
(√

A logN
n

∨ A logN
n

)
with probability at least 1−N−A. As soon as

ε ≥ 4C‖`′ • f‖∞
(√

A logN
n

∨ A logN
n

)
and

ε ≥ 4 max
1≤k≤N

sup
‖hk‖Hk

|P ((`′ • f)hk) |,

we get

max
1≤k≤N

sup
‖hk‖Hk

≤1

|Pn ((`′ • f)hk) | ≤ ε/2,

and it follows from (2.3) that with probability at least
1−N−A

‖f̂ε‖`1 ≤
ε+ ε/2
ε− ε/2

‖f‖`1 = 3‖f‖`1 ,

implying (2.1).
In particular, we can use in (2.1) f := fε/4. Then,

by the necessary conditions of extremum in the defini-
tion of fε/4,

max
1≤k≤N

sup
‖hk‖Hk

≤1

|P
(

(`′ • fε/4)hk
)
| ≤ ε

4
,

and the second bound follows.
We now provide an alternative set of conditions on

ε so that (2.1) holds. By the conditions on the loss,

‖`′ • f‖∞ ≤ C(1 + L‖f‖∞) ≤ C(1 + L‖f‖`1)

with constants C,L depending only on ` (if `′ is uni-
formly bounded, L = 0).

Since, by the necessary conditions of minimum at
f∗,

P ((`′ • f∗)hk) = 0, hk ∈ Hk, k = 1, . . . , N,

we also have

max
1≤k≤N

sup
‖hk‖Hk

≤1

|P ((`′ • f)hk) |

= max
1≤k≤N

sup
‖hk‖Hk

≤1

|P
(

(`′ • f)− (`′ • f∗)
)
hk|

≤ C‖f − f∗‖L2(Π)

where we used the fact that `′u(y, u) is Lipschitz with
respect to u. Therefore, the condition on ε in (2.1) is
satisfied if

ε ≥ D(1 + ‖f‖`1)

√
A logN

n

and
‖f − f∗‖L2(Π) ≤ ε/D

with a properly chosen D (depending only on `).

3 Oracle inequalities

In what follows we will assume that R > 0 is such that

‖f̂ε‖`1 ≤ R
with probability at least 1−N−A. In particular, if f̄ ∈ H
satisfies the assumption of Theorem 1, i.e.,

ε ≥ D‖`′•f̄‖∞

√
A logN

n

∨
4 max

1≤k≤N
sup

‖hk‖Hk
≤1

|P
(
(`′ • f̄)hk

)
|,

then one can take R = 3‖f̄‖`1 .
We need some measures of dependence (in a prob-

abilistic sense) between the spaces Hj , j = 1, . . . , N. In
the case of a simple dictionary {h1, . . . , hN} consisting
of N functions (equivalently, N one-dimensional spaces)
the error of sparse recovery depends on the Gram matrix
of the dictionary in the space L2(Π) (see, e.g., Koltchin-
skii (2007)). A similar approach is taken here. Given
hj ∈ Hj , j = 1, . . . , N and J ⊂ {1, . . . , N}, denote
by κ({hj : j ∈ J}) the minimal eigenvalue of the Gram

matrix
(
〈hi, hj〉L2(Π)

)
i,j∈J

and κ̄({hj : j ∈ J}) its max-

imal eigenvalue. Let

κ(J) := inf
{
κ({hj : j ∈ J}) : hj ∈ Hj , ‖hj‖L2(Π) = 1

}
and

κ̄(J) := sup
{
κ({hj : j ∈ J}) : hj ∈ Hj , ‖hj‖L2(Π) = 1

}
Also, denote LJ the linear span of subspacesHj , j ∈

J. Let

ρ(J) := sup
{ 〈f, g〉L2(Π)

‖f‖L2(Π)‖g‖L2(Π)
: f ∈ LJ , g ∈ LJc ,

f 6= 0, g 6= 0
}
.

232

In what follows, we will consider a setO = O(M1,M2)
of functions (more precisely, their additive representa-
tions) f = f1 + · · · + fN ∈ H, fj ∈ Hj , j = 1, . . . , N
that will be called “admissible oracles”. Let Jf := {j :
fj 6= 0} and suppose the following assumptions hold:

O1. The “relevant” part Jf of the dictionary satisfies
the condition

κ̄(Jf)
κ(Jf)(1− ρ2(Jf))

≤M1.

O2. For some β > 1/2 and for all j ∈ Jf

λ
(j)
k ≤M2k

−2β , k = 1, 2, . . .

Recall that Dj is the linear operator defined in the
first section. Denote

ζ(f) :=
1

card(Jf)

∑
j∈Jf

‖Djfj‖2L2(Π)

‖fj‖2Hj

.

We are now in the position to state the main result
of this paper.

Theorem 2 There exist constants D,L depending only
on ` (L = 0 if `′u is uniformly bounded) such that for all
A ≥ 1, for all f ∈ O with card(Jf) = d and for all

ε ≥ D(1 + LR)

√
logN
n

with probability at least 1−N−A

E(f̂ε) + 2ε
∑
j 6∈Jf

‖f̂εj ‖Hj

≤ 7E(f) +K

[
d(2β−1)/(2β+1)

n2β/(2β+1)
+ ζ(f)dε2 +

A logN
n

]
,

where K is a constant depending on `, R,M1,M2, ‖f‖∞
and ‖f∗‖∞.

The meaning of this result can be described as fol-
lows. Suppose there exists an oracle f such that the
excess risk of f is small (i.e., f provides a good ap-
proximation of f∗); the set Jf is small (i.e., f has a
sparse representation in the dictionary); the condition
(O1) is satisfied, i.e. the relevant part of the dictionary
is “well posed” in the sense that the spaces Hj , j ∈ Jj
are not “too dependent” among themselves and with
the rest of the spaces in the dictionary; the condition
(O2) is satisfied, which means “sufficient smoothness”
of functions in the spaces Hj , j ∈ Jf ; finally, the com-
ponents fj , j ∈ Jf of the oracle f are even smoother
in the sense that the quantities ‖Djfj‖L2(Π)

‖fj‖Hj
, j ∈ Jf are

properly bounded. Then the excess risk of the empir-
ical solution f̂ε is controlled by the excess risk of the
oracle as well as by its degree of sparsity d and, at the
same time, f̂ε is approximately sparse in the sense that

∑
j 6∈Jf

‖fεj ‖Hj
is small. In other words, the solution ob-

tained via `1-penalized empirical risk minimization is
adaptive to sparsity (at least, subject to constraints de-
scribed above).

Proof. Throughout the proof we fix representa-
tions f = f1 + · · ·+ fN and f̂ε = f̂ε1 + · · ·+ f̂εN (and we
use (1.2) to define f̂εj). The definition of f̂εj implies that
for all f ∈ H,

Pn(` • f̂ε) + ε‖f̂ε‖`1 ≤ Pn(` • f) + ε‖f‖`1 .
Therefore,

E(f̂ε) + ε
∑
j 6∈Jf

‖f̂εj ‖Hj

≤ E(f) + ε
∑
j∈Jf

(‖fj‖Hj
− ‖f̂εj ‖Hj

)

+(P − Pn)(` • f − ` • f̂ε).
We first show that

E(f̂ε) + 2ε
∑
j 6∈Jf

‖f̂εj ‖Hj

≤ 3E(f) +
2ζ(f)d

τκ(Jf)(1− ρ2(Jf))
ε2

+2(P − Pn)(` • f − ` • f̂ε),
where

τ = τ(‖f‖∞ ∨ ‖f̂ε‖∞ ∨ ‖f∗‖∞).

Let sj(fj) be a subgradient of fj 7→ ‖fj‖Hj at
fj ∈ Hj , i.e. sj(fj) = fj

‖fj‖Hj
if fj 6= 0 and sj(fj) is an

arbitrary vector with ‖sj(fj)‖Hj ≤ 1 otherwise. Then
we have

‖fj‖Hj − ‖f̂εj ‖Hj ≤ 〈sj(fj), fj − f̂εj 〉Hj

= 〈Djsj(fj), fj − f̂εj 〉L2(Π)

≤ ‖Djsj(fj)‖L2(Π)‖fj − f̂εj ‖L2(Π).

It follows that

E(f̂ε) + ε
∑
j 6∈Jf

‖f̂εj ‖Hj

≤ E(f) + ε

(∑
j∈Jf

‖Djsj(fj)‖2L2(Π)

)1/2

×

×
(∑
j∈Jf

‖fj − f̂εj ‖2L2(Π)

)1/2

+(P − Pn)(` • f − ` • f̂ε).
It can also be shown that (see Koltchinskii, 2007, Propo-
sition 1) (∑

j∈Jf

‖fj − f̂εj ‖2L2(Π)

)1/2

≤

√
1

κ(Jf)(1− ρ2(Jf))
‖f − f̂ε‖L2(Π).

233

This allows us to write

E(f̂ε) + ε
∑
j 6∈Jf

‖f̂εj ‖Hj

≤ E(f) + ε

√
ζ(f)d

κ(Jf)(1− ρ2(Jf))
‖f − f̂ε‖L2(Π)

+(P − Pn)(` • f − ` • f̂ε).
Then, using the bounds

‖f − f̂ε‖L2(Π) ≤ ‖f − f∗‖L2(Π) + ‖f̂ε − f∗‖L2(Π)

and

E(f) ≥ τ‖f − f∗‖2L2(Π), E(f̂ε) ≥ τ‖f̂ε − f∗‖2L2(Π),

we get

E(f̂ε) + ε
∑
j 6∈Jf

‖f̂εj ‖Hj

≤ E(f) + ε

√
ζ(f)d

κ(Jf)(1− ρ2(Jf))
×

×
(√E(f)

τ
+

√
E(f̂ε)
τ

)
+(P − Pn)(` • f − ` • f̂ε).

Applying the inequality ab ≤ a2/2 + b2/2, we show that

ε

√
ζ(f)d

κ(Jf)(1− ρ2(Jf))

√
E(f)
τ

≤ E(f)
2

+
ζ(f)d

2τκ(Jf)(1− ρ2(Jf))
ε2.

Similarly,

ε

√
ζ(f)d

κ(Jf)(1− ρ2(Jf))

√
E(f̂ε)
τ

≤ E(f̂ε)
2

+
ζ(f)d

2τκ(Jf)(1− ρ2(Jf))
ε2.

This leads to the following bound

E(f̂ε) + ε
∑
j 6∈Jf

‖f̂εj ‖Hj

≤ E(f) +
E(f̂ε)

2
+

ζ(f)d
2τκ(Jf)(1− ρ2(Jf))

ε2

+
E(f)

2
+

ζ(f)d
2τκ(Jf)(1− ρ2(Jf))

ε2

+(P − Pn)(` • f − ` • f̂ε).
It easily follows that

E(f̂ε) + 2ε
∑
j 6∈Jf

‖f̂εj ‖Hj

≤ 3E(f) +
2ζ(f)d

τκ(Jf)(1− ρ2(Jf))
ε2

+2(P − Pn)(` • f − ` • f̂ε).

Denote

αn(δ,∆, R) := sup
{
|(Pn − P)(` • g − ` • f)| :

‖g − f‖L2(Π) ≤ δ,
∑
j 6∈Jf

‖gj‖Hj
≤ ∆, ‖g‖`1 ≤ R

}
.

If ‖f̂ε‖`1 ≤ R (which holds with probability at least
1−N−A), then we have

E(f̂ε) + 2ε
∑
j 6∈Jf

‖f̂εj ‖Hj

≤ 3E(f) +
2ζ(f)d

τκ(Jf)(1− ρ2(Jf))
ε2

+2αn
(
‖f̂ε − f‖L2(Π),

∑
j 6∈Jf

‖f̂εj ‖Hj , R
)

with τ = τ(R∨‖f‖∞∨‖f∗‖∞). We use Lemma 8 to get

E(f̂ε) + 2ε
∑
j 6∈Jf

‖f̂εj ‖Hj

≤ 3E(f) +
2ζ(f)d

τκ(Jf)(1− ρ2(Jf))
ε2

+C(1 + LR)
[√

κ̄(Jf)
κ(Jf)(1− ρ2(Jf))

×

×‖f̂ε − f‖L2(Π)

√
dm

n
+R

√
maxj∈Jf

∑
k>m λ

(j)
k

n
+

+R
√

max
j∈Jf

λ
(j)
m

√
log d
n

+
∑
j 6∈Jf

‖f̂εj ‖Hj ×

×
√

log(N − d) + 1
n

]
+ C(1 + LR)×

×‖f̂ε − f‖L2(Π)

√
A logN

n

+CR(1 + LR)
A logN

n
(3.1)

(Lemma 8 can be used only under the assumption R ≤
eN ; however, for very large R > eN , the proof of the
inequality of the theorem is very simple). Recall that

‖f̂ε − f‖L2(Π) ≤

√
E(f̂ε)
τ

+

√
E(f)
τ

.

Under the assumption

ε ≥ C(1 + LR)

√
logN
n

,

234

we get

E(f̂ε) + ε
∑
j 6∈Jf

‖f̂εj ‖Hj

≤ 3E(f) + 2
2ζ(f)d

τκ(Jf)(1− ρ2(Jf))
ε2 +

C(1 + LR)
[√

κ̄(Jf)
κ(Jf)(1− ρ2(Jf))

×

×
(√
E(f̂ε)
τ

+

√
E(f)
τ

)√
dm

n
+R×

×

√
maxj∈Jf

∑
k>m λ

(j)
k

n
+R

√
max
j∈Jf

λ
(j)
m

√
log d
n

]

+C(1 + LR)
(√
E(f̂ε)
τ

+

√
E(f)
τ

)√
A logN

n

+CR(1 + LR)
A logN

n
. (3.2)

Then we have

C(1 + LR)

√
κ̄(Jf)

κ(Jf)(1− ρ2(Jf))

√
E(f̂ε)
τ

√
dm

n

≤ 1
4
E(f̂ε) + 2C2(1 + LR)2 κ̄(Jf)

τκ(Jf)(1− ρ2(Jf))
dm

n

and

C(1 + LR)

√
κ̄(Jf)

κ(Jf)(1− ρ2(Jf))

√
E(f)
τ

√
dm

n

≤ 1
4
E(f) + 2C2(1 + LR)2 κ̄(Jf)

τκ(Jf)(1− ρ2(Jf))
dm

n
.

Similarly,

C(1 + LR)

√
E(f̂ε)
τ

√
A logN

n

≤ 1
4
E(f̂ε) + 2C2(1 + LR)2A logN

n

and

C(1 + LR)

√
E(f)
τ

√
A logN

n

≤ 1
4
E(f) + 2C2(1 + LR)2A logN

n
.

This yields the following bound
1
2
E(f̂ε) + ε

∑
j 6∈Jf

‖f̂εj ‖Hj

≤ 7
2
E(f) + 2

2ζ(f)d
τκ(Jf)(1− ρ2(Jf))

ε2 +

4C2(1 + LR)2

[
κ̄(Jf)

τκ(Jf)(1− ρ2(Jf))
dm

n

+R

√
maxj∈Jf

∑
k>m λ

(j)
k

n
+

R

√
max
j∈Jf

λ
(j)
m

√
log d
n

]
+ 4C2(1 + LR)2 ×

×A logN
n

+ CR(1 + LR)
A logN

n
. (3.3)

It remains to take

m :=
n1/(2β+1)

d2/(2β+1)

(
(1 + LR)2

Rτ

)−2/(2β+1)

×

×
(

κ̄(Jf)
κ(Jf)(1− ρ2(Jf))

)−2/(2β+1)

to get the following bound (with some constant C > 0)

E(f̂ε) + 2ε
∑
j 6∈Jf

‖f̂εj ‖Hj

≤ 7E(f) + 8
ζ(f)d

τκ(Jf)(1− ρ2(Jf))
ε2 +

+C
(

(1 + LR)2

τ

)(2β−1)/(2β+1)

×

×
(

κ̄(Jf)
κ(Jf)(1− ρ2(Jf))

)(2β−1)/(2β+1)

×

×d
(2β−1)/(2β+1)

n2β/2β+1
+
(

4C2(1 + LR)2 +

+CR(1 + LR)
)
A logN

n
, (3.4)

which implies the result.

4 Appendix

The Rademacher process is defined as

Rn(g) := n−1
n∑
j=1

εjg(Xj)

where {εj} are i.i.d. Rademacher random variables in-
dependent of {Xj}.

We will need several bounds for Rademacher pro-
cesses indexed by functions from RKHS (some of them
are well known; see, e.g., Mendelson (2002) and Blan-
chard, Bousquet and Massart (2007)). We state them
without proofs for brevity.

First we consider a single RKHS HK where K is
a kernel with eingenvalues λk and eigenfunctions φk (in
L2(Π)).

235

Lemma 3 The following bound holds:

E sup
‖h‖HK

≤1

|Rn(h)| ≤
√∑∞

k=1 λk
n

.

Let m ≥ 1. Denote by L the linear span of the
functions {φk : k = 1, . . . ,m} and by L⊥ the closed
linear span (in L2(Π)) of the functions {φk : k ≥ m+1}.
PL, PL⊥ will denote orthogonal projectors in L2(Π) on
the corresponding subspaces.

Lemma 4 For all m ≥ 1,

E sup
‖h‖HK

≤1

|Rn(PL⊥h)| ≤

√∑∞
k=m+1 λk

n
.

We now turn to the case of a dictionary {Hj : j =
1, . . . , N} of RKHS with kernels {Kj : j = 1, . . . N}.
As before, denote {λ(j)

k : k ≥ 1} the eigenvalues (ar-
ranged in decreasing order) and {φ(j)

k : k ≥ 1} the
L2(Π)-orthonormal eigenfunctions of Kj . The following
bounds will be needed in this case.

Lemma 5 With some numerical constant C,

E max
1≤j≤N

sup
‖hj‖Hj

≤1

|Rn(hj)| ≤

√
max1≤j≤N

∑∞
k=1 λ

(j)
k

n

+C

√
logN
n

.

Proof. We use bounded difference inequality to
get for each j = 1, . . . , N with probability at least 1 −
e−t−logN

sup
‖hj‖Hj

≤1

|Rn(hj)| ≤ E sup
‖hj‖Hj

≤1

|Rn(hj)|+
C
√
t+ logN√
n

.

By the union bound, this yields with probability at least
1−Ne−t−logN = 1− e−t

max
1≤j≤N

sup
‖hj‖Hj

≤1

|Rn(hj)| ≤ max
1≤j≤N

E sup
‖hj‖Hj

≤1

|Rn(hj)|

+
C
√
t√
n

+
C
√

logN√
n

,

which holds for all t > 0 and implies that

E max
1≤j≤N

sup
‖hj‖Hj

≤1

|Rn(hj)| ≤ max
1≤j≤N

E sup
‖hj‖Hj

≤1

|Rn(hj)|

+
C
√

logN√
n

with a properly chosen constant C > 0. Note that, by
Lemma 3,

E sup
‖hj‖Hj

≤1

|Rn(hj)| ≤

√∑∞
k=1 λ

(j)
k

n
,

which implies the result.
As before, denote Lj , L⊥j the subspaces of L2(Π)

spanned on {φ(j)
k : k ≤ m} and {φ(j)

k : k > m}, re-
spectively, PLj , P

⊥
Lj

being the corresponding orthogonal
projections. Recall that sequence {λjk} is nonincreasing.
The following statement is a uniform version of Lemma
4.

Lemma 6 With some numerical constant C,

E max
1≤j≤N

sup
‖hj‖Hj

≤1

|Rn(PL⊥j hj)|

≤ 2

√
max1≤j≤N

∑∞
k=m+1 λ

(j)
k

n

+2
√

max
1≤j≤N

λ
(j)
m

√
logN + C

n
+ 2

logN + C

n
.

Lemma 7 The following bound holds:

E sup
{
|Rn(g − f)| : ‖g − f‖L2(Π) ≤ δ, ‖g‖`1 ≤ R,

∑
j 6∈Jf

‖gj‖Hj
≤ ∆

}
≤ C

√
κ̄(Jf)

κ(Jf)(1− ρ2(Jf))
δ

√
dm

n

+2R

√
maxj∈Jf

∑
k>m λ

(j)
k

n
+ CR

√
max
j∈Jf

λ
(j)
m

√
log d
n

+C∆

√
log(N − d) + 1

n
.

Proof. First note that

E sup
{∣∣∣∣Rn(N∑

j=1

(
gj − fj)

)∣∣∣∣ : ‖g − f‖L2(Π) ≤ δ, ‖g‖`1 ≤ R,

∑
j 6∈Jf

‖gj‖Hj
≤ ∆

}
≤ E sup

{∣∣∣∣Rn(∣∣∣∣∑
j∈Jf

(gj − fj)
)∣∣∣∣ :

‖g − f‖L2(Π) ≤ δ, ‖g‖`1 ≤ R,
∑
j 6∈Jf

‖gj‖Hj
≤ ∆

}
+

E sup
{∣∣∣∣Rn(∑

j 6∈Jf

(gj − fj)
)∣∣∣∣ : ‖g − f‖L2(Π) ≤ δ, ‖g‖`1 ≤ R,

∑
j 6∈Jf

‖gj‖Hj ≤ ∆
}
.

236

The second term can be bounded as follows:

E sup
{∣∣∣∣Rn(∑

j 6∈Jf

gj

)∣∣∣∣ : ‖g − f‖L2(Π) ≤ δ, ‖g‖`1 ≤ R,

∑
j 6∈Jf

‖gj‖Hj ≤ ∆
}
≤ E sup

{∣∣∣∣Rn(∑
j 6∈Jf

‖gj‖Hjhj

)∣∣∣∣ :

∑
j 6∈Jf

‖gj‖Hj ≤ ∆, ‖hj‖Hj ≤ 1
}
≤

∆E max
j 6∈Jf

sup
‖hj‖Hj

≤1

|Rn(hj)| ≤ C∆

√
log(N − d) + 1

n
,

where we used Lemma 5. As to the first term, we use
the bound

E sup
{∣∣∣∣Rn(∑

j∈Jf

(gj − fj)
)∣∣∣∣ : ‖g − f‖L2(Π) ≤ δ, ‖g‖`1 ≤ R,

∑
j 6∈Jf

‖gj‖Hj
≤ ∆

}
≤ E sup

{∣∣∣∣Rn(∑
j∈Jf

PLj
(gj − fj)

)∣∣∣∣ :

‖g − f‖L2(Π) ≤ δ
}

+E sup
{∣∣∣∣Rn(∑

j∈Jf

PL⊥j (gj − fj)
)∣∣∣∣ : ‖g‖`1 ≤ R

}
.

Note that

∥∥∥∑
j∈Jf

PLj
(gj − fj)

∥∥∥2

L2(Π)
≤ κ̄(Jf)

∑
j∈Jf

∥∥∥PLj
(gj − fj)

∥∥∥2

L2(Π)

≤ κ̄(Jf)
∑
j∈Jf

‖gj − fj‖2L2(Π) ≤
κ̄(Jf)
κ(Jf)

∥∥∥∑
j∈Jf

(gj − fj)
∥∥∥2

L2(Π)

≤ κ̄(Jf)
κ(Jf)(1− ρ2(Jf))

∥∥∥ n∑
j=1

(gj − fj)
∥∥∥2

L2(Π)
≤

κ̄(Jf)
κ(Jf)(1− ρ2(Jf))

δ2.

Also,
∑
j∈Jj

PLj (gj − fj) takes values in the linear span
of
⋃
j∈Jf

Lj whose dimension ≤ dm. This yields the
following bound

E sup
{∣∣∣∣Rn(∑

j∈Jf

PLj (gj − fj)
)∣∣∣∣ : ‖g − f‖L2(Π) ≤ δ

}

≤ C

√
κ̄(Jf)

κ(Jf)(1− ρ2(Jf))
δ

√
dm

n
.

Finally, we use Lemma 6 to get

E sup
{∣∣∣∣Rn(∑

j∈Jf

PL⊥j (gj − fj)
)∣∣∣∣ : ‖g‖`1 ≤ R

}

≤ E sup
{∣∣∣∣Rn(∑

j∈Jf

‖gj − fj‖HjPL⊥j hj

)∣∣∣∣ : ‖g‖`1 ≤ R,

‖hj‖Hj
≤ 1, j = 1, . . . , N

}
≤ 2RE max

j∈Jf

sup
‖hj‖Hj

≤1

|Rn(PL⊥j hj)|

≤ 2R

√
maxj∈Jf

∑
k>m λ

(j)
k

n
+ C

√
max
j∈Jf

λ
(j)
m

√
log d
n

.

Combining the above bounds we get

E sup
{
|Rn(g − f)| : ‖g − f‖L2(Π) ≤ δ, ‖g‖`1 ≤ R,

∑
j 6∈Jf

‖gj‖Hj
≤ ∆

}
≤ C

√
κ̄(Jf)

κ(Jf)(1− ρ2(Jf))
δ

√
dm

n

+2R

√
maxj∈Jf

∑
k>m λ

(j)
k

n
+ CR

√
max
j∈Jf

λ
(j)
m

√
log d
n

+C∆

√
log(N − d) + 1

n
.

Recall that
αn(δ,∆, R) :=

sup
{
|(Pn − P)(` • g − ` • f)| : g ∈ G(δ,∆, R)

}
,

where
G(δ,∆, R) :={

g : ‖g − f‖L2(Π) ≤ δ,
∑
j 6∈Jf

‖gj‖Hj
≤ ∆, ‖g‖`1 ≤ R

}
.

We will assume that R ≤ eN (recall also the as-
sumption N ≥ nγ).

Lemma 8 There exist constants C,L depending only
on the loss ` (L = 0 if `′ is bounded) such that for all

n−1/2 ≤ δ ≤ 2R, n−1/2 ≤ ∆ ≤ R (4.1)
and for all A ≥ 1 the following bound holds with proba-
bility at least 1−N−A :

αn(δ,∆, R) ≤ C(1 + LR)
[√

κ̄(Jf)
κ(Jf)(1− ρ2(Jf))

×

δ

√
dm

n
+R

√
maxj∈Jf

∑
k>m λ

(j)
k

n
+

R

√
max
j∈Jf

λ
(j)
m

√
log d
n

+ ∆

√
log(N − d) + 1

n

]
+C(1 + LR)δ

√
A logN

n
+ CR(1 + LR)

A logN
n

. (4.2)

237

Proof. First note that, by Talagrand’s concentra-
tion inequality, with probability at least 1− e−t

αn(δ; ∆;R) ≤

2
[
Eαn(δ; ∆, R) + C(1 + LR)δ

√
t

n
+
CR(1 + LR)t

n

]
.

To apply Talagrand’s inequality we used the assump-
tions on the loss function. It follows from these assump-
tions that for all g ∈ G(δ,∆, R)

‖`•g−`•f‖L2(Π) ≤ C(1+LR)‖g−f‖L2(Π) ≤ C(1+LR)δ

and also

‖` • g − ` • f‖∞ ≤ CR(1 + LR).

Next, by symmetrization inequality,

Eαn(δ; ∆, R) ≤ 2E sup
{
|Rn((`•g−`•f : g ∈ G(δ,∆, R).

}
.

We write u = g − f and

` • g − ` • f = ` • (f + u)− ` • f

and observe that the function

[−R,R] 3 u 7→ ` • (f + u)− ` • f

is Lipschitz with constant C(1 + LR). This allows us
to use Rademacher contraction inequality (Ledoux and
Talagrand, 1991) to get

Eαn(δ; ∆, R) ≤ C(1 + LR)×

×E sup
{∣∣∣Rn(g − f)

∣∣∣ : g ∈ G(δ,∆, R)
}
.

The last expectation can be further bounded by Lemma
7. As a result, we get the following bound that holds
with probability at least 1− e−t :

αn(δ; ∆, R) ≤ C(1 + LR)
[√

κ̄(Jf)
κ(Jf)(1− ρ2(Jf))

δ

√
dm

n

+R

√
maxj∈Jf

∑
k>m λ

(j)
k

n
+R

√
max
j∈Jf

λ
(j)
m

√
log d
n

+

∆

√
log(N − d) + 1

n

]
+ C(1 + LR)δ

√
t

n

+
CR(1 + LR)t

n
=: β̃n(δ,∆, R; t).(4.3)

The next goal is to make the bound uniform in

n−1/2 ≤ δ ≤ 2R and n−1/2 ≤ ∆ ≤ R. (4.4)

To this end, consider

δj := 2R2−j , ∆j := R2−j .

We will replace t by t+ 2 log log(2R
√
n) and use bound

(4.3) for all δ = δj and ∆ = ∆k satisfying the conditions
(4.4). By the union bound, with probability at least

1− log(R
√
n) log(2R

√
n) exp

{
−t− 2 log log(2R

√
n)
}

≥ 1− e−t,

the following bound holds for all δj ,∆k satisfying (4.4):

αn(δj ,∆k, R) ≤ β̃n
(
δj ,∆k, R; t+ 2 log log

(
2R√
n

))
.

It is enough now to substitute in the above bound t :=
A logN and to use the fact that the functions αn(δ,∆, R)
and β̃n(δ,∆, R; t) are nondecreasing with respect to δ
and ∆. Together with the conditions R ≤ eN and N ≥
nγ , this implies the claim.

References

[1] Bousquet, O. and Herrmann, D. (2003), On the
complexity of learning the kernel matrix, In: Ad-
vances in Neural Information Processing Systems
15.

[2] Blanchard, G., Bousquet, O. and Massart, P.
(2008), Statistical performance of support vector
machines, Annals of Statistics, 36, 489-531.

[3] Crammer, K., Keshet, J. and Singer, Y. (2003),
Kernel design using boosting, In: Advances in Neu-
ral Information Processing Systems 15.

[4] Koltchinskii, V. (2008), Sparsity in penalized em-
pirical risk minimization, Ann. Inst. H. Poincaré,
to appear.

[5] Lanckriet, G., Cristianini, N., Bartlett, P., Ghaoui,
L. and Jordan, M. (2004), Learning the kernel
matrix with semidefinite programming, Journal of
Machine Learning Research, 5, 27-72.

[6] Ledoux, M. and Talagrand, M. (1991), Probability
in Banach Spaces, Springer, New York.

[7] Lin, Y. and Zhang, H. (2006), Component selecion
and smoothing in multivariate nonparametric re-
gression, Annals of Statistics, 34, 2272-2297.

[8] Micchelli, C. and Pontil, M. (2005), Learning the
kernel function via regularization, Journal of Ma-
chine Learning Research, 6, 1099-1125.

[9] Mendelson, S. (2002) Geometric parameters of ker-
nel machines, In: COLT 2002, Lecture Notes in Ar-
tificial Intelligence, 2375, Springer, 29–43.

[10] Ravikumar, P., Liu, H., Lafferty, J. and Wasser-
man, L. (2007), SpAM: sparse additive models, to
appear in: Advances in Neural Information Pro-
cessing Systems (NIPS 07).

[11] Srebro, N. and Ben-David, S. (2006), Learning
bounds for support vector machines with learned
kernels, In: Proceedings of 19th Annual Conference
on Learning Theory (COLT 2006), 169-183.

[12] Wahba, G (1990), Spline Models for Observational
Data, Philadelphia: SIAM.

[13] Yuan, M. (2007), Nonnegative garrote component
selection in functional ANOVA models, in Proceed-
ings of AI and Statistics (AISTAT 07), 656-662.

238

More Efficient Internal-Regret-Minimizing Algorithms

Amy Greenwald, Zheng Li, and Warren Schudy

Brown University, Providence, RI 02912
{amy,ws}@cs.brown.edu and zheng@dam.brown.edu

Abstract

Standard no-internal-regret (NIR) algorithms
compute a fixed point of a matrix, and hence
typically require O(n3) run time per round of
learning, where n is the dimensionality of the
matrix. The main contribution of this paper
is a novel NIR algorithm, which is a simple
and straightforward variant of a standard NIR
algorithm. However, rather than compute a
fixed point every round, our algorithm relies
on power iteration to estimate a fixed point,
and hence runs in O(n2) time per round.

Nonetheless, it is not enough to look only at
the per-round run time of an online learning
algorithm. One must also consider the algo-
rithm’s convergence rate. It turns out that
the convergence rate of the aforementioned al-
gorithm is slower than desired. This observa-
tion motivates our second contribution, which
is an analysis of a multithreaded NIR algo-
rithm that trades-off between its run time per
round of learning and its convergence rate.

1 Introduction

An online decision problem (ODP) consists of a series of
rounds, during each of which an agent chooses one of n
pure actions and receives a reward corresponding to its
choice. The agent’s objective is to maximize its cumu-
lative rewards. It can work towards this goal by abid-
ing by an online learning algorithm, which prescribes
a possibly mixed action (i.e., a probability distribution
over the set of pure actions) to play each round, based
on past actions and their corresponding rewards. The
success of such an algorithm is typically measured in
a worst-case fashion: specifically, an adversary chooses
the sequence of rewards that the agent faces. Hence,
the agent—the protagonist—must randomize its play;
otherwise, it can easily be exploited by the adversary.

The observation that an ODP of this nature can be
used to model a single player’s perspective in a repeated
game has spawned a growing literature connecting com-
putational learning theory—specifically, the subarea of
regret minimization—and game theory—specifically, the

subarea of learning in repeated games. Both groups
of researchers are interested in designing algorithms by
which an agent can learn from its past actions, and the
rewards associated with those actions, to play actions
now and in the future that yield high rewards. More
specifically, the entire sequence of actions should yield
low regret for not having played otherwise, or equiva-
lently, near equilibrium behavior.

In a seminal paper by Foster and Vohra [FV97], it
was established that the empirical distribution of the
joint play of a particular class of online learning al-
gorithms, called no-internal-regret (NIR) learners, con-
verges to the set of correlated equilibria in repeated ma-
trix games. However, standard NIR learning algorithms
(see Cesa-Bianchi and Lugosi [CBL06] and Blum and
Mansour [BM05])1—including the algorithm proposed
by Foster and Vohra (hereafter, FV)—involve a fixed
point calculation during each round of learning, an op-
eration that is cubic2 in the number of pure actions
available to the player. Knowing that fixed point cal-
culations are expensive, Hart and Mas-Colell [HMC00]
describe “a simple adaptive procedure” (hereafter, HM)
that also achieves the aforementioned convergence re-
sult. HM’s per-round run time is linear in the number
of pure actions.

It is well-known [HMC00] that HM does not exhibit
no internal regret in the usual sense, meaning against
an adaptive adversary—one that can adapt in response
to the protagonist’s “realized” pure actions (i.e., those
that result from sampling his mixed actions). Still, in
a recent paper, Cahn [Cah04] has shown that HM’s al-
gorithm does exhibit no internal regret against an ad-
versary that is “not too sophisticated.” In this paper,
we use the terminology nearly oblivious to refer to this

1The former reference is to a book that surveys the field;
the latter reference is to a paper that includes a black-box
method for constructing NIR learners from another class of
learners called no-external-regret learners.

2Strassen [Str69] devised an O(n2.81)-time algorithm for
matrix-matrix multiplication, based on which a fixed point
can be computed with the same run time [CLRS01]. Copper-
smith and Winograd [CW87] devised an O(n2.36)-time algo-
rithm for matrix-matrix multiplication, but unlike Strassen’s
result their result is impractical. For better pedagogy, we
quote the “natural” O(n3) runtime in most of our discus-
sions rather than these better bounds.

239

type of adversary, because the “not-too-sophisticated”
condition is a weakening of the usual notion of an obliv-
ious adversary—one who chooses the sequence of re-
wards after the protagonist chooses its online learning
algorithm, but before the protagonist realizes any of its
pure actions. Since an oblivious adversary is also nearly
oblivious, Cahn’s result implies that HM exhibits no in-
ternal regret against an oblivious adversary.

As alluded to above, both FV and HM (and all the
algorithms studied in this paper) learn a mixed action
each round, and then play a pure action: i.e., a sample
from that mixed action. One important difference be-
tween them, however, which can be viewed at least as
a partial explanation of their varying strengths, is that
FV maintains as its state the mixed action it learns,
whereas HM maintains as its state the pure action it
plays. Intuitively, the latter cannot exhibit no internal
regret against an adaptive adversary because an adap-
tive adversary can exploit any dependencies between the
consecutively sampled pure actions.

Young [You04] proposes, but does not analyze rigor-
ously, a variant of HM he calls Incremental Conditional
Regret Matching (ICRM), which keeps track of a mixed
action instead of a pure action, and hence exhibits no in-
ternal regret against an adaptive adversary.3 ICRM has
quadratic run time each round. To motivate ICRM, re-
call that standard NIR algorithms involve a fixed-point
calculation. Specifically, they rely on solutions to equa-
tions of the form q = qPt, where Pt is a stochastic matrix
that encodes the learner’s regrets for its actions through
time t. Rather than solve this equation exactly, ICRM
takes qt+1 ← qtPt as an iterative approximation of the
desired fixed point.

The regret matrix Pt used in ICRM (and HM) de-
pends on a parameter µ that is strictly larger than the
maximum regret per round. This makes ICRM less in-
tuitive than it could be. We show that the same idea
also works when the normalizing factor µt is replaced by
the actual total regret experienced by the learner. This
simplifies the algorithm and eliminates the need for the
learner to know or estimate a bound on the rewards.
We call our algorithm Power Iteration (PI),4 because
another more intuitive way to view it is as a modifi-
cation of a standard NIR algorithm (e.g., Greenwald,
et al. [GJMar]) with its fixed-point calculation replaced
by power iteration. Once again, the first (and primary)
contribution of this paper is a proof that using power it-
eration to estimate a fixed point, which costs only O(n2)
per round, suffices to achieve no-internal-regret against
an adaptive adversary.

Although our PI algorithm is intuitive, the proof
that the idea pans out—that PI exhibits NIR against an
adaptive adversary—is non-trivial (which may be why

3Our analytical tools can be used to establish Young’s
claim rigorously.

4Both PI and ICRM can be construed as both incremen-
tal conditional regret matching algorithms and as power it-
eration methods. The difference between these algorithms
is merely the definition of the matrix Pt, and who named
them, not what they are named for per se.

Young did not propose this algorithm in the first place).
The proof in Hart and Mas-Colell [HMC00] relies on a
technical lemma, which states that ‖qtP

z
t − qtP

z−1
t ‖1,

for some z > 0, is small, whenever all the entries on
the main diagonal of Pt are at least some uniform con-
stant. With our new definition of Pt, this condition does
not hold. Instead, our result relies on a generalization
of this lemma in which we pose weaker conditions that
guarantee the same conclusion. Specifically, we require
only that the trace of Pt be at least n− 1. Our lemma
may be of independent interest.

Hence, we have succeeded at defining a simple and
intuitive, O(n2) per-round online learning algorithm that
achieves no internal regret against an adaptive adver-
sary. However, it is not enough to look only at the per-
round run time of an online learning algorithm. One
must also consider the algorithm’s convergence rate. It
turns out that the convergence rates of PI, ICRM, and
HM are all slower than desired (their regret bounds are

O(
√

nt−1/10)), whereas FV’s regret bound is O(
√

n/t)
(see, for example, Greenwald, et al. [GLM06]). This
observation motivates our second algorithm.

As our second contribution, we analyze an alterna-
tive algorithm, one which is multithreaded. Again, the
basic idea is straightforward: one thread plays the game,
taking as its mixed action the most-recently computed
fixed point, while the other thread computes a new fixed
point. Whenever a new fixed point becomes available,
the first thread updates its mixed action accordingly.
This second algorithm, which we call MT, for multi-
threaded, exhibits a trade-off between its run time per
round and its convergence rate. If p is an upper bound
on the number of rounds it takes to compute a fixed
point, MT’s regret is bounded by O(

√

np/t). Observe
that this regret bound is a function of t/p, the number
of fixed points computed so far. If p is small, so that
many fixed points have been computed so far, then the
run time per round is high, but the regret is low; on
the other hand, if p is large, so that only very few fixed
points have been computed so far, then the run time
per round is low, but the regret is high.

This paper is organized as follows. In Section 2, we
define online decision problems and no-regret learning
precisely. In Section 3, we define the HM, ICRM, and PI
algorithms, and report their regret bounds. In Section 4,
we introduce our second algorithm, MT, and report its
regret bound. In Section 5, we prove a straightforward
lemma that we use in the analysis of all algorithms. In
Section 6, we analyze MT. In Section 7, we analyze PI.
In Section 8, we present some preliminary simulation
experiments involving PI, HM, and MT. In Section 9,
we describe some interesting future directions.

2 Formalism

An online decision problem (ODP) is parameterized by
a reward system (A,R), where A is a set of pure actions
andR is a set of rewards. Given a reward system (A,R),
we let Π ≡ RA denote the set of possible reward vectors.

240

Definition 1 Given a reward system (A,R), an online
decision problem can be described by a sequence of re-
ward functions 〈π̃t〉∞t=1, where π̃t ∈ (At−1 7→ Π).

Given an ODP 〈π̃t〉∞t=1, the particular history Ht =
(〈aτ 〉tτ=1, 〈πτ 〉tτ=1) corresponds to the agent playing aτ

and observing reward vector πτ ≡ π̃τ (a1, . . . aτ−1) at all
times τ = 1, . . . , t.

In this paper, we restrict our attention to bounded,
real-valued reward systems; as such, we assume WLOG
that R = [0, 1]. We also assume the agent’s pure action
set is finite; specifically, we let |A| = n. Still, we allow
agents to play mixed actions. That is, an agent can
play a probability distribution over its pure actions. We
denote by ∆(A) the set of mixed actions: i.e., the set of
all probability distributions over A.

An online learning algorithm is a sequence of func-
tions 〈q̃t〉∞t=1, where q̃t : Ht−1 → ∆(A) so that q̃t(h) ∈
∆(A) represents the agent’s mixed action at time t ≥ 1,
after having observed history h ∈ Ht−1. When the his-
tory h is clear from context, we abbreviate q̃t(h) by
qt. For a given history of length t, let q̂t be the de-
generate probability distribution corresponding to the
action actually played at time t: i.e., for all 1 ≤ i ≤ n,
(q̂t)i = 11 (at = i).5 Clearly, q̂t is a random variable.

We are interested in measuring an agent’s regret in
an ODP for playing as prescribed by some online learn-
ing algorithm rather than playing otherwise. We pa-
rameterize this notion of “otherwise” by considering a
variety of other ways that the agent could have played.
For example, it could have played any single action a all
the time; or, it could have played a′ every time it actu-
ally played a. In either case, we arrive at an alternative
sequence of play by applying some transformation to
each action in the agent’s actual sequence of play, and
then we measure the difference in rewards obtained by
the two sequences, in the worst case. That is the agent’s
regret.

A transformation of the sort used in the first exam-
ple above—a constant transformation that maps every
action a′ in the actual sequence of play to a fixed, alter-
native action a—is called an external transformation.
We denote by ΦEXT the set of all external transforma-
tions, one per action a ∈ A. Many efficient algorithms,
with both fast run time per round and fast convergence
rates, are known to minimize regret with respect to
ΦEXT (e.g., [LW94, FS97, HMC01]). Here, we are inter-
ested in transformations of the second type, which are
called internal transformations. These transformations
can be described by the following set of n-dimensional
matrices:

ΦINT = {φ(a,b) : a 6= b, 1 ≤ a, b ≤ n }

where

(φ(a,b))ij =

{

1 if i 6= a ∧ i = j
1 if i = a ∧ j = b
0 otherwise

5For predicate p, 11 (p) =



1 if p
0 otherwise

.

For example, if |A| = 4, then applying the following
transformation to a pure action a yields the third action
if a is the second action, and a otherwise:

φ(2,3) =







1 0 0 0
0 0 1 0
0 0 1 0
0 0 0 1







ΦEXT and ΦINT are the two best-known examples of
transformation sets. More generally, a transformation
φ can be any linear function from ∆(A) → ∆(A). In
the definitions that follow, we express reward vectors π
as column vectors, mixed actions q as row vectors, and
transformations φ as n-dimensional matrices.

If, at time τ , an agent plays mixed action qτ in an
ODP with reward vector πτ , the agent’s instantaneous
regret (rτ)φ with respect to a transformation φ is the
difference between the rewards it could have obtained
by playing qτφ and the rewards it actually obtained by
playing qτ : i.e.,

(rτ)φ = qτφπτ − qτπτ (1)

The agent’s cumulative regret vector (Rt) through time
t is then computed in the obvious way: for φ ∈ Φ,

(Rt)φ =

t
∑

τ=1

(rτ)φ (2)

One can also define pure action variants of the in-
stantaneous and cumulative regret vectors, as follows:

(r̂τ)φ = q̂τφπτ − q̂τπτ (3)

and

(R̂t)φ =

t
∑

τ=1

(r̂τ)φ (4)

One can bound either the expected pure action regret
or the (mixed action) regret. To avoid unilluminating
complications, we focus on the latter in this work.

Our objective in this work is to establish sublinear
bounds on the average internal-regret vector of various
online learning algorithms. Equipped with such bounds,
we can then go on to claim that our algorithms exhibit
no internal regret by applying standard techniques such
as the Hoeffding-Azuma lemma (see, for example, Cesa-
Bianchi and Lugosi [CBL06]). Note that we cannot es-
tablish our results for general Φ. We defer further dis-
cussion of this point until Section 9, where we provide
a simple counterexample.

For completeness, here is the formal definition of no-
Φ-regret learning:

Definition 2 Given a finite set of transformations Φ,
an online learning algorithm 〈q̃t〉∞t=1 is said to exhibit
no-Φ-regret if for all ǫ > 0 there exists t0 ≥ 0 such
that for any ODP 〈π̃t〉∞t=1,

Pr

[

∃t > t0 s.t. max
φ∈Φ

1

t
R̂φ

t ≥ ǫ

]

< ǫ (5)

241

The relevant probability space in the above definition is
the natural one that arises when considering a particular
ODP 〈π̃t〉∞t=1 together with an online learning algorithm
〈q̃t〉∞t=1. The universe consists of infinite sequences of
pure actions 〈aτ 〉∞τ=1 and the measure is defined by the
learning algorithm.

We close this section with some notation that ap-
pears in later sections:

• We let a•b = aT b denote the dot product of column
vectors a and b.

• For vector v ∈ R
n, we let v+ denote the component-

wise max of v and the zero vector: i.e., (v+)i =
max(vi, 0).

3 Algorithms

We begin this section by describing HM, the simple
adaptive procedure due to Hart and Mas-Colell [HMC00]
that exhibits no internal regret against a nearly oblivi-
ous adversary, as well as ICRM, a variant of HM due to
Young [You04] that exhibits no internal regret against
an adaptive adversary. We then go on to present a sim-
ple variant of these algorithms, which we call PI, for
power iteration, for which we establish the stronger of
these two guarantees.

Definition 3 Define the n-dimensional matrix

Nt =
∑

φ∈ΦINT

(R+
t)φφ

and the scalar

Dt =
∑

φ∈ΦINT

(R+
t)φ

At a high-level, HM (Algorithm 1) and ICRM (not
shown) operate in much the same way: at each time
step t, an action is played and a reward is earned; then,
the regret matrix Pt is computed in terms of Nt and
Dt, based on which a new action is derived. But the
algorithms differ in an important way: specifically, they
differ in their “state” (i.e., what they store from one
round to the next). In HM, the state is a pure action,
so that during each round, the next pure action is com-
puted based on the current pure action. In ICRM, the
state is a mixed action.

Like Young’s algorithm, the state in our algorithm,
PI (Algorithm 2), is a mixed action. But, our algo-
rithm differs from both of the others in our choice of
the matrix regret Pt. In PI, Pt = Nt/Dt, which is the
same matrix as in Greenwald et al. [GJMar], for exam-
ple. Intuitively, Nt/Dt is a convex combination of the
transformations in ΦINT, with each φ ∈ ΦINT weighted
by the amount of regret the learner experienced for not
having transformed its play as prescribed. In HM and
ICRM, Pt is a convex combination of Nt/Dt and the
identity matrix. This convex combination depends on
a parameter µ, which is an upper bound on the regret
per round; typically, µ = 2n.

Algorithm 1 HM [HMC00]

Initialize a1 to be an arbitrary pure action.

During each round t = 1, 2, 3, . . .:

1. Play the pure action at.

2. For all j,
let (q̂t)j = 11 (at = j).

3. Observe rewards πt.

4. Update the regret vector R̂t.

5. Let the regret matrix P̂t = N̂t+(µt−D̂t)I
µt .

6. Sample a pure action at+1 from q̂tP̂t.

Algorithm 2 Power Iteration

Initialize q1 to be an arbitrary mixed action.

During each round t = 1, 2, 3, . . .:

1. Sample a pure action at from qt.

2. Play the pure action at.

3. Observe rewards πt.

4. Update the regret vector Rt.

5. Define the regret matrix Pt = Nt

Dt
.

6. Set the mixed action qt+1 ← qtPt.

HM has a per-round run time linear in the num-
ber of pure actions because it updates one row of the
regret matrix during each round, namely that row corre-
sponding to the action played. ICRM and PI both have
per-round run times dominated by the matrix-vector
multiplication in Step 6, and are hence quadratic in the
number of pure actions.

We analyze PI (Algorithm 2) in this paper, and ob-
tain the following result:

Theorem 4 PI (Algorithm 2) exhibits no internal re-
gret against an adaptive adversary. Specifically, the
bound on its average regret is as follows: for all times t,

∣

∣

∣

∣

∣

∣

∣

∣

R+
t

t

∣

∣

∣

∣

∣

∣

∣

∣

∞
≤ O(

√
nt−1/10)

A slight variant of our analysis shows that ICRM
has the same bound as PI. Algorithm 1 was previously
analyzed by Cahn [Cah04], who showed that if the ad-
versary is nearly oblivious, then HM exhibits NIR. One
can combine ideas from Hart and Mas-Colell [HMC00]
and our analysis of PI to show that against an oblivi-
ous adversary, the bound on HM’s average regret is as

242

follows: for all times t,

E

[∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

R̂+
t

t

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞

]

≤ O(
√

nt−1/10)

Theorem 4 implies, by the Proposition at the bottom
of page 1133 in Hart and Mas-Colell [HMC00], that like
HM and ICRM, PI also converges to the set of correlated
equilibria in self-play.

Note that it is also possible to define a variant of PI
with Pt = Nt/Dt, which like HM, uses the agent’s pure
action as its state. We conjecture that this algorithm
would exhibit no internal regret against an oblivious
(or nearly oblivious) adversary, but do not analyze it
because it has no obvious advantages over HM or PI.

4 Multithreaded algorithm

The ICRM and PI algorithms have better per-round run
times than standard NIR learning algorithms, but their
convergence rates are far worse. Moreover, these al-
gorithms are inflexible: they cannot expend additional
effort during a round to improve their convergence rates.
In this section, we present a parameterized, multithreaded
algorithm (MT) that smoothly trades off between per-
round run time and regret.

The idea underlying MT is simply to spread the com-
putation of a fixed point over many time steps, and in
the mean time to play the most recent fixed point com-
puted so far. This idea is formalized in Algorithm 3,
in which there are two threads. One thread plays the
game, taking as its mixed action the most-recently com-
puted fixed point; the other thread works towards com-
puting a new fixed point.

Theorem 5 Let p ≥ 1 be an upper bound on how many
time steps it takes to compute a fixed point. MT (Algo-
rithm 3) has per-round run time O(LS(n)/p + log n +

ρ) and regret bound O(
√

np/t), where LS(n) required
solve a linear system of equations expressed as an n-
dimensional matrix and ρ is the usually negligible run
time required to maintain the regret vector (see Sec-
tion 6). More precisely, for all times t,

∣

∣

∣

∣

∣

∣

∣

∣

R+
t

t

∣

∣

∣

∣

∣

∣

∣

∣

∞
≤
√

(n− 1)(4p− 3)

t

Suppose you are playing a game every minute and
you have just barely enough computational resources to
find a fixed point in the time alloted with a standard
NIR learning algorithm (p = 1). Further, suppose that
it takes 1 day of playing for your regret to fall below
a desired threshold. Now, suppose the game changes
and you now have to make a move every second. If you
set p = 60, and continue to compute 1 fixed point per
minute, this will require 4 · 60 − 3 ≈ 4 · 60 times more
rounds to achieve the same level of regret. But each
round is 60 times faster, so the wall-clock time for the
same level of regret has increased by a factor of about
4, to a bit under 4 days.

With one extreme parameter setting, namely p = 1,
MT is just like a standard NIR learning algorithm, and

Algorithm 3 Multithreaded no-internal-regret learning
algorithm.

Initialize R, N , D to zero.

First thread: During each round t = 1, 2, 3, . . .:

• Wait until it is time to take an action.

• Get the most up-to-date fixed point computed by
the other thread. Call it qt. (If no fixed point has
been computed yet, initialize qt arbitrarily.)

• Sample a pure action at from qt.

• Play the pure action at.

• Observe rewards πt.

• Update the regret vector Rt.

Second thread: Repeat forever:

• Wait until the other thread updates the regret vec-
tor Rτ for any τ > 0.

• Get a copy of Rτ from the other thread.

• Compute Nτ and Dτ .

• Compute a fixed point of Nτ/Dτ .

• Pass this fixed point to the other thread.

hence has run time O(n3) per round and regret bound

O(
√

n/t). With another extreme parameter setting,
namely p = n3, MT has run time O(log n) per round
(as long as regret can be calculated quickly; see the end
of Section 6) and regret bound O(n2/

√
t). The interme-

diate parameter setting p = n yields an O(n2) run time
per round and an O(n/

√
t) regret bound. This algo-

rithm, therefore, dominates both PI and ICRM, achiev-
ing the same run time per round, but a better regret
bound, for all values of t ≥ n5/4.

5 General Analysis

In this section, we derive a key lemma that is used in
both our analyses. Specifically, we bound the L2-norm
of the regret vector at time t in terms of two summations
from time τ = 1 to t. Each term in the first bounds
how close the mixed action played at time τ is to being
a fixed point of the regret matrix at some previous time
τ − w(τ). Each term in the second bounds the regret
that could ensue because the mixed action played at
time τ is out of date.

Lemma 6 For any online learning algorithm and any
function w(·) > 0, we have the following inequality: for

243

all times t > 0,

∣

∣

∣

∣R+
t

∣

∣

∣

∣

2

2
≤ 2

t
∑

τ=1

qτ

(

Nτ−w(τ) −Dτ−w(τ)I
)

πt

+ (n− 1)

t
∑

τ=1

(2w(τ) − 1))

where qt is the mixed action at time t, and I is the
identity matrix.

We prove this lemma using two preliminary lemmas.
The first involves simple algebra.

Lemma 7 For any two vectors a, b ∈ R
d, with d ≥ 1,

we have the following inequality:

||(a + b)+||22 ≤ ||a+||22 + 2a+ • b + ||b||22 (6)

Proof: Both ||·||22 and dot products are additive component-
wise, so it suffices to assume a, b are real numbers.

If a + b ≤ 0 then |a+|2 + 2a+b + b2 = (a+ + b)2 ≥
0 = |(a + b)+|2.

If a + b > 0 then a+ + b ≥ a + b = (a + b)+ > 0.
Thus (a+ + b)2 ≥ |(a + b)+|2.

Lemma 8 For any learning algorithm and any t >
τ ≥ 0, we have the following equality:

rt •R+
τ = qt (Nτ −DτI)πt

= Dτqt

(

Nτ

Dτ
− I

)

πt

Proof: Standard no-regret arguments about the fixed
point (e.g., Theorem 5 in [GLM06]).

Note that if qt is a fixed point of Nτ/Dτ , as in is
in FV and MT for appropriate choices of τ , then rt •
R+

τ = 0. For example, in the traditional algorithm FV,
rt •R+

t−1 = 0.
Proof: [Proof of Lemma 6] Fix a τ ∈ {1, . . . , t}. By def-
inition, R+

τ = R+
τ−1 + rτ . Hence, by applying Lemma 7,

we obtain a linear approximation of ||R+
τ ||

2
2 −

∣

∣

∣

∣R+
τ−1

∣

∣

∣

∣

2

2
with an error term:
∣

∣

∣

∣R+
τ

∣

∣

∣

∣

2

2
≤

∣

∣

∣

∣R+
τ−1

∣

∣

∣

∣

2

2
+ 2rτ •R+

τ−1 + ||rτ ||22
=

∣

∣

∣

∣R+
τ−1

∣

∣

∣

∣

2

2
+ 2rτ •R+

τ−w(τ)

+ 2rτ • (R+
τ−1 −R+

τ−w(τ)) + ||rτ ||22
≤

∣

∣

∣

∣R+
τ−1

∣

∣

∣

∣

2

2
+ 2rτ •R+

τ−w(τ)

+ 2(w(τ) − 1)(n− 1) + (n− 1)

=
∣

∣

∣

∣R+
τ−1

∣

∣

∣

∣

2

2
+ 2rτ •R+

τ−w(τ) + (2w(τ) − 1)(n− 1)

(7)

The second inequality follows from the fact that ||rτ ||22 ≤
(n− 1).

Now if we apply Lemma 8 and sum over time, this
yields:

t
∑

τ=1

(

∣

∣

∣

∣R+
τ

∣

∣

∣

∣

2

2
−
∣

∣

∣

∣R+
τ−1

∣

∣

∣

∣

2

2

)

≤ 2

t
∑

τ=1

qτ (Nτ−w(τ) −Dτ−w(τ)I)πτ

+ (n− 1)

t
∑

τ=1

(2w(τ) − 1) (8)

The summation on the left hand side of this equation

collapses to
∣

∣

∣

∣R+
t

∣

∣

∣

∣

2

2
−
∣

∣

∣

∣R+
0

∣

∣

∣

∣

2

2
=
∣

∣

∣

∣R+
t

∣

∣

∣

∣

2

2
, and the lemma

is proved.

6 Analysis of MT

Equipped with Lemma 6, the proof of Theorem 5 is
quite simple.
Proof: [Proof of Theorem 5] For general p, the fixed
points may be based on out-of-date regret vectors, but
they are never very out of date. Once the fixed point
is computed, it is based on data that is p rounds out of
date. That fixed point is then used for another p rounds
while a replacement is computed. Overall, the fixed
point played at time t can be based on a regret vector no
more than 2p rounds old. More precisely, the τ such that
Rτ is used to compute qt satisfies t−(2p−1) ≤ τ ≤ t−1.

Now apply Lemma 6 letting w(τ) be the age of the
regret vector used by the second thread in calculating
qτ . Since qτ is a fixed point of Nτ−w(τ)/Dτ−w(τ), it
follows that qτ (Nτ−w(τ) −Dτ−w(τ)I) = 0. Thus,

∣

∣

∣

∣R+
t

∣

∣

∣

∣

2

2
≤ 2

t
∑

τ=1

0 + (n− 1)

t
∑

τ=1

(2(2p− 1)− 1)

= (n− 1)t(4p− 3)

Therefore,

∣

∣

∣

∣

∣

∣

∣

∣

R+
t

t

∣

∣

∣

∣

∣

∣

∣

∣

∞
≤
∣

∣

∣

∣

∣

∣

∣

∣

R+
t

t

∣

∣

∣

∣

∣

∣

∣

∣

2

≤
√

(n− 1)(4p− 3)

t

and the theorem is proved.

A näıve computation of the regret vector would limit
the per-round run time of PI to Ω(n2). For applications
where p is O(n) (or less), this is not a bottleneck, be-
cause in that case the O(n3/p) bound on the run time
of the fixed point computation is larger than the O(n2)
run time of the regret vector updates.

If the ODP is a repeated game where the opponents
have O(n) joint actions, an agent can simply record the
opponents’ actions each round in constant time, and
then update the regret vector right before solving for a
fixed point; this update takes time O(n3). In this case,
if p = n3, then MT’s per-round run time is O(log n).

For general ODPs, where the reward structure may
change arbitrarily from one round to the next, keep-
ing track of regret in time o(n2) per round seems to

244

require random sampling (i.e., bandit techniques; see,
for example, Auer et al. [ACBFS02]). We leave further
investigation of this issue to future work.

Choosing a random action from a probability distri-
bution using a binary search requires Θ(log n) time, so
ODPs that require extremely quick decisions cannot be
handled without further innovation.

7 Analysis of PI

In this section, we analyze PI. By construction, qτ is
not a fixed point but only an approximate fixed point,
so qτ (Nτ−w(τ) −Dτ−w(τ)I) 6= 0. Instead, we will show
the following:

Lemma 9 For all times τ > 0 and 0 < w(τ) < τ ,
∣

∣

∣

∣qτ (Nτ−w(τ) −Dτ−w(τ)I)
∣

∣

∣

∣

1
= O

(

nτ√
w(τ)

+ n(w(τ))2
)

Deferring the proof of Lemma 9, we first show how
to use Lemmas 6 (choose w(τ) = τ2/5) and 9, to analyze
PI:

∣

∣

∣

∣R+
t

∣

∣

∣

∣

2

2
≤ 2

t
∑

τ=1

qτ

(

Nτ−w(τ) −Dτ−w(τ)I
)

πτ

+ (n− 1)

t
∑

τ=1

(2τ2/5 − 1))

=

t
∑

τ=1

O

(

nτ√
τ2/5

+ n(τ2/5)2
)

+ (n− 1)O(t7/5)

= O(nt9/5) + (n− 1)O(t7/5)

= O(nt9/5)

Taking square roots and dividing by t proves Theorem 4:

∣

∣

∣

∣

∣

∣

∣

∣

R+
t

t

∣

∣

∣

∣

∣

∣

∣

∣

2

≤ O(
√

nt−1/10)

It remains to prove Lemma 9. For the remainder
of this section, we use the shorthands W ≡ w(τ) and
t = τ − w(τ).

We begin to analyze qτ (Nt −DtI) by rewriting this
expression as the sum of two terms. The first, which
would be zero if power iteration converged in W steps, is
provably small. The second measures how the matrices
PT change over time; if all the PT ’s were equal, this

term would be zero. Noting that qτ = qt

(

∏τ−1
T=t PT

)

,

where each PT = NT /DT , we derive the two terms as
follows:

qτ (Nt −DtI)

= Dtqt

(

τ−1
∏

T=t

PT

)

(Pt − I)

= DtqtP
W
t (Pt − I) +

Dtqt

([

τ−1
∏

T=t

PT

]

− PW
t

)

(Pt − I)

= Dtqt

(

PW+1
t − PW

t

)

+

Dt

([

τ−1
∏

T=t

PT

]

− PW
t

)

(Pt − I) (9)

We will bound the two terms in Equation 9 in turn.
Beginning with the first, the quantity qtP

W
t can be in-

terpreted as the distribution of a Markov chain with
transition matrix Pt and initial distribution qt after W
time steps. Most Markov chains converge to a station-
ary distribution, so it is intuitively plausible that the
related quantity qt

(

PW+1
t − PW

t

)

is small. The follow-
ing lemma, which verifies this intuition, is a strengthen-
ing of statement M7 in Hart and Mas-Colell [HMC00].
Our lemma is stronger because our premises are weaker.
Whereas their lemma requires that all the entries on the
main diagonal of Pt be at least some uniform constant,
ours requires only that the sum of Pt’s diagonal entries
(i.e., its trace) be at least n − 1. The latter of these
two conditions (only) is satisfied by PI’s choice of Pt,
because each Pt is a convex combination of internal re-
gret transformations/matrices, each of which has trace
n− 1.

Lemma 10 For all z > 0, if P is n-dimensional stochas-
tic matrix that is close to the identity matrix in the
sense that

∑n
i=1 Pii ≥ n − 1, then

∣

∣

∣

∣q(P z − P z−1)
∣

∣

∣

∣

1
=

O(1/
√

z) for all n-dimensional vectors q with ||q||1 = 1.

Proof: See Appendix.

Now, we can easily bound Dt = Dτ−W by (n−1)(τ−
W) ≤ nτ , so the first term in Equation 9 is bounded

above by O(nτ/
√

W). The following lemma bounds the
second term in Equation 9:

Lemma 11 For all times τ > 0 and 0 < w(τ) < τ ,
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

qt

([

τ−1
∏

T=t

PT

]

− PW
t

)

(Pt − I)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

= O(nW 2/Dt)

The proof of this lemma makes use of the following
definition and related fact: the induced L1-norm of a
matrix M is given by

||M ||1 = max
v 6=0

||vM ||1
||v||1

and for any n-dimensional vector v and matrix M ,

||vM ||1 ≤ ||v||1 ||M ||1 (10)

245

Proof: Since ||Pt − I||1 ≤ ||Pt||1 + ||I||1 = 2, it follows
that

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

qt

(

W−1
∏

s=0

Pt+s − PW
t

)

(Pt − I)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

≤ 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

qt

(

W−1
∏

s=0

Pt+s − PW
t

)∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

Hence, it suffices to bound
∣

∣

∣

∣

∣

∣
qt

(

∏W−1
s=0 Pt+s − PW

t

)∣

∣

∣

∣

∣

∣

1
.

To do so, we first note that

W−1
∏

s=0

Pt+s − PW
t

=
W−1
∑

s=0

(

s
∏

u=0

Pt+uPW−s−1
t −

s−1
∏

u=0

Pt+uPW−s
t

)

=

W−1
∑

s=0

(

s−1
∏

u=0

Pt+u(Pt+s − Pt)P
W−s−1
t

)

(11)

Next, we multiply both sides of Equation 11 by qt and
take the L1-norm. Then, we apply Equation 10 and
the facts that ||qt||1 = 1 and ||Pt+s||1 = 1, for all s =
0, · · · , W − 1, to obtain the following:
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

qt

(

W−1
∏

s=0

Pt+s − PW
t

)
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

W−1
∑

s=0

qt

(

s−1
∏

u=0

Pt+u

)

(Pt+s − Pt)P
W−s−1
t

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

≤
W−1
∑

s=0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

qt

(

s−1
∏

u=0

Pt+u

)

(Pt+s − Pt)P
W−s−1
t

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

≤
W−1
∑

s=0

||qt||1

(

s−1
∏

u=0

||Pt+u||1

)

||Pt+s − Pt||1 ||Pt||W−s−1
1

=

W−1
∑

s=0

||Pt+s − Pt||1 (12)

The first inequality in the above derivation follows from
the triangle inequality. The second follows from the fact
that the norm of a product is bounded above by the
product of the norms. To understand the final quantity
(Equation 12) intuitively, consider two coupled Markov
chains, one of which uses Pt as its transition matrix, and
the other of which uses Pt+s. These Markov chains lead
to different distributions to the extent that they have
different transition matrices.

Since Pt+s = Nt+s/Dt+s, it follows that:

||Pt+s − Pt||1
=

∣

∣

∣

∣

∣

∣

∣

∣

Nt+s

Dt+s
− Nt

Dt

∣

∣

∣

∣

∣

∣

∣

∣

1

≤
∣

∣

∣

∣

∣

∣

∣

∣

Nt+s

Dt+s
− Nt+s

Dt

∣

∣

∣

∣

∣

∣

∣

∣

1

+
||Nt+s −Nt||1

Dt

= ||Nt+s||1
|Dt+s −Dt|
(Dt+sDt)

+
||Nt+s −Nt||1

Dt

The inequality in this derivation follows from the trian-
gle inequality.

Only n− 1 of the n(n− 1) internal transformations
affect any particular action and rewards are between
0 and 1, so |Dt+1 − Dt| is bounded by n − 1. The
induced L1-norm of a matrix is the maximum row sum,
after taking the absolute value of each entry; hence,
||Nt+1 −Nt||1 is bounded by n− 1. Further, ||Nt+s||1 ≤
Dt+s, |Dt+s−Dt| ≤ s(n−1), and ||Nt+s −Nt||1 ≤ s(n−
1), so we conclude that ||Pt+s − Pt||1 ≤ 2s(n − 1)/Dt.
Summing over s from 0 to W − 1 yields the desired
O(nW 2/Dt).

8 Experiments

We ran some simple experiments on the repeated Shap-
ley game to see whether the theoretical bounds we de-
rived match what is observed in practice. An instance of
the internal regret-matching (IRM) algorithm6 of Green-
wald et al. [GLM06] was played against PI, HM with
µ = 5, and MT with p = 10. Our results are plotted in
Figures 1, 2, 3 and 4 (the fourth figure summarizes all
our results).

Each experiment was repeated 50 times, and each
ensuing data series is plotted with two lines, delimit-
ing the 95% confidence interval. The “true” line cor-
responding to infinitely many runs probably lies some-
where between the two plotted lines. Note the logarith-
mic scales of the axes, so powers such as 1/

√
t appear

as straight lines.
What we observe is twofold: (i) PI does much better

in practice than it does in theory, achieving better per-
formance than HM and MT (see Figure 4); and (ii) MT
does substantially worse than IRM, with the ratio sim-
ilar to the

√

4(10)− 3 ≈ 6 predicted by theory.

9 Discussion

Standard no-internal-regret (NIR) algorithms rely on
a fixed point computation, and hence typically require
O(n3) run time per round of learning. The main contri-
bution of this paper is a novel NIR algorithm, which is
a simple and straightforward variant of a standard NIR
algorithm, namely that in Greenwald [GJMar]. Rather
than compute a fixed point every round, our algorithm
relies on power iteration to estimate a fixed point, and
hence runs in O(n2) time per round.

One obvious question that comes to mind is: can
power iteration be used in algorithms that minimize Φ-
regret, for arbitrary Φ? The answer to this question is
no, in general. For example, consider an ODP with two
actions, and only one action transformation φ, which
swaps the two actions: i.e.,

φ =

[

0 1
1 0

]

A standard Φ-regret-minimizing algorithm would play
the fixed-point of this matrix, which is uniform random-
ization. However, PI would learn a predictable sequence

6This algorithm is a close cousin of FV, and has the same
regret bound.

246

1 10 100 1000 10000
Rounds

0.001

0.01

0.1

1

M
ax

 R
eg

re
t

Power Iteration
Standard NIR Algorithm

Max Average Internal Regret

Figure 1: IRM and PI playing Shapley. 95% confidence
interval of average of 50 runs shown.

of mixed actions, namely q, 1 − q, q, 1 − q, Since an
adversary could easily exploit this alternating sequence
of plays, the idea does not immediately apply to arbi-
trary Φ. The part of the proof that is specific to ΦINT

is Pt having trace n− 1, allowing us to use Lemma 10.
Another related question is: can power iteration be

used in other NIR algorithms? For example, Cesa-
Bianchi and Lugosi [CBL03] and Greenwald et al. [GLM06]
present a class of NIR algorithms, each one of which
is based on a potential function. Similarly, Blum and
Mansour [BM05] present a method of constructing NIR
learners from no-external-regret (NER) learners. We
conjecture that the power iteration idea could be ap-
plied to any of these NIR algorithms, but we have not
yet thoroughly explored this question.

Our admittedly limited experimental investigations
reveal that perhaps PI’s convergence rate in practice is
not as bad as the theory predicts, but further study is
certainly warranted. Another interesting question along
the same lines is: would another iterative linear solving
method, specifically one that is more sophisticated than
power iteration, such as biconjugate gradient, yield bet-
ter results, either in theory or in practice?

Acknowledgments

We are grateful to Dean Foster for originally suggesting
that we try out power iteration in our experiments with
regret-minimizing algorithms. We are also grateful to
Casey Marks for providing much of the code for our ex-
periments and to Yuval Peres for assistance simplifying
the proof of Lemma 10. This research was supported in

1 10 100 1000 10000
Rounds

0.001

0.01

0.1

1

M
ax

 R
eg

re
t

Hart Mas-Colell
Standard NIR Algorithm

Max Average Internal Regret

Figure 2: IRM and HM with µ = 5 playing Shapley.
95% confidence interval of average of 50 runs shown.

part by the Sloan Foundation.

References

[ACBFS02] P. Auer, N. Cesa-Bianchi, Y. Freund, and
R. Schapire. The nonstochastic multiarmed
bandit problem. Siam J. of Computing,
32(1):48–77, 2002.

[BM05] A. Blum and Y. Mansour. From external
to internal regret. In Proceedings of the
2005 Computational Learning Theory Con-
ferences, pages 621–636, June 2005.

[Cah04] A. Cahn. General procedures leading to
correlated equilibria. International Jour-
nal of Game Theory, 33(1):21–40, Decem-
ber 2004.

[CBL03] N. Cesa-Bianchi and G. Lugosi. Potential-
based algorithms in on-line prediction and
game theory. Machine Learning, 51(3):239–
261, 2003.

[CBL06] N. Cesa-Bianchi and G. Lugosi. Prediction,
Learning, and Games. Cambridge Univer-
sity Press, 2006.

[CLRS01] Cormen, Leiserson, Rivest, and Stein. In-
troduction to Algorithms, chapter 28, pages
757–758. MIT Press, 2nd edition, 2001.

[CW87] D. Coppersmith and S. Winograd. Matrix
multiplication via arithmetic progressions.
In STOC ’87: Proceedings of the nine-
teenth annual ACM Symposium on Theory
of Computing, pages 1–6. ACM Press, New
York, NY USA, 1987.

247

1 10 100 1000 10000
Rounds

0.001

0.01

0.1

1

M
ax

 R
eg

re
t

Multithreaded with p=10
Standard NIR Algorithm

Max Average Internal Regret

Figure 3: IRM and MT with p = 10 playing Shapley.
95% confidence interval of average of 50 runs shown.

[FS97] Y. Freund and R. E. Schapire. A decision-
theoretic generalization of on-line learning
and an application to boosting. Journal
of Computer and System Sciences, 55:119–
139, 1997.

[FV97] D. Foster and R. Vohra. Calibrated learn-
ing and correlated equilibrium. Games and
Economic Behavior, 21:40–55, 1997.

[GJMar] A. Greenwald, A. Jafari, and C. Marks. A
general class of no-regret algorithms and
game-theoretic equilibria. In Amitabha
Gupta, Johan van Benthem, and Eric
Pacuit, editors, Logic at the Crossroads:
An Interdisciplinary View, volume 2. Allied
Publishers, To Appear.

[GLM06] A. Greenwald, Z. Li, and C. Marks. Bounds
for regret-matching algorithms. In Proceed-
ings of the Ninth International Symposium
on Artificial Intelligence and Mathematics,
2006.

[HMC00] S. Hart and A. Mas-Colell. A simple adap-
tive procedure leading to correlated equilib-
rium. Econometrica, 68:1127–1150, 2000.

[HMC01] S. Hart and A. Mas-Colell. A general class
of adaptive strategies. Journal of Economic
Theory, 98(1):26–54, 2001.

[Lin92] Torgny Lindvall. Lectures on the Coupling
Method, chapter II.12, pages 41–47. Wiley,
1992.

[LW94] N. Littlestone and M. K. Warmuth. The
weighted majority algorithm. Information
and Computation, 108:212 – 261, 1994.

1 10 100 1000 10000
Rounds

0.001

0.01

0.1

1

M
ax

 R
eg

re
t

Hart Mas-Colell
Multithreaded with p=10
Power Iteration

Max Average Internal Regret

Figure 4: Summary of Figures 1, 2 and 3.

[Str69] Volker Strassen. Gaussian elimination is
not optimal. Numer. Math., 13:354–356,
1969.

[You04] P. Young. Strategic Learning and its Lim-
its. Oxford University Press, Oxford, 2004.

A Proof of technical Lemma 10

Note: in this proof, we use N , M and t for meanings
unrelated to those in the main body of the paper. Don’t
be confused.

Let M be an n by n matrix which is row-stochastic
(vectors should be multiplied on the left as in qM) and
has trace at least n− 1. We want to show:

max
||q||

1
=1

∣

∣

∣

∣q(MW −MW−1)
∣

∣

∣

∣

1
= O(1/

√
W).

For any two probability measures µ and ν on prob-
ability space Ω, their total variation distance is defined
to be

||µ− ν||TV =
1

2

∑

a∈Ω

|µ(a)− ν(a)|. (13)

We denote by µ(X) the distribution of random vari-
able X . Let Q(t) denote the state of a Markov chain
with transition matrix M and initial distribution q af-
ter t time steps. Our desired conclusion can be recast
in Markov chain language as

||µ(Q(W))− µ(Q(W − 1))||TV = O(1/
√

W)

for all initial distributions q.
We know that

∑

i mi,i ≥ n − 1 where mi,j is the
element of the ith row and jth column in matrix M . All
mi,i are at most 1, so there can be at most one state,

248

call it p, satisfying mp,p < 1/2. If no such state exists
the Lemma was already shown as step M7 of [HMC00],
so assume it exists.7 We define a new matrix N as the
unique solution to mi,j = 1

2 (ni,j + δi,j) if i 6= p, and
mp.j = np,j otherwise, where δi,j = 1 if i = j and
0 otherwise.8 It is easy to check N is row stochastic
and is therefore the transition matrix of some Markov
Chain. For simplicity we denote by N the Markov
Chain with transition matrix N and initial distribution
q. Let B(0), B(1), ... be the random walk associated
with Markov Chain N .

One can easily create a random walk of the Markov
chain M from the walk of N as follows. If the current
state is the special state p, do what the N -chain did.
Otherwise, flip a coin, following N with probability 50%
and remaining at the same state otherwise. Formally,
define index It inductively by I0 = 0 and It = It−1+a
symmetric Bernoulli distribution, if B(It−1) 6= p, and
It = It−1 + 1 otherwise. Then it can be shown that
Q(t) = B(It) has distribution qM t. We need to show
the distributions of B(It) and B(It−1) are close to each
other.

For i ≥ 0, define Xi = #{ t ≥ 0 : It = i }. In-
tuitively, Xi is the number of steps the M chain takes
while the N chain is in state B(i). Our proof hinges on
the easily seen fact that the Xis are independent random
variables. If B(i) = p, Xi = 1 and if B(i) 6= p, Xi is geo-

metrically distributed with mean 2.9 Let Ti =
∑i−1

j=0 Xi.

One can see that IW = max{ i : Ti ≤W }.
In order to prove the conclusion we need the follow-

ing two lemmas.

Lemma 12 Let f(y, z) be a function, Y, Y ′ and Z be
random variables with Z pairwise independent of Y and
Y ′. Let I = f(Y, Z) and I ′ = f(Y ′, Z) be random vari-
ables. Then

||µ(I)− µ(I ′)||TV ≤ ||µ(Y)− µ(Y ′)||. (14)

Proof: The total variation distance between µ(X) and
µ(X ′) is equal to minimum possible probability that
X 6= X ′ over couplings of X and X ′. A coupling of
Y and Y ′ can be extended into a coupling of I and I ′

trivially.

Lemma 13 Let Sk =
∑k

i=1 Xi where Xi’s are indepen-
dent identically distributed random variables with geo-
metric distributions with mean 2, then ||µ(Sk) − µ(1 +
Sk)||TV = O(n−1/2).

Proof: Equation II.12.4 of [Lin92].

The probability that IW < W/3 is bounded by the
probability that the sum of W Bernoulli random vari-
ables with mean 1/2 is less than W/3. A standard

7One can see that the current proof also holds if no such
state exists.

8I.e., ni,j = 2mi,j − δi,j if i 6= p, and np.j = mp,j other-
wise.

9Note that our “geometrically distributed” variables have
support 1, 2, . . ., so Pr (Xi = k) = (1/2)k for k ≥ 1.

Chernoff bound therefore shows that the event E that
IW < W/3 is exponentially unlikely. Condition on the
path B(0), B(1), . . . and event E not happening. We can

therefore write IW = max{ i :
∑i

j=W/3+1 Xi ≤W − TW/3 }
and IW−1 = max{ i :

∑i
j=W/3+1 Xi ≥W − 1− TW/3 }.

Now by Lemma 12, associating Z with the vector-valued
random variable {Xi}∞i=W/3+1, Y with W − TW/3 and

Y ′ with W − 1− TW/3, we see that it suffices to bound
the total variation distance between TW/3 and TW/3 +1.

Define k = #{ 0 ≤ i ≤W/3 : B(i) 6= b }. Every
visit to b is followed by a visit to another state with prob-
ability at least 1/2, so with exponentially high proba-
bility over the choices of the B(i), k ≥ W/12. Con-
dition on the event k ≥ W/12. By definition TW/3 =
(W/3 − k) +

∑

i:B(i) 6=b Xi, so it suffices to analyze the

variation distance between the sum of k ≥ W/12 geo-
metric random variables and the same shifted by 1. By
Lemma 13, this is O(1/

√
W).

Therefore we obtain

||µ(IW)− µ(IW−1)||TV = O(W−1/2) (15)

Back to M chain B(IW) we could have

Pr(B(IW) = i) =
∑

a

Pr(B(IW) = i|IW = a)Pr(IW = a)

=
∑

a

Pr(B(a) = i)Pr(IW = a)

and similarly

Pr(B(IW−1) = i) =
∑

a

Pr(B(a) = i)Pr(IW−1 = a)

Thus

||µ(B(IW)− µ(B(IW−1)||TV

=
1

2

∑

i

|Pr(B(IW) = i)− Pr(B(IW−1) = i)|

≤ 1

2

∑

i

∑

a

Pr(B(a) = i)|Pr(IW = a)− Pr(IW−1 = a)|

=
1

2

∑

a

|Pr(IW = a)− Pr(IW−1 = a)|

= ||µ(IW)− µ(IW−1)||TV

= O(W−1/2)

This concludes the proof.

We remark that this lemma can also be proved in
a more self-contained manner via a Markov chain cou-
pling. The motivating story follows.

Charlie and Eve are walking drunkenly between the
n neighborhood bars. If Charlie is in a good bar, each
time step he first flips a coin to decide whether or not
he should leave that bar. If he decides to leave, he then
makes a probabilistic transition to some bar (perhaps
the same one). If Charlie is in a bad bar, he always
leaves. Eve starts one time step later than Charlie at the
same initial bar. Eve makes her decision to leave or not

249

independently of Charlie, but reuses Charlie’s choices of
where to go next. However, if Eve ever catches up with
Charlie, she switches to just following him around. A
natural question to ask is how likely Eve and Charlie
are to be at the same bar after t time steps? Note that
if you look at Eve’s motions and ignore Charlie’s, she
behaves exactly like Charlie does.

The connection to the present lemma is that Char-
lie’s distribution corresponds to M t and Eve’s to M t−1.
Standard arguments relating total variation distance to
couplings show that if Eve and Charlie usually finish
at the same bar, their probability distributions must be
quite similar.

250

Linear Algorithms for
Online Multitask Classification

Giovanni Cavallanti∗ Nicolò Cesa-Bianchi† Claudio Gentile‡

Abstract

We design and analyze interacting online algo-
rithms for multitask classification that perform bet-
ter than independent learners whenever the tasks
are related in a certain sense. We formalize
task relatedness in different ways, and derive for-
mal guarantees on the performance advantage pro-
vided by interaction. Our online analysis gives
new stimulating insights into previously known
co-regularization techniques, such as the multi-
task kernels and the margin correlation analysis
for multiview learning. In the last part we apply
our approach to spectral co-regularization: we in-
troduce a natural matrix extension of the quasi-
additive algorithm for classification and prove
bounds depending on certain unitarily invariant
norms of the matrix of task coefficients.

1 Introduction
A fundamental and fascinating problem in learning theory
is the study of learning algorithms that influence each other.
Although much is known about the behavior of individual
strategies that learn a classification or regression task from
examples, our understanding of interacting learning systems
is still fairly limited. In this paper, we investigate this prob-
lem from the specific viewpoint of multitask learning, where
each one ofK > 1 learners has to solve a different task (typ-
ically, K classification or K regression tasks). In particu-
lar, we focus on multitask binary classification, where learn-
ers are online linear classifiers (such as the Perceptron algo-
rithm). Our goal is to design online interacting algorithms
that perform better than independent learners whenever the
tasks are related in a certain sense. We formalize task relat-
edness in different ways, and derive formal guarantees on the
performance advantage provided by interaction.

Our analysis builds on ideas that have been developed in
the context of statistical learning. In the statistical analysis
of multitask learning (e.g., [2, 3, 4, 11, 24, 26]) the starting
point is a regularized empirical loss functional or Tikhonov

∗DSI, Università di Milano, Italy.
†DSI, Università di Milano, Italy.
‡DICOM, Università dell’Insubria, Italy. This is the correspond-

ing author. Email: claudio.gentile@uninsubria.it

functional —see, e.g., [10]. In the presence of several tasks,
this functional is extended to allow for co-regularization
among tasks. Roughly speaking, the co-regularization term
forces the set of predictive functions for the K tasks to lie
“close” to each other.

This co-regularization term is typically a squared norm in
some Hilbert space of functions. We follow the approach pi-
oneered by [11], where the K estimated solutions are linear
functions parametrized by u = (u1, . . . ,uK) ∈ RKd and
the co-regularization is u>Au, where A is a positive defi-
nite matrix enforcing certain relations among tasks. The key
observation in [11] is the following. Assume the instances
of the multitask problem are of the form (xt, it), where
xt ∈ Rd is an attribute vector and it ∈ {1, . . . ,K} indi-
cates the task xt refers to. Then one can reduce the K learn-
ing problems in Rd to a single problem in RKd by choos-
ing a suitable embedding of the pairs (xt, it) into a common
RKHS space RKd with inner product 〈u,v〉 = u>Av. This
reduction allows us to solve a multitask learning problem by
running any kernel-based single-task learning algorithm with
the “multitask kernel” defined above. We build on this result
by considering a natural online protocol for multitask linear
classification. Within this protocol we analyze the perfor-
mance of the Perceptron algorithm and some of its variants
when run with a multitask kernel. Because such kernels are
linear, we are not restricted to using kernel-based algorithms
for efficiency reasons.

In Section 3 we consider the kernel Perceptron algorithm,
and derive mistake bounds for the multitask kernels proposed
in [11]. This reveals new insights into the role played by the
regularizer matrix A. First, we see that the update in the ker-
nel space defined byA factorizes in the “shared update” ofK
interacting Perceptrons each running in Rd, thus providing a
basic example of interactive online learning. Second, we ex-
ploit the simplicity of the mistake bound analysis to precisely
quantify the performance advantage brought by the multitask
approach over K independent online algorithms. In particu-
lar, in Subsections 3.2 and 3.3 we give examples where the
mistake bound is used to guide the design ofA. The first part
of the paper is concluded with Sections 4 and 5, where we
show multitask versions and mistake bound analyses for the
second-order Perceptron algorithm of [7] and for the p-norm
algorithm of [13, 14].

In the remaining sections of the paper, we depart from
the approach of [11] to investigate the power of online learn-
ing when other forms of co-regularization are used. In Sec-

251

tion 6 we consider the case when instances belong to a
space that is different for each task, and the similarity among
tasks is measured by comparing their margin sequences (see,
e.g., [6, 27]). We introduce and analyze a new multitask vari-
ant of the second-order Perceptron algorithm. The mistake
bound that we prove is a margin-based version of the bound
shown in Subsection 3.2 for the multitask Perceptron. Fi-
nally, in Section 7 we consider spectral co-regularization [4]
for online multiview learning. Here diversity is penalized
using a norm function defined on the d × K matrix U =[
u1, . . . ,uK

]
of view vectors. In the spirit of [19], we in-

terpret this penalization function as a potential defined over
arbitrary matrices. We then define a natural extension of the
quasi-additive algorithm of [14, 20] to a certain class of ma-
trix norms, and provide a mistake bound analysis depending
on the singular values of U . The results we obtain are similar
to those in [28, 29, 30], though we are able to overcome some
of the difficulties encountered therein via a careful study of
matrix differentials.

In the next section, we introduce the basic online multi-
task protocol and define the multitask Perceptron algorithm.
In order to keep the presentation as simple as possible, and
to elucidate the interactive character of the updates, we de-
lay the introduction of kernels until the proof of the mistake
bound.

In our initial online protocol, at each time step the mul-
titask learner receives a pair (xt, it), where it is the task in-
dex for time t and xt is the instance for task it. Note that
we view multitask learning as a sequential problem where
at each time step the learner works on a single adversarially
chosen task, rather than working simultaneously on all tasks
(a similar protocol was investigated in [1] in the context of
prediction with expert advice). One of the advantages of this
approach is that, in most cases, the cost of running our mul-
titask algorithms has a mild dependence on the number K of
tasks.

We also remark that linear algorithms for online multi-
task learning have been studied in [9]. However, these re-
sults are sharply different from ours, as they do not depend
on task relatedness.

2 Learning protocol and notation

There are K binary classification tasks indexed by 1, . . . ,K.
At each time step t = 1, 2, . . . the learner receives a task in-
dex it ∈ {1, . . . ,K} and the corresponding instance vector1

xt ∈ Rd (which we henceforth assume to be normalized,
‖xt‖ = 1). Based on this information, the learner outputs a
binary prediction ŷt ∈ {−1, 1} and then observes the correct
label yt ∈ {−1, 1} for task it. As in the standard worst-
case online learning model, no assumptions are made on the
mechanism generating the sequence

(
xt, yt

)
t≥1

. Moreover,
similarly to [1], the sequence of tasks it is also generated in
an adversarial manner.

We compare the learner’s performance to that of a refer-
ence predictor that is allowed to use a different linear clas-
sifier for each of the K tasks. In particular, we compare the

1Throughout this paper all vectors are assumed to be column
vectors.

learner’s mistake count to

inf
u1,...,uK∈Rd

∑
t

`t(uit) (1)

where `t(uit) =
[
1 − yt u>it

xt

]
+

is the hinge loss of the
reference linear classifier (or task vector) uit at time t. Our
goal is to design algorithms that make fewer mistakes thanK
independent learners when the tasks are related, and do not
perform much worse than that when the tasks are completely
unrelated. In the first part of the paper we use Euclidean dis-
tance to measure task relatedness. We say that the K tasks
are related if there exist reference task vectors u1, . . . ,uK ∈
Rd having small pairwise distances ‖ui − uj‖, and achiev-
ing a small cumulative hinge loss in the sense of (1). More
general notions of relatedness are investigated in later sec-
tions.

3 The multitask Perceptron algorithm

We first introduce a simple multitask version of the Percep-
tron algorithm. This algorithm keeps a weight vector for
each task and updates all weight vectors at each mistake us-
ing the Perceptron rule with different learning rates. More
precisely, let wi,t−1 be the weight vector associated with
task i at the beginning of time step t. If we are forced (by
the adversary) to predict on task it, and our prediction hap-
pens to be wrong, we update wit,t−1 through the standard
additive rule wit,t = wit,t−1 + ηyt xt (where η > 0 is a
constant learning rate) but, at the same time, we perform a
“half-update” on the remaining K − 1 Perceptrons, i.e., we
set wj,t = wj,t−1 + η

2yt xt for each j 6= it. This rule is
based on the simple observation that, in the presence of re-
lated tasks, any update step that is good for one Perceptron
should also be good for the others. Clearly, this rule keeps
the weight vectors wj,t, j = 1, . . . ,K, always close to each
other.

The above algorithm is a special case of the multitask
Perceptron algorithm described below. This more general
algorithm updates each weight vector wj,t through a learn-
ing rate which is an arbitrary positive definite function of the
pair (j, it). These learning rates are defined by a K × K
interaction matrix A.

The pseudocode for the multitask Perceptron algorithm
using a generic interaction matrix A is given in Figure 1.
At the beginning of each time step, the counter s stores the
mistakes made so far (plus one). The (column) vector φt ∈
RKd denotes the multitask instance defined by

φ>t =
(

0, . . . , 0︸ ︷︷ ︸
d(it − 1) times

x>t 0, . . . , 0︸ ︷︷ ︸
d(K − it) times

)
(2)

where xt ∈ Rd is the instance vector for the current task it.
(Note that ‖φt‖ = 1 since the instances xt are normalized.)
The weights of the K Perceptrons are maintained in a com-
pound vector w>

s =
(
w>

1,s, . . . ,w
>
K,s

)
, with wj,s ∈ Rd for

all j. The algorithm predicts yt through the sign ŷt of the
it-th Perceptron’s margin w>

s−1φt = w>
it,s−1xt. Then, if

prediction and true label disagree, the update rule becomes
ws = ws−1 + yt

(
A ⊗ Id

)−1
φt, where ⊗ denotes the Kro-

252

Parameters: Positive definite K ×K interaction matrix A.
Initialization: w0 = 0 ∈ RKd, s = 1.
At each time t = 1, 2, . . . do the following:

1. Observe task number it ∈ {1, . . . ,K} and the corre-
sponding instance vector xt ∈ Rd;

2. Build the associated multitask instance φt ∈ RKd;

3. Predict ŷt = SGN
(
w>

s−1φt

)
∈ {−1,+1};

4. Get label yt ∈ {−1,+1};

5. If ŷt 6= yt then update:

ws = ws−1 + yt

(
A⊗ Id

)−1
φt

s ← s+ 1 .

Figure 1: The multitask Perceptron algorithm.

necker product betweeen matrices2 and Id is the d×d identity
matrix. Since

(
A⊗ Id

)−1 = A−1 ⊗ Id, the above update is
equivalent to the K task updates

wj,s ← wj,s−1 + ytA
−1
j,it

xt j = 1, . . . ,K .

The algorithm is mistake driven, hence wt−1 is updated (and
is s increased) only when ŷt 6= yt.

3.1 Pairwise distance interaction matrix
We now analyze the choice of A that corresponds to the up-
dates wit,s ← wit,s−1 + η yt xt and wj,s ← wj,s−1 +
η
2 yt xt for j 6= it with η = 2/(K + 1). As it can be easily
verified, this choice is given by

A =

 K −1 . . . −1
−1 K . . . −1
.
−1 K

 (3)

with

A−1 =
1

K + 1

 2 1 . . . 1
1 2 . . . 1
.
1 2

 .

In order to keep in with the notation just introduced, we
equivalently specify an online multitask problem by the se-
quence (φ1, y1), (φ2, y2), · · · ∈ RdK×{−1, 1} of multitask
examples, where φt is the multitask instance defined in (2).
Moreover, given a sequence of multitask examples and refer-
ence task vectors u1, . . . ,uK ∈ Rd, we introduce the “com-
pound” reference task vector u> =

(
u>1 , . . . ,u

>
K

)
∈ RKd

and write

`t(u) def=
[
1− yt u>φt

]
+

=
[
1− yt u>it

xt

]
+

= `t(uit) .

Finally, we use A⊗ as a shorthand for A ⊗ Id, where d is
understood from the context. We have the following result.

2The Kronecker or direct product between two matrices A =
[ai,j] and B of dimension m × n and q × r, respectively, is the
block matrix of dimension mq × nr whose block on row i and
column j is the q × r matrix ai,jB.

Theorem 1 The number of mistakes m made by the mul-
titask Perceptron algorithm in Figure 1, run with in-
teraction matrix (3) on any finite multitask sequence
(φ1, y1), (φ2, y2), . . . ∈ RKd × {−1, 1}, satisfies

m ≤ inf
u∈RKd

(∑
t∈M

`t(u) +
2
(
u>A⊗ u

)
K + 1

+

√√√√2
(
u>A⊗ u

)
K + 1

∑
t∈M

`t(u)

)
,

whereM is the set of mistaken trial indices, and

u>A⊗ u =
K∑

i=1

‖ui‖2 +
∑

1≤i<j≤K

‖ui − uj‖2 .

Remark Note that when all tasks are equal, that is when
u1 = · · · = uK , the bound of Theorem 1 becomes the stan-
dard Perceptron mistake bound (see, e.g., [7]). In the general
case of distinct ui we have

u>A⊗ u

K + 1
<

K∑
i=1

‖ui‖2 −
1

K + 1

∑
1≤i,j≤K

u>i uj .

The sum of squares
∑

i ‖ui‖2 is the mistake bound one can
prove when learning K independent Perceptrons (under lin-
ear separability assumptions). On the other hand, highly
correlated reference task vectors (i.e., large inner products
u>i uj) imply a large negative second term in the right-hand
side of the above expression.

Theorem 1 is immediately proven by using the fact that the
multitask Perceptron is a specific instance of the kernel Per-
ceptron algorithm [12] using the linear kernel introduced
in [11] (see also [15]). As mentioned in the introduction,
this kernel is defined as follows: for any positive definite
K ×K interaction matrix A introduce the Kd-dimensional
reproducing kernel Hilbert space

(
RKd, 〈 · , · 〉H

)
with in-

ner product 〈u,v〉H = u>
(
A⊗Id

)
v. Then define the kernel

feature map ψ : Rd × {1, . . . ,K} → H such that

ψ(xt, it) =
(
A⊗ Id)−1φt . (4)

The kernel used by the multitask Perceptron is thus defined
by

K
(
(xs, is), (xt, it)

)
=

〈
ψ(xs, is), ψ(xt, it)

〉
H

= φ>s
(
A⊗ Id)−1φt . (5)

Proof of Theorem 1: We use the following version of the
kernel Perceptron bound (see, e.g., [7]),

m ≤
∑

t

`t(f) + ‖h‖2H
(
max

t
‖ψ(xt, it)‖2H

)
+ ‖h‖H

√(
max

t
‖ψ(xt, it)‖2H

)∑
t

`t(h)

where h is any function in the RKHS H induced by the ker-
nel. Let A⊗ = A⊗ Id. For the kernel (5) we have ‖u‖2H =
u>A⊗ u and ‖ψ(xt, it)‖2H = φ>t A

−1
⊗ A⊗A

−1
⊗ φt =

φ>t A
−1
⊗ φt = A−1

it,it
. Observing that A−1

is,is
= 2/(K + 1)

for the matrix A−1 defined in (3) concludes the proof.

253

3.2 A more general interaction matrix
In this section we slightly generalize the analysis of the pre-
vious section and consider an update rule of the form

wj,s = wj,s−1 +

{
b+K

(1+b)K yt xt if j = it,
b

(1+b)K yt xt otherwise,

where b is a nonnegative parameter. The corresponding in-
teraction matrix is given by

A =
1
K

 a −b . . . −b
−b a . . . −b
.
−b a

 . (6)

with a = K + b(K − 1). It is immediate to see that the
previous case (3) is recovered by choosing b = K. The
inverse of (6) is

A−1 =
1

(1 + b)K

 b+K b . . . b
b b+K . . . b
.
b b+K

 .

When (6) is used in the multitask Perceptron algorithm, the
proof of Theorem 1 can be adapted to prove the following
result.

Corollary 2 The number of mistakes m made by the mul-
titask Perceptron algorithm in Figure 1, run with in-
teraction matrix (6) on any finite multitask sequence
(φ1, y1), (φ2, y2), · · · ∈ RKd × {−1, 1}, satisfies

m ≤

(∑
t∈M

`t(u) +
(b+K)
(1 + b)K

(
u>A⊗u

)
+

√
(b+K)
(1 + b)K

(
u>A⊗u

) ∑
t∈M

`t(u)

for any u ∈ RKd, where

u>A⊗u =
K∑

i=1

‖ui‖2 + bK VAR[u] , (7)

being VAR[u] = 1
K

∑K
i=1 ‖ui − u‖2 the “variance”, of the

task vectors, and u the centroid
(
u1 + · · ·+ uK

)
/K.

It is interesting to investigate how the above bound depends
on the trade-off parameter b. The optimal value of b (requir-
ing prior knowledge about the distribution of u1, . . . ,uK)
is

b = max

0,

√
K − 1
K

‖u‖2

VAR[u]
− 1

 .

Thus b grows large as the reference task vectors ui get close
to their centroid u (i.e., as all ui get close to each other).
Substituting this choice of b gives

(b+K)
(1 + b)K

(
u>A⊗u

)

=

‖u1‖2 + · · ·+ ‖uK‖2 if b = 0,(
‖u‖+

√
K − 1

√
VAR[u]

)2

otherwise.

When the variance VAR[u] is large (compared to the squared
centroid norm ‖u‖2), then the optimal tuning of b is zero and
the interaction matrix becomes the identity matrix, which
amounts to running K independent Perceptron algorithms.
On the other hand, when the optimal tuning of b is nonzero
we learn K reference vectors, achieving a mistake bound
equal to that of learning a single vector whose length is ‖u‖
plus
√
K − 1 times the standard deviation

√
VAR[u].

At the other extreme, if the variance VAR[u] is zero
(namely, when all tasks coincide) then the optimal b grows
unbounded, and the quadratic term (b+K)

(1+b)K

(
u>A⊗u

)
tends

to the average square norm 1
K

∑K
i=1 ‖ui‖2. In this case the

multitask algorithm becomes essentially equivalent to an al-
gorithm that, before learning starts, chooses one task at ran-
dom and keeps referring all instance vectors xt to that task
(somehow implementing the fact that now the information
conveyed by it can be disregarded).

3.3 Encoding prior knowledge
We could also pick the interaction matrix A so to encode
prior knowledge about tasks. For instance, suppose we know
that only certain pairs of tasks are potentially related. We
represent this knowledge in a standard way through an undi-
rected graph G = (V,E), where two vertices i and j are
connected by an edge if and only if we believe task i and
task j are related. A natural choice for A is then A = I +L,
where L = [Li,j]Ki,j=1 is the Laplacian of G, defined as

Li,j =

{
di if i = j,
−1 if (i, j) ∈ E,
0 otherwise,

where di is the degree (number of incoming edges) of node
i. If we now follow the proof of Theorem 1, which holds
for any positive definite matrix A, we obtain the following
result.

Corollary 3 The number of mistakes m made by the mul-
titask Perceptron algorithm in Figure 1, run with inter-
action matrix I + L on any finite multitask sequence
(φ1, y1), (φ2, y2), . . . ∈ RKd × {−1, 1}, satisfies

m ≤ inf
u∈RKd

(∑
t∈M

`t(u) + cG u>
(
I + L

)
⊗u

+
√
cG u>

(
I + L

)
⊗u

∑
t∈M

`t(u)

)

where

u>
(
I + L

)
⊗u =

K∑
i=1

‖ui‖2 +
∑

(i,j)∈E

‖ui − uj‖2 (8)

and cG = maxi=1,...,K

∑K
j=1

v2
j,i

1+λj
. Here 0 = λ1 <

λ2 ≤ · · · ≤ λK are the eigenvalues of the positive semidef-

254

inite matrix L, and vj,i denotes the i-th component3 of the
eigenvector vj of L associated with eigenvalue λj .

Proof: Following the proof of Theorem 1, we just need to
bound

max
i=1,...,K

A−1
i,i = max

i=1,...,K
(I + L)−1

i,i .

If v1, . . . ,vK are the eigenvectors of L, then

(I + L)−1 =
K∑

j=1

vj v>j
1 + λj

which concludes the proof.

Ideally, we would like to have cG = O(1/K). Clearly
enough, if G is the clique on K vertices we expect to exactly
recover the bound of Theorem 1. In fact, we can easily verify
that the eigenvector v1 associated with the zero eigenvalue
λ1 is

(
K−1/2, . . . ,K−1/2

)
. Moreover, it is well known that

all the remaining eigenvalues are equal to K (see, e.g., [16]).
Therefore cG = 1

K +
(
1− 1

K

)
1

K+1 = 2
K+1 . In the case

of more general graphs G, we can bound cG in terms of the
smallest nonzero eigenvalue λ2,

cG ≤
1
K

+
(

1− 1
K

)
1

1 + λ2
.

The value of λ2, known as the algebraic connectivity of G,
is 0 only when the graph is disconnected. λ2 is known for
certain families of graphs. For instance, if G is a complete
bipartite graph (i.e., if tasks can be divided in two disjoint
subsets T1 and T2 such that every task in T1 is related to
every task in T2 and for both i = 1, 2 no two tasks in Ti are
related), then it is known that λ2 = min

{
|T1|, |T2|

}
. We

refer the reader to, e.g., [16] for further examples.
The advantage of using a graph G with significantly

fewer edges than the clique is that the sum of pairwise dis-
tances in (8) will contain less than K(K − 1) terms. On the
other hand, this reduction is balanced by a larger coefficient
cG in front of u>

(
I + L

)
⊗u. This coefficient, in general,

is related to the total number of edges in the graph (observe
that the trace of L is exactly twice this total number).

4 The second-order extension
In this section we consider the second-order kernel Percep-
tron algorithm of [7] with the multitask kernel (5). The algo-
rithm, which is described in Figure 2, maintains in its inter-
nal state a matrix S (initialized to the empty matrix) and a
multitask Perceptron weight vector v (initialized to the zero
vector). Just like in Figure 1, we use the subscript s to denote
the current number of mistakes plus one. Note that we have
exploited the linearity of the kernel (5) to simplify the de-
scription of the algorithm. In particular, lettingA⊗ = A⊗Id,
we have repeatedly used the fact that〈
ψ(xs, is), ψ(xt, it)

〉
H = φ>s A

−1
⊗ φt

=
(
A
−1/2
⊗ φs

)>(
A
−1/2
⊗ φt

)
= φ̃

>
s φ̃t ,

3Note that the orthonormality of the eigenvectors imply v2
1,i +

· · ·+ v2
K,i = 1 for all i.

Parameters: Positive definite K ×K interaction matrix A.
Initialization: S0 = ∅, v0 = 0 ∈ RKd, s = 1.
At each time t = 1, 2, . . . do the following:

1. Observe task number it ∈ {1, . . . ,K} and the corre-
sponding instance vector xt ∈ Rd;

2. Build the associated multitask instance φt ∈ RKd and
compute φ̃t =

(
A⊗ Id

)−1/2
φt;

3. Predict ŷt = SGN
(
w>

s−1φ̃t

)
∈ {−1,+1},

where ws−1 =
(
I + Ss−1S

>
s−1 + φ̃tφ̃

>
t

)−1

vs−1;

4. Get the label yt ∈ {−1, 1};

5. If ŷt 6= yt then update:

vs = vs−1+ytφ̃t , Ss =
[
Ss−1

∣∣∣φ̃t

]
, s← s+1 .

Figure 2: The second-order multitask Perceptron algorithm.

where ψ is the kernel feature map (4). The algorithm com-
putes a tentative (inverse) matrix(

I + Ss−1S
>
s−1 + φ̃tφ̃

>
t

)−1

.

Such a matrix is combined with the current Perceptron vec-
tor vs−1 to predict the label yt. If prediction ŷt and label
yt disagree both v and S get updated (no update takes place
otherwise). In particular, the new matrix Ss is augmented
by padding with the current vector φ̃t. Since supports are
shared, the computational cost of an update is not signifi-
cantly larger than that for learning a single-task (see Sec-
tion 4.1).

Theorem 4 The number of mistakes m made by the second-
order multitask Perceptron of Figure 2, run with any posi-
tive definite interaction matrix A, on any finite multitask se-
quence (φ1, y1), (φ2, y2), . . . ∈ RKd × {−1, 1}, satisfies,
for all u ∈ RKd,

m ≤
∑
t∈M

`t(u)

+

√√√√(u>
(
A⊗ Id

)
u +

∑
t∈M

(
u>it

xt

)2) m∑
j=1

ln(1 + λj)

where M is the sequence of mistaken trial indices and
λ1, . . . , λm are the eigenvalues of the m ×m matrix of ele-
ments x>s A

−1
is,it

xt, where s, t ∈M.

Proof: Recall the mistake bound for the second-order kernel
Perceptron algorithm [7]:

m ≤

√√√√(‖h‖2H +
∑
t∈M

h(xt)2
)

m∑
j=1

ln(1 + λj)

where λ1, . . . , λm are the eigenvalues of the m ×m kernel
Gram (sub)matrix including only time steps inM. When the

255

kernel is (5) with feature map f we have ‖u‖2H = u>A⊗u>

and
〈
u>, ψ(xt, it)

〉2 =
(
u>A⊗A

−1
⊗ φt

)2
=
(
u>it

xt

)2
. Fi-

nally, the kernel Gram matrix is K
(
ψ(xs, is), ψ(xt, it)

)
=

φ>s A
−1
⊗ φt = x>s A

−1
is,it

xt. This concludes the proof.

Again, this bound should be compared to the one ob-
tained when learning K independent tasks. As in the first-
order algorithm, we have the complexity term u>

(
A⊗Id

)
u.

In this case, however, the interaction matrix A also plays a
role in the scale of the eigenvalues of the resulting multi-
task Gram matrix. Roughly speaking, we gain a factor K
from u>A−1

⊗ u (according to the arguments in Section 3).
In addition, however, we gain a further factor K, since the
trace of the multitask Gram matrix

[
φ>s A

−1
⊗ φt

]
s,t∈M =

[x>s A
−1
is,it

xt

]
s,t∈M is about 1/K times the trace of the origi-

nal Gram matrix
[
x>s xt

]
s,t∈M. Since both factors are under

the square root, the resulting gain over the K independent
task bound is about K.

4.1 Implementation in dual variables

It is easy to see that the second-order multitask Perceptron
can be run in dual variables by maintainingK classifiers that
share the same set of support vectors. This allows an efficient
implementation that does not impose any significant over-
head with respect to the corresponding single-task version.
Specifically, given some interaction matrix A, the margin at
time t is computed as (see [7, Theorem 3.3])

w>
s−1φ̃t = v>s−1

(
I + Ss−1S

>
s−1 + φ̃tφ̃

>
t

)−1

φ̃t

= y>s

(
I + S>s Ss

)−1

S>s φ̃t , (9)

where ys is the s-dimensional vector whose first s− 1 com-
ponents are the labels yi where the algorithm has made a
mistake up to time t− 1, and the last component is 0.

First, note that replacing I + S>s Ss with I + S>s−1Ss−1

in (9) does not change the sign of the prediction. The mar-
gin at time t can then be computed by calculating the scalar
product between S>s φ̃t and y>s

(
I + S>s−1Ss−1

)−1
. Now,

each entry of the vector S>s φ̃t is of the form A−1
j,it

x>j xt, and
thus computing S>s φ̃t requires O(s) inner products so that,
overall, the prediction step requires O(s) scalar multiplica-
tions andO(s) inner products (independent of the number of
tasks K).

On the other hand, the update step involves the computa-
tion of the vector y>s

(
I + S>s Ss

)−1
. For the matrix update

we can write

Is + S>s Ss =

[
Is−1 + S>s−1Ss−1 S>s−1φ̃t

φ̃
>
t Ss−1 1 + φ̃

>
t φ̃t

]
.

Using standard facts about the inverse of partitioned matrices
(e.g., [17, Ch. 0]), one can see that the inverse of matrix Is +
S>s Ss can be computed from the inverse of Is−1+S>s−1Ss−1

with O(s) extra inner products (again, independent of K)
and O(s2) additional scalar multiplications.

5 The p-norm extension
We now extend our multitask results to the p-norm Percep-
tron algorithm of [14, 13]. As before, when the tasks are all
equal we want to recover the bound of the single-task algo-
rithm, and when the task vectors are different we want the
mistake bound to increase according to a function that pe-
nalizes task diversity according to their p-norm distance.

We develop our p-norm multitask analysis for the spe-
cific choices of p = 2 ln d (or p = 2 lnK when d ≤ K) and
for the pairwise distance matrix (3). It is well known that
for p = 2 ln d the mistake bound of the single-task p-norm
Perceptron is essentially equivalent to the one of the zero-
threshold Winnow algorithm of [22]. We now see that this
property is preserved in the multitask extension.

We start with the following slightly more general algo-
rithm based on arbitrary norms. Later, we specialize it to
p-norms. The quasi-additive multitask algorithm of [20, 14]
is defined for any norm ‖·‖ over RKd. Initially, w0 = 0 ∈
RKd. If s − 1 mistakes have been made in the first t − 1
time steps, then the prediction at time t is SGN

(
w>

s−1φt

)
. If

a mistake occurs at time t, then ws−1 is updated with the
rule ws = ∇ 1

2 ‖vs‖2, where the primal weight vs ∈ RKd is
updated using the multitask Perceptron rule, v0 = 0 ∈ RKd

and vs = vs−1 + ytA
−1
⊗ φt for an arbitrary positive definite

interaction matrix A.
This can be analyzed using the following technique

(see [8] for details). Let vm be the primal weight after any
number m of mistakes. Then, by Taylor expanding 1

2 ‖vs‖2
around vs−1 for each s = 1, . . . ,m, and using the fact
yt w>

s−1φt ≤ 0 whenever a mistake occurs at step t, we get

1
2
‖vm‖2 ≤

m∑
s=1

D (vs‖vs−1) (10)

D (vs‖vs−1) = 1
2

(
‖vs‖2 − ‖vs−1‖2

)
− yt w>

s−1xt is a so-
called Bregman divergence; i.e., the error term in the first-
order Taylor expansion of 1

2 ‖·‖
2 around vector vs−1, at vec-

tor vs.
Fix any u ∈ RKd. Using the convex inequality for

norms u>v ≤ ‖u‖ ‖v‖∗ where ‖·‖∗ is the dual norm of ‖·‖
(see, e.g., [25, page 131]), and using the fact u>A⊗vs =
u>A⊗vs−1 + ytu

>φt ≥ u>A⊗vs−1 +1− `t(u), one then
obtains

‖vm‖ ≥
u>A⊗vm

‖A⊗u‖∗
≥
m−

∑
t `t(u)

‖A⊗u‖∗
. (11)

Combining (10) with (11) and solving for m gives

m ≤
∑
t∈M

`t(u) + ‖A⊗u‖∗

√√√√2
m∑

s=1

D (vs‖vs−1) . (12)

We obtain our multitask version of the p-norm Perceptron
when ‖u‖ = ‖u‖p =

(
|u1|p + |u2|p + · · ·

)1/p
. In particu-

lar, we focus our analysis on the choice p = 2 lnmax{K, d},
which gives mistake bounds in the dual norms ‖u‖1 and
‖xt‖∞, and on the pairwise distance matrix (3).

Using the analysis in [8] we obtain, for ts = t,

D (vs‖vs−1) ≤
p− 1

2

∥∥A−1
⊗ φt

∥∥2

p
=
p− 1

2
‖xt‖2p

∥∥∥A−1
↓it

∥∥∥2

p

256

where A−1
↓it

is the it-th column of A−1. If we now use p =
2 ln max{K, d}, then ‖xt‖2p ≤ e ‖xt‖2∞ and∥∥∥A−1

↓it

∥∥∥2

p
≤ e

∥∥∥A−1
↓it

∥∥∥2

∞
= e

(
A−1

it,it

)2 =
4 e

(K + 1)2
.

We now turn to the computation of the dual norm ‖A⊗u‖q,
where q = p/(p−1) is the dual coefficient of p. We find that

‖A⊗u‖2q ≤ ‖A⊗u‖21 =

(
K∑

i=1

∥∥∥ui +
∑
j 6=i

(
ui − uj

)∥∥∥
1

)2

.

Plugging back into (12) gives the following theorem.

Theorem 5 The number of mistakes m made by the p-norm
multitask Perceptron, run with the pairwise distance ma-
trix (3) and p = 2 ln max{K, d}, on any finite multitask se-
quence (φ1, y1), (φ2, y2), . . . ∈ RKd × {−1, 1}, satisfies,
for all u ∈ RKd,

m ≤
∑
t∈M

`t(u) +H +
√

2H
∑
t∈M

`t(u)

where H is equal to

4 e2 lnmax{K, d}
(K + 1)2

X2
∞

(
K∑

i=1

∥∥∥ui +
∑
j 6=i

(
ui − uj

)∥∥∥
1

)2

.

and X∞ = maxt∈M ‖xt‖∞.

Remark When all tasks are equal, u1 = · · · = uK , the
coefficient H in the bound of Theorem 5 becomes(

4 e2 lnmax{K, d}
)(

max
t
‖xt‖∞

)2

‖ui‖21 .

If K ≤ d this bound is equivalent (apart from constant fac-
tors) to the mistake bound for the single-task zero-threshold
Winnow algorithm of [22].

6 Learning tasks in heterogeneous spaces
In this section we slightly deviate from the approach fol-
lowed so far. We consider the case when the K task vectors
ui may live in different spaces: ui ∈ Rdi , i = 1, . . . ,K.
This is a plausible assumption when attributes associated
with different tasks have a completely different meaning. In
such a case, the correlation among tasks is naturally mea-
sured through the task margins u>i x (or views) —see, e.g.,
the previous work of [6, 27] for a similar approach in the
context of semi-supervised learning. In order to allow for the
views to interact in a meaningful way, we slightly modify the
learning protocol of Section 2. We now assume that, at each
time t, we receive the adversarial choice of task it together
with all instance vectors xi,t ∈ Rdi for i = 1, . . . ,K. The
co-regularization terms motivating our algorithm are propor-
tional to the distance between the margin u>it

xit,t of task it
and the average margin 1

k

∑k
j=1 u>j xj,t of all tasks:

bK

(
u>it

xit,t −
1
K

K∑
j=1

u>j xj,t

)2

, (13)

where b is a positive constant. We add the above terms up to
time t, resulting in a cumulative regularization term

bK
∑

s∈Mt

(
u>is

xis,s −
1
K

K∑
j=1

u>j xj,s

)2

,

whereMt is the set of mistaken trials up to time t. Thus, in
trial t our prior knowledge about task relatedness is encoded
as a (positive) correlation among the K margin sequences
(u>j xj,1,u

>
j xj,2, . . . ,u

>
j xj,t), j = 1, . . . ,K.

The algorithm of Figure 3 is a natural multitask predic-
tor operating with the above view-based regularization cri-
terion. We call this algorithm the multiview-based multitask
Perceptron algorithm, or MMPERC for brevity. MMPERC can
be viewed as a variant of the second-order Perceptron using
the cumulative covariance matrix of the past margin vectors
in order to suitably transform instances.

MMPERC has a constant tradeoff parameter b > 0
(playing the same role as the one in Section 3.2), and
maintains in its internal state a multitask matrix A (initial-
ized to the identity matrix I) and a Perceptron multitask
weight vector v (initialized to the zero vector). The sub-
script s plays the same role as in the previous algorithms.
Unlike the algorithms in previous sections, MMPERC ob-
serves the task number it and the multitask instance Φ>

t =(
x>1,t,x

>
2,t, . . . ,x

>
K,t

)
made up of the instance vectors of all

tasks. Then MMPERC computes a tentative matrix A′t to be
used for prediction. Matrix A′t is obtained by adding the
rank-one positive semidefinite matrixMt to the previous ma-
trix As−1. Here φj,t is the (d1 + · · · + dK)-dimensional
vector

φ>j,t =
(

0, . . . , 0︸ ︷︷ ︸
d1 + · · ·+ dj−1 times

x>j,t 0, . . . , 0︸ ︷︷ ︸
dj+1 + · · ·+ dK times

)

for j = 1, . . . ,K. Observe that Mt has been set so as to
make the quadratic form u>Mtu coincide with the regular-
ization term (13). Similarly to the algorithms of previous
sections, the tentative matrix A′t and the current Perceptron
vector vs−1 are used for predicting the true label yt. If pre-
diction ŷt and label yt disagree both v and A get updated. In
particular, As is set to the tentative matrix A′t.

In this protocol we call example the triple (it,Φt, yt).
Like the results contained in the previous sections, our anal-
ysis will provide a multitask bound on the number of predic-
tion mistakes which is comparable to the one obtained by a
single task plus a penalization term due to task relatedness.
However, though this algorithm is a second-order prediction
method, we only give a first-order analysis that disregards
the eigenstructure of the data. This is due to the technical
difficulty of handling a time-varying matrix A that in trial t
includes all instance vectors x1,t, . . .xK,t.

Theorem 6 The number of mistakes m made by the al-
gorithm in Figure 3, run on any multitask sequence
(i1,Φ1, y1), (i2,Φ2, y2), . . . satisfies, for all u> =

257

Parameters: b > 0.
Initialization: A0 = I , v0 = 0 ∈ Rd1+···+dK , s = 1.
At each time t = 1, 2, . . . do the following:

1. Observe task number it ∈ {1, . . . ,K};

2. Observe multitask instance vector

Φ>
t =

(
x>1,t, . . . ,x

>
K,t

)
∈ Rd1+···+dK ;

3. Build the associated multitask instance φit,t;

4. Set A′t = As−1 +Mt where

Mt = bK
(
φit,t −

Φt

K

)(
φit,t −

Φt

K

)>
;

5. Predict ŷt = SGN
(
v>s−1(A

′
t)
−1φit,t

)
∈ {−1,+1};

6. Get label yt ∈ {−1,+1};

7. If ŷt 6= yt then update:

vs = vs−1 + yt φit,t , As = A′t , s← s+ 1 .

Figure 3: The multiview-based multitask Perceptron algo-
rithm (MMPERC).

(
u>1 , . . . ,u

>
K

)
,

m ≤
∑
t∈M

`t(u) +
K(b+ 1)− b

bK(K − 1) +K

(
u>Amu

)
+

√
K(b+ 1)− b

bK(K − 1) +K

(
u>Amu

) ∑
t∈M

`t(u) ,

where

u>Amu

=
K∑

i=1

||ui||2 + bK

m∑
t∈M

(
u>it

xit,t −
1
K

K∑
j=1

u>j xj,t

)2

,

beingM the set of mistaken trials.

Remark It is the factor
K(b+ 1)− b

bK(K − 1) +K

(
u>Amu

)
(14)

that quantifies the relatedness among tasks (the leading con-
stant bK in the second term of u>Am,u is needed for scal-
ing purposes). Note that the notion of relatedness provided
by u>Am u is analogous to the one used in Section 3.2. As
suggested in Section 3.3, other measures of similarity are
possible.

The parameter b allows for a limited trade-off between∑K
i=1 ||ui||2 and the cumulative “margin deviation”

m∑
t∈M

(
u>it

xit,t −
1
K

K∑
j=1

u>j xj,t

)2

. (15)

In particular, setting b = 0 corresponds to running K inde-
pendent (first-order) Perceptron algorithms (no task related-
ness), while letting b go to infinity is optimal only when each

one of the margin deviation terms in (15) is zero (maximal
task relatedness). Notice that setting b = 1 gives

(14) =
2K − 1
K2

K∑
i=1

||ui||2

+
2K − 1
K

m∑
t∈M

(
u>it

xit,t −
1
K

K∑
j=1

u>j xj,t

)2

yielding a gain of K whenever the K tasks are significantly
related, as measured by (15).

Proof of Theorem 6: Although the general structure of the
analysis is based on the second-order Perceptron proof, we
use the special properties of I +Mt in order to compute the
contribution of K and b to the final bound.

Let t = ts be the time step when the s-th mistake occurs.
We write

v>s A
−1
s vs = (vs−1 + ytφit,t)

>A−1
s (vs−1 + ytφit,t)

(from the update rule in Figure 3)

= vs−1A
−1
s vs−1 + 2ytv

>
s−1A

−1
s φit,t

+ φ>it,tA
−1
s φit,t

≤ vs−1A
−1
s vs−1 + φ>it,tA

−1
s φit,t

≤ vs−1A
−1
s−1vs−1 + φ>it,t(I +Mt)−1φit,t .

(16)

In order to prove the first inequality, note that on the s-th
mistaken trial As = A′t and ytv

>
s−1(A

′
t)−1φit,t ≤ 0. In

order to prove the second inequality note that As − As−1

and As − (I +Mt) are both positive semidefinite.
We now focus on computing the quadratic form φ>it,t(I+

Mt)−1φit,t. Recall that Φt =
∑K

j=1 φj,t is the sum of the
orthonormal vectors φ1,t, . . . ,φit,t, . . . ,φK,t. Thus, from
the very definition of Mt in Figure 3 it is easy to verify that

(I +Mt) φit,t = (b(K − 1) + 1) φit,t −
b(K − 1)

K
Φt .

(17)
Also, since Mt Φt = 0, we have (I + Mt)Φt = Φt, and
thus (I +Mt)−1Φt = Φt. Hence (17) allows us to write

φit,t = (b(K − 1) + 1) (I +Mt)−1 φit,t −
b(K − 1)

K
Φt .

Taking the inner product of both sides with φit,t, and solving
for φit,t(I +Mt)−1φit,t yields

φit,t(I +Mt)−1φit,t =
K(b+ 1)− b

bK(K − 1) +K
.

Substituting this into (16), recalling that v0 = 0, and sum-
ming over s = 1, . . . ,m we obtain

v>mA
−1
m vm ≤ m

K(b+ 1)− b
bK(K − 1) +K

.

A lower bound on the left-hand side can be obtained in the
standard way (details omitted),√

v>mA
−1
m vm ≥

m−
∑

t∈M `t(u)∥∥∥A1/2
m u

∥∥∥ .

258

Thus we get v>mA
−1
m vm ≥

(m−
P

t∈M `t(u))2

u>Amu
. Finally,

recall that by construction

u>Amu

=
K∑

i=1

||ui||2 + bK
∑
t∈M

(
u>it

xit,t −
1
K

K∑
j=1

u>j xj,t

)2

.

Putting together and solving for m gives the desired bound.

6.1 Implementation in dual variables
Like the second-order multitask Perceptron algorithm, also
MMPERC can be formulated in dual variables. Due to the
need to handle K instance vectors at a time, the implemen-
tation we sketch below has an extra linear dependence on K,
as compared to the one in Section 4.1.

Let t = ts be the trial when the s-th mistake occurs, zr

be the vector zr =
√
bK(φir,r −Φr/K), Ss be the matrix

whose columns are the vectors φir,r corresponding to mis-
taken time steps r up to time t, and Zs be the matrix whose
columns are the vectors zr corresponding to mistaken time
steps r up to time t. It is easy to verify that As = I +ZsZ

>
s

and vs−1 = Ss ys where ys is as in Section 4.1. From the
inversion formula (e.g., [17, Ch. 0])

(I + ZsZ
>
s)−1 = I − Zs(I + Z>s Zs)−1Z>s

we see that the margin v>s−1(A
′
t)
−1φit,t in Figure 3 can be

computed as

v>s−1(A
′
t)
−1φit,t

= y>s S
>
s φit,t − y>s S

>
s Zs(I + Z>s Zs)−1Z>s φit,t .

Calculating the vectors S>s φit,t and Z>s φit,t in the above
expression takes O(s) inner products while other O(s) in-
ner products are required to incrementally compute S>s Zs

from S>s−1Zs−1. Finally, when calculating the inverse (I +
Z>s Zs)−1 we exploit the same updating scheme of Sec-
tion 4.1,

Is + Z>s Zs =
[
Is−1 + Z>s−1Zs−1 Z>s−1zs

z>s Zs−1 1 + z>s zs

]
,

where Z>s−1zs and z>s zs require O(Ks) and O(K) inner
products, respectively. Hence (Is + Z>s Zs)−1 can be com-
puted from (Is−1 + Z>s−1Zs−1)−1 with O(Ks) extra inner
products and O(s2) additional scalar multiplications.

7 Spectral co-regularization
An extreme case of multitask learning is the multiview set-
ting, where all tasks share the same label. In the multi-
view protocol, at each time step t the learner receives K in-
stances x1,t, . . . ,xK,t ∈ Rd, predicts with ŷt ∈ {−1, 1},
and then receives the correct binary label yt, which —unlike
the general multitask case— is the same for all instances.
What distinguishes multiview learning from a standard on-
line binary classification task, defined on instances of the
form xt = (x1,t, . . . ,xK,t

)
, is that in multiview one postu-

lates the existence of K vectors u1, . . . ,uK such that each

ui is a good linear classifier for the corresponding sequence
(xi,1, y1), (xi,2, y2), . . . of examples. In this respect a nat-
ural baseline for online multiview learning is the algorithm
that chooses a random index i ∈ {1, . . . ,K} and then runs a
Perceptron algorithm on the sequence of examples (xi,t, yt)
for t ≥ 1. Equivalently, we may think of running K Per-
ceptrons in parallel and then average their mistakes (see the
remark after Theorem 10).

In this section we design multiview learning algorithms
that in certain cases are able to perform significantly better
than the above baseline. In order to do so, we arrange the K
d-dimensional instances x1,t, . . . ,xK,t in a d ×K instance
matrixXt and penalize diversity among the reference vectors
u1, . . . ,uK using a matrix norm of the d ×K matrix U =
[u1, . . . ,uK].

We focus our attention on matrix norms that are unitar-
ily invariant. Such norms are of the form ‖U‖f = f(σU),
where σU = (σ1, . . . , σr) is the vector of the ordered sin-
gular values σ1 ≥ · · · ≥ σr ≥ 0 of U and f : Rr → R,
with r = min{K, d}, is an absolutely symmetric function
—that is, f is invariant under coordinate permutations and
sign-changes.

Matrix norms of this form control the distribution of the
singular values of U , thus acting as spectral co-regularizers
for the reference vectors (see, e.g., [4] for very recent devel-
opments on this subject). Known examples are the Schatten
p-norms, ‖U‖sp

def= ‖σU‖p. For instance, the Schatten 2-
norm is the Frobenius norm. For p = 1 the Schatten p-norm
becomes the trace norm, a good proxy for the rank of U ,
since ‖U‖s1

= ‖σU‖1 ≈ ‖σU‖0 = rank of U .
In order to obtain a multiview bound that depends on

‖σU‖p, we extend the dual norm analysis of Section 5 to
matrices. We start by defining the matrix version of the
quasi-additive algorithm of [14, 20]. We remark that ma-
trix versions of the EG algorithm and the Winnow algorithm
(related to specific instances of the quasi-additive algorithm)
have been proposed and analyzed in [28, 29, 30]. When deal-
ing with the trace norm regularizer, their algorithms could
be specialized to our multiview framework to obtain mistake
bounds comparable to ours. See the brief discussion at the
end of this section.

The quasi-additive matrix algorithm maintains a d × K
matrix W . Initially, W0 is the zero matrix. If s− 1 mistakes
have been made in the first t− 1 time steps, then the predic-
tion at time t is SGN

(
〈Ws−1, Xt〉

)
, where Xt is the d × K

matrix [x1,t, . . . ,xK,t] in which xi,t is the instance vector
associated with the i-th view at time t, and 〈Ws−1, Xt〉 is the
standard matrix inner product 〈Ws−1, Xt〉 = TR

(
W>

s−1Xt

)
.

If a mistake occurs at time t, then Ws−1 is updated with
Ws = ∇ 1

2 ‖Vs‖2f where, in turn, the d × K matrix Vs is
updated using a matrix Perceptron rule, Vs = Vs−1 + ytXt.

A useful property of norms ‖U‖f = f(σU) is that their
duals are easily computed.

Theorem 7 [21, Theorem 2.4] If f is absolutely symmetric
and ‖U‖f = f(σU), then ‖U‖f∗ = f∗(σU) where f∗ is the
convex dual of f .

In the case of Schatten p-norms, we have that the dual of
vector norm ‖·‖p is vector norm ‖·‖q, where q = p/(p − 1)

259

is the dual coefficient of p.
An important feature of the quasi-additive algorithms for

vectors is that the mapping µ : v 7→ µ(v) = ∇ 1
2 ‖v‖

2 is
invertible whenever the vector norm ‖·‖ satisfies certain reg-
ularity properties (see, e.g., [8, page 294]). We call such
norms Legendre. Hence, we “do not lose information” when
the primal weight vector v is mapped to the weight vector
w = µ(v) used for prediction. In particular, we always have
that µ−1(v) = ∇ 1

2 ‖v‖
2
∗, where ‖·‖∗ is the dual norm of a

Legendre norm ‖·‖ (see, e.g., [8, Lemma 11.5]). This prop-
erty is preserved when the algorithm is applied to matrices.
This is shown by the following result where, without loss
of generality, we prove the property for f(σU) rather than
1
2f(σU)2. (In fact, if f is Legendre, then 1

2f
2 is also Legen-

dre).

Theorem 8 Let f be a Legendre function. If ‖U‖f =

f(σU) then
(
∇‖·‖f

)−1 = ∇‖·‖f∗ .

The following result will be useful.

Theorem 9 [21, Theorem 3.1] Let U DIAG[σA]V > be an
SVD decomposition of a matrix A. If ‖·‖f is a matrix norm
such that ‖A‖f = f(σA) for f Legendre, then ∇f(σA) =
σ∇‖A‖f

. Moreover, ∇‖A‖f = U DIAG
[
∇f(σA)

]
V >.

Proof of Theorem 8: If A = U DIAG[σA]V >, then by The-
orem 9
∇‖A‖f = U DIAG

[
∇f(σA)

]
V > = U DIAG

[
σ∇‖A‖f

]
V > .

Therefore, using Theorem 9,

∇
∥∥∥(∇‖A‖f)∥∥∥

f∗
= U DIAG

[
∇f∗

(
∇f(σA)

)]
V >

= U DIAG[σA]V > (f is Legendre)
= A

concluding the proof.

We now develop a general analysis of the quasi-additive ma-
trix algorithms, and then specialize it (in Theorem 10 below)
to a multiview algorithm operating with a Schatten p-norm
regularizer.

We start by adapting the dual norm proof of Section 5 to
an arbitrary matrix norm ‖A‖f = f(σA), where f is Legen-
dre. Let Vm be the primal weight matrix after any number m
of mistakes. By Taylor expanding 1

2 ‖Vs‖2f around Vs−1 for
each s = 1, . . . ,m, and using yt 〈Ws−1, Xt〉 ≤ 0, we get

1
2
‖Vm‖2f ≤

m∑
s=1

D (Vs‖Vs−1)

where D (Vs‖Vs−1) is the matrix Bregman divergence
1
2

(
‖Vs‖2f − ‖Vs−1‖2f

)
− yt 〈Ws−1, Xt〉.

Fix any d×K matrix U . First, we derive a matrix version
of the convex inequality for vector norms. We use a classical
result by von Neumann (see, e.g., [18, p. 182]) stating that
〈V,U〉 ≤ σ>V σU for any two d ×K matrices U and V . We
have
‖Vm‖f ‖U‖f∗ = f

(
σVm

)
f∗
(
σU

)
(by Theorem 7)

≥ σ>Vm
σU (by the convex ineq. for norms)

≥ 〈Vm, U〉 (by von Neumann’s ineq.).

In addition, we have 〈U, Vs〉 = 〈U, Vs−1〉+ yt〈U,Xt〉. Thus
we obtain

‖Vm‖ ≥
〈U, Vm〉
‖U‖f∗

≥
Km−

∑
t `t(U)

‖U‖f∗

where `t(U) def=
∑K

i=1

[
1 − yt u>i xi,t

]
+

=
∑K

i=1 `t(ui).
Solving for m gives

m ≤ 1
K

∑
t∈M

`t(U) +
‖U‖f∗
K

√√√√2
m∑

s=1

D (Vs‖Vs−1) . (18)

Equation (18) is our general starting point for analyzing mul-
tiview algorithms working under spectral co-regularization.
The analysis reduces to bounding from above the second-
order term D (·‖·) of the specific matrix norm ‖·‖f under
consideration.

For the rest of this section we focus on the Schatten 2p-
norm ‖V ‖s2p

= ‖σV ‖2p ,where V is a generic d×K matrix,
and p is a positive integer (thus 2p is an even number ≥ 2).
Note that, in general, ‖V ‖2s2p

= TR
(
(V >V)p

)1/p
.

In order to prove our main result, stated below, we use
some facts from differential matrix calculus. A standard ref-
erence on this subject is [23], to which the reader is referred.

Theorem 10 The number of mistakes m made by the
2p-norm matrix Perceptron, run on any sequence
(X1, y1), (X2, y2), . . . satisfies, for any d × K matrix
U ,

m ≤ 1
K

∑
t∈M

`t(U) + (2p− 1)

(
Xs2p

‖U‖s2q

K

)2

+
Xs2p ‖U‖s2q

K

√
2p− 1
K

∑
t∈M

`t(U)

whereXs2p
= maxt∈M ‖Xt‖s2p

, ‖U‖s2q
is the Schatten 2q-

norm of U , with 2q = 2p
2p−1 , and M is the set of mistaken

trial indices.

Remark Similarly to the vector case, when the parameter
p is chosen to be logarithmic in r = min{d,K}, the p-
norm matrix Perceptron penalizes diversity using the trace
norm of U . If the vectors ui span a subspace of size� K,
and instances tend to have K nonzero singular values of
roughly the same magnitude, then ‖U‖s2q

≈ ‖U‖s2
while

X2
s2p
≈ X2

s∞ ≈ X2
s2
/K. Hence this choice of p leads

(at least in the linearly separable case) to a factor K im-
provement over the bound achieved by the matrix algorithm
based on the Frobenius norm (p = 1 in Theorem 10), which
amounts to running K independent Perceptrons in parallel
and then average their mistakes.

The following trace inequality is our main technical lemma.

Lemma 11 Let A,B be positive semidefinite matrices, of
size d × d and K × K respectively, with the same nonzero
eigenvalues. LetX be an arbitrary real matrix of size d×K.
Then, for any pair on nonnegative exponents l, g ≥ 0, we
have TR(X>AlXBg) ≤

(
TR(X>X)p

)1/p(
TR A(l+g)q

)1/q

where 1/p+ 1/q = 1, p ≥ 1.

260

Proof of Lemma 11: We first consider the case l ≤ g.
By the Cauchy-Schwartz and Holder’s inequalities applied
to traces [23, Ch.11] we have

TR(X>AlXBg) = TR
(
B(g−l)/2X>AlXB(g+l)/2

)
(19)

≤ TR
(
X>A2lXBg−l

)1/2
TR
(
X>XBg+l

)1/2

≤ TR
(
X>A2lXBg−l

)1/2
Tp

(
X>X

)1/2
Tq

(
Bg+l

)1/2

where we used the shorthand Tr(Z) = (TRZr)1/r. In the
case when l > g we can simply swap the matrices X>Al

and XBg and reduce to the previous case.
We now recursively apply the above argument to the

left-hand side of (19). Recalling that Tq(A) = Tq(B) and
Tp(X>X) = Tp(XX>), after n steps we obtain

TR
(
X>AlXBg

)
≤
(

TR(X>Al′XBg′)
)1/2n

×

× Tp

(
X>X

)Pn
i=1(1/2)i

Tq

(
Bg+l

)Pn
i=1(1/2)i

for some pair of exponents l′, g′ ≥ 0 such that l′+g′ = l+g.
Since for any such pair l′, g′, we have TR(X>Al′XAg′) <
∞, we can take the limit as n → ∞. Recalling that∑∞

i=1(1/2)i = 1 completes the proof.

Proof of Theorem 10: We set for brevity G : Rd×K → R,

G(V) =
1
2

TR
(
(V >V)p

)1/p=
1
2
‖V ‖2s2p

.

Thus in our case

D (Vs‖Vs−1) = G(Vs−1+ytXt)−G(Vs−1)−yt 〈Ws−1, Xt〉.

Since G(V) is twice4 continuously differentiable, by the
mean-value theorem we can write

D (Vs‖Vs−1) =
1
2

VEC(Xt)>HG(ξ)VEC(Xt), (20)

where VEC(X) is the standard columnwise vectorization of a
matrix X , HG denotes the Hessian matrix of (matrix) func-
tion G and ξ is some matrix on the line connecting Vs−1

to Vs. Using the rules of matrix differentiation, the gra-
dient ∇G of G is ∇G(V) = c(V)VEC(D)> where we
set for brevity D = V Bp−1, c(V) = TR(Bp)1/p−1, with
B = V >V . Taking the second derivative HG = ∇∇G
gives HG(V) = VEC (D)∇(c(V)) + c(V)∇ (D). Now,
recalling the definition of c(V), it is not hard to show that
VEC (D)∇(c(V)) is the Kd×Kd matrix

2(1− p)TR(Bp)1/p−2 VEC(D) VEC(D)>.

Since p ≥ 1 this matrix is negative semidefinite, and we
can disregard it when bounding from the above the quadratic
form (20). Thus we continue by considering only the second
term c(V)∇ (D) of the Hessian matrix. We have

∇ (D) =
(
Bp−1 ⊗ Id

)
+ (Ik ⊗ V)∇

(
Bp−1

)
,

4In fact G is C∞ everywhere but (possibly) in zero, since
TR

“
(V >V)p

”
is just a polynomial function of the entries of V .

Moreover TR
“
(V >V)p

”
= 0 if and only if V is the zero matrix.

where

∇(Bp−1) =

(
p−2∑
`=0

B` ⊗Bp−2−`

)
(IK2 + TK)

(
Ik ⊗ V >

)
,

and TK is the K2 × K2 commutation matrix such that
TK VEC(M) = VEC(M>) for anyK×K matrixM . Putting
together

(20) ≤ c(V)
2

VEC(Xt)>(Bp−1 ⊗ Id) VEC(Xt)

+
c(V)

2
VEC(Xt)>(Ik ⊗ V)Σ×

× (IK2 + TK)
(
Ik ⊗ V >

)
VEC(Xt) , (21)

where we used the shorthand Σ =
∑p−2

`=0 B
` ⊗Bp−2−`. We

now bound the two terms in the right-hand side of (21). By
well-known relationships between Kronecker products and
the VEC operator (see [23, Ch. 3]) we can write
c(V)

2
VEC(Xt)>(Bp−1 ⊗ Id) VEC(Xt)

=
c(V)

2
TR(X>

t XtB
p−1) ≤ 1

2
(

TR(X>
t Xt)p

)1/p
,

independent of V . The majorization follows from Holder’s
inequality applied to the positive semidefinite matrices
X>

t Xt and Bp−1. Moreover, it is easy to see that the sym-
metric matrices Σ and TK commute, thereby sharing the
same eigenspace. Hence, Σ (IK2 + TK) 4 2Σ, and we can
bound from above the second term in (21) by

c(V)VEC(Xt)>
p−2∑
`=0

B` ⊗Ap−1−`VEC(Xt) ,

where we set A = V V >. Again, [23, Ch. 3] allows us to
rewrite this quadratic form as the sum of traces

c(V)
p−2∑
`=0

TR(X>
t A

p−1−`XtB
`) .

Since A and B have the same nonzero eigenvalues, we can
apply Lemma 11 to each term and put together as in (21).
After simplifying we get

(20) ≤ 1
2

(2p−1)
(

TR(X>
t Xt)p

)1/p
=

1
2

(2p−1)||Xt||2s2p
.

The desired bound is then obtained by plugging back into
(18), solving the resulting inequality for m, and overapprox-
imating.

The result of Theorem 10 is similar to those obtained
in [28, 29, 30]. However, unlike these previous results,
our matrix algorithm has no learning rate to tune (a prop-
erty inherited from the vector p-norm Perceptron of [13])
and works for arbitrary nonsquare matrices U . We also ob-
serve that the prediction ŷt = SGN

(
TR
(
W>

s−1Xt

))
of the

p-norm matrix Perceptron reduces to computing the sign of
TR
(
(V >s−1Vs−1)p−1V >s−1Xt

)
(recall the expression for ∇G

calculated in the proof of Theorem 10). Since matrix Vs

is updated additively, it is clear that both V >s−1Vs−1 and
V >s−1Xt do depend on instance vectors xi,t only through in-
ner products. This allows us to turn our p-norm matrix Per-
ceptron into a kernel-based algorithm, and repeat the analysis
given here using a standard RKHS formalism.

261

8 Conclusions and ongoing research

In this work we have studied the problem of learning mul-
tiple tasks online using various approaches to formalize the
notion of task relatedness.

Our results can be extended in different directions. First,
in Sections 3.2 and 6 it might be interesting to devise meth-
ods for dynamically adapting the b parameter as new data
are revealed. Second, the mistakes of the second-order algo-
rithm MMPERC have been bounded using a first-order anal-
ysis. A more refined analysis should reveal in the bound an
explicit dependence on the spectral properties of the data.
It is also worth noting that the significance of the mistake
bound obtained for MMPERC relies on the fact that the algo-
rithm assumes the tasks to be different, although somewhat
related. In the case when the K observed instances share
the same label at each time step (like in multiview learning),
we could not devise an algorithm with a significant advan-
tage over the following trivial baseline: run K Perceptrons
in parallel and use the sum of margins to predict. Third, it
would be interesting to study the problem of learning multi-
ple tasks when K predictions have to be output in each step.
In this case the main difficulty appears to be the control of
the interaction among instances at each time step. Fourth, it
would be also interesting to prove lower bounds on the num-
ber of mistakes, as a function of task relatedness. Finally,
since multitask learning problems arise naturally in a variety
of settings, spanning from biology to news processing, we
plan to complement the theoretical analysis presented in this
paper with experimental results, so as to evaluate the empir-
ical performance of our algorithms in real-case scenarios.
Acknowledgments. Thanks to Sham Kakade, Massi Pontil,
and Francis Bach for useful discussions. We also thank the
COLT 2008 reviewers for their comments. This work was
supported in part by the PASCAL2 Network of Excellence
under EC grant no. 216886. This publication only reflects
the authors’ views.

References
[1] J. ABERNETHY, P.L. BARTLETT & A. RAKHLIN, Multitask

learning with expert advice, Proc. 20th COLT, pp. 484–498,
Springer, 2007.

[2] R.K. ANDO & T. ZHANG, A framework for learning predic-
tive structures from multiple tasks and unlabeled data, JMLR,
6, pp. 1817–1853, MIT Press, 2005.

[3] A. ARGYRIOU, T. EVGENIOU & M. PONTIL Multi-Task
feature learning, NIPS 19, pp. 41–48, MIT Press, 2007.

[4] A. ARGYRIOU, C.A. MICCHELLI, M. PONTIL & Y. YING,
A spectral regularization framework for multi-task structure
learning, NIPS 20, MIT Press, 2008.

[5] K. AZOURY AND M. WARMUTH, Relative loss bounds for
on-line density estimation with the exponential family of dis-
tributions, Machine Learning, 43, pp. 211–246, 2001.

[6] U. BREFELD, T. GAERTNER, T. SCHEFFER, & S. WROBEL,
Efficient co-regularised least squares regression, Proc. 23rd
ICML, 2006.

[7] N. CESA-BIANCHI, A. CONCONI & C. GENTILE, A
second-order Perceptron algorithm, SIAM Journal on Com-
puting, 34/3, pp. 640–668, 2005.

[8] N. CESA-BIANCHI & G. LUGOSI, Prediction, Learning,
and Games. Cambridge University Press, 2006.

[9] O. DEKEL, P.M. LONG & Y. SINGER, Online learning of
multiple tasks with a shared loss, JMLR, 8, pp. 2233–2264,
2007.

[10] T. EVGENIOU, M. PONTIL & T. POGGIO, Regularization
networks and Support Vector Machines, Advances in Com-
putational Mathematics, 13/1, pp. 1–50, Springer, 2000.

[11] T. EVGENIOU, C. MICCHELLI & M. PONTIL, Learning
Multiple tasks with kernel methods, JMLR, 6, pp. 615–637,
MIT Press, 2005.

[12] Y. FREUND & R.E. SCHAPIRE, Large margin classification
using the Perceptron algorithm. Machine Learning, 37:3, pp.
277–296, 1999.

[13] C. GENTILE, The robustness of the p-norm algorithms, Ma-
chine Learning, 53, pp. 265–299, 2003.

[14] A. GROVE, N. LITTLESTONE & D. SCHUURMANS, General
convergence results for linear discriminant updates, Machine
Learning, 43, pp. 173–210, 2001.

[15] M. HERBSTER, M. PONTIL & L. WAINER, Online learning
over graphs, Proc. 22nd ICML, pp. 305–312, ACM Press,
2005.

[16] L. HOGBEN, Handbook of Linear Algebra, Discrete Mathe-
matics and Its Applications, 39, CRC Press, 2006.

[17] R.A. HORN & C.R. JOHNSON, Matrix Analysis. Cambridge
University Press, 1985.

[18] R.A. HORN & C.R. JOHNSON, Topics in Matrix Analysis.
Cambridge University Press, 1991.

[19] A. JAGOTA & M.K. WARMUTH, Continuous and discrete
time nonlinear gradient descent: relative loss bounds and
convergence, Electr. Proc. 5th International Symposium on
Artificial Intelligence and Mathematics, 1998. Electronic,
http://rutcor.rutgers.edu/∼amai.

[20] J. KIVINEN & M. WARMUTH, Relative loss bounds for mul-
tidimensional regression problems, Machine Learning, 45,
pp. 301–329, 2001.

[21] A.S. LEWIS, The convex analysis of unitarily invariant ma-
trix functions, Journal of Convex Analysis, 2, pp. 173–183,
1995.

[22] N. LITTLESTONE, Mistake bounds and logarithmic linear-
threshold learning algorithms. Ph.D. Thesis, University of
California at Santa Cruz, 1989.

[23] J.R. MAGNUS, & H, NEUDECKER, Matrix Differential Cal-
culus with Applications in Statistics and Econometrics, re-
vised edition. John Wiley, 1999.

[24] A. MAURER, Bounds for linear multi-task learning, JMLR,
7, pp. 117–139, MIT Press, 2006.

[25] R.T. ROCKAFELLAR, Convex Analysis. Princeton University
Press, 1970.

[26] D. ROSENBERG & P. BARTLETT, Rademacher complexity
of co-regularized kernel classes, Proc. Artificial Intelligence
and Statistics, 2007.

[27] V. SINDHWANI, P. NIYOGI & M. BELKIN, A co-regularized
approach to semi-supervised learning. Proc. ICML Workshop
on Learning with Multiple Views, 2005.

[28] K. TSUDA, G. RAETSCH & M.K. WARMUTH, Matrix expo-
nentiated gradient updates for on-line learning and Bregman
projection, JMLR, 6, pp. 995–1018, 2005.

[29] M.K. WARMUTH & D. KUZMIN, Online variance minimiza-
tion, Proc. 19th COLT, Springer, 2006.

[30] M.K. WARMUTH, Winnowing subspaces. Proc. 24th ICML,
pp. 999–1006, ACM Press, 2007.

262

Competing in the Dark: An Efficient Algorithm for Bandit Linear Optimization

Jacob Abernethy
Computer Science Division

UC Berkeley
jake@cs.berkeley.edu

Elad Hazan
IBM Almaden

hazan@us.ibm.com

Alexander Rakhlin
Computer Science Division

UC Berkeley
rakhlin@cs.berkeley.edu

Abstract

We introduce an efficient algorithm for the prob-
lem of online linear optimization in the bandit set-
ting which achieves the optimal O∗(

√
T) regret.

The setting is a natural generalization of the non-
stochastic multi-armed bandit problem, and the ex-
istence of an efficient optimal algorithm has been
posed as an open problem in a number of recent
papers. We show how the difficulties encountered
by previous approaches are overcome by the use of
a self-concordant potential function. Our approach
presents a novel connection between online learn-
ing and interior point methods.

1 Introduction
One’s ability to learn and make decisions rests heavily on the
availability of feedback. Indeed, an agent may only improve
itself when it can reflect on the outcomes of its own taken
actions. In many environments feedback is readily available:
a gambler, for example, can observe entirely the outcome of
a horse race regardless of where he placed his bet. But such
perspective is not always available in hindsight. When the
same gambler chooses his route to travel to the race track,
perhaps at a busy hour, he will likely never learn the outcome
of possible alternatives. When betting on horses, the gambler
has thus the benefit (or perhaps the detriment) to muse “I
should have done...”, yet when betting on traffic he can only
think “the result was...”.

This problem of sequential decision making was stated
by Robbins [18] in 1952 and was later termed “the multi-
armed bandit problem”. The name inherits from the model
whereby, on each of a sequence of rounds, a gambler must
pull the arm on one of several slot machines (“one-armed
bandits”) that each returns a reward chosen stochastically
from a fixed distribution. Of course, an ideal strategy would
simply be to pull the arm of the machine with the greatest re-
wards. However, as the gambler does not know the best arm
a priori, his goal is then to maximize the reward of his strat-
egy relative to reward he would receive had he known the
optimal arm. This problem has gained much interest over
the past 20 years in a number of fields, as it presents a very
natural model of an agent seeking to simultaneously explore
the world while exploiting high-reward actions.

As early as 1990 [8, 13] the sequential decision problem
was studied under adversarial assumptions, where we as-
sume the environment may even try to hurt the learner. The
multi-armed bandit problem was brought into the adversar-
ial learning model in 2002 by Auer et al [1], who showed
that one may obtain nontrivial guarantees on the gambler’s
performance relative to the best arm even when the arm val-
ues are chosen by an adversary! In particular, Auer et al [1]
showed that the gambler’s regret, i.e. the difference between
the gain of the best arm minus the gain of the gambler, can
be bounded by O(

√
NT) where N is the number of bandit

arms, and T is the length of the game. In comparison, for the
game where the gambler is given full information about al-
ternative arms (such as the horse racing example mentioned
above), it is possible to obtain O(

√
T log N), which scales

better in N but identically in T .
One natural and well studied problem, which escapes the

Auer et al result, is that of “online shortest path”, considered
in [11, 20] among others. In this problem the decision set is
exponentially large (i.e., the set of all paths in a given graph),
and the straightforward reduction of modeling each path as
an arm for the multi-armed bandit problem suffers from both
efficiency issues as well as regret exponential in the descrip-
tion length of the graph. To cope with these issues, several
authors [2, 9, 14] have recently proposed a very natural gen-
eralization of the multi-armed bandit problem to the field of
Convex Optimization, and we will call this “bandit linear op-
timization”. In this setting we imagine that, on each round
t, an adversary chooses some linear function ft(·) which is
not revealed to the player. The player then chooses a point xt

within some given convex set1 K ⊂ Rn. The player then suf-
fers ft(xt) and this quantity is revealed to him. This process
continues for T rounds, and at the end the learner’s payoff is
his regret:

RT =
T∑

t=1

ft(xt)− min
x∗∈K

T∑
t=1

ft(x∗).

Online linear optimization has been often considered, yet
primarily in the full-information setting where the learner
sees all of ft(·) rather than just ft(xt). In the full-information
model, it has been known for some time that the optimal re-
gret bound is O(

√
T), and it had been conjectured that the

1In the case of online shortest path, the convex set can be rep-
resented as a set of vectors in R|E|. Hence, the dependence on
number of paths in the graph can be circumvented.

263

same should hold for the bandit setting as well. Neverthe-
less, several initially proposed algorithms were shown only
to obtain bounds with O(T 3/4) (e.g. [14, 9]) or O(T 2/3)
(e.g. [2, 7]). Only recently was this conjecture proven to
be true by Dani et al. [6], who provided an algorithm with
O(poly(n)

√
T) regret. However, their proposed method,

which deploys a clever reduction to the multi-armed bandit
algorithm of Auer et al [1], is not efficient.

We propose an algorithm for online linear bandit opti-
mization that is the first, we believe, to be both computa-
tionally efficient and achieve a O(poly(n)

√
T) regret bound.

Moreover, with a thorough analysis we aim to shed light on
the difficulties in obtaining such an algorithm. Our technique
provides a curious link between the notion of Bregman diver-
gences, which have often been used for constructing and an-
alyzing online learning algorithms, and self-concordant bar-
riers, which are of great importance in the study of interior
point methods in convex optimization. A rather surprising
consequence is that divergence functions, which are widely
used as a regularization tool in online learning, provide the
right perspective for the problem of managing uncertainty
given limited feedback. To our knowledge, this is the first
time such connections have been made.

2 Notation and Motivation
LetK ⊂ Rn be a compact closed convex set. For two vectors
x,y ∈ Rn, we denote their dot product as xTy. We write
A � B if (A−B) is positive semi-definite. Let

DR(x,y) := R(x)−R(y)−∇R(y)T(x − y)

be the Bregman divergence between x and y with respect to
a convex differentiableR.

Define the Minkowsky function (see page 34 of [16] for
details) on K, parametrized by a pole yt as

πyt(xt) = inf{t ≥ 0 : yt + t−1(xt − yt) ∈ K}.

We define a scaled version of K by

Kδ = {u : πx1(u) ≤ (1 + δ)−1}

for δ > 0. Here x1 is a “center” ofK defined in the later sec-
tions. We assume that K is not “flat” and so x1 is a constant
distance away from the boundary.

In the rest of the section we describe the rich body of
previous work which led to our result. The reader familiar
with online optimization in the full and partial information
settings can skip directly to the next section.

The online linear optimization problem is defined as the
following repeated game between the learner (player) and
the environment (adversary).

At each time step t = 1 to T ,
• Player chooses xt ∈ K
• Adversary independently chooses ft ∈ Rn

• Player suffers loss f T
t xt and observes feedback =

The goal of the Player is not simply to minimize his to-
tal loss

∑T
t=1 f T

t xt, for an adversary could simply choose ft

to be as large as possible at every point in K. Rather, the
Player’s goal is to minimize his regret RT defined as

RT :=
T∑

t=1

f T

t xt − min
x∗∈K

T∑
t=1

f T

t x
∗.

When the objective is his regret, the Player is not compet-
ing against arbitrary strategies, he need only perform well
relative to the total loss of the single best fixed point in K.

We distinguish the full-information and bandit versions
of the above problem. The full-information version, the Player
may observe the entire function ft as his feedback = and can
exploit this in making his decisions. In this paper we study
the more challenging bandit setting, where the feedback =
provided to the player on round t is only the scalar value
f T
t xt. This is significantly less information for the Player:

instead of observing the entire function ft, he may only wit-
ness the value of ft at a single point.

2.1 Algorithms Based on Full Information
All previous work on bandit online learning, including the
present one, relies heavily on techniques developed in the
full-information setting and we now give a brief overview of
some well-known approaches.

Follow The Leader (FTL) is perhaps the simplest online
learning strategy one might think of: the player simply uses
the heuristic “select the best choice thus far”. For the online
optimization task we study, this can be written as

xt+1 := arg min
x∈K

t∑
s=1

f T

sx. (1)

For certain types of problems, applying FTL does guaran-
tee low regret. Unfortunately, when the loss functions ft are
linear on the input space it can be shown that FTL will suf-
fer regret that grows linearly in T . A natural approach2, and
more well-known within statistical learning, is to regularize
the optimization problem (1). That is, an appropriate reg-
ularization function R(x) and a trade-off parameter λ are
selected, and the prediction is obtained as

xt+1 := arg min
x∈K

[
t∑

s=1

f T

sx + λR(x)

]
. (2)

We call the above approach Follow The Regularized Leader
(FTRL). An alternative way to view this exact algorithm is
by sequential updates, which capture the difference between
consecutive solutions for FTRL. Given thatR is convex and
differentiable, the general form of this update is

x̄t+1 = ∇R∗(∇R(x̄t)− ηft), (3)

followed by a projection onto K with respect to the diver-
gence DR:

xt+1 = arg min
u∈K

DR(u, x̄t+1).

Here R∗ is the Fenchel dual function and η is a parameter.
This procedure is known as the mirror descent (e.g. [5]).

2In the context of classification, this approach has been formu-
lated and analyzed by Shalev-Shwartz and Singer [19].

264

Applying the above rule we see that the well known On-
line Gradient Descent algorithm [21, 10] is derived3 by choos-
ing the regularizer to be the squared Euclidean norm. Simi-
larly, the Exponentiated Gradient [12] algorithm is obtained
with the entropy function as the regularizer.

This unified view of various well-known algorithms as
solutions to regularization problems gives us an important
degree of freedom of choosing the regularizer. Indeed, we
will choose a regularizer for our problem that possesses key
properties needed for the regret to scale as O(

√
T). In Sec-

tion 4, we give a bound on the regret for (2) with any regular-
izer R and in Section 5 we will discuss the specific R used
in this paper.

2.2 The Dilemma of Bandit Optimization
Effectively all previous algorithms for the Bandit setting have
utilized a reduction to the full-information setting in one way
or another. This is reasonable: any algorithm that aimed
for low-regret in the bandit setting would necessarily have
to achieve low regret given full information. Furthermore,
as the full-information online learning setting is relatively
well-understood, it is natural to exploit such techniques for
this more challenging problem.

The crucial reduction that has been utilized by several au-
thors [1, 2, 6, 7, 14] is the following. First choose some full-
information online learning algorithm A. A will receive in-
put vectors f1, . . . , ft, corresponding to previously observed
functions, and will return some point xt+1 ∈ K to predict.
On every round t, do one or both of the following:

• Query A for its prediction xt and either predict xt ex-
actly or in expectation.

• Construct some random estimate f̃t in such a way that
Ef̃t = ft, and input f̃t into A as though it had been
observed on this round

The key idea here is simple: so long as we are roughly pre-
dicting xt per advice of A, and so long as we are “guess-
ing” ft (i.e. so that the estimates f̃t is correct in expectation),
then we can guarantee low regret. This approach is validated
in Lemma 3 which shows that, as long as A performs well
against the random estimates f̃t in expectation, then we will
also do well against the true functions f1, . . . , fT .

This observation is quite reassuring yet unfortunately does
not address a significant obstacle: how can we simultane-
ously estimate f̃t and predict xt when only one query is al-
lowed? The algorithm faces an inherent dilemma: whether to
follow the advice of A of predicting xt, or to try to estimate
ft by sampling in a wide region around K, possibly hurt-
ing its performance on the given round. This exploration-
exploitation trade-off is the primary source of difficulty in
obtaining O(

√
T) guarantees on the regret.

Roughly two categories of approaches have been sug-
gested to perform both exploration and exploitation:

1. Alternating Explore/Exploit: Flip an ε-biased coin to
determine whether to explore or exploit. On explore

3Strictly speaking, this equivalence is true if the updates are ap-
plied to unprojected versions of xt.

rounds, sample uniformly on some wide region around
K and estimate ft accordingly, and input this intoA. On
exploit rounds, query A for xt and predict this.

2. Simultaneous Explore/Exploit: Query A for xt and
construct a random vector Xt such that EXt = xt.
Construct f̃t randomly based on the outcome of Xt and
the learned value f T

t Xt.

The methods of [14, 2, 7] fit within in the first category but,
unfortunately, fail to obtain the desired O(poly(n)

√
T) re-

gret. This is not surprising: it has been suggested by [7] that
Ω(T 2/3) regret is unavoidable by any algorithm in which the
observation f T

t xt is ignored on rounds pledged for exploita-
tion. Algorithms falling into the second category, such as
those of [1, 6, 9], are more sophisticated and help to moti-
vate our results. We review these methods below.

2.3 Methods For Simultaneous Exploration and
Exploition

On first glance, it is rather surprising that one can perform
the task of predicting some xt (in expectation) while, simul-
taneously, finding an unbiased estimate of ft. To get a feel
for how this can be done, we briefly review the methods of
[1] and [9] below.

The work of Auer et al [1] is not, strictly speaking, con-
cerned with a general bandit optimization problem but in-
stead the more simple “Multi-armed bandit” problem. The
authors consider the problem of sequentially choosing one
of N “arms” each of which contains a hidden loss where the
learner may only see the loss of his chosen arm. The regret,
in this case, is the learner’s loss minus the smallest cumula-
tive loss over all arms. This multi-armed bandit problem can
indeed be cast as a bandit optimization problem: letK be the
N -simplex (convex hull of {e1, . . . , eN}), let ft be identi-
cally the vector of hidden losses on the set of arms, and note
that minx∈K

∑
f T
sx = mini

∑
fs[i].

The algorithm of [1], EXP3, utilizes EG (mentioned ear-
lier) as its black box full-information algorithm A. First, a
point xt ∈ K is returned by A. The hypothesis xt is then
biased slightly:

xt ← (1− γ)xt + γ

〈
1
n

, . . . ,
1
n

〉
.

We describe the need for this bias in Section 2.4. EXP3 then
randomly chooses one of the corners of K according to the
distribution xt and uses this as its prediction. More precisely,
a basis vector ei is sampled with probability xt[i] and clearly
EI∼xt

eI = xt. Once we observe f T
t ei = ft[i], the estimate

is constructed as follows:

f̃t :=
(

ft[i]
xt[i]

)
ei.

It is very easy to check that Ef̃t = ft.
Flaxman et al [9] developed a bandit optimization algo-

rithm that used OGD as the full-information subroutine A.
Their approach uses a quite different method of performing
exploration and exploitation. On each round, the algorithm
queries A for a hypothesis xt and, as in [1], this hypothesis
is biased slightly:

xt ← (1− γ)xt + γu

265

where u is some “center” vector of the set K. Similarly to
EXP3, the algorithm doesn’t actually predict xt. The al-
gorithm determines the distance r to the boundary of the
set, and a vector rv is sampled uniformly at random from
a sphere of radius r. The prediction is yt := xt + rv and
indeed Eyt = xt +rEv = xt as desired. The algorithm pre-
dicts yt, receives feedback f T

t yt, and function ft is estimated
as

f̃t :=
f T
t yt

r
v.

It is, again, easy to check that this provides an unbiased esti-
mate of ft.

2.4 The Curse of High Variance and the Blessing of
Regularization

Upon inspecting the definitions of f̃t in the method of Auer
et al and Flaxman et al it becomes apparent that the estimates
are inversely proportional to the distance of xt to the bound-
ary. This implies high variance of the estimated functions.
At first glance, this seems to be a disaster. Indeed, most full-
information algorithms scale linearly with the magnitude of
the functions played by the environment. Let us take a closer
look at how exactly this leads to the suboptimality of the al-
gorithm of Flaxman et al.

The bound on the expected regret of OGD on f̃t’s in-
volves terms E‖f̃t‖2 (see proof of Lemma 2), which scale as
the inverse of the squared distance to the boundary. Biasing
of xt away from the boundary leads to an upper bound on this
quantity of the order γ−2. Unfortunately, γ cannot be taken
to be large. Indeed, the optimal point x∗, chosen in hind-
sight, lies on the boundary of the set, as the cost functions
are linear. Thus, stepping away from the boundary comes
at a cost of potentially losing O(γT) over the course of the
game. Since the goal is to obtain an O(

√
T) bound on the

regret, γ = O(T−1/2) is the most that can be tolerated. Bi-
asing away from the boundary does reduce the variance of
the estimates somewhat; unfortunately, it is not the panacea.
To terminate the discussion on the method of Flaxman et al,
we state the dependence of the regret bound on the learning
rate η and the biasing parameter γ:

RT = O(η−1 + γ−2ηT + γT).

The first term is due to the distance between the initial choice
and the comparator; the second is the problematic E‖f̃t‖2
term summed over time; and the last term is due to stepping
away from the boundary. The best choice of the parameters
leads to the unsatisfying O(T 3/4) bound.

From the above discussion it is clear that the problematic
term is E‖f̃t‖2 = O(1/r2), owing its high magnitude to its
inverse dependence on the squared distance to the boundary.
A similar dependence occurs in the estimate of Auer et al,
though the non-uniform sampling from the basis implies an
O(1/xt[i]) magnitude. One can ask whether this inverse de-
pendence on the distance is an artifact of these algorithms
and can be avoided. In fact, it is possible to prove that this is
intrinsic to the problem if we require that f̃t be unbiased and
xt be the center of the sampling distribution.

Does this result imply that no O(
√

T) bound on the re-
gret is possible? Fortunately, no. If we restrict our search

to a regularization algorithm of the type (2), the expected
regret can be proved to be equal to an expression involving
EDR(xt,xt+1) terms. ForR(x) ∝ ‖x‖2 we indeed recover
(modulo projections) the method of Flaxman et al with its in-
surmountable hurdle of E‖f̃t‖2. Fortunately, other choices of
R have better behavior. Here, the formulation of the regular-
ized minimization (2) as a dual-space mirror descent comes
to the rescue.

In the space of gradients (the dual space), the step-wise
updates (3) for Follow The Regularized Leader are ηf̃t no
matter what R we choose. It is a known fact (e.g. [5]) that
the divergence in the original space between xt and xt+1 is
equal to the divergence between the corresponding gradients
with respect to the dual potential R∗. It is, therefore, not
surprising that the dual divergence can be tuned to be small
even if ‖f̃t‖ is very large. Having small divergence corre-
sponds to the requirement thatR∗ be “flat” whenever ‖f̃t‖ is
large, i.e. when xt is close to the boundary. Flatness in the
dual space corresponds to large curvature in the primal. This
motivates the use of a potential function R which becomes
more and more curved at the boundary of the setK. In a nut-
shell, this is the Blessing of Regularization which allows us
to obtain an efficient optimal algorithm which was escaping
all previous attempts.

Recall that the method of Auer et al attains the optimal
O(
√

T) rate but only when K is the simplex. If our intu-
ition about the importance of regularization is sound, we
should find that the method uses a potential which curves
at the edges of the simplex. One can see that the exponen-
tial weights (more generally, EG) used by Auer et al corre-
sponds to regularization with R being the entropy function
R(x) =

∑n
i=1 x[i] log x[i]. Taking the second derivative,

we see that, indeed, the curvature increases as 1/x[i] as x
gets closer to the boundary. For the present paper, we will
actually choose a regularizer that curves as inverse squared
distance to the boundary. The reader can probably guess that
such a regularizer should be defined, roughly, as the log-
distance to the boundary.

While for simple convex bodies, such as sphere, exis-
tence of a function behaving like log-distance to the bound-
ary seems plausible, a similar statement for general convex
sets K seems very complex. Luckily, this very question has
been studied in the theory of Interior Point Methods, and ex-
istence and construction of such functions, called self- con-
cordant barriers, is well-established.

3 Main Result
We first state our main result: an algorithm for online linear
optimization in the bandit setting for an arbitrary compact
convex setK. The analysis of this algorithm has a number of
facets and we discuss these individually throughout the re-
mainder of this paper. In Section 4 we describe the regular-
ization framework in detail and show how the regret can be
computed in terms of Bregman divergences. In Section 5 we
review the theory of self-concordant functions and state two
important properties of such functions. In Section 6 we high-
light several key elements of the proof of our regret bound.
In Section 7 we show how this algorithm can be used for
one interesting case, namely the bandit version of the Online

266

Algorithm 1 Bandit Online Linear Optimization
1: Input: η > 0, ϑ-self-concordantR
2: Let x1 = arg minx∈K [R(x)].
3: for t = 1 to T do
4: Let {e1, . . . , en} and {λ1, . . . , λn} be the set of

eigenvectors and eigenvalues of ∇2R(xt).
5: Choose it uniformly at random from {1, . . . , n} and

εt = ±1 with probability 1/2.
6: Predict yt = xt + εtλ

−1/2
it

eit
.

7: Observe the gain f T
t yt ∈ R.

8: Define f̃t := n (f T
t yt) εtλ

1/2
it
· eit

.
9: Update

xt+1 = arg min
x∈K

[
η

t∑
s=1

f̃ T

sx +R(x)

]
.

10: end for

Shortest Path problem. The precise analysis of our algorithm
is given in Section 8. Finally, in Section 9 we spell out how
to implement the algorithm with only one iteration of the
Damped Newton method per time step.

The following theorem is the main result of this paper
(see Section 5 for the definition of ϑ-self-concordant barrier).

Theorem 1 LetK be a convex set andR be a ϑ-self-concordant
barrier on K. Let u be any vector in K′ = K1/

√
T . Suppose

we have the property that |f T
t x| ≤ 1 for any x ∈ K. Setting

η =
√

ϑ log T

4n
√

T
, the regret of Algorithm 1 is bounded as

E
T∑

t=1

f T

t yt ≤ min
u∈K′

E

(
T∑

t=1

f T

t u

)
+ 16n

√
ϑT log T

whenever T > 8ϑ log T .

The expected regret over the original set K is within an
additive O(

√
nT) factor from the above guarantee, as im-

plied by Lemma 8 in the Appendix.

4 Regularization Algorithms and Bregman
Divergences

As our algorithm is clearly based on a regularization frame-
work, we now state a general result for the performance of
any algorithm minimizing the regularized empirical loss. We
call this method Follow the Regularized Leader, and we de-
fer the proof of the regret bound to the Appendix. A similar
analysis for convex loss functions can be found in [5], Chap-
ter 11. We remark that the use of Bregman divergences in
the context of online learning goes back at least to Kivinen
and Warmuth [12].

Let f̃1, . . . , f̃T ∈ Rn be any sequence of vectors. Sup-
pose xt+1 is obtained as

xt+1 = arg min
x∈K

[
η

t∑
s=1

f̃ T

sx +R(x)

]
︸ ︷︷ ︸

Φt(x)

(4)

for some strictly-convex differentiable function R. We de-
note Φ0(x) = R(x) and Φt = Φt−1 + ηf̃t.

We will assume ∇R approaches infinity at the boundary
of K so that the unconstrained minimization problem will
have a unique solution within K. We have the following
bound on the performance of such an algorithm.

Lemma 2 For any u ∈ K, the algorithm defined by (4) en-
joys the following regret guarantee

η

T∑
t=1

f̃ T

t (xt − u) ≤ DR(u,x1) +
T∑

t=1

DR(xt,xt+1)

≤ DR(u,x1) + η

T∑
t=1

f̃ T

t (xt − xt+1)

for any sequence {f̃t}Tt=1.

In addition, we state a useful result that bounds the true
regret based on the regret against the estimated functions f̃t.

Lemma 3 Suppose that, for t = 1, . . . , T , f̃t is such that
E f̃t = ft and yt is such that Eyt = xt. Suppose that we
have the following regret bound:

T∑
t=1

f̃ T

t xt ≤ min
u∈K′

T∑
t=1

f̃ T

t u + CT .

Then the expected regret satisfies

E

(
T∑

t=1

f T

t yt

)
≤ min

u∈K′
E

(
T∑

t=1

f T

t u

)
+ CT .

5 Self-concordant Functions and the Dikin
ellipsoid

Interior-point methods are arguably one of the greatest achieve-
ments in the field of Convex Optimization in the past two
decades. These iterative polynomial-time algorithms for Con-
vex Optimization find the solution by adding a barrier func-
tion to the objective and solving the unconstrained minimiza-
tion problem. The rough idea is to gradually reduce the
weight of the barrier function as one approaches the solu-
tion. The construction of barrier functions for general convex
sets has been studied extensively, and we refer the reader to
[16, 4] for a thorough treatment on the subject. To be more
precise, most of the results of this section can be found in
[15], page 22-23, as well as in the aforementioned texts.

5.1 Definitions and Properties
Definition 4 A self-concordant functionR : int K → R is a
C3 convex function such that

|D3R(x)[h,h,h]| ≤ 2
(
D2R(x)[h,h]

)3/2
.

Here, the third-order differential is defined as

D3R(x)[h1,h2,h3] :=

∂3

∂t1∂t2∂t3
|t1=t2=t3=0R(x + t1h1 + t2h2 + t3h3).

267

We will further assume that the function approaches infin-
ity for any sequence of points approaching the boundary of
K. An additional requirement leads to the notion of a self-
concordant barrier.

Definition 5 A ϑ-self-concordant barrierR is a self-concordant
function with

|DR(x)[h]| ≤ ϑ1/2
[
D2R(x)[h,h]

]1/2
.

The generality of interior-point methods comes from the fact
that any arbitrary n-dimensional closed convex set admits an
O(n)-self-concordant barrier [16]. Hence, throughout this
paper, ϑ = O(n), but can even be independent of the dimen-
sion, as for the sphere.

We note that some of the results of this paper, such as the
Dikin ellipsoid, rely on R being a self-concordant function,
while others necessarily require the barrier property. We
therefore assume from the outset that R is a self-concordant
barrier.

SinceK is compact, we can assume thatR is non-degenerate.
For a given x ∈ K, define

〈g,h〉x = gT∇2R(x)h and ‖h‖x = (〈h,h〉x)−1/2.

This inner product defines the local Euclidean structure at x.
Nondegeneracy of R implies that the above norm is indeed
a norm, not a seminorm.

It is natural to talk about a ball with respect to the above
norm. Define the open Dikin ellipsoid of radius r centered at
x as the set

Wr(x) = {y ∈ K : ‖y − x‖x < r}.
The following facts about the Dikin ellipsoid are central to
the results of this paper (we refer to [15], page 23 for proofs).
The first non-trivial fact is that W1(x) ⊆ K for any x ∈ K.
In other words, the inverse Hessian of the self-concordant
function R stretches the space in such a way that the eigen-
vectors fall in the setK. This is crucial for our sampling pro-
cedure. Indeed, our method (Algorithm 1) samples yt from
the Dikin ellipsoid centered at xt. Since W1(xt) is contained
in K, the sampling procedure is legal.

The second fact is that within the Dikin ellipsoid, that is
for ‖h‖x < 1, the Hessians of R are “almost proportional”
to the Hessian ofR at the center of the ellipsoid :

(1− ‖h‖x)2∇2R(x) � ∇2R(x + h) (5)

� (1− ‖h‖x)−2∇2R(x).
This gives us the crucial control of the Hessians for second-
order approximations. Finally, if ‖h‖x < 1 (i.e. x + h is in
the unit Dikin ellipsoid), then for any z,

|zT(∇R(x + h)−∇R(x))| ≤ ‖h‖x
1− ‖h‖x

‖z‖x. (6)

Assuming that R is a ϑ-self-concordant barrier, we have
(see page 34 of [16])

R(u)−R(x1) ≤ ϑ ln
1

1− πx1(u)
.

For any u ∈ Kδ , πx1(u) ≤ (1+δ)−1 by definition, implying
that (1− πx1(u))−1 ≤ 1+δ

δ . We conclude that

R(u)−R(x1) ≤ ϑ ln(
√

T + 1) ≤ 2ϑ log T (7)
for u ∈ K1/

√
T .

5.2 Examples of Self-Concordant Functions
A nice fact about self-concordant barriers is that R1 + R2

is ϑ1 + ϑ2-self-concordant for ϑ1-self-concordant R1 and
ϑ2-self-concordant R2. For linear constraints aTxt ≤ b, the
barrier − ln(b − aTxt) is 1-self-concordant. Hence, for a
polyhedron defined by m constraints, the corresponding bar-
rier is m-self-concordant. Thus, for the n-dimensional sim-
plex or a cube, θ = n, leading to n3/2 dependence on the
dimension in the main result.

For the n-dimensional ball,

Bn = {x ∈ Rn ,
∑

i

x2
i ≤ 1},

the barrier functionR(x) = − log(1−‖x‖2) is 1-self-concordant.
This, somewhat surprisingly, leads to the linear dependence
of the regret bound on the dimension n, as ϑ = 1.

6 Sketch of Proof
We have now presented all necessary tools to prove Theo-
rem 1: regret in terms of Bregman divergences, self-concordant
barriers and the Dikin ellipsoid. While we provide a com-
plete proof in Section 8 here we sketch the key elements of
the analysis of our algorithm.

As we tried to motivate in the end of Section 2, any
method that can simultaneously (a) predict xt in expecta-
tion and (b) obtain an unbiased one-sample estimate of f̃t
will necessarily suffer from high variance when xt is close
to the boundary of the set K. As we have hinted previously,
we would like our regularizer R to control the variance. Yet
the problem is even more subtle than this: xt may be close
to the boundary in one dimension while have plenty of space
in another, which in turn suggests that f̃t need only have high
variance in certain directions.

Quite amazingly, the self-concordant function R gives
us a handle on two key issues. The Dikin ellipsoid, de-
fined in terms ∇2R(xt), gives us exactly a rough approxi-
mation to the available “space” around xt. At the same time,
∇2R(xt)−1 annihilates f̃t in exactly the directions in which
it is large. This is absolutely necessary for bounding the re-
gret, as we discuss next.

Lemma 2 implies that regret scales with the cumulative
divergence η−1

∑
t DR(xt,xt+1) and thus we must have

that E DR(xt,xt+1) = O(η2) on average to obtain a regret
bound of O(

√
T). Analyzing the divergence requires some

care and so we provide only a rough sketch here (with more
in Section 8). If R were exactly quadratic then the diver-
gence is

DR(xt,xt+1) := η2f̃ T

t (∇2R(xt))−1f̃t. (8)

Even when R is not quadratic, however, (8) still provides
a decent approximation to the divergence and, given cer-
tain regularity conditions on R, it is enough to bound the
quadratic form f̃ T

t (∇2R(xt))−1f̃t.
The precise interaction between the Dikin ellipsoid, the

estimates f̃t, and the divergence DR(xt,xt+1) is as follows.
Assume we are at the point xt and we have computed the
unit eigenvectors e1, . . . , en and corresponding eigenvalues
λ1, . . . , λn of∇2R(xt). Properties of self-concordant func-
tions ensure that the Dikin ellipsoid around xt is contained

268

withinK and thus, in particular, so are the points xt±λ
−1/2
i ei

for each i. Assuming the point yt := xt+λ
−1/2
j ej was sam-

pled and we received the value f T
t yt, we then construct the

estimate
f̃t := n

√
λj(f T

t yt)ej .

Notice it is crucial that we scale by
√

λj , the inverse `2 dis-
tance between xt and yt, to ensure that ft is unbiased.On
the other hand, we see that the divergence is approximately
computed as

DR(xt,xt+1) ≈ η2f̃ T

t∇2R−1f̃t
= η2n2(f T

t yt)2λj(eT

j∇2R−1ej)

= η2n2(f T

t yt)2.

As an interesting and important aside, a necessary re-
quirement of the above analysis is that we construct our es-
timates f̃t from the eigendirections ej . To see this, imagine
that one eigenvalue λ1 is very large, while another, λ2 small.
This corresponds to a thin and long Dikin ellipsoid, which
would occur near a flat boundary. Suppose that instead of
eigen-directions, we sample at an angle between them. With
the thin ellipsoid the sampled points are still close in `2 dis-
tance, implying that f̃t will be large in both eigen-directions.
However, the inverse Hessian will only annihilate one of
these directions.

7 Application to the online shortest path
problem

Because of its appealing structure, the online shortest path
problem is one of the best studied problems in online opti-
mization. Takimoto and Warmuth [20], and later Kalai and
Vempala [11], gave efficient algorithms for the full informa-
tion setting. Awerbuch and Kleinberg [2] were the first to
give an efficient algorithm with O(T 2/3) regret in the partial
information (bandit) setting. The recent work of Dani et al
[6] implies a O(m3/2

√
T)-regret algorithm, where m = |E|

is the number of edges in the graph.
Turning to Algorithm 1, we notice that wheneverK is de-

fined by linear constraints, R is defined in a straightforward
way (see Section 5.2). As we show below, the online shortest
path is an optimization problem on such a set, and we obtain
an efficient O(m3/2

√
T)-regret algorithm.

Formally, the bandit shortest path problem is defined as
the following repeated game:

Given a directed graph G = (V,E) and a source-sink pair
s, t ∈ V , at each time step t = 1 to T ,

• Player chooses a path pt ∈ Ps,t, where Ps,t ⊆ {E}|V |
is the set of all s, t-paths in the graph

• Adversary independently chooses weights on the edges
of the graph ft ∈ Rm

• Player suffers and observes loss, which is the weighted
length of the chosen path

∑
e∈pt

ft(e)

The problem is transformed into an instance of bandit
linear optimization by associating each path with a vector
x ∈ {0, 1}|E|, where x(i) indicates the presence of the ith
edge. The loss is then defined through the dot product f Tx.

Define the set K as the convex hull of the set of paths.
It is well-known that this set is the set of flows in the graph
and can be defined using O(m) constraints: positivity con-
straints and conservation of in-flow and out-flow for every
vertex other than source/sink (which have unit out-flow and
in-flow, respectively).

Theorem 1 implies that Algorithm 1 attains O(m3/2
√

T)
regret for the bandit linear optimization problem over this
set K. However, an astute reader would notice that with this
definition of K, the algorithm produces a flow yt ∈ K, not
necessarily a path, at each round. The loss suffered by the
online player is f T

t yt and the game is specified differently
from the bandit shortest path.

However, it is easy to convert this flow algorithm into a
randomized online shortest path algorithm: according to the
standard flow decomposition theorem (see e.g. [17]), a given
flow in the graph can be decomposed into a distribution over
at most m+1 paths in polynomial time. Hence, given a flow
yt ∈ K, one can obtain an unbiased estimator for f T

t yt by
choosing a path according to the distribution of the decom-
position, and estimating f T

t yt by the length of this path. In
fact, we have the following general statement.

Proposition 1 Suppose that, having computed yt in step (1)
of Algorithm 1, we predict a random ȳt ∈ K such that Eȳt =
yt, and in step (1) observe fT

t ȳt . If we use this observed
value instead of f T

t yt in step (1), the expected regret of the
modified algorithm is the same as that of Algorithm 1.

The proposition implies that the modified algorithm at-
tains low regret for games defined over discrete sets of pos-
sible predictions for the player. This is achieved by working
with the convex hull of the discrete set while predicting in
the original set. In particular, the modification allows us to
predict a legal path while the algorithm works with the set of
flows.

The proof of Proposition 1 is straightforward: following
closely the proof of Theorem 1, we observe that the value
f T
t yt is used in only two places. The first is in Equation (9),

where it is upper-bounded by 1, and the second is in the proof
of the fact that f̃t is unbiased.

8 Proof of the regret bound

8.1 Unbiasedness

First, we show that Ef̃t = ft. Condition on the choice it and
average over the choice of εt:

Eεt f̃t =
1
2
n
(
ft · (xt + λ

−1/2
it

eit
)
)

λ
1/2
it
· eit

− 1
2
n
(
ft · (xt − λ

−1/2
it

eit)
)

λ
1/2
it
· eit

= n(f T

t eit
)eit

.

Hence,
Ef̃t = n

(
Eiteite

T

it

)
ft = ft.

Furthermore, Eyt = xt.

269

xt

xt+1

W1(xt)

Figure 1: The Dikin ellipsoid W1(xt) at xt. The next mini-
mum is guaranteed to lie in its scaled version W4nη(xt).

8.2 Closeness of the next minimum
We now use the properties of the Dikin ellipsoids mentioned
in the previous section.

Lemma 6 The next minimizer xt+1 is “close” to xt:

xt+1 ∈W4nη(xt).

Proof:
Recall that

xt+1 = arg min
x∈K

Φt(x) and xt = arg min
x∈K

Φt−1(x)

where Φt(x) = η
∑t

s=1 f̃ T
t x+R(x). Since∇Φt−1(xt) = 0,

we conclude that ∇Φt(xt) = ηf̃t.
Consider any point in z ∈ W 1

2
(xt). It can be written as

z = xt + αu for some vector u such that ‖u‖xt
= 1 and

α ∈ (− 1
2 , 1

2). Expanding,

Φt(z) = Φt(xt + αu)

= Φt(xt) + α∇Φt(xt)Tu + α2 1
2
uT∇2Φt(ξ)u

= Φt(xt) + αηf̃ T

t u + α2 1
2
uT∇2Φt(ξ)u

for some ξ on the path between xt and xt + αu.
Let us check where the optimum of the RHS is obtained.

Setting the derivative with respect to α to zero, we obtain

|α∗| = η|̃f T
t u|

uT∇2Φt(ξ)u
=

η|̃f T
t u|

uT∇2R(ξ)u
.

The fact that ξ is on the line xt to xt + αu implies that ‖ξ −
xt‖xt ≤ ‖αu‖xt < 1

2 . Hence, by Eq (5),

∇2R(ξ) � (1− ‖ξ − xt‖xt)
2∇2R(xt) �

1
4
∇2R(xt).

Thus uT∇2R(ξ)u > 1
4‖u‖xt = 1

4 , and hence

α∗ < 4η|̃f T

t u|.

Recall that f̃t = n (ft · yt) εtλ
1/2
it
·eit

and so f̃ T
t u is max-

imized/minimized when u is a unit (with respect to ‖ · ‖xt
)

vector in the direction of eit , i.e. u = ±λ
−1/2
it

eit . We con-
clude that

|̃f T

t u| ≤ n |ft · yt| ≤ n (9)

and
|α∗| < 4nη <

1
2

by our choice of η and T . We conclude that the local op-
timum arg minz∈W 1

2
(xt) Φt(z) is strictly inside W4nη(xt),

and since Φt is convex, the global optimum is

xt+1 = arg min
z∈K

Φt(z) ∈W4nη(xt).

8.3 Proof of Theorem 1
We are now ready to prove the regret bound for Algorithm 1.
Since xt+1 ∈ W4nη(xt), we invoke Eq (6) at x = xt and
z = h = xt+1 − xt:

|hT(∇R(xt+1)−∇R(xt))| ≤
‖h‖2xt

1− ‖h‖xt

.

Observe that xt+1 ∈W4nη(xt) implies ‖h‖xt < 4nη.
The proof of Lemma 2 (Equation (12) in the Appendix)

reveals that

∇R(xt)−∇R(xt+1) = ηf̃t.

We have

f̃ T

t (xt − xt+1) = η−1hT(∇R(xt+1)−∇R(xt))

≤ η−1 ‖h‖2xt

1− ‖h‖xt

≤ 16n2η

1− 4nη

≤ 32n2η. (10)

By Lemma 2, for any u ∈ K1/
√

T

T∑
t=1

f̃ T

t (xt − u) ≤ η−1DR(u,x1) +
T∑

t=1

f̃ T

t (xt − xt+1)

≤ η−1DR(u,x1) + 32n2ηT

= η−1(R(u)−R(x1)) + 32n2ηT

≤ 1
η
(2ϑ log T) + 32n2ηT,

where the first equality follows since ∇R(x1) = 0, by the
choice of x1; the last inequality follows from Equation (7).
Balancing with η =

√
ϑ log T

4n
√

T
, we get

T∑
t=1

f̃ T

t (xt − u) ≤ 16n
√

ϑT log T .

for any u in the scaled set K′. Using Lemma 3, which we
prove below, we obtain the statement of Theorem 1.

8.4 Expected Regret

Note that it is not f̃ T
t xt that the algorithm should be incurring,

but rather f T
t yt. However, it is easy to see that these are equal

in expectation.

270

Proof:[Lemma 3] Let Et[·] = E[·|i1, . . . , it−1, ε1, . . . , εt−1]
denote the conditional expectation. Note that

Etf̃ T

t xt = f T

t xt = Etf T

t yt.

Taking expectations on both sides of the bound for f̃t’s,

E
T∑

t=1

f̃ T

t xt ≤ E min
u∈K′

T∑
t=1

f̃ T

t u + CT

≤ min
u∈K′

E

(
T∑

t=1

f̃ T

t u

)
+ CT

= min
u∈K′

E

(
T∑

t=1

f T

t u

)
+ CT .

In the case of an oblivious adversary,

min
u∈K′

E

(
T∑

t=1

f T

t u

)
= min

u∈K′

T∑
t=1

f T

t u.

However, if the adversary is not oblivious, ft depends on the
random choices at time steps 1, . . . , t − 1. Of course, it is
desirable to obtain a stronger bound on the regret

E

[
T∑

t=1

f T

t yt − min
u∈K′

T∑
t=1

f T

t u

]
= O(

√
T),

which allows the optimal u to depend on the randomness of
the player4. Obtaining guarantees for adaptive adversaries is
another dimension of the bandit optimization problem and is
beyond the scope of the present paper.

Auer et al [1] provide a clever modification of their EXP3
algorithm which leads to high-probability bounds on the re-
gret, thus guaranteeing low regret against an adaptive ad-
versary. The modification is based on the idea of adding
confidence intervals to the losses. The same idea has been
employed in the work of [3] (note that [3] is submitted con-
currently with this paper) for the bandit optimization over
arbitrary convex sets. While the work of [3] does succeed in
obtaining a high-probability bound, the algorithm is based on
the inefficient method of Dani et al [6], which is a reduction
to the algorithm of Auer et al.

9 Efficient Implementation
In this section we describe how to efficiently implement Al-
gorithm 1. Recall that in each iteration our algorithm re-
quires the eigen-decomposition of the Hessian in order to
derive the unbiased estimator, which takes O(n3) time. This
is coupled with a convex minimization problem in order to
compute xt, which seems to be the most time consuming
operation in the entire algorithm.

The message of this section is that the computation of xt

given the previous iterate xt−1 takes essentially only one it-
eration of the Damped Newton method. More precisely,
instead of using xt as defined in Algorithm 1, it suffices

4It is known that the optimal strategy for the adversary does not
need any randomization beyond the player’s choices.

to maintain a sequence of points {zt}, such that zt is ob-
tained from zt−1 by only one iteration of the Damped New-
ton method. The sequence of points {zt} are shown to be
sufficiently close to {x̂t}, which enjoy the same guarantee
as the sequence of {xt} defined by Algorithm 1.

A single iteration of the Damped Newton method re-
quires matrix inversion. However, since we have the eigen-
decomposition ready made, as it was required for the unbi-
ased estimator, we can produce the inverse and the Newton
direction in O(n2) time. Thus, the most time-consuming part
of the algorithm is the eigen-decomposition of the Hessian,
and the total running time is O(n3) per iteration.

Before we begin, we require a few more facts from the
theory of interior point methods, taken from [15].

Let Ψ be a non-degenerate self-concordant barrier on do-
main K, for any x ∈ K define the Newton direction as

e(Ψ, x) = −[∇2Ψ(x)]−1∇Ψ(x)

and let the Newton decrement be

λ(Ψ, x) =
√
∇Ψ(x)T[∇2Ψ(x)]−1∇Ψ(x).

The Damped Newton iteration for a given x ∈ K is

DN(Ψ,x) = x − 1
1 + λ(Ψ,x)

e(Ψ,x).

The following facts can be found in [15]:

A: DN(Ψ,x) ∈ K. 5

B: λ(Ψ, DN(Ψ,x)) ≤ 2λ(Ψ,x)2.

C: ‖x − x∗‖x∗ ≤ λ(Ψ,x)
1−λ(Ψ,x) .

D: ‖x − x∗‖x ≤ λ(Ψ,x)
1−2λ(Ψ,x) .

Here x∗ = arg minx∈K Ψ(x).

Algorithm 2 Efficient Implementation
1: Input: η > 0, ϑ-self-concordantR.
2: Let z1 = arg minx∈KR(x).
3: for t = 1 to T do
4: Let {e1, . . . , en} and {λ1, . . . , λn} be the set of

eigenvectors and eigenvalues of ∇2R(zt).
5: Choose it uniformly at random from {1, . . . , n} and

εt = ±1 with probability 1/2.
6: Predict yt = zt + εtλ

−1/2
it

eit
.

7: Observe the gain f T
t yt ∈ R.

8: Define f̂t := n (f T
t yt) εtλ

1/2
it
· eit .

9: Update

zt+1 = zt −
1

1 + λ(Ψt, zt)
e(Ψt, zt),

where

Ψt(z) ≡ η

t∑
s=1

f̂ T

sz +R(z).

10: end for

5This follows easily since the Newton increment is in the Dikin
ellipsoid 1

1+λ(Ψ,x)
e(Ψ,x) ∈ W1(x).

271

The functions f̂t computed by the above algorithm are
unbiased estimates of ft constructed by sampling eigenvec-
tors of∇2R(zt). Define the Follow The Regularized Leader
solutions

x̂t+1 ≡ arg min
x∈K

Ψt(x),

on the new functions f̂t’s. The sequence {x̂t, f̂t} is different
from the sequence {xt, f̃t} generated by Algoritm 1. How-
ever, the same regret bound can be proved for the new algo-
rithm. The only difference from the proof for Algorithm 1 is
in the fact that f̂t’s are estimated using the Hessian at zt, not
x̂t. However, as we show next, zt is very close to x̂t, and
therefore the Hessians are within a factor of 2 by Equation
(5), leading to a slightly worse constant for the regret.

Lemma 7 It holds that for all t,

λ2(Ψt, zt) ≤ 4n2η2

Proof: The proof is by induction on t. For t = 1 the result
is true because x1 is chosen to minimize R. Suppose the
statement holds for t− 1. By definition,

λ2(Ψt, zt) = ∇Ψt(zt)[∇2Ψt(zt)]−1∇Ψt(zt)

= ∇Ψt(zt)[∇2R(zt)]−1∇Ψt(zt).

Note that
∇Ψt(zt) = ∇Ψt−1(zt) + ηf̂ T

t .

Using (x + y)T A(x + y) ≤ 2xT Ax + 2yT Ay we obtain

1
2
λ2(Ψt, zt) ≤ ∇Ψt−1(zt)[∇2R(zt)]−1∇Ψt−1(zt)

+ η2f̂ T

t [∇2R(zt)]−1f̂t

= λ2(Ψt−1, zt) + η2f̂ T

t [∇2R(zt)]−1f̂t.

The first term can be bounded by fact (B) and using the in-
duction hypothesis,

λ2(Ψt−1, zt) ≤ 4λ4(Ψt−1, zt−1) ≤ 64n4η4. (11)

As for the second term,

f̂t[∇2R(zt)]−1f̂t ≤ n2

because of the way f̂t is defined and since |fT
t yt| ≤ 1 by

assumption. Combining the results,

λ2(Ψt, zt) ≤ 128n4η4 + 2n2η2 ≤ 4n2η2

using the definition of η of Theorem 1 and large enough T .
This proves the induction step.

Note that Equation (11) with the choice of η and large
enough T implies λ2(Ψt−1, zt) << 1

2 . Using this together
with the above Lemma and facts (B) and (C), we conclude
that

‖zt − x̂t‖x̂t ≤ 2λ(Ψt−1, zt) ≤ 4λ(Ψt−1, zt−1)2 ≤ 16n2η2

We observe that x̂t and zt are very close in the local distance.
This implies closeness in L2 distance as well. Indeed, square
roots of inverse eigenvalues λ

−1/2
i , being the distances from

x̂t to the corresponding radii of the Dikin ellipsoid, can be

at most the D. Thus, ∇2R ≥ D2I and thus ‖zt − x̂t‖2 ≤
D−1‖zt − x̂t‖x̂t

≤ 16D−1n2η2.
As we proved, it requires only one Damped Newton up-

date to maintain the sequence zt, which are O(1/T) close to
x̂t. Hence,

T∑
t=1

|f T

t (zt − x̂t)| ≤
T∑

t=1

‖ft‖‖zt − x̂t‖ = O(1).

Therefore, for any u ∈ K

E
T∑

t=1

f T

t (yt − u) = E
T∑

t=1

f̂ T

t (zt − u)

= E
T∑

t=1

f̂ T

t (x̂t − u) + E
T∑

t=1

f̂ T

t (zt − x̂t)

= E
T∑

t=1

f̂ T

t (x̂t − u) + E
T∑

t=1

f T

t (zt − x̂t)

= E
T∑

t=1

f̂ T

t (x̂t − u) + O(1)

A slight modification of the proofs of Section 8 leads to a
O(
√

T) bound on the expected regret of the sequence {x̂t}.

Acknowledgments.
We would like to thank Peter Bartlett for numerous illumi-
nating discussions. We gratefully acknowledge the support
of DARPA under grant FA8750-05-2-0249 and NSF under
grant DMS-0707060.

References
[1] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and

Robert E. Schapire. The nonstochastic multiarmed ban-
dit problem. SIAM J. Comput., 32(1):48–77, 2003.

[2] Baruch Awerbuch and Robert D. Kleinberg. Adaptive
routing with end-to-end feedback: distributed learning
and geometric approaches. In STOC ’04: Proceedings
of the thirty-sixth annual ACM symposium on Theory of
computing, pages 45–53, New York, NY, USA, 2004.
ACM.

[3] P. Bartlett, V. Dani, T. Hayes, S. Kakade, A. Rakhlin,
and A. Tewari. High-probability bounds for the regret
of bandit online linear optimization, 2008. In submis-
sion to COLT 2008.

[4] A. Ben-Tal and A. Nemirovski. Lectures on Modern
Convex Optimization: Analysis, Algorithms, and En-
gineering Applications, volume 2 of MPS/SIAM Series
on Optimization. SIAM, Philadelphia, 2001.

[5] Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction,
Learning, and Games. Cambridge University Press,
2006.

[6] Varsha Dani, Thomas Hayes, and Sham Kakade. The
price of bandit information for online optimization. In
J.C. Platt, D. Koller, Y. Singer, and S. Roweis, edi-
tors, Advances in Neural Information Processing Sys-
tems 20. MIT Press, Cambridge, MA, 2008.

272

[7] Varsha Dani and Thomas P. Hayes. Robbing the bandit:
less regret in online geometric optimization against an
adaptive adversary. In SODA ’06: Proceedings of the
seventeenth annual ACM-SIAM symposium on Discrete
algorithm, pages 937–943, New York, NY, USA, 2006.
ACM.

[8] Meir Feder, Neri Merhav, and Michael Gutman.
Correction to ’universal prediction of individual se-
quences’ (jul 92 1258-1270). IEEE Transactions on
Information Theory, 40(1):285, 1994.

[9] Abraham D. Flaxman, Adam Tauman Kalai, and
H. Brendan McMahan. Online convex optimization
in the bandit setting: gradient descent without a gradi-
ent. In SODA ’05: Proceedings of the sixteenth annual
ACM-SIAM symposium on Discrete algorithms, pages
385–394, Philadelphia, PA, USA, 2005. Society for In-
dustrial and Applied Mathematics.

[10] D. P. Helmbold, J. Kivinen, and M. K. Warmuth. Rel-
ative loss bounds for single neurons. IEEE Transac-
tions on Neural Networks, 10(6):1291–1304, Novem-
ber 1999.

[11] Adam Kalai and Santosh Vempala. Efficient algorithms
for online decision problems. Journal of Computer and
System Sciences, 71(3):291–307, 2005.

[12] Jyrki Kivinen and Manfred K. Warmuth. Exponenti-
ated gradient versus gradient descent for linear predic-
tors. Inf. Comput., 132(1):1–63, 1997.

[13] Nick Littlestone and Manfred K. Warmuth. The
weighted majority algorithm. Information and Com-
putation, 108(2):212–261, 1994.

[14] H. Brendan McMahan and Avrim Blum. Online ge-
ometric optimization in the bandit setting against an
adaptive adversary. In COLT, pages 109–123, 2004.

[15] A.S. Nemirovskii. Interior point polynomial time meth-
ods in convex programming, 2004. Lecture Notes.

[16] Y. E. Nesterov and A. S. Nemirovskii. Interior
Point Polynomial Algorithms in Convex Programming.
SIAM, Philadelphia, 1994.

[17] Satish Rao. Lecure notes: Cs 270, graduate algorithms.
2006.

[18] Herbert Robbins. Some aspects of the sequential design
of experiments. Bull. Amer. Math. Soc., 58(5):527–535,
1952.

[19] Shai Shalev-Shwartz and Yoram Singer. A primal-
dual perspective of online learning algorithms. Mach.
Learn., 69(2-3):115–142, 2007.

[20] Eiji Takimoto and Manfred K. Warmuth. Path ker-
nels and multiplicative updates. J. Mach. Learn. Res.,
4:773–818, 2003.

[21] Martin Zinkevich. Online convex programming and
generalized infinitesimal gradient ascent. In ICML,
pages 928–936, 2003.

A Proofs
Proof: [Lemma 2]

Since the argmin is in the set, ∇Φt−1(xt) = 0 and

DΦt−1(u,xt) = Φt−1(u)− Φt−1(xt).

Moreover,
Φt(u) = Φt−1(u) + ηf̃ T

t u.

Combining the above,

ηf̃ T

t u = DΦt(u,xt+1) + Φt(xt+1)− Φt−1(u)

and

ηf̃ T

t xt = DΦt(xt,xt+1) + Φt(xt+1)− Φt−1(xt).

Thus,

ηf̃ T

t (xt−u) = DΦt(xt,xt+1)+DΦt−1(u,xt)−DΦt(u,xt+1).

Summing over t = 1 . . . T ,

η

T∑
t=1

f̃ T

t (xt − u) = DΦ0(u,x1)−DΦT
(u,xT+1)

+
T∑

t=1

DΦt(xt,xt+1)

≤ DΦ0(u,x1) +
T∑

t=1

DΦt(xt,xt+1)

By definition, xt satisfies
∑t−1

s=1 f̃s +∇R(xt) = 0 and xt+1

satisfies
∑t

s=1 f̃s +∇R(xt+1) = 0. Subtracting,

∇R(xt)−∇R(xt+1) = ηf̃t. (12)

Now we realize that

DR(xt,xt+1) ≤ DR(xt,xt+1) + DR(xt+1,xt)
= −∇R(xt+1)(xt − xt+1)
−∇R(xt)(xt+1 − xt)

= ηf̃ T

t (xt − xt+1).

Lemma 8 For any point x ∈ K, it holds that

min
y∈Kδ

‖x − y‖ ≤ δ.

Proof: Consider the point on the segment [x1,x] which in-
tersects the boundary of Kδ , denote it z By definition, we
have

‖z − x1‖
‖x − x1‖

=
1

1 + δ
.

As x,x1, zt are on the same line

‖z−x‖ = ‖x−x1‖−‖z−x1‖ = ‖x−x1‖·(1−
1

1 + δ
) ≤ δ.

The last inequality holds by our assumption that the diameter
of K is bounded by one. The lemma follows.

273

274

Combining Expert Advice Efficiently

Wouter M. Koolen and Steven de Rooij
Centrum voor Wiskunde en Informatica (CWI)

Kruislaan 413, P.O. Box 94079
1090 GB Amsterdam, The Netherlands

{W.M.Koolen-Wijkstra,S.de.Rooij}@cwi.nl

Abstract

We show how models for prediction with expert
advice can be defined concisely and clearly using
hidden Markov models (HMMs); standard HMM
algorithms can then be used to efficiently calculate
how the expert predictions should be weighted ac-
cording to the model. We cast many existing mod-
els as HMMs and recover the best known running
times in each case. We also describe two new mod-
els: the switch distribution, which was recently de-
veloped to improve Bayesian/Minimum Descrip-
tion Length model selection, and a new generali-
sation of the fixed share algorithm based on run-
length coding. We give loss bounds for all models
and shed new light on the relationships between
them.

1 Introduction
We cannot predict exactly how complicated processes such
as the weather, the stock market, social interactions and so
on, will develop into the future. Nevertheless, people do
make weather forecasts and buy shares all the time. Such
predictions can be based on formal models, or on human ex-
pertise or intuition. An investment company may even want
to choose between portfolios on the basis of a combination
of these kinds of predictors. In such scenarios, predictors
typically cannot be considered “true”. Thus, we may well
end up in a position where we have a whole collection of
prediction strategies, orexperts, each of whom hassomein-
sight intosomeaspects of the process of interest. We address
the question how a given set of experts can be combined into
a single predictive strategy that is as good as, or if possible
even better than, the best individual expert.

The setup is as follows. LetΞ be a finite set of experts.
Each expertξ ∈ Ξ issues a distributionPξ(xn+1|xn) on the
next outcomexn+1 given the previous observationsxn :=
x1, . . . , xn. Here, each outcomexi is an element of some
countable spaceX , and random variables are written in bold
face. The probability that an expert assigns to a sequence
of outcomes is given by the chain rule:Pξ(x

n) = Pξ(x1) ·
Pξ(x2|x1) · . . . · Pξ(xn|xn−1).

A standard Bayesian approach to combine the expert pre-
dictions is to define a priorw on the expertsΞ which in-
duces a joint distribution with mass functionP (xn, ξ) =

w(ξ)Pξ(x
n). Inference is then based on this joint distri-

bution. We can compute, for example: (a) themarginal
probabilityof the dataP (xn) =

∑

ξ∈Ξ w(ξ)Pξ(x
n), (b) the

predictive distributionon the next outcomeP (xn+1|xn) =
P (xn, xn+1)/P (xn), which defines a prediction strategy that
combines those of the individual experts, or (c) theposterior
distributionon the expertsP (ξ|xn) = Pξ(xn)w(ξ)/P (xn),
which tells us how the experts’ predictions should be weighted.
This simple probabilistic approach has the advantage that it
is computationally easy: predictingn outcomes using|Ξ| ex-
perts requires onlyO(n · |Ξ|) time. Additionally, this Bayes-
ian strategy guarantees that the overall probability of the data
is only a factorw(ξ̂) smaller than the probability of the data
according to the best available expertξ̂. On the flip side, with
this strategy we never do anybetter than ξ̂ either: we have
Pξ̂(x

n) ≥ P (xn) ≥ Pξ̂(x
n)w(ξ̂), which means that poten-

tially valuable insights from the other experts are not used to
our advantage!

More sophisticated combinations of prediction strategies
can be found in the literature under various headings, includ-
ing (Bayesian) statistics, source coding and universal predic-
tion. In the latter the experts’ predictions are not necessarily
probabilistic, and scored using an arbitrary loss function. In
this paper we consider only logarithmic loss, although our re-
sults can probably be generalised to the framework described
in, e.g. [12].

The three main contributions of this paper are the follow-
ing. First, we introduce prior distributions onsequencesof
experts, which allows unified description of many existing
models. Second, we show how HMMs can be used as an in-
tuitive graphical language to describe such priors and obtain
computationally efficient prediction strategies. Third, we use
this new approach to describe and analyse several important
existing models, as well as one recent and one completely
new model for expert tracking.

1.1 Overview

In §2 we develop a new, more general framework for com-
bining expert predictions, where we consider the possibility
that theoptimal weights used to mix the expert predictions
may vary over time, i.e. as the sample size increases. We
stick to Bayesian methodology, but we define the prior dis-
tribution as a probability measure onsequences of experts
rather than on experts. The prior probability of a sequence

275

ξ1, ξ2, . . . is the probability that we rely on expertξ1’s pre-
diction of the first outcome and expertξ2’s prediction of the
second outcome, etc. This allows for the expression of more
sophisticated models for the combination of expert predic-
tions. For example, the nature of the data generating process
may evolve over time; consequently different experts may be
better during different periods of time. It is also possible that
not the data generating process, but the experts themselves
change as more and more outcomes are being observed: they
may learn from past mistakes, possibly at different rates, or
they may have occasional bad days, etc. In both situations
we may hope to benefit from more sophisticated modelling.

Of course, not all models for combining expert predic-
tions are computationally feasible.§3 describes a methodol-
ogy for the specification of models that allow efficient eval-
uation. We achieve this by using hidden Markov models
(HMMs) on two levels. On the first level, we use an HMM
as a formal specification of a distribution on sequences of
expertsas defined in§2. We introduce a graphical language
to conveniently represent its structure. These graphs help
to understand and compare existing models and to design
new ones. We then modify this first HMM to construct a
second HMM that specifies the distribution on sequences of
outcomes. Subsequently, we can use the standard dynamic
programming algorithms for HMMs (forward, backward and
Viterbi) on both levels to efficiently calculate most relevant
quantities, most importantly the marginal probability of the
observed outcomesP (xn) and posterior weights on the next
expert given the previous observationsP (ξn+1|xn).

It turns out that many existing models for prediction with
expert advice can be specified as HMMs. We provide an
overview in§4 by giving the graphical representations of the
HMMs corresponding to the following three models. First,
universal elementwise mixtures (sometimes called mixture
models) that learn the optimal mixture parameter from data.
Second, Herbster and Warmuth’s fixed share algorithm for
tracking the best expert [4, 5]. Third, universal share, which
was introduced by Volf and Willems asthe switching method
[11] and later independently proposed by Bousquet [1]. Here
the goal is to learn the optimal fixed-share parameter from
data. We render each model as a prior on sequences of ex-
perts by giving its HMM. The size of the HMM immediately
determines the required running time for the forward algo-
rithm. The generalisation relationships between these mod-
els as well as their running times are displayed in Figure 1.
In each case this running time coincides with that of the best
known algorithm. We also give a loss bound for each model,
relating the loss of the model to the loss of the best competi-
tor among a set of alternatives in the worst case. Such loss
bounds can help select between different models for specific
prediction tasks.

Besides the models found in the literature, Figure 1 also
includes two new generalisations of fixed share: the switch
distribution and the run-length model. These models are the
subject of§5. The switch distribution was introduced in [10]
as a practical means of improving Bayes/Minimum Descrip-
tion Length prediction to achieve the optimal rate of con-
vergence in nonparametric settings. Here we give the con-
crete HMM that allows for its linear time computation. The
run-length model is based on a distribution on the number of

Figure 1 Expert sequence priors: generalisation relation-
ships and run time

fixed
elementwise

mixture
fixed
share

experts

fixed
overconfident

universal
share

run−length
model

universal
overconfident

experts

fixed
expert

switch
distribution

mixture
Bayesian

universal
elementwise

mixture

O(n)

O(n|Ξ|)

O(n|Ξ|)

O(n2|Ξ|)

successive outcomes that are typically well-predicted by the
same expert. Run-length codes are typically applied directly
to the data, but in our novel application they define the prior
on expert sequences instead. Again, we provide the graph-
ical representation of their defining HMMs as well as loss
bounds. We conclude by comparing the two models.

2 Expert Sequence Priors

In this section we explain how expert tracking can be de-
scribed in probability theory using expert sequence priors
(ES-priors). These ES-priors are distributions on the space of
infinite sequences of experts that are used to express regular-
ities in the development of the relative quality of the experts’
predictions. As illustrations we render Bayesian mixtures
and elementwise mixtures as ES-priors. In the next section
we show how ES-priors can be implemented efficiently by
hidden Markov models.

Notation We denote byN the natural numbers including
zero, and byZ+ the natural numbers excluding zero. LetQ
be a set. We denote the cardinality ofQ by |Q|. For any
natural numbern, we let the variableqn range over then-
fold Cartesian productQn, and we writeqn = 〈q1, . . . , qn〉.
We also letqω range overQω — the set of infinite sequences
overQ — and writeqω = 〈q1, . . .〉. We read the statement
qλ ∈ Q≤ω to first bindλ ≤ ω and subsequentlyqλ ∈ Qλ. If
qλ is a sequence, andκ ≤ λ, then we denote byqκ the prefix
of qλ of lengthκ.

Forecasting System LetX be a countable outcome space.
We use the notationX ∗ for the set of all finite sequences over
X and let△(X) denote the set of all probability mass func-
tions onX . A (prequential)X -forecasting system(PFS) is a
functionP : X ∗ → △(X) that maps sequences of previous
observations to a predictive distribution on the next outcome.

276

Prequential forecasting systems were introduced by Dawid
in [2].

Distributions We also use probability measures on spaces
of infinite sequences. In such a space, a basic event is the
set of all continuations of a given prefix. We identify such
events with their prefix. Thus a distribution onXω is defined
by a functionP : X ∗ → [0, 1] that satisfiesP (ǫ) = 1, where
ǫ is the empty sequence, and for alln ≥ 0, all xn ∈ Xn

we have
∑

x∈X P (x1, . . . , xn, x) = P (xn). We identify
P with the distribution it defines. We writeP (xn|xm) for
P (xn)/P (xm) if 0 ≤ m ≤ n.

Note that forecasting systems continue to make predic-
tions even after they have assigned probability0 to a pre-
vious outcome, while distributions’ predictions become un-
defined. Nonetheless we use the same notation: we write
P (xn+1|xn) for the probability that a forecasting systemP
assigns to then + 1st outcome given the firstn outcomes, as
if P were a distribution.

ES-Priors The slogan of this paper iswe do not under-
stand the data. Instead of modelling the data, we work with
experts. We assume that there is a fixed set of expertsΞ, and
that each expertξ ∈ Ξ predicts using a forecasting system
Pξ.

We are interested in switching between different fore-
casting systems at different sample sizes. For a sequence of
experts with prefixξn, the combined forecast, where expert
ξi predicts theith outcome, is denoted

Pξn(xn) :=
n
∏

i=1

Pξi
(xi|xi−1).

Adopting Bayesian methodology, we impose a priorπ on
infinite sequences of experts; this prior is called anexpert
sequence prior(ES-prior). Inference is then based on the
distribution on the joint space(X × Ξ)

ω, called theES-joint,
which is defined as follows:

P
(

〈ξ1, x1〉 , . . . , 〈ξn, xn〉
)

:= π(ξn)Pξn(xn). (1)

We adopt shorthand notation for events: we writeP (S),
whereS is a subsequence ofξn and/or ofxn, for the proba-
bility underP of the set of sequences of pairs which matchS
exactly. For example, the marginal probability of a sequence
of outcomes is:

P (xn) =
∑

ξn∈Ξn

P (ξn, xn). (2)

Compare this to the usual Bayesian statistics, where a model
class

{

Pθ | θ ∈ Θ
}

is also endowed with a prior distribution
w on Θ. Then, after observing outcomesxn, inference is
based on the posteriorP (θ|xn) on the parameter, which is
never actually observed. Our approach is exactly the same,
but we always considerΘ = Ξω. Thus as usual our predic-
tions are based on the posteriorP (ξω|xn). However, since
the predictive distribution ofxn+1 only depends onξn+1

(andxn) we always marginalise as follows:

P (ξn+1|xn) =

∑

ξn P (ξn, xn) · π(ξn+1|ξn)
∑

ξn P (ξn, xn)
. (3)

At each moment in time we predict the data using the poste-
rior, which is a mixture over our experts’ predictions. Ideally,
the ES-priorπ should be chosen such that the posterior coin-
cides with the optimal mixture weights of the experts at each
sample size. The traditional interpretation of our ES-prior as
a representation of belief about an unknown “true” expert se-
quence is tenuous, as normally experts do not generate data,
they only predict it. Moreover, by mixing different expert
sequences, it is often possible to predict significantly better
than by using any single sequence of experts, a feature that
is crucial to the performance of many of the models that will
be described below and in§4. In the remainder of this paper
we motivate ES-priors by giving performance guarantees in
the form of bounds on running time and loss.

2.1 Examples

We now show how two ubiquitous models can be rendered
as ES-priors.

Example 2.1.1(Bayesian Mixtures). Let Ξ be a set of ex-
perts, and letPξ be a PFS for eachξ ∈ Ξ. Suppose that we do
not know which expert will make the best predictions. Fol-
lowing the usual Bayesian methodology, we combine their
predictions by conceiving a priorw onΞ, which (depending
on the adhered philosophy) may or may not be interpreted
as an expression of one’s beliefs in this respect. Then the
standard Bayesian mixturePbayesis given by

Pbayes(x
n) =

∑

ξ∈Ξ

Pξ(x
n)w(ξ). (4)

Recall thatPξ(x
n) means

∏n
i=1 Pξ(xi|xi). The Bayesian

mixture is not an ES-joint, but it can easily be transformed
into one by using the ES-prior that assigns probabilityw(ξ)
to the identically-ξ sequence for eachξ ∈ Ξ:

πbayes(ξ
n) =

{

w(k) if ξi = k for all i = 1, . . . , n,
0 o.w.

We will use the adjective “Bayesian” generously through-
out this paper, but when we writethe standard Bayesian ES-
prior this always refers toπbayes. 3

Example 2.1.2(Elementwise Mixtures). The elementwise
mixture1 is formed from some mixture weightsα ∈ △(Ξ)
by

Pmix,α(xn) :=
n
∏

i=1





∑

ξ∈Ξ

Pξ(xi|xi−1)α(ξ)



 .

In the preceding definition, it may seem that elementwise
mixtures do not fit in the framework of ES-priors. But we

1These mixtures are sometimes just called mixtures, or predic-
tive mixtures. We use the term elementwise mixtures both for de-
scriptive clarity and to avoid confusion with Bayesian mixtures.

277

can rewrite this definition in the required form as follows:

Pmix,α(xn) =

n
∏

i=1

∑

ξ∈Ξ

Pξ(xi|xi−1)α(ξ)

=
∑

ξn∈Ξn

n
∏

i=1

Pξi
(xi|xi−1)α(ξi)

=
∑

ξn

Pξn(xn)πmix,α(ξn),

(5a)

which is the ES-joint based on the prior

πmix,α(ξn) :=

n
∏

i=1

α(ξi). (5b)

Thus, the ES-prior for elementwise mixtures is just the prod-
uct distribution ofα. 3

We mentioned above that ES-priors cannot be interpreted as
expressions of belief about individual expert sequences. This
is a prime example, as the ES-prior is crafted such that its
posteriorπmix,α(ξn+1|ξn) exactly coincides with the desired
mixtureof experts.

3 Expert Tracking using HMMs

We explained in the previous section how expert tracking
can be implemented using expert sequence priors. In this
section we specify ES-priors using hidden Markov models
(HMMs). The advantage of using HMMs is that the com-
plexity of the resulting expert tracking procedure can be read
off directly from the structure of the HMM. We first give a
short overview of the particular kind of HMMs that we use
throughout this paper. We then show how HMMs can be
used to specify ES-priors. As illustrations we render the ES-
priors that we obtained for Bayesian mixtures and element-
wise mixtures in the previous sections as HMMs. In§4 we
provide an overview of ES-priors and their defining HMMs
that are found in the literature.

3.1 Hidden Markov Models Overview

Hidden Markov models (HMMs) are a well-known tool for
specifying probability distributions on sequences with tem-
poral structure. Furthermore, these distributions are very
appealing algorithmically: many important probabilities can
be computed efficiently for HMMs. These properties make
HMMs ideal models of expert sequences: ES-priors. For an
introduction to HMMs, see [9]. We require a slightly more
general notion that incorporates silent states and forecasting
systems as explained below.

We define our HMMs on a generic set of outcomesO
to avoid confusion in later sections, where we use HMMs
in two different contexts. First in§3.2, we use HMMs to
define ES-priors, and instantiateO with the set of experts
Ξ. Then in§3.4 we modify the HMM that defines the ES-
prior to incorporate the experts’ predictions, whereuponO is
instantiated with the set of observable outcomesX .

Definition 1. Let O be a finite set of outcomes. We call a
quintuple

A =
〈

Q, Qp, P◦, P,
〈

Pq

〉

q∈Qp

〉

ahidden Markov modelonO if Q is a countable set,Qp ⊆ Q,
P◦ ∈ △(Q), P : Q → △(Q) andPq is anO-forecasting
system for eachq ∈ Qp.

Terminology and Notation We call elements ofQ states.
We call the states inQp productiveand the other statessilent.
We callP◦ theinitial distribution, letI denote its support (i.e.
I :=

{

q ∈ Q | P◦(q) > 0
}

) and callI the set ofinitial states.
We callP thestochastic transition function. We letSq denote
the support ofP(q), and callq′ ∈ Sq a direct successorof
q. We abbreviateP(q)(q′) to P(q → q′). A finite or infinite
sequence of statesqλ ∈ Q≤ω is called abranchthroughA.
A branchqλ is called arun if either λ = 0 (so qλ = ǫ), or
q1 ∈ I andqi+1 ∈ Sqi

for all 1 ≤ i < λ. A finite runqn 6= ǫ
is calleda run toqn. For each branchqλ, we denote byqλ

p its
subsequence of productive states. We denote the elements of
qλ

p by qp
1, qp

2 etc. We call an HMMcontinuousif qω
p is infinite

for each infinite runqω.

Restriction In this paper we will only work with continu-
ous HMMs. This restriction is necessary for the following to
be well-defined.

Definition 2. An HMM A defines the following distribution
on sequences of states.πA(ǫ) := 1, and forλ ≥ 1

πA(qλ) := P◦(q1)

λ−1
∏

i=1

P(qi → qi+1).

Then via the PFSs,A induces the joint distributionPA on
runs and sequences of outcomes. Leton ∈ On be a sequence
of outcomes and letqλ 6= ǫ be a run with at leastn productive
states, then

PA(on, qλ) := πA(qλ)

n
∏

i=1

Pq
p
i
(oi|oi−1).

The value ofPA at argumentson, qλ that do not fulfil the con-
dition above is determined by the additivity axiom of proba-
bility.

The Forward Algorithm For a given HMMA and data
on, the forward algorithm(c.f. [9]) computes the marginal
probabilityPA(on). The forward algorithm operates by per-
colating weights along the transitions of the HMM. The run-
ning time is proportional to the number of transitions that
need to be considered. Details can be found in [6]. In this
paper we present all HMMs unfolded, so that each transition
needs to be considered exactly once, and hence the running
time can be read off easily.

3.2 HMMs as ES-Priors

In applications HMMs are often used to model data. This is
often useful if there are local correlations between outcomes.
A graphical model depicting this approach is displayed in
Figure 2a.

In this paper we use HMMs as ES-priors, that is, to spec-
ify temporal correlations between the performance of ourex-
perts. Thus instead of concrete observations our HMMs will
“produce” sequences of experts, that are never actually ob-
served. Figure 2b. illustrates this approach.

278

Using HMMs as priors allows us to use the standard al-
gorithms for HMMs to answer questions about the prior. For
example, we can use the forward algorithm to compute the
prior probability of the sequence of one hundred experts with
expert number one at all odd indices and expert number two
at all even indices. However, we are obviously also interested
in questions about the data rather than about the prior. In§3.4
we show how joints based on HMM priors (Figure 2c) can be
transformed into ordinary HMMs (Figure 2a) with at most a
|Ξ|-fold increase in size, allowing us to use the standard algo-
rithms for HMMs not only for the experts, but for the data as
well, with the same increase in complexity. This is the best
we can generally hope for, as we now need to integrate over
all possible expert sequences instead of considering only a
single one. Here we first consider properties of HMMs that
represent ES-priors.

Restriction HMM priors “generate”, or define the distri-
bution on, sequences of experts. But contrary to the data,
which are observed, no concrete sequence of experts is re-
alised. This means that we cannot conveniently condition
the distribution on experts in a productive stateqp

n on the se-
quence of previously produced expertsξn−1. In other words,
we can only use an HMM onΞ as an ES-prior if the forecast-
ing systems in its states are simply distributions, so that all
dependencies between consecutive experts are carried by the
state. This is necessary to avoid having to sum over all (ex-
ponentially many) possible expert sequences.

Deterministic Under the restriction above, but in the pres-
ence of silent states, we can make any HMM deterministic
in the sense that each forecasting system assigns probability
one to a single outcome. We just replace each productive
stateq ∈ Qp by the following gadget:

q 7→

A

B

C

D

E

In the left diagram, the stateq has distributionPq on out-
comesO = {A, . . . , E}. In the right diagram, the leftmost
silent state has transition probabilityPq(o) to a state that de-
terministically outputs outcomeo. We often make the func-
tional relationship explicit and by calling

〈

Q, Qp, P◦, P, Λ
〉

a
deterministic HMMonO if Λ : Qp → O. Here we slightly
abuse notation; the last component of a (general) HMM as-
signs aPFS to each productive state, while the last compo-
nent of a deterministic HMM assigns anoutcometo each
productive states.

Sequential prediction using a general HMM or its deter-
ministic counterpart costs the same amount of work: the|O|-
fold increase in the number of states is compensated by the
|O|-fold reduction in the number of outcomes that need to be
considered per state.

Diagrams Deterministic HMMs can be graphically repre-
sented by pictures. In general, we draw a nodeNq for each
stateq. We draw a small black dot, e.g., for a silent state,
and an ellipse labelledΛ(q), e.g. D , for a productive state.

Figure 3 Standard Bayesian mixture.

A

〈A,1〉

A

〈A,2〉

A A

B

〈B,1〉

B

〈B,2〉

B B

C

〈C,1〉

C

〈C,2〉

C C

D

〈D,1〉

D

〈D,2〉

D D

We draw an arrow fromNq to Nq′ if q′ is a direct successor
of q. We often reify the initial distributionP◦ by including a
virtual node, drawn as an open circle, e.g., with an outgo-
ing arrow toNq for each initial stateq ∈ I. The transition
probabilityP (q → q′) is not displayed in the graph.

3.3 Examples

We are now ready to give the deterministic HMMs that cor-
respond to the ES-priors of our earlier examples from§2.1:
Bayesian mixtures and elementwise mixtures with fixed pa-
rameters.

Example 3.3.1(HMM for Bayesian Mixtures). The Bayes-
ian mixture ES-priorπbayesas introduced in Example 2.1.1
represents the hypothesis that a single expert predicts best for
all sample sizes. A simple deterministic HMM onΞ that gen-
erates the priorπbayesis given byAbayes=

〈

Q, Qp, P◦, P, Λ
〉

,
where

Q, Qp = Ξ × Z+ Λ(ξ, n) = ξ P◦ (ξ, 1) = w(ξ) (6a)

P
(

〈ξ, n〉 → 〈ξ, n + 1〉
)

= 1 (6b)

The diagram of (6) is displayed in Figure 3. From the pic-
ture of the HMM it is clear that it computes the Bayesian
mixture. Hence, using (4), the loss of the HMM with prior
w is bounded for all dataxn and all expertsξ ∈ Ξ by

− logPAbayes(x
n) + log Pξ(x

n) ≤ − log w(ξ). (7)

In particular this bound holds for̂ξ = argmaxξ Pξ(x
n), so

we predict as well as the single best expert withconstant
overhead. AlsoPAbayes(x

n) can obviously be computed in
O(n|Ξ|) using its definition (4). We show in [6] that com-
puting it using the HMM prior above gives the same running
timeO(n|Ξ|), a perfect match. 3

Example 3.3.2(HMM for Elementwise Mixtures). We now
present the deterministic HMMAmix,α that implements the
ES-priorπmix,α of Example 2.1.2. Its diagram is displayed
in Figure 4. The HMM has a single silent state per out-
come, and its transition probabilities are the mixture weights
α. Formally,Amix,α is given usingQ = Qs ∪ Qp by

Qs = {p} × N P◦(p, 0) = 1

Qp = Ξ × Z+ Λ(ξ, n) = ξ
(8a)

P

(

〈p, n〉 → 〈ξ, n + 1〉
〈ξ, n〉 → 〈p, n〉

)

=

(

α(ξ)

1

)

(8b)

The vector-style definition ofP is shorthand for oneP per
line. We show in [6] that this HMM allows us to compute
PAmix,α

(xn) in timeO(n|Ξ|). 3

279

Figure 2 HMMs. q
p
i, ξi andxi are theith productive state, expert and observation.
(a) Standard use of HMM

q
p
1 q

p
2 q

p
2

x1 x2|x1 x3|x2 ···

(b) HMM ES-prior

q
p
1 q

p
2 q

p
2

ξ1 ξ2 ξ3 ···

(c) Application to data

q
p
1 q

p
2 q

p
2

ξ1 ξ2 ξ3 ···

x1 x2|x1 x3|x2 ···

Figure 4 Fixed elementwise mixture

A

〈A,1〉

A

〈A,2〉

A A

B

〈B,1〉

B

〈B,2〉

B B〈p,0〉 〈p,1〉 〈p,2〉 〈p,3〉

C

〈C,1〉

C

〈C,2〉

C C

D

〈D,1〉

D

〈D,2〉

D D

3.4 The HMM for Data

We obtain our model for the data (Figure 2c) by composing
an HMM prior onΞω with a PFSPξ for each expertξ ∈ Ξ.
We now show that the resulting marginal distribution on data
can be implemented by a single HMM onX (Figure 2a)with
the same number of states as the HMM prior. Let Pξ be an
X -forecasting system for eachξ ∈ Ξ, and let the ES-priorπA

be given by the deterministic HMMA =
〈

Q, Qp, P◦, P, Λ
〉

on Ξ. Then the marginal distribution of the data (see (1)) is
given by

PA(xn) =
∑

ξn

πA(ξn)

n
∏

i=1

Pξi
(xi|xi−1).

The HMM X :=

〈

Q, Qp, P◦, P,
〈

PΛ(q)

〉

q∈Qp

〉

on X in-

duces the same marginal distribution (see Definition 2). That
is, PX(xn) = PA(xn). Moreover,X contains only the fore-
casting systems that also exist inA and it retains the structure
of A. In particular this means that the algorithms for HMMs
have thesamerunning time on the priorA as on the marginal
X.

4 Zoology

Perhaps the simplest way to predict using a number of ex-
perts is to pick one of them and mirror her predictions ex-
actly. Beyond this “fixed expert model”, we have consid-
ered two methods of combining experts so far, namely tak-
ing Bayesian mixtures, and taking elementwise mixtures as
described in§3.3. Figure 1 shows these and a number of
other, more sophisticated methods that fit in our framework.
The arrows indicate which methods are generalised by which
other methods. They have been partitioned in groups that can
be computed in the same amount of time using HMMs.

We have presented two examples so far, the Bayesian
mixture and the elementwise mixture with fixed coefficients
(Examples 3.3.1 and 3.3.2). The latter model is parame-
terised. Choosing a fixed value for the parameter before-
hand is often difficult. The first model we discuss learns the
optimal parameter value on-line, at the cost of only a small
additional loss. We then proceed to discuss a number of im-
portant existing expert models.

4.1 Universal Elementwise Mixtures

A distribution is “universal” for a family of distributions if
it incurs small additional loss compared to the best member
of the family. A standard Bayesian mixture constitutes the
simplest example. It is universal for the fixed expert model,
where the unknown parameter is the used expert. For the
uniform prior, the additional loss (7) is at mostlog|Ξ|.

In Example 3.3.2, we described elementwise mixtures
with fixed coefficients as ES-priors. Prior knowledge about
the mixture coefficients is often unavailable. We now expand
this model to learn the optimal mixture coefficients from the
data, resulting in a distribution that is universal for the fixed
elementwise mixtures. To this end we place a prior distribu-
tion w on the space of mixture weights△(Ξ). Using (5) we
obtain the following marginal distribution:

Pumix(x
n) =

∫

△(Ξ)

Pmix,α(xn)w(α) dα

=

∫

△(Ξ)

∑

ξn

Pξn(xn)πmix,α(ξn)w(α) dα

=
∑

ξn

Pξn(xn)πumix(ξ
n), where

πumix(ξ
n) =

∫

△(Ξ)

πmix,α(ξn)w(α) dα.

(9)

ThusPumix is the ES-joint with ES-priorπumix. This applies
more generally: parametersα can be integrated out of an ES-
prior regardless of which experts are used, since the expert
predictionsPξn(xn) do not depend onα.

We will proceed to calculate a loss bound for the uni-
versal elementwise mixture model, showing that it really is
universal. After that we will describe how it can be imple-
mented as an HMM.

4.1.1 A Loss Bound
In this section we relate the loss of a universal elementwise
mixture with the loss obtained by the maximum likelihood
elementwise mixture. While mixture models occur regularly

280

in the statistical literature, we are not aware of any appear-
ance in universal prediction. Therefore, to the best of our
knowledge, the following simple loss bound is new. Our
goal is to obtain a bound in terms of properties of the prior.
A difficulty here is that there are many expert sequences
exhibiting mixture frequencies close to the maximum like-
lihood mixture weights, so that each individual expert se-
quence contributes relatively little to the total probability (9).
The following theorem is a general tool to deal with such sit-
uations.

Theorem 3. Let π, ρ be ES-priors s.t.ρ is zero wheneverπ
is. Then for allxn, reading0/0 = 0,

Pρ(x
n)

Pπ(xn)
≤ max

ξn

ρ(ξn)

π(ξn)
.

Proof. ClearlyPρ is zero wheneverPπ is. Thus

Pρ(x
n)

Pπ(xn)
=

∑

ξn Pρ(x
n, ξn)

∑

ξn Pπ(xn, ξn)
≤ max

ξn

Pρ(x
n, ξn)

Pπ(xn, ξn)

= max
ξn

Pξn(xn)ρ(ξn)

Pξn(xn)π(ξn)
= max

ξn

ρ(ξn)

π(ξn)
.

Using this theorem, we obtain a loss bound for universal ele-
mentwise mixtures that can be computed prior to observation
and without reference to the experts’ PFSs.

Corollary 4. LetPumix be the universal elementwise mixture
model defined using the(1

2 , . . . , 1
2)-Dirichlet prior (that is,

Jeffreys’ prior) as the priorw(α) in (9). Letα̂(xn) maximise
the likelihoodPmix,α(xn) w.r.t. α. Then for allxn the addi-
tional loss incurred by the universal elementwise mixture is
bounded thus

− logPumix(x
n) + log Pmix,α̂(xn)(x

n) ≤ |Ξ| − 1

2
log

n

π
+ c

for a fixed constantc.

Proof. By Theorem 3

− log Pumix(x
n) + log Pmix,α̂(xn)(x

n) ≤

max
ξn

(

− log πumix(ξ
n) + log πmix,α̂(xn)(ξ

n)
)

. (10)

We now bound the right hand side. Letα̂(ξn) maximise
πmix,α(ξn) w.r.t. α. Then for allxn andξn

πmix,α̂(xn)(ξ
n) ≤ πmix,α̂(ξn)(ξ

n). (11)

For the
(

1
2 , . . . , 1

2

)

-Dirichlet prior, for allξn

− logπumix(ξ
n) + log πmix,α̂(ξn)(ξ

n) ≤ |Ξ| − 1

2
log

n

π
+ c

for some fixed constantc (see e.g. [13]) Combination with
(11) and (10) completes the proof.

Since the overhead incurred as a penalty for not knowing the
optimal parameter̂α(xn) in advance is only logarithmic in
the sample sizen, we find thatPumix is universal in a strong
sense for the fixed elementwise mixtures.

Figure 5 Universal elementwise mixture (two experts only)

A
〈0,3〉

A B
〈0,2〉

A B A
〈0,1〉 〈D,2〉

A B A B
〈0,0〉 〈D,1〉

B A B A
〈D,0〉 〈C,1〉

B A B
〈C,0〉

B A
〈B,0〉

B

4.1.2 HMM
While universal elementwise mixtures can be described us-
ing the ES-priorπumix defined in (9), unfortunately any HMM
that computes it needs a state for each possible count vec-
tor, and is therefore huge if the number of experts is large.
The HMM Aumix for an arbitrary number of experts using
the
(

1
2 , . . . , 1

2

)

-Dirichlet prior is given usingQ = Qs ∪ Qp

by

Qs = N
Ξ Qp = N

Ξ × Ξ P◦(0) = 1 Λ(~n, ξ) = ξ

P

(

〈~n〉 → 〈~n, ξ〉
〈~n, ξ〉 →

〈

~n + 1ξ

〉

)

=





1/2+nξ

|Ξ|/2+
P

ξ
nξ

1



 (12)

We writeN
Ξ for the set of assignments of counts to experts;

0 for the all zero assignment, and1ξ marks one count for
expertξ. We show the diagram ofAumix for the practical
limit of two experts in Figure 5. In this case, the forward
algorithm has running timeO(n2). Each productive state in
Figure 5 corresponds to a vector of two counts(n1, n2) that
sum to the sample sizen, with the interpretation that of the
n experts, the first was usedn1 times while the second was
usedn2 times. These counts are a sufficient statistic for the
multinomial model class: per (5b) and (9) the probability of
the next expert only depends on the counts, and these prob-
abilities are exactly the successor probabilities of the silent
states (12).

Other priors onα are possible. In particular, when all
mass is placed on a single value ofα, we retrieve the ele-
mentwise mixture with fixed coefficients.

4.2 Fixed Share

The first publication that considers a scenario where the best
predicting expert may change with the sample size is Herb-
ster and Warmuth’s paper ontracking the best expert[4, 5].
They partition the data of sizen intom segments, where each
segment is associated with an expert, and give algorithms to

281

Figure 6 Fixed share

A A A A

B B B B〈p,0〉 〈p,1〉 〈p,2〉 〈p,3〉

C C C C

D D D D

predict almost as well as the bestpartition where the best ex-
pert is selected per segment. They give two algorithms called
fixed share and dynamic share. The second algorithm does
not fit in our framework; furthermore its motivation applies
only to loss functions other than log-loss. We focus on fixed
share, which is in fact identical to our algorithm applied to
the HMM depicted in Figure 6, where all arcsinto the silent
states have fixed probabilityα ∈ [0, 1] and all arcsfrom the
silent states have some fixed distributionw onΞ.2 The same
algorithm is also described as an instance of the Aggregating
Algorithm in [12]. Fixed share reduces to fixed elementwise
mixtures by settingα = 1 and to Bayesian mixtures by set-
ting α = 0. Formally, usingQ = Qs ∪ Qp:

Qs = {p} × N P◦(p, 0) = 1

Qp = Ξ × Z+ Λ(ξ, n) = ξ
(13a)

P







〈p, n〉 → 〈ξ, n + 1〉
〈ξ, n〉 → 〈p, n〉
〈ξ, n〉 → 〈ξ, n + 1〉






=







w(ξ)

α

1 − α






(13b)

Each productive state represents that a particular expert is
used at a certain sample size. Once a transition to a silent
state is made, all history is forgotten and a new expert is
chosen according tow.3

Let L̂ denote the loss achieved by the best partition, with
switching rateα∗ := m/(n−1). LetLfs,α denote the loss of
fixed share with uniformw and parameterα. Herbster and
Warmuth prove4

Lfs,α−L̂ ≤ (n−1)H(α∗, α)+(m−1) log(|Ξ|−1)+log|Ξ| ,
which we for brevity loosen slightly to

Lfs,α − L̂ ≤ nH(α∗, α) + m log|Ξ| . (14)

HereH(α∗, α) = −α∗ log α − (1 − α∗) log(1 − α) is the
cross entropy. The best loss guarantee is obtained forα =
α∗, in which case the cross entropy reduces to the binary
entropyH(α). A drawback of the method is that the optimal

2This is actually a slight generalisation: the original algorithm
uses a uniformw(ξ) = 1/|Ξ|.

3Contrary to the original fixed share, we allow switching to the
same expert. In the HMM framework this is necessary to achieve
running-timeO(n|Ξ|). Under uniformw, non-reflexive switching
with fixed rateα can be simulated by reflexive switching with fixed
rateβ = α|Ξ|

|Ξ|−1
(providedβ ≤ 1). For non-uniformw, the rate

becomes expert-dependent.
4This bound can be obtained for the fixed share HMM using the

previous footnote.

value ofα has to be known in advance in order to minimise
the loss. In Sections§4.3 and§5 we describe a number of
generalisations of fixed share that avoid this problem.

4.3 Universal Share

Volf and Willems describe universal share (they call itthe
switching method) [11], which is very similar to a probabilis-
tic version of Herbster and Warmuth’s fixed share algorithm,
except that they put a prior on the unknown parameter, so
that their algorithm adaptively learns the optimal value dur-
ing prediction. In formula:

Pus(x
n) =

∫

Pfs,α(xn)w(α) dα.

In [1], Bousquet shows that the overhead for not know-
ing the optimal parameter value is equal to the overhead of
estimating a Bernoulli parameter: letLfs,α be as before, and
let Lus = − logPus(x

n) denote the loss of universal share
with Jeffreys’ priorw(α) = α−1/2(1 − α)−1/2/π. Then

Lus− min
α

Lfs,α ≤ 1 + 1
2 log n. (15)

ThusPus is universal for the model class
{

Pfs,α | α ∈ [0, 1]
}

that consists of all ES-joints where the ES-priors are distri-
butions with a fixed switching rate.

Universal share requires quadratic running timeO(n2|Ξ|),
restricting its use to moderately small data sets. In [8], Mon-
teleoni and Jaakkola place a discrete prior on the parameter
that divides its mass over

√
n well-chosen points, in a setting

where the ultimate sample sizen is known beforehand. This
way they still manage to achieve (15) up to a constant, while
reducing the running time toO(n

√
n|Ξ|).

The HMM for universal share with the
(

1
2 , 1

2

)

-Dirichlet
prior on the switching rateα is displayed in Figure 7. It is
formally specified (usingQ = Qs ∪ Qp) by:

Qs = {p, q} ×
{

〈m, n〉 ∈ N2 | m ≤ n
}

Qp = Ξ ×
{

〈m, n〉 ∈ N2 | m < n
}

Λ(ξ, m, n) = ξ

P◦(p, 0, 0) = 1

P











〈p, m, n〉 → 〈ξ, m, n + 1〉
〈q, m, n〉 → 〈p, m + 1, n〉
〈ξ, m, n〉 → 〈q, m, n〉
〈ξ, m, n〉 → 〈ξ, m, n + 1〉











=













w(ξ)

1

(m + 1
2)
/

n

(n − m − 1
2)
/

n













(16)

Each productive state〈ξ, n, m〉 represents the fact that at
sample sizen expertξ is used, while there have beenm
switches in the past. Note that the last two lines of (16) are
subtly different from the corresponding topmost line of (12).
In a sample of sizen there aren possible positions to use
a given expert, while there are onlyn − 1 possible switch
positions.

The presence of the switch count in the state is the new
ingredient compared to fixed share. It allows us to adapt
the switching probability to the data, but it also renders the
number of states quadratic. We discuss reducing the number
of states without sacrificing much performance in [6].

5 New Models to Switch between Experts
So far we have considered two models for switching between
experts: fixed share and its generalisation, universal share.

282

Figure 7 Universal share

A

〈A,1,2〉

A A

B

〈B,1,2〉

B B
〈p,1,1〉

〈q,1,2〉

〈p,1,2〉

〈q,1,3〉

〈p,1,3〉

C

〈C,1,2〉

C C

D

〈D,1,2〉

D D

A

〈A,0,1〉

A A A

B

〈B,0,1〉

B B B
〈p,0,0〉

〈q,0,1〉 〈q,0,2〉 〈q,0,3〉C

〈C,0,1〉

C C C

D

〈D,0,1〉

D D D

While fixed share is an extremely efficient algorithm, it re-
quires that the frequency of switching between experts is es-
timated a priori, which can be hard in practice. Moreover, we
may have prior knowledge about how the switching proba-
bility will change over time, but unless we know the ultimate
sample size in advance, we may be forced to accept a linear
overhead compared to the best parameter value. Universal
share overcomes this problem by marginalising over the un-
known parameter, but has quadratic running time.

The first model considered in this section, the switch
distribution, avoids both problems. It is parameterless and
has essentially the same running time as fixed share. It also
achieves a loss bound competitive to that of universal share.
Moreover, for a bounded number of switches the bound has
even better asymptotics.

The second model is called the run-length model because
it uses a run-length code (c.f. [7]) as an ES-prior. This may
be useful because, while both fixed and universal share model
the distance between switches with a geometric distribution,
the real distribution on these distances may be different. This
is the case if, for example, the switches are highly clus-
tered. This additional expressive power comes at the cost of
quadratic running time, but we discuss a special case where
this may be reduced to linear.

We conclude this section with a comparison of the two
expert switching models.

5.1 Switch Distribution

The switch distribution is a recent model for combining ex-
pert predictions. Like fixed share, it is intended for settings
where the best predicting expert is expected to change as a
function of the sample size, but it has two major innovations.

First, we let the probability of switching to a different expert
decrease with the sample size. This allows us to derive a loss
bound close to that of the fixed share algorithm, without the
need to tune any parameters.5 Second, the switch distribu-
tion has a special provision to ensure that in the case where
the number of switches remains bounded, the incurred loss
overhead isO(1).

The switch distribution was introduced in [10], which
addresses a long standing open problem in statistical model
class selection known as the “AIC vs BIC dilemma”. Here
we disregard such applications and treat the switch distri-
bution like the other models for combining expert predic-
tions. In §5.1.1, we describe an HMM that corresponds to
the switch distribution; this illuminates the relationship be-
tween the switch distribution and the fixed share algorithm
which it in fact generalises. We provide a loss bound for the
switch distribution in§5.1.2.

5.1.1 Switch HMM
Let σω andτω be sequences of distributions on{0, 1} which
we call theswitchandstabilisation probabilities. The switch
HMM Asw, displayed in Figure 8, is defined below using
Q = Qs ∪ Qp:

Qs =
{

p, ps, pu

}

× N P◦(p, 0) = 1 Λ(s, ξ, n) = ξ

Qp = {s, u} × Ξ × Z+ Λ(u, ξ, n) = ξ

P





























〈p, n〉 →
〈

pu, n
〉

〈p, n〉 →
〈

ps, n
〉

〈

pu, n
〉

→ 〈u, ξ, n + 1〉
〈

ps, n
〉

→ 〈s, ξ, n + 1〉
〈s, ξ, n〉 → 〈s, ξ, n + 1〉
〈u, ξ, n〉 → 〈u, ξ, n + 1〉
〈u, ξ, n〉 → 〈p, n〉





























=





























τn(0)

τn(1)

w(ξ)

w(ξ)

1

σn(0)

σn(1)





























This HMM contains two “expert bands”. Consider a pro-
ductive state〈u, ξ, n〉 in the bottom band, which we call the
unstableband, from a generative viewpoint. Two things can
happen. With probabilityσn(0) the process continues hori-
zontally to〈u, ξ, n + 1〉 and the story repeats. We say that
no switch occurs. With probabilityσn(1) the process contin-
ues to the silent state〈p, n〉 directly to the right. We say that
a switch occurs. Then a new choice has to be made. With
probabilityτn(0) the process continues rightward to

〈

pu, n
〉

and then branches out to some productive state
〈

u, ξ′, n + 1
〉

(possiblyξ = ξ′), and the story repeats. With probability
τn(1) the process continues to

〈

ps, n
〉

in the top band, called
thestableband. Also here it branches out to some productive
state

〈

s, ξ′, n + 1
〉

. But from this point onward there are no
choices anymore; expertξ′ is produced forever. We say that
the process hasstabilised.

By choosingτn(1) = 0 and σn(1) = θ for all n we
essentially remove the stable band and arrive at fixed share
with parameterθ. The presence of the stable band enables
us to improve the loss bound of fixed share in the particular

5The idea of decreasing the switch probability as1/(n + 1),
which has not previously been published, was independently con-
ceived by Mark Herbster and the authors.

283

Figure 8 The switch distribution

A A A A

B B B B˙

ps ,0
¸ ˙

ps ,1
¸ ˙

ps ,2
¸ ˙

ps ,3
¸

C

〈s,C,1〉

C C C

D D D D

A A A A

B B B B

〈p,0〉

˙

pu ,0
¸

〈p,1〉

˙

pu,1
¸

〈p,2〉

˙

pu,2
¸

〈p,3〉

˙

pu,3
¸

C

〈u,C,1〉

C C C

D D D D

case that the number of switches is bounded; in that case,
the stable band allows us to remove the dependency of the
loss bound onn altogether. We will use the particular choice
τn(0) = 1/ 2 for all n, andσn(1) = πT(Z = n|Z ≥ n)
an arbitrary distributionπT on N. This allows us to relate
the switch HMM to the parametric representation that we
present next.

5.1.2 A Loss Bound
We derive a loss bound of the same type as the bound for
the fixed share algorithm (see§4.2). We need the following
lemma, that is proven in [6].

Lemma 5. Fix an expert sequenceξn. Let m denote the
number of blocks inξn, where the blocks are the maximal
subsequences containing only a single expert. Let1 = t1 <
t2 < · · · < tm ≤ n be the indices where the blocks start.
Then

πsw(ξn) ≥ 2−mw(ξ1)

m
∏

i=2

w(ξti
)πT(Z = ti|Z > ti−1).

Theorem 6. Fix data xn. Let ξn maximise the likelihood
Pξn(xn) among all expert sequences withm blocks. Lettm
be the index of the first element of the last block inξn. Let
πT(n) = 1/(n(n−1)) andw be uniform. Then the loss over-
head− logPsw(xn)+ log Pξn(xn) of the switch distribution
is bounded by

m + m log|Ξ| + log

(

tm
m

)

+ log(m!).

Proof. We have

− log Psw(xn) + log Pξn(xn) ≤ − log πsw(ξn)

≤ − log



2−mw(ξ1)

m
∏

i=2

πT(ti|ti > ti−1)w(ξti
)





= m + m log|Ξ| −
m
∑

i=2

log πT(ti|ti > ti−1). (17)

The priorπT may be writtenπT(n) = 1
n−1 − 1

n , so that

πT(ti|ti > ti−1) =
1/(ti(ti − 1))

∑

n>ti−1

(

1
n−1 − 1

n

) =
ti−1

ti(ti − 1)
.

If we substitute this in the last term of (17), the sum tele-
scopes and we are left with

− log(t1)
︸ ︷︷ ︸

= 0

+ log(tm) +

m
∑

i=2

log(ti − 1). (18)

If we fix tm, this expression is maximised ift2, . . . , tm−1

take on the valuestm − m + 2, . . . , tm − 1, so that (18)
becomes

tm
∑

i=tm−m+1

log i = log

(

tm!

(tm − m)!

)

= log

(

tm
m

)

+ log(m!).

The theorem follows using this upper bound.

Note that this loss bound is a function of the index of the
last switchtm rather than of the sample sizen; this means
that in the important scenario where the number of switches
remains bounded inn, the loss compared to the best partition
is O(1).

The bound compares quite favourably with the loss bound
for the fixed share algorithm (see§4.2). We can tighten our
bound slightly by using the fact that we allow switches to the
same expert, as also remarked in Footnote 3 on page 8. For
brevity we do not pursue this here, but the difference is ex-
actly that between (14) and the original bound for the fixed
share algorithm.

We now investigate how much worse the above guaran-
tees are compared to (14). The overhead of fixed share is
bounded from above bynH(α) + m log(|Ξ|). We first un-
derestimate this worst-case loss by substituting the optimal
valueα = m/n, and rewrite

nH(α) ≥ nH(m/n) ≥ log

(

n

m

)

.

Second we overestimate the loss of the switch distribution
by substituting the worst casetm = n. We then find the
maximal difference between the two bounds to be
(

m + m log|Ξ| + log

(

n

m

)

+ log(m!)

)

−
(

log

(

n

m

)

+ m log|Ξ|
)

= m + log(m!) ≤ m + m log m. (19)

Thus using the switch distribution instead of fixed share
lowers the guarantee by at mostm + m log m bits, which is
significant only if the number of switches is relatively large.
On the flip side, using the switch distribution does not require
any prior knowledge about the data (i.e. the maximum like-
lihood switching rate). This is a big advantage in a setting
where we desire to maintain the bound sequentially. This is
impossible with the fixed share algorithm in case the optimal
value ofα varies withn.

284

5.2 Run-length Model

Run-length codes have been used extensively in the con-
text of data compression, see e.g. [7]. Rather than applying
run length codes directly to the observations, we reinterpret
the corresponding probability distributions as ES-priors, be-
cause they may constitute good models for the distances be-
tween consecutive switches.

The run length model is especially useful if the switches
are clustered, in the sense that some blocks in the expert se-
quence contain relatively few switches, while other blocks
contain many. The fixed share algorithm remains oblivious
to such properties, as its predictions of the expert sequence
are based on a Bernoulli model: the probability of switch-
ing remains the same, regardless of the index of the previous
switch. Essentially the same limitation also applies to the
universal share algorithm, whose switching probability nor-
mally converges as the sample size increases. The switch
distribution is efficient when the switches are clustered to-
ward the beginning of the sample: its switching probability
decreases in the sample size. However, this may be unrealis-
tic and may introduce a new unnecessary loss overhead.

The run-length model is based on the assumption that
the intervalsbetween successive switches are independently
distributed according to some distributionπT. After the uni-
versal share model and the switch distribution, this is a third
generalisation of the fixed share algorithm, which is recov-
ered by taking a geometric distribution forπT. As may be
deduced from the defining HMM, which is given below, we
require quadratic running timeO(n2|Ξ|) to evaluate the run-
length model in general.

5.2.1 Run-length HMM

Let S :=
{

〈m, n〉 ∈ N
2 | m < n

}

, and letπT be a distri-
bution onZ+. The specification of the run-length HMM is
given usingQ = Qs ∪ Qp by:

Qs = {q} × S ∪ {p} × N Λ(ξ, m, n) = ξ

Qp = Ξ × S P◦(p, 0) = 1

P











〈p, n〉 → 〈ξ, n, n + 1〉
〈ξ, m, n〉 → 〈ξ, m, n + 1〉
〈ξ, m, n〉 → 〈q, m, n〉
〈q, m, n〉 → 〈p, n〉











=











w(ξ)

πT(Z > n|Z ≥ n)

πT(Z = n|Z ≥ n)

1











5.2.2 A Loss Bound

Fix an expert sequenceξn with m blocks. Fori = 1, . . . , m,
let δi andki denote the length and expert of blocki. From the
definition of the HMM above, we obtain thatπrl(ξ

n) equals

m
∑

i=1

− logw(ki)+
m−1
∑

i=1

− logπT(Z = δi)− log πT(Z ≥ δm).

Theorem 7. Fix data xn. Let ξn maximise the likelihood
Pξn(xn) among all expert sequences withm blocks. Letw
be the uniform distribution on experts, and letπT be log-
convex. Then the loss overhead is bounded thus

− logPrl(x
n)+log Pξn(xn) ≤ m

(

log |Ξ| − log πT

(

n
m

)

)

.

Figure 9 The run-length model

A A

B B〈p,2〉

〈q,2,3〉C C

D D

A A A

B B B〈p,1〉

〈q,1,2〉 〈q,1,3〉C

〈C,1,2〉

C C

D D D

A A A A

B B B B〈p,0〉

〈q,0,1〉 〈q,0,2〉 〈q,0,3〉C

〈C,0,1〉

C

〈C,0,2〉

C C

D D D D

Proof. Let δi denote the length of blocki. We overestimate

− log Prl(x
n) + log Pξn(xn) ≤ − log πrl(ξ

n)

= m log|Ξ| +
m−1
∑

i=1

− log πT(Z = δi) − log πT(Z ≥ δm)

≤ m log|Ξ| +
m
∑

i=1

− log πT(δi). (20)

Since− log πT is concave, by Jensen’s inequality we have

m
∑

i=1

− logπT(δi)

m
≤ − log πT





m
∑

i=1

δi

m



 = − log πT

(

n

m

)

.

In other words, the block lengthsδi are all equal in the worst
case. Plugging this into (20) we obtain the theorem.

5.2.3 Finite Support
We have seen that the run-length model reduces to fixed share
if the prior on switch distancesπT is geometric, so that it can
be evaluated in linear time in that case. We also obtain a lin-
ear time algorithm whenπT has finite support, because then
only a constant number of states can receive positive weight
at any sample size. For this reason it can be advantageous
to choose aπT with finite support, even if one expects that
arbitrarily long distances between consecutive switches may

285

occur. Expert sequences with such longer distances between
switches can still be represented with a truncatedπT using a
sequence of switches from and to the same expert. This way,
long runs of the same expert receive exponentially small, but
positive, probability.

5.3 Comparison

We have discussed two models for switching: the recent
switch distribution and the new run-length model. It is nat-
ural to wonder which model to apply. One possibility is to
compare asymptotic loss bounds. To compare the bounds
given by Theorems 6 and 7, we substitutetm + 1 = n in
the bound for the switch distribution, and use a priorπT for
the run-length model that satisfies− log πT(n) ≤ log n +
2 log log(n + 1) + 3 (for instance an Elias code [3]). The
next step is to determine which bound is better depending on
how fastm grows as a function ofn. It only makes sense to
considerm non-decreasing inn.

Theorem 8. The loss bound of the switch distribution (with
tn = n) is asymptotically lower than that of the run-length
model (withπT as above) ifm = o

(

(log n)
2), and asymp-

totically higher ifm = Ω
(

(log n)
2).6

Proof sketch.After eliminating terms common to both loss
bounds, it remains to compare

m + m log m to 2m log log

(

n

m
+ 1

)

+ 3.

If m is bounded, the left hand side is clearly lower for suffi-
ciently largen. Otherwise we may divide bym, exponenti-
ate, simplify, and compare

m to (log n − log m)2 ,

from which the theorem follows directly.

For finite samples, the switch distribution can be used in
case the switches are expected to occur early on average, or
if the running time is paramount. Otherwise the run-length
model is preferable.

6 Conclusion

In prediction with expert advice, the goal is to formulate
prediction strategies that perform as well as the best possi-
ble expert (combination). Expert predictions can be com-
bined by taking a weighted mixture at every sample size.
The best weights generally evolve over time. In this pa-
per we introduced expert sequence priors (ES-priors), which
are probability distributions over infinite sequences of ex-
perts, to model the trajectory followed by the optimal mix-
ture weights. Prediction with expert advice then amounts
to marginalising the joint distribution constructed from the
chosen ES-prior and the experts’ predictions.

We employed hidden Markov models (HMMs) to specify
ES-priors. HMMs’ explicit notion of current state and state-
to-state evolution naturally fit the temporal correlations we
seek to model. For reasons of efficiency we use HMMs with

6Let f, g : N → N. We sayf = o(g) if limn→∞ f(n)/g(n) =
0. We sayf = Ω(g) if ∃c > 0∃n0∀n ≥ n0 : f(n) ≥ cg(n).

silent states. The standard algorithms for HMMs (Forward,
Backward, Viterbi and Baum-Welch) can be used to answer
questions about the ES-prior as well as the induced distribu-
tion on data. The running time of the forward algorithm can
be read off directly from the graphical representation of the
HMM.

Our approach allows unification of many existing expert
models, including mixture models and fixed share. We gave
their defining HMMs and recovered the best known running
times. We also introduced two new parameterless generalisa-
tions of fixed share. The first, called the switch distribution,
was recently introduced to improve model selection perfor-
mance. We rendered its as a small HMM, which shows how
it can be evaluated in linear time. The second, called the run-
length model, uses a run-length code in a novel way, namely
as an ES-prior. This model has quadratic running time. We
compared the loss bounds of the two models asymptotically,
and showed that the run-length model is preferred if the num-
ber of switches grows like(log n)

2 or faster, while the switch
distribution is preferred if it grows slower. We provided
graphical representations and loss bounds for all considered
models.

Acknowledgements

Peter Grünwald’s and Tim van Erven’s suggestions signifi-
cantly improved the quality of this paper. Thanks also go
to Mark Herbster for a fruitful and enjoyable afternoon ex-
changing ideas, which has certainly influenced the shape of
this paper.

References
[1] O. Bousquet. A note on parameter tuning for on-line shifting algorithms. Tech-

nical report, Max Planck Institute for Biological Cybernetics, 2003.
[2] A. P. Dawid. Statistical theory: The prequential approach.Journal of the Royal

Statistical Society, Series A, 147, Part 2:278–292, 1984.
[3] P. Elias. Universal codeword sets and representations of the integers.IEEE

Transactions on Information Theory, 21(2):194–203, 1975.
[4] M. Herbster and M. K. Warmuth. Tracking the best expert. InProceedings of

the 12th Annual Conference on Learning Theory (COLT 1995), pages 286–294,
1995.

[5] M. Herbster and M. K. Warmuth. Tracking the best expert.Machine Learning,
32:151–178, 1998.

[6] W. M. Koolen and S. de Rooij. Combining expert advice efficiently.
arXiv:0802.2015, Feb 2008.

[7] A. Moffat. Compression and Coding Algorithms. Kluwer Academic Publishers,
2002.

[8] C. Monteleoni and T. Jaakkola. Online learning of non-stationary sequences.
Advances in Neural Information Processing Systems, 16, 2003.

[9] L. R. Rabiner. A tutorial on hidden Markov models and selected applications
in speech recognition. InProceedings of the IEEE, volume 77, issue 2, pages
257–285, 1989.

[10] T. van Erven, P. D. Grünwald, and S. de Rooij. Catching up faster in Bayes-
ian model selection and model averaging. InTo appear in Advances in Neural
Information Processing Systems 20 (NIPS 2007), 2008.

[11] P. Volf and F. Willems. Switching between two universal source coding algo-
rithms. InProceedings of the Data Compression Conference, Snowbird, Utah,
pages 491–500, 1998.

[12] V. Vovk. Derandomizing stochastic prediction strategies.Machine Learning,
35:247–282, 1999.

[13] Q. Xie and A. Barron. Asymptotic minimax regret for data compression, gam-
bling and prediction.IEEE Transactions on Information Theory, 46(2):431–445,
2000.

286

Improved Guarantees for Learning via Similarity Functions

Maria-Florina Balcan Avrim Blum
Computer Science Department, Carnegie Mellon University

{ninamf,avrim}@cs.cmu.edu

Nathan Srebro
Toyota Technological Institute at Chicago

nati@uchicago.edu

Abstract

We continue the investigation of natural conditions
for a similarity function to allow learning, without
requiring the similarity function to be a valid ker-
nel, or referring to an implicit high-dimensional
space. We provide a new notion of a “good sim-
ilarity function” that builds upon the previous def-
inition of Balcan and Blum (2006) but improves
on it in two important ways. First, as with the pre-
vious definition, any large-margin kernel is also a
good similarity function in our sense, but the trans-
lation now results in a much milder increase in the
labeled sample complexity. Second, we prove that
for distribution-specific PAC learning, our new no-
tion is strictly more powerful than the traditional
notion of a large-margin kernel. In particular, we
show that for any hypothesis classC there exists
a similarity function under our definition allowing
learning withO(log |C|) labeled examples. How-
ever, in a lower bound which may be of indepen-
dent interest, we show that for any classC of pair-
wise uncorrelated functions, there isnokernel with
marginγ ≥ 8/

√

|C| for all f ∈ C, even if one
allows average hinge-loss as large as 0.5. Thus,
the sample complexity for learning such classes
with SVMs isΩ(|C|). This extends work of Ben-
David et al. (2003) and Forster and Simon (2006)
who give hardness results with comparable margin
bounds, but at much lower error rates.

Our new notion of similarity relies uponL1 reg-
ularized learning, and our separation result is re-
lated to a separation result between what is learn-
able withL1 vs.L2 regularization.

1 Introduction

Kernel functions have become an extremely popular tool in
machine learning, with an attractive theory as well (Scholkopf
& Smola, 2002; Herbrich, 2002; Shawe-Taylor & Cristian-
ini, 2004; Scholkopf et al., 2004). This theory views a kernel
as implicitly mapping data points into a possibly very high
dimensional space, and describes a kernel function as being
good for a given learning problem if data is separable by a

large margin in that implicit space. However, while quite el-
egant, this theory does not necessarily correspond to the in-
tuition of a good kernel as a good measure of similarity, and
the underlying margin in the implicit space usually is not ap-
parent in “natural” representations of the data. Therefore, it
may be difficult for a domain expert to use the theory to help
design an appropriate kernel for the learning task at hand.
Moreover, the requirement of positive semi-definiteness may
rule out the most natural pairwise similarity functions for the
given problem domain.

In recent work, Balcan and Blum (2006) developed an
alternative, more general theory of learning with pairwise
similarity functions that may not necessarily be valid posi-
tive semi-definite kernels. Specifically, this work developed
sufficient conditions for a similarity function to allow one to
learn well) that does not require reference to implicit spaces,
and does not require the function to be positive semi-definite
(or even symmetric). While this theory provably general-
izes the standard theory in that any good kernel function in
the usual sense can be shown to also be a good similarity
function under this definition, the translation does incur a
penalty. Subsequently, Srebro (2007) tightly quantified the
gap between the learning guarantees based on kernel-based
learning, and those that can be obtained by using the ker-
nel as a similarity function in this way. In particular, Srebro
(2007) shows that a kernel of marginγ is guaranteed to be
a similarity function of marginΩ(ǫγ2) at hinge-lossǫ, and
furthermore there exist examples for which this is tight. To
sum up, while the theory of Balcan and Blum (2006) applies
to a wider class of pairwise functions than the standard no-
tion of kernel learning, it might be quantitatively inferior in
those cases that both notions apply.

In this work we develop a new notion of a good sim-
ilarity function that broadens the definition of Balcan and
Blum (2006) while still guaranteeing learnability. As with
the previous definition, our notion talks in terms of natu-
ral similarity-based properties and does not require positive
semi-definiteness or reference to implicit spaces. However,
our new notion improves on the previous definition in two
important respects:

First, our new notion provides a better kernel-to-similarity
translation. Any large-margin kernel function is a good sim-
ilarity function under our definition, and while we still incur
some loss in the parameters, this loss is much smaller than
under the prior definition, especially in terms of the final la-
beled sample-complexity bounds. In particular, when using

287

a valid kernel function as a similarity function, a substan-
tial portion of the previous sample-complexity bound can be
transferred over to merely a need forunlabeled examples.

Second, we show that our new definition allows for good
similarity functions to exist for concept classes for which
there isno good kernel. In particular, for any concept class
C and sufficiently unconcentrated distributionD, we show
there exists a similarity function under our definition with
parameters yielding a labeled sample complexity bound of
O(1

ǫ log |C|) to achieve errorǫ, matching the ideal sample
complexity for a generic hypothesis class. In fact, we also
extend this result to classes of finite VC-dimension rather
than finite cardinality. In contrast, we show there exist classes
C such that under the uniform distribution over the instance
space, there is no kernel with margin8/

√

|C| for all f ∈ C
even if one allows0.5 average hinge-loss. Thus, the margin-
based guarantee on sample complexity for learning such classes
with kernels isΩ(|C|). This extends work of Ben-David
et al. (2003) and Forster and Simon (2006) who give hard-
ness results with comparable margin bounds, but at much
lower error rates. Warmuth and Vishwanathan (2005) pro-
vide lower bounds for kernels with similar error rates, but
their results hold only for regression (not hinge loss). Note
that given access to unlabeled data, any similarity function
under the definition of Balcan and Blum (2006) can be con-
verted to a kernel function with approximately the same pa-
rameters. Thus, our lower bound for kernel functions applies
to that definition as well. These results establish a gap in
the representational power of similarity functions under our
new definition relative to the representational power of either
kernels or similarity functions under the old definition.

Both our new definition and that of Balcan and Blum
(2006) are based on the idea of a similarity function being
good for a learning problem if there exists a non-negligible
subsetR of “reasonable points” such that most examplesx
are on average more similar to the reasonable points of their
own label than to the reasonable points of the other label.
(Formally, the “reasonableness” of an example may be given
by a weight between 0 and 1 and viewed as probabilistic or
fractional.) However, the previous definition combined the
two quantities of interest—the probability mass of reason-
able points and the gap in average similarity to reasonable
points of each label—into a single margin parameter. The
new notion keeps these quantities distinct, which turns out to
make a substantial difference both in terms of broadness of
applicability and in terms of the labeled sample complexity
bounds that result.

Note that we distinguish between labeled and unlabeled
sample complexities: while the total number of examples
needed depends polynomially on the two quantities of in-
terest, the number of labeled examples depends only log-
arithmically on the probability mass of the reasonable set
and therefore may be much smaller under the new definition.
This is especially beneficial in situations in which unlabeled
data is plentiful (or the distribution is known and so unla-
beled data is free), but labeled data is scarce.

Another way to view the distinction between the two no-
tions of similarity is that we now require good predictions us-
ing a weight function with bounded expectation, rather than
bounded supremum: compare the old Definition 4 and the

variant of the new definition given as Definition 17. (We do
in fact still have a bound on the supremum, but this bound
only affects the labeled sampled complexity logarithmically.)
In Theorem 19 we make the connection between the two ver-
sions of the new definition explicit.

Conditioning on a subset of reasonable points, or equiv-
alently bounding the expectation of the weight function, al-
lows us to base our learnability results onL1-regularized lin-
ear learning. The actual learning rule we get, given in Equa-
tion (4.6), is very similar, and even identical, to learning rules
suggested by various authors and commonly used in prac-
tice as an alternative to Support Vector Machines (Bennett
& Campbell, 2000; Roth, 2001; Guigue et al., 2005; Singer,
2000; Tipping, 2001). Here we give a firm theoretical basis
to this learning rule, with explicit learning guarantees, and
relate it to simple and intuitive properties of the similarity
function or kernel used (see the discussion at the end of Sec-
tion 4).

Structure of this paper: After presenting background on
the previous definitions and their relation to kernels in Sec-
tion 2, we present our new notion of a good similarity func-
tion in Section 3. In Section 4 we show that our new broader
notions still imply learnability. In Section 5 we give our sep-
aration results, showing that our new notion is strictly more
general than the notion of a large margin kernel. In Section 6
we show that any large margin kernel is also a good similar-
ity function in our sense, and finally in Section 7 we discuss
learning with multiple similarity functions.

2 Background and Notation

We consider a learning problem specified as follows. We are
given access to labeled examples(x, ℓ) drawn from some
distribution P over X × {−1, 1}, whereX is an abstract
instance space. We will sometimes useD to denote the dis-
tribution overx, and for simplicity, we will assume a deter-
ministic target function, so that(x, ℓ) = (x, ℓ(x)). The goal
of a learning algorithm is to produce a classification function
g : X → {−1, 1} whose error ratePr(x,ℓ)∼P [g(x) 6= ℓ] is
low. We will consider learning algorithms whose only access
to pointsx is through a pairwise similarity functionK(x, x′)
mapping pairs of points to values in the range[−1, 1]. Specif-
ically,

Definition 1 A similarity functionover X is any pairwise
functionK : X×X → [−1, 1]. We say thatK is a symmetric
similarity function ifK(x, x′) = K(x′, x) for all x, x′.

Our goal is to describe “goodness” properties that are
sufficient for a similarity function to allow one to learn well
that ideally are intuitive and subsume the usual notion of
good kernel function.

A similarity function K is a valid kernel function if it
is positive-semidefinite, i.e. there exists a functionφ from
the instance spaceX into some (implicit) Hilbert “φ-space”
such thatK(x, x′) = 〈φ(x), φ(x′)〉. See, e.g., Smola and
Schölkopf (2002) for a discussion on conditions for a map-
ping being a kernel function. Throughout this work, and
without loss of generality, we will only consider kernels such
thatK(x, x) ≤ 1 for all x ∈ X (any kernelK can be con-
verted into this form by, for instance, defining̃K(x, x′) =

288

K(x, x′)/
√

K(x, x)K(x′, x′)). We say thatK is (ǫ, γ)-
kernel goodfor a given learning problemP if there exists
a vectorβ in the φ-space that has errorǫ at marginγ; for
simplicity we consider only separators through the origin.
Specifically:

Definition 2 K is an (ǫ, γ)-good kernel function if there
exists a vectorβ, ‖β‖ ≤ 1 such that

Pr
(x,ℓ)∼P

[ℓ〈φ(x), β〉 ≥ γ] ≥ 1 − ǫ.

We say thatK is γ-kernel goodif it is (ǫ, γ)-kernel goodfor
ǫ = 0; i.e., it has zero error at marginγ.

Given a kernel that is(ǫ, γ)-kernel-good for some learn-
ing problemP , a predictor with error rate at mostǫ + ǫacc
can be learned (with high probability) from a sample of1

Õ
(

(ǫ + ǫacc)/(γ2ǫ2acc)
)

random examples fromP by min-
imizing the number of marginγ violations on the sample
(McAllester, 2003). However, minimizing the number of
margin violations on the sample is a difficult optimization
problem: it is NP-hard, and even NP-hard to approximate
(Arora et al., 1997; Feldman et al., 2006; Guruswami &
Raghavendra, 2006). Instead, it is common to minimize the
so-calledhinge lossrelative to a margin.

Definition 3 We say thatK is (ǫ, γ)-kernel goodin hinge-
lossif there exists a vectorβ, ‖β‖ ≤ 1 such that

E(x,ℓ)∼P [[1 − ℓ〈β, φ(x)〉/γ]+] ≤ ǫ,

where[1 − z]+ = max(1 − z, 0) is the hinge loss.

Given a kernel that is(ǫ, γ)-kernel-good in hinge-loss, a
predictor with error rate at mostǫ + ǫacc can be efficiently
learned from a sample of sizẽO

(

(ǫ + ǫacc)/(γ2ǫ2acc)
)

with
high probability by minimizing the average hinge loss rela-
tive to marginγ on the sample (Bartlett & Mendelson, 2003).

We now present the definition of a good similarity func-
tion from (Balcan & Blum, 2006; Srebro, 2007).

Definition 4 (Previous, Margin Violations) A pairwise func-
tion K is an (ǫ, γ)-good similarity function for a learning
problemP if there existsa weighting functionw : X →
[0, 1] such that at least a1 − ǫ probability mass of examples
(x, ℓ) satisfy:

E(x′,ℓ′)∼P [ℓℓ′w(x′)K(x, x′)] ≥ γ. (2.1)

That is, if the underlying distribution is 50/50 positive and
negative, this is saying that the average weighted similar-
ity of an examplex to random examplesx′ of its own label
should be2γ larger than the average weighted similarity of
x to random examplesx′ of the other label.

Balcan and Blum (2006) show how a predictor with error
rate at mostǫ+ǫacccan be learned from̃O

(

(ǫ + ǫacc)/(γ2ǫ2acc)
)

samples using an(ǫ, γ)-good similarity functionK: First
draw fromP an (unlabeled) sampleS = {x′

1, . . . , x
′
d} of

d = (4/γ)2 ln(4/(δǫacc)) random “landmarks”, and con-
struct the mappingφS : X → R

d defined asφS
i(x) =

1√
d
K(x, x′

i), i ∈ {1, . . . , d}. With probability at least1 − δ

1The Õ(·) notation hides logarithmic factors in the arguments
and in the failure probability.

over the random sampleS, the induced distributionφS(P) in
Rd has a separator of error at mostǫ+ǫacc/2 at margin at least
γ/2. Now, draw a fresh sample, map it into the transformed
space usingφS , and then learn a good linear separator in the
transformed space. The total sample complexity is domi-
nated by theÕ

(

(ǫ + ǫacc)d/ǫ2acc)
)

= Õ
(

(ǫ + ǫacc)/(γ2ǫ2acc)
)

sample complexity of learning in the transformed space, yield-
ing the same overall sample complexity as with an(ǫ, γ)-
good kernel function.

The above bounds refer to learning a linear separator by
minimizing the error over the training sample. As mentioned
earlier, this minimization problem is NP-hard even to ap-
proximate. Again, we can instead consider the hinge-loss
rather than the number of margin violations. Balcan and
Blum (2006) and Srebro (2007) therefore provide the fol-
lowing hinge-loss version of their definition:

Definition 5 (Previous, Hinge Loss)A similarity functionK
is an (ǫ, γ)-good similarity function in hinge loss for a
learning problemP if there exists a weighting functionw(x′)
∈ [0, 1] for all x′ ∈ X such that

E(x,ℓ)∼P

[

[1 − ℓg(x)/γ]+

]

≤ ǫ, (2.2)

whereg(x) = E(x′,ℓ′)∼P [ℓ′w(x′)K(x, x′)] is the similarity-
based prediction made usingw(), and recall that[1− z]+ =
max(0, 1 − z) is the hinge-loss.

The same algorithm as above, but now using SVM to mini-
mize hinge-loss in the transformed space, allows one to effi-
ciently use a similarity function satisfying this definition to
find a predictor of errorǫ+ǫaccusingÕ

(

(ǫ + ǫacc)/(γ2ǫ2acc)
)

examples.

3 New Notions of Good Similarity Functions

In this section we provide new notions of good similarity
functions generalizing Definitions 4 and 5 that we prove have
a number of important advantages.

In the definitions of Balcan and Blum (2006), a weight
w(x′) ∈ [0, 1] was used in defining the quantity of interest
E(x′,ℓ′)∼P [ℓ′w(x′)K(x, x′)]. Here, it will instead be more
convenient to think ofw as the expected value of an indica-
tor random variableR(x) ∈ {0, 1} where we will view the
(probabilistic) set{x : R(x) = 1} as a set of “reasonable
points”. Formally, we will then be sampling from the joint
distributionP (x, ℓ(x), R(x)) = P (x, ℓ(x))P (R(x)|x) but
we will sometimes omit the explicit dependence onR when
it is clear from context. Our new definition is now as follows.

Definition 6 (Main, Margin Violations) A similarity func-
tion K is an(ǫ, γ, τ)-good similarity function for a learn-
ing problemP if thereexistsa (random) indicator function
R(x) defining a (probabilistic) set of “reasonable points”
such that the following conditions hold:

1. A1 − ǫ probability mass of examples(x, ℓ) satisfy

E(x′,ℓ′)∼P [ℓℓ′K(x, x′) | R(x′)] ≥ γ (3.1)

2. Prx′ [R(x′)] ≥ τ .

289

If the reasonable setR is 50/50 positive and negative (i.e.,
Prx′ [ℓ(x′) = 1|R(x′)] = 1/2), we can interpret the condi-
tion as stating that most examplesx are on average2γ more
similar to random reasonable examplesx′ of their own label
than to random reasonable examplesx′ of the other label.
The second condition is that at least aτ fraction of the points
should be reasonable.

We also consider a hinge-loss version of the definition:

Definition 7 (Main, Hinge Loss) A similarity functionK is
an (ǫ, γ, τ)-good similarity function in hinge loss for a
learning problemP if thereexistsa (probabilistic) setR of
“reasonable points” such that the following conditions hold:

1. We have

E(x,ℓ)∼P

[

[1 − ℓg(x)/γ]+

]

≤ ǫ, (3.2)

whereg(x) = E(x′,ℓ′,R(x′))[ℓ
′K(x, x′) | R(x′)].

2. Prx′ [R(x′)] ≥ τ .

It is not hard to see that an(ǫ, γ)-good similarity function
under Definitions 4 and 5 is also an(ǫ, γ, γ)-good similarity
function under Definitions 6 and 7, respectively. In the re-
verse direction, an(ǫ, γ, τ)-good similarity function under
Definitions 6 and 7 is an(ǫ, γτ)-good similarity function un-
der Definitions 4 and 5 (respectively). For formal proofs, see
Theorems 23 and 24 in Appendix A.

As we will see, under both old and new definitions, the
number of labeled samples required for learning grows as
1/γ2. The key distinction between them is that we introduce
a new parameter,τ , that primarily affects the number ofun-
labeledexamples required. This decoupling of the number
of labeled and unlabeled examples enables us to handle a
wider variety of situations with an improved labeled sample
complexity. In particular, in translating from a kernel to a
similarity function, we will find that much of the loss can
now be placed into theτ parameter.

In the following we prove three types of results about
this new notion of similarity. The first is that similarity func-
tions satisfying these conditions are sufficient for learning
(in polynomial time in the case of Definition 7), with a sam-
ple size ofO(1

γ2 ln(1
γτ)) labeled examples andO(1

τγ2) unla-
beled examples. This is particularly useful in settings where
unlabeled data is plentiful and cheap—such settings are in-
creasingly common in learning applications (Mitchell, 2006;
Chapelle et al., 2006)—or for distribution-specific learning
where unlabeled data may be viewed as free.

The second main theorem we prove is thatanyclassC,
over a sufficiently unconcentrated distribution on examples,
has a(0, 1, 1/(2|C|))-good similarity function (under either
definition 6 or 7), whereas there exist classesC that have
no (0.5, 8/

√

|C|)-good kernel functions in hinge loss. This
provides a clear separation between the similarity and kernel
notions in terms of the parameters controlling labeled sam-
ple complexity. The final main theorem we prove is that any
large-margin kernel function also satisfies our similarity defi-
nitions, with substantially less loss in the parameters control-
ling labeled sample complexity compared to the definition of
(Balcan & Blum, 2006). For example, ifK is a(0, γ)-good
kernel, then it is an(ǫ′, ǫ′γ2)-good similarity function under

Definitions 4 and 5, and this is tight (Srebro, 2007), result-
ing in a sample complexity of̃O

(

1/(γ4ǫ3)
)

to achieve error
ǫ. However, we can showK is an(ǫ′, γ2, ǫ′)-good similar-
ity function under the new definition,2 resulting in a sample
complexity of onlyÕ

(

1/(γ4ǫ)
)

.

4 Good Similarity Functions Allow Learning
The basic approach proposed for learning using a similarity
function is similar to that of Balcan and Blum (2006). First, a
feature space is constructed, consisting of similarities to ran-
domly chosen landmarks. Then, a linear predictor is sought
in this feature space. However, under the previous defini-
tions, we were guaranteed largeL2-margin in this feature
space, whereas under the new definitions we are guaranteed
largeL1-margin in the feature space.

After recalling the notion of anL1-margin and its as-
sociated learning guarantee, we first establish that, for an
(ǫ, γ, τ)-good similarity function, the feature map constructed
using Õ

(

1/(τγ2)
)

landmarks indeed has (with high prob-
ability) a largeL1-margin separator. Using this result, we
then obtain a learning guarantee by following the strategy
outlined above.

In speaking ofL1-marginγ, we refer to separation with
a marginγ by a unit-L1-norm linear separator, in a unit-
L∞-bounded feature space. Formally, letφ : x 7→ φ(x),
φ(x) ∈ R

d, with ‖φ(x)‖∞ ≤ 1 be a mapping of the data
to a d-dimensional feature space. We say that a linear pre-
dictor α ∈ R

d, achieves errorǫ relative toL1-marginγ if
Prx,ℓ(x)(ℓ(x)〈α, φ(x)〉 ≥ γ) ≥ 1 − ǫ (this is the standard
margin constraint) and‖α‖1 = 1.

Given ad-dimensional feature map under which there
exists some (unknown) zero-error linear separator withL1-
marginγ, we can efficiently learn a predictor with error at

mostǫacc usingO
(

log d
ǫaccγ2

)

examples (with high probability).

This can be done using the Winnow algorithm with a stan-
dard online-to-batch conversion (Littlestone, 1989). If we
can only guarantee the existence of a separator with error
ǫ > 0 relative toL1-marginγ, then a predictor with error
ǫ + ǫacc can be theoretically learned (with high probability)
from a sample ofÕ

(

(log d)/(γ2ǫ2acc)
)

examples by mini-
mizing the number ofL1-marginγ violations on the sample
(Zhang, 2002).

We are now ready to state the main result enabling learn-
ing using good similarity functions:

Theorem 8 Let K be an(ǫ, γ, τ)-good similarity function
for a learning problemP . Let S = {x′

1, x
′
2, . . . , x

′
d} be a

(potentially unlabeled) sample of

d =
2

τ

(

log(2/δ) + 8
log(2/δ)

γ2

)

landmarks drawn fromP . Consider the mappingφS : X →
R

d defined as follows:φS
i(x) = K(x, x′

i), i ∈ {1, . . . , d}.
Then, with probability at least1− δ over the random sample
S, the induced distributionφS(P) in Rd has a separator of
error at mostǫ + δ relative toL1 margin at leastγ/2.

2Formally, the translation produces an(ǫ′, γ2/c, ǫ′c)-good sim-
ilarity function for somec ≤ 1. However, smaller values ofc only
improve the bounds.

290

Proof: First, note that since|K(x, x)| ≤ 1 for all x, we have
∥

∥φS(x)
∥

∥

∞ ≤ 1.
Consider the linear separatorα ∈ R

d, given byαi =
ℓ(x′

i)R(x′
i)/d1 whered1 =

∑

i R(x′
i) is the number of land-

marks withR(x′) = 1. This normalization ensures‖α‖1 =
1. Note that we takeR(x′

i) to be drawn jointly withx′
i. If it

is random, than it is randomly instantiated to either zero or
one.

We have, for anyx, ℓ(x):

ℓ(x)
〈

α, φS(x)
〉

=

∑d
i=1 ℓ(x)ℓ(x′

i)R(x′
i)K(x, x′

i)

d1
(4.1)

This is an empirical average ofd1 terms

−1 ≤ ℓ(x)ℓ(x′)K(x, x′) ≤ 1

for which R(x′) = 1. For anyx we can apply Hoeffding’s
inequality, and obtain that with probability at least1 − δ2/2
over the choice ofS, we have:

ℓ(x)
〈

α, φS(x)
〉

≥

Ex′ [K(x, x′)ℓ(x′)ℓ(x)|R(x′)] −

√

2 log(2
δ2)

d1
(4.2)

Since the above holds for anyx with probability at least
1−δ2/2 overS, it also holds with probability at least1−δ2/2
over the choice ofx andS. We can write this as:

ES∼P d

[

Pr
x∼P

(violation)
]

≤ δ2/2 (4.3)

where “violation” refers to violating (4.2). Applying Markov’s
inequality we get that with probability at least1 − δ/2 over
the choice ofS, at mostδ fraction of points violate (4.2).
Recalling Definition 6, at most an additionalǫ fraction of the
points violate (3.1). But for the remaining1− ǫ− δ fraction
of the points, for which both (4.2) and (3.1) hold, we have:

ℓ(x)
〈

α, φS(x)
〉

≥ γ −

√

2 log(1
δ2)

d1
. (4.4)

To bound the second term we need an upper bound ond1, the
number of reasonable landmarks. The probability of each
of the d landmarks being reasonable is at leastτ and so
the number of reasonable landmarks follows a Binomial dis-
tribution, ensuringd1 ≥ 8 log(1/δ)/γ2 with probability at

least1 − δ/2. When this happens, we have
√

2 log(1

δ2
)

d1
≤

γ/2. We get then, that with probability at least1 − δ, for at
least1 − ǫ − δ of the points:

ℓ(x)
〈

α, φS(x)
〉

≥ γ/2. (4.5)

For the realizable(ǫ = 0) case, we obtain:

Corollary 9 If K is an(0, γ, τ)-good similarity function then
with high probability we can efficiently find a predictor with
error at mostǫacc from an unlabeled sample of sizedu =

Õ
(

1
γ2τ

)

and from a labeled sample of sizedl = Õ
(

log du

γ2ǫacc

)

.

Proof: We have proved in Theorem 8 that ifK is(0, γ, τ)-
good similarity function, then with high probability there ex-
ists a low-error (at mostδ) large-margin (at leastγ2) separa-
tor in the transformed space under mappingφS . Thus, all we
need now to learn well is to draw a new fresh sampleS̃, map
it into the transformed space usingφS , and then apply a good
algorithm for learning linear separators in the new space that
produces a hypothesis of error at mostǫacc with probability
at least1 − δ. In particular, remember that the vectorα has
error at mostδ atL1 marginγ/2 overφS(P), where the map-
pingφS produces examples ofL∞ norm at most1. In order
to enjoy the better learning guarantees of the separable case,
we will set δ small enough so that no bad points appear in
the sample. The Corollary now follows from theL1-margin
learning guarantee in the separable case, discussed earlier in
the Section.

For the general(ǫ > 0) case, Theorem 8 implies that by

following our two-stage approach, first usingdu = Õ
(

1
γ2τ

)

unlabeled examples as landmarks in order to constructφS(·),
and then using a fresh sample of sizedl = Õ

(

1
γ2ǫ2acc

ln du

)

to

learn a low-errorL1-marginγ separator inφS(·), we have:

Corollary 10 If K is a(ǫ, γ, τ)-good similarity function then
by minimizingL1 margin violations we can find a predictor
with error at mostǫacc from an unlabeled sample of sizedu =

Õ
(

1
γ2τ

)

and from a labeled sample of sizedl = Õ
(

log du

γ2ǫ2acc

)

.

The procedure described above, although well defined,
involves a difficult optimization problem: minimizing the
number ofL1-margin violations. In order to obtain a compu-
tationally tractable procedure, we consider the hinge-loss in-
stead of the margin error. In a feature space with‖φ(x)‖∞ ≤
1 as above, we say that a unit-L1-norm predictorα, ‖α‖1 =
1, has expected hinge-lossE [[1 − ℓ(x)〈α, φ(x)〉/γ]+] rel-
ative toL1-marginγ. Now, if we know there is some (un-
known) predictor with hinge-lossǫ relativeL1-marginγ, than
a predictor with errorǫ + ǫacc can be learned (with high
probability) from a sample of̃O

(

log d/(γ2ǫ2acc)
)

examples
by minimizing the empirical average hinge-loss relative to
L1-marginγ on the sample (Zhang, 2002).

Before proceeding to discussing the optimization prob-
lem of minimizing the average hinge-loss relative to a fixed
L1-margin, let us establish the analogue of Theorem 8 for
the hinge-loss:

Theorem 11 Let K be an(ǫ, γ, τ)-good similarity function
in hinge-loss for a learning problemP . For anyǫ1 > 0 and
0 < λ < γǫ1/4 let S = {x′

1, x
′
2, . . . , x

′
d} be a sample

of sized = 2
τ

(

log(2/δ) + 16 log(2/δ)/(ǫ1γ)2
)

drawn from
P . With probability at least1 − δ over the random sample
S, the induced distributionφS(P) in Rd, for φS as defined
in Theorem 8, has a separator achieving hinge-loss at most
ǫ + ǫ1 at marginγ.

Proof: We use the same construction as in Theorem 8.

291

Corollary 12 K is an (ǫ, γ, τ)-good similarity function in
hinge loss then we can efficiently find a predictor with er-
ror at mostǫ + ǫacc from an unlabeled sample of sizedu =

Õ
(

1
γ2ǫ2accτ

)

and from a labeled sample of sizedl = Õ
(

log du

γ2ǫ2acc

)

.

For the hinge-loss, our two stage procedure boils down
to solving the following optimization problem w.r.t.α:

minimize
dl

∑

i=1



1 −
du
∑

j=1

αjℓ(xi)K(xi, x
′
j)





+

s.t.
du
∑

j=1

|αj | ≤ 1/γ

(4.6)

This is a linear program and can thus be solved in polynomial
time, establishing the efficiency in Corollary 12.

An optimization problem similar to (4.6), though usu-
ally with the same set of points used both as landmarks and
as training examples, is actually fairly commonly used as a
learning rule in practice (Bennett & Campbell, 2000; Roth,
2001; Guigue et al., 2005). Such a learning rule is typi-
cally discussed as an alternative to SVMs. In fact, Tipping
(2001) suggest the Relevance Vector Machine (RVM) as a
Bayesian alternative to SVMs. The MAP estimate of the
RVM is given by an optimization problem similar to (4.6),
though with a loss function different from the hinge loss (the
hinge-loss cannot be obtained as a log-likelihood). Similarly,
Singer (2000) suggests Norm-Penalized Leveraging Proce-
dures as a boosting-like approach that mimics SVMs. Again,
although the specific loss functions studied by Singer are dif-
ferent from the hinge-loss, the method (with a norm expo-
nent of 1, as in Singer’s experiments) otherwise corresponds
to a coordinate-descent minimization of (4.6). In both cases,
no learning guarantees are provided.

The motivation for using (4.6) as an alternative to SVMs
is usually that theL1-regularization onα leads to sparsity,
and hence to “few support vectors” (although Vincent and
Bengio (2002), who also discuss (4.6), argue for more direct
ways of obtaining such sparsity), and also that the linear pro-
gram (4.6) might be easier to solve than the SVM quadratic
program. However, we are not aware of a previous discus-
sion on how learning using (4.6) relates to learning using
a SVM, or on learning guarantees using (4.6) in terms of
properties of the similarity functionK. Guarantees solely in
terms of the feature space in which we seek lowL1-margin
(φS in our notation) are problematic, as this feature space is
generated randomly from data.

In fact, in order to enjoy the SVM guarantees while using
L1 regularization to obtain sparsity, some authors suggest
regularizing both theL1 norm ‖α‖1 of the coefficient vec-
tor α (as in (4.6)), and the norm‖β‖ of the corresponding
predictorβ =

∑

j αjφ(x′
j) in the Hilbert space implied by

K, whereK(x, x′) = 〈φ(x), φ(x′)〉, as when using a SVM
with K as a kernel (Osuna & Girosi, 1999; Gunn & Kandola,
2002).

Here, we provide a natural condition on the similarity
functionK (Definition 7), that justifies the learning rule (4.6).
Furthermore, we show (in Section 6) than any similarity func-
tion that is good as a kernel, and can ensure SVM learning,

is also good as a similarity function and can thus also ensure
learning using the learning rule (4.6) (though possibly with
some deterioration of the learning guarantees). These argu-
ments can be used to justify (4.6) as an alternative to SVMs.

Before concluding this discussion, we would like to men-
tion that Girosi (1998) previously established a rather differ-
ent connection between regularizing theL1 norm‖α‖1 and
regularizing the norm of the corresponding predictorβ in the
implied Hilbert space. Girosi considered a hard-margin SVR
(Support Vector Regression Machine, i.e. requiring each pre-
diction to be within(ℓ(x)−ǫ, ℓ(x)+ǫ)), in the noiseless case
where the mappingx 7→ ℓ(x) is in the Hilbert space. In this
setting, Girosi showed that a hard-margin SVR is equivalent
to minimizing the distancein the implied Hilbert spacebe-
tween the correct mappingx 7→ ℓ(x) and the predictions
x 7→ ∑

j αjK(x, x′
j), with anL1 regularization term‖α‖1.

However, this distance between prediction functions is very
different than the objective in (4.6), and again refers back to
the implied feature space which we are trying to avoid.

5 Separation Results

In this Section, we show an example of a finite concept class
for which no kernel yields good learning guarantees when
used as a kernel, but for which there does exist a good simi-
larity function yielding the optimal sample complexity. That
is, we show that some concept classes cannot be reasonably
represented by kernels, but can be reasonably represented by
similarity functions.

Specifically, we consider a classC of n pairwise uncor-
related functions. This is a finite class of cardinality|C| = n,
and so if the target belongs toC thenO(1

ǫ log n) samples are
enough for learning a predictor with errorǫ.

Indeed, we show here that forany concept classC, so
long as the distributionD is sufficiently unconcentrated, there
exists a similarity function that is(0, 1, 1

2|C|)-good under our
definition for everyf ∈ C. This yields a (labeled) sam-
ple complexityO(1

ǫ log |C|) to achieve errorǫ, matching the
ideal sample complexity. In other words, for distribution-
specific learning (where unlabeled data may be viewed as
free) and finite classes, there is nointrinsic loss in sample-
complexity incurred by choosing to learn via similarity func-
tions. In fact, we also extend this result to classes of bounded
VC-dimension rather than bounded cardinality.

In contrast, we show that ifC is a class ofn functions
that are pairwise uncorrelated with respect to distributionD,
then no kernel is (ǫ, γ)-good in hinge-loss for allf ∈ C
even forǫ = 0.5 andγ = 8/

√
n. This extends work of

(Ben-David et al., 2003; Forster & Simon, 2006) who give
hardness results with comparable margin bounds, but at a
much lower error rate. Thus, this shows thereis an intrinsic
loss incurred by using kernels together with margin bounds,
since this results in a sample complexity bound of at least
Ω(|C|), rather than the idealO(log |C|).

We thus demonstrate a gap between the kind of prior
knowledge can be represented with kernels as opposed to
general similarity functions and demonstrate that similarity
functions are strictly more expressive (up to the degradation
in parameters discussed earlier).

Definition 13 We say that a distributionD over X is α-

292

unconcentratedif the probability mass on any givenx ∈ X
is at mostα.

Theorem 14 For any class finite class of functionsC and
for any 1/|C|-unconcentrated distributionD over the in-
stance spaceX , there exists a similarity functionK that is a
(0, 1, 1

2|C|)-good similarity function for allf ∈ C.

Proof: Let C = {f1, . . . , fn}. Now, let us partitionX into
n regionsRi of at least1/(2n) probability mass each, which
we can do sinceD is 1/n-unconcentrated. Finally, define
K(x, x′) for x′ in Ri to befi(x)fi(x

′). We claim that for
this similarity function,Ri is a set of “reasonable points”
establishing marginγ = 1 for targetfi. Specifically,

E[K(x, x′)fi(x)fi(x
′)|x′ ∈ Ri]

= E[fi(x)fi(x
′)fi(x)fi(x

′)]

= 1.

SincePr(Ri) ≥ 1
2n , this implies that under distributionD,

K is a(0, 1, 1
2n)-good similarity function for allfi ∈ C.

Note 1: We can extend this argument to any classC of
small VC dimension. In particular, for any distributionD,
the classC has anǫ-coverCǫ of size(1/ǫ)O(d/ǫ), whered
is the VC-dimension ofC (Benedek & Itai, 1988). By The-
orem 14, we can have a(0, 1, 1/|Cǫ|)-good similarity func-
tion for the coverCǫ, which in turn implies an(ǫ, 1, 1/|Cǫ|)-
good similarity function for the original set (even in hinge
loss sinceγ = 1). Plugging in our bound on|Cǫ|, we get an
(ǫ, 1, ǫO(d/ǫ))-good similarity function forC. Thus, the la-
beled sample complexity we get for learning with similarity
functions is onlyO((d/ǫ) log(1/ǫ)), and again there is no
intrinsic loss in sample complexity bounds due to learning
with similarity functions.

Note 2: The need for the underlying distribution to be un-
concentrated stems from our use of this distribution for both
labeled and unlabeled data. We could further extend our
definition of “good similarity function” to allow for the un-
labeled pointsx′ to come from some other distributionD′

given apriori, such as the uniform distribution over the in-
stance spaceX . Now, the expectation overx′ and the prob-
ability mass ofR would both be with respect toD′, and the
generic learning algorithm would draw pointsx′

i from D′

rather thanD. In this case, we would only needD′ to be
unconcentrated, rather thanD.

We now prove our lower bound for margin-based learn-
ing with kernels.

Theorem 15 Let C be a class ofn pairwise uncorrelated
functions over distributionD. Then, there is no kernel that
for all f ∈ C is (ǫ, γ)-good in hinge-loss even forǫ = 0.5
andγ = 8/

√
n.

Proof: Let C = {f1, . . . , fn}. We begin with the basic
fourier setup (Linial et al., 1989; Mansour, 1994). Given
two functionsf andg, define〈f, g〉 = Ex[f(x)g(x)] to be
their correlation with respect to distributionD. (This is their
inner-product if we viewf as a vector whosejth coordinate

is f(xj)[D(xj)]
1/2). Because the functionsfi ∈ C are pair-

wise uncorrelated, we have〈fi, fj〉 = 0 for all i 6= j, and
because thefi are boolean functions we have〈fi, fi〉 = 1
for all i. Thus they form at least part of an orthonormal ba-
sis, and for any hypothesish (i.e. any mappingX → {±1})
we have

∑

fi∈C

〈h, fi〉2 ≤ 1.

So, this implies
∑

fi∈C

|〈h, fi〉| ≤
√

n.

or equivalently

Efi∈C |〈h, fi〉| ≤ 1/
√

n. (5.1)

In other words, for any hypothesish, if we pick the target
at random fromC, the expected magnitude of the correlation
betweenh and the target is at most1/

√
n.

We now consider the implications of having a good ker-
nel. Suppose for contradiction that there exists a kernelK
that is(0.5, γ)-good in hinge loss for everyfi ∈ C. What
we will show is this implies that for anyfi ∈ C, the ex-
pected value of|〈h, fi〉| for a randomlinear separatorh in
the φ-space is greater thanγ/8. If we can prove this, then
we are done because this implies there mustexistanh that
hasEfi∈C |〈h, f〉| > γ/8, which contradicts equation (5.1)
for γ = 8/

√
n.

So, we just have to prove the statement about random lin-
ear separators. Letw∗ denote the vector in theφ-space that
has hinge-loss at most0.5 at marginγ for target functionfi.
For any examplex, defineγx to be the margin ofφ(x) with
respect tow∗, and defineαx = sin−1(γx) to be the angular
margin ofφ(x) with respect tow∗.3 Now, consider choos-
ing a random vectorh in the φ-space, where we associate
h(x) = sign(h · φ(x)). Since we only care about the abso-
lute value|〈h, fi〉|, and since〈−h, fi〉 = −〈h, fi〉, it suffices
to show thatEh[〈h, fi〉 | h · w∗ ≥ 0] > γ/8. We do this as
follows.

First, for any examplex, we claim that:

Pr
h

[(h(x) 6= fi(x)|h · w∗ ≥ 0] = 1/2 − αx/π. (5.2)

This is because we look at the2-dimensional plane defined
byφ(x) andw∗, and consider the half-circle of‖h‖ = 1 such
thath ·w∗ ≥ 0, then (5.2) is the portion of the half-circle that
labelsφ(x) incorrectly. Thus, we have:

Eh[err(h)|h · w∗ ≥ 0] = Ex[1/2 − αx/π],

and so, using〈h, fi〉 = 1 − 2 err(h), we have:

Eh[〈h, fi〉 | h · w∗ ≥ 0] = 2Ex[αx]/π.

Finally, we just need to relate angular margin and hinge
loss: if Lx is the hinge-loss ofφ(x), then a crude bound on
αx is

αx ≥ γ(1 − (π/2)Lx).

3So,αx is a bit larger in magnitude thanγx. This works in our
favor when the margin is positive, and we just need to be careful
when the margin in negative.

293

Since we assumed thatEx[Lx] ≤ 0.5, we have:

Ex[αx] ≥ γ(1 − π/4).

Putting this together we get expected magnitude of correla-
tion of a random halfspace is at least2γ(1 − π/4)/π > γ/8
as desired, proving the theorem.

An example of a classC satisfying the above conditions
is the class of parity functions over{0, 1}lgn, which are pair-
wise uncorrelated with respect to the uniform distribution.
Note that the uniform distribution is1/|C|-unconcentrated,
and thus thereis a good similarity function. (In particular,
one could useK(xi, xj) = fj(xi)fj(xj), wherefj is the
parity function associated with indicator vectorxj .)

We can extend Theorem 15 to classes of large Statistical
Query dimension as well. In particular, the SQ-dimension
of a classC with respect to distributionD is the sized of
the largest set of functions{f1, f2, . . . , fd} ⊆ C such that
|〈fi, fj〉| ≤ 1/d3 for all i 6= j (Blum et al., 1994). In this
case, we just need to adjust the Fourier analysis part of the
argument to handle the fact that the functions may not be
completely uncorrelated.

Theorem 16 LetC be a class of functions of SQ-dimension
d with respect to distributionD. Then, there is no kernel that
for all f ∈ C is (ǫ, γ)-good in hinge-loss even forǫ = 0.5

andγ = 16/
√

d.

Proof: Let f1, . . . , fd bed functions inC such that|〈fi, fj〉|
≤ 1/d3 for all i 6= j. We can define an orthogonal set
of functionsf ′

1, f
′
2, . . . , f

′
d as follows: letf ′

1 = f1, f ′
2 =

f2 − f1〈f2, f1〉, and in general letf ′
i be the portion offi or-

thogonal to the space spanned byf1, . . . , fi−1. (That is,f ′
i =

fi − proj(fi, span(f1, . . . , fi−1)), where “proj” is orthogo-
nal projection.) Since thef ′

i are orthogonal and have length
at most 1, for any boolean functionh we have

∑

i 〈h, f ′
i〉

2 ≤
1 and thereforeEi|〈h, f ′

i〉| ≤ 1/
√

d. Finally, since〈fi, fj〉 ≤
1/d3 for all i 6= j, one can show this implies that|fi − f ′

i | ≤
1/d for all i. So,Ei|〈h, fi〉| ≤ 1/

√
d + 1/d ≤ 2/

√
d. The

rest of the argument in the proof of Theorem 15 now applies
with γ = 16/

√
d.

For example, the class of size-n decision trees over{0, 1}n

hasnΩ(log n) pairwise uncorrelated functions over the uni-
form distribution (in particular, any parity oflog n variables
can be written as ann-node decision tree). So, this means
we cannot have a kernel with margin1/poly(n) for all size-
n decision trees over{0, 1}n. However, wecanhave a simi-
larity function with margin1, though theτ parameter (which
controls running time) will be exponentially small.

6 Relation between kernels and similarity
functions

As is shown in the Appendix (Theorem 25), if a similarity
function K is indeed a kernel, and it is(ǫ, γ, τ)-good as a
similarity function (possibly in hinge-loss), than it is also
(ǫ, γ)-good as a kernel (respectively, in hinge loss). That
is, although the notion of a good similarity function is more
widely applicable, for those similarity functions that are pos-
itive semidefinite, a good similarity function is also a good

kernel. We now show the converse: if a kernel function is
good in the kernel sense, it is also good in the similarity
sense, though with some degradation of the margin. This
degradation is much smaller than the one incurred previously
by Balcan and Blum (2006) and Srebro (2007). Specifically,
we can show that ifK is a (0, γ)-good kernel, thenK is
(ǫ, γ2, ǫ)-good similarity function for anyǫ (formally, it is
(ǫ, γ2/c, ǫc)-good for somec ≤ 1).

To prove this relationship, we introduce an intermediate
notion of a good similarity function.

Definition 17 (Intermediate, Margin Violations) A similar-
ity functionK is astrongly (ǫ, γ, M)-good similarity func-
tion for a learning problemP if thereexistsa bounded weight-
ing functionw over X , w(x′) ∈ [0, M] for all x′ ∈ X ,
E[w] ≤ 1 such that at least a1 − ǫ probability mass of ex-
amplesx satisfy:

Ex′∼P [ℓ(x)ℓ(x′)w(x′)K(x, x′)] ≥ γ. (6.1)

Definition 18 (Intermediate, Hinge Loss) A similarity func-
tion K is a strongly (ǫ, γ, M)-good similarity function in
hinge lossfor a learning problemP if there exists a weight-
ing functionw(x′) ∈ [0, M] for all x′ ∈ X , E[w] ≤ 1 such
that

Ex

[

[1 − ℓ(x)g(x)/γ]+

]

≤ ǫ, (6.2)

whereg(x) = Ex′∼P [ℓ(x′)w(x′)K(x, x′)] is the similarity-
based prediction made usingw(·).

These intermediate definitions are closely related to our
main similarity function definitions: in particular, ifK is
a strongly(ǫ, γ, M)-good similarity function for a learning
problemP , then it is also an(ǫ, γ/c, c/M)-good similarity
function for someγ ≤ c ≤ 1.

Theorem 19 If K is a strongly(ǫ, γ, M)-good similarity func-
tion for a learning problemP , then there existsγ ≤ c ≤ 1
such thatK is a (ǫ, γ/c, c/M)-good similarity function for
P . If K is a strongly(ǫ, γ, M)-good similarity function in
hinge loss forP , then there existsγ ≤ c ≤ 1 such thatK is
a (ǫ, γ/c, c/M)-good similarity function forP .

Note that since our guarantees for(ǫ, γ, τ)-good similar-
ity functions depend onτ only throughγ2τ , a decrease in
τ and a proportional increase inγ (as whenc < 1 in The-
orem 19) only improves the guarantees. However, allowing
flexibility in this tradeoff will make the kernel-to-similarity
function translation much easier.
Proof: (of Theorem 19) First, dividew by M to scale its
range to[0, 1], so E[w] = c/M for somec ≤ 1 and the
margin is nowγ/M . Define random indicatorR(x′) to equal
1 with probabilityw(x′) and 0 with probability1 − w(x′),
so we have

τ = Prx′ [R(x′) = 1] = E[w] = c/M,

and we can rewrite (6.1) as

Ex′∼P,R[ℓ(x)ℓ(x′)R(x′)K(x, x′)] ≥ γ/M. (6.3)

Finally, divide both sides of (6.3) byτ = c/M , producing
the conditionalEx′ [ℓ(x)ℓ(x′)K(x, x′) | R(x′)] on the LHS

294

and a margin ofγ/c on the RHS. The case of hinge-loss is
identical.

We will now establish that a similarity functionK that is
good as a kernel, is also good as a similarity function in this
intermediate sense, and hence, by Theorem 19, also in our
original sense. We begin by considering goodness in hinge-
loss, and will return to margin violations at the end of the
Section.

Theorem 20 If K is (ǫ0, γ)-good kernel in hinge loss for
learning problem (with deterministic labels), then it is also a

strongly(ǫ0 + ǫ1,
γ2

1+ǫ0/2ǫ1
, 1

2ǫ1+ǫ0
)-good similarity in hinge

loss for the learning problem, for anyǫ1 > 0.

Proof: We initially only consider finite discrete distribu-
tions, where:

Pr(xi, yi) = pi (6.4)

for i = 1 . . . n, with
∑n

i=1 pi = 1 andxi 6= xj for i 6= j.
Let K be any kernel function that is(ǫ0, γ)-kernel good

in hinge loss. Letφ be the implied feature mapping and de-
noteφi = φ(xi). Consider the following weighted-SVM
quadratic optimization problem with regularization parame-
terC:

minimize
1

2
‖β‖2

+ C

n
∑

i=1

pi[1 − yi〈β, φi〉]+ (6.5)

The dual of this problem, with dual variablesαi, is:

maximize
∑

i

αi −
1

2

∑

ij

yiyjαiαjK(xi, xj)

subject to 0 ≤ αi ≤ Cpi

(6.6)

There is no duality gap, and furthermore the primal optimum
β∗ can be expressed in terms of the dual optimumα∗: β∗ =
∑

i α∗
i yiφi.

SinceK is (ǫ0, γ)-kernel-good in hinge-loss, there exists
a predictor‖β0‖ = 1 with average-hinge lossǫ0 relative to
marginγ. The primal optimumβ∗ of (6.5), being the opti-
mum solution, then satisfies:

1

2
‖β∗‖2

+ C
∑

i

pi[1 − yi〈β∗, φi〉]+ ≤

1

2

∥

∥

∥

∥

1

γ
β0

∥

∥

∥

∥

2

+ C
∑

i

pi[1 − yi

〈

1

γ
β0, φi

〉

]+

=
1

2γ2
+ CE

[

[1 − y

〈

1

γ
β0, φ(x)

〉

]+

]

=
1

2γ2
+ Cǫ0

(6.7)

Since both terms on the left hand side are non-negative, each
of them is bounded by the right hand side, and in particular:

C
∑

i

pi[1 − yi〈β∗, φi〉]+ ≤ 1

2γ2
+ Cǫ0 (6.8)

Dividing by C we get a bound on the average hinge-loss of
the predictorβ∗, relative to a margin of one:

E[[1 − y〈β∗, φ(x)〉]+] ≤ 1

2Cγ2
+ ǫ0 (6.9)

We now use the fact thatβ∗ can be written asβ∗ =
∑

i α∗
i yiφi with 0 ≤ α∗

i ≤ Cpi. Let us consider the weights

wi = w(xi) = α∗
i /(Api) ≤ 1 (6.10)

So,wi ≤ C
A andE[w] =

P

i
α∗

i

A . Furthermore, since we
have no duality gap we also have

∑

i

α∗
i − 1

2
‖β∗‖2

=
1

2
‖β∗‖2

+ C
∑

i

pi[1 − yi〈β∗, φi〉]+,

so
∑

i α∗
i ≤ 1

γ2 + Cǫ0.

So, we have for everyx, y:

yEx′,y′ [w(x′)y′K(x, x′)] = y
∑

i

piw(xi)yiK(x, xi)

= y
∑

i

piα
∗
i yiK(x, xi)/(Api)

= y
∑

i

α∗
i yi〈φi, φ(x)〉/A

= y〈β∗, φ(x)〉/A
Multiplying by A and using (6.9):

Ex,y[[1 − AyEx′,y′ [w(x′)y′K(x, x′)]]+] (6.11)

= Ex,y[[1 − y〈β∗, φ(x)〉]+] ≤ 1

2Cγ2
+ ǫ0

This holds for anyA andC such that
(

1
γ2 + Cǫ0

)

1
A ≤ 1,

and describes the average hinge-loss relative to margin1/A.
We also have the constraintC

A ≤ M . ChoosingM = 1
2ǫ1+ǫ0

,

A = 1+ǫ0/2ǫ1
γ2 , we setC = 1/(2ǫ1γ

2) and get an average
hinge-loss ofǫ0 + ǫ1,

Ex,y

[

[1 − yEx′,y′ [w(x′)y′K(x, x′)]/(2ǫ1γ
2)]+

]

≤ ǫ0+ǫ1
(6.12)

as desired.
This establishes that ifK is (ǫ0, γ)-good kernel in hinge

loss then it is also a strongly(ǫ0+ǫ1,
γ2

1+ǫ0/2ǫ1
, 1

2ǫ1+ǫ0
)-good

similarity in hinge loss, for anyǫ1 > 0, at least for finite
discrete distributions.

To extend the result also to non-discrete distributions, we
can consider the variational “infinite SVM” problem and ap-
ply the same arguments, as in (Srebro, 2007).

We can now use the hinge-loss correspondence to get a
similar result for the margin-violation definitions:

Theorem 21 If K is (ǫ0, γ)-good kernel for a learning prob-
lem (with deterministic labels), then it is also a strongly(ǫ0+
ǫ1, γ

2/2, 1
(1−ǫ0)ǫ1

-good similarity function for the learning
problem, for anyǫ1 > 0.

Proof: If K is (0, γ)-good as a kernel, it is also(0, γ) good
as a kernel in hinge loss, and we can apply Theorem 20 to
obtain thatK is also(ǫ0/2, γ1, τ1)-good, whereγ1 = γ2

andτ1 = 1/ǫ1. We can then bound the number of margin
violations atγ2 = γ1/2 by half the hinge loss at marginγ1

to obtain the desired result.

295

If K is only (ǫ, γ)-good as a kernel, we follow a similar
procedure to that described in (Srebro, 2007), and consider
a distribution conditioned only on those places where there
is no error. Returning to the original distribution, we must
scale the weights up by an amount proportional to the prob-
ability of the event we conditioned on (i.e. the probability of
no margin violation). This yields the desired bound.

7 Learning with Multiple Similarity
Functions

Suppose that rather than having a single similarity function,
we were instead givenn functionsK1, ..., Kn, and our hope
is that some convex combination of them will satisfy Defini-
tion 6. Is this sufficient to be able to learn well? (Note that
a convex combination of similarity functions is guaranteed
to have range[−1, 1] and so be a legal similarity function.)
The following generalization of Theorem 8 shows that this is
indeed the case. (The analog of Theorem 11 can be derived
similarly.)

Theorem 22 SupposeK1, . . . , Kn are similarity functions
such that some (unknown) convex combination of them is
(ǫ, γ, τ)-good. For anyδ > 0, let S = {x′

1, x
′
2, . . . , x

′
d}

be a sample of sized = 16 log(1/δ)
τγ2 drawn fromP . Consider

the mappingφS : X → R
nd defined as follows:φS

i(x) =
(K1(x, x′

1), . . . , Kn(x, x′
1), . . . , K1(x, x′

d), . . . , Kn(x, x′
d)).

With probability at least1 − δ over the random sample
S, the induced distributionφS(P) in Rnd has a separator of
error at mostǫ + δ at L1, L∞ margin at leastγ/2.

Proof: Let K = α1K1 + . . . + αnKn be an(ǫ, γ, τ)-good
convex-combination of theKi. By Theorem 8, had we in-
stead performed the mapping:φ̃S : X → Rd defined as

φ̃S(x) = (K(x, x′
1), . . . , K(x, x′

d)),

then with probability1 − δ, the induced distributioñφS(P)
in Rd would have a separator of error at mostǫ + δ at mar-
gin at leastγ/2. Let β̂ be the vector corresponding to such
a separator in that space. Now, let us convertβ̂ into a vec-
tor in Rnd by replacing each coordinatêβj with then values
(α1β̂j , . . . , αnβ̂j). Call the resulting vector̃β. Notice that

by design, for anyx we have
〈

β̃, φS(x)
〉

=
〈

β̂, φ̃S(x)
〉

.

Furthermore,
∥

∥

∥
β̃
∥

∥

∥

1
=

∥

∥

∥
β̂
∥

∥

∥

1
. Thus, the vector̃β under distri-

butionφS(P) has the same properties as the vectorβ̂ under
φ̃S(P). This implies the desired result.

Note that we get significantly better bounds here than
in (Balcan & Blum, 2006), since the margin does not drop
by a factor of 1√

n
.

8 Conclusions

We provide a new notion of a “good similarity function” that
we prove is strictly more powerful than the traditional notion
of a large-margin kernel. Our new notion relies uponL1

regularized learning, and our separation result is related to a

separation result between what is learnable withL1 vs. L2

regularization. In a lower bound of independent interest, we
show that ifC is a class ofn pairwise uncorrelated functions,
thennokernel is(ǫ, γ)-good in hinge-loss for allf ∈ C even
for ǫ = 0.5 andγ = 8/

√
n.

It would be interesting to explore whether the lower bound
could be extended to covermargin violationswith a constant
error rateǫ > 0 rather than only hinge-loss. In addition,
it would be particularly interesting to develop even broader
natural notions of good similarity functions, that allow for
functions that are not positive-semidefinite and yet provide
even better kernel-to-similarity translations (e.g., not squar-
ing the margin parameter).

Acknowledgments: We would like to thank Manfred War-
muth and Hans-Ulrich Simon for helpful discussions. This
work was supported in part by the National Science Foun-
dation under grant CCF-0514922, by an IBM Graduate Fel-
lowship, and by a Google Research Grant.

References
Arora, S., Babai, L., Stern, J., & Sweedyk, Z. (1997). The

hardness of approximate optima in lattices, codes, and sys-
tems of linear equations.Journal of Computer and System
Sciences, 54, 317 – 331.

Balcan, M.-F., & Blum, A. (2006). On a theory of learning
with similarity functions. Proceedings of the 23rd Inter-
national Conference on Machine Learning.

Bartlett, P. L., & Mendelson, S. (2003). Rademacher and
gaussian complexities: risk bounds and structural results.
J. Mach. Learn. Res., 3, 463–482.

Ben-David, S., Eiron, N., & Simon, H.-U. (2003). Limita-
tions of learning via embeddings in euclidean half-spaces.
The Journal of Machine Learning Research, 3, 441 – 461.

Benedek, G., & Itai, A. (1988). Learnability by fixed distri-
butions. Proc. 1st Workshop Computat. Learning Theory
(pp. 80–90).

Bennett, K. P., & Campbell, C. (2000). Support vector ma-
chines: hype or hallelujah?SIGKDD Explor. Newsl., 2,
1–13.

Blum, A., Furst, M., Jackson, J., Kearns, M., Mansour, Y., &
Rudich, S. (1994). Weakly learning DNF and characteriz-
ing statistical query learning using fourier analysis.Pro-
ceedings of the 26th Annual ACM Symposium on Theory
of Computing(pp. 253–262).

Chapelle, O., Schlkopf, B., & Zien, A. (2006).Semi-
supervised learning. MIT Press.

Feldman, V., Gopalan, P., Khot, S., & Ponnuswami, A.
(2006). New results for learning noisy parities and halfs-
paces.47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS)(pp. 563–574).

Forster, J., & Simon, H.-U. (2006). On the smallest pos-
sible dimension and the largest possible margin of linear
arrangements representing given concept classes.Theo-
retical Computer Science,350, 40–48.

296

Girosi, F. (1998). An equivalence between sparse approxi-
mation and support vector machines.Neural Comput., 10,
1455–1480.

Guigue, V., Rakotomamonjy, A., & Canu, S. (2005). Kernel
basis pursuit.Proceedings of the 16th European Confer-
ence on Machine Learning (ECML’05). Springer.

Gunn, S. R., & Kandola, J. S. (2002). Structural modelling
with sparse kernels.Mach. Learn., 48, 137–163.

Guruswami, V., & Raghavendra, P. (2006). Hardness of
learning halfspaces with noise.47th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS)(pp.
543–552).

Herbrich, R. (2002).Learning kernel classifiers. MIT Press,
Cambridge.

Linial, N., Mansour, Y., & Nisan, N. (1989). Constant
depth circuits, fourier transform, and learnability.Pro-
ceedings of the Thirtieth Annual Symposium on Founda-
tions of Computer Science(pp. 574–579). Research Tri-
angle Park, North Carolina.

Littlestone, N. (1989). From online to batch learning.Proc.
2nd Annual ACM Conference on Computational Learning
Theory(pp. 269–284).

Mansour, Y. (1994). Learning boolean functions via the
fourier transform. InTheoretical advances in neural com-
putation and learning, 391–424.

McAllester, D. (2003). Simplified pac-bayesian margin
bounds.Proceedings of the 16th Conference on Computa-
tional Learning Theory.

Mitchell, T. (2006). The discipline of machine learning.
CMU-ML-06 108.

Osuna, E. E., & Girosi, F. (1999). Reducing the run-time
complexity in support vector machines. InAdvances in
kernel methods: support vector learning, 271–283. Cam-
bridge, MA, USA: MIT Press.

Roth, V. (2001). Sparse kernel regressors.ICANN ’01:
Proceedings of the International Conference on Artificial
Neural Networks(pp. 339–346). London, UK: Springer-
Verlag.

Scholkopf, B., & Smola, A. J. (2002).Learning with ker-
nels. support vector machines, regularization, optimiza-
tion, and beyond. MIT University Press, Cambridge.

Scholkopf, B., Tsuda, K., & Vert, J.-P. (2004).Kernel meth-
ods in computational biology. MIT Press.

Shawe-Taylor, J., & Cristianini, N. (2004).Kernel methods
for pattern analysis. Cambridge University Press.

Singer, Y. (2000). Leveraged vector machines.Advances in
Neural International Proceedings System 12.

Smola, A. J., & Schölkopf, B. (2002).Learning with kernels.
MIT Press.

Srebro, N. (2007). How Good is a Kernel as a Similarity
Function.COLT.

Tipping, M. E. (2001). Sparse bayesian learning and the rel-
evance vector machine.J. Mach. Learn. Res., 1, 211–244.

Vincent, P., & Bengio, Y. (2002). Kernel matching pursuit.
Mach. Learn., 48, 165–187.

Warmuth, M. K., & Vishwanathan, S. V. N. (2005). Leav-
ing the span.Proceedings of the Annual Conference on
Learning Theory.

Zhang, T. (2002). Covering number bounds of certain reg-
ularized linear function classes.J. Mach. Learn. Res., 2,
527–550.

A Kernels and Similarity Functions

Theorem 23 If K is an (ǫ, γ)-good similarity function un-
der Definitions 4 and 5, thenK is also an(ǫ, γ, γ)-good
similarity function under Definitions 6 and 7, respectively.

Proof: If we setPr(R(x) | x) = w(x), we get that in order
for any pointx to fulfill equation (2.1), we must have

Pr(R(x)) = E[w(x)] ≥ E[ℓℓ′w(x′)K(x, x′)] ≥ γ.

Furthermore, for anyx, ℓ for which (2.1) is satisfied, we have

E[ℓℓ′K(x, x′)|R(x′)] = E[ℓℓ′K(x, x′)w(x′)]/ Pr(R(x))

≥ E[ℓℓ′K(x, x′)w(x′)] ≥ γ (A.1)

.

Theorem 24 If K is an(ǫ, γ, τ)-good similarity function un-
der Definitions 6 and 7, thenK is an(ǫ, γτ)-good similarity
function under Definitions 4 and 5 (respectively).

Proof: Settingw(x) = Pr(R(x) | x) we have for anyx, ℓ
satisfying (3.1) that

E[ℓℓ′K(x, x′)w(x′)] = E[ℓℓ′K(x, x′)R(x′)] =

E[ℓℓ′K(x, x′)|R(x′)] Pr(R(x′)) ≥ γτ. (A.2)

A similar calculation establishes the correspondence for the
hinge loss.

We show in the following that a kernel good as a similar-
ity function is also good as a kernel.

Theorem 25 If K is a valid kernel function, and is(ǫ, γ, τ)-
good similarity for some learning problem, then it is also
(ǫ, γ)-kernel-good for the learning problem. IfK is (ǫ, γ, τ)-
good similarity in hinge loss, then it is also(ǫ, γ)-kernel-
good in hinge loss.

Proof: Consider a similarity functionK that is a valid ker-
nel, i.e. K(x, x′) = 〈φ(x), φ(x′)〉 for some mappingφ of
x to a Hilbert spaceH. For any input distribution and any
probabilistic set of reasonable pointsR of the input we will
construct a linear predictorβw ∈ H, with ‖βw‖ ≤ 1, such
that similarity-based predictions usingR are the same as the
linear predictions made withβR.

297

Define the following linear predictorβR ∈ H:

βR = Ex′ [ℓ(x′)φ(x′)|R(x′)]. (A.3)

The predictorβw has norm at most:

‖βR‖ = ‖Ex′ [ℓ(x′)φ(x′)|R(x′)]‖ ≤ max
x′

‖ℓ(x′)φ(x′)‖

≤ max ‖φ(x′)‖ = max
√

K(x′, x′) ≤ 1 (A.4)

where the second inequality follows from|ℓ(x′)| ≤ 1.
The predictions made byβR are:

〈βR, φ(x)〉 = 〈Ex′ [ℓ(x′)φ(x′)|R(x′)], φ(x)〉 =

Ex′ [ℓ(x′)〈φ(x′), φ(x)〉|R(x′)] = Ex′ [ℓ(x′))K(x, x′)|R(x′)]
(A.5)

That is, usingβR is the same as using similarity-based pre-
diction with R. In particular, the margin violation rate, as
well as the hinge loss, with respect to any marginγ, is the
same for predictions made using eitherR or βR. This is
enough to establish Theorem 25: IfK is (ǫ, γ)-good (per-
haps for to the hinge-loss), there exists some validR that
yields margin violation error rate (resp. hinge loss) at mostǫ
with respect to marginγ, and soβR yields the same margin
violation (resp. hinge loss) with respect to the same mar-
gin, establishingK is (ǫ, γ)-kernel-good (resp. for the hinge
loss).

298

Geometric & Topological Representations of Maximum Classes
with Applications to Sample Compression

Benjamin I. P. Rubinstein1 and J. Hyam Rubinstein2

1 Computer Science Division, University of California, Berkeley, U.S.A.
2 Department of Mathematics & Statistics, the University of Melbourne, Australia

1 benr@cs.berkeley.edu, 2 rubin@ms.unimelb.edu.au

Abstract

We systematically investigate finite maximum
classes, which play an important role in machine
learning as concept classes meeting Sauer’s
Lemma with equality. Simple arrangements of hy-
perplanes in Hyperbolic space are shown to rep-
resent maximum classes, generalizing the corre-
sponding Euclidean result. We show that sweep-
ing a generic hyperplane across such arrangements
forms an unlabeled compression scheme of size
VC dimension and corresponds to a special case of
peeling the one-inclusion graph, resolving a con-
jecture of Kuzmin & Warmuth. A bijection be-
tween maximum classes and certain arrangements
of Piecewise-Linear (PL) hyperplanes in either a
ball or Euclidean space is established. Finally, we
show that d-maximum classes corresponding to PL
hyperplane arrangements in Rd have cubical com-
plexes homeomorphic to a d-ball, or equivalently
complexes that are manifolds with boundary.

1 Introduction
Maximum concept classes have the largest cardinality possi-
ble for their given VC dimension. Such classes are of partic-
ular interest as their special recursive structure underlies all
general sample compression schemes known to-date [Flo89,
War03, KW07]. It is this structure that admits many elegant
geometric and algebraic topological representations upon
which this paper focuses.

Littlestone & Warmuth [LW86] introduced the study of
sample compression schemes, defined as a pair of mappings
for given concept class C: a compression function mapping
a C-labeled n-sample to a subsequence of labeled exam-
ples and a reconstruction function mapping the subsequence
to a concept consistent with the entire n-sample. A com-
pression scheme of bounded size—the maximum cardinal-
ity of the subsequence image—was shown to imply learn-
ability [LW86]. The converse—that classes of VC dimen-
sion d admit compression schemes of size d—has become
one of the oldest unsolved problems actively pursued within
learning theory. Recently Kuzmin and Warmuth achieved
compression of maximum classes without the use of labels
[KW07]. They also conjectured that their elegant Min-

Peeling Algorithm constitutes such an unlabeled d-
compression scheme for d-maximum classes.

As in our previous work [RBR08], maximum classes can
be fruitfully viewed as cubical complexes. These are also
topological spaces, with each cube equipped with a natu-
ral topology of open sets from its standard embedding into
Euclidean space. We proved that d-maximum classes corre-
spond to d-contractible complexes—topological spaces with
an identity map homotopic to a constant map—extending the
result that 1-maximum classes have trees for one-inclusion
graphs. Peeling can be viewed as a special form of con-
tractibility for maximum classes. However, there are many
non-maximum contractible cubical complexes that cannot
be peeled, which demonstrates that peelability reflects more
detailed structure of maximum classes than given by con-
tractibility alone.

In this paper we approach peeling from the direction of
simple hyperplane arrangement representations of maximum
classes. Kuzmin & Warmuth predicted that d-maximum
classes corresponding to simple linear hyperplane arrange-
ments could be unlabeled d-compressed by sweeping a gen-
eric hyperplane across the arrangement, and that concepts are
min-peeled as their corresponding cell is swept away [KW07,
Conjecture 1]. We positively resolve the first part of the
conjecture and show that sweeping such arrangements cor-
responds to a new form of corner-peeling, which we prove is
distinct from min-peeling. While min-peeling removes min-
imum degree concepts from a one-inclusion graph, corner-
peeling peels vertices that are contained in unique cubes of
maximum dimension.

We explore simple hyperplane arrangements in Hyper-
bolic geometry, which we show correspond to a set of maxi-
mum classes, properly containing those represented by sim-
ple linear Euclidean arrangements. These classes can again
be corner-peeled by sweeping. Citing the proof of existence
of maximum unlabeled compression schemes presented in
[BDL98], Kuzmin & Warmuth ask whether unlabeled com-
pression schemes for infinite classes such as positive half
spaces can be constructed explicitly [KW07]. We present
constructions for illustrative but simpler classes, suggesting
that there are many interesting infinite maximum classes ad-
mitting explicit compression schemes, and under appropri-
ate conditions, sweeping infinite Euclidean and Hyperbolic
arrangements corresponds to compression by corner-peeling.

Next we prove that all maximum classes in {0, 1}n are
represented as simple arrangements of Piecewise-Linear (PL)

299

hyperplanes in the n-ball. This extends previous work on
viewing simple PL hyperplane arrangements as maximum
classes [GW94]., The close relationship between such ar-
rangements and their Hyperbolic versions suggests that they
could be equivalent. Although PL sweeping does not imme-
diately admit corner-peeling or compression, the PL repre-
sentation result is used to prove the peeling conjecture
[KW07, Conjecture 1] for VC dimension two.

We investigate algebraic topological properties of max-
imum classes. Most notably we characterize d-maximum
classes, corresponding to simple linear Euclidean arrange-
ments, as cubical complexes homeomorphic to the d-ball.
The result that such classes’ boundaries are homeomorphic
to the (d − 1)-sphere begins the study of the boundaries of
maximum classes, which are closely related to peeling.

Compressing maximal classes—classes which cannot be
grown without an increase to their VC dimension—is suffi-
cient for compressing all classes, as embedded classes triv-
ially inherit compression schemes of their super-classes. This
reasoning motivates the attempt to embed d-maximal classes
into O(d)-maximum classes [KW07, Open Problem 3]. We
present non-embeddability results following from our earlier
counter-examples to Kuzmin & Warmuth’s minimum degree
conjecture [RBR08] and our new results on corner-peeling.

2 Background
2.1 Algebraic Topology
Definition 1 A homeomorphism is a one-to-one and onto
map f between topological spaces such that both f and f−1

are continuous. Spaces X and Y are said to be homeomor-
phic if there exists a homeomorphism f : X → Y .

Definition 2 A homotopy is a continuous map F : X ×
[0, 1] → Y . The initial map is F restricted to X × {0}
and the final map is F restricted to X×{1}. We say that the
initial and final maps are homotopic. A homotopy equiva-
lence between spacesX and Y is a pair of maps f : X → Y
and g : Y → X such that f ◦ g and g ◦ f are homotopic to
the identity maps on X and Y respectively. We say that X
and Y have the same homotopy type if there is a homotopy
equivalence between them.

Definition 3 A cubical complex is a union of solid cubes of
the form [a1, b1]× . . .× [am, bm], for bounded m ∈ N, such
that the intersection of any two cubes in the complex is either
a cubical face of both cubes or the empty-set.

Definition 4 A contractible cubical complex X is one which
has the same homotopy type as a one point space {p}. X is
contractible if and only if the constant map from X to p is a
homotopy equivalence.

2.2 Concept Classes and their Learnability
A concept class C on domain X , is a subset of the power
set of set X or equivalently C ⊆ {0, 1}X . We primarily
consider finite domains and so will write C ⊆ {0, 1}n in the
sequel, where it is understood that n = |X| and the n dimen-
sions or colors are identified with an ordering {xi}ni=1 = X .

The one-inclusion graph G(C) of C ⊆ {0, 1}n is the
graph with vertex-set C and edge-set containing {u, v} ⊆ C

iff u and v differ on exactly one component [HLW94]; G(C)
forms the basis of a prediction strategy with essentially-
optimal worst-case expected risk. G(C) can be viewed as a
simplicial complex in Rn by filling in each face with a prod-
uct of continuous intervals [RBR08]. Each edge in G(C) is
labeled by the component on which the two vertices differ.

Probably Approximately Correct learnability of a con-
cept class C ⊆ {0, 1}X is characterized by the finiteness of
the Vapnik-Chervonenkis (VC) dimension of C [BEHW89].
One key to all such results is Sauer’s Lemma.

Definition 5 The VC-dimension of C ⊆ {0, 1}X is defined

as VC(C) = sup
{
n | ∃Y ∈

(
X
n

)
,ΠY (C) = {0, 1}n

}
where

ΠY (C) = {(c(x1), . . . , c(xn)) | c ∈ C} ⊆ {0, 1}n is the
projection of C on sequence Y = (x1, . . . , xn).

Lemma 6 ([VC71, Sau72, She72]) |C| ≤
∑VC(C)
i=1

(
n
i

)
for

all C ⊆ {0, 1}n.

Motivated by maximizing concept class cardinality under
a fixed VC-dimension, which is related to constructing gen-
eral sample compression schemes (see Section 2.3), Welzl
defined the following special classes in [Wel87].

Definition 7 Concept class C ⊆ {0, 1}X is called maximal
if VC(C ∪ {c}) > VC(C) for all c ∈ {0, 1}X\C. Fur-
thermore if ΠY (C) satisfies Sauer’s Lemma with equality for
each Y ∈

(
X
n

)
, for every n ∈ N, thenC is termed maximum.

If C ⊆ {0, 1}n then C is maximum (and hence maximal) if
C meets Sauer’s Lemma with equality.

The reduction of C ⊆ {0, 1}n with respect to i ∈ [n] =
{1, . . . , n} is class Ci = Π[n]\{i}

({
c ∈ C | i ∈ IG(C)(c)

})
where IG(C)(c) ⊆ [n] denotes the labels of the edges incident
to vertex c; the tail is taili (C) =

{
c ∈ C | i /∈ IG(C)(c)

}
.

Welzl showed that if C is d-maximum, then Π[n]\{i}(C) and
Ci are maximum of VC-dimensions d and d−1 respectively.

The results presented below relate to other geometric and
topological representations of maximum classes existing in
the literature. Under the guise of ‘forbidden labels’, Floyd
showed in [Flo89] that maximum C ⊆ {0, 1}n of VC-dim d
is the union of a maximally overlapping d-complete collec-
tion of cubes [RBR08]—defined as a collection of d-cubes
which project onto all (nd) possible sets of d coordinate di-
rections. (See also [Ney06] for a different proof of this.)
It has long been known that VC-1 maximum classes have
one-inclusion graphs that are trees [Dud85]; in [RBR08] we
extended this result by showing that when viewed as com-
plexes, d-maximum classes are contractible d-cubical com-
plexes. Finally the cells of a simple linear arrangement of
n hyperplanes in Rd form a VC-d maximum class in the n-
cube [Ede87], but not all finite maximum classes correspond
to such Euclidean arrangements [Flo89].

2.3 Sample Compression Schemes
Littlestone and Warmuth showed that the existence of a com-
pression scheme of finite size is sufficient for learnability
of C, and conjectured the converse, that VC(C) = d <
∞ implies a compression scheme of size d [LW86]. Later

300

Warmuth weakened the conjectured size to O(d) [War03].
To-date it is only known that maximum classes can be d-
compressed [Flo89]. Unlabeled compression was first ex-
plored in [BDL98]; Kuzmin and Warmuth define such com-
pression as follows, explicitly constructing schemes of size
d for maximum classes [KW07].

Definition 8 LetC be a d-maximum class on a finite domain
X . A representation mapping r of C satisfies:

1. r is a bijection between C and subsets of X of size at
most d; and

2. [non-clashing] : c| (r(c) ∪ r(c′)) 6= c′| (r(c) ∪ r(c′))
for all c, c′ ∈ C, c 6= c′.

As with all published labeled schemes, known unlabeled
compression schemes for maximum classes exploit their spe-
cial recursive projection-reduction structure and so it is doubt-
ful whether such schemes will generalize. Kuzmin and War-
muth conjectured that their Min-Peeling Algorithm consti-
tutes an unlabeled d-compression scheme for maximum
classes; it iteratively removes minimum degree vertices from
G(C), representing the corresponding concepts by the re-
maining incident dimensions in the graph [KW07, Conjec-
ture 2]. The authors also conjecture that sweeping a hy-
perplane in general position across a simple linear arrange-
ment forms a compression scheme that corresponds to min-
peeling the associated maximum class [KW07, Conjecture 1].
Possibly the most promising approach to compressing gen-
eral classes is via their maximum-embeddings: a classC em-
bedded in class C ′ trivially inherits any compression scheme
for C ′, and so an important open problem is to embed max-
imal classes into maximum classes with at most a linear in-
crease in VC-dimension [KW07, Open Problem 3].

3 Preliminaries
3.1 Constructing All Maximum Classes
The aim in this section is to describe an algorithm for con-
structing all maximum classes of VC dimension d in the n-
cube. This process can be viewed as the inverse of mapping a
maximum class to its d-maximum projection on [n]\{i} and
the corresponding (d− 1)-maximum reduction.

Definition 9 Let C,C ′ ⊆ {0, 1}n be maximum classes of
VC-dimensions d, d−1 respectively, so that C ′ ⊂ C, and let
C1, C2 ⊂ C be d-cubes, i.e. d-faces of the n-cube {0, 1}n.

1. C1, C2 are connected if there exists a path in the one-
inclusion graph G(C) with end-points in C1 and C2; and

2. C1, C2 are said to be C ′-connected if there exists such a
connecting path that further does not intersect C ′.

The C ′-connected components of C are the equivalence
classes of the d-cubes of C under the C ′-connectedness re-
lation.

The recursive algorithm for constructing all maximum
classes of VC-dimension d in the n-cube, detailed as Algo-
rithm 1, considers each possible d-maximum class C in the
(n−1)-cube and each possible (d−1)-maximum subclassC ′

Algorithm 1 MAXIMUMCLASSES(n, d)
Given: n ∈ N, d ∈ [n]
Returns: the set of d-maximum classes in {0, 1}n

1. if d = 0 then return {{v} | v ∈ {0, 1}n} ;
2. if d = n then return {0, 1}n ;
3. M← ∅ ;

for each C ∈ MAXIMUMCLASSES(n− 1, d),
C ′ ∈ MAXIMUMCLASSES(n− 1, d− 1)
s.t. C ′ ⊂ C do

4. {C1, . . . , Ck} ← C ′-connected components of C ;
5. M←M∪⋃

p∈{0,1}k

{
(C ′ × {0, 1}) ∪

⋃
q∈[k] Cq × {pq}

}
;

done
6. returnM ;

ofC as the projection and reduction of a d-maximum class in
the n-cube, respectively. The algorithm lifts C and C′ to all
possible maximum classes in the n-cube. Then C ′ × {0, 1}
is contained in each lifted class; so all that remains is to find
the tails from the complement of the reduction in the projec-
tion. It turns out that each C ′-connected component Ci of C
can be lifted to either Ci × {0} or Ci × {1} arbitrarily and
independently of how the other C ′-connected components
are lifted. The set of lifts equates to the set of d-maximum
classes in the n-cube that project-reduce to (C,C ′).

Lemma 10 MAXIMUMCLASSES(n, d) (cf. Algorithm 1) re-
turns the set of maximum classes of VC-dimension d in the
n-cube for all n ∈ N, d ∈ [n].

Proof: We proceed by induction on n and d. The base
cases correspond to n ∈ N, d ∈ {0, n} for which all max-
imum classes, enumerated as singletons in the n-cube and
the n-cube respectively, are correctly produced by the al-
gorithm. For the inductive step we assume that for n ∈
N, d ∈ [n − 1] all maximum classes of VC-dimension d
and d − 1 in the (n − 1)-cube are already known by recur-
sive calls to the algorithm. Given this, we will show that
MAXIMUMCLASSES(n, d) returns only d-maximum classes
in the n-cube, and that all such classes are produced by the
algorithm.

Let classesC ∈ MAXIMUMCLASSES(n−1, d) andC ′ ∈
MAXIMUMCLASSES(n − 1, d − 1) be such that C ′ ⊂ C.
Then C is the union of a d-complete collection and C ′ is
the union of a (d − 1)-complete collection of cubes that
are faces of the cubes of C. Consider a concept class C?
formed from C and C ′ by Algorithm 1. The algorithm par-
titions C into C ′-connected components C1, . . . , Ck each of
which is a union of d-cubes. While C ′ is lifted to C ′ ×
{0, 1}, some subset of the components {Ci}i∈S0 are lifted to
{Ci × {0}}i∈S0

while the remaining components are lifted
to {Ci × {1}}i/∈S0

. By definition C? is a d-complete collec-
tion of cubes with cardinality equal to (n

≤d) since |C?| =
|C ′| + |C|, as in [KW07]. So by [RBR08, Theorem 34] C?
is d-maximum.

If we now consider any d-maximum class C? ⊆ {0, 1}n,
its projection on [n]\{i} is a d-maximum classC ⊆ {0, 1}n−1

andC∗i is the (d−1)-maximum projectionC ′ ⊂ C of all the

301

d-cubes in C? which contain color i. It is thus clear that C?
must be obtained by lifting parts of the C ′-connected com-
ponents of C to the 1 level and the remainder to the 0 level,
and C ′ to C ′ × {0, 1}. We will now show that if the ver-
tices of each component are not lifted to the same levels,
then while the number of vertices in the lift match that of a
d-maximum class in the n-cube, the number of edges are too
few for such a maximum class. Define a lifting operator on
C as `(v) = {v} × `v , where `v ⊆ {0, 1} and

|`v| =
{

2 , if v ∈ C ′
1, if v ∈ C\C ′ .

Consider now an edge {u, v} in G(C). By the definition of a
C ′-connected component there exists some Cj such that ei-
ther u, v ∈ Cj\C ′, u, v ∈ C ′ or WLOG u ∈ Cj\C ′, v ∈ C ′.
In the first case `(u) ∪ `(v) is an edge in the lifted graph iff
`u = `v . In the second case `(u) ∪ `(v) contains four edges
and in the last it contains a single edge. Furthermore, it is
clear that this accounts for all edges in the lifted graph by
considering the projection of an edge in the lifted product.
Thus any lift other than those produced by Algorithm 1 in-
duces strictly too few edges for a d-maximum class in the
n-cube (cf. [KW07, Corollary 7.5]).

3.2 Corner-Peeling
Kuzmin and Warmuth conjectured in [KW07, Conjecture 2]
that their simple Min-Peeling procedure is a valid unlabeled
compression scheme for maximum classes. Beginning with
a concept class C0 = C ⊆ {0, 1}n, Min-Peeling operates by
iteratively removing a vertex vt of minimum-degree in G(Ct)
to produce the peeled class Ct+1 = Ct\{vt}. The concept
class corresponding to vt is then represented by the dimen-
sions of the edges incident to vt in G(Ct), IG(Ct)(vt) ⊆ [n].
Providing that no-clashing holds for the algorithm, the size
of the min-peeling scheme is the largest degree encountered
during peeling. Kuzmin and Warmuth predicted that this size
is always at most d for d-maximum classes. We explore these
questions for a related special case of peeling, where we pre-
scribe which vertex to peel at step t as follows.

Definition 11 Let C ⊆ {0, 1}n be a class with d = VC(C).
We say thatC can be corner-peeled if there exists an ordering
v1, . . . , v|C| of the vertices of C such that, for each t ∈ [|C|]
where C0 = C,

1. vt ∈ Ct−1 and Ct = Ct−1\{vt};
2. There exists a unique cubeC ′t−1 of maximum dimension

over all cubes in Ct−1 containing vt;
3. The neighbors Γ(vt) of vt in G(Ct−1) satisfy Γ(vt) ⊆
C ′t−1; and

4. C|C| = ∅.
The vt are termed the corner vertices of Ct−1 respectively.

Note that we do not constrain the cubes C ′t to be of non-
increasing dimension. It turns out that an important property
of maximum classes is invariant to this kind of peeling.

Definition 12 We call a class C ⊆ {0, 1}n shortest-path
closed if for any u, v ∈ C, G(C) contains a path connect-
ing u, v of length ‖u− v‖1.

Lemma 13 If C ⊆ {0, 1}n is shortest-path closed and v ∈
C is a corner vertex ofC, thenC\{v} is shortest-path closed.

Proof: Consider a shortest-path closed C ⊆ {0, 1}n. Let c
be a corner vertex of C, and denote the cube of maximum
dimension in C, containing c, by C ′. Consider {u, v} ⊆
C\{c}. By assumption there exists a u-v-path p of length
‖u− v‖1 contained in C. If c is not in p then p is contained
in the peeled product C\{c}. If c is in p then p must cross
C ′ such that there is another path of the same length which
avoids c, and thus C\{c} is shortest-path closed.

3.2.1 Corner-Peeling implies Compression
Theorem 14 If a maximum class C can be corner-peeled
then C can be d-unlabeled compressed.

Proof: The invariance of the shortest-path closed property
under corner-peeling is key. The corner-peeling unlabeled
compression scheme represents each vt ∈ C by r(vt) =
IG(Ct−1)(vt), the colors of the cube C ′t−1 which is deleted
from Ct−1 when vt is corner-peeled. We claim that any
two vertices vs, vt ∈ C have non-clashing representatives.
WLOG, suppose that s < t. The class Cs−1 must contain
a shortest vs-vt-path p. Let i be the color of the single edge
contained in p that is incident to vs. Color i appears once
in p, and is contained in r(vs). This implies that vs,i 6= vt,i
and that i ∈ r(vs) ∪ r(vt), and so vs| (r(vs) ∪ r(vt)) 6=
vt| (r(vs) ∪ r(vt)). By construction, r(·) is a bijection be-
tween C and all subsets of [n] of cardinality ≤ VC(C).

If the oriented one-inclusion graph, with each edge di-
rected away from the incident vertex represented by the edge’s
color, has no cycles, then that representation’s compression
scheme is termed acyclic [Flo89, BDL98, KW07].

Proposition 15 All corner-peeling unlabeled compression
schemes are acyclic.

Proof: We follow the proof that the Min-Peeling Algorithm
is acyclic [KW07]. Let v1, . . . , v|C| be a corner vertex order-
ing of C. As a corner vertex vt is peeled, its unoriented in-
cident edges are oriented away from vt. Thus all edges inci-
dent to v1 are oriented away from v1 and so the vertex cannot
take part in any cycle. For t > 1 assume Vt = {vs | s < t}
is disjoint from all cycles. Then vt cannot be contained in
a cycle, as all incoming edges into vt are incident to some
vertex in Vt. Thus the oriented G(C) is indeed acyclic.

3.3 Boundaries of Maximum Classes
We now turn to the geometric boundaries of maximum classes,
which are closely related to corner-peeling.

Definition 16 The boundary ∂C of a d-maximum class C is
defined as all the (d − 1)-subcubes which are the faces of a
single d-cube in C.

Maximum classes, when viewed as cubical complexes,
are analogous to soap films (an example of a minimal energy
surface encountered in nature), which are obtained when a
wire frame is dipped into a soap solution. Under this analogy
the boundary corresponds to the wire frame and the number

302

of d-cubes can be considered the area of the soap film. An
important property of the boundary of a maximum class is
that all lifted reductions meet the boundary multiple times.

Theorem 17 Every d-maximum class has boundary contain-
ing at least two (d− 1)-cubes of every combination of d− 1
colors, for all d > 1.

Proof: We use the lifting construction of Section 3.1. Let
C? ⊆ {0, 1}n be a 2-maximum class and consider color i ∈
[n]. Then the reduction C?i is an unrooted tree with at least
two leaves, each of which lifts to an i-colored edge in C?.
Since the leaves are of degree 1 in C?i, the corresponding
lifted edges belong to exactly one 2-cube in C? and so lie in
∂C?. Consider now a d-maximum class C? ⊆ {0, 1}n for
d > 2, and make the inductive assumption that the projection
C = Π[n−1](C?) has two of each type of (d − 1)-cube, and
that the reduction C ′ = C?n has two of each type of (d−2)-
cube, in their boundaries. Pick d−1 colors I ⊆ [n]. If n ∈ I
then consider two (d− 2)-cubes colored by I\{xn} in ∂C ′.
By the same argument as in the base case, these lift to two
I-colored cubes in ∂C?. If n /∈ I then ∂C contains two I-
colored (d−1)-cubes. For each cube, if the cube is contained
in C ′ then it has two lifts one of which is contained in ∂C?,
otherwise its unique lift is contained in ∂C?. Therefore ∂C?
contains at least two I-colored cubes.

Having a large boundary is an important property of max-
imum classes that does not follow from contractibility.

Example 18 Take a 2-simplex with vertices A,B,C. Glue
the edges AB to AC to form a cone. Next glue the end loop
BC to the edgeAB . The result is a complexD with a single
vertex, edge and 2-simplex, which is classically known as the
dunce hat. It is not hard to verify that D is contractible, but
has no (geometric) boundary.

Although Theorem 17 will not be explicitly used in the
sequel, we return to boundaries of maximum complexes later.

4 Euclidean Arrangements
Definition 19 A linear arrangement is a collection of n ≥
d oriented hyperplanes in Rd. Each region or cell in the
complement of the arrangement is naturally associated with
a concept in {0, 1}n; the side of the ith hyperplane on which
a cell falls determines the concept’s ith component. A simple
arrangement is one in which any subset of d planes has a
unique point in common and all subsets of d+ 1 planes have
an empty mutual intersection. Moreover any subset of k < d
planes meet in a plane of dimension n−k. Such a collection
of n planes is also said to be in general position.

Many of the familiar operations on concept classes in the
n-cube have elegant analogues on arrangements.

• Projection on [n]\{i} corresponds to removing the ith
plane;

• The reduction Ci is the new arrangement given by the
intersection of the arrangement with the ith plane; and

• The corresponding lifted reduction is the collection of
cells in the arrangement that adjoin the ith plane.

A k-cube in the one-inclusion graph corresponds to a collec-
tion of 2k cells, all having a common (n−k+1)-face, which
is contained in the intersection of k planes, and an edge cor-
responds to a pair of cells which have a common face on a
single plane. The following result is due to [Ede87].

Lemma 20 The concept class C ⊆ {0, 1}n induced by a
simple linear arrangement of n planes in Rd is d-maximum.

Proof: Note that C has VC-dimension at most d, since gen-
eral position is invariant to projection i.e. no d + 1 planes
are shattered. Since C is the union of a d-complete collec-
tion of cubes (every cell contains d-intersection points in its
boundary) it follows that C is d-maximum by [RBR08].

Corollary 21 LetA be a simple linear arrangement of n hy-
perplanes in Rd with corresponding d-maximumC ⊆ {0, 1}n.
The intersection ofA with a generic hyperplane corresponds
to a (d − 1)-maximum class C ′ ⊆ C. In particular if all
d-intersection points of A lie to one side of the generic hy-
perplane, then C ′ lies on the boundary of C; and ∂C is the
disjoint union of two (d− 1)-maximum sub-classes.

Proof: The intersection of A with a generic hyperplane is
again a simple arrangement of n hyperplanes but now in
Rd−1. Hence by Lemma 20 C ′ is a (d − 1)-maximum class
in the n-cube. C ′ ⊆ C since the adjacency relationships on
the cells of the intersection are inherited from those of A.

Suppose that all d-intersections inA lie in one half-space
of the generic hyperplane. C ′ is the union of a (d − 1)-
complete collection. We claim that each of these (d − 1)-
cubes is a face of exactly one d-cube in C and is thus in
∂C. A (d − 1)-cube in C ′ corresponds to a line in A where
d − 1 planes mutually intersect. The (d − 1)-cube is a face
of a d-cube in C iff this line is further intersected by a dth

plane. This occurs for exactly one plane, which is closest
to the generic hyperplane. For once the d-intersection point
is reached, when following along the line away from the
generic plane, a new cell is entered. This verifies the sec-
ond part of the result.

Consider two parallel generic hyperplanes h1, h2 such
that all d-intersection points of A lie in between them. We
claim that each (d − 1)-cube in ∂C is in exactly one of the
concept classes induced by the intersection of A with h1 and
A with h2. Consider an arbitrary (d − 1)-cube in ∂C. As
before this cube corresponds to a region of a line formed by
a mutual intersection of d − 1 planes. Moreover this region
is a ray, with one end-point at a d-intersection. Because the
ray begins at a point between the generic hyperplanes h1, h2,
it follows that the ray must cross exactly one of these.

Corollary 22 LetA be a simple linear arrangement of n hy-
perplanes in Rd and let C ⊆ {0, 1}n be the corresponding
d-maximum class. Then C considered as a cubical complex
is homeomorphic to the d-ball Bd; and ∂C considered as a
(d − 1)-cubical complex is homeomorphic to the (d − 1)-
sphere Sd−1.

303

x1 x2 x3 x4

v0 0 0 0 0
v1 1 0 0 0
v2 0 1 0 0
v3 0 0 1 0
v4 1 0 1 0
v5 1 1 0 0
v6 0 1 1 0
v7 1 0 0 1
v8 1 1 0 1
v9 0 1 0 1
v10 0 1 1 1

Figure 1: A 2-maximum class in
{0, 1}4 having a simple linear line ar-
rangement in R2.

Figure 2: The 2-maximum class in the
4-cube, enumerated in Figure 1.

Figure 3: A simple linear line arrange-
ment corresponding to the class in Fig-
ure 1, swept by the dashed line. Each
cell has a unique vertex.

Proof: We construct a Voronoi cell decomposition corre-
sponding to the set of d-intersection points inside a very large
ball in Euclidean space. By induction on d, we claim that this
is a cubical complex and the vertices and edges correspond
to the class C. By induction, on each hyperplane, the in-
duced arrangement has a Voronoi cell decomposition which
is a (d− 1)-cubical complex with edges and vertices match-
ing the one-inclusion graph for the tail ofC corresponding to
the label associated with the hyperplane. It is not hard to see
that the Voronoi cell defined by a d-intersection point p on
this hyperplane is a d-cube. In fact, its (d − 1)-faces corre-
spond to the Voronoi cells for p, on each of the d hyperplanes
passing through p. We also see that this d-cube has a single
vertex in the interior of each of the 2d cells of the arrange-
ment adjacent to p. In this way, it follows that the vertices of
this Voronoi cell decomposition are in bijective correspon-
dence to the cells of the hyperplane arrangement. Finally the
edges of the Voronoi cells pass through the faces in the hy-
perplanes. So these correspond bijectively to the edges of C,
as there is one edge for each face of the hyperplanes. Us-
ing a very large ball, containing all the d-intersection points,
the boundary faces become spherical cells. In fact, these
form a spherical Voronoi cell decomposition, so it is easy
to replace these by linear ones by taking the convex hull of
their vertices. So a piecewise linear cubical complex C is
constructed, which has one-skeleton (graph consisting of all
vertices and edges) isomorphic to the one-inclusion graph for
C.

Finally we want to prove that C is homeomorphic to Bd.
This is quite easy by construction. For we see that C is ob-
tained by dividing upBd into Voronoi cells and replacing the
spherical boundary cells by linear ones, using convex hulls
of the boundary vertices. This process is clearly given by a
homeomorphism by projection. In fact, the homeomorphism
preserves the PL-structure so is a PL homeomorphism.

The following example demonstrates that not all maxi-
mum classes of VC-dimension d are homeomorphic to the
d-ball. The key to such examples is branching.

Example 23 A simple linear arrangement in R corresponds

to points on the line—cells are simply intervals between these
points and so corresponding 1-maximum classes are sticks.
Any tree that is not a stick can therefore not be represented
as a simple linear arrangement in R and is also not homeo-
morphic to the 1-ball which is simply the interval [−1, 1].

As in Kuzmin & Warmuth [KW07], consider a generic
hyperplane h sweeping across a simple linear arrangement
A. h begins with all d-intersection points of A lying in its
positive half-spaceH+. The concept corresponding to cell c
is peeled fromC when |H+∩c| = 1, i.e. h crosses the last d-
intersection point adjoining c. At any step in the process, the
result of peeling j vertices from C to reach Cj , is captured
by the arrangementH+ ∩A for the appropriate h.

Example 24 Figure 1 enumerates the 11 vertices of a 2-
maximum class in the 4-cube. Figures 3 and 2 display a
hyperplane arrangement in Euclidean space and its Voronoi
cell decomposition, corresponding to this maximum class.
In this case, sweeping the vertical dashed line across the
arrangement corresponds to a partial corner-peeling of the
concept class with peeling sequence v7, v8, v5, v9, v2, v0.
What remains is the 1-maximum stick {v1, v3, v4, v6, v10}.

Next we resolve the first half of [KW07, Conjecture 1].

Theorem 25 Any d-maximum classC ⊆ {0, 1}n correspond-
ing to a simple linear arrangement A can be corner-peeled
by sweeping A, and this process is a valid unlabeled com-
pression scheme for C of size d.

Proof: We must show that as the jth d-intersection point pj
is crossed, there is a corner vertex of Cj−1 peeled away. It
then follows that sweeping a generic hyperplane h across A
corresponds to corner-peeling C to a (d− 1)-maximum sub-
class C ′ ⊆ ∂C by Corollary 21. Moreover C ′ corresponds
to a simple linear arrangement of n hyperplanes in Rd−1.

We proceed by induction on d, noting that for d = 1
corner-peeling is trivial. Consider h as it approaches the jth

d-intersection point pj . The d planes defining this point in-
tersect h in a simple arrangement of hyperplanes on h. There

304

is a compact cell ∆ for the arrangement on h, which is a d-
simplex1 and shrinks to a point as h passes through pj . We
claim that the cell c for the arrangement A, whose intersec-
tion with h is ∆, is a corner vertex vj of Cj−1. Consider the
lines formed by intersections of d − 1 of the d hyperplanes,
passing through pj . Each is a segment starting at pj and
ending at h without passing through any other d-intersection
points. So all faces of hyperplanes adjacent to c meet h in
faces of ∆. Thus, there are no edges in Cj−1 starting at
the vertex corresponding to pj , except for those in the cube
C ′j−1. So c corresponds to a corner vertex vj of the d-cube
C ′j−1 in Cj−1. Finally, just after the simplex is a point, c is
no longer inH+ and so vj is corner-peeled from Cj−1.

Theorem 14 completes the proof that this corner-peeling
of C constitutes unlabeled compression.

Corollary 26 The sequence of cubes C ′0, . . . , C
′
|C|, removed

when corner-peeling by sweeping simple linear arrangements,
is of non-increasing dimension. In fact, there are

(
n
d

)
cubes

of dimension d, then
(
n
d−1

)
cubes of dimension d− 1, etc.

While corner-peeling and min-peeling share some prop-
erties in common, they are distinct procedures.

Example 27 Consider sweeping a simple linear arrange-
ment corresponding to a 2-maximum class. After all but
one 2-intersection point has been swept, the corresponding
corner-peeled class Ct is the union of a single 2-cube with a
1-maximum stick. Min-peeling applied to Ct would first peel
a leaf, while corner-peeling must begin with the 2-cube.

The next result follows from our counter-examples to
Kuzmin & Warmuth’s minimum degree conjecture [RBR08].

Corollary 28 There is no constant c so that all maximal
classes of VC dimension d can be embedded into maximum
classes corresponding to simple hyperplane arrangements of
dimension d+ c.

5 Hyperbolic Arrangements
We briefly discuss the Klein model of hyperbolic geome-
try [Rat94, pg. 7]. Consider the open unit ball Hk in Rk.
Geodesics (lines of shortest length in the geometry) are given
by intersections of straight lines in Rk with the unit ball.
Similarly planes of any dimension between 2 and k − 1 are
given by intersections of such planes in Rk with the unit
ball. Note that such planes are completely determined by
their spheres of intersection with the unit sphere Sk−1, which
is called the ideal boundary of hyperbolic space Hk. Note
that in the appropriate metric, the ideal boundary consists of
points which are infinitely far from all points in the interior
of the unit ball.

We can now see immediately that a simple hyperplane
arrangement in Hk can be described by taking a simple hy-
perplane arrangement in Rk and intersecting it with the unit
ball. However we require an important additional property
to mimic the Euclidean case. Namely we add the constraint

1A topological simplex—the convex hull of affinely indepen-
dent d + 1 points in Rd.

that every subcollection of d of the hyperplanes in Hk has
mutual intersection points inside Hk, and that no (d + 1)-
intersection point lies in Hk. We need this requirement to
obtain that the resulting class is maximum.

Definition 29 A simple hyperbolic d-arrangement is a col-
lection of n hyperplanes in Hk with the property that ev-
ery sub-collection of d hyperplanes mutually intersect in a
(k − d)-dimensional hyperbolic plane, and that every sub-
collection of d + 1 hyperplanes mutually intersect as the
empty set.

Corollary 30 The concept class C corresponding to a sim-
ple d-arrangement of hyperbolic hyperplanes in Hk is d-
maximum in the k-cube.

Proof: The result follows by the same argument as before.
Projection cannot shatter any (d+ 1)-cube and the class is a
complete union of d-cubes, so is d-maximum.

The key to why hyperbolic arrangements represent many
new maximum classes is that they allow flexibility of choos-
ing d and k independently. This is significant because the
unit ball can be chosen to miss much of the intersections of
the hyperplanes in Euclidean space. Note that the new max-
imum classes are embedded in maximum classes induced by
arrangements of linear hyperplanes in Euclidean space.

A simple example is any 1-maximum class. It is easy
to see that this can be realized in the hyperbolic plane by
choosing an appropriate family of lines and the unit ball in
the appropriate position. In fact, we can choose sets of pairs
of points on the unit circle, which will be the intersections
with our lines. So long as these pairs of points have the prop-
erty that the smaller arcs of the circle between them are dis-
joint, the lines will not cross inside the disk and the desired
1-maximum class will be represented.

Corner-peeling maximum classes represented by hyper-
bolic hyperplane arrangements proceeds by sweeping, just
as in the Euclidean case. Note first that intersections of the
hyperplanes of the arrangement with the moving hyperplane
appear precisely when there is a first intersection at the ideal
boundary. Thus it is necessary to slightly perturb the col-
lection of hyperplanes to ensure that only one new intersec-
tion with the moving hyperplane occurs at any time. Note
also that new intersections of the sweeping hyperplane with
the various lower dimensional planes of intersection between
the hyperplanes appear similarly at the ideal boundary. The
important claim to check is that the intersection at the ideal
boundary between the moving hyperplane and a lower di-
mensional plane, consisting entirely of d intersection points,
corresponds to a corner-peeling move. We include two ex-
amples to illustrate the validity of this plane.

Example 31 In the case of a 1-maximum class coming from
disjoint lines in H2, a cell can disappear when the sweeping
hyperplane meets a line at an ideal point. This cell is indeed
a vertex of the tree, i.e. a corner-vertex.

Example 32 Assume that we have a family of planes in the
unit ball which meet in pairs in single lines, but there are no
triple points of intersection, corresponding to a 2-maximum
class. A corner-peeling move occurs when a region bounded

305

(a) (b)

Figure 4: 2-maximum classes in {0, 1}4 that can be repre-
sented as hyperbolic arrangements but not as Euclidean ar-
rangements.

(a) (b)

Figure 5: Hyperbolic hyperplane arrangements correspond-
ing to the classes in Figure 4. In both cases the four hyper-
bolic planes meet in 6 straight line segments (not shown). The
planes’ colors correspond to the edges’ colors in Figure 4.

by two half disks and an interval disappears, in the positive
half space bounded by the sweeping hyperplane. Such a re-
gion can be visualized by taking a slice out of an orange.
Note that the final point of contact between the hyperplane
and the region is at the end of a line of intersection between
two planes on the ideal boundary.

We next observe that sweeping by generic hyperbolic hy-
perplanes induces corner-peeling of the corresponding max-
imum class, extending Theorem 25. As the generic hyper-
plane sweeps across hyperbolic space, not only do swept
cells correspond to corners of d-cubes but also to corners
of lower dimensional cubes as well. Moreover, the order
of the dimensions of the cubes which are corner-peeled can
be arbitrary—lower dimensional cubes may be corner-peeled
before all the higher dimensional cubes are corner-peeled.
This is in contrast to Euclidean sweepouts (cf. Corollary 26).
Similar to Euclidean sweepouts, hyperbolic sweepouts cor-
respond to corner-peeling and not min-peeling.

Theorem 33 Any d-maximum classC ⊆ {0, 1}n correspond-
ing to a simple hyperbolic d-arrangement A can be corner-
peeled by sweeping A with a generic hyperbolic hyperplane.

Proof: We follow the same strategy of the proof of Theo-
rem 25. For sweeping in hyperbolic space Hk, the generic
hyperplane h is initialized as tangent to Hk. As h is swept
across Hk, new intersections appear withA just after hmeets
the non-empty intersection of a subset of hyperplanes of A
with the ideal boundary. Each d-cube C ′ in C still corre-
sponds to the cells adjacent to the intersection IC′ of d hy-
perplanes. But now IC′ is a (k − d)-dimensional hyperbolic
hyperplane. A cell c adjacent to IC′ is corner-peeled pre-
cisely when h last intersects c at a point of IC′ at the ideal
boundary. As for simple linear arrangements, the general
position of A∪ {h} ensures that corner-peeling events never
occur simultaneously. For the case k = d+1, as for the sim-
ple linear arrangements just prior to the corner-peeling of c,
H+ ∩ c is homeomorphic to a k-simplex with a missing face
on the ideal boundary. And so as in the simple linear case,
this d-intersection point corresponds to a corner d-cube. In
the case k > d + 1, H+ ∩ c becomes a simplex as before

multiplied by Rk−d−1. If k = d, then the main difference is
just before corner-peeling of c,H+∩c is homeomorphic to a
k-simplex which may be either closed or with a missing face
on the ideal boundary. The rest of the argument remains the
same, except for one important observation.

Although swept corners in hyperbolic arrangements can
be of cubes of differing dimensions, these dimensions never
exceed d and so the proof that sweeping simple linear ar-
rangements induces d-compression schemes is still valid.

Example 34 Constructed with lifting, Figure 4 completes
the enumeration, up to symmetry, of the 2-maximum classes
in {0, 1}4 begun with Example 24. These cases cannot be
represented as simple Euclidean linear arrangements, since
their boundaries do not satisfy the condition of Corollary 22
but can be represented as hyperbolic arrangements as in
Figure 5. Figures 6 and 7 display the sweeping of a gen-
eral hyperplane across the former arrangement and the cor-
responding corner-peeling. Notice that the corner-peeled
cubes’ dimensions decrease and then increase.

Corollary 35 There is no constant c so that all maximal
classes of VC dimension d can be embedded into maximum
classes corresponding to simple hyperbolic hyperplane ar-
rangements of VC dimension d+ c.

This result follows from our counter-examples to Kuzmin
& Warmuth’s minimum degree conjecture [RBR08].

Corollary 30 gives a proper superset of simple linear hy-
perplane arrangement-induced maximum classes as hyper-
bolic arrangements. We will prove in the next section that
all maximum classes can be represented as PL hyperplane
arrangements in a ball. These are the topological analogue
of hyperbolic hyperplane arrangements. If the boundary of
the ball is removed, then we obtain an arrangement of PL
hyperplanes in Euclidean space.

6 Infinite Euclidean and Hyperbolic
Arrangements

We consider a simple example of an infinite maximum class
which admits corner-peeling and a compression scheme anal-
ogous to those of previous sections.

306

Figure 6: The simple hyperbolic arrangement of Figure 5.(a)
with a generic sweeping hyperplane shown in several posi-
tions before and after it sweeps past four cells.

Figure 7: The 2-maximum class in {0, 1}4 of Figure 4.(a),
with the first four corner-vertices peeled by the hyperbolic
arrangement sweeping of Figure 6. Notice that three 2-cubes
are peeled, then a 1-cube (all shown) followed by 2-cubes.

Example 36 Let L be the set of lines in the plane of the
form L2m = {(x, y) | x = 2m} and L2n+1 = {(x, y) |
y = 2n} for m,n ∈ N. Let v00, v0n, vm0, and vmn be the
cells bounded by the lines {L2, L3}, {L2, L2n+1, L2n+3},
{L2m, L2m+2, L3}, and {L2m, L2m+2, L2n+1, L2n+3}, re-
spectively. Then the cubical complex C, with vertices vmn,
can be corner-peeled and hence compressed, using a sweep-
out by the lines {(x, y) | x+(1+ ε)y = t} for t ≥ 0 and any
small fixed irrational ε > 0. C is a 2-maximum class and the
unlabeled compression scheme is also of size 2.

To verify the properties of this example, notice that sweep-
ing as specified corresponds to corner-peeling the vertex v00,
then the vertices v10, v01, then the remaining vertices vmn in
order of increasing m + n. The lines x + (1 + ε)y = t
are generic as they pass through only one intersection point
of L at a time. Additionally, representing v00 by ∅, v0n by
{L2n+1}, vm0 by {L2m} and vmn by {L2m, L2n+1} consti-
tutes a valid unlabeled compression scheme. Note that the
compression scheme is associated with sweeping across the
arrangement in the direction of decreasing t. This is neces-
sary to pick up the boundary vertices of C last in the sweep-

out process, so that they have either singleton representatives
or the empty set. In this way, as in [KW07], we obtain a
compression scheme so that every labeled sample of size 2
is associated with a unique concept in C, which is consistent
with the sample. On the other hand to obtain corner-peeling,
we need the sweepout to proceed with t increasing so that
we can begin at the boundary vertices of C.

In concluding this brief discussion, we note that many in-
finite collections of simple hyperbolic hyperplanes and Eu-
clidean hyperplanes can also be corner-peeled and compress-
ed, even if intersection points and cells accumulate. However
a key requirement in the Euclidean case is that the concept
class C has a non-empty boundary, when considered as a cu-
bical complex. An easy approach is to assume that all the
d-intersections of the arrangement lie in a half-space. More-
over, since the boundary must also admit corner-peeling, we
require more conditions, similar to having all the intersection
points lying in an octant.

Example 37 In R3, choose the family of planes P of the
form P3n+i = {x ∈ R3 | xi+1 = 1 − 1/n} for n ≥ 1 and
i ∈ {0, 1, 2}. A corner-peeling scheme is induced by sweep-
ing a generic plane {x ∈ R3 | x1 + αx2 + βx3 = t} across
the arrangement, where t is a parameter and 1, α, β are al-
gebraically independent and α, β are both close to 1. This
example has similar properties to Example 36: the compres-
sion scheme is again given by decreasing t whereas corner-
peeling corresponds to increasing t. Note that cells shrink to
points, as x→ 1 and the volume of cells converge to zero as
n→∞, or equivalently any xi → 1.

Example 38 In the hyperbolic plane H2, choose the family
of lines L given by L2n = {(x, y) | x = 1 − 1/n} and
L2n+1 = {(x, y) | x + ny = 1}, for n ≥ 1. This arrange-
ment has corner-peeling and compression schemes given by
sweeping across L using the generic line {y = t}.

7 Piecewise-Linear Arrangements
A PL hyperplane is the image of a proper piecewise-linear
homeomorphism from the (k − 1)-ball Bk−1 into Bk, i.e.
the inverse image of Sk is Sk−1 [RS82]. A simple PL d-
arrangement is an arrangement of n PL hyperplanes such
that every subcollection of j hyperplanes meet transversely
in a (k − j)-dimensional PL plane for 2 ≤ j ≤ d and every
subcollection of d+ 1 hyperplanes are disjoint.

7.1 Maximum Classes are Represented by Simple PL
Hyperplane Arrangements

Our aim is to prove the following theorem by a series of
steps.

Theorem 39 Every d-maximum class C ⊆ {0, 1}n can be
represented by a simple arrangement of PL hyperplanes in
an n-ball. Moreover the corresponding simple arrangement
of PL hyperspheres in the (n− 1)-sphere also represents C,
so long as n > d+ 1.

7.1.1 Embedding a d-Maximum Cubical Complex in
the n-cube into an n-ball.

We begin with a d-maximum cubical complex C ⊆ {0, 1}n
embedded into [0, 1]n. This gives a natural embedding of C

307

Figure 8: A 1-maximum class (thick
solid lines) with its fattening (thin solid
lines with points), bisecting sets (dashed
lines) and induced complementary cells.

Figure 9: The top of Figure 4.(b) (i.e.
the 2-cubes seen from above) gives part
of the boundary of a regular neighbor-
hood in R3.

Figure 10: The bottom of Figure 4.(b)
(i.e. the 2-cubes seen from below) gives
the rest of the boundary of a regular
neighborhood.

into Rn. Take a small regular neighborhood N of C so that
the boundary ∂N of N will be a closed manifold of dimen-
sion n − 1. Note that N is contractible because it collapses
onto C and so ∂N is a homology (n− 1)-sphere (by a stan-
dard, well-known argument from topology [Maz61]). Our
aim is to prove that ∂N is an (n − 1)-sphere and N is an
n-ball. There are two ways of proving this: show that ∂N is
simply connected and invoke the well-known solution to the
generalised Poincaré conjecture [Sma61], or use the cubical
structure of the n-cube andC to directly prove the result. We
adopt the latter approach, although the former works fine.
The advantage of the latter is that it produces the required
hyperplane arrangement, not just the structures of ∂N and
N .

7.1.2 Bisecting Sets
For each color i, there is a hyperplane Pi in Rn consisting
of all vectors with ith coordinate equal to 1/2. We can easily
arrange the choice of regular neighborhood N of C so that
Ni = Pi∩N is a regular neighborhood of C ∩Pi in Pi. (We
call Ni a bisecting set as it intersects C along the ‘center’
of the reduction in the ith coordinate direction, see Figure 8.)
But then since C ∩Pi is a cubical complex corresponding to
the reduction Ci, by induction on n, we can assert thatNi is
an (n − 1)-ball. Similarly the intersections Ni ∩ Nj can be
arranged to be regular neighborhoods of (d − 2)-maximum
classes and are also balls of dimension n − 2, etc. In this
way, we see that if we can show thatN is an n-ball, then the
induction step will be satisfied and we will have produced a
PL hyperplane arrangement in a ball.

7.1.3 Shifting
To complete the induction step, we use the technique of shift-
ing, [Alo83], [Fra83], [Hau95]. In our situation, this can
be viewed as the converse of lifting. Namely if a color i is
chosen, then the cubical complex C has a lifted reduction C ′
consisting of all d-cubes containing the ith color. By shifting,
we can move down any of the lifted components, obtained by
splitting C open along C ′, from the level xi = 1 to the level
xi = 0, to form a new cubical complex C?. We claim that
the regular neighborhood of C is a ball if and only if the
same is true for C?. But this is quite straightforward, since
the operation of shifting can be thought of as sliding com-
ponents of C, split open along C ′, continuously from level
xi = 1 to xi = 0. So there is an isotopy of the attaching
maps of the components onto the lifted reduction, using the
product structure of the latter. It is easy then to check that

this does not affect the homeomorphism type of the regular
neighborhood and so the claim of shift invariance is proved.

But repeated shifting finishes with the downwards closed
maximum class consisting of all vertices in the n-cube with
at most d coordinates being one and the remaining coordi-
nates all being zero. It is easy to see that the corresponding
cubical complex C̃ is star-like, i.e. contains all the straight
line segments from the origin to any point in C̃. If we choose
a regular neighborhood Ñ to also be star-like, then it is obvi-
ous that Ñ is an n-ball. Hence our induction is complete and
we have shown that any d-maximum class in {0, 1}n can be
represented by a family of PL hyperplanes in the n-ball.

7.1.4 Ideal Boundary
To complete the proof of Theorem 39, let ∂N = Sn−1 de-
note the boundary of the n-ball N constructed above (cf.
Figures 9 and 10). Each PL hyperplane intersects this sphere
in a PL hypersphere of dimension n− 2. It remains to show
this arrangement of hyperspheres gives the same cubical com-
plex as C, unless n = d+ 1.

Suppose that n > d + 1. Then it is easy to see that each
cell c in the complement of the PL hyperplane arrangement
inN has part of its boundary on the ideal boundary ∂N . Let
∂c = ∂c+ ∪ ∂c−, where ∂c+ is the intersection of c with the
ideal boundary and ∂c− is the closure of ∂c \ ∂c+.

It is now straightforward to verify that the face structure
of ∂c+ is equivalent to the face structure of ∂c−. Note that
any family of at most d PL hyperplanes meet in a ball prop-
erly embedded in N . Since n > d + 1, the smallest dimen-
sion of such a ball is two, and hence its boundary is con-
nected. Then ∂c− has faces which are balls obtained in this
way of dimension varying between n − d and n − 1. Each
of these faces has boundary a sphere which is a face of ∂c+.
So this establishes a bijection between the faces of ∂c+ and
those of ∂c−. It is easy to check that the cubical complexes
corresponding to the PL hyperplanes and to the PL hyper-
spheres are the same.

Note that if n = d + 1, then any d-maximum class C ⊆
{0, 1}d+1 is obtained by taking all the d-faces of the (d+1)-
cube which contain a particular vertex. So C is a d-ball and
the ideal boundary of N is a d-sphere. The cubical complex
associated with the ideal boundary is the double 2C of C,
i.e. two copies of C glued together along their boundaries.
The proof of Theorem 39 is now complete.

Example 40 Consider the bounded below 2-maximum class
C̃ ⊆ {0, 1}5. We claim that C̃ cannot be realized as an ar-

308

rangement of PL hyperplanes in the 3-ball B3. Note that
our method gives C̃ as an arrangement in B5 and this exam-
ple shows that B4 is the best one might hope for in terms of
dimension of the hyperplane arrangement.

For suppose that C̃ could be realized by any PL hyper-
plane arrangement in B3. Then clearly we can also embed
C̃ into B3. The vertex v0 = {0}5 has link given by the
complete graph K on 5 vertices in C̃. (By link, we mean the
intersection of the boundary of a small ball inB3 centered at
v0 with C̃.) But as is well known,K is not planar, i.e. cannot
be embedded into the plane or 2-sphere. This contradiction
shows that no such arrangement is possible.

7.2 Maximum Classes with Manifold Cubical
Complexes

We prove a partial converse to Corollary 22: if a d-maximum
class has a ball as cubical complex, then it can always be
realized by a simple PL hyperplane arrangement in Rd.

Theorem 41 Suppose that C ⊆ {0, 1}n is a d-maximum
class. Then the following properties of C, considered as a
cubical complex, are equivalent:

(i) There is a simple arrangement A of n PL hyperplanes
in Rd which represents C.

(ii) C is homeomorphic to the d-ball.
(iii) C is a d-manifold with boundary.

Proof: To prove (i) implies (ii), we can use exactly the same
argument as Corollary 22. Next (ii) trivially implies (iii). So
it remains to show that (iii) implies (i). The proof proceeds
by double induction on n, d. The initial cases where either
d = 1 or n = 1 are very easy.

Assume that C is a manifold. Let p denote the ith co-
ordinate projection. Then p(C) is obtained by collapsing
C ′i × [0, 1] onto Ci, where C ′ is the reduction. As before,
let Pi be the linear hyperplane in Rn, where the ith coordi-
nate takes value 1/2. Viewing C as a manifold embedded
in the n-cube, since Pi intersects C transversely, we see that
Ci × {1/2} is a proper submanifold of C. But it is easy to
check that collapsing Ci × [0, 1] to Ci in C produces a new
manifold which is again homeomorphic to C. (The product
region Ci × [0, 1] in C can be expanded to a larger product
region and so collapsing shrinks the larger region to one of
the same homeomorphism type). So we conclude that the
projection p(C) is also a manifold. By induction on n, it fol-
lows that there is a PL hyperplane arrangementA, consisting
of n− 1 PL hyperplanes in Bd, which represents p(C).

Next, observe that the reduction Ci can be viewed as a
properly embedded submanifold M in Bd, where M is a
union of some of the (d− 1)-dimensional faces of the Voro-
noi cell decomposition corresponding toA, described in Cor-
ollary 22. By induction on d, we conclude that Ci is also
represented by n PL hyperplanes in Bd−1. But then since
condition (i) implies (ii), it follows that M is PL homeomor-
phic toBd−1, since the underlying cubical complex for Ci is
a (d−1)-ball. So it follows thatA∪{M} is a PL hyperplane
arrangement inBd representing C. This completes the proof
that condition (iii) implies (i).

8 Corner-Peeling 2-Maximum Classes
Theorem 42 Every 2-maximum class can be corner-peeled.

Proof: By Theorem 39, we can represent any 2-maximum
class C ⊆ {0, 1}n by a simple family of hyperspheres {Si}
in Sn−1. Every pair of hyperspheres Si, Sj intersects in an
(n − 3)-sphere Sij and there are no intersection points be-
tween any three of these hyperspheres. Consider the family
of spheres Sij , for i fixed. These are disjoint hyperspheres
in Si so we can choose an innermost one Sik which bounds
an (n− 2)-ball B1 in Si not containing any other of these
spheres. Moreover there are two balls B2, B3 bounded by
Sik on Sk. We call the two (n − 1)-balls Q2, Q3 bounded
by B1 ∪ B2, B1 ∪ B3 respectively in Sn−1, which intersect
only along B1, quadrants .

Assume B2 is innermost on Sk. Then the quadrant Q2

has both faces B1, B2 innermost. It is easy to see that such
a quadrant corresponds to a corner vertex in C which can
be peeled. Moreover, after peeling, we still have a family
of PL hyperspheres which give an arrangement correspond-
ing to the new peeled class. The only difference is that cell
Q2 disappears, by interchanging B1, B2 on the correspond-
ing spheres Si, Sk and then slightly pulling the faces apart.
(If n = 3, we can visualize a pair of disks on two intersect-
ing spheres with a common boundary circle. Then peeling
can be viewed as moving these two disks until they coincide
and then pulling first past the second). So it is clear that if
we can repeatedly show that a quadrant can be found with
two innermost faces, until all the intersections between the
hyperspheres have been removed, then we will have corner-
peeled C to a 1-maximum class, i.e. a tree. So peeling will
be established.

Suppose neither of the two quadrants Q2, Q3 has both
faces innermost. ConsiderQ2 say and let {Sα} be the family
of spheres intersecting the interior of the face B2. Amongst
these spheres, there is clearly at least one Sβ so that the in-
tersection Skβ is innermost on Sk. But then Skβ bounds an
innermost ball B4 in Sk whose interior is disjoint from all
the spheres {Sα}. Similarly, we see that Skβ bounds a ball
B5 which is the intersection of the sphere Sβ with the quad-
rant Q2. We get a new quadrant bounded by B4 ∪B5 which
is strictly smaller than Q2 and has at least one innermost
face. But clearly this process must terminate—we cannot
keep finding smaller and smaller quadrants and so a smallest
one must have both faces innermost.

9 Conclusions and Open Problems
We saw in Corollary 22 that d-maximum classes represented
by simple linear hyperplane arrangements in Rd have under-
lying cubical complexes that are homeomorphic to a d-ball.
Hence the VC dimension and the dimension of the cubical
complex are the same. Moreover in Theorem 41, we proved
that d-maximum classes represented by PL hyperplane ar-
rangements in Rd are those whose underlying cubical com-
plexes are manifolds or equivalently d-balls.

Question 43 Does every simple PL hyperplane arrangement
in Bd, where every subcollection of d planes transversely
meet in a point, represent the same concept class as some
simple linear hyperplane arrangement?

309

Question 44 What is the connection between the VC dimen-
sion of a maximum class induced by a simple hyperbolic hy-
perplane arrangement and the smallest dimension of hyper-
bolic space containing such an arrangement? In particular,
can the hyperbolic space dimension be chosen to only de-
pend on the VC dimension and not the dimension of the bi-
nary cube containing the class?

We gave an example of a 2-maximum class in the 5-
cube that cannot be realized as a hyperbolic hyperplane ar-
rangement in H3. Note that the Whitney embedding theo-
rem [RS82] proves that any cubical complex of dimension
d embeds in R2d. Can such an embedding be used to con-
struct a hyperbolic arrangement inH2d or a PL arrangement
in R2d?

The structure of the boundary of a maximum class is
strongly related to corner-peeling. For Euclidean hyperplane
arrangements, the boundary of the corresponding maximum
class is homeomorphic to a sphere by Corollaries 21 and 22.

Question 45 Is there a characterization of the cubical com-
plexes that can occur as the boundary of a maximum class?
Characterize maximum classes with isomorphic boundaries.

Question 46 Does a corner-peeling scheme exist with cor-
ner vertex sequence having minimum degree?

Theorem 39 suggests the following.

Question 47 Can any d-maximum class in {0, 1}n be repre-
sented by a simple arrangement of hyperplanes in Hn?

Question 48 Which compression schemes arise from sweep-
ing across simple hyperbolic hyperplane arrangements?

Kuzmin & Warmuth note that there are unlabeled com-
pression schemes that are cyclic [KW07]. In Proposition 15
we show that corner-peeling compression schemes (like min-
peeling) are acyclic. So compression schemes arising from
sweeping across simple arrangements of hyperplanes in Eu-
clidean or Hyperbolic space are also acyclic. Does acyclicity
characterize such compression schemes?

Acknowledgments: We thank Peter Bartlett and the first
anonymous referee for their very helpful feedback.

References
[Alo83] N. Alon. On the density of sets of vectors. Dis-

crete Math., 46(2):199–202, 1983.
[BDL98] S. Ben-David and A. Litman. Combi-

natorial variability of Vapnik-Chervonenkis
classes with applications to sample compres-
sion schemes. Discrete Applied Math., 86(1):3–
25, 1998.

[BEHW89] A. Blumer, A. Ehrenfeucht, D. Haussler, and
M.K. Warmuth. Learnability and the Vapnik-
Chervonenkis dimension. Journal of the ACM,
36(4):929–965, 1989.

[Dud85] R.M. Dudley. The structure of some Vapnik-
Chervonenkis classes. In L.M. Le Cam and
R.A. Olshen, editors, Proceedings of the Berke-
ley Conference in Honor of Jerzy Neyman, vol-
ume II, pages 495–507. Wadsworth, 1985.

[Ede87] H. Edelsbrunner. Algorithms in Combinatorial
Geometry, volume 10 of EATCS Monographs
on Theoretical Computer Science. Springer-
Verlag, 1987.

[Flo89] S. Floyd. Space-bounded learning and the
Vapnik-Chervonenkis dimension. Technical
Report TR-89-061, ICSI, UC Berkeley, 1989.

[Fra83] P. Frankl. On the trace of finite sets. Journal of
Comb. Theory (A), 34(1):41–45, 1983.

[GW94] B. Gärtner and E. Welzl. Vapnik-Chervonenkis
dimension and (pseudo-) hyperplane arrange-
ments. Discrete and Comp. Geometry, 12:399–
432, 1994.

[Hau95] D. Haussler. Sphere packing numbers for
subsets of the boolean n-cube with bounded
Vapnik-Chervonenkis dimension. Journal of
Comb. Theory (A), 69:217–232, 1995.

[HLW94] D. Haussler, N. Littlestone, and M.K. War-
muth. Predicting {0, 1} functions on randomly
drawn points. Information and Computation,
115(2):284–293, 1994.

[KW07] D. Kuzmin and M.K. Warmuth. Unla-
beled compression schemes for maximum
classes. Journal of Machine Learning Research,
8(Sep):2047–2081, 2007.

[LW86] N. Littlestone and M.K. Warmuth. Relating
data compression and learnability. Unpublished
manuscript, 1986.

[Maz61] B. Mazur. A note on some contractible 4-
manifolds. Annals of Math., 73:221–228, 1961.

[Ney06] T. Neylon. Sparse Solutions for Linear Predic-
tion Problems. PhD thesis, NYU, 2006.

[Rat94] J. G. Ratcliffe. Foundations of Hyperbolic Man-
ifolds. Springer-Verlag, 1994.

[RBR08] B. I. P. Rubinstein, P. L. Bartlett, and J. H.
Rubinstein. Shifting: one-inclusion mistake
bounds and sample compression. Journal of
Computer and System Sciences: Special Issue
on Learning Theory 2006, 2008. in press.

[RS82] C. Rourke and B. Sanderson. Introduction to
Piecewise-Linear Topology. Springer-Verlag,
1982.

[Sau72] N. Sauer. On the density of families of sets.
Journal of Comb. Th. (A), 13:145–147, 1972.

[She72] S. Shelah. A combinatorial problem; stability
and order for models and theories in infinitary
languages. Pacific Journal of Math., 41(1):247–
261, 1972.

[Sma61] S. Smale. Generalized Poincaré conjecture in
dimensions greater than four. Annals of Math.,
74:391–406, 1961.

[VC71] V. N. Vapnik and A. Y. Chervonenkis. On the
uniform convergence of relative frequencies of
events to their probabilities. Theory of Prob.
and its Applic., 16(2):264–280, 1971.

[War03] M.K. Warmuth. Compressing to VC dimension
many points. In Proceedings of the 16th Annual
Conference on Learning Theory, 2003.

[Wel87] E. Welzl. Complete range spaces. Unpublished
notes, 1987.

310

On the Equivalence of Weak Learnability and Linear Separability:
New Relaxations and Efficient Boosting Algorithms

Shai Shalev-Shwartz
Toyota Technological Institute, Chicago, USA

SHAI@TTI-C.ORG

Yoram Singer
Google, Mountain View, USA

SINGER@GOOGLE.COM

Abstract

Boosting algorithms build highly accurate pre-
diction mechanisms from a collection of low-
accuracy predictors. To do so, they employ the
notion of weak-learnability. The starting point of
this paper is a proof which shows that weak learn-
ability is equivalent to linear separability withℓ1
margin. While this equivalence is a direct conse-
quence of von Neumann’s minimax theorem, we
derive the equivalence directly using Fenchel du-
ality. We then use our derivation to describe a
family of relaxations to the weak-learnability as-
sumption that readily translates to a family of re-
laxations of linear separability with margin. This
alternative perspective sheds new light on known
soft-margin boosting algorithms and also enables
us to derive several new relaxations of the no-
tion of linear separability. Last, we describe and
analyze an efficient boosting framework that can
be used for minimizing the loss functions derived
from our family of relaxations. In particular, we
obtain efficient boosting algorithms for maximiz-
ing hard and soft versions of theℓ1 margin.

1 Introduction

Boosting is a popular and successful method for building
highly accurate predictors from a set of low-accuracy base
predictors. For an overview see for example [FS99, Sch03,
MR03]. The first boosting algorithm was used for showing
the equivalence between weak learnability and strong learn-
ability [Sch90]. Weak learnability means that for any distri-
bution over a set of examples there exists a single feature,
also referred to as weak hypothesis, that performs slightly
better than random guessing. Schapire [Sch90] was the first
to show that if the weak learnability assumption holds then
it is possible to construct a highly accurate classifier, to the
point that it perfectly classifies all the examples in the train-
ing set. This highly accurate classifier is obtained by taking
the sign of a weighted combination of weak hypotheses. Put
another way, [Sch90] showed that if the weak learnability as-
sumption holds then the set of examples is linearly separable.

Studying the generalization properties of the AdaBoost
algorithm, Schapire et al. [SFBL97] showed that AdaBoost

in fact finds a linear separator with a large margin. How-
ever, AdaBoost does not converge to the max margin so-
lution [RW05, RSD07]. Interestingly, the equivalence be-
tween weak learnability and linear separability is not only
qualitative but also quantitative: weak learnability with edge
γ is equivalent to linear separability with anℓ1 margin of
γ. We give a precise statement and a simple proof of the
equivalence in Thm. 4. We note that the equivalence can be
also derived from von Neumann’s minimax theorem [vN28].
Nevertheless, our proof is instructive and serves as a building
block for the derivation of our main results.

Since the weak learnability assumption is equivalent to
linear separability, it implies that the weak-learnability as-
sumption is non-realistic due to its high sensitivity to even
small amounts of label noise. For example, assume that we
have a dataset that is perfectly separable with a large margin
with the exception of two examples. These two examples
share the same instance but attain opposite labels. Since such
a dataset is non-separable, the weak learnability assumption
fails to hold as well. To cope with this problem, we must
somehow relax the weak learnability, which is equivalent to
relaxing the linear separability assumption. In this paper
we propose a family of relaxations of the linear separabil-
ity assumption, which stems from the equivalence of weak-
learnability and linear-separability. The guiding tool is to
first define a natural family of relaxations of the weak learn-
ability assumption, and then analyze its implication on the
separability assumption.

In addition to our analysis and relaxations outline above,
we also propose and analyze an algorithmic framework for
boosting that efficiently solve the problems derived from our
family of relaxations. The algorithm finds anǫ accurate
solution after performing at mostO(log(m)/ǫ2) iterations,
wherem is the number of training examples. The number
of iterations upper bounds the number of different weak-
hypotheses constituting the solution. Therefore, we cast a
natural trade-off between the desired accuracy level,ǫ, of
the (possibly relaxed) margin attained by the weight vector
learned by the boosting algorithm, and the sparseness of the
resulting predictor. In particular, we obtain new algorithms
for maximizing the hard and softℓ1 margin. We also provide
anO(m log(m)) procedure for entropic projections ontoℓ∞
balls. Combined with this procedure, the total complexity
of each iteration of our algorithm for minimizing the softℓ1
margin is almost the same as the complexity of each iteration

311

of AdaBoost, assuming that the complexity of each activa-
tion of the weak learning algorithm requiresΩ(m) time.

Related Work As mentioned above, the equivalence be-
tween weak learnability and linear separability withℓ1 mar-
gin is a direct consequence of von Neumann’s minimax the-
orem in game theory [vN28]. Freund and Schapire [FS96]
were the first to use von Neumann’s result to draw a con-
nection between weak learnability and separability. They
showed that if the weak learnability assumption holds then
the data is linearly separable. The exact quantification of the
weak learnability parameter and theℓ1 margin parameter was
spelled out later in [RW05].

Schapire et al. [SFBL97] showed that the AdaBoost al-
gorithm finds a large margin solution. However, as pointed
out by [RW05, RSD07], AdaBoost does not converge to the
max margin solution. Ratsch and Warmuth [RW05] sug-
gested an algorithm called AdaBoost∗ which converges to
the maximal margin solution inO(log(m)/ǫ2) iterations.
The family of algorithms we propose in this paper entertains
the same convergence properties. Rudin et al. [RSD07] pro-
vided a more accurate analysis of the margin attained by Ad-
aBoost and also presented algorithms for achieving the max-
margin solution. However, their algorithm may takeO(1/ǫ3)
iterations to find anǫ accurate predictor.

The above algorithms are effective when the data is lin-
early separable. Over the years, many boosting algorithms
were suggested for non-separable datasets. We list here few
examples. The LogLoss Boost algorithm [CSS02] tries to
minimize the cumulative logistic loss, which is less sensi-
tive to noise. MadaBoost [DW00] is another example of an
algorithm that copes with non-separability. It does so by
capping from the above the importance weights produced
by the boosting algorithm. MadaBoost shares similarities
with some of the relaxations presented in this paper. How-
ever, MadaBoost does not exploit the aforementioned equiv-
alence and has a convergence rate that seems to be inferior
to the rate obtained by the relaxations we consider in this
paper. Another notable example for a boosting algorithm
that works well in the non-separable case and is noise toler-
ant is the BrownBoost algorithm [Fre01]. BrownBoost uses
the error-function (erf) as a margin-based loss function. The
error-function reaches an asymptote when its input (margin
in the context of BrownBoost) tends to−∞. It thus consti-
tutes a robust alternative to a convex loss function, includ-
ing the LogLoss function. Since the error function is non-
convex, all the results presented in this paper are not applica-
ble to BrownBoost. In the support vector machine literature,
the common relaxation of the separability assumption is ob-
tained by using the hinge-loss (see for example [CST00]).
Warmuth, Glocer and Ratsch [WGR07] recently proposed
the SoftBoost algorithm that directly minimizes the hinge-
loss function. The relaxation described in [WGR07] is a
special case of the family of relaxations we present in this
paper. The SoftBoost algorithm also builds on the idea of re-
laxing the weak learnability assumption by capping the max-
imal weight of a single example. A similar idea was also
used by the SmoothBoost algorithm [Ser03]. Our presen-
tation leads to an interesting perspective on this relaxation,
showing that maximizing the margin while minimizing the
hinge-loss is equivalent to maximizing the average margin

of thek examples with the worst margin. This equivalence is
also implied from the work presented in [WGR07]. More im-
portantly, in this paper we present a much simple algorithm
which does not employ a convex optimization procedure on
each round of boosting. Our approach stands in contrast to
the algorithm of [WGR07], which requires “totally correc-
tive” updates (see also [WLR06]) and needs to solve a rather
complex optimization problem on each iteration.

The family of boosting algorithms we derive is reminis-
cent of the boosting algorithm proposed by Zhang [Zha03].
However, our analysis is different and allows us to: (i) pro-
vide an analytic solution for the step size; (ii) tackle com-
plicated loss functions, including cases when the loss func-
tion does not take an explicit form. Our analysis stems
from the primal-dual view of online convex programming
[SSS06a, SSS07, SS07] and also borrows ideas from the
analysis given in [SVL07]. The main difference between our
analysis and that of [SVL07, Zha03] is that we do not impose
any assumption on the second order derivatives of the objec-
tive function. Instead, we rely on a duality argument and
require a strongly convex assumption on the Fenchel conju-
gate of the loss function. As we show, in many interesting
cases, it is simple to verify that our assumption holds, while
it is very complex to analyze the second order derivatives of
the loss function in hand.

Throughout this paper, we focus on the analysis of the
empirical loss over the training set. There has been exten-
sive work on obtaining generalization bounds for boosting
algorithms and for margin-based hypotheses. We refer the
reader for example to [SFBL97, MBB98, KPL01]. A com-
plimentary question, left out of the scope of this paper, is
whether the equivalence between weak learnability and lin-
ear separability with margin can be exploited for obtaining
improved generalization bounds.

2 Notation and basic definitions

Let (x1, y1), . . . , (xm, ym) be a sequence ofm examples,
where for alli, xi ∈ X andyi ∈ {+1,−1}. LetH be a set
of base hypotheses, namely, eachh ∈ H is a function from
X into [+1,−1]. For simplicity, we assume thatH is finite
and thusH = {h1, . . . , hn}. LetA be a matrix of sizem×n
over[+1,−1] where the(i, j) entry ofA isAi,j = yi hj(xi).
We note that boosting algorithms solely use the matrixA and
do not directly work with the set of examples. Therefore,
throughout the rest of the paper we focus on the properties
of the matrixA.

We denote column vectors with bold face letters, e.g.d

andw, and use the notationd†,w† for denoting their corre-
sponding row vectors. The inner product between vectors is
denoted by〈d,w〉 = d

†
w. We denote byA† the transpose

of the matrixA. The vector obtained by multiplying a matrix
A with a vectord is designated asAd and itsith element as
(Ad)i.

The set of non-negative real numbers is denoted asR+

and the set of integers{1, . . . , n} as[n]. Them dimensional
probability simplex is denoted bySm = {d ∈ R

m
+ : ‖d‖1 =

1}. We denote them dimensionalℓ1 ball of radiusr by
B

m
1 (r) = {w ∈ R

m : ‖w‖1 ≤ r}. For the unitℓ1 ball,
we often omitr and use the shorthandBm

1 . Similarly, we
denote them dimensionalℓp ball by B

m
p (r) = {w ∈ R

m :

312

‖w‖p ≤ r} and again omitr whenever it is equals to1.

Definition 1 (separability with ℓ1 margin γ) A matrixA is
linearly separable withℓ1 marginγ if there existsw ∈ B

n
1

such thatmini∈[m](Aw)i ≥ γ, andγ is the largest scalar
that satisfies the above inequality, namely,

γ = max
w∈Bn

1

min
i∈[m]

(Aw)i .

Definition 2 (γ-weak-learnability) A matrix A is γ-weak-
learnable if for all d ∈ S

m there existsj ∈ [n] such that
|(d†A)j | ≥ γ, andγ is the largest scalar that satisfies the
above. Namely,

γ = min
d∈Sm

max
j∈[n]

|(d†A)j | .

We next give a few basic definitions from convex anal-
ysis. A setS ⊂ R

n is convex if for any two vectors
d1,d2 in S, all the line betweend1 and d2 is also inS,
that is, {αd1 + (1 − α)d2 : α ∈ [0, 1]} ⊆ S. A func-
tion f : S → R is closed and convex if for any scalarr,
the level set{d : f(d) ≤ r} is closed and convex. We al-
low functions to output+∞ and denote bydom(f) the set
{d : f(d) < +∞}. The core of a setC ∈ R

n, denoted
core(C), is the set of all points inx ∈ C such that for all
d ∈ R

n there existsτ ′ > 0 for which for all τ ∈ [0, τ ′]
we havex + τd ∈ C. The Fenchel conjugate of a function
f : S → R is defined as

f⋆(θ) = max
d∈S

〈d,θ〉 − f(d) . (1)

If f is closed and convex thenf⋆⋆ = f .
Our derivation makes an extensive use of the following

theorem.

Theorem 3 (Fenchel Duality: Theorem 3.3.5 in [BL06])
Let f : R

m → R ∪ {∞} and g : R
n :→ R ∪ {∞} be

two closed and convex functions and letA be a matrix of
dimensionm× n. Then,

max
w

−f⋆(−Aw)− g⋆(w) ≤ min
d

f(d) + g(d†A) .

The above holds with equality if in addition we have

0 ∈ core
(

dom(g)−A†dom(f)
)

.

We denote an arbitrary norm by‖ · ‖ and its dual norm
by ‖ · ‖⋆. That is,

‖w‖⋆ = max
d:‖d‖≤1

〈w,d〉 .

Two dual norms that we extensively use are‖w‖1 =
∑

i |wi|
and‖w‖∞ = maxi |wi|.

For a setC, we denote byIC(d) the indicator function of
C, that is,IC(d) = 0 if d ∈ C and otherwiseIC(d) = ∞.
The definition of‖w‖⋆ implies that the Fenchel conjugate of
IC(d) whereC = {d : ‖d‖ ≤ 1}, is the function‖ · ‖⋆.
To conclude this section, we would like to point the reader to
Table 1 which summarizes our notations.

Table 1: Summary of notations.

x,x† column vector and its transpose
〈x,v〉 inner product(= x

†
v)

A matrix of sizem × n
S

m m dimensional probability simplex
B

m
p (ν) ℓp ball {w ∈ R

m : ‖w‖p ≤ ν}
IC(d) indicator function (= 0if d ∈ C and= ∞ else)
[x]+ vector whoseith element equalsmax{0, xi}
‖ · ‖, ‖ · ‖⋆ norm and its dual norm
f, f⋆ function and its Fenchel conjugate
e

i all zeros vector except1 in theith position
[m] the set{1, . . . , m}

3 Weak-learnability and linear-separability

In this section we establish the equivalence between weak
learnability and linear separability withℓ1 margin. As men-
tioned before, this result can be derived from von Neumann’s
minimax theorem. The purpose of the proof below is to un-
derscore the duality between weak learnability and separa-
bility, which becomes useful in the next sections.

Theorem 4 A matrixA is γ-weak-learnable if and only if it
is linearly separable withℓ1 margin ofγ.

Proof: We prove the theorem using Fenchel duality
(Thm. 3). For convenience, we refer to the optimization
problem on the right (left) hand side of Thm. 3 as the primal
(dual) optimization problem. Letf be the indicator function
of them-dimensional simplex, i.e.f(d) = 0 if d ∈ S

m and
otherwisef(d) = ∞, and letg(w) = ‖w‖∞. Then, the
primal problem is

P ⋆ = min
d

f(d) + g(d†A) = min
d∈Sm

‖d†A‖∞ .

The definition ofγ-weak-learnability conveys thatA is P ⋆-
weak-learnable. Next, we turn to the dual problem. The
Fenchel conjugate ofg is the indicator function of the setB

n
1

(see Sec. 2) and the Fenchel conjugate off is

f⋆(θ) = max
d∈Rm

〈θ,d〉 − f(d) = max
d∈Sm

〈θ,d〉 = max
i∈[m]

θi .

Therefore,

D⋆ = max
w∈Rn

−f⋆(−Aw)− g⋆(w) = max
w∈Bn

1

min
i∈[m]

(Aw)i .

Definition 1 implies thatA is separable withℓ1 margin of
D⋆. To conclude our proof, it is left to show thatP ⋆ = D⋆.
First, we note that forw = 0 the value ofD is zero, and thus
D⋆ ≥ 0. Therefore, ifP ⋆ = 0 then0 = P ⋆ ≥ D⋆ ≥ 0
so in this case we clearly haveP ⋆ = D⋆. Assume now
that P ⋆ = γ > 0. Based on Thm. 3 and the definition of
the core operator, it suffices to show that for any vectorv

there existsτ ′ > 0 such that for allτ ∈ [0, τ ′] we have
τ v /∈ {A†

d : d ∈ S
m}. This property holds true since for

anyd ∈ S
m we have‖A†

d‖∞ ≥ P ⋆ while for sufficiently
smallτ ′ we must have‖τv‖∞ < P ⋆ for all τ ∈ [0, τ ′].

313

4 A family of relaxations

In the previous section we showed that weak learnability is
equivalent to separability. The separability assumption is
problematic since even a perturbation of a singe example can
break it. In this section we propose a family of relaxations of
the separability assumption. The motivation for these relax-
ations stems from the equivalence between weak-learnability
and separability. The main idea is to first define a natural
family of relaxations of the weak learnability assumption,
and then analyze the implication to the separability assump-
tion. To simplify the presentation, we start with a particu-
lar relaxation that was studied in [Ser03, WLR06]. We then
generalize the example and describe the full family of relax-
ations.

4.1 A first relaxation:
capped probabilities and soft margin

To motivate the first simple relaxation, consider a matrixA
whoseith row equals to the negation of itsjth row. That
is, our training set contains an instance which appears twice,
each time with a different label. Clearly, this training set is
not separable even though the rest of the training set can be
perfectly separable with a large margin. The equivalence be-
tween weak learnability and linear separability implies that
A is also not weak learnable. To derive this property directly,
construct the distributiond with di = dj = 1

2 (anddr = 0

for r 6= i andr 6= j) and note thatd†A = 0.
In the above example, the weak learnability assumption

fails because we place excessive weight on the problematic
examplesi, j. Indeed, it was observed that AdaBoost over-
weighs examples, which partially explains its poor perfor-
mance on noisy data. To overcome this problem, it was
suggested (see for instance [Ser03, WLR06]) to restrict the
set of admissible distributions by capping the maximum im-
portance weight of each example. That is, the weak learner
should return a weak hypothesis only when its input distri-
bution satisfies‖d‖∞ ≤ 1

k , for a predefined integerk ∈ [m].
Plugging the above restriction ond into Definition 2 we

obtain the following relaxed weak learnability value,

ρ = min
d∈Sm:‖d‖∞≤ 1

k

max
j∈[n]

|(d†A)j | . (2)

Assume that a matrixA satisfies the above withρ > 0. The
immediate question that surfaces is what is the implication
on the separability properties ofA? To answer this question,
we need to refine the duality argument given in the proof of
Thm. 4.

Letf(d) be the indicator function ofSm∩B
m
∞(1

k) and let
g(w) = ‖w‖∞. The optimization problem given in Eq. (2)
can be rewritten asmind f(d) + g(d†A). To derive the dual
optimization problem, we find the Fenchel conjugate off ,

f⋆(θ) = max
d∈Sm:‖d‖∞≤ 1

k

〈d,θ〉 .

To maximize the inner product〈d,θ〉 we should allocate the
largest admissible weight to the largest element ofθ, allocate
the largest of the remaining weights to the second largest
element ofθ, and so on and so forth. For eachi ∈ [m],

let si(θ) be theith largest element ofθ, that is,s1(θ) ≥
s2(θ) ≥ Then, the above argument yields

f⋆(θ) =
1

k

k
∑

j=1

sj(θ) .

Combining the form off⋆ with Thm. 3 we obtain that the
dual problem of Eq. (2) is

max
w∈Bn

1

1

k

k−1
∑

j=0

sm−j(Aw) . (3)

Using the same technique as in the proof of Thm. 4 it is easy
to verify that strong duality holds as well. We therefore ob-
tain the following corollary.

Corollary 5 LetA be a matrix and letk ∈ [m]. For a vector
θ, letAvgMink(θ) be the average of thek smallest elements
of θ. Letρ be as defined in Eq. (2). Then,

max
w∈Bn

1

AvgMink(Aw) = ρ .

Let us now discuss the role of the parameterk. First, ifk = 1
then the functionAvgMink reduces to the minimum over the
vector provided as its argument, and therefore we revert back
to the traditional definition of margin. Whenk = m, the
only admissible distribution is the uniform distribution. In
this case, it is easy to verify that the optimal weight vector
associateswj = 1 with the feature that maximizes|(d†A)j |
(while d being the uniform distribution) andwj = 0 with
the rest of the features. That is, the performance of the opti-
mal strong hypothesis is equal to the performance of the best
single weak hypothesis, and no boosting process takes place.
The interesting regime is whenk is proportional tom, for
examplek = 0.1m. In this case, ifρ > 0, then we are guar-
anteed that90% of the examples can be separated by margin
of at leastρ.

It is also possible to setk based on knowledge of the
number of noisy examples in the training set and the sepa-
rability level of the rest of the examples. For example, as-
sume that all butν of the examples are separable with mar-
gin γ. Then, the worst objective value thatw can attain is,
AvgMink(Aw) = −ν+(k−ν)γ

k . Constraining the right hand
side of this equality above to be at leastγ

2 and solving fork
yields that fork ≥ 2ν(γ + 1)/γ at leastm − k examples
attain a margin value of at leastγ/2.

4.2 A general relaxation scheme

We now generalize the above relaxation and present our gen-
eral relaxation scheme. To do so, we first rewrite Eq. (2) as
follows. DenoteC = B

m
∞(1/k) and recall thatIC(d) is the

indicator function of the setC. We can now rewrite Eq. (2)
as

ρ = min
d∈Sm

(

max
j∈[n]

|(d†A)j |+ IC(d)

)

. (4)

The general relaxation scheme is obtained by replacingIC

with a large family of functions. Before specifying the prop-
erties of allowed functions, let us first define the following
generalized notion of weak learnability.

314

Definition 6 ((ρ, f)-weak-learnability) Let f be an arbi-
trary function. A matrixA is (ρ, f)-weak-learnable if

ρ = min
d∈Sm

(

max
j∈[n]

|(d†A)j |+ f(d)

)

.

Intuitively, we can think onρ as the minimum of the maximal
edge plus a regularization termf(d). In the case of capped
importance weights, the regularization function is a barrier
function that does not penalize distributions insideB

m
∞(1/k)

and places an infinite penalty for the rest of the distributions.
The following theorem shows how the fact that a ma-

trix A is (ρ, f)-weak-learnable affects its separability prop-
erties. To remind the reader, we denote bye

i the vector
whoseith element is1 and the rest of its elements are zero.
The notation[x]+ represents the vector whoseith element is
max{0, xi}.

Theorem 7 Let f be a convex function,ρ be a scalar,
and A be a (ρ, f)-weak-learnable matrix. If the following
assumptions hold,
(i) mind f(d) = 0,
(ii) 0 ∈ core(dom(f)),
(iii) ∀θ ∈ R

m, ∀i ∈ [m], ∀α ∈ [0, 1], the Fenchel conjugate
of f satisfies

f⋆(θ) ≥ f⋆(θ − α θi e
i)

then,

max
w∈Bn

1
,γ∈R

(

γ − f⋆([γ −Aw]+)
)

= ρ .

The proof of the theorem is again based on the Fenchel du-
ality theorem. The vector[γ − Aw]+ appearing in the dual
problem is the vector of hinge-losses. Before diving into the
details of the proof, let us give two concrete family of func-
tions that satisfy the requirement given in the theorem.

Example 1 Letf be the indicator function of a ball of radius
ν, {d : ‖d‖ ≤ ν}, where‖ ·‖ is an arbitrary norm andν is a
scalar such that the intersection of this ball with the simplex
is non-empty. Then,f⋆(w) = ν ‖w‖⋆ and the condition
given in the theorem clearly holds. In this case, we obtain
that

max
w∈Bn

1
,γ∈R

(

γ−ν ‖[γ−Aw]+‖⋆
)

= min
d∈Sm:‖d‖≤ν

‖d†A‖∞ .

In particular, if ‖ · ‖ is the ℓ∞ norm we obtain again the
example of capped sample weights. Since the1-norm and
∞-norm are dual we get that in the dual problem we are
maximizing the margin parameterγ while minimizing the cu-
mulative hinge-loss. Combining this fact with Corollary 5 we
get that

AvgMink(Aw) = max
γ∈R

(

γ − 1
k

m
∑

i=1

[γ − (Aw)i]+

)

.

The right hand side of the above is usually called the “soft-
margin”. The above equality tells us that the soft margin
is equivalent to the average margin of thek worst examples
(see also [WLR06, SSWB98]).

Example 2 Let f(d) = ν ‖d‖ where‖ · ‖ is an arbitrary
norm andν is a scalar. Then,f⋆(w) is the indicator function
of the ball of radiusν with respect to the dual norm{w :
‖w‖⋆ ≤ ν}. The condition given in the theorem clearly
holds here as well and we obtain the dual problem

max
w∈Bn

1
,γ∈R

γ s.t. ‖[γ −Aw]+‖⋆ ≤ ν .

That is, we are now maximizing the margin subject to a con-
straint on the vector of hinge-losses.

We now turn to proving Thm. 7. First, we need the fol-
lowing lemma which characterizes the Fenchel conjugate of
f + ISm .

Lemma 8 Assume thatf satisfies the conditions given in
Thm. 7 and denotẽf(d) = f(d) + ISm(d). Then,

f̃⋆(θ) = −max
γ∈R

(γ − f⋆([γ + θ]+)) .

Proof: We first rewritef̃⋆ as

f̃⋆(θ) = max
d

−f(d)− (ISm(d)− 〈θ,d〉)

= −
(

min
d

f(d) + (ISm(d)− 〈θ,d〉)
)

Denoteg(d) = ISm(d) − 〈θ,d〉. It is easy to verify that
g⋆(x) = maxi(θi + xi). Next, note that0 ∈ core(dom(f))
by assumption and thatdom(g) = S

m. Therefore, strong
duality holds and we can use Thm. 3 which yields,

−f̃⋆(θ) = max
x

(−f⋆(x)− g⋆(−x))

= max
x

(

−f⋆(x)−max
i

(θi − xi)
)

.

Let Cγ = {x : ∀i, xi ≥ θi + γ}. We show in the sequel
that for anyγ, the vector[θ + γ]+ is a minimizer off⋆(x)
overx ∈ Cγ . Combining this with the above expression for
−f̃⋆(θ) we get that

−f̃⋆(θ) = max
γ

(γ − f⋆([θ + γ]+)) ,

as required. Therefore, it is left to show that the vector
[θ + γ]+ is indeed a minimizer off⋆(x) overCγ . Clearly,
[θ + γ]+ ∈ C. In addition, for anyx ∈ Cγ we can make
a sequence of modifications tox until x = [θ + γ]+ as fol-
lows. Take some elementi. If xi > [θi + γ]+ then based on
assumption (iii) of Thm. 7 we know that

f⋆

(

x− xi − [θi + γ]+
xi

xie
i

)

≤ f⋆(x) .

If xi < [θi + γ]+ we must have that[θi + γ]+ = 0 since we
assume thatx ∈ Cγ and thusxi ≥ θi + γ. Thus,xi < 0 but
now using assumption (iii) of Thm. 7 again we obtain that
f⋆(x − xie

i) ≤ f⋆(x). Repeating this for everyi ∈ [m]
makesx equals to[θ + γ]+ while the value off⋆(x) is non-
increasing along this process. We therefore conclude that
[θ + γ]+ is a minimizer off⋆(x) overx ∈ Cγ and our proof
is concluded.

315

Based on the above lemma the proof of Thm. 7 is easily
derived.
Proof:[of Thm. 7] The proof uses once more the Fenchel
duality theorem. Define the functioñf(d) = f(d) +
ISm(d). Therefore, Thm. 3 tells us that the dual
of the problem mind f̃(d) + ‖d†A‖∞ is the problem

maxw∈Bn

1

(

−f̃⋆(−Aw)
)

. Using Lemma 8 we obtain that

the dual of the problem given in Definition 6 is the same
maximization problem as stated in the theorem. To con-
clude the proof it is left to show that strong duality also holds
here. First, using the assumptionmind f(d) = 0 we get that
f⋆(0) = 0. By settingw = 0 andγ = 0 we get that the
dual problem is bounded below by zero. Thus, ifρ = 0 then
strong duality holds. Ifρ > 0 then we can use the fact that
dom(f̃) ⊆ dom(f) and therefore the same arguments as in
the end of the proof of Thm. 4 holds here as well.

5 Boosting algorithms

In this section we derive a boosting algorithm for solving
the max-relaxed-margin problem described in the previous
section, namely,

max
w∈Bn

1

max
γ∈R

(γ − f⋆([γ −Aw]+)) . (5)

The function f⋆ should satisfy the conditions stated in
Thm. 7. In particular, iff⋆(x) = ν ‖x‖1 we obtain the soft
margin problem

max
w∈Bn

1

max
γ∈R

(

γ − ν

m
∑

i=1

[γ − (Aw)i]+

)

, (6)

while if f⋆(x) = maxi xi then we obtain the non-relaxed
max margin problem

max
w∈Bn

1

min
i∈[m]

(Aw)i .

The boosting algorithm for solving Eq. (5) is described
in Fig. 1. To simplify the presentation, let us first describe the
algorithm for the non-relaxed max-margin problem, that is,
f⋆(x) = maxi xi. As we have shown in the proof of Thm. 4,
the corresponding Fenchel conjugatef(d) is the indicator
function ofSm. The algorithm initializes the weight vector
to be the zero vector,w1 = 0. On roundt, we define a
distribution over the examples

dt = argmax
d∈Sm

(

〈−Awt,d〉 − (f(d) + β h(d))
)

= argmin
d∈Sm

(

〈Awt,d〉+ (f(d) + β h(d))
)

,

where h(d) is the relative entropy function. Since we
are now dealing with the casef(d) = ISm , we can use
Lemma 18 in the appendix and get thatdt is the gradient
of the Fenchel conjugate of the functionβh(d). In the ap-
pendix we list several Fenchel conjugate pairs. In particular,
the Fenchel conjugate of the relative entropy is the soft-max
function

h⋆(θ) = log

(

1
m

m
∑

i=1

eθi

)

.

INPUT: matrixA ∈ [+1,−1]m,n

Relaxation functionf⋆

Desired accuracyǫ

DEFINE: h(d) =
∑m

i=1 di log(di) + log(m)

f(d) = Fenchel conjugate off⋆

INITIALIZE : w1 = 0, β = ǫ
2 log(m)

FOR t = 1, 2, . . . , T

dt = argmin
d∈Sm

(

〈Awt,d〉+ (f(d) + β h(d))
)

jt ∈ arg maxj |(d†
tA)j |

(w.l.o.g. assumesign(d†
tA)jt

= 1)

ηt = max
{

0,min
{

1,
β d

†

t
A(ejt−wt)

‖A(ejt−wt)‖2
∞

}}

wt+1 = (1− ηt)wt + ηt e
jt

OUTPUT: wT+1

Figure 1: A Boosting Algorithm for maximizing the relaxed
margin given in Eq. (5).

Using the property(βh)⋆(θ) = βh⋆(θ/β) we obtain that

dt,i ∝ e
− 1

β (Awt)i .

That is, the log of the probability assigned to theith exam-
ple is negatively proportional to the margin of the example
according to the current weight vectorwt. Therefore, the al-
gorithm allocates larger importance weights to the erroneous
examples, in a similar fashion to the weighting scheme of
examples of many other boosting algorithms, such as Ad-
aBoost.

Next, we perform a step analogous to calling a weak-
learner by finding a single column ofA with the best edge.
We would like to note that it is possible to extend the algo-
rithm so that the weak learner may find a column whose edge
is only approximately optimal. For simplicity we confine the
description to weak learners that return the column with the
largest edge. Finally, we setwt+1 to be the convex combi-
nation ofwt and the new hypothesis. The coefficient of the
convex combination, denotedηt, is calculated analytically
based on our analysis. Note that the update form guarantees
that‖wt‖1 ≤ 1 for all t.

The sole modification of the algorithm when running
with other relaxation functions is concerned with the defi-
nition of dt. In Sec. 5.2 we further elaborate on how to solve
the optimization problem which appears in the definition of
dt. We provide a few general tools and also present an effi-
cient procedure for the case wheref is the indicator function
of B

m
∞(ν).
The following theorem provides analysis of the rate of

convergence of the algorithm.

Theorem 9 Assume that the algorithm given in Fig. 1 is run
for T = Ω(log(m)/ǫ2) iterations. Then, the algorithm out-
puts anǫ-accurate solution,

max
γ

(γ − f⋆([γ −AwT+1]+)) ≥ ρ − ǫ ,

316

whereρ is the optimal value of the solution as defined in
Thm. 7.

Before turning into the proof of Thm. 9 let us first dis-
cuss its implications. First we note that the number of itera-
tions of the algorithm upper bounds the number of non-zero
elements of the solution. Therefore, we have a trade-off be-
tween the desired accuracy level,ǫ, and the level of sparsity
of the solution,wT+1.

The algorithm can be used for maximizing the hard mar-
gin using O(log(m)/ǫ2) iterations. In this case, the al-
gorithm shares the simplicity of the popular AdaBoost ap-
proach. The rate of convergence we obtain matches the rate
of the AdaBoost⋆ described by Ratsch and Warmuth [RW05]
and is better than the rate obtained in Rudin et al. [RSD07].
We note also that ifA is γ-separable and we setǫ = γ/2
then we would find a solution with half the optimal mar-
gin in O(log(m)/γ2) iterations. AdaBoost seemingly at-
tains an exponentially fast decay of the empirical error of
e−γ2T . Thus,T should be at least1/γ2. Further careful
examination also reveals a factor oflog(m) in the conver-
gence rate of AdaBoost. Therefore, our algorithm attains the
same rate of convergence of AdaBoost while both algorithms
obtain a margin which is half of the optimal margin. (See
also the margin analysis of AdaBoost described in Rudin et
al. [RSD07].)

We can also use the algorithm for maximizing the soft
margin given in Eq. (6). In Sec. 5.2 we show how to cal-
culatedt in Õ(m) time. Therefore, the complexity of the
resulting algorithm is roughly the same as the complexity
of AdaBoost. The bound on the number of iterations that
we obtain matches the bound of the SoftBoost algorithm, re-
cently proposed by Warmuth et al. [WLR06]. However, our
algorithm is simpler to implement and the time complexity
of each iteration of our algorithm is substantially lower than
the one described in [WLR06].

5.1 Proof of convergence rate

To motivate our proof technique, let us focus first on the
max-margin case without any relaxation. As we showed be-
fore, the AdaBoost algorithm approximates the max opera-
tor, maxi θi, with a soft-max operator,log(1

m

∑

i eθi), also
known as the exp-loss. We can think of this approximation
as another form of relaxation of the max margin. To distin-
guish this type of relaxation from the family of relaxations
described in the previous section, we refer to it as an “algo-
rithmic” relaxation, since this relaxation is driven by algo-
rithmic factors and not directly by the concept of relaxing
the margin. The algorithmic relaxation of AdaBoost encap-
sulates the following relaxation of weak learnability: replace
the indicator function of the simplex with the relative en-
tropy function over the simplex, which we denote byh(d)
(see also the definition in Fig. 1). The advantage of endow-
ing the simplex with the relative entropy stems from the fact
that the relative entropy isstronglyconvex with respect to the
ℓ1 norm, as we formally define now.

Definition 10 A continuous functionf is σ-strongly convex
over a convex setS with respect to a norm‖ · ‖ if S is con-
tained in the domain off and for allv,u ∈ S andα ∈ [0, 1]

we have

f(αv + (1− α)u) ≤ α f(v) + (1− α) f(u)

−σ

2
α (1− α) ‖v − u‖2 .

In the above definition, ifσ = 0 we revert back to the
standard definition of convexity. Strong convexity quantifies
the difference between the value of the function at the con-
vex combination and the convex combination of the values of
the function. The relative entropy is1-strongly convex with
respect to theℓ1 norm over the probabilistic simplex (see
Lemma 16 in [SS07]). Few important properties ofstrongly
convex functions are summarized in Lemma 18 (in the ap-
pendix). We use these properties in our proofs below.

Continuing with our motivating discussion, we view
the algorithmic relaxation of AdaBoost as a replacement of
the convex functionISm(d) by the strongly convex func-
tion h(d). More generally, recall the definitioñf(d) =
f(d)+ ISm(d) from Sec. 4 and that solving Eq. (5) is equiv-
alent to maximizing−f̃⋆(−Aw) overw ∈ B

n
1 . As in the

algorithmic relaxation of AdaBoost, we replacẽf(d) by the
function

f̂(d) = f̃(d) + β h(d) ,

whereβ ∈ (0, 1). Since for alld ∈ S
m we have0 ≤ h(d) ≤

log(m), by settingβ = ǫ/(2 log(m)) we obtain that

∀d ∈ S
m, f̂(d)− ǫ/2 ≤ f̃(d) ≤ f̂(d) .

Using Lemma 19 in the appendix we obtain that

∀θ, f̂⋆(θ) ≤ f̃⋆(θ) ≤ f̂⋆(θ) + ǫ/2 . (7)

The above implies that maximizing−f̂⋆(−Aw) gives anǫ/2

accurate solution to the problem of maximizing−f̃⋆(−Aw).
This argument holds for the entire family of functions dis-
cussed in Sec. 4. An appealing property of strong convex-
ity that we exploit is that by adding a convex function to a
strongly convex function we retain at least the same strong
convexity level. Therefore, for all the functions̃f(d) dis-
cussed in Sec. 4 the correspondingf̂(d) retains the strongly
convex property of the relative entropy.

The algorithm in Fig. 1 is designed for maximizing
−f̂⋆(−Aw) over B

n
1 . Based on the above discussion, this

maximization translates to an approximate maximization of
−f̃⋆(−Aw). Using again Thm. 3 we obtain that

max
w∈Bn

1

−f̂⋆(−Aw) ≤ min
d

f̂(d) + ‖d†A‖∞ .

Denote byD(w) andP(d) the dual and primal objec-
tive values of the above equation. We also denote byǫt the
sub-optimality value attained at iterationt of the algorithm,
namely,

ǫt = max
w∈Bn

1

D(w)−D(wt) .

The following key lemma lower bounds the improvement of
the algorithm in terms of its current sub-optimality.

Lemma 11 Let ǫt be the sub-optimality value of the algo-
rithm in Fig. 1 at iterationt and assume thatǫt ≤ 1. Then,
ǫt − ǫt+1 ≥ β ǫ2t /8.

317

Proof: Denote∆t = ǫt−ǫt+1 and based on the definition of
ǫt we clearly have that∆t = D(wt+1)−D(wt). To simplify
our notation, we use the shorthandj for jt andη for ηt. Since

wt+1 = (1− η)wt + ηej

we get that

∆t = D(wt + η(ej −wt))−D(wt) .

Using the definition ofD we further rewrite∆t as

∆t = f̂⋆(−Awt)− f̂⋆(−Awt − η A (ej −wt)) . (8)

The key property that we use is thatf̂⋆ is the Fenchel con-
jugate of aβ-strongly convex function over the simplex with
respect to theℓ1 norm. Therefore, using Lemma 18 in the
appendix, we know that for anyθ1 andθ2:

f̂⋆(θ1 + θ2)− f̂⋆(θ1) ≤ 〈∇,θ2〉+
‖θ2‖2∞

2β
,

where∇ = arg maxd〈θ1,d〉 − f̂(d). Combining this prop-
erty with Eq. (8) and using the definition ofdt we obtain
that

∆t ≥ η 〈dt, A (ej −wt)〉 −
η2 ‖A (ej −wt)‖2∞

2β
. (9)

Using the assumptionA ∈ [+1,−1]m×n, the fact thatwt ∈
B

n
1 , and the triangle inequality we get that

‖A (ej −wt)‖∞ ≤ 2

and thus

∆t ≥ η 〈dt, A (ej −wt)〉 − 2 η2/β . (10)

Next, we show that〈dt, A (ej − wt)〉 = P(dt) − D(wt).
To to so, we first use Lemma 17 to get that〈dt,−Awt〉 =

f̂(dt) + f̂⋆(−Awt) and second we use the definition ofj

to get that〈dt, A e
j〉 = ‖d†

t A‖∞. Combining this with
Eq. (10) yields

∆t ≥ η (P(dt)−D(wt))− 2 η2/β . (11)

The weak duality property tells us thatP(dt) ≥
maxw∈Bn

1
D(w) and therefore∆t ≥ η ǫt − 2 η2/β. Denote

η′ = ǫt β/4 and note thatη′ ∈ [0, 1]. Had we setηt = η′ we
could have obtained that∆t ≥ β ǫ2t /8 as required. Since we
setηt to be the maximizer of the expression in Eq. (9) over
[0, 1], we get an even larger value for∆t. This concludes our
proof.

Based on Lemma 11 the proof of Thm. 9 easily follows.
Proof:[(of Thm. 9)] We first show thatǫ1 ≤ 1. To see this,
we use the weak duality to get thatǫ1 ≤ P(d1) − D(w1).
Next, we recall that in the proof of Lemma 11 we have shown
that for all t, P(dt) − D(wt) = 〈dt, A(ejt − wt)〉. Since
w1 = 0 we get thatǫ1 ≤ 〈d1, Ae

j1〉 = ‖d†
1A‖∞ ≤ 1.

We can now apply Lemma 11 fort = 1 and get that
ǫ2 ≤ ǫ1. By induction, we obtain that Lemma 11 holds for
all t. Applying Lemma 20 (given in the appendix) we get
thatǫt ≤ 8

β(t+1) .
Plugging the definition ofβ = ǫ/(2 log(m)) into the

upper bound onǫT+1 we getǫT+1 ≤ 16 log(m)
(T+2)ǫ . Therefore, if

T + 2 ≥ 32 log(m)/ǫ2 we get thatǫT+1 ≤ ǫ/2. Finally, Let
ǫ′ be the error ofwT+1 on the originalf̃ then using Eq. (7)
we obtain thatǫ′ ≤ ǫT+1 + ǫ/2 = ǫ.

5.2 Efficient implementation for soft margin

In this section we provide an efficient procedure for calcu-
lating the distributiondt as described in Fig. 1 whenf(d) is
the indicator function of{d : ‖d‖∞ ≤ ν}. As we showed
above, this case corresponds to the maximization of the soft
margin.

We first present a lemma that provides us with an al-
ternative method for findingd, which is based on Bregman
divergences. The Bregman divergence with respect to a con-
vex functionh between two vectorsd andd0 is defined as,

Bh(d‖d0) = h(d)− h(d0)− 〈∇h(d0),d− d0〉 .
See [CZ97] for a rigorous definition of the Bregman diver-
gence.

Lemma 12 Let h : S → R be a strongly convex and dif-
ferentiable function, letf be a convex function, and denote
f̂ = h + f . Let θ be a vector and denoted0 = ∇h⋆(θ),
whereh⋆ is the Fenchel conjugate ofh. Then,

∇f̂⋆(θ) = argmin
d

(Bh(d‖d0) + f(d)) .

Proof: Sinceh is strongly convex and differentiable we have
that∇h(d0) = θ. Therefore,

∇f̂⋆(θ) = argmax
d

〈d,θ〉 − f̂(d)

= argmin
d

h(d)− 〈d,θ〉+ f(d)

= argmin
d

h(d)− 〈d,∇h(d0)〉+ f(d)

= argmin
d

Bh(d‖d0) + f(d) .

Applying the above lemma withf = IC for some convex set
C we obtain the following corollary.

Corollary 13 Assume that the conditions stated in
Lemma 12 hold and thatf(d) = IC(d) for some con-
vex setC. Then,

∇(h + f)⋆(θ) = argmin
d∈C

Bh(d‖∇h⋆(θ)) .

We now get back to the problem of findingdt whenf(d)
is IC(d) for C = {d : ‖d‖∞ ≤ ν}. Based on Corollary 13
we can first define the distribution vectord0 such thatd0,i ∝
exp(− 1

β (Awt)i) and then set

dt = argmin
d∈Sm:‖d‖∞≤ν

Bh(d‖d0) . (12)

We are therefore left with the problem of solving the en-
tropic projection problem given in Eq. (12). A similar prob-
lem was tackled by Herbster and Warmuth [HW01], who
providedO(m log(m)) andO(m) algorithms for perform-
ing entropic projections. For completeness, in the rest of this
section we outline the simplerO(m log(m)) algorithm. To
do so, we first show that the entropic projection preserves the
relative order of components of the projected vector.

Lemma 14 Letdt be the solution of Eq. (12) and leti, j be
two indices such thatd0,i > d0,j . Then,dt,i ≥ dt,j .

318

INPUT: A vectord0 ∈ S
m and a scalarν ∈ (0, 1)

Sortd0 in non-increasing order⇒ u

INITIALIZE : Z =
∑m

r=1 ur

FOR i = 1, ...,m

θ =
1− ν (i− 1)

Z
IF θui ≤ ν

BREAK

ENDIF

Z ← Z − ui

ENDFOR

OUTPUT: dt s.t. dt,r = min{ν, θd0,r}

Figure 2: AnO(m log(m)) Procedure for solving the En-
tropic Projection problem defined by Eq. (12).

Proof: Assume that the claim of the proof is not true. Let
i and j be two indices which violate the claim, therefore
dt,i < dt,j . We now construct a vector̃d which resides in
S

m and whose components do not exceedν. We set all the
components of̃dt, except for theith andjth components, to
be equal to the corresponding components ofdt. Next, we
setd̃t,i = dt,j andd̃t,j = dt,i. Clearly,d̃t constitutes a fea-
sible solution. Taking the difference between the Bregman
divergence of the two vectors each tod0 we get,

Bh(dt‖d0)−Bh(d̃t‖d0) = (dj − di) log(d0,i/d0,j) > 0 ,

which contradicts the fact thatdt is the vector attaining the
smallest Bregman divergence tod0.

Without loss of generality, assume thatd0 is sorted in a
non-increasing order. Therefore, using Lemma 14 we know
thatdt has the form(ν, . . . , ν, dt,i, . . . , dt,j , 0, . . . , 0) where
for eachr ∈ {i, . . . , j} we havedt,r ∈ (0, ν). Moreover, the
following lemma provides us with a simple way to find all
the rest of the elements ofdt.

Lemma 15 Assume thatd0 is sorted in a non-increasing or-
der and thatdt = (ν, . . . , ν, dt,i, . . . , dt,j , 0, . . . , 0). Then,
for all r ∈ {i, . . . , j} we have

dt,r = θ d0,r where θ =
1− ν (i− 1)
∑j

r=i d0,r

.

Proof: Let v denotes the gradient ofBh(d‖d0) with respect
to d atdt, namely,

vi = log(dt,i) + 1− log(d0,i) .

Let I = {i, . . . , j}. Note that for the elements inI the opti-
mization problem has a single linear equality constraint and
the solution is in the interior of the set(0, ν)|I|. Therefore,
using Corollary 2.1.3 in [BL06] we obtain that there exists a
constantθ′ such that for alli ∈ I, vi = θ′−1 or equivalently

∀i ∈ I, dt,i = dt,0 eθ′−1 .

Let us denoteθ = eθ′−1. Using this form in the equation
∑

i dt,i = 1 we get that,

1 =

m
∑

r=1

dt,r = ν(i− 1) + θ

j
∑

r=i

d0,r ,

which immediately yields thatθ attains the value stated in
the lemma.

We are left with the problem of finding the indicesi and
j. The next lemma tells us that not a single element of the
optimal vector attains a value of zero.

Lemma 16 Assume that the vectord0 is provided in a non-
increasing order of elements and that all of its elements are
positive. Then, the optimal solution of Eq. (12) is of the form,
(ν, . . . , ν, dt,i, . . . , dt,m) wheredt,m > 0.

Proof: Plugging the value ofθ from the previous lemma
into the objective function and performing simple algebraic
manipulations we obtain the following objective value,

Bh(dt‖d0) =

i−1
∑

r=1

ν log(ν
d0,r

) + (1− ν(i− 1)) log(θ) .

Therefore, the objective is monotonically increasing inθ.
This in turn implies that we should setθ to be as small as
possible in order to find the minimal Bregman divergence.
Next, note that the value ofθ as defined in Lemma 15 is de-
creasing as a function ofj. The optimal solution is obtained
for j = m.

Finally, we are left with the task of finding the index
i. Once it is found we readily obtainθ, which immediately
translates into a closed form solution fordt. Lemma 14 in
conjunction with a property presented in the sequel, implies
that thefirst index for whichdt, as defined by Lemma 15
with j = m, constitutes the optimal index fori. The pseudo-
code describing the resulting efficient procedure for solv-
ing the problem in Eq. (12) is given in Fig. 2. The al-
gorithm starts by sorting the vectord0. Then, it checks
each possible indexi of the sorted vector as the position
to stop capping the weights. More formally, given an in-
dex i the algorithm checks whetherdt can take the form
(ν, . . . , ν, dt,i, . . . , dt,m) wheredt,i < ν. To check each
index i the algorithm calculatesθ as given by Lemma 15.
The same lemma also implies thatdt,i = θd0,i. Thus, if the
assumption on the indexi is correct, the following inequal-
ity must hold,ν > dt,i = θd0,i. In case the indexi un-
der examination indeed satisfies the inequality the algorithm
breaks out of the loop. Therefore, the algorithm outputs the
feasible solution with the smallest number of weights at the
boundν. It thus remains to verify that the feasible solution
with the smallest number of capped weights is indeed opti-
mal. This property follows from a fairly straightforward yet
tedious lemma which generalizes Lemma 3 from [SSS06b]
and is thus omitted. Note also that the time complexity of the
resulting algorithm isO(m log(m))) which renders it appli-
cable to boosting-based applications with large datasets.

6 Discussion

The starting point of this paper was an alternative view of
the equivalence of weak-learnability and linear-separability.
This view lead us to derive new relaxations of the notion of
margin, which are useful in the noisy non-separable case. In
turn, the new relaxations of the margin motivated us to derive
new boosting algorithms which maintain distributions over

319

the examples that are restricted to a subset of the simplex.
There are a few future direction research we plan to pursue.
First, we would like to further explore additional constraints
of the distributiondt, such as addingℓ2 constraints. We also
would like to replace the relative entropy penalty for the dis-
tributiondt with binary entropies of each of the components
of dt with respect to the two dimensional vector(1

2 , 1
2). The

result is a boosting-based apparatus for the log-loss. Last,
we would like to explore alternative formalisms for the pri-
mal problem that also modify the definition of the function
g(d) = ‖d†A‖∞, which may lead to a regularization term of
the vectorw rather than the domain constraint we currently
have.

A Technical lemmas

The first lemma states a sufficient condition under which the
Fenchel-Young inequality holds with equality. Its proof can
be found in ([BL06], Proposition 3.3.4).

Lemma 17 Let f be a closed and convex function and let
∂f(w) be its differential set atw. Then, for allθ ∈ ∂f(w)
we have,f(w) + f⋆(θ) = 〈θ,w〉 .

The next lemma underscores the importance of strongly
convex functions. The proof of this lemma follows from
Lemma 18 in [SS07].

Lemma 18 Letf be a closed andσ-strongly convex function
overS with respect to a norm‖ · ‖. Let f⋆ be the Fenchel
conjugate off . Then,f⋆ is differentiable and its gradient
satisfies∇f⋆(θ) = arg maxw∈S 〈w,θ〉 − f(w). Further-
more, for allθ1,θ2 ∈ R

n, we have

f⋆(θ1 + θ2)− f⋆(θ1) ≤ 〈∇f⋆(θ1),θ2〉+
1

2σ
‖θ2‖2⋆

Lemma 19 Letf, g be two functions and assume that for all
w ∈ S we haveg(w) ≥ f(w) ≥ g(w)−c for some constant
c. Then,g⋆(θ) ≤ f⋆(θ) ≤ g⋆(θ) + c.

Proof: There exists somew′ s.t.

g⋆(θ) = 〈w′,θ〉 − g(w′)

≤ 〈w′,θ〉 − f(w′)

≤ max
w

〈w,θ〉 − f(w) = f⋆(θ) .

This proves the first inequality. The second inequality fol-
lows from the fact that the conjugate ofg(w)−c is g⋆(θ)+c.

Lemma 20 Let 1 ≥ ǫ1 ≥ ǫ2 ≥ ... be a sequence such that
for all t ≥ 1 we haveǫt − ǫt+1 ≥ r ǫ2t for some constant
r ∈ (0, 1/2). Then, for allt we haveǫt ≤ 1

r(t+1) .

Proof: We prove the lemma by induction. First, fort = 1 we
have 1

r(t+1) = 1
2r ≥ 1 and the claim clearly holds. Assume

that the claim holds for somet. Then,

ǫt+1 ≤ ǫt − rǫ2t ≤ 1
r(t+1) − 1

r(t+1)2 , (13)

where we used the fact that the functionx − rx2 is mono-
tonically increasing in[0, 1/(2r)] along with the inductive
assumption. We can rewrite the right-hand side of Eq. (13)
as

1
r(t+2)

(

(t+1)+1
t+1 · (t+1)−1

t+1

)

= 1
r(t+2)

(

(t+1)2−1
(t+1)2

)

.

The term(t+1)2−1
(t+1)2 is smaller than1 and thusǫt+1 ≤ 1

r(t+2) ,
which concludes our proof.

B Fenchel conjugate pairs

We now list a few useful Fenchel-conjugate pairs. Proofs
can be found in ([BV04] Section 3.3, [BL06] Section 3.3.,
[SS07] Section A.3).

f(d) f⋆(θ)

IC(d) for C = {d : ‖d‖ ≤ ν} ν ‖θ‖⋆

ISm(d) maxi θi

ISm(d) +
Pm

i=1
di log(di

1/m
) log

`

1

m

Pm

i=1
eθi

´

1

2
‖d‖2 1

2
‖θ‖2

⋆

c f(d) for c > 0 c f⋆(θ/c)

f(d + d0) f⋆(θ) − 〈θ,d0〉

f(cd) for c 6= 0 f⋆(θ/c)

References

[BL06] J. Borwein and A. Lewis.Convex Analysis and
Nonlinear Optimization. Springer, 2006.

[BV04] S. Boyd and L. Vandenberghe.Convex Opti-
mization. Cambridge University Press, 2004.

[CSS02] M. Collins, R.E. Schapire, and Y. Singer. Lo-
gistic regression, AdaBoost and Bregman dis-
tances. Machine Learning, 47(2/3):253–285,
2002.

[CST00] N. Cristianini and J. Shawe-Taylor.An Intro-
duction to Support Vector Machines. Cambridge
University Press, 2000.

[CZ97] Y. Censor and S.A. Zenios.Parallel Optimiza-
tion: Theory, Algorithms, and Applications. Ox-
ford University Press, New York, NY, USA,
1997.

[DW00] C. Domingo and O. Watanabe. Madaboost: A
modification of adaboost. InProceedings of
the Thirteenth Annual Conference on Computa-
tional Learning Theory, 2000.

[Fre01] Y. Freund. An adaptive version of the boost
by majority algorithm. Machine Learning,
43(3):293–318, 2001.

320

[FS96] Y. Freund and R.E. Schapire. Game theory, on-
line prediction and boosting. InProceedings of
the Ninth Annual Conference on Computational
Learning Theory, pages 325–332, 1996.

[FS99] Y. Freund and R. E. Schapire. A short introduc-
tion to boosting.Journal of Japanese Society for
Artificial Intelligence, 14(5):771–780, 1999.

[HW01] M. Herbster and M. Warmuth. Tracking the best
linear predictor. Journal of Machine Learning
Research, 1:281–309, 2001.

[KPL01] V. Koltchinskii, D. Panchenko, and F. Lozano.
Some new bounds on the generalization error of
combined classifiers. InAdvances in Neural In-
formation Processing Systems 14, 2001.

[MBB98] Llew Mason, Peter Bartlett, and Jonathan Bax-
ter. Direct optimization of margins improves
generalization in combined classifiers. Techni-
cal report, Deparment of Systems Engineering,
Australian National University, 1998.

[MR03] R. Meir and G. R̈atsch. An introduction to
boosting and leveraging. In S. Mendelson and
A. Smola, editors,Advanced Lectures on Ma-
chine Learning, pages 119–184. Springer, 2003.

[RSD07] C. Rudin, R.E. Schapire, and I. Daubechies.
Analysis of boosting algorithms using the
smooth margin function.Annals of Statistics,,
2007.

[RW05] G. Ratsch and M. Warmuth. Efficient margin
maximizing with boosting.Journal of Machine
Learning Research, pages 2153–2175, 2005.

[Sch90] R.E. Schapire. The strength of weak learnability.
Machine Learning, 5(2):197–227, 1990.

[Sch03] R.E. Schapire. The boosting approach to ma-
chine learning: An overview. In D.D. Deni-
son, M.H. Hansen, C. Holmes, B. Mallick, and
B. Yu, editors,Nonlinear Estimation and Clas-
sification. Springer, 2003.

[Ser03] R.A. Servedio. Smooth boosting and learn-
ing with malicious noise.Journal of Machine
Learning Research, 4:633–648, 2003.

[SFBL97] R.E. Schapire, Y. Freund, P. Bartlett, and W.S.
Lee. Boosting the margin: A new explanation
for the effectiveness of voting methods. InMa-
chine Learning: Proceedings of the Fourteenth
International Conference, pages 322–330, 1997.
To appear,The Annals of Statistics.

[SS07] S. Shalev-Shwartz.Online Learning: Theory,
Algorithms, and Applications. PhD thesis, The
Hebrew University, 2007.

[SSS06a] S. Shalev-Shwartz and Y. Singer. Convex re-
peated games and fenchel duality. InAdvances
in Neural Information Processing Systems 20,
2006.

[SSS06b] S. Shalev-Shwartz and Y. Singer. Efficient learn-
ing of label ranking by soft projections onto
polyhedra. Journal of Machine Learning Re-
search, 7 (July):1567–1599, 2006.

[SSS07] S. Shalev-Shwartz and Y. Singer. A primal-dual
perspective of online learning algorithms.Ma-
chine Learning Journal, 2007.

[SSWB98] B. Scḧolkopf, A. Smola, R. Williamson, and
P. Bartlett. New support vector algorithms.
Technical Report NC2-TR-1998-053, Neuro-
Colt2, 1998.

[SVL07] A. Smola, S.V.N. Vishwanathan, and Q. Le.
Bundle methods for machine learning. InAd-
vances in Neural Information Processing Sys-
tems 21, 2007.

[vN28] J. von Neumann. Zur theorie der
gesellschaftsspiele (on the theory of parlor
games).Math. Ann., 100:295–320, 1928.

[WGR07] M. Warmuth, K. Glocer, and G. Ratsch. Boost-
ing algorithms for maximizing the soft margin.
In Advances in Neural Information Processing
Systems 21, 2007.

[WLR06] M. Warmuth, J. Liao, and G. Ratsch. Totally cor-
rective boosting algorithms that maximize the
margin. InProceedings of the 23rd international
conference on Machine learning, 2006.

[Zha03] T. Zhang. Sequential greedy approximation for
certain convex optimization problems.IEEE
Transaction on Information Theory, 49:682–
691, 2003.

321

322

Adaptive Aggregation for Reinforcement Learning with Efficient Exploration:
Deterministic Domains

Andrey Bernstein∗ Nahum Shimkin
Department of Electrical Engineering Department of Electrical Engineering

Technion – Israel Institute of Technology Technion – Israel Institute of Technology
Haifa, Israel Haifa, Israel

andreyb@tx.technion.ac.il shimkin@ee.technion.ac.il

Abstract

We propose a model-based learning algorithm, the
Adaptive Aggregation Algorithm (AAA), that aims
to solve the online, continuous state space rein-
forcement learning problem in a deterministic do-
main. The proposed algorithm uses an adaptive
state aggregation approach, going from coarse to
fine grids over the state space, which enables to
use finer resolution in the “important” areas of the
state space, and coarser resolution elsewhere. We
consider an on-line learning approach, in which
we discover these important areas on-line, using an
uncertainty intervals exploration technique. Poly-
nomial learning rates in terms of mistake bound
(in a PAC framework) are established for this algo-
rithm, under appropriate continuity assumptions.

1 Introduction
Markov Decision Processes (MDPs) provide a standard
framework for handling control and sequential decision mak-
ing tasks under uncertainty ([4, 17]). Solid theory and a vari-
ety of algorithms enable the efficient computation of optimal
control policies in MDPs when the state and action spaces
are finite. However, an exact solution becomes intractable
when the number of states is large or infinite. In this case,
some approximation schemes are required. See [4] and [6]
for a thorough discussion. Also, see such recent works as
[1, 11, 14].

One natural approximation approach is state aggrega-
tion, in which the state space is discretized into a (relatively
small) finite collection of cells. Each cell is said to aggregate
the states that fall in this cell. Once the aggregation is per-
formed, the new problem is a planning problem in a reduced
state space, which can be solved by regular techniques. The
main question that arises here is how to perform the aggre-
gation, so that, on the one hand, obtain a “good” approxima-
tion of an optimal policy, and on the other hand minimize the
problem complexity. This question was addressed by many
works, such as [21, 9], which provide formal answers under
some continuity assumptions on the model parameters.

∗We would like to thank the reviewers for their useful comments
on this paper.

An extra difficulty is added when dealing with learning
problems, namely situations where the model of the MDP
is initially unknown. Reinforcement Learning (RL) encom-
passes a wide range of techniques for solving this problem
by interacting with the environment. An important part of
an RL algorithm is the exploration scheme. The role of ex-
ploration is to gain new information by appropriate action
selection which directs the agent towards unknown states of
the MDP.

Recently, efficient learning algorithms were presented
and proved to learn nearly optimal behavior (with high prob-
ability) within a time or error bound that is polynomial in
the problem size. These include the E3 [13], R-MAX [7],
MBIE [18], GCB [8], UCRL [2] and OLP [20] algorithms.
These algorithms use efficient exploration techniques, which
are often based on the so–called “optimism in face of uncer-
tainty” principle. However, these algorithms are infeasible
in cases where the state and/or action spaces are very large
or infinite, since their time and space complexity is typically
polynomial in the size of the space.

On the other hand, most of the existing algorithms for
solving “large” problems that rely on state aggregation, are
heuristic in nature, without formal guarantees. These include
such works on adaptive aggregation as [15], [16] and [5].
An exception is the algorithm proposed by Diuk et al. [10],
which uses R-MAX as the basis. However, this algorithm re-
quires a specific structure of the problem; otherwise, its total
mistake bound is polynomial in the size of the state space,
which can be very large or infinite.

In this paper we focus on the online reinforcement learn-
ing problem in MDPs with very large or infinite state space,
finite action space, discounted return criterion, and with de-
terministic dynamics and rewards. For concreteness we will
focus on the continuous state case; however our schemes and
results also apply to the discrete case, where the number of
states is very large or countably infinite. The proposed al-
gorithms use an adaptive state aggregation approach, going
from coarse to fine grids over the state space, which enables
to use finer resolution in the “important” areas of the state
space, and coarser resolution elsewhere. We consider an
on-line learning approach, in which we discover these im-
portant areas on-line, using an uncertainty intervals explo-
ration technique1. Certain continuity assumptions on the ba-

1Our uncertainty intervals are the analogue of the confidence
intervals used in the stochastic case [18]. However, the origin of

323

sic model parameters will be imposed. Such assumptions are
essential for generalization in continuous state space, espe-
cially when using the state aggregation approach.

The principle that governs our basic scheme is simply
to split frequently visited cells. The idea behind this prin-
ciple is as follows. As time progresses, we will visit cells
that are “close” to the optimal trajectory; on the optimal tra-
jectory, we need high resolution. Perhaps surprisingly, this
principle is not sufficient to obtain theoretical results. Con-
sequently, we will propose an improved variant of the basic
algorithm, for which learning rates in terms of total mistake
bound (see below) will be established. In this variant, in ad-
dition to splitting the visited cells, we also split cells that the
algorithm “could have” visited (according to the uncertainty
in the model of the MDP that was learned so far).

We will use the total mistake bound as a performance
metric for our algorithms. This metric counts the total num-
ber of time-steps in which the algorithm’s implemented pol-
icy is strictly suboptimal from the current state. This metric
has been used in a number of recent works on on-line learn-
ing in discounted MDP problems2 [12, 18, 19]. In our case
we will establish two types of mistake bounds, which we
call the prior bound and the posterior bound. The first type
ensures that our algorithm is not worse than a non–adaptive
algorithm, which uses a single uniformly dense grid. In this
case, our mistake bound is thus polynomial in the number of
cells in this grid. The second type ensures that the mistake
bound is polynomial in the number of cells in the actually
used grid.

In our analysis, we need to distinguish between two cases:
The “contractive” case, characterized by γβ < 1, where γ is
the MDP discount factor and β is a (Lipschitz) continuity pa-
rameter of the transition function (cf. equation (6b)); and the
“expansive” case, where γβ > 1. Due to space constraints,
we treat here in detail the former, while the results for the
latter are presented without proofs, which can be found in
[3].

The paper is structured as follows. In Section 2 we present
the model and the notation. In Section 3 we introduce some
further definitions and assumptions. In Section 4 we pro-
pose a basic version of our AAA algorithm, while Section
5 presents an improved variant of the algorithm that is re-
quired for its convergence. In Section 6 polynomial bounds
on the total mistake count of this improved algorithm are
presented for the “contractive” case, while Section 7 proves
these bounds. In Section 8 we provide results for the “ex-
pansive” case, without proof. Finally, conclusions and future
work are presented in Section 9.

2 Model and Performance Metrics
We denote a deterministic MDP by the 4-tuple M = (X, A,
f, r), where X is a state space, A is an action space, f (x, a)
is the transition function which specifies the next state x′ ∈
X given the previous state x ∈ X and action a ∈ A, and
r(x, a) ∈ [rmin, rmax] is the immediate reward function

uncertainty in our model is the (deterministic) aggregation error,
rather than stochastic sampling error.

2These works refer to this metric as the sample complexity of
exploration.

which specifies the reward of performing action a ∈ A in
state x ∈ X.

Let d : X × X → R be a fixed metric on X. We assume
the following regarding the state and action spaces.

Assumption 1
1. The action space A is a finite set.

2. The state space X is a bounded subset of Rn. That is,
there exists a constant ∆max < ∞ such that for all
x, x′ ∈ X, d (x, x′) ≤ ∆max.

The MDP M is used to model an environment, or a dy-
namic system, with which a learning agent interacts. The
interaction proceeds as follows: At time t the agent observes
the state xt ∈ X, chooses an action at ∈ A, receives a re-
ward rt = r(xt, at), and the process moves to state xt+1 =
f(xt, at).

Let ht , {x0, a0, x1, a1, ..., xt−1, at−1, xt} denote the
history of observed states and actions, that is available to the
agent at time t to make its choice of at. Also, let Ht ,
(X× A)t × X denote the space of all possible histories up
to time t. Then, at each time t, the agent makes its deci-
sion according to some decision rule πt : Ht → A, so that
at = πt(ht), t ≥ 0. The collection π = {πt}∞t=0 is the
control policy. A policy is stationary if the decision rule
does not change over time, and depends only on the last state
observed. We shall slightly abuse notation and identify the
stationary policy π with the map π : X → A, so that at each
time t, at = π(xt).

In this paper we focus on the discounted return criterion.
For a given initial state x0 = x, we denote the infinite hori-
zon discounted return of state x, for a given policy π, in MDP
M , by

Jπ
M (x) ,

∞∑
t=0

γtr (xt, πt(ht)) ,

where 0 < γ < 1 is the discount factor. The optimal return is
denoted by VM (x) , supπ Jπ

M (x), which is also called the
optimal value function. We often drop M from the notation
above, if it does not cause confusion. A policy π is optimal if
Jπ(x) = V (x) holds for all x ∈ X. For any ε > 0, a policy
π is ε-optimal if Jπ(x) ≥ V (x)− ε holds for all x ∈ X.

It is well known ([17]) that the optimal value function
satisfies Bellman’s equation

V (x) = max
a∈A

{r(x, a) + γV (f(x, a))} , x ∈ X, (1)

and any stationary deterministic policy π∗ which satisfies
π∗(x) ∈ argmaxa∈A {r(x, a) + γV (f(x, a))} , x ∈ X, is
an optimal policy. Let Q(x, a) , r(x, a) + γV (f(x, a))
denote the action–value function, or Q-function, which pro-
vides the return of choosing an action a in state x, and then
following an optimal policy. Also, we let Vmax , rmax

1−γ .
Note that Vmax is the maximal possible discounted return of
any policy.

Our main performance metric will be mistake bound (or
policy-mistake bound), introduced for RL in [12]. It counts
the number of time steps t in which the algorithm executes a
not ε-optimal policy from the current state, xt. Specifically,
let πt be the decision rule that the algorithm uses at time

324

t to choose its action. Then, given ht, At = {πk}∞k=t is
a (non-stationary) policy that the algorithm implements at
time t, and

∑∞
k=t γk−trk , JAt(xt) can be interpreted as

the return of this policy from time t onward, where rk =
r(xk, πk(hk)) and xk+1 = f(xk, πk(hk)). Now, the policy-
mistake count is defined as

PM(ε) ,
∞∑

t=0

I
{
JAt(xt) < V (xt)− ε

}
. (2)

For deterministic domains with finite state–space, we have
the following near-optimality criterion.

The Policy-Mistake Bound Criterion
A learning algorithm is PAC (Probably Approximately Cor-
rect) if there exists a polynomial

B = B

(
|X| , |A| , 1

1− γ
,
1
ε

)
such that for all ε > 0, PM(ε) < B.

Note, that while the “probably” aspect is absent in our de-
terministic case, we will find it convenient to keep the PAC
terminology here.

A possible alternative to the policy-mistake count is the
action-mistake count, defined as follows:

AM(ε) ,
∞∑

t=0

I {Q(xt, at) < V (xt)− ε)} . (3)

This criterion counts the number of sub–optimal actions, that
is, the number of times that an algorithm executed an action
whose action–value is ε-inferior to the optimal value. It is
easily verified (see Corollary 1 in [3]) that policy-mistake
count is a stronger criterion, in the sense that AM(ε) ≤
PM(ε). Hence we focus here on the former.

In the above definition, the bound B depends on the num-
ber of states |X|. In case |X| is infinite, some other mea-
sures of X must be considered. As already mentioned, in our
case we will replace |X| by the number of cells in sufficiently
dense grid over the state space.

3 Preliminaries
a. Grid–Cell Notation
A grid S over the state space X is a partition of X into disjoint
elements that covers the whole of X. We call any s ∈ S a
cell. We say that a grid S2 is a refinement of a grid S1, if for
every cell s ∈ S2 there exists s′ ∈ S1, such that s ⊆ s′. We
denote this relation by S2 � S1. For any sets A and B of
cells, we define the intersection operator between these two
sets as

A ∧B , {sA ∩ sB : sA ∈ A, sB ∈ B} \ {Ø} . (4)

For a given cell s ∈ S, let ∆(s) , supx,x′∈s d (x, x′) de-
note the cell size (or diameter) in the given metric d. For two
given cells s, s′ ∈ S, we define the biased distance between
these cells as

db(s, s′) ,

{
infx∈s,x′∈s′ d (x, x′) , s 6= s′,

−∆(s), s = s′.
(5)

This definition will be justified in Section 5 (see Definition
3 and the remark after this Definition). Of course db(s, s′)
is not a distance in a regular sense, since it can be negative.
Also, for given state x ∈ X, let sx ∈ S be the cell that
includes x (x ∈ sx). Then, given a cell s ∈ S, we define the
biased state-to-cell distance db(s, x) , db (s, sx).

b. Feasible Splitting Schemes and Grids
Given a source grid S1 and a candidate s ∈ S1 to split,
a splitting scheme tells us how to split s into csplit cells
s1, ..., scsplit

, with si ∩ sj = Ø, ∪isi = s, to form a refined
(target) grid S2 � S1. We are interested in splitting schemes
that decrease the size ∆(s) of a cell s. More formally, we
require the following condition on the splitting scheme.

Definition 1 (Feasible Splitting Scheme) A splitting sche-
me with splitting coefficient csplit is feasible if there exists
0 < λ < 1 (independent of s) such that ∆(si) ≤ λ∆(s) for
i = 1, ..., csplit.

Now, given a fixed feasible splitting scheme and an initial
grid S0 over the state space X, we define the set of feasible
grids as the set of all grids that can be obtained by using this
given scheme starting from S0.

c. Continuity Assumption
The following continuity assumption will be imposed on the
basic model parameters.

Assumption 2 There exist constants α > 0 and β > 0 such
that, for all x1, x2 ∈ X and a ∈ A it holds that

|r(x1, a)− r(x2, a)| ≤ α · d(x1, x2), (6a)

d (f (x1, a) , f (x2, a)) ≤ β · d(x1, x2). (6b)

A continuity assumption of some kind is obviously es-
sential for generalization in continuous state spaces. As-
sumptions of similar nature to the one above were used in
various works on state aggregation, such as [21, 9]. However,
we note that the specific assumptions used in these papers re-
fer to continuity of probability densities. Consequently they
are too strong for the continuous deterministic case as they
imply that all states are mapped to the same target state.

In this paper we will treat in detail the case γβ < 1
(where γ is the discount factor), in which there is some “con-
traction” effect in the system dynamics. Results for the com-
plementary case of γβ > 1 are presented without proof in
Section 8.

We assume that both α and β are known for the purpose
of learning.

4 The Basic AAA Algorithm
In this section we present the basic variant of the AAA al-
gorithm, which is directly based on the principle of split-
ting frequently visited cells. As it turns out, this algorithm
may fail in some cases, and therefore no theoretical guaran-
tees will be presented. Instead, we will provide an example,
showing the source of the problem. This will provide the
motivation for the improved scheme in the next section.

In the following subsections we present the different parts
of this algorithm in detail. An outline of the complete algo-
rithm is presented as Algorithm 1.

325

Algorithm 1 Basic Adaptive Aggregation Algorithm (out-
line)
Input parameters:

Maximal reward rmax,
Lipschitz continuity parameters α and β,
Count threshold N ,
Cell size threshold ∆ε.

Initialization:

1. Initialize the grid to some initial grid S0(a) = S0 for
all a ∈ A, and the cell count N(s, a) = 0, for all a ∈
A, s ∈ S0;

2. For all s ∈ S0(a) and a ∈ A, initialize the reward upper
bound and the transition uncertainty set:

r̃(s, a) = rmax, CIf (s, a) = S0(a).

For times t = 0, 1, 2, ... do:

1. Policy Computation: Algorithm 2
2. Policy Execution: Algorithm 3
3. Cell Splitting: Algorithm 4

a. Action–Grids and Common Grid
In our algorithm, we will use a separate grid for every action.
This will allow to use a different resolution for each action.
We denote by St(a) the grid that is used by the algorithm at
time t for action a. We denote by St the coarsest grid which
is a refinement of all St(a) at time t. That is

St ,
∧
a∈A

St(a),

where the intersection operator is defined in (4). We call this
grid a common grid (at time t). This grid will be used to
compute the value function, while the action–grids are used
for empirical model estimation.

b. Empirical Model
We use a single sample to estimate empirically the reward
and transition. Specifically, suppose that we choose action
a in cell s. We thus obtain the sample (x, a, r = r(x, a),
x′ = f(x, a)), with x ∈ s and x′ ∈ s′. We define the
empirical model based on this single sample:

r̂(s, a) = r, (7)

f̂(s, a) = s′. (8)

Once the sample from (s, a) is obtained, the model remains
unchanged for this pair (until the cell is split).

c. Uncertainty Intervals and Upper Value Function
In the AAA algorithm we will use an uncertainty intervals
exploration technique as it applies to deterministic systems
due to aggregation. Below we present the definition of the
uncertainty intervals in case of continuous state space, and
how we use them in the algorithm.

At any time t, and for every a ∈ A and s ∈ St(a), we
define the reward uncertainty interval around the empirical
reward (7) as3:

CIr(s, a) ,
[
r˜(s, a), r̃(s, a)

]
= [r̂(s, a)− α∆(s), r̂(s, a) + α∆(s)]

if the pair (s, a) was sampled till time t; otherwise, the re-
ward uncertainty interval for this pair is inherited from the
parent cell. By the continuity Assumption 2, this uncertainty
interval satisfies that r(x, a) ∈ CIr(s, a), ∀x ∈ s. Also, the
transition uncertainty set is defined as:

CIf (s, a) ,
{

s′ ∈ St : db

(
s′, f̂(s, a)

)
≤ β∆(s)

}
,

where db is the biased distance defined in (5). (If the pair
(s, a) was not sampled till time t, the uncertainty set is in-
herited from the parent cell as in the reward case). Again,
by the continuity assumption, this uncertainty set satisfies:
f(x, a) ∈ CIf (s, a), ∀x ∈ s. Using this notation, we define
the following dynamic programming operator.

Definition 2 The upper DP operator at time t for any given
function g : St → R is

T1g(s) = max
a∈A

{
r̃(s, a) + γ max

s′∈CIf (s,a)
g(s′)

}
.

Now, using this operator, we define the upper value func-
tion (UVF) as the solution of the following fixed point equa-
tion:

Ṽt(s) = T1Ṽt(s), s ∈ St.

It can be shown that this equation has a unique solution,
which can be found using Value Iteration or linear program-
ming. Moreover, we can show that this solution is indeed an
upper bound on the optimal value function V . In addition,
on dense enough grid this solution is also very close to V .
We do not provide here proofs for these claims. However,
these claims easily follow from our analysis of the improved
algorithm in Section 7.

The policy that is used in the algorithm is now the opti-
mal (or greedy) policy with respect to Ṽt(s):

πt(s) = argmax
a∈A

{
r̃(s, a) + γ max

s′∈CIf (s,a)
Ṽt(s′)

}
, s ∈ St.

This policy is recalculated only when a cell-action pair is
visited for the first time, or some cell is split.

We summarize the UVF and policy computation algo-
rithm in Algorithm 2.

d. Policy Execution
As we have seen, the decision rule πt that is used at each
time t, is determined by the UVF, as presented in Algorithm
2 (equation (10)). In addition, in each execution of the deci-
sion rule, a new sample is obtained, and the empirical model
and the uncertainty intervals of the corresponding cell–action
pairs are updated. This process is summarized in Algorithm
3.

3We drop the time index from most of our notation for ease of
exposition.

326

Algorithm 2 Policy Computation
If the model has been changed (that is, some cell-action
pair has been visited for the first time, or some cell has been
split):

1. Compute the UVF over St =
∧

a∈A St(a) by solving

Ṽt(s) = T1Ṽt(s), s ∈ St, (9)

where T1 is defined in Definition 2.
2. Compute the corresponding optimal policy

πt(s) = argmax
a∈A

{
r̃(s, a) + γ max

s′∈CIf (s,a)
Ṽt(s′)

}
.

(10)
If more than one action achieves the maximum, choose
the first one in lexicographic order.

Otherwise, use the previously computed value and policy:
Ṽt = Ṽt−1 and πt = πt−1.

e. Splitting Method
Assume that a fixed feasible splitting scheme is used through-
out (cf. Definition 1). Define a count threshold N . We
will split a cell if the number of visits to it exceeds N . In
addition to this splitting criterion, we also employ a “stop–
splitting” rule, based on the size of the cell. Let ∆ε be a
(small) cell size threshold parameter. Then, if a cell s sat-
isfies ∆(s) ≤ ∆ε, it will not be split anymore. Since the
number of times that the algorithm encounters a pair with
∆(s) > ∆ε can be bounded, it follows that the number of
different (stationary) policies that the algorithm uses can also
be bounded. This will eventually enable us to prove a bound
on the policy-mistake count, in Section 7.

Now, under a fixed feasible splitting scheme, we denote
by Sε the coarsest feasible grid with ∆(s) ≤ ∆ε for all s ∈
Sε. We call this grid ε-optimal grid. The number of cells in
Sε can be bounded as follows (see Lemma 6 in Section 7):

Nε , |Sε| ≤ |S0| csplit

(
∆max

∆ε

)log1/λ(csplit)

, (13)

where S0 is the initial grid, λ and csplit are the parameters of
the splitting scheme (Definition 1), and ∆max is the diameter
of the state space (see Assumption 1).

We summarize the splitting process in Algorithm 4. Re-
call that the complete AAA algorithm is outlined in Algo-
rithm 1.

f. Why the Basic AAA Scheme Might Fail
To realize the problem, consider some cell s. The value of
the function Ṽ at that cell is computed based on the opti-
mistic next-step cell s1:

s1 , argmax
s′∈CIf (s,a)

Ṽt(s′) (14)

(cf. equation (9) and Definition 2). However, it may hap-
pen that the actual process never visits s1, but rather some
other cell in CIf (s, a). This may happen irrespectively of

Algorithm 3 Policy Execution

(i) Execute the action at = πt(st), with st ∈ St being the
current common grid cell. For the visited cell–action
pair (st, at) = (st, a), let s ∈ St(a) be the cell in the
action–grid that contains st.

(ii) Update the counter: N(s, a) := N(s, a) + 1.

(iii) If (s, a) is visited for the first time, compute the model
of this pair. Namely,

(a) Compute the empirical reward and transition ac-
cording to equations (7) and (8).

(b) Compute the upper reward value

r̃(s, a) := r̂(s, a) + α∆(s), (11)

(c) Compute the transition uncertainty set

CIf (s, a) :=
{

s′ ∈ St : db

(
s′, f̂(s, a)

)
≤ β∆(s)

}
.

(12)
(d) Save the basic sample (x, a, x′) obtained for this

(s, a), with x = xt and x′ = xt+1.

Algorithm 4 Splitting Algorithm

1. Initialize St+1(a) = St(a), for all a ∈ A.

2. For each cell–action pair (s, a), with s ∈ St(a), which
satisfy N(s, a) ≥ N and ∆(s) > ∆ε, perform the fol-
lowing:

(a) Split this cell-action pair according to the given
(feasible) splitting scheme. Let s1, ..., scsplit

∈
St+1(a) be the resulting sub-cells after this split.
Let sk be the cell that contains the sample of the
parent cell s.

(b) Initialize the reward upper bounds of the new cells:

r̃(sj , a) = r̃(s, a), ∀j 6= k,

r̃(sk, a) = r̂(s, a) + α∆(sk),

(c) Initialize the transition uncertainty sets of the new
cells:

CIf (sj , a) = CIf (s, a), ∀j 6= k,

CIf (sk, a) =
{

s′ ∈ St : db

(
s′, f̂(s, a)

)
≤ β∆(sk)

}
,

(d) Update the counts of the new cells as follows:

N(sj , a) = 0, ∀j 6= k,

N(sk, a) = 1.

how small s is, or how many times it is visited. This might
be the case, for example, if some points (states) in s map un-
der f(x, a) to the border between s1 and some adjacent cell
s2, and all visits to s are to that part that maps to s2. In that
case, cell s1 which is not visited will remain large, hence

327

with potentially large error in its empirical estimates. This
may lead to a large error in the estimated value function at
s, and consequently to an error in the computed policy. We
propose a solution to this problem in the next section.

5 The AAA Algorithm
To overcome the potential pitfalls of the basic AAA algo-
rithm above, we need to modify the definition of the upper
value function so that it will more closely approximate the
optimal one. Two modifications will be introduced. First,
we propose splitting of the optimistic next-step cells (recall
the cell s1 defined in (14)), in addition to actually visited
ones. Those cells, which we call “virtually visited” cells,
will be defined formally in Definition 5 below. However,
splitting those cells is not enough to fix the problem, since it
may happen that no actual samples are obtained for the cre-
ated cells. Thus, we introduce a smoothing operator in the
DP equations. This operator, which is specified in Definition
3 below, allows to improve the accuracy of the upper value
function in (small) cells even if they are not actually visited
(hence not actually sampled), based on the values of their
geometric neighbors.

In what follows we will focus on the case γβ < 1. As
can be seen in the proof of Lemma 1 (Section 7), in this case
we have some sort of a contraction effect. Thus, the results
are technically much simpler than for γβ > 1. The latter
case will be briefly discussed in Section 8, and is treated in
detail in [3].

Definition 3 Let the continuity function of the optimal value
be defined as

ω (θ) ,
α

1− γβ
θ, θ ≥ 0.

The smoothing operator at time t for any given function g :
St → R is

T2g(s) , min
s′∈St

{g(s′) + ω (∆ (s) + db (s, s′))} .

Remark. Note that by definition of the biased distance db

in (5), the above minimized set also includes g(s), since for
s′ = s,

g(s) + ω (∆ (s) + db (s, s)) = g(s) + ω (0) = g(s).

Therefore, T2g(s) ≤ g(s) for all s ∈ St.

It is shown in Lemma 1 in Section 7, that the continuity
function ω is in fact a bound on the modulus of continuity of
the optimal value function V . The definition of the smooth-
ing operator is then formally justified in Lemma 3, which
states that if g is an upper value function, that is g(s) ≥ V (x)
for all s and x ∈ s, then so is T2g. Thus, the smoothing op-
erator T2 tightens the upper value function g based on the
values in adjacent cells.

Now, using the smoothing operator, we modify the defi-
nition of the upper DP operator (Definition 2).

Definition 4 The smoothed upper DP operator at time t is
defined by T̃ , T1T2. That is, for given function g : St → R,

T̃ g(s) = max
a∈A

{
r̃(s, a) + γ max

s′∈CIf (s,a)
T2g(s′)

}
.

This new operator smoothes g(s) before applying to it the
DP operation. As before, we define the UVF as the solution
of the fixed point equation:

Ṽt(s) = T̃ Ṽt(s), s ∈ St.

Our second modification involves splitting of “virtually
visited cells”. We next define the required notation.

Definition 5 (Virtually Visited Cells) At any period [t0, t1]
of the algorithm’s execution:

1. Let {st}t1
t=t0

be the actually visited cells st ∈ St that
are visited during this period, and {at}t1

t=t0
be the cor-

responding actions, with at = πt(st).

2. Let {(s′t, at)}t1
t=t0

be the actually visited cell–action
pairs during this period, with s′t ∈ St(at), such that
st ⊆ s′t.

3. Denote the virtually visited cells during this period by
{s∗t }

t1+1
t=t0+1, where s∗t ∈ St and is the argument of the

maximization

s∗t+1 , argmax
s′∈CIf (s′t,at)

T2Ṽt(s′).

4. For each virtually visited common grid cell s∗t ∈ St,
let {sa}a∈A be the action-grid cells (sa ∈ St(a)) which
contain s∗t . We define the virtually visited cell-action
pair as the pair (s̃t, ãt) = (sa, a) with the cell sa hav-
ing the smallest diameter among those action-grid cells.

In the course of the algorithm, both actually and vir-
tually visited cell-action pairs will be split (using a count
threshold as before). We note that the splitting of virtually
visited cells is needed in the common grid St, to avoid the
problem presented in Section 4. This splitting can be done
directly in St. However, we have chosen to keep the rela-
tion St =

∧
a∈A St(a). Thus, we will split the smallest cell

s̃ ∈ St(ã) which contains the virtually visited cell s∗ ∈ St

that is candidate for splitting. In this way, the split is inher-
ited by St.

To summarize, the following modifications are introduced
in the AAA algorithm: In Algorithm 2, equation (9) is re-
placed by

Ṽt(s) = T̃ Ṽt(s), s ∈ St, (15)

where T̃ is defined in Definition 4. Also, equation (10) is
replaced by

πt(s) = argmax
a∈A

{
r̃(s, a) + γ max

s′∈CIf (s,a)
T2Ṽt(s′)

}
. (16)

Finally, in Algorithm 3, step (ii), we update the counters of
both the actually and virtually visited cell–action pairs:

N(s′t, at) := N(s′t, at) + 1, N (s̃t, ãt) := N (s̃t, ãt) + 1.

6 Main Results (γβ < 1)
In this section we summarize the main results regarding the
AAA algorithm. Proofs are deferred to the next section.

Recall the definition of the mistake count (2) and the cor-
responding near–optimality criterion. Also, recall that Sε is

328

the coarsest (feasible) grid with ∆(s) ≤ ∆ε, which satis-
fies (13). First we present the main theorem, which provides
a mistake bound of modified AAA scheme in terms of the
number of cells in Sε.

Theorem 1 Let ε > 0 and assume that the AAA algorithm
receives an input

∆ε =
(1− γ)(1− γβ)

2α(γ + 2)
ε.

Then, the policy-mistake count of the algorithm is bounded
by

PM(ε) ≤ |Sε| |A| (2N + 1)
1− γ

ln
2 (rmax − rmin)

ε (1− γ)
.

In addition to the above theorem, we can obtain a possi-
bly tighter mistake bound in terms of the posterior number of
cells actually used in the course of the algorithm. In fact, the
purpose of adaptive aggregation is that as time progresses,
the algorithm will split cells only in the vicinity of the op-
timal trajectory. Therefore, the actual number of grid cells
“at infinity” will be much less than |Sε|. We make this more
formal below.

Definition 6 Let x0 be the initial state and let N∞(x0, a) be
the number of cells in the grid limt→∞ St(a), that is

N∞(x0, a) , lim
t→∞

|St(a)| . (17)

Also, let N∞(x0) ,
∑

a∈A N∞(x0, a).

We note that the limit in (17) exists and is finite, since |St(a)|
increases in t, while |St(a)| ≤ |Sε| due to the enforced “stop-
splitting” rule. For the same reason, we have the trivial bound
N∞(x0) ≤ |Sε| |A|.

Theorem 2 Let ε > 0 and assume that the AAA algorithm
receives an input ∆ε as in Theorem 1. Then, it holds that

PM(ε) ≤ 4N∞(x0)N
1− γ

ln
2 (rmax − rmin)

ε (1− γ)
.

Note that the bound of Theorem 2 becomes better than the
bound of Theorem 1 if N∞(x0) ≤ 1

2 |Sε| |A|.

Remark. Since the action-mistake count satisfies AM(ε) ≤
PM(ε), the policy-mistake bounds of Theorems 1 and 2 ap-
ply also to the action-mistake.

Discussion. Theorem 1 implies that the mistake bound is
linear in |Sε|. Therefore, using equation (13), we obtain the
following explicit dependence on ε (ignoring the log factor):

PM(ε) ≤ C (1/ε)n |A| (2N + 1) , (18)

where the constant C is polynomial in α, 1/(1 − γ) and in
1/(1−γβ). Note however the exponential dependence on the
dimension n of the state-space, which is an obvious artifact
of the dense aggregation approach.

In the context of the posterior bound (Theorem 2), it
should be noted that there is a trade-of between the choice
of the count threshold N and the number of cells at infinity

N∞(x0). If we choose N too small, the algorithm will per-
form many splits, and consequently N∞(x0) will be large.
In this case it may happen that the algorithm will produce re-
dundant cells, which are not actually needed for near-optimal
performance. On the other hand, if we choose large N ,
the algorithm will perform less splits, resulting in a smaller
N∞(x0). This however may lead to a slower convergence to
the optimal trajectory.

Two comparisons that may be of interest follow. First,
consider our algorithm for the “flat” model, which uses a
sufficiently fine grid (namely, Sε) over the state space. It can
be shown that the mistake bound in such case will be as in
Theorem 1, with 2N + 1 replaced by 1. Clearly, however,
such an algorithm is not feasible if |Sε| is large.

Moreover, consider a näive approach, where the “flat”
model is treated as a finite-state MDP, and an efficient explo-
ration technique is used on this MDP (such as the R-MAX
algorithm [7]). In the ideal case when the MDP assumption
happens to hold true, such an algorithm will again have the
mistake bound as in Theorem 1, with 2N + 1 replaced by 1
(see for instance [12], Theorem 8.3.5). However, as this as-
sumption generally is not satisfied, the computed value func-
tion might underestimate the optimal one, resulting in algo-
rithm’s failure (and, in fact, in infinite mistake count).

7 Analysis of the AAA Scheme
Below is the outline of the analysis. First we show that the
optimal value function V possesses some continuity prop-
erty, which will justify the use of the smoothing operator T2.
Then, we show that there exists a unique solution to equation
(15), and that this solution upper bounds the optimal value V .
Finally, we prove that under certain conditions on the grid,
the optimal policy with respect to the UVF (equation (16)) is
an ε-optimal policy, which will enable us to prove a polyno-
mial bound on the policy-mistake count of the algorithm.

For ease of exposition, throughout the analysis we write
CI for the transition uncertainty set (instead of CIf), and de-
note by Vb , 1

1−γ (rmax − rmin) the maximal difference
between two returns of any two policies. Also, recall that the
proofs presented below are limited to the γβ < 1 case.

a. Continuity of the Optimal Value Function
In this subsection we show that under the continuity As-
sumption 2, the optimal value function is also Lipschitz con-
tinuous4.

Lemma 1 For any given x1, x2 ∈ X, we have that

|V (x1)− V (x2)| ≤
α

1− γβ
d(x1, x2) , ω (d(x1, x2)) .

Proof. Fix x1, x2 ∈ X. From the optimality equation (1), we
have that

|V (x1)− V (x2)|
≤ max

a
|r(x1, a)− r(x2, a)|

+ γ max
a
|V (f(x1, a))− V (f(x2, a))|

≤ αd(x1, x2) + γ max
a
|V (f(x1, a))− V (f(x2, a))| ,

4In case γβ > 1 it is Hölder continuous, see [3] for details.

329

where the second inequality follows by Assumption 2. Also
by this assumption, we have that

d(f(x1, a), f(x2, a)) ≤ βd(x1, x2),

for any a. Applying the above inequalities iteratively, for any
integer H > 0, we obtain the following bound:

|V (x1)− V (x2)| ≤ αd(x1, x2)
H−1∑
k=0

(γβ)k + γHVb.

Now, since γβ < 1, we can take H = ∞ in the above bound,
and obtain the desired result.

b. The Upper Value Function
First we prove the contraction property of the upper DP op-
erator used in the fixed point equation (15).

Lemma 2 The operator T̃ is a contraction mapping in the
`∞ norm, with the contraction factor γ. Thus, there exists a
unique solution to equation (15).

Proof. Given two functions g1 and g2, we have the following
sequence of inequalities:∣∣∣(T̃ g1)(s)− (T̃ g2)(s)

∣∣∣
≤ γ max

a∈A

∣∣∣∣ max
s′∈CI(s,a)

T2g1(s′)− max
s′∈CI(s,a)

T2g2(s′)
∣∣∣∣

≤ γ max
a∈A

max
s′∈CI(s,a)

|T2g1(s′)− T2g2(s′)|

≤ γ max
s′∈St

|T2g1(s′)− T2g2(s′)| .

Now, since

|T2g1(s′)− T2g2(s′)|

=
∣∣∣ min

s′′∈St

{g1(s′′) + ω (∆ (s′) + db (s′, s′′))} −

− min
s′′∈St

{g2(s′′) + ω (∆ (s′) + db (s′, s′′))}
∣∣∣

≤ max
s′′∈St

|g1(s′′)− g2(s′′)| = ‖g1 − g2‖∞ ,

it follows that
∣∣∣(T̃ g1)(s)− (T̃ g2)(s)

∣∣∣ ≤ γ ‖g1 − g2‖∞ for

all s ∈ St. Hence,
∥∥∥T̃ g1 − T̃ g2

∥∥∥
∞
≤ γ ‖g1 − g2‖∞ , which

proves the result.

We will need the following property of the smoothing
operator T2.

Lemma 3 If g1 : St → R is an upper bound on the value
function (that is, g1(s) ≥ V (x) for all s ∈ St and x ∈ s),
then so is g2 , T2g1.

Proof. For given s ∈ St, let s∗ be the cell that achieves the
minimum in the smoothing operator T2:

s∗ = argmin
s′∈St

{g1(s′) + ω (∆ (s) + db (s, s′))} .

If s = s∗, then by definition of the biased distance (5) we
have that db(s, s∗) = −∆(s), implying that

ω (∆ (s) + db (s, s∗)) = ω (0) = 0.

Thus, g2(s) = g1(s) ≥ V (x) for all x ∈ s. Otherwise,
let5 xmin ∈ s and x∗min ∈ s∗ be such that db(s, s∗) =
d(xmin, x∗min). We have that

g2(s) , g1(s∗) + ω (∆ (s) + db (s, s∗))
≥ V (x∗min) + ω (∆ (s) + db (s, s∗))
≥ V (x),

where the first inequality follows by hypothesis for the state
x∗min ∈ s∗, and the second inequality holds for every x ∈ s
by Lemma 1, since

d(x, x∗min) ≤ d(xmin, x∗min)+d(x, xmin) ≤ db(s, s∗)+∆(s).

Lemma 4 The UVF Ṽt is indeed an upper bound on the op-
timal value function. That is, at every time t, we have that
Ṽt(s) ≥ V (x), ∀s ∈ St,∀x ∈ s.

Proof. Since, by Lemma 2, T̃ is a contraction operator, we
can prove the claim by induction on the steps of value itera-
tion. For the base case, let Ṽ 0(s) ≡ Vmax ≥ V (x),∀x ∈ X.
Now assume that the claim holds for n-th iteration. For n+1-
th iteration we have by the Lipschitz continuity of the reward
(Assumption 2) and by the definition of r̃(s, a), that for all
s ∈ St and x ∈ s,

r̃(s, a) = r(xs, a) + α∆(s) ≥ r(x, a),

where xs is a sample point in s. Also, by Assumption 2 and
by the definition of CI(s, a), it follows for any x ∈ s, that
f(x, a) ∈ s′, with s′ ∈ CI(s, a). Thus,

max
s′∈CI(s,a)

T2Ṽ
n(s′) ≥ T2Ṽ

n(s′ : f(x, a) ∈ s′) ≥ V (f(x, a)),

where the last inequality follows by the induction assump-
tion and Lemma 3. Therefore, we have

Ṽ n+1(s) = max
a∈A

{
r̃(s, a) + γ max

s′∈CI(s,a)
T2Ṽ

n(s′)
}

≥ max
a∈A

{r(x, a) + γV (f(x, a))}

= V (x).

which completes the induction proof. Since Ṽ n → Ṽ , the
result follows.

c. Near–Optimality of the UVF Optimal Policy
In this section we provide a sufficient condition on the grid,
which ensures that the return obtained by the policy At =
{πτ}∞τ=t which the algorithm implements at time t, is ε-close
to the UVF: Ṽt(s) − JAt

M (x) ≤ ε, for a given s ∈ St and all
x ∈ s. This will imply that V (x) − JAt

M (x) ≤ ε, since Ṽt is
an upper bound on the optimal value; namely, this will imply
that At is an ε-optimal policy.

To proceed, we introduce the definitions of known cell–
action pairs and the escape event.

5A denotes the closure of a set A.

330

Definition 7 (Known Pairs) At any time t, define the set of
actually known cell–action pairs:

AKt , {(s, a) ∈ St(a)× A : ∆(s) ≤ ∆ε, (s, a) was sampled} .

Also, define the set of virtually known cell–action pairs:

V Kt , {(s, a) ∈ St(a)× A : ∆(s) ≤ ∆ε} .

The following is a standard definition, which specifies a
mixing time of any stationary policy in discounted MDPs.

Definition 8 (ε/2-Horizon Time) In an MDP M , the ε/2-
horizon time is defined to be

Tε/2 , log1/γ

2Vb

ε
.

Definition 9 (Escape Event) At any time t, define the actual
escape event from a given starting cell s ∈ St:

AEt(s) ,


In a path starting from cell s and following
At for Tε/2 steps in M, an actually visited

pair (s′t, at) not in AKt is encountered.


Also, define the virtual escape event from a given starting cell
s ∈ St:

V Et(s) ,


In a path starting from cell s and following
At for Tε/2 steps in M, a virtually visited

pair (s̃t, ãt) not in V Kt is encountered.


Finally, the escape event is defined as

Et(s) = AEt(s)
⋃

V Et(s).

Definition 10 (Episode) An episode is a maximal period of
time [t0, t1], in which:

(i) All actually and virtually visited cell–action pairs till
time t1 − 1 satisfy

∆(s′t) ≤ ∆ε, ∆(s̃t) ≤ ∆ε,

and in addition, {(s′t, at)}t1−1
t=t0

were previously sampled
(that is, were previously visited).

(ii) At time t = t1, the algorithm encounters a pair for
which the condition in (i) is not true.

Note that during each episode, a fixed stationary policy is
used by the algorithm, and the policy is (potentially) changed
only at the beginning of each episode. Also, observe that the
above definitions depend on the cell size threshold parameter
∆ε. The next lemma formulates the condition on ∆ε which
will imply that the execution of the algorithm’s implemented
policy At from time t will obtain a return which is ε-close to
the UVF.

Lemma 5 Let ε > 0 be given and assume that

∆ε =
(1− γ)(1− γβ)

2α(γ + 2)
ε. (19)

Then,
Ṽt(s)− JAt

M (x) ≤ ε + I{Et(s)}Vb

holds for all t, s ∈ St and x ∈ s.

Proof. At given time t0, we consider the execution of the
(non-stationary) policy At0 for Tε/2 time steps in M . We
will use the notation of visited grid cells specified in De-
finition 5, with t1 = t0 + Tε/2 − 1. Now, we have two
mutually exclusive cases: (a) For all (s′t, at) it holds that
∆(s′t) ≤ ∆ε and (s′t, at) was sampled, and for all s∗t it holds
that ∆(s∗t) ≤ ∆ε. (b) There exists at least one t ∈ [t0, t1]
such that the above condition regarding either s′t or s∗t does
not hold.

The case (b) above is easy – if it happens, we have that
either a pair (s′, a) not in AKt is encountered, or a virtually
visited cell s∗ with ∆(s∗) > ∆ε is encountered. In the lat-
ter case, since the corresponding virtually visited cell-action
pair (s̃, ã) satisfies s∗ ⊆ s̃, we have that this pair is not in
V Kt. Thus, the escape event Et0(s) occurred during the ex-
ecution ofAt0 for Tε/2 time-steps, which is expressed by the
I {Et0(s)}Vb term in the bound.

Now, if (a) is the case, during the execution of At0 for
Tε/2 time steps we stay in the same episode, and thus the
algorithm’s policy remains unchanged and it is the stationary
policy πt0 . For simplicity, assume t0 = 0, write π for π0 and
Ṽ for Ṽ0, and recall that π is the greedy policy with respect
to Ṽ (equation (16)). Thus, Ṽ (s0) = r̃ (s′0, a0)+γT2Ṽt(s∗1).
Also, by Bellman’s equation,

Jπ
M (x0) = r (x0, a0) + γJπ

M (x1).

Now, we have that

Ṽ (s0)− Jπ
M (x0)

≤ 2α∆(s′0) + γ
(
T2Ṽt(s∗1)− Jπ

M (x1)
)

≤ 2α∆(s′0)

+ γ
(
Ṽ (s1) + ω (∆ (s∗1) + db (s∗1, s1))− Jπ

M (x1)
)

≤ 2α∆(s′0)

+ γω (∆ (s∗1) + 2β∆ (s′0)) + γ
(
Ṽ (s1)− Jπ

M (x1)
)

.

The first inequality follows by the definition of virtually vis-
ited cells, and by the continuity assumption on the reward,
since

r̃ (s′0, a0)− r (x0, a0) = r (x′, a0) + α∆(s′0)− r (x0, a0)
≤ 2α∆(s′0),

where x′ is the sample that was received for this cell-action
pair. The second inequality follows by the definition of the
smoothing operator (Definition 3). Note that s1 ∈ S1 by
its definition (cf. Definition 5). Finally, the third inequality
follows since both s∗1 and s1 are in CI(s′0, a0), having

db (s∗1, s1) ≤ db

(
s∗1, f̂(s′0, a0)

)
+ db

(
f̂(s′0, a0), s1

)
≤ β∆ (s′0) + β∆ (s′0) .

Thus, proceeding iteratively, we obtain the following bound:

Ṽ (s0)− Jπ
M (x0)

≤
Tε/2−1∑

t=0

γt
[
2α∆ (s′t) + γω

(
∆

(
s∗t+1

)
+ 2β∆ (s′t)

)]
+ γTε/2Vb.

331

By the definition of Tε/2 (Definition 8), we have γTε/2Vb ≤
ε
2 . Now, we have to check that the condition (19) of the
lemma regarding ∆ε, implies that

Tε/2−1∑
t=0

γt
[
2α∆ (s′t) + γω

(
∆

(
s∗t+1

)
+ 2β∆ (s′t)

)]
≤ ε

2
.

Indeed,

Tε/2−1∑
t=0

γt
[
2α∆ (s′t) + γω

(
∆

(
s∗t+1

)
+ 2β∆ (s′t)

)]
≤

Tε/2−1∑
t=0

γt [2α∆ε + γω (∆ε + 2β∆ε)]

≤
∞∑

t=0

γt [2α∆ε + γω (∆ε + 2β∆ε)]

=
1

1− γ

[
2α∆ε + γ

α

1− γβ
(1 + 2β)∆ε

]
=

2α + γα

(1− γ)(1− γβ)
∆ε =

ε

2
,

where the first inequality follows since we are addressing
case (a), in which all actually and virtually visited cells are
smaller then ∆ε, the second inequality holds by taking the
infinite some instead of the finite one, the first equality fol-
lows by the definition of ω (see Definition 3), and the last
equality follows by the hypothesis (19) of the Lemma. This
completes the proof of the Lemma.

d. Number of Cells in ε-Optimal Grid
Before proving the mistake bounds, we provide an upper
bound on the number of cells Nε = |Sε|.

Lemma 6 For a fixed feasible splitting scheme, with para-
meters csplit and λ, and a single initial grid S0, we have that

Nε ≤ |S0| csplit

(
∆max

∆ε

)log1/λ(csplit)

.

Proof. For every s ∈ S0, consider performing k(s) splits
iteratively, such that at each iteration we obtain new csplit

cells instead of the original one. It follows that after k(s)
such splits, the size of a split cell s′ ⊆ s satisfies ∆(s′) ≤
λk(s)∆(s). In addition, the number of cells in the grid that
contains all such cells s′ is

N =
∑
s∈S0

c
k(s)
split. (20)

Thus, for each s ∈ S0, we need to find the minimal k(s),
such that

λk(s)∆(s) ≤ ∆ε. (21)

From (21), it follows that this minimal k(s) = k∗(s) satisfies

log1/λ

(
∆(s)
∆ε

)
≤ k∗(s) < log1/λ

(
∆(s)
∆ε

)
+ 1.

Substituting the last inequality in (20) yields

Nε =
∑
s∈S0

c
k∗(s)
split

≤ csplit

∑
s∈S0

(csplit)
log1/λ

(
∆(s)
∆ε

)

= csplit

∑
s∈S0

(
∆(s)
∆ε

)log1/λ(csplit)

≤ |S0| csplit

(
∆max

∆ε

)log1/λ(csplit)

,

which completes the proof.

Remark. We note that Lemma 6 shows an exponential de-
pendence of Nε on the state space dimension n since in most
cases log1/λ (csplit) is of order of n.

e. Proof of Theorem 1
First, we note that the escape event Et(s) (Definition 9) can
be viewed as an exploration event. If it occurs at some time
t ≥ 0, the algorithm will encounter (in an execution of length
Tε/2) a cell-action pair (s, a) (either actually, or virtually),
with s that is not in Sε. In addition, in case of actual escape
event (see Definition 9), this pair was not sampled. This fact
can be interpreted as a “discovery” of new information, since
every such occurrence of an “unknown” pair will lead to an
increase of the count of such pair, and, eventually, to split of
such a pair.

Next two lemmas show that the number of times that “ac-
tual” and “virtual” escape events can occur is bounded.

Lemma 7 The number of times that AEt(s) can occur is
bounded by Nε |A| (N + 1) Tε/2.

Proof. Note that any cell s ∈ St(a) for any a and t, can be
visited no more then N times – after this number of times,
the cell is split. Now think of the grid representation of
the state space as a tree, with cells as leaves. The inter-
nal nodes in such tree represent the larger aggregations, that
were used in previous episodes. Now, the number of such in-
ternal nodes is less or equal to the number of leaves, since the
splitting coefficient is greater or equal to 2. Using this tree
representation, the visit to the “unknown” pair can be inter-
preted as a visit to an internal node of Sε. Since the counter
of this pair is incremented in this visit, by a simple counting
argument (a.k.a. the Pigeonhole Principle), the number of
times that the algorithm can encounter an internal node of Sε

is bounded by

(number of internal nodes of Sε) · N · |A| ≤ NεN |A| .
Finally, when the algorithm encounters a leaf of Sε, then only
one such occurrence is sufficient in order to the desired cell
to become sampled. Again, by a simple counting argument,
the number of times this can occur is bounded by

(number of leaves of Sε) · |A| = Nε |A| .
To conclude, the number of times that an “unknown” cell-
action pair can be encountered is bounded by

NεN |A|+ N∗
ε |A| = Nε (N + 1) |A| .

332

At each time t, consider the execution of a (non-stationary)
policy At for Tε/2 time steps in M . We have two mutually
exclusive cases: (a) If starting at time t, we execute the policy
At for Tε/2 time steps, without encountering an “unknown”
pair (that is, a pair not in AKt), there is no occurrence of the
escape event AEt(s). (b) If starting at time t, we execute
the policy At for Tε/2 time steps, and encounter at least one
unknown pair at time t ≤ t′ ≤ t + Tε/2, the escape event
AEt(s) occurs.

We then wish to bound the number of time steps that
(b) is the case. In the worst case we will encounter an un-
known pair at the end of the execution period of length Tε/2.
In this case, we have that all the succeeding executions for
t < t′ ≤ t + Tε/2 will also encounter this unknown pair.
That is, if AEt(xt) occurs at some time t, also AEt′(xt′) for
t < t′ ≤ t + Tε/2 will occur, in the worst case. Since after
Nε (N + 1) |A| visits to unknown pairs, all the pairs will be-
come known, AEt(s) can occur at most Nε (N + 1) |A|Tε/2

times.

Lemma 8 The number of times that V Et(s) can occur is
bounded by Nε |A| NTε/2.

Proof. The proof is similar to the proof of Lemma 7, with
the difference that the virtual escape event cannot occur on
the leaves of Sε.

Lemma 9 The number of times that the escape event Et(s)
can occur is bounded by Nε |A| (2N + 1) Tε/2.

Proof. Follows by Lemmas 7 and 8 and Definition 9.

Finally, we prove the main theorem regarding the mistake
bound of the AAA algorithm.

Proof of Theorem 1. For each time t, we consider the execu-
tion of policy At for Tε/2 time-steps in M , with the initial
state in each such execution xt (xt ∈ st). We then have that

JAt

M (xt) ≥ Ṽt(st)− ε− I {Et(st)}Vb

≥ V (xt)− ε− I {Et(st)}Vb,

where the first inequality holds by Lemma 5, and the second
inequality holds by Lemma 4. However, by Lemma 9, the
number of times the event Et(st) can occur is bounded by
Nε (2N + 1) |A|Tε/2, implying that

∞∑
t=0

I
{

JAt

M (xt) < V (xt)− ε
}
≤ Nε |A| (2N + 1) Tε/2,

which completes the proof of the theorem, using the defin-
ition of the ε/2-horizon time, and the fact that log1/γ C ≤

1
1−γ lnC, for any C.

f. Proof of Theorem 2
Recall the definition of the posterior number N∞(x0) of ac-
tually used cells in the course of the algorithm (Definition 6).
We only need to prove the analogue of Lemma 9 in this case.
The rest of the proof is exactly the same as that of Theorem
1.

Thus, we need to bound the number of times that an es-
cape event occurs. Here we consider the trees that repre-
sent the grids “at infinity”, namely S∞(a) = limn→∞ St(a),
a ∈ A, instead of the ε-optimal grid Sε. First, consider the
actual escape event. As previously, this event can occur on
internal nodes of S∞(a) no more than

(number of internal nodes of S∞ (a)) · N ≤ N∞(x0, a)N

times. The leaves of the tree (which are the cells of S∞(a))
can be classified into two groups: (a) “Small” leaves, with
∆(s) ≤ ∆ε, and (b) “Large” leaves, with ∆(s) > ∆ε. On
“small” leaves, only one occurrence of the escape event is
possible, since such a cell becomes known (Definition 7) af-
ter one sample. On “large” leaves, there cannot be more than
N occurrences of the escape event – otherwise these cells
would have been split. Thus, the number of times the escape
event can occur on leaves is bounded by

(number of leaves of S∞ (a))N = N∞(x0, a)N .

To summarize, the number of times that the (actual) escape
event can occur on all nodes, for all actions a ∈ A, is bounded
by

∑
a∈A 2N∞(x0, a)N .

Similarly, the virtual escape event cannot occur more than∑
a∈A 2N∞(x0, a)N times. Note that there is no difference

in bounds on the number of occurrences of actual and virtual
escape events, since the cells of S∞(a) can be “large” ones,
that is having ∆(s) > ∆ε. Thus, the virtual escape event can
also happen on leaves. By the same arguments as in proof
of Theorem 1, the sum of the above two bounds times the
ε/2-horizon time Tε/2 is the mistake bound of the algorithm.

8 The Expansive Case (γβ > 1)
Our analysis above focused on case γβ < 1. When γβ > 1,
the analysis becomes more involved. This can be observed
for example, from the bound on the distance between optimal
values of two states, presented in proof of Lemma 1:

|V (x1)− V (x2)| ≤ αd(x1, x2)
H−1∑
k=0

(γβ)k + γHVb. (22)

If γβ > 1, instead of bounding the infinite sum of distances
between future rewards, we have to employ a “cut-off tac-
tics”. Specifically, we have to make a balance between the
first term in (22), which grows exponentially in H , and the
second term, which decays exponentially in H . A detailed
treatment of this case can be found in [3] and is omitted here
due to space limitations. Using the approach outlined above,
it is shown that to obtain the mistake bounds of Theorems 1
and 2, the cell size threshold should be taken as ∆ε = Kεξ,
where ξ , log1/γ β, and K is polynomial in α, β, 1/(1− γ)
and exponential in ξ; note that ξ > 1 and compare this con-
dition to (19) in case γβ < 1. As a result, in the expansive
case we obtain a worse explicit dependence of the mistake
bound on ε, as follows:

PM(ε) ≤ C ′ (1/ε)nξ |A| (2N + 1) ,

where C ′ is polynomial in α, β, 1/(1−γ), and is exponential
in ξ; compare this bound to (18).

333

9 Conclusion

We presented a model-based learning algorithm that aims to
solve the online, continuous state space reinforcement learn-
ing problem in deterministic domain, under continuity as-
sumption of model parameters. We note that we did not ad-
dress at all the issue of the computational complexity. The
goal of the analysis was to show feasibility in the sense of
sample efficiency.

Some ideas for improvement of the proposed algorithm
and its analysis follow. First, it would be interesting from
computational perspective, to formulate an on-line asynchro-
nous variant, that will perform only one back-up of Value
Iteration each time-step, instead of exact calculation, and an-
alyze its performance. Also, the explicit dependence of the
posterior number of cells on the number of cells needed on
the optimal trajectory remains an open and difficult ques-
tion which requires new tools for its analysis. In addition,
more elaborate splitting rules and possible merging schemes
should be considered. Finally, evaluation of the algorithm
using simulations would be interesting from the practical
point of view.

The extension of similar ideas to the stochastic domains
seems possible, under a different continuity assumption (na-
mely, under continuity of transition density as in [9]). Pre-
liminary results for this case can be found in [3]. A possible
future direction here is to formulate an algorithm that will
work for both the stochastic and deterministic cases, under
a unified continuity assumption. Another possible extension
is to the case of continuous action space A, which can be
approached using aggregation, similarly to the state space.
Finally, other reward criteria should be considered – aver-
age reward (with associated loss bounds), and shortest path
problems (total reward). In particular, the shortest path for-
mulation is more natural in such deterministic problems, as
navigation in maze.

References

[1] A. Antos, R. Munos, and C. Szepesvari. Fitted Q-
iteration in continuous action-space MDPs. In Pro-
ceedings of Neural Information Processing Systems
Conference (NIPS), 2007.

[2] P. Auer and R. Ortner. Logarithmic online regret
bounds for undiscounted reinforcement learning. In
Proceedings of Neural Information Processing Systems
Conference (NIPS), 2006.

[3] A. Bernstein. Adaptive state aggregation for re-
inforcement learning. Master’s thesis, Technion
– Israel Institute of Technology, 2007. URL:
http://tx.technion.ac.il/∼andreyb/
MSc Thesis final.pdf.

[4] D. P. Bertsekas. Dynamic Programming and Optimal
Control, vol. 2. Athena Scientific, Belmont, MA, third
edition, 2007.

[5] A. Bonarini, A. Lazaric, and M. Restelli. LEAP: an
adaptive multi-resolution reinforcement learning algo-
rithm. To appear.

[6] C. Boutilier, T. Dean, and S. Hanks. Decision-theoretic
planning: Structural assumptions and computational

leverage. Journal of Artificial Intelligence Research,
11:1–94, 1999.

[7] R. I. Brafman and M. Tennenholtz. R-MAX - a general
polynomial time algorithm for near-optimal reinforce-
ment learning. Journal of Machine Learning Research,
3:213–231, 2002.

[8] H. Chapman. Global confidence bound algorithms for
the exploration-exploitation tradeoff in reinforcement
learning. Master’s thesis, Technion – Israel Institute of
Technology, 2007.

[9] C.-S Chow and J.N. Tsitsiklis. An optimal one-
way multigrid algorithm for discrete-time stochastic
control. IEEE Transactions on Automatic Control,
36(8):898–914, 1991.

[10] C. Diuk, A. L. Strehl, and M. L. Littman. A hierar-
chical approach to efficient reinforcement learning in
deterministic domains. In Proceedings of the 5th Inter-
national Joint Conference on Autonomous Agents and
Multiagent Systems, pages 313–319, 2006.

[11] G. J. Gordon. Reinforcement learning with function
approximation converges to a region. In Advances
in Neural Information Processing Systems (NIPS) 12,
pages 1040–1046, 2000.

[12] S. M. Kakade. On the Sample Complexity of Rein-
forcement Learning. PhD thesis, Gatsby Computa-
tional Neuroscience Unit, University College London,
UK, 2003.

[13] M. Kearns and S. P. Singh. Near-optimal reinforce-
ment learning in polynomial time. Machine Learning,
49:209–232, 2002.

[14] I. Menache, S. Mannor, and N. Shimkin. Q-Cut – dy-
namic discovery of sub-goals in reinforcement learn-
ing. In Proceedings of the 13th European Conference
on Machine Learning (ECML 2002), pages 187–195,
2002.

[15] A. W. Moore and C. G. Atkeson. The parti-game al-
gorithm for variable resolution reinforcement learning
in multidimensional state-spaces. Machine Learning,
21:199–233, 1995.

[16] R. Munos and A. W. Moore. Variable resolution dis-
cretization in optimal control. Machine Learning,
49:291–323, 2002.

[17] M. L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons,
Inc., New York, NY, USA, 1994.

[18] A. L. Strehl and M. L. Littman. A theoretical analysis
of model-based interval estimation. In Proceedings of
the 22nd International Conference on Machine Learn-
ing, pages 857–864, 2005.

[19] A. L. Strehl, E. Wiewiora, J. Langford, and M. L.
Littman. PAC model-free reinforcement learning. In
Proceedings of the 23nd International Conference on
Machine Learning, pages 881–888, 2006.

[20] A. Tewari and P. L. Bartlett. Optimistic linear program-
ming gives logarithmic regret for irreducible MDPs. In
Proceedings of Neural Information Processing Systems
Conference (NIPS), 2007.

[21] W. Whitt. Approximations of dynamic programs, I.
Mathematics of Operations Research, 3(3):231–243,
1978.

334

High-Probability Regret Bounds for Bandit Online Linear Optimization

Peter L. Bartlett ∗
UC Berkeley

bartlett@cs.berkeley.edu

Varsha Dani
University of Chicago

varsha@cs.uchicago.edu

Thomas P. Hayes
TTI Chicago

hayest@tti-c.org

Sham M. Kakade
TTI Chicago

sham@tti-c.org

Alexander Rakhlin ∗
UC Berkeley

rakhlin@cs.berkeley.edu

Ambuj Tewari ∗
TTI Chicago

tewari@tti-c.org

Abstract

We present a modification of the algorithm of Dani
et al. [8] for the online linear optimization prob-
lem in the bandit setting, which with high proba-
bility has regret at most O∗(

√
T) against an adap-

tive adversary. This improves on the previous al-
gorithm [8] whose regret is bounded in expecta-
tion against an oblivious adversary. We obtain
the same dependence on the dimension (n3/2) as
that exhibited by Dani et al. The results of this
paper rest firmly on those of [8] and the remark-
able technique of Auer et al. [2] for obtaining high-
probability bounds via optimistic estimates. This
paper answers an open question: it eliminates the
gap between the high-probability bounds obtained
in the full-information vs bandit settings.

1 Introduction
In the online linear optimization problem, there is a fixed de-
cision set D ∈ Rn and the player (or decision maker) makes
a decision xt at time t ∈ {1, . . . , T}. Simultaneously, an ad-
versary chooses a loss vector Lt and the player suffers loss
L†txt. The goal is to minimize regret which measures how
much worse the player did as compared to any fixed decision,
even one chosen with complete knowledge of the sequence
L1, . . . , LT ,

R =
T∑
t=1

L†txt −min
x∈D

T∑
t=1

L†tx .

The adversary can be oblivious to the player’s moves in which
case it chooses the entire sequence L1, . . . , Lt in advance of
the player’s moves. An adaptive adversary can, however,
choose Lt based on the player’s moves x1, . . . , xt−1 up to
that point.

In the full information version of the problem, the loss
vector Lt is revealed to the player at the end of round t. For
this case, Kalai and Vempala [12] gave an efficient algorithm
assuming that the offline problem (given L minimize L†x
over x ∈ D) can be solved efficiently. Note that the standard

∗PB, AR and AT gratefully acknowledge the support of DARPA
under grant FA8750-05-2-0249.

“experts” problem is a special case of this problem because
we can choose the set D to be {e1, . . . , en}, the unit vectors
forming the standard basis of Rn. Kalai and Vempala sepa-
rated the issue of the number of available decisions from the
dimensionality of the problem and gave an algorithm with
expected regret O(poly(n)

√
T). In many important cases,

for example the online shortest path problem [15], the size
of the decision set can be exponential in the dimensionality.
So, it is important to design algorithms that have polynomial
dependence on the dimension.

In the partial information or “bandit” version of the prob-
lem, the only feedback that the player receives at the end of
round t is its own loss L†txt. The bandit version of the ex-
perts problem was considered by Auer et al. [2] who gave
a number of algorithms for the problem. Their Exp3 algo-
rithm achieves O(

√
T) expected regret against oblivious ad-

versaries. However, due to the large variance of the estimates
kept by Exp3 it fails to enjoy a similar regret bound with
high probability. To address this issue, the authors used the
idea of high confidence upper bounds to derive the Exp3.P
algorithm which achieves O(

√
T) regret with high probabil-

ity. The regret of these algorithms also has a
√
|D| depen-

dence on the number |D| of available actions. Hence, these
cannot be used directly if |D| is large.

Awerbuch and Kleinberg [4] were the first to consider
the general online linear optimization problem in the ban-
dit setting. For oblivious adversaries, they proved a regret
bound of O∗(poly(n)T 2/3). The case of a general adaptive
adversary was handled by McMahan and Blum [14] but they
could only prove a regret bound of O∗(poly(n)T 3/4). Dani
and Hayes [7] later showed that McMahan and Blum’s al-
gorithm actually enjoys a regret bound ofO∗(poly(n)T 2/3).
However, the known lower bound for the bandit problem was
the same as that in the full information case, namely Ω(

√
T).

Therefore, it was an important open question if there is an al-
gorithm with a regret bound ofO(poly(n)

√
T) for the bandit

online linear optimization problem. An affirmative answer
was recently given by Dani et al. [8]. Their algorithm has
expected regret at most O∗(poly(n)

√
T) against an obliv-

ious adversary. It was still not known if the same bounds
could be achieved with high probability and against adaptive
adversaries as well. In this paper, we show how to do this
by combining Dani et al.’s techniques with those of Auer et
al. [2]. Like Exp3.P, our GEOMETRICHEDGE.P algorithm

335

keeps biased estimates of the losses of different actions such
that, with high probability, the sums of these estimates are
lower bounds (because we use losses not gains) on the actual
unknown cumulative losses (Lemma 5).

The bandit version of the online shortest path problem
has recently received a lot of attention. It can be used to
model, for example, routing in ad hoc wireless networks. If
we want to make our routing algorithm secure against ad-
versarial attacks, it is necessary to design algorithms that
work against adaptive adversaries [3, 13]. Therefore, ob-
taining low regret against adaptive adversaries is not only
an important theoretical problem but it also has practical
implications. The algorithm with the best regret guaran-
tee so far is by György et al. [11]. There the authors con-
sider a number of feedback models. Our feedback model in
this paper corresponds to what they call the “path-bandit”
model. For this model, they give an efficient algorithm spe-
cially designed for the bandit online shortest path problem
that achieves O∗(poly(n)T 2/3) regret with high probability
against an adaptive adversary where n is the number of edges
in the graph. Our results imply that it is actually possible to
achieveO∗(n3/2

√
T) regret with high probability. However,

since our algorithm is not efficient, the quest for an efficient
algorithm with the same regret, even for this special problem,
is still on.

The key tools from probability theory that we use in our
proofs are Bernstein-type inequalities, such as Freedman’s.
These provide sharper concentration bounds for martingales
in the presence of variance information. There is a simple
corollary of Freedman’s inequality that we think is useful not
just in our setting but more generally. We state it as Lemma 2
in Section 4.

The present work closes the gap between full informa-
tion and bandit online optimization against the adaptive ad-
versary in terms of the growth of regret with T . As we said
above, our algorithm is not necessarily efficient, because the
decision space might need to be discretized to a fine level.
We mention that a parallel work by Abernethy, Hazan, and
Rakhlin [1] provides an efficient algorithm for the setting;
however, their result holds in expectation only (against an
oblivious adversary). The present paper and [1] are address-
ing disparate aspects of the problem and neither result can
be concluded from the other. It remains an open question
whether there exists an efficient algorithm which enjoys high
probability bounds on the regret.

2 Preliminaries
Let D ⊂ [−1, 1]n denote the decision space. At each t of
T time steps, the environment selects a cost vector Lt, and
simultaneously, the player (decision maker) selects xt ∈ D.
The loss incurred by the decision maker for this prediction is
L†txt. Let

Lmin := min
x∈D

T∑
t=1

L†tx

be the loss of the best single decision in hindsight. The goal
of the decision maker is to minimize the regret,

R =
T∑
t=1

L†txt − Lmin .

We assume that L†tx ∈ [0, 1] for all x ∈ D. We also as-
sume that the environment is adaptive, i.e., the cost vector Lt
selected by the environment at time t may depend arbitrar-
ily on the history (L1, x1, . . . , Lt−1, xt−1) (note that without
loss of generality this dependence may be assumed to be de-
terministic.) We show that even against such a powerful en-
vironment, it is possible to ensure that R is small with high
probability.

As in [8], we will require a barycentric spanner for D.
Recall that a barycentric spanner for D is a set

{y1, . . . , yn} ⊆ D
such that every x ∈ D can be written as a linear combination
of yi’s with coefficients in [−1, 1]. A c-barycentric spanner is
defined similarly where we allow coefficients to be in [−c, c].
For c > 1, c-barycentric spanners for D may be found effi-
ciently (see [4].) However, for ease of exposition we’ll as-
sume that we have an actual barycentric spanner. (Using a
c-barycentric spanner instead will only affect the constants.)
Finally, if the set D is too large (for example if it is infinite)
we can replace it by a cover of size at most (4nT)n/2, as the
loss of the optimal decision in this cover is within an addi-
tive
√
nT of the optimal loss in D; see [8][Lemma 3.1] for

details. Accordingly, after doing this transformation if neces-
sary, we may assume thatD is finite and ln |D| = O(n lnT).
Only the logarithm of the cardinality of the set will enter in
our bounds.

3 Algorithm and Main Result
The algorithm presented below is a modification of the algo-
rithm in [8]. Note that the difference is in the way we update
weights wt, using lower confidence intervals. This idea of
using confidence intervals is motivated by the Exp3.P algo-
rithm of Auer et al. [2]. Feeding in confidence bounds, as
opposed to unbiased estimates of the losses, to the exponen-
tial updates is the crucial change we make to the algorithm
of Dani et al [8]. Lemma 5 below shows that, with high
probability, for any x ∈ D,

∑
t L̃t(x) lower bounds

∑
t L
†
tx

(up to an additive O(
√
T) term). Our algorithm reduces to

Exp3.P in the special case of the n-armed bandit problem
(when D = {e1, . . . , en}. As we point out in the next sec-
tion, Auer et al.’s proof can be simplified by using the sim-
ple corollary of Freedman’s inequality [10] that we state as
Lemma 2 below.

The main result of this paper is the following guarantee
on the algorithm.

Theorem 1 Let T ≥ 4, n ≥ 2 and δ ≤ 1
e . If we set γ =

n3/2
√
T

, δ′ = δ
|D| log2 T

, and η = 1√
nT+2

√
ln(1/δ′)

, then against

any adaptive adversary with probability at least 1− 4δ,

R = O(n3/2
√
T ln(nT/δ)).

The dependence on T is optimal (up to logarithmic fac-
tors). We get the same dependence on n as Dani et al. [8].
The lower bound known for this problem is Ω(n

√
T) [8].

Recently, O(n
√
T) regret bounds have been obtained for the

stochastic version of the problem [9]. This leads us to con-
jecture that the lower bound is tight and it remains an open

336

Algorithm 3.1: GEOMETRICHEDGE.P(D, γ, η, δ′)

∀x ∈ D,w1(x) := 1
W1 := |D|
for t = 1 to T
∀x ∈ D,

pt(x) = (1− γ)wt(x)
Wt

+ γ
n I{x ∈ spanner}

Sample xt according to distribution pt
Incur and observe loss `t := L†txt
Ct := Ept [xx†]
L̂t := `tC−1

t xt

∀x ∈ D, L̃t(x) := L̂†tx− 2x†C−1
t x

√
ln(1/δ′)
nT

∀x ∈ D,wt+1(x) := wt(x) exp{−ηL̃t(x)}
Wt+1 =

∑
x∈D wt+1(x)

question to close the gap (for the dependence on n) between
upper and lower bounds. We also note here that although the
analysis we provide is for losses, essentially the same algo-
rithm, with a similar analysis, works for gains. We just have
to make a few obvious changes to the algorithm: instead of
subtracting, we add the correction term to the gain estimates
and replace −η with η in the exponential update.

4 Concentration for Martingales
In this section we derive a concentration inequality for mar-
tingale difference sequences. It is a direct application of
Freedman’s inequality.

Lemma 2 Suppose X1, . . . , XT is a martingale difference
sequence with |Xt| ≤ b. Let

VartXt = Var (Xt |X1, . . . , Xt−1) .

Let V =
∑T
t=1 VartXt be the sum of conditional variances

of Xt’s. Further, let σ =
√
V . Then we have, for any δ <

1/e and T ≥ 4,

Prob

(
T∑
t=1

Xt > 2 max
{

2σ, b
√

ln(1/δ)
}√

ln(1/δ)

)
≤ log2(T)δ .

Proof: Note that a crude upper bound on VartXt is b2.
Thus, σ ≤ b

√
T . We choose a discretization 0 = α−1 <

α0 < . . . < αl such that αi+1 = 2αi for i ≥ 0 and
αl ≥ b

√
T . We will specify the choice of α0 shortly. We

then have,

Prob

(∑
t

Xt > 2 max{2σ, α0}
√

ln(1/δ)

)

=
l∑

j=0

Prob
(∑

tXt > 2 max{2σ, α0}
√

ln(1/δ)
& αj−1 < σ ≤ αj

)

≤
l∑

j=0

Prob
(∑

tXt > 2αj
√

ln(1/δ)
& α2

j−1 < V ≤ α2
j

)

≤
l∑

j=0

Prob

(∑
t

Xt > 2αj
√

ln(1/δ) & V ≤ α2
j

)
(?)

≤
l∑

j=0

exp

 −4α2
j ln(1/δ)

2α2
j + 2

3

(
2αj
√

ln(1/δ)
)
b


=

l∑
j=0

exp

 −2αj ln(1/δ)

αj + 2
3

(√
ln(1/δ)

)
b


where the inequality (?) follows from Freedman’s inequal-

ity (Theorem 9). If we now choose α0 = b
√

ln(1/δ) then
αj ≥ b

√
ln(1/δ) for all j and hence every term in the above

summation is bounded by exp
(
−2 ln(1/δ)

1+2/3

)
< δ. Choosing

l = log2(
√
T) ensures that αl ≥ b

√
T . Thus we have

Prob

(
T∑
t=1

Xt > 2 max{2σ, b
√

ln(1/δ)}
√

ln(1/δ)

)

= Prob

(∑
t

Xt > 2 max{2σ, α0}
√

ln(1/δ)

)
≤ (l + 1)δ = (log2(

√
T) + 1)δ ≤ log2(T)δ .

This inequality says that, roughly speaking,
∑
tXt is of

the order of σ
√

ln(1/δ) which is a central limit theorem-
like behavior except that σ here is not fixed but is the actual
sum of conditional variances, a random quantity. The overall
constant in front of σ is 4. This can be improved to 2 by
a slightly more careful analysis. We already know of two
instances in the literature where Lemma 2 can be used to
give shorter proofs of certain probabilistic upper bounds.

1. The first is in the proof of Exp3.P’s regret bound it-
self. To show that the estimates are upper bounds on
the actual losses of an action, the authors explicitly use
the exponential moment method in the proof of their
Lemma 6.1. Essentially the same lemma can be proved
by a direction application of the above lemma.

2. The other instance is in Cesa-Bianchi and Gentile’s pa-
per [5] on online to batch conversions. When an online
algorithm is run on i.i.d. data with a non-negative and
bounded loss function, the conditional variance of the
loss at time t can immediately be bounded by the risk
of the hypothesis at time t − 1. The authors use this
fact along with an application of Freedman’s inequal-
ity to prove a sharp upper bound (Proposition 2 in their
paper) on the average risk of the hypotheses generated
by the online algorithm in terms of its actual cumula-
tive loss. The same result can be quickly derived by an
application of the above lemma.

337

5 Analysis
The remainder of the paper is devoted to the proof of Theo-
rem 1. We first state several results obtained in Dani et al [8]
which will be important in our proofs.

Lemma 3 For any x ∈ D and t ∈ {1, . . . , T}, it holds that

1. |L̂†tx| ≤ n2/γ

2. x†C−1
t x ≤ n2/γ.

3.
∑
x∈D pt(x)x†C−1

t x = n.

4. Et
(
L̂†tx

)2

≤ x†C−1
t x.

We now prove a bound on the perturbed estimated costs,
L̃t, which are used to update the distribution.

Lemma 4 For all x ∈ D, |L̃t(x)| ≤
√
nT + 2

√
ln(1/δ′).

Proof: For each x ∈ D,

|L̃t(x)| ≤ |L̂t · x|+

∣∣∣∣∣2x†C−1
t x

√
ln(1/δ′)
nT

∣∣∣∣∣
≤ n2

γ
+ 2

n2

γ

√
ln(1/δ′)
nT

≤
√
nT + 2

√
ln(1/δ′)

using Lemma 3 and the choice of γ = n3/2
√
T

.

5.1 High Confidence Bounds
Let Et[·] denote E[·|x1, . . . , xt−1]. Since we are considering
adaptive (but deterministic) adversaries, Lt is not random
given x1, . . . , xt−1. Observe that Et[xtx†t] = Ex∼pt [xx

†]
and thus, Et[L̂t] = Lt. However, the fluctuations of the
random variable L̂t are very large. The following lemma
provides a bound on these fluctuations.

Lemma 5 Assume T ≥ 4. Let δ′ = δ
|D| log2 T

. Then with
probability at least 1− δ, simultaneously for all x ∈ D,∑

t

L̃t(x) ≤
∑
t

L†tx+ 2
(

1 +
√
nT
)

ln(1/δ′)

Proof: Fix x ∈ D. Let Mt = Mt(x) = L̂†tx − L
†
tx. Then

(Mt) is a martingale difference sequence. Using Lemma 3,
|Mt| ≤ n2

γ + 1 =
√
nT + 1. Let V =

∑
t Vart(Mt) and let

σ =
√
V . Using Lemma 2, we have that with probability at

least 1− δ′ log2 T ,∑
t

L̂†tx ≤
∑
t

L†tx+ 2 max{2σ,

(1 +
√
nT)

√
ln(1/δ′)}

√
ln(1/δ′) (1)

Now note that

σ ≤
√∑

t

x†C−1
t x ≤ 1

2

(∑
t x
†C−1

t x√
nT

+
√
nT

)
,

by the arithmetic mean-geometric mean inequality.
Substituting this into (1), we have

∑
t

L̂†tx ≤
∑
t

L†tx+ 2 max
{(

1 +
√
nT
)√

ln(1/δ′),(∑
t x
†C−1

t x√
nT

+
√
nT

)}√
ln(1/δ′)

with probability at least 1− δ′ log2 T .
Finally, taking a union bound over all x ∈ D and rear-

ranging (using the fact that max{a+ b, c} ≤ a+ max{b, c}
if a ≥ 0) gives the required result.

5.2 Potential Function Analysis

By Lemma 4 and our choice of η = 1√
nT+2

√
ln(1/δ′)

, we

have

|ηL̃t(x)| ≤ 1 .

In the following computation, we will use the facts that e−a ≤
1− a+ a2 whenever |a| ≤ 1.

Wt+1

Wt
=
∑
x∈D

wt(x) exp(−ηL̃t(x))
Wt

≤
∑
x∈D

wt(x)
Wt

(1− ηL̃t(x) + η2(L̃t(x))2)

≤ 1 +
η

1− γ

(
−
∑
x∈D

pt(x)L̃t(x)

+
∑

x∈spanner

γ

n
L̃t(x) +

∑
x∈D

pt(x)η(L̃t(x))2
)

since by definition of pt,

wt(x)
Wt

=
pt(x)− γ

n I{x ∈ spanner}
1− γ

.

Note that we have,

−
∑
x∈D

pt(x)L̃t(x)

= −
∑
x∈D

pt(x)L̂†tx+ 2
∑
x∈D

pt(x)x†C−1
t x

√
ln(1/δ′)
nT

= −
∑
x∈D

pt(x)L̂†tx+ 2n

√
ln(1/δ′)
nT

where the last step is by Lemma 3.
Further, since (b+ c)2 ≤ 2(b2 + c2) for every b, c, apply-

338

ing the definition of L̃t(x), we also have∑
x∈D

pt(x)η(L̃t(x))2

≤ 2η
∑
x∈D

pt(x)
(

(L̂†tx)2 + (2x†C−1
t x)2

ln(1/δ′)
nT

)
≤ 2η

∑
x∈D

pt(x)
(

(L̂†tx)2 + 4x†C−1
t x

n2 ln(1/δ′)
γnT

)

= 2η

[∑
x∈D

pt(x)(L̂†tx)2 +
4 ln(1/δ′)√

nT

∑
x∈D

pt(x)x†C−1
t x

]

= 2η

[∑
x∈D

pt(x)(L̂†tx)2 +
4
√
n ln(1/δ′)√

T

]

by successive applications of Lemma 3.
Putting these together, we have

Wt+1

Wt
≤ 1 +

η

1− γ

(
−
∑
x∈D

pt(x)L̂†tx

+ 2

√
n ln(1/δ′)

T

+
∑

x∈spanner

γ

n
L̃t(x)

+ 2η
∑
x∈D

pt(x)(L̂†tx)2

+ 8η
√
n ln(1/δ′)√

T

)
Taking logs, using the fact that ln(1 + x) ≤ x, and sum-

ming over t, we have

ln
(
WT+1

W1

)
≤ η

1− γ

[
−

T∑
t=1

∑
x∈D

pt(x)L̂†tx

+ 2
√
nT ln(1/δ′)

+
T∑
t=1

∑
x∈spanner

γ

n
L̃t(x)

+ 2η
T∑
t=1

∑
x∈D

pt(x)(L̂†tx)2

+ 8η ln(1/δ′)
√
nT

]
(2)

The next three lemmas will bound the three summations
that appear on the right hand side above.

Lemma 6 With probability at least 1− δ,

T∑
t=1

L†txt −
T∑
t=1

∑
x

pt(x)L̂†tx

≤ (
√
n+ 1)

√
2T ln(1/δ) +

4
3

ln(1/δ)
(
n2

γ
+ 1
)
.

Proof: Let us define x := Ex∼ptx =
∑
x∈D pt(x)x and

Yt := `t − L̂†tx. Note that Et L̂†tx = Et `t and therefore Yt
is a martingale difference sequence.

We bound the conditional variance of Yt as follows.√
Vart Yt =

√
Et(Y 2

t)

=

√
Et
((

L̂†tx− `t
)2
)

≤
√

Et
(
L̂†tx

)2

+
√

Et (`2t) by Cauchy-Schwarz

≤
√

Et
(
L̂†tx

)2

+ 1 since |`t| ≤ 1

≤
√
x†C−1

t x+ 1 by Lemma 3

≤
√

E
x∼pt

x†C−1
t x+ 1 by Jensen’s inequality

=
√
n+ 1 by Lemma 3.

Moreover, |Yt| ≤ n2/γ + 1 by Lemma 3. Applying Bern-
stein’s inequality for martingale differences (see Appendix)
to the sequence Yt, we obtain that with probability at least
1− δ,
T∑
t=1

Yt ≤ (
√
n+ 1)

√
2T ln(1/δ) +

4
3

ln(1/δ)
(
n2

γ
+ 1
)
,

which is the desired bound.

Lemma 7 With probability at least 1− δ,
T∑
t=1

∑
x∈spanner

γ

n
L̃t(x) ≤ γT + 2γ

(
1 +
√
nT
)

ln(1/δ′) .

Proof: Using Lemma 5, with probability at least 1 − δ, we
have, for all x ∈ spanner,
γ

n

∑
t

L̃t(x) ≤ γ

n

∑
t

L†tx+
2γ
n

(
1 +
√
nT
)

ln(1/δ′)

≤ γT

n
+

2γ
n

(
1 +
√
nT
)

ln(1/δ′) ,

because L†tx, being the loss of an element of the spanner, is
bounded by 1. Summing over the n elements of the spanner,
we get the desired bound.

Lemma 8 With probability at least 1− δ,
T∑
t=1

∑
x

pt(x)(L̂†tx)2 ≤ nT + T
√

2n ln(1/δ).

Proof: First we observe that for 1 ≤ t ≤ T ,∑
x

pt(x)(L̂†tx)2 =
∑
x

pt(x)L̂†txx
†L̂t

= L̂†t

(∑
x

pt(x)xx†
)
L̂t

= `2tx
†
tC
−1
t CtC−1

t xt

≤ x†tC−1
t xt

339

Summing over t,

T∑
t=1

∑
x

pt(x)(L̂†tx)2 ≤
T∑
t=1

x†tC
−1
t xt .

Lemma 3 tells us that, on the one hand, the summands x†tC
−1
t xt

are uniformly bounded by n2/γ =
√
nT , and on the other

hand, that each one has expectation n, even conditioned on
the previous ones.

Applying the Hoeffding-Azuma inequality to the martin-
gale difference sequence

x†tC
−1
t xt − Ex∼pt

x†C−1
t x

it follows that, with probability at least 1− δ,

T∑
t=1

x†tC
−1
t xt ≤ nT + T

√
2n ln(1/δ),

completing the proof.

Substituting the bounds of Lemmas 6, 7 and 8 into (2),
we obtain that with probability at least 1− 3δ,

ln
(
WT+1

W1

)
≤ η

1− γ

[
−

T∑
t=1

L†txt

+ (
√
n+ 1)

√
2T ln(1/δ)

+
4
3

ln(1/δ)
(
n2

γ
+ 1
)

+ 2
√
nT ln(1/δ′) + γT

+ 2γ
(

1 +
√
nT
)

ln(1/δ′)

+ 2ηnT + 2ηT
√

2n ln(1/δ)

+ 8η ln(1/δ′)
√
nT

]
(3)

On the other hand, using Lemma 5, we have with proba-
bility at least 1− δ, for all x ∈ D,

ln
WT+1

W1
≥ −η

(
T∑
t=1

L̃t(x)

)
− ln |D|

≥ −η
T∑
t=1

L†tx− 2η(1 +
√
nT) ln(1/δ′)− ln |D|. (4)

Combining (3) with (4), we have that with probability at least

1− 4δ, for every x ∈ D,

T∑
t=1

L†txt ≤
T∑
t=1

L†tx

+ 2(1 +
√
nT) ln(1/δ′)

+
1
η

ln |D|

+ (
√
n+ 1)

√
2T ln(1/δ)

+
4
3

ln(1/δ)
(
n2

γ
+ 1
)

+ 2
√
nT ln(1/δ′) + γT

+ 2γ
(

1 +
√
nT
)

ln(1/δ′)

+ 2ηnT + 2ηT
√

2n ln(1/δ)

+ 8η ln(1/δ′)
√
nT

Recall that η = 1√
nT+2

√
ln(1/δ′)

, γ = n3/2
√
T

, δ′ = δ/(|D| log2 T),

and ln |D| = O(n lnT). Plugging in these values yields

T∑
t=1

L†txt ≤ Lmin +O(n3/2
√
T ln(nT/δ)),

completing the proof of Theorem 1.

6 Conclusions and Open Problems
We presented an algorithm that achieves the desired regret
bound of O∗(

√
T) with high probability. However, the quest

for an efficient algorithm with the same high-probability guar-
antee, even for the special case of bandit online shortest paths,
is still open. Achieving similar results for general convex
functions is also an intriguing open question.

A Concentration Inequalities
The following inequalities are well known. Theorem 9 is
from [10]. Lemmas 10 and 11 can be found, for instance,
in [6], Appendix A.

Theorem 9 (Freedman) Suppose X1, . . . , XT is a martin-
gale difference sequence, and b is an uniform upper bound
on the steps Xi. Let V denote the sum of conditional vari-
ances,

V =
n∑
i=1

Var (Xi |X1, . . . , Xi−1).

Then, for every a, v > 0,

Prob
(∑

Xi ≥ a and V ≤ v
)
≤ exp

(
−a2

2v + 2ab/3

)
.

Lemma 10 (Bernstein’s inequality for martingales) Let Y1,
. . ., YT be a martingale difference sequence. Suppose that
Yt ∈ [a, b] and

E[Y 2
t |Xt−1, . . . , X1] ≤ v a.s.

340

for all t ∈ {1, . . . , T}. Then for all δ > 0,

Pr

(
T∑
t=1

Yt >
√

2Tv ln(1/δ) + 2 ln(1/δ)(b− a)/3

)
≤ δ

Lemma 11 (Hoeffding-Azuma inequality) Let Y1, . . . , YT
be a martingale difference sequence. Suppose that |Yt| ≤ c
almost surely for all t ∈ {1, . . . , T}. Then for all δ > 0,

Pr

(
T∑
t=1

Yt >
√

2Tc2 ln(1/δ)

)
≤ δ

References
[1] Jacob Abernethy, Elad Hazan, and Alexander Rakhlin.

Competing in the dark: An efficient algorithm for ban-
dit linear optimization. In Proceedings of the 21st An-
nual Conference on Learning Theory (COLT), 2008. to
appear.

[2] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and
Robert E. Schapire. The nonstochastic multiarmed ban-
dit problem. SIAM Journal on Computing, 32(1):48–
77, 2003.

[3] Baruch Awerbuch, David Holmer, Herb Rubens, and
Robert Kleinberg. Provably competitive adaptive rout-
ing. In Proceedings of the 31st IEEE INFOCOM, vol-
ume 1, pages 631–641, 2005.

[4] Baruch Awerbuch and Robert Kleinberg. Adaptive
routing with end-to-end feedback: Distributed learning
and geometric approaches. In Proceedings of the 36th
ACM Symposium on Theory of Computing (STOC),
2004.

[5] Nicolò Cesa-Bianchi and Claudio Gentile. Improved
risk tail bounds for on-line algorithms. IEEE Transac-
tions on Information Theory, 54(1):386–39, Jan 2008.

[6] Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction,
Learning, and Games. Cambridge University Press,
2006.

[7] Varsha Dani and Thomas P. Hayes. Robbing the
bandit: Less regret in online geometric optimization
against an adaptive adversary. In Proceedings of the
17th ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2006.

[8] Varsha Dani, Thomas P. Hayes, and Sham M. Kakade.
The price of bandit information for online optimization.
In J. C. Platt, D. Koller, Y. Singer, and S. Roweis, ed-
itors, Advances in Neural Information Processing Sys-
tems 20 (NIPS 2007). MIT Press, 2008.

[9] Varsha Dani, Thomas P. Hayes, and Sham M. Kakade.
Stochastic linear optimization under bandit feedback.
In Proceedings of the 21st Annual Conference on
Learning Theory (COLT), 2008. to appear.

[10] David A. Freedman. On tail probabilities for martin-
gales. The Annals of Probability, 3(1):100–118, Feb
1975.

[11] András György, Tamás Linder, Gábor Lugosi, and
György Ottucsák. The on-line shortest path problem
under partial monitoring. Journal of Machine Learn-
ing Research, 8:2369–2403, 2007.

[12] Adam Kalai and Santosh Vempala. Efficient algorithms
for online decision problems. Journal of Computer and
System Sciences, 71(3):291–307, 2005.

[13] Robert Kleinberg. Online decision problems with large
strategy sets. PhD thesis, MIT, 2005.

[14] H. Brendan McMahan and Avrim Blum. Online ge-
ometric optimization in the bandit setting against an
adaptive adversary. In Proceedings of the 17th Annual
Conference on Learning Theory (COLT), 2004.

[15] Eiji Takimoto and Manfred K. Warmuth. Path kernels
and multiplicative updates. Journal of Machine Learn-
ing Research, 4:773–818, 2003.

341

342

Adapting to a Changing Environment: the Brownian Restless Bandits

Aleksandrs Slivkins∗and Eli Upfal†

Abstract

In the multi-armed bandit (MAB) problem there
are k distributions associated with the rewards of
playing each of k strategies (slot machine arms).
The reward distributions are initially unknown to
the player. The player iteratively plays one strat-
egy per round, observes the associated reward, and
decides on the strategy for the next iteration. The
goal is to maximize the reward by balancing ex-
ploitation: the use of acquired information, with
exploration: learning new information.
We introduce and study a dynamic MAB prob-
lem in which the reward functions stochastically
and gradually change in time. Specifically, the ex-
pected reward of each arm follows a Brownian mo-
tion, a discrete random walk, or similar processes.
In this setting a player has to continuously keep ex-
ploring in order to adapt to the changing environ-
ment. Our formulation is (roughly) a special case
of the notoriously intractable restless MAB prob-
lem.
Our goal here is to characterize the cost of learn-
ing and adapting to the changing environment, in
terms of the stochastic rate of the change. We con-
sider an infinite time horizon, and strive to min-
imize the average cost per step which we define
with respect to a hypothetical algorithm that at ev-
ery step plays the arm with the maximum expected
reward at this step. A related line of work on the
adversarial MAB problem used a significantly weaker
benchmark, the best time-invariant policy.
The dynamic MAB problem models a variety of
practical online, game-against- nature type opti-
mization settings. While building on prior work,
algorithms and steady-state analysis for the dynamic
setting require a novel approach based on different
stochastic tools.

∗Microsoft Research, Mountain View CA. E-mail: slivkins
at microsoft.com. Parts of this work has been completed
while A. Slivkins was a postdoc at Brown University.
†Computer Science Department, Brown University, Providence

RI. E-mail: eli at cs.brown.edu. Supported in part by
NSF awards CCR-0121154 and DMI-0600384, and ONR Award
N000140610607.

1 Introduction
The multi-armed bandit (MAB) problem [27, 5, 12] has been
studied extensively for over 50 years in Operations Research,
Economics and Computer Science literature, modeling on-
line decisions under uncertainty in a setting in which an agent
simultaneously attempts to acquire new knowledge and to
optimize its decisions based on the existing knowledge. In
the basic MAB setting, which we term the static MAB prob-
lem, there are k time-invariant probability distributions as-
sociated with the rewards of playing each of the k strategies
(slot machine arms). The distributions are initially unknown
to the player. The player iteratively plays one strategy per
round, observes the associated reward, and decides on the
strategy for the next iteration. The goal of a MAB algorithm
is to optimize the total reward1 by balancing exploitation:
the use of acquired information, with exploration: learning
new information. For several algorithms in the literature (e.g.
see [5, 2]) as the number of rounds goes to infinity the ex-
pected total reward asymptotically approaches that of play-
ing a strategy with the highest expected reward. The qual-
ity of an algorithm for the static MAB problem is therefore
measured by the expected cost, or regret, incurred during an
initial finite time interval. The regret in the first t steps is de-
fined as the expected gap between the total reward collected
by the algorithm and that collected by playing an optimal
strategy in these t steps.

The MAB problem models a variety of practical online
optimization problems. As an example consider a packet
routing network where a router learns about delays on routes
by measuring the time to receive an acknowledgment for a
packet sent on that route [4, 16]. The delay for one packet
on a given route is a random value drawn from some distri-
bution. The router must try various routes in order to learn
about the delays. Trying a loaded route adds unnecessary
delay to the routing of one packet, while discovering a route
with low delay can improve the routing of the future packets.

Another application is in marketing and advertising. A
store would like to display and advertise the products that
sell best, but it needs to display and advertise various prod-
ucts to learn how good they sell. Similarly, a web search
engine tries to optimize its revenue by displaying advertise-

1In this paper the total reward is simply the sum of the rewards,
following the line of work in [21, 2, 3] and many other papers. Al-
ternatively, many papers consider the time-discounted sum of re-
wards, e.g. see [5, 12, 29] and references therein.

343

ments that would bring the largest number of clicks for a
given web content. The company needs to experiment with
various combinations of advertisements and page contents in
order to find the best matches. The cost of these experiments
is the loss of advertisement clicks when trying unsuccessful
matches [25].

The above examples demonstrate the practical applica-
tions of the ”explore and exploit” paradigm captured in the
MAB model. These examples also point out the limitation
of the static approach to the problem. The delay on a route
is gradually changing over time, and the router needs to con-
tinuously adapt its routing strategy to the changes in route
delays. Taste and fashion change over time. A store can-
not completely rely on information collected in the previous
season to optimize for the next one. Similarly, a web search
engine continually updates their content matching strategies
to account for the changing customers’ response.

A number of models have been proposed for capturing
the dynamic aspect of the MAB problem. Motivated by task
scheduling, Gittins [13] considered the case where only the
state of the active arm (the arm currently being played) can
change in a given step, giving an optimal policy for the Bay-
sean formulation with time discounting. This seminal result
gave rise to a rich line of work (e.g. [11, 12, 32, 31, 30, 6,
29]), a proper review of which is beyond the scope of this
paper. In particular, Whittle [33] introduced an extension
termed restless bandits [33, 7, 24], where the states of all
arms can change in each step according to a known (but ar-
bitrary) stochastic transition function. Restless bandits are
notoriously intractable: e.g. even with deterministic transi-
tions the problem of computing an (approximately) optimal
strategy is PSPACE-hard [26]. Guha et al. [14, 15] have re-
cently made a progress on some tractable special cases of
the restless MAB problem.2 Their motivations, the actual
problems they considered, and the techniques they used, are
very different from ours. In [14] they gave a constant-factor
approximation for the special case of the problem in which
arms move stochastically between two possible states. This
result was improved to a 2-approximation in [15], and ex-
tended to arms assuming a number of possible states, but
with a very strict set of transition probabilities that are not
compatible with the stochastic processes discussed here.

Auer et al. [3] adopted an adversarial approach: they de-
fined the adversarial MAB problem where the reward distri-
butions are allowed to change arbitrarily in time, and the goal
is to approach the performance of the best time-invariant pol-
icy. This formulation has been further studied in [1, 20, 17,
22, 10, 9, 19, 8]. Auer et al. [3, 1] also considered a more
general definition of regret, where the comparison is to the
best policy that can change arms a limited number of times.
Due to the overwhelming strength of the adversary, the guar-
antees obtained in this line of work are relatively weak when
applied to the setting that we consider in this paper.

We propose and study here a somewhat different approach
to addressing the dynamic nature of the MAB problem. We
note that in a variety of practical applications the time evo-
lution of the system, in particular of the reward functions, is
gradual. Obvious examples are price, supply and demand

2These papers were published after the initial technical report
version of this paper appeared.

in economics, load and delay in networks, etc. A gradual
stochastic evolution is traditionally modeled via a random
walk or a Brownian motion; for instance, in Mathematical
Finance the (geometric) Brownian motion (Wiener process)
is the standard model for continuous-time evolution of a stock
price. In line with this approach, we describe the state of
each arm – its expected reward at time t – via a Brownian
motion.3 The actual reward at a given time is an independent
random sample from the reward distribution parameterized
by the current state of this arm, e.g. a 0-1 random variable
with an expectation given by the state of the arm (in the web
advertising setting this corresponds to a user clicking or not
clicking on an ad).

We are interested in systems that exhibit a stationary,
steady-state behavior. For this reason instead of the usual
Brownian motion on a real line (which diverges to infinity)
we consider a Brownian motion on an interval with reflecting
bounds. Following the bulk of the stochastic MAB literature,
we assume that the evolution of each arm is independent (in
fact, we conjecture that regret is maximized in the case of
independently evolving arms).

Our goal here is to characterize the long-term average
cost of adapting to such changing environment in terms of
the stochastic rate of change – the volatility of Brownian mo-
tion. The paradigmatic setting for us is one in which each
arm’s state has the same stationary distribution and, there-
fore, all arms are essentially equivalent in the long term. In
such setting the standard benchmark – the best time-invariant
policy – is uninformative. Instead, we optimize with respect
to a more demanding (and also more natural) benchmark – a
policy that at each step plays an arm with the currently max-
imal expected reward.

We consider two versions of the dynamic MAB problem
described above. In the state-informed version an algorithm
not only receives a reward of the chosen arm but also finds
out the current state of this arm. This is the setting in the rest-
less MAB problem as defined in Whittle [33] and the follow-
up literature. In the second, state-oblivious, version an al-
gorithm receives its reward and no other information. This
formulation generalizes the static MAB problem to stochas-
tically changing expected rewards.

1.1 The Dynamic MAB problem

Let {D(µ) : µ ∈ [0; 1]} be a fixed family of probability dis-
tributions on [0; 1] such that D(µ) has expectation µ. Time
proceeds in rounds. Each arm i at each round t has a state
µi(t) ∈ [0; 1] such that the reward from playing arm i in
round t is an independent random sample from D(µi(t)).
At each round t an algorithm chooses one of the k alterna-
tive strategies (”arms”) and receives a reward. In the state-
oblivious version, the reward is the only information that the
algorithm receives in a given round. In the state-informed
version, the algorithm also finds out the current state of the
arm that it has chosen. The distributions D(·) are not re-
vealed to the algorithm (and are not essential to the analysis).

3As we only sample arms at integer time points, we can equiv-
alently describe the state as a sum of t i.i.d. normal increments.
In fact, we allow the increments to come from a somewhat more
general class of distributions.

344

The state µi(·) varies in an interval with reflecting bound-
aries. To clarify the concept of reflecting boundaries, con-
sider an object that starts moving on an interval I = [0; 1],
reversing direction every time it hits a boundary. If the object
starts at 0 and traverses distance x ≥ 0, its position is

fI(x) =
{
x′, x′ ≤ 1
1− (x′ − 1), x′ > 1,

(1)

where x′ = x (mod 2) = x− 2 bx/2c. Similarly, we define
fI(x), x < 0 as the position of an object that starts moving
from 1 and traverses distance |x|.

For concreteness we focus here on the case when each
arm’s state follows a Brownian motion. Similar results hold
for related stochastic processes such as discrete random walks
(see the Extensions Section).

The state of each arm i undergoes an independent Brow-
nian motion on an interval with reflecting boundaries. Specif-
ically, we define µi(t) = fI(Bi(t)) where I = [0; 1] is
the fundamental interval and Bi is an independent Brown-
ian motion with volatility σi. Since we only sample µi(·) at
integer times, we can also define it as a Markov chain:

µi(t) = fI (µi(t− 1) +Xi(t)) , (2)

where each Xi(t) is an i.i.d. sample from N (0, σi). The
stochastic rate of change is thus given by σi, which we term
the volatility of arm i.

We assume that for each arm i the initial state µi(0) is
an independent uniformly random sample from I . This is a
reasonable assumption given our goal to study the stationary
behavior of the system. Indeed, the uniform distribution on I
is the stationary distribution of the Markov chain 2 to which
this Markov chain eventually converges.4

In the dynamic MAB problem, we measure the perfor-
mance of a MAB algorithm with respect to a policy that at
every step chooses a strategy with the highest expected re-
ward. This policy changes in time, and thus it is a more
demanding benchmark than the time-invariant regret that is
often used in the MAB literature.

Definition 1.1. Consider an instance of the dynamic MAB
problem. For a given MAB algorithm A, let WA(t) be the
reward received by algorithmA in round t. Let Ø be an algo-
rithm that in every round chooses a strategy with the highest
expected reward. The dynamic regret in round t is

RA(t) = WØ(t)−WA(t).

Define the steady-state regret as

R̄A = lim sup
t

sup
t0

E

[
1
t

t0+t∑
s=t0+1

RA(s)

]
. (3)

4The convergence follows from the ergodic theorem. It should
be noted that the rate of convergence for Markov chains with infi-
nite state spaces is a rather delicate matter, e.g. see Rosenthal [28].
In this paper the rate of convergence is non-essential. Moreover, the
convergence itself does not appear in the proofs: it is used only as
intuition and an (additional) justification for assuming the uniform
distribution of the initial state.

Thus, for any fixed R > R̄A the expected average dy-
namic regret of algorithm A over any sufficiently large in-
terval is at most R, and it is the best possible upper bound
of this form. Our goal is to bound R̄A in terms of the arms’
volatility.

We use the following notation throughout the paper. The
state of arm i at time t is µi(t). The maximal state at time t
is µ∗(t) = maxi∈[k] µi(t). An arm i is maximal in round t if
µi(t) = µ∗(t).

1.2 Results: the state-informed case
We present an algorithm whose steady-state regret is optimal
up to a poly-log factor.

Theorem 1.2. Consider the state-informed dynamic MAB
problem with k arms, each with volatility at most σ. Assume
that k < σ−γ for some γ < 1

2 . Then there exists a MAB
algorithm whose steady-state regret is at most Õ(kσ2).

The algorithm is very intuitive. An arm with the highest
last-observed state is called a leader and is played often, e.g.
at least every other round. Suppose the last time some other
arm i was observed was t rounds ago. By Azuma inequality
the state of this arm changed by at most ∆µ = Õ(σ

√
t) since

then, with high probability. If µi(t) + ∆µ is smaller than the
state of the leader, then there is no point yet in trying arm i
again. Else, we mark this arm suspicious and enqueue it to
be played soon.

The main technical contribution here is the analysis, which
is quite delicate since we need to deal with the complicated
dependencies in the algorithm’s behavior induced by the stochas-
tically changing environment. Essentially, we manage to re-
duce the stochastic aspect of the problem to simple events in
the state space. We achieve it as follows. Every time each
arm is played, we spread the corresponding dynamic regret
evenly over the corresponding idle time. This way we ex-
press the cumulative dynamic regret as a sum over the con-
tributions of each arm in each round. We prove a uniform
bound on the expectation of each such contribution. To this
end, we identify a useful high-probability behavior of the
system, derive deterministic guarantees conditional on this
behavior (which is the tricky part), and then argue in terms
of the corresponding conditional expectations.

Surprisingly, the steady-state regret of our algorithm es-
sentially matches a lower bound based on a very simple idea:
if in a given round the states of the best two arms are within
σ
4 from one another, then in the next round with constant
probability either one of them can be σ

4 above another, so
any algorithm incurs expected dynamic regret Ω(σ).5

Theorem 1.3. Consider the state-informed dynamic MAB
problem with k arms of volatility σ. Then the steady-state
regret of any MAB algorithm is at least Ω(kσ2).

1.3 Results: the state-oblivious case
Our algorithm for the state-oblivious case builds on an algo-
rithm from [2] for the static MAB problem. That algorithm
implicitly uses a simple ”padding” function that for a given

5The former event happens with probability Ω(kσ), so the
steady-state regret is Ω(kσ2). This is the entire proof!

345

arm bounds the drift of an average reward from its (static)
expected value. We design a new algorithm UCBf which re-
lies on a novel ”padding” function f that accounts for the
changing expected rewards. The analysis is quite technical:
the specific results from [2] do not directly apply to our set-
ting; instead, we need to ”open up the hood” and combine
the technique from [2] with some new ideas.

Theorem 1.4. Consider the state-oblivious dynamic MAB
problem with k arms such that each arm i has volatility at
most σi. Then there exists a MAB algorithm whose steady-
state regret is Õ(k σav), where σ2

av = 1
k

∑k
i=1 σ

2
i .

Note that (unlike the guarantee in Theorem 1.2), the guar-
antee here is in terms of an average volatility rather than the
maximal one.

1.4 Using off-the-shelf MAB algorithms?
We ask whether similar results can be obtained using off-
the-shelf MAB algorithms. Specifically, we investigate the
following idea: take an off-the-shelf algorithm, run it and
restart it every fixed number of rounds.

For the state-informed version we consider the obvious
”greedy” approach: probe each arm, choose the best one,
play it for a fixed number m of rounds, restart. The greedy
algorithm is parameterized by the phase length m which can
be tuned depending on the number of arms and their volatil-
ity. We show that the greedy algorithm is indeed suboptimal
as compared to Theorem 1.2: the dependence on volatility
(which is smaller than one) is linear rather than quadratic;
we provide both upper and lower bounds.

For the state-oblivious version one can leverage on the
existing work for the adversarial MAB problem [3]. This
work assumes no restrictions on the state evolution, but pro-
vides guarantees only with respect to the best time-invariant
policy, or a policy that switches arms a bounded number of
times. We consider the following algorithm: run a fresh
instance of algorithm EXP3 from [3] for a fixed number m
of rounds, then restart. Using the off-the-shelf performance
guarantees for EXP3 and fine-tuningm, one can (only) bound
the steady-state regret by Õ((kσav)2/3), which is inferior to
the result in Theorem 1.4. It is an open question whether
one can obtain improved guarantees by tailoring the analysis
in [3] to our setting.

1.5 Extensions and open questions
We extend our results in several directions. First, we gener-
alize the Markov-chain formulation (2) to allow the random
incrementsXi(t) to come from other distributions which has
a certain ”light-tailed” property, such as the discrete random
walk. Second, we consider the setting in which each arm has
a distinct fundamental interval. Third, we relax the assump-
tion that the upper bound(s) on volatilities are known to the
algorithm.

The main question left open by this paper is to close
the gap between the upper and lower bounds for the state-
oblivious dynamic MAB problem. The only lower bound we
have is Theorem 1.3. We conjecture that one may obtain a
better bound based on the relative entropy-based technique
from [3]. It is also possible that the algorithmic result can

be improved, possibly via a more refined mechanism for dis-
counting information with time.

Another open question is whether one can obtain the op-
timal Õ(kσ2) steady-state regret for the state-informed ver-
sion in the case when k ≥ σ−1/2. Note that the greedy algo-
rithm mentioned in Section 1.4 achieves steady-state regret
Õ(kσ) which is non-trivial for any k ≤ σ−1.

1.6 Organization of the paper
In Sections 2 and 3 we present our main results for the state-
informed and the state-oblivious versions, respectively. Sec-
tion 4 discusses using off-the-shelf MAB algorithms. Sec-
tion 5 covers the extensions.

2 The state-informed dynamic MAB problem
We consider the state-informed dynamic MAB problem where
the volatility of each arm is at most σ. Recall that the state
of arm i at time t is denoted µi(t).

For arm i and time t, the last-seen time τi(t) is the last
time this arm has been played strictly before time t; the last-
seen state νi(t) = µi(τi(t)) is the corresponding state.

Definition 2.1. The leader in round t is the arm with a larger
last-seen state, among the arms played in rounds t − 1 and
t− 2; break ties in favor of the arm played in round t− 1.

In our algorithm, the leader is our running estimate for
an arm with the maximal state. We alternate rounds in which
we always exploit – play the leader, with rounds in which
we may explore other options. Since we define the leader in
terms of the last two rounds only, our knowledge of its state
is essentially up-to-date.

Let ν∗(t) be the last-seen state of the leader in round t.
Let csusp = Θ(log 1

σ)1/2 be the factor to be defined later.

Definition 2.2. An arm i is called suspicious at time t if

ν∗(t)− νi(t) ≤ csusp σ
√
t− τi(t). (4)

If an arm i is not suspicious at time t, then with high
probability its current reward is less than ν∗(t). If no arm is
suspicious then, intuitively, the best bet is to play the leader.
Roughly, our algorithm behaves as follows: if the time is
even it plays the current leader, and if the time is odd it plays
a suspicious arm if one exists, and the leader otherwise. To
complete the description of the algorithm, we need to specify
what it does when there are multiple suspicious arms. In
particular, we need to guarantee that after an arm becomes
suspicious, it is played eventually (and preferably soon).

Definition 2.3. An arm i is active at time t if it is not the
leader and it has been suspicious at some time t′ > τi(t).
The activation time τ act

i (t) is the earliest such time t′.

An arm becomes active when it becomes suspicious. It
stays active until it is played. The idea is to play an active
arm with the earliest activation time.

Algorithm 2.4. For bootstrapping, each arm is played once.
At any later time t do the following. If t is even, play the cur-
rent leader. If t is odd play an active arm (with the earliest
activation time) if one exists, else play the leader.

346

We will use a slightly more refined algorithm which al-
lows for a more efficient analysis. Essentially, we give prior-
ity to arms whose state is close to the leader’s.

Definition 2.5. Arm i is high-priority at time t if it is active
at this time and moreover τ act

i (t)− τi(t) ≤ 4k.

Algorithm 2.6. For bootstrapping, each arm is played once.
At any later time t do the following. If t is even, play the
current leader. If t is odd play an active arm if one exists,
else play the leader. If there are multiple active arms:

• if t ≡ 1 (mod 4) then play an active arm with the ear-
liest activation time; break ties arbitrarily

• if t ≡ 3 (mod 4) then play a high-priority arm with
the earliest activation time if one exists; else, play any
active arm; break ties arbitrarily.

The analysis of these two algorithms are very similar,
except that Algorithm 2.4 has inefficiencies which lead to an
extra k2 factor in its regret. We focus on Algorithm 2.6.

Theorem 2.7. Consider the state-informed dynamic MAB
problem with k arms, each with volatility at most σ. Assume
that k < σ−γ for some γ < 1

2 . Then Algorithm 2.6 achieves
steady-state regret O(k σ2 log2 1/σ).

In the rest of this section we prove Theorem 2.7.
Let R̄A(t) be the average dynamic regret up to time t.

Then, letting Ti(t) be the set of times arm i was played be-
fore and including time t, we have

E
[
R̄A(t)

]
=

1
t

∑
i∈[k]

∑
t′∈Ti(t)

E [µ∗(t′)− µi(t′)] . (5)

Let us spread contributions of individual arms evenly over
the corresponding idle time. Specifically, let us define

∆µi(t) = µ∗(t)− µi(t),
∆τi(t) = τ+

i (t)− τi(t),

where τ+
i (t) is the next time arm i is played after time τi(t).6

Then we can re-write (5) as follows:

E
[
R̄A(t)

]
=

1
t

∑
i∈[k]

∑
t′∈[t]

E

[
∆µi(τi(t′))

∆τi(t′)

]
. (6)

We define the contribution of arm i in round t as

Ci(t) =
∆µi(τi(t))

∆τi(t)
.

A crucial idea is that we upper-boundE[Ci(t)] for each round
t separately. Namely, we will prove that

E[Ci(t)] < O(σ2 log2 1
σ). (7)

We identify the high-probability behavior of the processes
{µi(t)}i∈[k]. Specifically, we consider the Õ(

√
t) bound

on deviations, and an O(1) bound on the number of near-
optimal arms. A large portion of our analysis is deterministic
conditional on such behavior.

6In other words, τi(t) and τ+
i (t) are the two consecutive times

arm i is played such that τi(t) < t ≤ τ+
i (t).

Definition 2.8. A real-valued function f is well-behaved on
an interval [t1; t2] if for any t, t+ ∆t ∈ [t1; t2] we have

|f(t+ ∆t)− f(t)| < cwell σ
√

∆t. (8)

where cwell = Θ(log 1
σ)1/2 will be chosen later.

Definition 2.9. An instance of the dynamic MAB problem
is well-behaved on a time interval I if

(i) functions µ1(t), . . . , µk(t) are well-behaved on I;
(ii) at each time t ∈ I there are at most cnear = O(1) arms i

such that ∆µi(t) < (8k + 15
√
k) cwell σ. 7

A problem instance is well-behaved near time t it is well-
behaved on the time interval [t− 3σ−2; t+ σ−2].

Choosing the parameters. The factors cwell and cnear are cho-
sen so that for any fixed t a problem instance is well-behaved
near time t with probability at least 1 − σ−3. In Defini-
tion 2.1, define csusp = 5 cwell.

Our conditionally deterministic guarantees (conditional
on the problem instance being well-behaved) are expressed
by the following lemma.

Lemma 2.10 (The Deterministic Lemma). Suppose a prob-
lem instance is well-behaved near time t. Fix arm i and let
δ = ∆µi(t). Then:

(a) If δ = 0 and Ci(t) > 0 then

Ci(t) ≤ O(σ log 1
σ)/
√
t− τi(t), (9)

and moreover for some arm j 6= i we have

∆µj(t) < O(σ log 1
σ)
√
t− τi(t). (10)

(b) If δ > 0 then Ci(t) ≤ O(σ2/δ) log2 1
σ .

Let us use Lemma 2.10 to derive the main result.

Proof of Theorem 2.7: It suffices to prove (7). Let E(t) de-
note the event that the problem instance is well-behaved near
time t. By Lemma 2.10(a), letting x =

√
t− τi(t) and sup-

pressing the log 1
σ factors under the Õ(·) notation,

E[Ci(t) |∆µi(t) = 0, E(t)]

≤ Õ(σ/x) Pr[∃j 6= i : ∆µj(t) < Õ(σx)]

≤ Õ(σ2). (11)

By Lemma 2.10(b) for any δ > 0 we have

E[Ci(t) |∆µi(t) ≥ δ, E(t)] ≤ Õ(σ2/δ) (12)

Pr[∆µi(t) ≤ δ |∆µi(t) > 0, E(t)] ≤ Õ(δ). (13)

Now (7) follows from (11-13) via a simple computation.

In the rest of this section we prove Lemma 2.10.
7This expression is tailored to (16) in the subsequent anal-

ysis. The event in question happens with probability at least
1 − O(cwell k

2 σ)cnear . Recall that we assume k < σ−γ for some
γ < 1

2
. Thus, a (large enough) constant cnear suffices to guarantee a

sufficiently low failure probability.

347

2.1 Deterministic bounds for the leader
We will argue deterministically assuming that the problem
instance is well-behaved. We split our argument into a chain
of claims and lemmas. The proofs are quite detailed; one can
skip them for the first reading. For shorthand, let E [t1; t2]
denote the event that the (fixed) problem instance is well-
behaved on the time interval [t1; t2].

First, we argue that the leader’s last-seen state, ν∗(·),
does not decrease too much in one round.

Claim 2.11. If E [t− 2; t] then

ν∗(t+ 1) ≥ ν∗(t)− 2 cwell σ.

Proof. Assume that t is even (if t is odd the proof proceeds
similarly). Recall that the leader in round t is some arm i
played in one of the previous two rounds. It follows that

ν∗(t) = νi(t) ≤ µi(t) + 2 cwell σ.

Moreover, the leader (i.e. arm i) is played in round t and
therefore ν∗(t+ 1) ≥ µi(t), claim proved.

Second, each arm becomes active eventually.

Claim 2.12. Any arm i becomes active at most σ−2 rounds
after it is played: τ act

i (t)− τi(t) ≤ σ−2 for any time t.

Proof. If t− τi(t) ≥ σ−2 then (4) is trivially true.

Third, we show that a currently maximal arm has been
activated within 4k rounds from its last-seen time, and there-
fore it has been played in the previous 8k rounds. The proof
of this lemma is one of the crucial arguments in our analysis.

Lemma 2.13. Suppose E [t − σ−2; t] and arm i is maximal
at time t. Then

τ act
i (t)− τi(t) ≤ t− τ act

i (t) ≤ 4k.

Proof. Note that t − τ act
i (t) ≤ 4k, since otherwise after be-

coming active at time τ act
i (t) arm i would have been played

strictly before round t, contradiction.
Let τ = τi(t). For the sake of contradiction assume that

τ act
i (t)− τ > t− τ act

i (t). (14)

Since arm i is not suspicious at time t′ = τ act
i (t) − 1, by

Definition 2.2 we have

ν∗(t′)− νi(t′) ≥ csusp σ
√
t′ − τ . (15)

By Claim 2.12 the problem instance is well-behaved on [τ ; t].
It follows that

νi(t′) = µi(τ) ≥ µi(t)− cwell σ
√
t− τ

ν∗(t′) = µj(t′′) ≤ µj(t) + cwell σ
√
t− t′′,

where arm j is the leader in round t′, and t′′ is one of the two
rounds preceding t′. Plugging this into (15) and using (14),
we see that µj(t) > µi(t), contradiction.

Fourth, we show that the leader’s last-seen state is not
much worse than the maximal state.

Claim 2.14. If E [t− σ−2; t] then

µ∗(t)− ν∗(t) ≤ (8k +
√

8k) cwell σ.

Proof. Let µ∗(t) = µi(t) for some arm i, and let τ = τi(t)
be the last time this arm was played. By Lemma 2.13 we
have t− τ ≤ 8k. Therefore

ν∗(τ + 1) ≥ µi(τ) ≥ µi(t)− cwell σ
√

8k,

and the claim follows by Claim 2.11.

Fifth, we show that high-priority arms are played very
soon after they become active.

Claim 2.15. Suppose arm i is a high-priority active arm at
time t. Assume E [t− σ−2; t]. Then t− τ act

i (t) ≤ 4 cnear.

Proof. Fix time t and let t′ = τ act
i (t) be the activation time

of arm i. Then by Definition 2.4 and Definition 2.3

ν∗(t′)− νi(t′) ≤ csusp σ
√
t− t′ ≤ csusp σ

√
4k.

Using Claim 2.14 to relate ν∗(t′) and µ∗(t′), and using the
fact that νi(t′) = µi(τ) and that µi(·) is well-behaved, we
obtain

∆µi(t′) ≤ (8k + 15
√
k) cwell σ. (16)

Lemma follows by Definition 2.9(ii) which is, in fact, tai-
lored to (16).

Now we have the tools needed to prove a stronger version
of Claim 2.14: µ∗(t)− ν∗(t) ≤ Õ(σ).

Lemma 2.16. If the problem instance is well-behaved on
[t− σ−2; t] then µ∗(t)− ν∗(t) ≤ O(cwell σ).

Proof. Let i be an active arm at time t. By Lemma 2.13
τ act
i (t)−τi(t) ≤ 4k, so at time τ act

i (t) arm i is a high-priority
active arm. By Claim 2.15 t − τ act

i (t) ≤ 4 cnear = O(1). By
Lemma 2.13 it follows that t− τi(t) ≤ O(1).

Now ν∗(τ + 1) ≥ µi(τ) by definition of the leader;
ν∗(t) ≥ ν∗(τ + 1) − O(cwell σ) by Claim 2.11; and also
µ∗(t) ≤ µ∗(τ) + O(cwell σ) since the problem instance is
well-behaved. Putting it together, we obtain the lemma.

2.2 Proof of The Deterministic Lemma
Let τ = τi(t) and recall that we denote δ = ∆µi(t).

By Lemma 2.13 we have t− τ ≤ 8k. Since the problem
instance is well-behaved on [t − 8k; t], it follows that µ∗(·)
is well-behaved, too, and therefore

|∆µi(t)−∆µi(τ)| ≤ 2 cwell σ
√
t− τ , (17)

which immediately implies (9). To obtain (10) note that (17)
in fact applies to any arm j, in particular to an arm j that is
maximal at time τ .

To prove Lemma 2.10(b), it suffices to prove the follow-
ing two inequalities:

∆τi(t) ≥ Ω(δ/σ)2/ log 1
σ , (18)

∆µi(τ) ≤ O(δ + σ log 1
σ). (19)

Proof of (18): We consider two cases.
First, if we have ∆µi(τ) < δ/2 then by (17) we obtain

2 cwell σ
√
t− τ ≥ |∆µi(t)−∆µi(τ)| ≥ δ/2,

and (18) follows since ∆τi(t) ≥ t− τ .

348

Second, assume ∆µi(τ) ≥ δ/2. Then by Lemma 2.16
for any time t′ ∈ (τ ; t+ σ−2) we have

ν∗(t′)− µi(τ) ≥ µ∗(t′)−O(cwell σ) + ∆µi(τ)− µ∗(τ)

≥ δ/2− cwell σ
√
t′ − τ +O(1).

This is at least ≥ csusp σ
√
t′ − τ as long as it is the case that

t′ − τ ≤ (12 cwell σ/δ)−2. So for any such t′ arm i is not
suspicious, proving (18).

Proof of (19): First, note that if τ act
i (t) − τi(t) ≤ 4k then

by Definition 2.5 arm i is a high-priority active arm at time
τ act
i (t), so by Claim 2.15 we have t− τ act

i (t) ≤ O(1) and so
t− τi(t) ≤ O(1) by Lemma 2.13. It follows by (17) that

∆µi(τ) ≤ ∆µi(t) +O(σ),

and we are done. In what follows we will assume that

τ act
i (t)− τi(t) > 4k. (20)

Note that for any time t′ we have

ν∗(t′) ≤ max(µ∗(t′ − 1), µ∗(t′ − 2))

≤ µ∗(t′) + 2 cwell σ.

Let t′ = τ act
i (t)− 1 be the round immediately preceding the

activation time. Since arm i is not suspicious at time t′,

csusp σ
√
t′ − τ ≤ ν∗(t′)− µi(τ)

≤ µ∗(t′)− µi(τ) + 2 cwell σ.

≤ ∆µi(t′) + cwell σ(2 +
√
t′ − τ).

Since csusp = 5 cwell, it follows that

∆µi(t′) + 2 cwell σ ≥ 4 cwell σ
√
t′ − τ . (21)

Combining (17) and (21), we obtain

∆µi(τ) ≤ ∆µi(t′) + 2 cwell σ
√
t′ − τ

≤ 3
2 ∆µi(t′) + 2 cwell σ.

Finally, by (17), (20) and (21) we obtain

∆µi(t′) ≤ ∆µi(t) + 2 cwell σ
√
t− t′

≤ ∆µi(t) + 1
2 ∆µi(t′) + 2 cwell σ.

∆µi(t′) ≤ 2 ∆µi(t) + 4 cwell σ.

∆µi(τ ′) ≤ 3 ∆µi(t) + 6 cwell σ.

3 The state-oblivious dynamic MAB problem
We consider the state-oblivious dynamic MAB problem with
k arms where the volatility of each arm i is at most σi.

Definition 3.1. For each arm i, Ni(t) is the number of times
it has been played in the first t− 1 rounds, and W i(t) is the
corresponding average reward. Let W i(0) = 0 if Ni(t) = 0.
For shorthand, let µi = µi(0) be the initial state.

Definition 3.2. Consider an instance of the state-oblivious
dynamic MAB problem. A function fi : N × N → R+ is a
padding for arm i if the following two properties hold:

• fi(t, ti) is increasing in t and decreasing in ti,

• for any time t, letting ti = Ni(t) we have

Pr
[
|W i(t)− µi(0)| > fi(t, ti)

]
< O(t−4). (22)

The family {fi}i∈[k] is a padding for the problem instance.

We build on an algorithm UCB1 from [2] for the static
MAB problem. We define a generalization of UCB1, which
we call UCBf , which is parameterized by a padding f =
{fi}i∈[k].

Algorithm 3.3 (UCBf). In each round t play any arm

i ∈ argmax
i∈[k]

[
W i(t) + fi(t, Ni(t))

]
.

The original UCB1 algorithm is defined for a specific
padding f , and in fact does not explicitly uses the notion of
a padding. We introduce this notion here in order to extend
the ideas from [2] to our setting.

We incorporate the analysis from [2] via the following
lemma which, essentially, bounds the number of times a sub-
optimal arm is played by the algorithm.

Lemma 3.4 (Auer et al. [2]). Consider an instance of the
state-oblivious MAB problem with a padding f = {fi}i∈[k].
Consider the behavior of algorithm UCBf in the first t rounds.
Then for each arm i and any ti < t we have

fi(t, ti) ≤ 1
2 ∆µi(t) ⇒ E[Ni(t)] ≤ ti +O(1). (23)

This lemma is implicit in Auer et al. [2], where it is the
crux of the main proof. That proof considers the static MAB
problem and (implicitly) a specific padding f .

We will use UCBf where f = {fi}i∈[k] is defined by

fi(t, ti) =
√

2 ln(t)/ti + σi
√

8t log t. (24)

Define the average dynamic regret of an algorithm A
R̄A(t) = 1

t

∑
s∈[t]RA(s). We prove the following guaran-

tee for algorithm UCBf :

Theorem 3.5. Consider the state-oblivious dynamic MAB
problem with k arms. Suppose the volatility of each arm i is
at most σi. Then there exists time t0 such that

E[R̄UCBf
(t0)] ≤ O(k σav) log3/2(σ−1

av), (25)

where σ2
av = 1

k

∑k
i=1 σ

2
i .

To obtain Theorem 1.4 from Theorem 3.5, we start a
fresh instance of algorithm UCBf after every t0 steps. We
take advantage of the facts that (i) the ”restarting times” are
deterministic and, in particular, independent of the past his-
tory, and (ii) in any fixed round each µi(t) is distributed in-
dependently and uniformly on [0; 1].

In the rest of this section we prove Theorem 3.5. We start
with a very useful fact about the state evolution µi(t). In
general, if µi(0) > 1

2 then due to the influence of the upper
boundary the expected state E[µi(·)] drifts down from its
initial value. The following claim upper-bounds such drift.

Let us use a shorthand for the second summand in (24):

δi(t) = σi
√

8t log t.

349

Claim 3.6. Fix arm i and integer times t ≤ t∗. Then

Pr[|µi(t)− µi | > δi] < t−3
∗ (26)

where µi = µi(0) and δi = δi(t∗), and therefore

E[µi(t) |µi] ≥ min(µi, 1− δi)− t−2
∗ . (27)

Proof. Recall that the state µi(t) is defined as fI(Bi(t)) where
Bi is a Brownian motion with volatility σi, and fI is the
”projection” (1) into the interval I = [0; 1] with reflective
boundaries. Note that µi = Bi(0).

It follows that |µi(t)−µi| > δi only if |Bi(t)−µi| > δi.
We know that for any c > 1 we have

Pr[|Bi(t)− µi| > cσi
√
t] < 2 e−c

2/2.

We obtain (26) setting c =
√

6 log t∗.
Now let us prove (27). Define

f(µ) = E[µi(t) |µi].

Note that if µ < 1
2 then f(µ) > µ. Also, note that f(µ) is

increasing and f(1
2) = 1

2 by symmetry. Therefore, it suffices
to prove (27) under the assumption that 1

2 < µi ≤ 1− δi.
Consider T = min(t, TB), where

TB = min{s ∈ N : Bi(s) 6∈ (0; 1)}.

Then Zs = µi(min(s, T)) is a martingale such that Z0 = µ
and T is a bounded stopping time. By the Optional Stopping
Theorem it follows thatE[ZT] = µ. By (26) we have TB ≥ t
with probability at least 1 − t−2

∗ , in which case T = t and
µ = ZT = µi(t). Thus (27) follows.

Using Claim 3.6, let us argue that (24) is indeed a padding.
Essentially, the first summand in (24) is tuned for an applica-
tion of Chernoff-Hoeffding Bounds, whereas the second one
corrects for the drift.

Lemma 3.7. The family f defined by (24) is a padding.

Proof. We need to prove (22). Fix arm i and time t. Let
{tj}∞j=1 be the enumeration of all times when arm i is played.
Let Xj = µi(tj) be the state of arm i in round t. Let X̂j

be the actual reward collected by the algorithm from arm i
in round tj . Let us define the sums S =

∑
j∈[n]Xj and

S∗ =
∑
j∈[n] X̂j , where n = Ni(t) is the number of times

arm i is played before time t. Let µ = µi(0) and δ = δi(t).
We can rewrite (22) as follows:

Pr[|S∗ − µn| >
√

2n ln t+ δn] < O(t−4). (28)

Let F be the failure event when |µi(s) − µ| > δ for some
s ∈ [t]. Recall that by Claim 3.6 the probability of F is at
most t−4. In the probability space induced by conditioning
on X̂1, . . . , X̂j−1 and the event F̄ , we have

E[X̂j] = E
[
E[X̂j |tj , Xj]

]
= E [E[Xj |tj]]

= E[Xj] ∈ [µ− δ, µ+ δ].

Going back to the original probability space,

E[X̂j | X̂1 . . . X̂j−1, F̄] ∈ [µ− δ, µ+ δ]. (29)

The Chernoff-Hoeffding bounds (applied to the probability
space induced by conditioning on F̄) say precisely that the
condition (29) implies the following tail inequality:

Pr
[
|Ŝ − µm| > δm+ a | F̄

]
≤ 2 e−2a2/m

for any a ≤ 0. We obtain (28) by taking a =
√

2m lnT .

To argue about algorithm UCBf , we will use the follow-
ing notation:

Definition 3.8. We will use the following notation:{
ρi(t) = min(µi, 1− δi(t)), µi = µi(0),

∆i = µ∗ − µi, µ∗ = µ∗(0)
S(t) = {arms i : ∆i ≥ 4δi(t)}.

Lemma 3.9. Consider any algorithm for the state-oblivious
dynamic MAB problem. Then for each arm i and time t ≥ k

E
[
Ni(t)W i(t) | µi

]
≥ ρi(t)E[Ni(t)]− t−2. (30)

The left-hand side of (30) is the total winnings collected
by arm i up to time t. If the bandit algorithm always plays
arm i, then Ni(t) = t and the left-hand side of (30) is simply
equal to

∑
sE[µi(s)], so the lemma follows from Claim 3.6.

In this sense, Lemma 3.9 is an extension of Claim 3.6. The
proof of (30) is a rather intricate exercise in conditional ex-
pectations and martingales. We defer it to Section 3.1.

We combine Lemma 3.9 and Lemma 3.4 to derive a con-
ditional bound on R̄UCBf

(t):

Corollary 3.10. For any time t we have

E
[
R̄UCBf

(t) |µ1, . . . , µk
]

≤ k

t2
+O(1)

 ∑
i6∈S(t)

µ∗ − ρi(t)


+ O(1

t log t)

 ∑
i∈S(t)

1
∆i

 . (31)

Proof. Fix time t and let W i = W i(t), ρi = ρi(t) and Ni =
Ni(t). Let R(t) be the left-hand side of (31). Using (30),

tR(t) =
∑
i∈[k]

E[(µ∗ −W i)Ni]

≤
∑
i∈[k]

E[Ni] (µ∗ − ρi) + t−2.

For each i ∈ S(t) we have µ∗−ρi ≤ 2∆i and by Lemma 3.4

E[Ni(t)] ≤ 32 ln(m)/∆2
i +O(1).

We obtain Theorem 3.5 by integrating both sides of (31)
with respect to µ1 . . . µk.

Proof of Theorem 3.5: Fix time t and let δi = δi(t) and
ρi = ρi(t). Note that (31) is, essentially, the sum over all
arms. We partition the arms into three sets and bound the
three corresponding sums separately.

350

Note that the following holds for any fixed γ > 0: given
µ∗ and the event {∆i > γ}, the random variable µi is dis-
tributed uniformly on the interval [0;µ∗ − γ). We will use
this property in the forthcoming integrations.

First, we consider the set S = S(t). Conditional on µ∗,

E

[∑
i∈S

∆−1
i

]
=
∑
i∈[k]

E
[
∆−1
i | ∆i > 4δi

]
Pr[∆i > 4δi]

≤
∑
i∈[k]

lnσ−1
i ≤ O(k lnσ−1

av). (32)

Second, let us consider the set S+ of all arms i such that
0 < ∆i < 4δi. Conditional on µ∗, we obtain

E

[∑
i∈S+

µ∗ − ρi

]
≤
∑
i∈[k]

O(δi) Pr[∆i < 4δi |∆i > 0]

≤
∑
i∈[k] O(δi) min(1, δi/µ∗).

Integrating over µ∗, we obtain

E
[∑

i∈S+ µ∗ − ρi
]
≤
∑
i∈[k] O(δ2

i)

≤ O(k σ2
av t log t). (33)

Third, we consider the set S∗ of all maximal arms, i.e.
the set of all arms i such that ∆i = 0. We show the main
steps of the argument, omitting the details of some straight-
forward integrations:

Zi := I{∆i=0} (µ∗ − ρi)
E[Zi] = E[E[Zi|µ∗]] = 1

k E[µ∗ − ρi] = O(δ2
i)

E

[∑
i∈S∗

µ∗ − ρi

]
=
∑
i∈[k]

E[Zi] ≤ O(k σ2
av)(t log t). (34)

Finally, using(32-34), we take expectations in (31):

E
[
R̄UCBf

(t)
]

= O(kt log t)((σav t)2 + log σ−1
av).

The theorem follows if we take t0 = σav

√
log σ−1

av .

3.1 Proof of Lemma 3.9: conditional expectations
Fix arm i and time t. Let us introduce a more concise no-
tation which gets rid of the subscript i. Let µ = µi(0) and
δ = δi(t), and denote N = Ni(t). For every time s, let
Ys = µi(s), and let Xs be the winnings from arm i at time s
if it is played by the algorithm.8 Let ζs be equal to 1 if arm i
is played at time s, and 0 otherwise.

To prove (30), we will show that

E
[∑

s∈[t] ζsXs

]
= E

[∑
s∈[t] ζs Ys

]
(35)

≥ min(µ, 1− δ)E[N] + t−2. (36)

Note that ζs and Xs are conditionally independent given
Ys. It follows that

E [ζsXs |Ys] = E [ζs |Ys] E [Xs |Ys] = E [ζs |Ys] Ys
= E [ζs Ys |Ys] .

8That is,Xs is an independent random sample from distribution
D(Ys), as defined in Section 1.1.

Taking expectations on both sides, we obtain
E[ζsXs] = E[ζs Ys],

which proves (35).
Going from (35) to (36) is somewhat more complicated.

In what follows we denote S =
∑
t∈[m] ζs Ys.

Claim 3.11. If µ ≤ 1− δ then E[S] ≥ µE[N]− t−2.

Proof. As in Claim 3.6, we recall the definition µi(s) =
fI(Bi(s)) where Bi is a Brownian motion with volatility σi,
and fI is the ”projection” (1) into the interval I = [0; 1] with
reflective boundaries. Note that µi = Bi(0).

For brevity, denote Ŷs = Bi(s), and define the corre-
sponding shorthand Ŝ =

∑
s∈[t] ζs Ŷs. Let F be the failure

event when Ŷs ≥ 1 for some t ≤ m. Note that if this event
does not occur, then Ys ≥ Ŷs for every time t ∈ [m] and
therefore S ≥ Ŝ. We use this observation to express E[S]
in terms of E[Ŝ]. Let p := Pr[F] and note that it is at most
m−4. Then:

E[Ŝ] = (1− p)E[Ŝ | not F] + pE[Ŝ |F]

≤ (1− p)E[Ŝ | not F] + p(µ+ tσi)
E[S] ≥ (1− p)E[S | not F] + pE[S |F]

≥ (1− p)E[Ŝ | not F]

≥ E[Ŝ]− ptσi − p.
To prove the claim, it remains to bound E[Ŝ].

Let {sj}∞j=1 be the enumeration of all times when arm i

is played. Note thatN = max{j : sj ≤ t}. Define Ẑj = Ŷsj

for each j. We would like to argue that {Ẑj}∞j=1 is a martin-
gale andN is a stopping time. More precisely, claim that this
is true for some common filtration. Indeed, one way to de-
fine such filtration {Fj}∞j=1 is to define Fj as the σ-algebra
generated by sj+1 and all tuples (sl, Zl, Z∗l , Ẑl) such that
l ≤ j. Now using the Optional Stopping Theorem one can
show that

E[Ŝ] =
∑
j∈[N]Zj = E[N]E[Ẑ0],

which proves the claim since Ẑ0 = µ.

To prove (36), it remains to consider the case µ > 1− δ.

Claim 3.12. if µ > 1− δ then
E[S] ≥ (1− δ)E[N]− t−2.

Proof. Let T be the smallest time s such that Ys ≤ 1 − δ.
Let {sj}∞j=1 be the enumeration of all times when arm i is
played, and let J = max j : tj ≤ T . Conditioning on T and
J , consider the entire problem starting from time T+1. Then
by Claim 3.11 we have:

E

[
m∑

s=T+1

ζs Ys |T, J

]
≥ (1− δ)(E[N]− J)− t−2.

Let ST =
∑t
s=T+1 ζs Ys. It follows that

S = ST +
∑
t∈[T] ζs Ys ≥ ST + (1− δ) J

E[S] = E[ST] + (1− δ)E[J]
≥ (1− δ)E[N − J]− t−2 + (1− δ)E[J]
≥ (1− δ)E[N]− t−2.

351

4 Using off-the-shelf algorithms
In this section we investigate the following idea: take an off-
the-shelf MAB algorithm, run it, and restart it every fixed
number of rounds. We consider both the state-informed and
state-oblivious versions of the dynamic MAB problem.

We use the following notation: there are k arms, each
arm i has volatility σi, and the average volatility σav is de-
fined by σ2

av = 1
k

∑k
i=1σ

2
i . We rely on the following lemma:

Lemma 4.1. Let µ∗ = µ∗(0) and let i∗ ∈ argmaxµi(0),
ties broken arbitrarily. Then for any times t ≤ t∗

E[µ∗ − µi∗(t)] ≤ O(k)(t−4
∗ + σ2

av t∗ log t∗). (37)

More generally, we can consider arbitrary fixed times

0 ≤ t1 ≤ t2 ≤ . . . ≤ tk ≤ t ≤ t∗
and define µ∗ = maxµi(ti) and i∗ ∈ argmaxµi(ti).

The lemma is obtained, essentially, by combining Claim 3.6
and (34); we omit the details of the proof.

Remark. The intuition is that each arm i is probed in round
ti, so that µi(ti) is the expected value of the corresponding
probe. This lemma is similar to Claim 3.6 in that it bounds
the downwards drift ofE[µi(·)] which is caused by the prox-
imity of the upper boundary. The difference is that here we
specifically consider a ”maximal” arm, e.g. when ti ≡ 0 we
consider an arm which is maximal at time 0.

4.1 State-informed version: greedy algorithm
For the state-informed version we consider a very simple,
”greedy” approach: probe each arm once, choose one with
the largest state, play it for a fixed number m− k of rounds,
restart. Call this a greedy algorithm with phase length m.

Theorem 4.2. Consider the state-informed dynamic MAB
problem with k arms such that the volatility of each arm i is
σi. With phase length m = σav

√
log σ−1

av , the steady-state
regret of the greedy algorithm is at most

O(k σav log σ−1
av), where σ2

av = 1
k

∑k
i=1σ

2
i .

Proof. For the algorithmic result, fix phase length m > k
and consider a single phase of the greedy algorithm. Assume
without loss of generality that in the first k rounds of the
phase our algorithm plays arm i in step i. Let µi = µi(i) be
the corresponding rewards, and let µ∗ be the largest of them.
Then the greedy algorithm chooses arm i∗ ∈ argmaxi∈[k] µi
and plays it for m − k rounds. Consider the t-th of these
m− k rounds and let Yt = µi∗(t+ k) be the state of arm i∗

in this round. By Lemma 4.1 we have E[Yt] ≥ E[µ∗] − z,
where z is the right-hand side of (37). Therefore, letting W
be the per-round average reward in this phase, we have

E[W] ≥ 1
m

∑m−k
t=1 Yt ≥ m−k

m (E[µ∗]− z)
E[µ∗ −W] ≤ z + k

m E[µ∗]

≤ O(kmσ2
av logm) + k

m (1 + 1
m)

= O(k σav)
√

log σ−1
av

for m = σav

√
log σ−1

av .

We provide a matching lower bound.

Theorem 4.3. Consider the setting in Theorem 4.2. Then
the steady-state regret of the greedy algorithm is Ω̃(k σav).

Proof Sketch. For simplicity assume σi ≡ σ. It is known
that in time t a Brownian motion with volatility σ drifts by at
least ∆ = Ω̃(σ

√
t) with high probability. Thus for each arm

i with high probability µi(t) ≤ 1 − ∆/2, regardless of the
initial value µi(0). Now we can obtain a lower bound that
corresponds to Lemma 4.1: letting µ∗ = maxµi(i) and i∗ ∈
argmaxµi(i) be the arm chosen by the greedy algorithm,

E[µ∗ − µi∗(t)] ≥ Ω̃(k σ2t), (38)

for any t > k. Now consider a given phase of the greedy
algorithm. In the first k rounds the algorithm accumulates
regret Ω(k), and in each subsequent round t the regret is the
left-hand side of (38). The theorem follows easily.

4.2 State-oblivious version via adversarial MAB
For the state-oblivious dynamic MAB problem, we use a
very general result of Auer et al. [3] for the adversarial MAB
problem. For simplicity, here we only state this result in
terms of the present setting.

Let WA(t) be the average reward collected by algorithm
A during the time interval [1; t].

Theorem 4.4 (Auer et al.[3]). Consider the state-oblivious
dynamic MAB problem with k arms. Let Ai be an algorithm
that plays arm i at every step. Then there exists an algorithm,
call it EXP3, such that for any arm i and any time t

E[W EXP3(t)] ≥ E(WAi
(t))−O(kt log t)1/2.

For our problem, we restart EXP3 every m steps, for
some fixed m; call this algorithm EXP3(m).

Theorem 4.5. Consider the state-informed dynamic MAB
problem with k arms such that the volatility of each arm i is
at most σi. Then there existsm such that algorithm EXP3(m)
has steady-state regret

O(k σav log σ−1
av)2/3, where σ2

av = 1
k

∑k
i=1σ

2
i .

Proof. Let use shorthandA = EXP3(m). Let µ∗ be the max-
imal expected reward at time 0, and suppose it is achieved by
some arm i∗. Let A∗ be the algorithm that plays this arm at
every step. Let Yt = µi∗(t) the state of arm i∗ in round t.
Then by Lemma 4.1 we have E[Yt] ≥ E[µ∗] − zm, where
z(m) is the right-hand side of (37). Therefore:

E[WA∗(m)] = E
[
E[WA∗(m) |Y1 , . . . , Ym]

]
= 1

m E [
∑m
t=1 Yt]

≥ µ∗ − z(m) (39)

E[R̄A(m)] = E
[
µ∗ −WA∗(m)

]
+ E

[
WA∗(m)−WA(m)

]
Now using (39) and Theorem 4.4 we obtain

E[R̄A(m)] ≤ z(m) +O(km logm)1/2. (40)

We choosem that minimizes the right-hand side of (40).

352

We note in passing that we can also get non-trivial (but
worse) guarantees for the state-oblivious dynamic MAB prob-
lem using two other off-the-shelf approaches:

• a version of the greedy algorithm which probes each
arm a few times in the beginning of each phase,

• a version of Theorem 4.4 in which the benchmark algo-
rithm is allowed to switch arms a few times [3].

Essentially, the first approach is too primitive, while the sec-
ond one makes overly pessimistic assumptions about the en-
vironment. In both cases we obtain guarantees of the form
Õ(kσav)γ , γ < 2

3 , which are inferior to Theorem 4.5.

5 Extensions
Recall that the state evolution of arm i in the dynamic MAB
problem is described by (2), where the i.i.d. increments µi(t)
are distributed with respect to some fixed distribution Xi.
Can we relax the assumption that Xi is normal?

Definition 5.1. Random variable X is stochastically (ρ, σ)-
bounded if its moment-generating function satisfies

E[er(X−E[x])] ≤ er
2σ2/2 for |r| ≤ ρ.

This is precisely the condition needed to establish an Azuma-
type inequality: if S is the sum of t independent stochasti-
cally (ρ, σ)-bounded random variables with zero mean, then
with high probability S ≤ Õ(σ

√
t). Specifically, for any

λ ≤ 1
2 ρ σ
√
t we have

Pr
[
S > λσ

√
t
]
≤ exp(−λ2/2). (41)

Note that a normal distribution N (0, σ) is (∞, σ)-bounded,
and any distribution with support [−σ, σ] is (1, σ)-bounded.

We can recover all of our algorithmic results if we as-
sume that each distribution Xi has zero mean and is stochas-
tically (ρ, σi)-bounded for some σi, where ρ > 0 is a fixed
absolute constant. We re-define the volatility of arm i as the
infimum of all σ such that Xi is (ρ, σ)-bounded.

It is appealing to tackle a more general setting when the
only restriction on each distribution Xi is that it has mean
0 and variance σ2

i . We can extend our analysis (at the cost
of somewhat weaker guarantees) if we further assume that,
essentially, the absolute third moment of Xi is comparable
to σ3

i . Then instead of (41) we can use a weaker inequality
called the non-uniform Berry-Esseen theorem [23]:

Pr
[∑t

s=1µi(s) > σi t
γ
]
≤ O

(
(ρi

σi
)3 t1−3γ

)
, (42)

for any γ > 1/2, where ρ3
i = E[|µi(s)|3]. We omit further

discussion of this extension from the present version.
Let us discuss one other direction in which our setting

can be generalized. Recall that in the dynamic MAB prob-
lem the state of each arm evolves on the same interval I =
[0; 1] (see Section 1.1) which we term the fundamental in-
terval. What if we allow each arm to have a distinct funda-
mental interval? All our algorithms fit this extended setting
with little or no modification. The performance guarantees

should look like a weighted sum of contributions from differ-
ent arms, where the weights depend (perhaps in rather com-
plicated way) on the respective fundamental intervals. To
illustrate this point, we worked out the guarantees for the
two algorithms discussed in Section 4, see Appendix A for
details. It is an open question to derive similar closed-form
guarantees for the other algorithms in this paper.

Recall that in all our results we assumed that the volatil-
ities are known to the algorithm. In fact, this assumption
is not necessary: we are interested in the stationary perfor-
mance of our algorithms and, as it turns out, we can afford to
learn the static parameters of the model. Roughly, the argu-
ment goes as follows. It suffices for our analysis if for each
arm an algorithm knows a 2-approximate upper bound on
volatility σi, rather than the exact value. One can learn such
bound by playing arm i for O(log2 σi) rounds, with failure
probability as low asO(σ−10

i), and repeat this learning phase
every σ−1

i rounds (we omit the details).

Acknowledgments. The first author would like to thank
Bobby Kleinberg for many stimulating conversations about
multi-armed bandits.

References
[1] P. Auer. Using confidence bounds for exploitation-exploration

trade-offs. J. Machine Learning Research, 3:397–422, 2002.
Preliminary version in 41st IEEE FOCS, 2000.

[2] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis
of the multiarmed bandit problem. Machine Learning, 47(2-
3):235–256, 2002. Preliminary version in 15th ICML, 1998.

[3] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The
nonstochastic multiarmed bandit problem. SIAM J. Comput.,
32(1):48–77, 2002. Preliminary version in 36th IEEE FOCS,
1995.

[4] B. Awerbuch and R. D. Kleinberg. Adaptive routing with
end-to-end feedback: distributed learning and geometric ap-
proaches. In 36th ACM Symp. on Theory of Computing
(STOC), pages 45–53, 2004.

[5] D. A. Berry and B. Fristedt. Bandit problems: sequential al-
location of experiments. Chapman and Hall, 1985.

[6] D. Bertsimas and J. Nino-Mora. Conservation laws, extended
polymatroids and multi-armed bandit problems: A unified
polyhedral approach. Math. of Oper. Res, 21(2):257–306,
1996.

[7] D. Bertsimas and J. Nino-Mora. Restless bandits, linear pro-
gramming relaxations, and a primal-dual index heuristic. Op-
erations Research, 48(1):80–90, 2000.

[8] V. Dani and T. P. Hayes. How to beat the adaptive multi-
armed bandit. Technical report. Available from arXiv at
http://arxiv.org/cs.DS/0602053, 2006.

[9] V. Dani and T. P. Hayes. Robbing the bandit: less regret in
online geometric optimization against an adaptive adversary.
In 17th ACM-SIAM Symp. on Discrete Algorithms (SODA),
pages 937–943, 2006.

[10] A. Flaxman, A. Kalai, and H. B. McMahan. Online Convex
Optimization in the Bandit Setting: Gradient Descent without
a Gradient. In 16th ACM-SIAM Symp. on Discrete Algorithms
(SODA), pages 385–394, 2005.

[11] J. C. Gittins. Bandit processes and dynamic allocation indices
(with discussion). J. Roy. Statist. Soc. Ser. B, 41:148–177,
1979.

[12] J. C. Gittins. Multi-Armed Bandit Allocation Indices. John
Wiley & Sons, 1989.

353

[13] J. C. Gittins and D. M. Jones. A dynamic allocation index for
the sequential design of experiments. In J. G. et al., editor,
Progress in Statistics, pages 241–266. North-Holland, 1974.

[14] S. Guha and K. Munagala. Approximation algorithms for
partial-information based stochastic control with Markovian
rewards. In 48th Symp. on Foundations of Computer Science
(FOCS), 2007.

[15] S. Guha, K. Munagala, and P. Shi. On Index Policies for Rest-
less Bandit Problems. arXiv:0711.3861v1 [cs.DS], 2007.

[16] F. Heidari, S. Mannor, and L. Mason. Reinforcement
learning-based load shared sequential routing. In IFIP Net-
working, 2007.

[17] R. D. Kleinberg. Nearly tight bounds for the continuum-
armed bandit problem. In 18th Advances in Neural Informa-
tion Processing Systems (NIPS), 2004. Full version appeared
as Chapters 4-5 in [18].

[18] R. D. Kleinberg. Online Decision Problems with Large Strat-
egy Sets. PhD thesis, MIT, Boston, MA, 2005.

[19] R. D. Kleinberg. Anytime algorithms for multi-armed ban-
dit problems. In 17th ACM-SIAM Symp. on Discrete Algo-
rithms (SODA), pages 928–936, 2006. Full version appeared
as Chapter 6 in [18].

[20] R. D. Kleinberg and F. T. Leighton. The value of knowing a
demand curve: Bounds on regret for online posted-price auc-
tions. In 44th Symp. on Foundations of Computer Science
(FOCS), pages 594–605, 2003.

[21] T. Lai and H. Robbins. Asymptotically efficient Adaptive Al-
location Rules. Advances in Applied Mathematics, 6:4–22,
1985.

[22] H. B. McMahan and A. Blum. Online Geometric Optimiza-
tion in the Bandit Setting Against an Adaptive Adversary. In
17th Conference on Learning Theory (COLT), pages 109–
123, 2004.

[23] K. Neammanee. On the constant in the nonuniform version of
the Berry-Esseen theorem. Intl. J. of Mathematics and Math-
ematical Sciences, 2005:12:1951–1967, 2005.

[24] J. Nino-Mora. Restless bandits, partial conservation laws
and indexability. Advances in Applied Probability, 33:76–98,
2001.

[25] S. Pandey, D. Agarwal, D. Chakrabarti, and V. Josifovski.
Bandits for Taxonomies: A Model-based Approach. In SIAM
Intl. Conf. on Data Mining (SDM), 2007.

[26] C. H. Papadimitriou and J. N. Tsitsiklis. The complexity of
optimal queueing network control. In Structure in Complexity
Theory Conference, pages 318–322, 1994.

[27] H. Robbins. Some Aspects of the Sequential Design of Ex-
periments. Bull. Amer. Math. Soc., 58:527–535, 1952.

[28] J. S. Rosenthal. Markov chain convergence: From finite to
infinite. Stochastic Processes Appl., 62(1):55–72, 1996.

[29] R. K. Sundaram. Generalized Bandit Problems. In D. Austen-
Smith and J. Duggan, editors, Social Choice and Strategic
Decisions: Essays in Honor of Jeffrey S. Banks (Studies in
Choice and Welfare), pages 131–162. Springer, 2005. First
appeared as Working Paper, Stern School of Business, 2003.

[30] J. N. Tsitsiklis. A short proof of the Gittins index theorem.
Annals of Applied Probability, 4(1):194–199, 1994.

[31] G. Weiss. Branching bandit processes. Probab. Engng. In-
form. Sci., 2:269–278, 1988.

[32] P. Whittle. Arm acquiring bandits. Ann. Probab., 9:284–292,
1981.

[33] P. Whittle. Restless bandits: Activity allocation in a changing
world. J. of Appl. Prob., 25A:287–298, 1988.

A Distinct fundamental intervals
Recall that in the dynamic MAB problem the state of each
arm evolves on the same interval I = [0; 1] (see Section 1.1)

which we term the fundamental interval. In this section we
consider a generalization in which we allow each arm to have
a distinct fundamental interval. We work out the guarantees
for the two algorithms discussed in Section1.4.

The main contribution of this appendix is that we find a
way to upper-bound the steady-state regret of the respective
algorithms in terms of reasonably defined averages of the
arms’ properties. The actual derivations are rather tedious
but not that illuminating; we omit them from this version.

A.1 The setting and notation
We consider the following setting. There are k arms. Each
arm has volatility σi and fundamental interval [ai; bi]. With-
out loss of generality we assume that b1 ≤ . . . bk and that
max ai < min bi. (If the latter fails then we can always
ignore the arm with the smallest upper boundary bi.) To sim-
plify the derivation we assume that maxσi ≤ 1

3 .
Define the weight of arm i as

wi =
k∏
l=i

bi − al
bl − al

,

Define the average volatility σav by

σ2
av =

∑
i∈[k] wi(bi − ai)σ2

i∑
i∈[k] wi(bi − ai)

Define the average length as

dav = 1
k

∑
i∈[k] wi(bi − ai).

To see that the quantities we defined above are reasonable
as averages, note that if all arms have the same fundamental
interval [a; b] then all weights are 1 and dav = b − a and,
moreover, the average volatility σav coincides with the one
defined in the body of the paper.

A.2 Results
We present two results that extend, respectively, Theorem 4.2
and Theorem 4.5 to the setting from Section A.1. In both
cases the algorithms are exactly the same. The main tool
is a version of Lemma 37, where the guarantee (37) looks
exactly the same in our notation, except the right-hand side
is multiplied by dav.

Theorem A.1. Consider the deterministic dynamic MAB prob-
lem in the setting from Section A.1. Let amin = min ai. Then
for phase length

m = σ−1
av

√
(bk − amin)/ log σ−1

av

the greedy algorithm has steady-state regret

O(k σav)
√

(bk − amin) dav log σ−1
av .

Theorem A.2. Consider the state-informed dynamic MAB
problem in the setting from Section A.1. Then there exists m
such that algorithm EXP3(m) has steady-state regret

O(dav)1/3(k σav log σ−1
av)2/3.

354

Stochastic Linear Optimization under Bandit Feedback

Varsha Dani∗and Thomas P. Hayes† and Sham M. Kakade†

Abstract

In the classical stochastic k-armed bandit problem,
in each of a sequence of T rounds, a decision maker
chooses one of k arms and incurs a cost chosen
from an unknown distribution associated with that
arm. The goal is to minimize regret, defined as the
difference between the cost incurred by the algo-
rithm and the optimal cost.
In the linear optimization version of this problem
(first considered by Auer [2002]), we view the arms
as vectors in Rn, and require that the costs be lin-
ear functions of the chosen vector. As before, it
is assumed that the cost functions are sampled in-
dependently from an unknown distribution. In this
setting, the goal is to find algorithms whose run-
ning time and regret behave well as functions of
the number of rounds T and the dimensionality n
(rather than the number of arms, k, which may be
exponential in n or even infinite).
We give a nearly complete characterization of this
problem in terms of both upper and lower bounds
for the regret. In certain special cases (such as
when the decision region is a polytope), the regret
is polylog(T). In general though, the optimal re-
gret is Θ∗(

√
T) — our lower bounds rule out the

possibility of obtaining polylog(T) rates in gen-
eral.
We present two variants of an algorithm based on
the idea of “upper confidence bounds.” The first,
due to Auer [2002], but not fully analyzed, obtains
regret whose dependence on n and T are both es-
sentially optimal, but which may be computation-
ally intractable when the decision set is a polytope.
The second version can be efficiently implemented
when the decision set is a polytope (given as an in-
tersection of half-spaces), but gives up a factor of√
n in the regret bound.

Our results also extend to the setting where the set
of allowed decisions may change over time.

∗Department of Computer Science, University of Chicago,
varsha@cs.uchicago.edu
†Toyota Technological Institute at Chicago,

{hayest,sham}@tti-c.org

1 Introduction

The seminal work of Robbins [1952] introduced a formal-
ism for studying the sequential design of experiments, which
is now referred to as the multi-armed bandit problem. In this
foundational paradigm, at each time step a decision maker
chooses one of K decisions or “arms” (e.g. treatments, job
schedules, manufacturing processes, etc) and receives some
feedback loss only for the chosen decision. In the most un-
adorned model, it is assumed that the cost for each decision
is independently sampled from some fixed underlying (and
unknown) distribution (that is different for each decision).
The goal of the decision maker is to minimize the average
loss over some time horizon. This basic model of decision
making under uncertainty already typifies the conflict be-
tween minimizing the immediate loss and gathering infor-
mation that will be useful in the long-run. This sequential
design problem — often referred to as the stochastic multi-
armed bandit problem — and a long line of successor ban-
dit problems have been extensively studied in the statistics
community (see, e.g., [Berry and Fristedt, 1985]), with close
attention paid to obtaining sharp convergence rates.

While this paradigm offers a formalism to a host of natu-
ral decision problems (e.g. clinical treatment, manufacturing
processes, job scheduling), a vital issue to address for appli-
cability to modern problems is how to tackle a set of feasible
decisions that is often large (or infinite). For example, the
classical bandit problem of clinical treatments (often con-
sidered in statistics) — where each decision is a choice of
one of K treatments — is often better modelled by choosing
from some (potentially infinite) set of mixed treatments sub-
ject to some budget constraint (where there is a cost per unit
amount of each of drug). In manufacturing problems, often
the goal is to maximize revenue subject to choosing among
some large set of decisions that satisfy certain manufactur-
ing constraints (where the revenue from each decision may
be unknown). A modern variant of this problem that is re-
ceiving increasing attention is the routing problem where the
goal is to send packets fromA toB and the cost of each route
is unknown (see, e.g., [Awerbuch and Kleinberg, 2004]).

We study a natural extension of the stochastic multi-armed
bandit problem to linear optimization — a problem first con-
sidered in Auer [2002]. Here, we assume the decision space
is an arbitrary subsetD ⊂ Rn and that there is fixed distribu-
tion π over cost functions. At each round, the learner chooses
a decision x ∈ D, then a cost function f(·) : D → [0, 1] is

355

sampled from π. Only the loss f(x) is revealed to the learner
(and not the function f(·)). We assume that the expected loss
is a fixed linear function, i.e. that E[f(x)] = µ · x, where the
expectation is with respect to f sampled from π (technically,
we make a slightly weaker assumption, precisely stated in
the next section). The goal is to minimize the total loss over
T steps. As is standard, success is measured by the regret
— the difference between the performance of the learner
and that of the optimal algorithm which has knowledge of
π. Note that the optimal algorithm here simply chooses the
best decision with respect to the linear mean vector µ.

Perhaps the most important and natural example in this
paradigm is the (stochastic) online linear programming prob-
lem. Here, D is specified by linear inequality constraints. If
the mean µ were known, then this is simply a linear pro-
gramming problem. Instead, at each round, the learner only
observes noisy feedback of the chosen decision, with respect
to the underlying linear cost function.

1.1 Summary of Our Results and Related Work
Auer [2002] provides the first analysis of this problem. This
paper builds and improves upon the work of Auer [2002] in
a number of ways. A related model was considered by Abe
and Long [1999], where the decision sets are allowed to vary
as a function of the time. Our results can be extended to this
more general model, which we discuss in Section 7.

While Auer [2002] provides an elegant deterministic al-
gorithm, based on upper confidence bounds of µ, an analysis
of the performance of this algorithm was not provided, due to
rather subtle independence issues (though it was conjectured
that this simple algorithm was sufficient). Instead, a more
complicated master algorithm was analyzed — this master
algorithm called the simpler upper confidence algorithm as a
subroutine. In this work, we directly analyze the simpler up-
per confidence algorithm. Unfortunately, implementing this
algorithm in certain cases (when D is large or infinite) may
be inefficient. However, we also provide a modification to
this algorithm (that uses a different confidence region based
on the L1-norm), which may be implemented efficiently for
the case when D is an (infinite) convex set, given certain or-
acle optimization access to D.

The analysis of Auer [2002] achieves a regret bound of
O∗((log |D|)3/2poly(n)

√
T) where n is dimension of the

decision space, T is the time horizon, and |D| is the number
of feasible decisions. For the simpler upper confidence algo-
rithm, we show that it enjoys a bound of O∗(n

√
T), which

does not depend on the cardinality of the decision region,
|D|. While this algorithm may be inefficient in some cases,
we also provide an efficient algorithm (that uses a slightly
different confidence region), which achieves a slightly worse
bound ofO∗(n3/2

√
T). Using the result in Auer [2002], one

can also derive a bound of the form O(poly(n)
√
T) for in-

finite decision sets by appealing to a naive (inefficient) cov-
ering argument (where the algorithm is run on an appropri-
ately fine cover of D). However, this argument results in a
less sharp bound in terms of n 1, though a better reduction to

1 Using Auer [2002], one can derive the less sharp bound of
O∗(n5/2

√
T) for arbitrary compact decision sets with two obser-

vations. First, through a covering argument, we need only consider

Auer [2002] may be possible.
For the case of finite decision sets, such as the K-arm

bandit case, a regret that is only logarithmic in the time hori-
zon is achievable. In particular, in a different line of work,
Auer et al. [2002] showed that the optimal regret for the K-
arm bandit case was characterized as K

∆ log T , where ∆ is
the “gap” between the performance of the best arm and the
second best arm. This result is stated in terms of the problem
dependent constant ∆, so one can view it as the asymptotic
regret for a given problem. In fact, historically, there is long
line of work in the K-arm bandit literature (e.g. [Lai and
Robbins., 1985, Agrawal, 1995]) concerned with obtaining
optimal rates for a fixed problem, which are often logarith-
mic in T when stated in terms of some problem dependent
constant.

Hence, in our setting, in the case where |D| is finite, we
know that a log rate in the time is achievable by a direct
reduction to the K-arm bandit case (though this naive reduc-
tion results in an exponentially worse dependence in terms
of |D|). Our work shows that a regret of n2

∆ polylog(T)
can be achieved, where ∆ is a generalized definition of the
gap that is appropriate for a potentially infinite D. Hence, a
polylogarithmic rate in T is achievable with a constant that
is only polynomial in n and has no dependence on the size
of the (potentially infinite) decision region. Here, ∆ can be
thought of as the gap between the values of the best and sec-
ond best extremal points of the decision set (which we de-
fine precisely later). For example, if D is a polytope, then
∆ is the gap in value between the first and second best cor-
ner decisions. For the case where D is finite, ∆ is exactly
the same as in the K arm case. However, for some natural
decision regions, such as a sphere, ∆ is 0 so this (problem
dependent) bound is not applicable. Note that ∆ is never 0
for the K-arm case (unless there is effectively one arm), so a
logarithmic rate in T is always possible in the K-arm case.

Note that this set of results still raises the question of
whether there is an algorithm achieving polylogarithmic re-
gret (as a function of T) for the case when ∆ = 0, which
could be characterized in terms of some different, more ap-
propriate problem dependent constant. Our final contribution
answers this question in the negative. We provide a lower
bound showing that the regret of any algorithm on a particu-
lar problem (which we construct with ∆ = 0) is Ω(n

√
T). In

addition to showing that a polylogarithmic rate is not achiev-
able in general, it also shows our upper bound is tight in
terms of n and T . Note this result is in stark contrast to
the K-arm case where the optimal asymptotic regret for any
given problem is always logarithmic in T .

We should also note that the lower bound in this paper is
significantly stronger than the bound provided in Dani et al.
[2008], which is also Ω(n

√
T). In this latter lower bound,

the decision problem the algorithm faces is chosen as a func-
tion of the time T . In particular, the construction in Dani
et al. [2008] used a decision region which was a hypercube

D to be exponential in n. Second, Auer [2002] assumes that D is a
subset of the sphere, which leads to an additional

√
n factor. To see

this, note the comments in the beginning of Section 5 essentially
show that a general decision region can be thought of as living in
a hypercube (due to the barycentric spanner property), so the addi-
tional

√
n factor comes from rescaling the cube into a sphere.

356

(so ∆ > 0 as this a polytope) — in fact, ∆ actually scaled
as 1/

√
T . In order to negate the possibility of a polyloga-

rithmic rate for a particular problem, we must hold ∆ = 0
as we scale the time, which we accomplish in this paper
with a more delicate construction using an n-dimensional
decision space constructed out of a Cartesian product of 2-
dimensional spheres.

1.2 The Price of Bandit Information
It is natural to ask how much worse the regret is in the ban-
dit setting as compared to a setting where we received full
information about the complete loss function f(·) at the end
of each round. In other words, what is the price of bandit
information?

For the full information case, Dani et al. [2008] showed
the regret is O∗(

√
nT) (which is tight up to log factors). In

fact, in the stochastic case considered here, it is not too diffi-
cult to show that, in the full information case, the algorithm
of “do the best in the past” achieves this rate. Hence, as the
regret is O∗(n

√
T) in the bandit case and O∗(

√
nT) (both

of which are tight up to log factors), we have characterized
the price of bandit information as

√
n, which is a rather mild

dependence on n for having such limited feedback.
We should also note that the work in Dani et al. [2008]

considers the adversarial case, where the cost functions are
chosen in an arbitrary manner rather than stochastically. Here,
it was shown that the regret in the bandit setting isO(n3/2

√
T)

(ignoring polylogarithmic factors), though it was conjectured
that this bound was loose and the optimal rate should be iden-
tical to rate for the stochastic case, considered here.

It is striking that the convergence rate for the bandit set-
ting is only a factor of

√
n worse than in the full information

case — in stark contrast to the K-arm bandit setting, where
the gap in the dependence on K is exponential (

√
TK vs.√

T logK). See Dani et al. [2008] for further discussion.

2 Preliminaries
Let D ⊂ Rn be a compact (but otherwise arbitrary) set of
decisions. Without loss of generality, assume this set is of
full rank. On each round, we must choose a decision xt ∈ D.
Each such choice results in a cost `t = ct(xt) ∈ [−1, 1].

We assume that, regardless of the history Ht, the condi-
tional expectation of ct is a fixed linear function, i.e., for all
x ∈ D,

E (ct(x) | Ht) = µ · x = µ†x ∈ [−1, 1].

where x ∈ D is arbitrary, and we denote the transpose of any
column vector v by v†. (Naturally, the vector µ is unknown,
though fixed.) Under these assumptions, the noise sequence,

ηt = ct(xt)− µ · xt
is a martingale difference sequence.

[We remark here that that our earlier assumption that D
was compact was actually unnecessary, in light of our further
assumptions that the cost functions are bounded and linear in
expectation.]

A special case of particular interest is when the cost func-
tions ct are themselves linear functions sampled indepen-
dently from some fixed distribution. Note, however, that

our assumptions are also met under the addition of any time-
dependent unbiased random noise function.

In this paper we address the bandit version of the ge-
ometric optimization problem, where the decision maker’s
feedback on each round is only the actual cost `t = ct(xt)
received on that round, not the entire cost function ct(·).

If x1, . . . , xT are the decisions made in the game, then
define the cumulative regret by

RT =
T∑
t=1

(µ†xt − µ†x∗)

where x∗ ∈ D is an optimal decision for µ, i.e.,

x∗ ∈ argmin
x∈D

µ†x

which exists since D is compact. Observe that if the mean
µ were known, then the optimal strategy would be to play
x∗ every round. Since the expected loss for each decision x
equals µ†x, the cumulative regret is just the difference be-
tween the expected loss of the optimal algorithm and the ex-
pected loss for the actual decisions xt. Since the sequence of
decisions x1, . . . , xT may depend on the particular sequence
of random noise encountered, RT is a random variable. Our
goal in designing an algorithm is to keepRT as small as pos-
sible.

It is also important for us to make use of a barycentric
spanner forD as defined in Awerbuch and Kleinberg [2004].
A barycentric spanner forD is a set of vectors b1, . . . , bn, all
contained inD, such that every vector inD can be expressed
as a linear combination of the spanner with coefficients in
[−1, 1]. Awerbuch and Kleinberg [2004] showed that such
a set exists for compact sets D. We assume we have access
to such a spanner of the decision region, though an approxi-
mate spanner would suffice for our purposes (Awerbuch and
Kleinberg [2004] provide an efficient algorithm for comput-
ing an approximate spanner).

LetA be a positive definite n×nmatrix, and let ν ∈ Rn.
We will use the following notation for the 1- and 2-norms
based on A.

‖ν‖2,A := ‖A1/2ν‖2 =
√
ν†Aν.

‖ν‖1,A := ‖A1/2ν‖1 =
n∑
i=1

|A1/2ν|i.

HereA1/2 is the unique positive definite n×nmatrix whose
square is A.

3 Main Results
3.1 Algorithms
We now present our main algorithms, ConfidenceBall2 and
ConfidenceBall1. The subscripts on the names refer to the
type of norm used in the algorithm; apart from scaling the
radius differently, which we do only for convenience, this is
the sole difference between the algorithm statements. As we
shall discuss later, we are able to prove better regret guaran-
tees for ConfidenceBall2, matching the lower bound, up to
log factors.

Both algorithms can be efficiently implemented in the
simplistic case when the decision set is a small finite set.

357

Algorithm 3.1: CONFIDENCEBALL2(D, δ)

Initialization:
Find a barycentric spanner b1, . . . , bn for D
A1 =

∑n
i=1 bib

†
i

µ̂1 = 0
for t← 1 to∞

βt = max
(

128n ln t ln(t2/δ),
(

8
3 ln

(
t2

δ

))2
)

B2
t =

{
ν : ‖ν − µ̂t‖2,At ≤

√
βt
}

xt = argmin
x∈D

min
ν∈B2

t

(ν†x)

Incur and observe loss `t := ct(xt)
At+1 = At + xtx

†
t

µ̂t+1 = A−1
t+1

∑t
τ=1 `τxτ

However, in the important special case when the decision
set is a polytope presented as the intersection as halfspaces,2
ConfidenceBall1 can be implemented in polynomial time,
while ConfidenceBall2 is NP-hard to implement, at least for
some decision sets. More generally, ConfidenceBall1 can be
implemented efficiently given oracle access to an algorithm
which can find a decision in argminx∈D ν ·x (where ν is the
input). We discuss these issues further in Subsection 3.4.

ConfidenceBall2
Algorithm 3.1 is due to Auer [2002], who called it the LinRel
algorithm. We have generalized the statement slightly so that
it can be applied in settings whereD is not necessarily stored
in enumerated form, and indeed, may not even be finite. We
have renamed the algorithm ConfidenceBall2 to emphasize
its key feature of maintaining an `2 ball, B2

t , which contains
µ with high probability.

The algorithm is motivated as follows. Suppose deci-
sions x1, . . . xt−1 have been made, incurring corresponding
losses `1, . . . , `t−1. Then a reasonable estimate µ̂ to the true
mean cost vector µ can be constructed by minimizing the
square loss:

µ̂ := argmin
ν
L(ν), where L(ν) :=

∑
τ<t

(
ν†xτ − `τ

)2
.

Defining A =
∑
xτx

†
τ , we have that the least squares esti-

mator is
µ̂ = A−1

∑
τ<t

`τxτ .

A natural confidence region for µ is the set of ν for which
L(ν) exceeds L(µ̂) by at most some amount β, i.e. the set

{ν : L(ν)− L(µ̂t) ≤ β}
It is straightforward to see that:

L(ν)− L(µ̂) = (ν − µ̂)†A(ν − µ̂)

Thus the confidence region proposed above has the shape
of an ellipsoid centered on µ̂, where the axes are defined

2Note that the number of vertices of a polytope may be expo-
nential in the number of defining half-spaces.

Algorithm 3.2: CONFIDENCEBALL1(D, δ)

Initialization:
Find a barycentric spanner b1, . . . , bn for D
A1 =

∑n
i=1 bib

†
i

µ̂1 = 0
for t← 1 to∞

βt = max
(

128n ln t ln(t2/δ),
(

8
3 ln

(
t2

δ

))2
)

B1
t =

{
ν : ‖ν − µ̂t‖1,At ≤

√
nβt
}

xt = argmin
x∈D

min
ν∈B1

t

(ν†x)

Incur and observe loss `t := ct(xt)
At+1 = At + xtx

†
t

µ̂t+1 = A−1
t+1

∑t
τ=1 `τxτ

through A. This set is commonly referred to as the set of
vectors ν with bounded Mahalanobis distance with respect
to mean µ̂ and covariance matrix A−1.

A difficulty with the above reasoning is that we have im-
plicitly assumed that A is invertible, which is clearly false
for t < n. Under a slight alteration, define the estimator µ̂t
at time t by

µ̂t = A−1
t

∑
τ<t

`τxτ .

where At is now defined as

At =
n∑
i=1

bib
†
i +

∑
τ<t

xτx
†
τ

where b1, . . . , bn is the barycentric spanner (see Preliminar-
ies for the definition). It is easily seen that At is positive
definite (and hence invertible), since the spanner is linearly
independent. Intuitively, the first term in At (the sum of
outerproducts of the spanner vectors) is a natural initializa-
tion of the confidence region, as it imposes uncertainty along
the directions in which D varies most (namely the span-
ner directions). Our proofs effectively show that an approx-
imate spanner would suffice instead. Note that µ̂t is the
least squares estimator for the sampled data if we pretend
that decisions b1, . . . , bn were selected on fictitious rounds
t = −n+ 1, . . . , t = 0 and all incurred loss 0.

Now define the confidence region at time t to be the el-
lipsoid

B2
t := {ν : ‖ν − µ̂t‖2,At ≤

√
βt}

In the proofs, we show that, with our choice of βt, µ always
remains inside this ellipsoid for all times t, with high proba-
bility.

The decision at the next round is then the greedy opti-
mistic decision:

xt = argmin
x∈D

min
ν∈B2

t

(ν†x).

Again, this exists since D is compact.
It should be remarked that although the linear function

x 7→ µ · x is a feasible cost function, and µ̂t is an approxi-
mation to µ, the function x 7→ µ̂t ·x may be far from being a

358

feasible (i.e. [−1, 1]-valued) cost function on D — however,
it is bounded in [−n, n].

ConfidenceBall1
ConfidenceBall1, Algorithm 3.2, uses a (skewed) octahedron,
B1
t , as its confidence region, rather than the ellipsoid, B2

t .
The radius of B1

t has been set just large enough that it con-
tains the ellipsoid B2

t as an inscribed subset.
The cost of this enlarged confidence region is a slightly

worse regret (in terms of n). The benefit we get in exchange
is that balls in the 1-norm have only 2n extremal points,
rather than the infinitely many that balls in the 2-norm have.
This leads to a more computationally efficient algorithm, as
we discuss in Section 3.4.

3.2 Upper Bounds
In the traditional K-arm bandit literature, the regret is often
characterized for a particular problem in terms of T , K, and
problem dependent constants. In the K-arm bandit results
of Auer et al. [2002], this problem dependent constant is the
“gap” between the loss of the best arm and the second best
arm.

We cannot naively use the same definition since if the
decision space is, say a convex set, then there is no well de-
fined notion of second best arm. Instead, we define the gap
as follows. Let E denote the set of extremal points of the
decision set D, where an extremal point of D is defined as
a point which is not a proper convex combination of points
in D. It is easy to see that any linear loss function on D
always attains its minimum value at a point in E . It is not
too difficult to show that ConfidenceBall2 always plays ex-
tremal points, due to the strict convexity of the confidence
region. Similarly, although ConfidenceBall1 can potentially
play non-extremal points xt, it can easily be implemented so
that it only plays extremal points (see Section 3.4 for further
discussion of implementation issues.)

Now define the set of suboptimal extremal points as:

E− = {x ∈ E : µ · x > µ · x∗},

and note that E− is non-empty (unless µ = 0, in which case
there is nothing to prove). Define the gap, ∆, as

∆ = inf
x∈E−

µ · x− µ · x∗

so the ∆ is just the difference in costs between the opti-
mal and next to optimal decision among the extremal points.
Note that if D is a fixed polytope then ∆ > 0. However, if
D is a ball then ∆ = 0, as all points on the surface (a sphere)
are extremal — so infx∈E− µ · x = µ · x∗ (and no point in
E− achieves this value).

We now state the first upper bound, which is a problem
dependent bound stated in terms of ∆.

Theorem 1 (Problem Dependent Upper Bound) Recall that

βT = max
(

128n lnT ln(T 2/δ),
(

8
3 ln

(
T 2

δ

))2
)

. Let 0 <

δ < 1. Suppose the decision set D and the true mean µ have
a gap ∆ > 0. We have:

• ConfidenceBall2: For all sufficiently large T , the cu-
mulative regretRT of ConfidenceBall2(D,δ) is with high

probability at most O(n
2

∆ log3 T). More precisely,

Prob
(
∀T, RT ≤

8nβT ln(T)
∆

)
≥ 1− δ,

• ConfidenceBall1: If ConfidenceBall1 is implemented
so that it only chooses extremal points xt ∈ D (which
is always possible) then, for all sufficiently large T , the
cumulative regret RT of ConfidenceBall1(D,δ) is with
high probability at most O(n

3

∆ log3 T). More precisely,

Prob
(
∀T, RT ≤

8n2βT ln(T)
∆

)
≥ 1− δ,

Analogous to the K-arm case, when ∆ > 0, a polylog-
arithmic rate in T is achievable with a constant that is only
polynomial in n and has no dependence on the size of the
decision region.

The following upper bound is stated without regard to
the specific parameter ∆ for a given problem. Furthermore,
it also holds for the case when ∆ = 0.

Theorem 2 (Problem Independent Upper Bound) Recall that

βT = max
(

128n lnT ln(T 2/δ),
(

8
3 ln

(
T 2

δ

))2
)

. Let 0 <

δ < 1. We have:

• ConfidenceBall2: For all sufficiently large T , the cu-
mulative regretRT of ConfidenceBall2(D,δ) is with high
probability at most O∗(n

√
T), where the O∗ notation

hides a polylogarithmic dependence on T . More pre-
cisely,

Prob
(
∀T, RT ≤

√
8nTβT lnT

)
≥ 1− δ .

• ConfidenceBall1: For all sufficiently large T , the cu-
mulative regretRT of ConfidenceBall1(D,δ) is with high
probability at most O∗(n3/2

√
T), where the O∗ nota-

tion hides a polylogarithmic dependence on T . More
precisely,

Prob
(
∀T, RT ≤

√
8n2TβT lnT

)
≥ 1− δ .

The following subsection shows our bound of O∗(n
√
T)

is tight, in terms of both n and T . Also, as mentioned in
the Introduction, tightly characterizing the dimensionality
dependence allows us to show that the price of bandit in-
formation is Θ∗(

√
n).

3.3 Lower Bounds
Note that our upper bounds still leave open the possibility
that there is a polylogarithmic regret (as a function of T) for
the case when ∆ = 0, which could be characterized in terms
of some different, more appropriate problem dependent con-
stant. Our next result is a lower bound of Ω(n

√
T) on the

expected regret, showing that no such improvement is possi-
ble.

For the lower bound, we must consider a decision region
with ∆ = 0, which rules out polytopes and finite sets (so the
decision region of a hypercube, used by Dani et al. [2008],

359

is not appropriate here. See Introduction for further discus-
sion). The decision region is constructed as follows. Assume
n is even. LetDn = (S1)n/2 be the Cartesian product of n/2
circles. That is, Dn = {(x1, . . . , xn) : x2

1 +x2
2 = x2

3 +x2
4 =

· · · = x2
n−1 + x2

n = 1}. Observe that Dn is a subset of the
intersection of the cube [−1, 1]n with the sphere of radius√
n/2 centered at the origin.

Our cost functions take values in {−1,+1}, and for ev-
ery x ∈ Dn, the expected cost is µ · x, where nµ ∈ Dn.
Since each cost function is only evaluated at one point, any
two distributions over {−1,+1}-valued cost functions with
the same value of µ are equivalent for the purposes of our
model.

Theorem 3 (Lower Bound) If µ is chosen uniformly at ran-
dom from the set Dn/n, and the cost for each x ∈ Dn is
in {−1,+1} with mean µ · x, then, for every algorithm, for
every T ≥ 1,

ER = E
µ

E (R | µ) ≥ 1
10
n
√
T .

where the inner expectation is with respect to observed costs.

In addition to showing that a polylogarithmic rate is not
achievable in general, this bound shows our upper bound is
tight in terms of n and T . Again, contrast this with the K-
arm case where the optimal asymptotic regret for any given
problem is always logarithmic in T .

3.4 Computational Efficiency
We now turn our attention to the computational complexity
of implementing the ConfidenceBall algorithms.

As discussed in Section 2, it is easy to find an approx-
imate barycentric spanner in O(n2) time. Of all the other
steps in the algorithm, the only one which poses serious dif-
ficulties is the selection of the decision xt:

xt := argmin
x∈D

min
ν∈Bt

(ν†x)

where Bt is the confidence ball.
Now, if |D| is small, we can enumerate all choices for

x, and the inner minimization is easy for both norms. This
shows that an implementation in time poly(n)|D| is possi-
ble. There are also some special cases, such as when D is
the unit ball, when the algorithm can be implemented in time
poly(n) using a little calculus, despite |D| being infinite. We
leave the details as an exercise to the interested reader.

The most practically relevant setting is when D is (the
vertex set of) a polytope defined by a system of linear in-
equalities (or equivalently, the intersection of a given set of
halfspaces). In this case, the number of vertices ofD may be
exponential in the number of inequalities.

In this setting (and others), we can assume oracle ac-
cess to an algorithm which can efficiently find a decision in
argminx∈D ν · x (where ν is the input). Here, in the case of
ConfidenceBall1, we can enumerate over the 2n vertices of
Bt to find the optimum. For each such ν ∈ Bt, we can call
this oracle to find the optimal x ∈ D, and then we can choose
the appropriate decision out of these 2n decisions. Thus, the
decision can be found in O(n) calls to this oracle.

On the other hand, for ConfidenceBall2, the minimiza-
tion problem can easily be seen as polynomial-time equiv-
alent to the negative definite linearly constrained quadratic
programming problem

minimize − ‖ν − µ̂t‖22,At

subject to Mx ≤ b and ν†x ≥ C,

where Mx ≤ b is the system defining the decision set D,
and C is a real parameter. Since Sahni [1974] proved that
solving such programs is NP-hard, ConfidenceBall2 may not
be computationally practical for large n.

4 Concentration of Martingales
In our analysis, we use the following Bernstein-type concen-
tration inequality for martingale differences, due to Freed-
man [1975] (see also [McDiarmid, 1998, Theorem 3.15]).

Theorem 4 (Freedman) Suppose X1, . . . , XT is a martin-
gale difference sequence, and b is an uniform upper bound
on the steps Xi. Let V denote the sum of conditional vari-
ances,

V =
n∑
i=1

Var (Xi |X1, . . . , Xi−1).

Then, for every a, v > 0,

Prob
(∑

Xi ≥ a and V ≤ v
)
≤ exp

(
−a2

2v + 2ab/3

)
.

5 Upper Bound Analysis
Throughout the proof, without loss of generality, assume that
the barycentric spanner is the standard basis ~e1 . . . ~en (this
just amounts to a choice of a coordinate system, where we
identify the spanner with the standard basis). Hence, the de-
cision set D is a subset of the cube [−1, 1]n. In particular,
this implies ‖x‖ ≤

√
n for all x ∈ D. This is really only

a notational convenience; the problem is stated in terms of
decisions in an abstract vector space, and expected costs in
its dual, with no implicit standard basis.

In establishing the upper bounds there are two main the-
orems from which the upper bounds follow. The first is in
showing that the confidence region is appropriate. Let E be
the event that for every time t ≤ T , the true mean µ lies in
the confidence region, B2

t or B1
t . The following shows that

event E occurs with high probability. More precisely,

Theorem 5 (Confidence) Let δ > 0.

• For ConfidenceBall2,

Prob
(
∀t, µ ∈ B2

t

)
≥ 1− δ.

• For ConfidenceBall1,

Prob
(
∀t, µ ∈ B1

t

)
≥ 1− δ.

Section 5.2 is devoted to establishing this confidence bound.
In essence, the proof seeks to understand the growth of the
quantity (µ̂t−µ)†At(µ̂t−µ), which involves a rather techni-
cal construction of a martingale (using the matrix inversion

360

lemma) along with a careful application of Freedman’s in-
equality (Theorem 4).

The second main step in analyzing ConfidenceBall2 is
to show that as long as the aforementioned high-probability
event holds, we have some control on the growth of the re-
gret. The following bounds the sum of the squares of instan-
taneous regret.

Theorem 6 (Sum of Squares Regret Bound) Let

rt = µ · xt − µ · x∗

denote the instantaneous regret acquired by the algorithm on
round t.

• For ConfidenceBall2, if µ ∈ B2
t for all t ≤ T , then

T∑
t=1

r2
t ≤ 8nβT lnT

• For ConfidenceBall1, if µ ∈ B1
t for all t ≤ T , then

T∑
t=1

r2
t ≤ 8n2βT lnT

This is proven in Section 5.1. The idea of the proof in-
volves a potential function argument on the log volume (i.e.
the log determinant) of the “precision matrix” At (which
tracks how accurate our estimates of µ are in each direction).
The proof involves relating the growth of this volume to the
regret.

At this point the proofs of Theorems 1 and 2 diverge. To
show the former, we use the gap to bound the regret in terms
of
∑T
t=1 r

2
t . For the latter, we simply appeal to the Cauchy-

Schwarz inequality.
Using these two results we are able to prove our upper

bounds as follows.
Proof:[Proof of Theorem 1] We only prove the result for
ConfidenceBall2, as the proof for ConfidenceBall1 is analo-
gous. Let us analyze rt = µ ·xt−µ ·x∗, the regret on round
t. Since ConfidenceBall2 always chooses a decision from E ,
either µ ·xt = µ ·x∗ or xt ∈ E−, so that µ ·xt−µ ·x∗ ≥ ∆.
Since ∆ > 0 it follows that either rt = 0 or rt/∆ ≥ 1 and
in either case,

rt ≤
r2
t

∆
By Theorem 6, we see that if µ ∈ B2

t , then

RT =
T∑
t=1

rt

≤
T∑
t=1

r2
t

∆

≤ 8nβT lnT
∆

Applying Theorem 5, we see that this occurs with probability
at least 1− δ, which completes the proof.

Proof:[Proof of Theorem 2] We only prove the result for
ConfidenceBall2, as the proof for ConfidenceBall1 is anal-
ogous. By Theorems 5 and 6, we know that with probability

at least 1− δ,
∑T
t=1 r

2
t ≤ 8nβT lnT . Applying the Cauchy-

Schwarz inequality, we have, with probability at least 1− δ

RT =
T∑
t=1

rt

≤

(
T

T∑
t=1

r2
t

)1/2

≤
√

8nTβT lnT
which completes the proof.

We now provide the proofs of these two theorems.

5.1 Proof of Theorem 6
In this section, we prove Theorem 6, which says that the sum
of the squares of the instantaneous regrets of the algorithm
is small, assuming the evolving confidence balls always con-
tain the true mean µ. A key insight is that on any round t
in which µ ∈ B2

t , the instantaneous regret is at most the
“width” of the ellipsoid in the direction of the chosen deci-
sion. Moreover, the algorithm’s choice of decisions forces
the ellipsoids to shrink at a rate that ensures that the sum of
the squares of the widths is small. We now formalize this.

Lemma 7 Let x ∈ D. Then

• For ConfidenceBall2, if ν ∈ B2
t and x ∈ D. Then

|(ν − µ̂t)†x| ≤
√
βtx†A

−1
t x

• For ConfidenceBall1, if ν ∈ B1
t and x ∈ D. Then

|(ν − µ̂t)†x| ≤
√
nβtx†A

−1
t x

Proof: Unless explicitly stated, all norms refer to the `2
norm. For ConfidenceBall2,

|(ν − µ̂t)†x| = |(ν − µ̂t)†A1/2
t A

−1/2
t x|

= |(A1/2
t (ν − µ̂t))†A−1/2

t x|

≤ ‖A1/2
t (ν − µ̂t)‖‖A−1/2

t x‖
.... by Cauchy-Schwarz

= ‖A1/2
t (ν − µ̂t)‖

√
x†A−1

t x

≤
√
βtx†A

−1
t x

where the last inequality holds since ν ∈ B2
t .

For ConfidenceBall1,

|(ν − µ̂t)†x| ≤ ‖A1/2
t (ν − µ̂t)‖1‖A−1/2

t x‖∞
.... by Holder’s Inequality

≤ ‖A1/2
t (ν − µ̂t)‖1‖A−1/2

t x‖2

≤
√
nβtx†A

−1
t x

where the last inequality holds since ν ∈ B1
t .

Define
wt :=

√
x†tA

−1
t xt

which we interpret as the “normalized width” at time t in the
direction of the chosen decision. The true width, 2

√
βtwt,

turns out to be an upper bound for the instantaneous regret.

361

Lemma 8 Fix t.

• For ConfidenceBall2, if µ ∈ B2
t , then

rt ≤ 2 min (
√
βtwt, 1)

• For ConfidenceBall1, if µ ∈ B1
t , then

rt ≤ 2 min (
√
nβtwt, 1)

Proof: Let µ̃ ∈ B2
t denote the vector which minimizes the

dot product µ̃†xt. By choice of xt, we have

µ̃†xt = min
ν∈B2

t

min
x∈D

ν†x ≤ µ†x∗,

where the inequality used the hypothesis µ ∈ B2
t . Hence,

rt = µ†xt − µ†x∗

≤ (µ− µ̃)†xt
= (µ− µ̂t)†xt + (µ̂t − µ̃)†xt

≤ 2
√
βtwt

where the last step follows from Lemma 7 since µ̃ and µ are
in B2

t . Since `t ∈ [−1, 1], rt is always at most 2 and the
result follows. The proof for ConfidenceBall1 is analogous.

Next we show that the sum of the squares of the widths
does not grow too fast.

Lemma 9 We have for all t
t∑

τ=1

min (w2
τ , 1) ≤ 2n ln t.

The following two facts prove useful to this end.

Lemma 10 For every t ≤ T ,

detAt+1 =
t∏

τ=1

(1 + w2
t).

Proof: By the definition of At+1, we have

detAt+1 = det(At + xtx
†
t)

= det(A1/2
t (I +A

−1/2
t xtx

†
tA
−1/2
t)A1/2

t)

= det(At) det(I +A
−1/2
t xt(A

−1/2
t xt)†)

= det(At) det(I + vtv
†
t),

where vt := A
−1/2
t xt. Now observe that v†t vt = w2

t and

(I + vtv
†
t)vt = vt + vt(v

†
t vt) = (1 + w2

t)vt

Hence (1 +w2
t) is an eigenvalue of I + vtv

†
t . Since vtv

†
t is a

rank one matrix, all the other eigenvalues of I + vtv
†
t equal

1. It follows that det(I + vtv
†
t) is (1 + w2

t), and so

detAt+1 = (1 + w2
t) detAt.

Recalling that A1 is the identity matrix, the result follows by
induction.

Lemma 11 For all t, detAt ≤ tn.

Proof: The rank one matrix xtx
†
t has x†txt = ‖xt‖2 as its

unique non-zero eigenvalue. Also, since we have identified
the spanner with the standard basis, we have

∑n
i=1 bib

†
i = I .

Since the trace is a linear operator, it follows that

traceAt = trace

(
I +

∑
τ<t

xtx
†
t

)
= n+

∑
τ<t

trace(xtx
†
t)

= n+
∑
τ<t

‖xτ‖2

≤ nt.
Now, recall that traceAt equals the sum of the eigenvalues
of At. On the other hand, det(At) equals the product of the
eigenvalues. Since At is positive definite, its eigenvalues are
all positive. Subject to these constraints, det(At) is maxi-
mized when all the eigenvalues are equal; the desired bound
follows.

Proof:[Proof of Lemma 9]
Using the fact that for 0 ≤ y ≤ 1, ln(1 + y) ≥ y/2, we

have
t∑

τ=1

min(w2
τ , 1) ≤

t∑
τ=1

2 ln(1 + w2
τ)

= 2 ln(detAt+1)
≤ 2n ln t

by Lemmas 10 and 11

Finally, we are ready to prove that if µ always stays within
the evolving confidence region, then our regret is under con-
trol.
Proof:[Proof of Theorem 6] Assume that µ ∈ B2

t for all t.
Then
T∑
t=1

r2
t ≤

T∑
t=1

4βt min(w2
t , 1) by Lemma 8

≤ 4βT
T∑
t=1

min(w2
t , 1) since 1 < β1 < · · · < βT

≤ 8βTn lnT by Lemma 9 .

The proof for Confidenceball1 is analogous.

5.2 Proof of Theorem 5
In this section, we prove Theorem 5, which states that with
high probability, for all t, the true mean µ lies in the confi-
dence ball Bt.

Recall that

ηt := ct(xt)− µ†xt = `t − E (`t | Ht)
whereHt denotes the complete history of the game on rounds
1, . . . , t− 1, that is, the σ-algebra generated by `1, . . . , `t−1.

For either algorithm, we will analyze the quantity:

Zt := (µ̂t − µ)†At(µ̂t − µ)

362

which measures the error of µ̂t as an approximation to the
true mean, µ, under the norm induced by At.

We will show that, with probability greater than 1 − δ,
Zt ≤ βt for all t for either algorithm. For ConfidenceBall2,
this directly implies that µ ∈ B2

t . For ConfidenceBall1, note
that

||A1/2
t (µ̂t − µ)||1 ≤

√
n||A1/2

t (µ̂t − µ)||2 =
√
nZt

so if Zt ≤ βt then µ ∈ B1
t .

The next lemma bounds the growth of Zt.

Lemma 12 For all t,

Zt ≤ n+ 2
t−1∑
τ=1

ητ
x†τ (µ̂τ − µ)

1 + w2
τ

+
t−1∑
τ=1

η2
τ

w2
τ

1 + w2
τ

.

Proof: For notational convenience, define:

Yt = At(µ̂t − µ)

We have the following relations:

Zt = Y †t A
−1
t Yt

Yt =
∑
τ<t

ητxτ − µ

Yt+1 = Yt + ηtxt

which are immediate from the definitions of At, µ̂t, and ηt.
Now examining the growth of Zt, we have:

Zt+1 = Y †t+1A
−1
t+1Yt+1

= (Yt + ηtxt)†A−1
t+1(Yt + ηtxt)

= Y †t A
−1
t+1Yt + 2ηtx

†
tA
−1
t+1Yt + η2

t x
†
tA
−1
t+1xt (1)

Applying the matrix inversion lemma to A−1
t+1, we note that:

A−1
t+1 = (At + xtx

†
t)
−1

= A−1
t −

A−1
t xtx

†
tA
−1
t

1 + x†tA
−1
t xt

= A−1
t −

A−1
t xtx

†
tA
−1
t

1 + w2
t

We can use this to bound the three terms of (1) as follows.
For the first term,

Y †t A
−1
t+1Yt = Y †t A

−1
t Yt −

(Y †t A
−1
t xt)2

1 + w2
t

≤ Zt.
For the second term,

2ηtx
†
tA
−1
t+1Yt = 2ηtx

†
tA
−1
t Yt − 2ηt

x†tA
−1
t xtx

†
tA
−1
t Yt

1 + w2
t

= 2ηtx
†
tA
−1
t Yt − 2ηt

w2
t x
†
tA
−1
t Yt

1 + w2
t

= 2ηt
x†tA

−1
t Yt

1 + w2
t

= 2ηt
x†t(µ̂t − µ)

1 + w2
t

For the third term,

η2
t x
†
tA
−1
t+1xt = η2

tw
2
t − η2

t

w4
t

1 + w2
t

= η2
t

w2
t

1 + w2
t

Putting these together, we have shown

Zt+1 ≤ Zt + 2ηt
x†t(µ̂t − µ)

1 + w2
t

+ η2
t

w2
t

1 + w2
t

.

By induction, it follows that

Zt ≤ Z1 + 2
t−1∑
τ=1

ητ
x†τ (µ̂τ − µ)

1 + w2
τ

+
t−1∑
τ=1

η2
τ

w2
τ

1 + w2
τ

.

Finally, we check that Z1 ≤ n. To see this, recall from the
algorithm that A1 = I and µ̂1 = 0. Also, since ~e1, . . . , ~en ∈
D, by assumption, µ · ~ej ∈ [−1, 1].

Z1 = (µ̂1 − µ)†A1(µ̂1 − µ)

= ‖µ‖2

=
n∑
j=1

(µ† ~ej)2

≤ n.

This completes the proof.

We now define a useful martingale difference sequence.
First, it is convenient to define an “escape event” Et as:

Et = I{Zτ ≤ βτ for all τ ≤ t} = I{µ ∈ Bτ for all τ ≤ t}

where I{·} is the indicator function.

Lemma 13 Define a random variable Mt by

Mt = 2ηtEt
x†t(µ̂t − µ)

1 + w2
t

.

Then Mt is a martingale difference sequence with respect to
the sequence of game historiesHt.

Proof: To see that Mt is a martingale difference sequence,
note that:

E (Mt | Ht) = 2Et
x†t(µ̂t − µ)

1 + w2
t

E (ηt | Ht)

= 0

since the historyHt fully determines x1, . . . , xt, µ̂1, . . . , µ̂t,
Z1, . . . , Zt, and E1, . . . , Et, and since the noise functions ηt
are a martingale difference sequence with respect toHt.

We show that with high probability, the associated mar-
tingale,

∑t
τ=1Mτ , never grows too large.

Lemma 14 Given δ < 1,

Prob

(
∀t,

t−1∑
τ=1

Mτ ≤ βt/2

)
≥ 1− δ,

363

We defer the proof to Section 5.2.1. Equipped with this
lemma, we can prove Theorem 5.
Proof:[Proof of Theorem 5] It suffices to show that the high-
probability event described in Lemma 14 is contained in the
support of Et for every t. We prove the latter by induction
on t.

By Lemma 12 and the definition of β1, we know that
Z1 ≤ n < β1. Hence E1 is always 1 (equivalently, µ is
always in B1).

Now suppose the high-probability event of Lemma 14
holds, so in particular,

t−1∑
τ=1

Mτ ≤ βt/2.

By inductive hypothesis, Eτ = 1 for τ ≤ t − 1. Hence by
Lemma 12 we have

Zt ≤ n+ 2
t−1∑
τ=1

ητ
x†τ (µ̂τ − µ)

1 + w2
τ

+
t−1∑
τ=1

η2
τ

w2
τ

1 + w2
τ

= n+
t−1∑
τ=1

Mτ +
t−1∑
τ=1

η2
τ

w2
τ

1 + w2
τ

≤ n+ βt/2 +
t−1∑
τ=1

η2
τ

w2
τ

1 + w2
τ

≤ n+ βt/2 +
t−1∑
τ=1

min(w2
τ , 1) since |ητ | ≤ 1

≤ n+ βt/2 + 2n ln t by Lemma 9
≤ βt.

Thus we have shown Et = 1, completing the induction.

5.2.1 Concentration
All that remains to complete the proof now is to show that
our martingale

∑t
1Mτ has good concentration properties.

As we show, the step sizes |Mt| are uniformly bounded so
that an application of the Hoeffding-Azuma inequality would
bound the probability that

∑t
1Mτ grows too large. Unfortu-

nately, the bound thus obtained translates into a regret bound
of T 3/4, which is not good enough for our purpose.

Instead we use Theorem 4, which allows us to to bound
the step sizes in terms of random variables, as long as the
conditional variances remain under control.
Proof:[Proof of Lemma 14] Let us first obtain upper bounds
on the step sizes of our martingale.

|Mt| = 2|ηt|Et
|x†t(µ̂t − µ)|

1 + w2
t

≤ 2|ηt|Et

√
βtx
†
tA
−1
t xt

1 + w2
t

= 2|ηt|Et
wt
√
βt

1 + w2
t

≤ 2|ηt|Et
√
βt min(wt, 1/2) (2)

where the first inequality follows trivially when Et = 0, and
by Lemma 7 when Et = 1. Additionally this gives a family
of uniform upper bounds:

|Mτ | ≤
√
βt for all τ ≤ t

since |ηt| ≤ 1 and (by choice) βτ is a non-decreasing se-
quence.

Next we bound the sum of the conditional variances of
our martingale. Note that (min (wt, 1/2))2 = min (w2

t , 1/4)

Vt :=
t∑

τ=1

Var (Mτ |M1 . . .Mτ−1)

≤
t∑

τ=1

4|ητ |2Eτβτ min (w2
τ , 1/4) by (2)

≤ 4(max
τ≤t

βτ)
t∑

τ=1

Eτ min(w2
τ , 1) since |ητ | ≤ 1

≤ 4βt
∑
τ≤t

Eτ min(w2
τ , 1)

≤ 8βtn ln (max{τ ≤ t : Eτ = 1}) by Lemma 9
≤ 8βtn ln t

Since we have established that the sum of conditional
variances, Vt, is always bounded by 8βtn ln t, we can apply
Theorem 4 with parameters a = βt/2, b =

√
βt and v =

8nβt ln t, to get

Prob

(
t−1∑
τ=1

Mτ ≥ βt/2

)

= Prob

(
t−1∑
τ=1

Mτ ≥ βt/2 and Vt ≤ 8nβt ln t

)

≤ exp
(

−(βt/2)2

2(8nβt ln t) + 2
3 (βt/2)(

√
βt)

)
= exp

(
−βt

64n ln t+ 4
3

√
βt

)
≤ max

{
exp

(
−βt

128n ln t

)
, exp

(
−3
√
βt

8

)}
≤ δ

t2

where the last inequality follows from the definition of βt.
Finally, we apply a union bound to get

Prob

(
t−1∑
τ=1

Mτ ≥
βt
2

for some t

)

≤
∞∑
t=1

Prob

(
t−1∑
τ=1

Mτ ≥
βt
2

)

≤
∞∑
t=2

δ

t2

≤ δ(π
2

6
− 1)

≤ δ
completing the proof of Lemma 14.

364

6 Lower Bound Analysis
We start with the 2-dimensional case. The extension to the
general case is provided in the next Subsection 6.2.

6.1 n = 2 case
Assume n = 2. Recall from Section 3.3 that in the n = 2
case our decision set D is the unit circle.

Let us condition on the event that µ ∈ {µ1, µ2}, where
µ1, µ2 ∈ R2 such that ‖µ1‖ = ‖µ2‖ = 1/2 and ‖µ1−µ2‖ =
ε.

Note that µ is uniform over {µ1, µ2} in this event. We
show that, even conditioned on this additional information,
the expected regret is Ω(

√
T). The conclusion of Theorem 3

then follows by an averaging argument.
Let

bt := Pr (µ = µ1 | Ht)−Pr (µ = µ2 | Ht)

be the bias towards µ1 at time t. Note that b0 = 0, and
that the sequence (bt) is a martingale with respect to (Ht).
Our next Lemma, whose proof is somewhat technical, gives a
lower bound on regret in terms of the martingale differences
bt+1 − bt.

Lemma 15 For all ε > 0 and t ≥ 1, for any sequence of
decisions x1, . . . , xt and outcomes `1, . . . , `t−1, the regret
from round t satisfies

E
µ

(rt | Ht) ≥
1
16

(
ε2 +

|bt+1 − bt|2

ε2

)
1{|bt| ≤ 1/2}

Proof: Let v1 be the unit vector in the direction of µ1 − µ2,
and let v2 be the unit vector in the direction of µ1 +µ2. Note
that v1, v2 is an orthonormal basis for the plane. Decompose
xt = αv1 + βv2, and E(µ | Ht) = γv1 + δv2. Since E(µ |
Ht) = µ1+µ2

2 + bt
µ1−µ2

2 , we have γ = εbt/2 and δ =
√

1−ε2
2 .
Let p = Pr (µ = µ1 | Ht). Then bt = 2p − 1. Observe

that

bt+1 − bt

=
p(1 + `tµ

†
1xt)− (1− p)(1 + `tµ

†
2xt)

p(1 + `tµ
†
1xt) + (1− p)(1 + `tµ

†
2xt)

− 2p+ 1

=
(2p− 1) + p`tµ

†
1xt − (1− p)`tµ†2xt

1 + p`tµ
†
1xt + (1− p)`tµ†2xt

− 2p+ 1

=
2p(1− p)`tµ†1xt − 2p(1− p)`tµ†2xt

1 + p`tµ
†
1xt + (1− p)`tµ†2xt

=
2p(1− p)`t(µ1 − µ2)†xt

1 + p`tµ
†
1xt + (1− p)`tµ†2xt

Since |µ†ixt| ≤ 1/2, the denominator of the above expression
is at least 1/2. Since p(1− p) ≤ 1/4, it follows that

|bt+1 − bt| ≤ |(µ1 − µ2)†xt| = ε|α|. (3)

Assume the game history is such that |bt| ≤ 1/2. Oth-
erwise, since the regret is non-negative, there is nothing to

prove. Now we calculate

E
µ

(rt | Ht) =
1
2

+ xt · E(µ | Ht)

=
1
2

+ αγ + βδ

=
1
2

(1 + αεbt + β
√

1− ε2)

≥ 1
2

(
1 + αεbt +

(
α2

2
− 1
)√

1− ε2

)
(4)

≥ 1
2

(
1 + αεbt +

(
α2

2
− 1
)(

1− ε2

2

))
=

1
16

(α2 + ε2) +
1
8

(α2 + 4btαε+ ε2)

+
1
16

(α2 + ε2 − 2α2ε2)

≥ 1
16

(α2 + ε2) (5)

≥ 1
16

(
ε2 +

|bt+1 − bt|2

ε2

)
(6)

Here (4) follows because α2 + β2 = 1 implies that 1 +
β ≥ α2/2, with equality iff β = −1. Inequality (5) follows
because |bt| ≤ 1/2 and |α|, |ε| ≤ 1. Inequality (6) follows
from (3), which completes the proof.

We are now ready to prove Theorem 3 in the n = 2 case.
We generalize the argument to n-dimensions in Section 6.2.

Proof:[Proof of Theorem 3 for n = 2] Let ε = T−1/4. First,
observe that, by Fubini’s theorem and linearity of expecta-
tion,

ER =
T∑
t=1

E
Ht

E
µ

(rt | Ht)

≥ 1
16

T∑
t=1

E
Ht

((
ε2 +

|bt+1 − bt|2

ε2

)
1{|bt| ≤ 1/2}

)
.... by Lemma 15

≥ 1
16
ε2T Prob (for all t, |bt| ≤ 1/2)

+
1
16

T∑
t=1

E
Ht

(
|bt+1 − bt|2

ε2
1{|bt| ≤ 1/2}

)

=
√
T

16

(
Prob (for all t, |bt| ≤ 1/2)

+
T∑
t=1

E
Ht

(
|bt+1 − bt|21{|bt| ≤ 1/2}

))

Thus, if Prob (for all t ≤ T |bt| ≤ 1/2) ≥ 1/2 − 1/e, then
we are done by the first term on the right-hand side. Other-
wise, with probability at least 1/2 + 1/e, there exists t ≤ T
such that |bt| ≥ 1/2. By Freedman’s Bernstein-type inequal-
ity for martingales (Theorem 4) applied to the martingale

365

bt∧σ , where σ = min{τ : |bτ | ≥ 1/2}, we have

Prob
(

(∃t ≤ T) |bt| ≥
1
2

and V ≤ 1
32

)
≤ 2 exp

(
−1/4

1/8 + ε/3

)
≤ 2
e2

<
1
e

where

V =
T∑
t=1

1{∀τ ≤ t, |bτ | ≤ 1/2}E
(
|bt+1 − bt|2 | Ht

)
.

It follows that

Prob
(
V >

1
32

)
≥ 1/2.

In particular,

T∑
t=1

E
Ht

(
|bt+1 − bt|21{|bt| ≤ 1/2}

)
≥ EV ≥ 1

64
.

completing the proof.

6.2 General Case
Now suppose n > 2 is even. Fix an index 1 ≤ i ≤ n/2, and
consider the contribution to the total expected regret from
the choice of (x2i−1, x2i), i.e., the component from the i’th
circle.

Analogously to the 2-dimensional case, we condition on
the i’th component of µ being one of two vectors, ν1, ν2 ∈
S1/n. We further condition on the exact values of the other
n/2− 1 components of µ. We denote ε = ‖ν1 − ν2‖

Let bt denote the bias toward ν1, given the history Ht of
the game on rounds 1, . . . , t− 1. That is,

bt = Pr (µi = ν1 | Ht)−Pr (µi = ν2 | Ht)

Then we have the following analog of Lemma 15.

Lemma 16 For all t, for any sequence of decisions x1, . . . , xt
and outcomes `1, . . . , `t−1, the regret from round t due to the
ith component of xt satisfies

E
µ

(r(i)
t | Ht) ≥

1
64

(
ε2 +

|bt+1 − bt|2

ε2

)
1{|bt| ≤ 1/2}

It follows along the same lines as before that the expected
total regret from the ith component is Ω(

√
T). Summing

over the n/2 possible values of i completes the proof.

7 Extension: time-varying decision sets
Our techniques also apply to the setting when only a subset
of the full decision setD is available in each round. Suppose,
at time t, only a subset of decisions Dt ⊂ D are available.
In this case, the correct notion of regret is to compare each
chosen decision xt, not with the global optimum x∗, but with
the best choice from the available subset Dt. Thus

RT =
T∑
t=1

(µ†xt − µ†x∗t)

where x∗t ∈ Dt is an optimal decision for µ, i.e.,

x∗t ∈ argmin
x∈Dt

µ†x

The only change that needs to be made to our algorithm
is that now xt is chosen from Dt instead of D.

With these changes in definitions, all of our numbered
Theorems and Lemmas still hold, with D replaced by Dt

and x∗ replaced by x∗t where they appear. (This is trivial in
the case of the lower bounds.) The changes to the proofs are
minimal.

We note that a very similar model was considered by Abe
and Long [1999], who proved a lower bound of Ω(T 3/4) in
their setting. However, this does not contradict our results,
because their lower bound requires the dimension n to be a
function of T .

References
Naoki Abe and Philip M. Long. Associative reinforcement

learning using linear probabilistic concepts. In Proc. 16th
International Conf. on Machine Learning, pages 3–11.
Morgan Kaufmann, San Francisco, CA, 1999.

R. Agrawal. Sample mean based index policies with
O(log n) regret for the multi-armed bandit problem. Ad-
vances in Applied Probability, 27:1054–1078, 1995.

P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis
of the multiarmed bandit problem. Mach. Learn., 47(2-3):
235–256, 2002. ISSN 0885-6125.

Peter Auer. Using confidence bounds for exploitation-
exploration trade-offs. J. Mach. Learn. Res., 3:397–422,
2002. ISSN 1533-7928.

B. Awerbuch and R. Kleinberg. Adaptive routing with end-
to-end feedback: Distributed learning and geometric ap-
proaches. In Proceedings of the 36th ACM Symposium on
Theory of Computing (STOC), 2004.

Donald A. Berry and Bert Fristedt. Bandit Problems: Se-
quential Allocation of Experiments. Springer, October
1985.

V. Dani, T. P. Hayes, and S. M. Kakade. The price of ban-
dit information for online optimization. In Advances in
Neural Information Processing Systems 20 (NIPS 2007).
2008. To appear. Available online at http://books.nips.cc/.

David A. Freedman. On tail probabilities for martingales.
The Annals of Probability, 3(1):100–118, Feb. 1975.

T. L. Lai and H. Robbins. Asymptotically efficient adaptive
allocation rules. Advances in Applied Mathematics, 6:4,
1985.

Colin McDiarmid. Concentration. In Probabilistiic Methods
for Algorithmic Discrete Mathematics. Springer, 1998.

H. Robbins. Some aspects of the sequential design of exper-
iments. In Bulletin of the American Mathematical Society,
volume 55, 1952.

Sartaj Sahni. Computationally related problems. SIAM J.
Comput., 3(4):262–279, 1974.

366

Model Selection and Stability ink-means Clustering

Ohad Shamir † and Naftali Tishby†‡

† School of Computer Science and Engineering
‡ Interdisciplinary Center for Neural Computation
The Hebrew University, Jerusalem 91904, Israel

{ohadsh,tishby}@cs.huji.ac.il

Abstract

Clustering Stability methods are a family of widely
used model selection techniques applied in data
clustering. Their unifying theme is that an appro-
priate model should result in a clustering which is
robust with respect to various kinds of perturba-
tions. Despite their relative success, not much is
known theoretically on why or when do they work,
or even what kind of assumptions they make in
choosing an ’appropriate’ model. Moreover, re-
cent theoretical work has shown that they might
’break down’ for large enough samples. In this pa-
per, we focus on the behavior of clustering stabil-
ity usingk-means clustering. Our main technical
result is an exact characterization of the distribu-
tion to which suitably scaled measures of instabil-
ity converge, based on a sample drawn from any
distribution inR

n satisfying mild regularity con-
ditions. From this, we can show that clustering
stability does not ’break down’ even for arbitrarily
large samples, in thek-means framework that we
study. Moreover, it allows us to identify the factors
which influence the behavior of clustering stability
for any sample size. This leads to some interest-
ing preliminary observations about what kind of
assumptions are made when using these methods.
While often reasonable, these assumptions might
also lead to unexpected consequences.

1 Introduction

The important and difficult problem of model selection in
data clustering has been the focus of an extensive literature
spanning several research communities in the natural and so-
cial sciences. Since clustering is often used as a first step in
the data analysis process, the questions of what type of clus-
ters or how many clusters are in the data can be crucial.

An important family of model selection methods, whose
popularity has grown in the past few years, is based on clus-
tering stability. The unifying theme of these methods is that
an appropriate model for the data should result in a cluster-
ing which is robust with respect to various kinds of perturba-
tions. In other words, if we choose an appropriate clustering
algorithm, and feed it with the ’correct’ parameters (such as

the number of clusters, the metric used, etc.), the clustering
returned by the algorithm should not be overly sensitive to
the exact structure of the data.

In particular, we will focus on clustering stability meth-
ods which compare the discrepancy or ’distance’ between
clusterings of different random subsets of our data. These
methods seek a ’stable’ model, in the sense that the value of
such distance measures should tend to be small.

Although these methods have been shown to be rather ef-
fective in practice (cf. [2],[4],[7],[9]), little theory exists so
far to explain their success, or for which cases are they best
suited for. Over the past few years, a theoretical study of
these methods has been initiated, in a framework where the
data are assumed to be an i.i.d sample. However, a funda-
mental hurdle was the observation [1] that under mild con-
ditions and for any model choice, the clustering algorithm
should tend to converge to a single solution which is optimal
with respect to the underlying distribution. As a result, clus-
tering stability might ’break down’ for large enough samples,
since we get approximately the same clustering hypothesis
based on each random subsample, and thus achieve stabil-
ity regardless of whether the model fits the data or not (this
problem was also pointed out in [6]). A possible solution to
this difficulty was proposed in [15]. In a nutshell, that paper
showed that the important factor in the way these clustering
stability methods work may not be the asymptotic stability
of the model, but ratherhow fast exactly does it converge to
this stability. With this more refined analysis, it was argued
that differences in the stability of different models should
usually be discernible for any sample size, no matter how
large, despite the universal convergence to absolute stability.
Although it provided the necessary groundwork, that paper
only rigorously proved this assertion for a single toy exam-
ple, as a proof-of-concept.

In this paper, we formally investigate the application of
clustering stability to the well known and populark-means
clustering framework, when the goal is to determine the value
of k, or the number of clusters in the data. Assuming an
algorithm which minimizes thek-means objective function,
we consider arbitrary distributions inRn satisfying certain
mild regularity conditions, and analyze the behavior of the
clustering distance measure, scaled by the square root of the
sample size. Rather than converging to zero in probability
as the sample size increases to infinity, this scaled measure
converges to a non-degenerate distribution which depends on
the choice ofk. From this we can show that clustering stabil-

367

ity does not ’break down’ even for arbitrarily large samples,
in the sense described earlier, at least for thek-means frame-
work that we study.

The asymptotic distribution is also interesting for two ad-
ditional reasons. The first is that it can be seen as an ap-
proximation which improves as the sample size increases.
The second and more profound reason is that if we are in-
terested in discovering what fundamental assumptions are
implicit in performing model selection with clustering sta-
bility, these should not be overly dependent on the sample
size used. Therefore, as we look at larger samples, noisy and
hard to analyze finite sample effects diminish, and what re-
mains are the fundamental characteristics, which should be
relevant foranysample size. As a result, the analysis leads
to some preliminary observations about the factors influenc-
ing clustering stability ink-means, of both theoretical and
practical interest.

2 Problem Setting and Notation

We refer the reader to Fig. 1 for a graphical illustration of the
basic setting, and some of the notation introduced below.

Denote{1, . . . , k} as [k]. Vectors will be denoted by
bold-face characters.‖ · ‖ will denote the Euclidean norm
unless stated otherwise.N (µ,Σ) denotes the multivariate
normal distribution with meanµ and covariance matrixΣ.

We will use the stochastic order notationOp(·) andop(·)
(cf. [18]). Let {Xm} and{Ym} be sequences of random
vectors, defined on the same probability space. We write
Xm = Op(Ym) to mean that for eachǫ > 0 there exists
a real numberM such thatPr(‖Xm‖ ≥ M‖Ym‖) < ǫ if
m is large enough. We writeXm = op(Ym) to mean that
Pr(‖Xm‖ ≥ ǫ‖Ym‖) → 0 for eachǫ > 0. Notice that{Ym}
may also be non-random. For example,Xm = op(1) means
thatXm → 0 in probability.

LetD be a probability distribution onRn, with a bounded
probability density functionp(·) which is continuous as a
function onR

n. Assume that the following two regularity
conditions hold:

•
∫

Rn

p(x)‖x‖2dx < ∞ (in words,D has bounded vari-

ance).

• There exists a bounded, monotonically decreasing func-
tion g(·) : R → R, such thatp(x) ≤ g(‖x‖) for all

x ∈ R
n, and

∫ ∞

r=0

rng(r) <∞.

The second requirement is needed in order to apply the
main theorem of [13] (it is a slightly stronger version of con-
dition (iv) there), and can probably be improved. Neverthe-
less, it is quite mild, and holds in particular for any distri-
bution that is not heavy-tailed or has bounded support. As
to the continuity requirement ofp(·), it should be noted that
our results hold even if we assume continuity solely in some
neighborhood of the optimal cluster boundaries, but we will
take this stronger assumption for simplicity.

Let Ak denote an ’ideal’ version of the standardk-means
algorithm, which is given a sampleS = {xi}m

i=1 ⊆ R
n,

sampled i.i.d fromD, and a required number of clustersk,

and returns a set of centroidsc = (c1, . . . , ck) ∈ R
nk, which

are a global minimum of the objective function:

Ŵ (c) :=
1

m

m
∑

i=1

min
j∈[k]

‖cj − xi‖2.

Let µ = (µ1, . . . ,µk) ∈ R
nk be an optimalk-means solu-

tion with respect toD, defined as a minimizer of

W (c) :=

∫

Rn

p(x) min
j∈[k]

‖cj − xi‖2dx.

We assume that such a minimizer exists, is unique up to per-
mutation of the centroids, and that all centroids are distinct
(for all i 6= j, µi 6= µj). To avoid ambiguities involving
permutation of the centroids, we assume that the numbering
of the centroids is by some uniform canonical ordering (for
example, by sorting with respect to the coordinates).

For some set of centroidsc = (c1, . . . , ck), and for each
cluster centroidci, we denote the interior of its correspond-
ing cluster asCc,i, defined as:

Cc,i :=

{

x ∈ R
n : arg min

j∈[k]
‖cj − x‖2 = i

}

.

From the continuity assumptions onp, we may assume
that the set of points not in the interior of some cluster has
zero measure with respect top. We can therefore neglect the
issue of how points along cluster boundaries are assigned.

The (scaled) distance between two clusteringsAk(S1) and
Ak(S2), whereS1, S2 are samples of sizem, is defined as:

dm
D (Ak(S1), Ak(S2)) :=

√
m Pr

x1,x2∼D

(

Ak(S1)(x1,x2) 6= Ak(S2)(x1,x2)
)

,

whereAk(S)(x1,x2) is an indicator function of whether
the instancesx1,x2 are in the same cluster according to the
clustering given byAk(S). This definition follows that of [1]
and [15], with the additional scaling by

√
m (the ’correct’

scaling factor as will become evident later on). A typical
way to measure instability in practice is to cluster indepen-
dent subsamples of the data, and empirically estimate the dis-
tance between the resulting clusterings. Thus, understanding
the behavior ofdm

D (Ak(S1), Ak(S2)) (over drawing and clus-
tering independent samples) is of much interest in analyzing
the behavior of clustering stability.

Any choice of cluster centroidsc induces a Voronoi par-
tition on R

n. We will denoteFc,i,j , for i 6= j, as the bound-
ary face between clustersi andj. Namely, the points inRn

whose two closest cluster centroids areci andcj , and are
equidistant from them:

Fc,i,j :=

{

x ∈ R
n : arg min

a∈[k]
‖ca − x‖2 = {i, j}

}

.

Assumingci,cj are distinct,Fc,i,j is a (possibly empty)
subset of the hyperplaneHc,i,j , defined as

Hc,i,j :=

{

x ∈ R
n :

(

x − ci + cj

2

)⊤
· (c1 − c2) = 0

}

.

In our discussion, we use integrals with respect to both
then-dimensional Lebesgue measure, as well as the(n−1)-
dimensional Lebesgue measure. The type of integral we are

368

using should be clear from the context, depending on the set
over which we are integrating. For example, integrals over
someCc,i are of the first type, while integrals over some
Fc,i,j are of the second type.

Let Γ be thekn × kn matrix, which is the Hessian of
the mappingW (·) at the optimal solutionµ. This matrix is
composed ofk×k blocksΓi,j for i, j ∈ [k]. Each blockΓi,j

can be shown to be equal to1

Γi,j := 2

[

∫

Cµ,i

p(x)dx

]

In

− 2
∑

a6=i

∫

Fµ,i,a

p(x)(x − µi)(x − µi)
⊤dx

‖µi − µa‖

if i = j, and fori 6= j it is defined as

Γi,j :=
2

‖µi − µj‖

∫

Fµ,i,j

p(x)(x − µi)(x − µj)
⊤dx

We will use the same block notation later for its inverse
Γ−1. The existence of these integrals can be shown to follow
from the assumptions onp(·). We assume that the matrixΓ
is positive definite. This is in fact an almost redundant re-
quirement, since the optimality ofµ entails thatΓ is always
positive semidefinite. Therefore, cases whereΓ is not posi-
tive definite correspond to singularities which are apparently
pathological (for more discussion on this, see [14]).

Let V be akn × kn matrix, which represents (up to a
constant) the covariance matrix ofD with respect to each
cluster, assuming the optimal clustering induced byµ. More
specifically,V is composed ofk diagonal blocksVi of size
n× n for i ∈ [k] (all other elements ofV are zero), where

Vi := 4

∫

Cµ,i

p(x)(x − µi)(x − µi)
⊤dx.

We shall assume thatVi 6= 0 for anyi.

3 Main Results

In this section, we present the main results of our paper, and
discuss observations that might be drawn from them about
the use of clustering stability in thek-means framework. All
the detailed proofs are presented in Sec. 4.

3.1 Statement of Technical Results

Our main technical result is the following theorem, which
characterizes the exact distribution to whichdm

D (Ak(S1), Ak(S2))
converges for any appropriate underlying distributionD, and
its expected value.

Theorem 1. AssumeD has a bounded probability density
functionp(·), which is continuous as a function onRn and
fulfills the two regularity conditions specified in Sec. 2. Let
Ak be an algorithm which returns a global minimizerc of

1This is proven in [13]. The definition ofΓ there differs from
ours in one of the signs, apparently due to a small error in that paper
[12].

Hµ,1,2

µ
1c′

1

c
1

µ
2

µ
3

c′
3

c
3

c
2

c′
2

Fc′,1,2Fc,1,2

Hc,1,2 Hc′,1,2

Figure 1: An illustrative drawing of the setting and notation
used. Thicker lines represent the optimalk-means cluster-
ing partition (for k = 3 clusters) with respect to the un-
derlying distribution. Clustering two independent random
samples gives us two random centroid setsc andc

′. These
induce two different Voronoi partitions ofRn, and the dis-
tance measure is intimately related to the probability mass in
the area which switches between clusters, when we compare
these two partitions (gray area).

Ŵ (·) for anyk of interest, and assume thatc converges in
probability to some set ofk distinct centroidsµ which are
the unique global minimizer ofW (·). Furthermore, assume
that Γ is invertible and thatVi 6= 0 for any i ∈ [k]. Then
we have thatdm

D (Ak(S1), Ak(S2)) converges in distribution
to that of

2
√

2
∑

1≤i<j≤k

[(

∫

Cµ,i∪Cµ,j

p(x)dx

)

×











∫

Fµ,i,j

p(x)

∣

∣

∣

(

µi − x

x − µj

)⊤(
ci − µi
cj − µj

)

∣

∣

∣

‖µi − µj‖
dx





















,

wherec = (c1, . . . , ck)⊤ ∼ N (µ,Γ−1V Γ−1).
Denoting the expected value of this distribution as

înstab(Ak,D), we have that it is equal to

4√
π

∑

1≤i<j≤k

[(

∫

Cµ,i∪Cµ,j

p(x)dx

)

×
(

∫

Fµ,i,j

p(x)
Ψ(x, i, j)

‖µi − µj‖
dx

)]

,

whereΨ(x, i, j) is defined as
∥

∥

∥

∥

∥

(

V
1/2
i 0

0 V
1/2
j

)

(

(Γ−1)i,i (Γ−1)i,j

(Γ−1)j,i (Γ−1)j,j

)(

µi − x

x − µj

)

∥

∥

∥

∥

∥

.

369

All the integrals can be shown to exist by the assump-
tions onp(·). It should be emphasized that̂instab(Ak,D) is
not necessarily the same aslimm→∞ Edm

D (Ak(S1), Ak(S2)).
This is because our convergence result does not necessarily
imply convergence of expectations. Thus, formally speak-
ing, the result above does not deal directly with the limit
of Edm

D (Ak(S1), Ak(S2)), which has been used in [1],[15] as
the theoretical definition of clustering stability. However, it
turns out that for our purposes this is not too significant. It
seems to be the asymptotic distribution and̂instab(Ak,D),
rather than the asymptotic expectation, which determine the
asymptotic behavior of clustering stability.

The following theorem exemplifies this on a simple em-
pirical estimator of clustering stability. The main difference
between the following estimator and those proposed in the
literature is that it measures the distance between just a sin-
gle pair of clusterings from a pair of independent samples,
rather than averaging over several pairs based on subsam-
pling the data. This just makes our result stronger, because
these kind of bootstrap procedures should only increase the
reliability of the estimator, whereas here we are interested in
a ’lower bound’ on reliability.

Theorem 2. Define a clustering stability estimator,̂θk,4m,
as follows: Given a sample of size4m, split it randomly into
3 disjoint subsetsS1,S2,S3 of sizem,m and2m respectively.
Estimatedm

D (Ak(S1), Ak(S2))/
√
m by computing

1

m

∑

xi,xm+i∈S3

1

(

Ak(S1)(xi, xm+i) 6= Ak(S2)(xi, xm+i)
)

,

where(x1, .., xm) is a random permutation ofS3. For any
distribution D satisfying the conditions of Thm. 1, assume
that for some two values ofk, ks 6= ku, the ratio of
înstab(Aku

,D) and înstab(Aks
,D) (as defined in Thm. 1) is

∞ > R > 3. Then we have that:

Pr
(

θ̂ks,4m ≥ θ̂ku,4m

)

≤ 0.3 + 3 log(R)

R
+ o(1),

where the probability is over a sample of size4m used for
both estimators, ando(1) converges to0 asm→ ∞.

The theorem implies the following: Suppose we are con-
sidering two possible values fork, designated asks andku,
such that the ratio between̂instab(Aku

,D) andînstab(Aks
,D)

is some reasonably large constant (one can think of it as a rel-
atively unstable model corresponding toku, vs. a relatively
stable model corresponding toks). Then the probability of
not empirically detectingks as the most stable model has
an upper bound which actually decreases with the sample
size, converging to a constant value dependent on the ratio
of înstab(Aks

,D) andînstab(Aku
,D). In this sense, accord-

ing to the bound, clustering stability does not ’break down’
in the large sample regime, and the asymptotic reliability of
its empirical estimation is determined bŷinstab(Ak,D). We
emphasize that the theorem deals with the reliability of de-
tecting the most stable model, not whether a stable model is
really a ’good’ model in any other sense.

We note that our proof actually produces an entire range
of bounds, which provides a trade off for the minimality re-
quirement onR with the tightness in terms of the constants.

See the proof for further details. Also, if̂instab(Aks
,D) = 0,

while înstab(Aku
,D) > 0 (corresponding toR = ∞), it is

easy to show that the probability of detectingks as the most
stable model converges to1 asm→ ∞.

3.2 Factors Influencing Stability of Clustering Models

According to Thm. 1, for any distribution satisfying the nec-
essary conditions, the distance between clusterings (after scal-
ing by

√
m) converges to a generally non-degenerate distri-

bution, which depends on the underlying distribution and the
number of clustersk. As Thm. 2 shows, this implies that
clustering stability does not ’break down’ in the large sam-
ple regime, and its choice of the most ’appropriate’ value of
k seems to depend essentially on̂instab(Ak,D).

Thm. 1 provides an explicit formula for̂instab(Ak,D).
Although one can always calculate it for specific cases, it is
of much more interest to try and understand what are the gov-
erning factors influencing its value. These factors eventually
determine what is considered by clustering stability as the
’correct’ model, with a low value for̂instab(Ak,D). There-
fore, analyzing these factors can explain what sample-size-
free assumptions correspond to the use of clustering stability,
at least in thek-means setting that we study. Since a rigor-
ous analysis is a complex endeavor in itself, we will limit
ourselves to some preliminary and non-formal observations,
which should be taken as such.

According to Thm. 1, the value of̂instab(Ak,D) is asymp-
totically determined by three factors:

• The probability density along the cluster boundaries.

• The HessianΓ of the objective functionW (·) atµ.

• The varianceV and mass of the clusters with respect to
the underlying distribution.

A fourth factor appearing in the formula isµi − µj , but
this can be seen simply as a normalization term, eliminating
the dependence on the norm ofx.

The probability density along the cluster boundaries seems
to play an interesting role. For example, when the density at
the boundaries is exactly0, we get that̂instab(Ak,D) = 0.
Although this density is multiplied byΨ(x, i, j), note that
Ψ(x, i, j) actually becomes ’nicer’ when the boundary den-
sity is lower (sinceΓ−1 approaches a diagonal matrix with
entries proportional to the inverse of the mass of the clusters,
hence having well-controlled eigenvalues assuming reason-
ably balanced clusters). Therefore, we might expect low in-
stability even when the boundary density is low but not ex-
actly0.

As to the HessianΓ, an exact analysis of its influence
on înstab(Ak,D) is problematic in the general case, but a
useful rough characterization is the spectrum ofΓ. If all
the eigenvalues ofΓ−1 are ’large’, then we might expect
Ψ(x, i, j)/‖µi − µj‖ to be relatively large as well, leading

to a higher value for̂instab(Ak,D). On the other hand, small
eigenvalues might lead to lower values of̂instab(Ak,D). Thus,
we see that a small spectral radius of the HessianΓ, repre-
senting a ’locally shallow’ optimal solution, may result in

370

more instability. It is interesting to note that shallow, ill-
defined minima in terms of the objective function are often
a sign of a mismatch between the model and the data, and
therefore clustering stability seems to be doing a good thing
on that regard.

When will the spectral radius ofΓ be small, contributing
to instability? By inspecting the formula forΓ, and assum-
ing all clusters have equal sizes, we see that the diagonal
elements ofΓ are at most2/k, and can become smaller if the
density along the boundary points is larger. Since the main
diagonal majorizes the spectrum of the symmetric matrixΓ
(cf. [5]), it seems that a small spectral radius might corre-
spond to larger values ofk, as well as high density along the
cluster boundaries. A similar analysis forV seems to indi-
cate that high cluster variance increases instability as well.

These observation also imply that clustering instability
might tend to be larger for higher values ofk. As k becomes
larger,înstab(Ak,D) is the result of integrating over a larger
area (all cluster boundaries), and the HessianΓ might tend
to have a smaller spectral radius, especially if the bound-
aries have high density. This is somewhat compensated in
the formula by the mass and variance of each cluster becom-
ing smaller, but these seem to scale down more slowly than
the cluster boundaries area (and number) scaling up, espe-
cially in high dimensions. This matches a well known ex-
perimental phenomenon, in which clusterings tend to be less
stable for higherk, even in hierarchical clustering settings
where more than one value ofk is acceptable. When the
’correct’ model has a very low boundary density and nice
structure compared to competing models, this might over-
come the general tendency of instability to increase withk.
However, when this is not the case, normalization procedures
might be called for, as in [7].

3.3 Examples

To illustrate some of the observations from the previous sub-
section, we empirically evaluated the instability measure on
a few simple toy examples, where everything is well con-
trolled and easy to analyze. The results are displayed in
Fig. 2. We emphasize that these are just simple illustra-
tions of possible expected and unexpected characteristics of
clustering stability in some very limited cases, which can be
gleaned from the theoretical results above, and are not meant
to represent more realistic or higher dimensional settings.

First of all, the average value ofdm
D (Ak(S1), Ak(S2)) tends

to converge to a constant value, which differs based on the
choice of the model orderk, and clustering stability does not
seem to ’break down’ as sample size increases. The three
leftmost plots demonstrate how, for these particular exam-
ples, the density along the cluster boundaries seem to play an
important role in determininĝinstab(Ak,D). For each distri-
bution,k = 3 emerges as the most stable model, since the
boundaries between the clusters withk = 3 have low den-
sity. However,k = 3 becomes less stable as the Gaussians
get closer to each other, leading to higher densities in the
boundaries between them. At some point, when the den-
sity along the cluster boundaries fork = 3 becomes large
enough,k = 2 becomes more stable thank = 3.

A different manifestation of this behavior can be seen in
the rightmost plot, which simulates a hierarchical clustering

setting. In this case, all three Gaussians are separated, but
one of them is relatively more separated than the other two.
As before,k = 4 is less stable thank = 3 andk = 2, but now
k = 2 is the most stable model. This is primarily because
the sum of the boundary densities ink = 3 is larger than the
density at the boundary point fork = 2. Deciding onk =
2 as the number of clusters in the data is not unreasonable
(recall that clustering stability makes no explicit generative
assumption on how the clusters look like). However, it can
indicate that in a hierarchical clustering setting, clustering
stability might prefer high levels in the hierarchy, which may
or may not be what we want.

3.4 Convergence Rates

After establishing the asymptotic distribution of the clus-
tering distance measures fork-means clustering, a reason-
able next step is exploring what kind of guarantees can be
made on the convergence rate to this asymptotic limit. As
a first step, we establish the following negative result, which
demonstrates that without additional assumptions, no univer-
sal guarantees can be given on the convergence rate. The the-
orem refers to the casek = 3, but the proof idea can easily
be extended to other values ofk.

Theorem 3. For any positive integerm0, there exists a dis-
tributionD such thatdm

D (A3(S1), A3(S2)) converges in prob-
ability to0 asm→ ∞, butPr(dm

D (A3(S1), A3(S2)) >
√
m/4)

is at least1/3 for somem ≥ m0.

The theorem does not imply that theasymptoticconver-
gence rate is arbitrarily bad. In fact, a complicated second-
order analysis (omitted from this paper due to lack of space),
seems to indicate a uniform power-law convergence rate for
any distribution satisfying the conditions of Thm. 1, as well
as a few other conditions such as Lipschitz-continuity and
bounded third moment. However, the exact constants in this
power law can be arbitrarily bad, depending on various char-
acteristics of the distribution. Finding sufficient and empiri-
cally verifiable conditions which provide finite sample guar-
antees is therefore of much interest.

4 Proofs

4.1 Proof of Thm. 1

Before embarking on the proof, we briefly sketch its outline:

1. Using the central limit theorem fork-means due to Pol-
lard [13], we can characterize the asymptotic Gaussian
distribution of the cluster centroidsc, in terms of the
underlying distributionD (Lemma 1).

2. The cluster boundaries are determined by the positions
of the centroids. Hence, we can derive the asymptotic
distribution of these boundaries. In particular, for every
boundaryFc,i,j , we characterize the asymptotic distri-
bution of the pointwise Euclidean distance between two
realizations of this boundary, over drawing and clus-
tering two independent samples. This distance is de-
fined relative to a projection on the hyperplaneHµ,i,j

(Lemma 2).

371

−10 0 10
0

0.1

0.2

0.3

Distribution

p(
x)

0 250 500 750 1000
0

0.5

1

1.5
Values of Instability Measure

m

k=2 k=3 k=4

−10 0 10
0

0.1

0.2

0.3

Distribution

p(
x)

0 250 500 750 1000
0

0.5

1

1.5
Values of Instability Measure

m

−10 0 10
0

0.1

0.2

0.3

Distribution

p(
x)

0 250 500 750 1000
0

0.5

1

1.5
Values of Instability Measure

m

−10 0 10
0

0.1

0.2

0.3

Distribution

p(
x)

0 250 500 750 1000
0

0.5

1

1.5
Values of Instability Measure

m

Figure 2: Illustrative examples of the behavior of clustering stability. In each column, the upper plot is the underlying
distribution we sample from (a mixture of unit variance Gaussians onR), while the lower plot is an empirical average of
dm
D (Ak(S1), Ak(S2)) over1000 trials, for different sample sizesm.

3. We show that the probability mass ofD, which switches
between clustersi andj over the two independent clus-
terings, has an asymptotic distribution definable by an
integral involving the distance function above, and the
values ofp(·) onFµ,i,j (Lemma 3 and Lemma 4). This
allows us to formulate the asymptotic distribution of
dm
D (Ak(S1), Ak(S2)), and its expected value.

For convenience, we shall useǫ = (ǫ1, . . . , ǫk) to denote
the random elementc − µ.

Lemma 1. Under the notation and assumptions of the the-
orem,

√
mǫ =

√
m(c − µ) converges in distribution tov,

wherev ∼ N
(

0,Γ−1V Γ−1
)

. As a result,‖ǫ‖ = Op(1/
√
m).

This lemma is a straightforward consequence of the main
theorem in [13]. Notice that it allows us to assume that for
large enough values ofm, with arbitrarily high probability
and for anyi, j ∈ [k], i 6= j, the nearest centroid toµi is ci,
all centroids are distinct,Fc,i,j is non-orthogonal toFµ,i,j ,
and‖ǫ‖ is arbitrarily small. We shall tacitly use these as-
sumptions in the remainder of the proof.

Lemma 2. For somei, j ∈ [k], i 6= j, assume thatFµ,i,j 6=
∅. For anyx ∈ Hµ,i,j , define the function:

ℓ(x, ci, cj) =
‖µi − µj‖

(

ci+cj

2 − x

)

· (ci − cj)

(µi − µj) · (ci − cj)
.

Then if‖ǫ‖ is smaller than some positive constant which
depends only onµ, ℓ(x, ci, cj) can be rewritten as

1

‖µi − µj‖

(

µi − x

x − µj

)⊤(
ǫi

ǫj

)

+O((‖x‖ + 1)‖ǫ‖2).

Considering the projection ofHc,i,j to Hµ,i,j , we have
that ℓ(x, ci, cj) is the signed Euclidean distance ofx from
the point onHc,i,j which projects to it (see the left half of
Fig. 3). This is becauseℓ(x, ci, cj) must satisfy the equation:
((

x + ℓ(x, ci, cj)
µi − µj

‖µi − µj‖

)

− ci + cj

2

)

·(ci−cj) = 0.

Proof. We will separate the expression in the definition of
ℓ(x, ci, cj) into 2 components and analyze them separately.
We have that:
(

ci + cj

2
− x

)

· (ci − cj)

=

(

µi + µj + ǫi + ǫj

2
− x

)

·
(

(µi − µj) + (ǫi − ǫj)
)

=

(

µi + µj

2
− x

)

· (µi − µj)

+

(

µi + µj

2
− x

)

· (ǫi − ǫj)

+

(

ǫi + ǫj

2

)

· (µi − µj) +O(‖ǫ‖2).

Notice that the first summand is exactly0 (by definition
of x as lying onFµ,i,j), and can therefore be dropped. After
expanding and simplifying, we get that the above is equal to

(µi − x) · ǫi − (µj − x) · ǫj +O(‖ǫ‖2) (1)

As to the second component in the definition ofℓ(x, ci, cj),
we have that

‖µi − µj‖
(µi − µj) · (ci − cj)

=
‖µi − µj‖

‖µi − µj‖2 + (µi − µj) · (ǫi − ǫj)

=
1

‖µi − µj‖
(

1 +
(µi−µj)·(ǫi−ǫj)

‖µi−µj‖2

)

=
1

‖µi − µj‖ (1 +O(‖ǫ‖))

=
1

‖µi − µj‖

(

1 − O(‖ǫ‖)
1 +O(‖ǫ‖)

)

=
1 +O(‖ǫ‖)
‖µi − µj‖

, (2)

assuming‖ǫ‖ to be small enough. Multiplying Eq. (1)
and Eq. (2) gives us the expression in the lemma.

372

In order to calculate the asymptotic distribution of
dm
D (Ak(S1), Ak(S2)), we need to characterize the distribution

of the probability mass ofD in the ’wedges’ created between
two boundaries for clustersi,j, based on two independent
samples (see Fig. 1). For any two given boundaries, calcu-
lating the probability mass requires integration of the under-
lying density functionp(·) over these wedges, making it very
hard to write the distribution of this probability mass explic-
itly. The purpose of the next two lemmas is to derive a more
tractable, asymptotically exact approximation for each such
wedge, which depends only on the values ofp(·) along the
boundaryFµ,i,j .

We begin with an auxiliary lemma, required for the main
Lemma 4 which follows. To state these lemmas, we will
need some additional notation. For someHµ,i,j , fix some
(possibly unbounded) polytopeF ⊆ Hµ,i,j . For notational
convenience, we shall assume w.l.o.g thatHµ,i,j is aligned
with the axes, in the sense that for allx ∈ Hµ,i,j , its last
coordinate is0 (it can be easily shown that the regularity
conditions onp(·) will still hold). Also, denoteF ′ = {y ∈
R

n−1 : (y, 0) ∈ F}, which is simply then− 1 dimensional
representation ofF on the hyperplane. Finally, for ease of
notation, denoteℓ((y, 0), ci, cj) for any y ∈ F ′ as ℓ̃ǫ(y),
whereǫ = c − µ.

Lemma 3. Letǫ, ǫ′ be two independent copies ofc−µ, each
induced by clustering an independent sample of sizem. Let
B = {x ∈ R

n : ‖x‖ ≤ R} be a ball of radiusR centered at
the origin. Then we have that
∣

∣

∣

∣

∣

∫

F ′∩B

∣

∣

∫ ℓ̃
ǫ′ (y)

ℓ̃ǫ(y)

p(y, ξ)dξ
∣

∣dy

−
∫

F ′∩B

∣

∣

∫ ℓ̃
ǫ′ (y)

ℓ̃ǫ(y)

p(y, 0)dξ
∣

∣dy

∣

∣

∣

∣

∣

= op(1/
√
m), (3)

where the constants implicit in the r.h.s depend onR.

Proof. Sincep(·) is a non-negative function, we can rewrite
the expression in the lemma as
∣

∣

∣

∣

∣

∫

F ′∩B

∫ max{ℓ̃ǫ(y),ℓ̃
ǫ′ (y)}

min{ℓ̃ǫ(y),ℓ̃
ǫ′ (y)}

p(y, ξ)dξdy

−
∫

F ′∩B

∫ max{ℓ̃ǫ(y),ℓ̃
ǫ′ (y)}

min{ℓ̃ǫ(y),ℓ̃
ǫ′ (y)

p(y, 0)dξdy

∣

∣

∣

∣

∣

,

or
∣

∣

∣

∣

∣

∫

F ′∩B

∫ max{ℓ̃ǫ(y),ℓ̃
ǫ′ (y)}

min{ℓ̃ǫ(y),ℓ̃
ǫ′ (y)}

p(y, ξ) − p(y, 0)dξdy

∣

∣

∣

∣

∣

.

By the integral mean value theorem, sincep(·) is contin-
uous, we have that the expression above is equal to:

∣

∣

∣

∣

∫

F ′∩B

|ℓ̃ǫ′(y) − ℓ̃ǫ(y)|(p(y, ξy) − p(y, 0))dy

∣

∣

∣

∣

,

whereξy is between the minimum and maximum of
{ℓ̃ǫ(y), ℓ̃ǫ′(y)}. For simplicity of notation, we will write
ξy ∈ [ℓ̃ǫ(y), ℓ̃ǫ′(y)].

The expression above is upper bounded in turn by:
Z

F ′
∩B

(|ℓ̃ǫ(y)|+ |ℓ̃ǫ′(y)|) sup
ξy∈[ℓ̃ǫ(y),ℓ̃

ǫ′
(y)]

|p(y, ξy)−p(y, 0)|dy,

assuming the integral exists. Sinceǫ, ǫ′ have the same distri-
bution, it is enough to show existence and analyze the con-
vergence to zero in probability for
∫

F ′∩B

|ℓ̃ǫ(y)| sup
ξy∈[ℓ̃ǫ(y),ℓ̃

ǫ′ (y)]

|p(y, ξy) − p(y, 0)|dy. (4)

This integral can be upper bounded by

sup
y∈F ′

∩B

|ℓ̃ǫ(y)| sup
ξy∈[ℓ̃ǫ(y),ℓ̃

ǫ′
(y)]

|p(y, ξy) − p(y, 0)|

Z

F ′
∩B

1dy.

(5)
SinceB is bounded, we have according to Lemma 2 that

if ‖ǫ‖ is small enough,

sup
y∈F ′∩B

|ℓ̃ǫ(y)| = O(‖ǫ‖ + ‖ǫ‖2), (6)

and a similar equation holds for̃ℓǫ′(·) with ǫ replaced by
ǫ′ in the r.h.s. To make the equations less cumbersome, we
will ignore the higher order term‖ǫ‖2, sinceǫ converges to
0 in probability anyway by Lemma 1 (it is straightforward to
verify that the analysis below still holds). From Eq. (6) and
the sentence which follows, we have that
sup

y∈F ′∩B,ξy∈[ℓ̃ǫ(y),ℓ̃
ǫ′ (y)] ξy = O(‖ǫ‖). Since‖ǫ‖ con-

verges to zero in probability, this implies thatξy converges
to zero in probability, uniformly for anyy ∈ F ′ ∩B. More-
over, p(·) is uniformly continuous in the compact domain
B, and thusp(y, ξy) converges uniformly in probability to
p(y, 0). As a result, we have that

sup
y∈F ′∩B

sup
ξy∈[ℓ̃ǫ(y),ℓ̃

ǫ′ (y)]

|p(y, ξ) − p(y, 0)| = op(1). (7)

Substituting Eq. (6) and Eq. (7) into Eq. (5), and using
the fact that‖ǫ‖ = Op(1/

√
m), we get that the expression

in Eq. (5) (and hence Eq. (4)) isop(1/
√
m) as required.

Lemma 4. For some non-emptyFµ,i,j , let t(c, c′, i, j) be a
random variable, defined as the probability mass ofD which
switches between clustersi, j with respect to the two clus-
terings defined byc, c′, induced by independently sampling
and clustering a pair of samplesS1, S2 each of sizem. More
formally, define the set-valued random variable

Q(c, c′, i, j) = {x ∈ R
n : (x ∈ Cc,i ∧ x ∈ Cc′,j)

∨ (x ∈ Cc′,i ∧ x ∈ Cc,j)} ∪ Fc,i,j ∪ Fc′,i,j ,

so that

t(c, c′, i, j) =

∫

Q(c,c′,i,j)

p(x)dx. (8)

Thent(c, c′, i, j) is distributed as
∫

Fµ,i,j

p(x)|l(x, ci, c
′
j)|dx + op(1/

√
m),

wherel(x, ci, c
′
j) is distributed as

1

‖µi − µj‖

(

µi − x

x − µj

)⊤(
ǫi − ǫ′i
ǫj − ǫ′j

)

.

373

Proof. The right half of Fig. 3 should help to clarify the no-
tation and the intuition of the following proof. Intuitively,
the probability mass which switches between clustersi and
j over the two samples is the probability mass ofD lying
’between’Fc,i,j andFc′,i,j . A potential problem is that this
probability mass is also affected by the positions of other
neighboring boundaries. However, the fluctuations of these
additional boundaries decrease asm → ∞, and their effect
on the probability mass in question becomes negligible. Our
goal is to upper and lower bound the integral in Eq. (8) by ex-
pressions which are identical up toop(1/

√
m) terms, giving

us the desired result.
As in Lemma 3, we assume thatHµ,i,j is aligned with

the axes, such that for anyx ∈ Hµ,i,j , its last coordinate is
0. DefineFmax(µ, c, c

′, i, j) ⊆ Hµ,i,j as the projection of
Q(c, c′, i, j) onHµ,i,j . By definition of ℓ̃ǫ(y), ℓ̃ǫ′(y), any
pointx = (y, 0) in Fmax(µ, c, c

′, i, j) has the property that
the width ofQ(c, c′, i, j) relative toHµ,i,j at x is at most
|ℓ̃ǫ(y) − ℓ̃ǫ′(y)|.

Define δF (µ, c, c′, i, j) ⊆ Hµ,i,j as the projection on
Hµ,i,j of ∂Q(c, c′, i, j)\(Fc,i,j∪Fc′,i,j), where∂Q(c, c′, i, j)
is the boundary ofQ(c, c′, i, j). In words, it is the projection
of the boundaries ofQ(c, c′, i, j), other thanFc,i,j , Fc′,i,j ,
onHµ,i,j . Any pointx = (y, 0) in δF (µ, c, c′, i, j) has the
property that the width ofQ(c, c′, i, j), relative toHµ,i,j at
x, is less than|ℓ̃ǫ(y)−ℓ̃ǫ′(y)|. This is because the segment of
the normal toHµ,i,j atx, betweenHc,i,j andHc′,i,j , passes
through other clusters besides clustersi, j.

For notational convenience, we will drop most of the pa-
rameters from now on, as they should be clear from the con-
text. LetFmin = Fmax\δF . By the properties ofFmax, δF ,
any pointx = (y, 0) in Fmin has the property that the width
of Q relative toHµ,i,j atx is exactly|ℓ̃ǫ(y) − ℓ̃ǫ′(y)|.

LetF ′
max, F

′
min andF ′ be then− 1 dimensional projec-

tions ofFmax, Fmin andF respectively, by removing the last
zero coordinate which we assume to characterizeHµ,i,j . As
a result of the previous discussion, by Fubini’s theorem, we
have that:

∫

F ′
max

∣

∣

∣

∣

∣

∫ ℓ̃
ǫ′ (y)

ℓ̃ǫ(y)

p(y, ξ)dξ

∣

∣

∣

∣

∣

dy ≥
∫

Q

p(x)dx

≥
∫

F ′
min

∣

∣

∣

∣

∣

∫ ℓ̃
ǫ′ (y)

ℓ̃ǫ(y)

p(y, ξ)dξ

∣

∣

∣

∣

∣

dy, (9)

Assuming these integrals exist. Our goal will be to show
that both the upper and lower bounds above are of the form

∫

Fµ,i,j

p(x)|l(x, ci, c
′
j)|dx + op(1/

√
m),

which entails that the ’sandwiched’ integral in Eq. (9) has the
same form. We will prove this assertion for the upper bound
only, as the proof for the lower bound is almost identical.

As in Lemma 3, we letB be a closed ball of radiusR in
R

n centered on the origin, and separately analyze the integral
in the upper bound of Eq. (9) with respect to what happens
inside and outside this ball.

By Lemma 2, assuming‖ǫ‖ is small enough, there exists
a constanta > 0 dependent only onµ, such that

|ℓǫ(y)| ≤ a(‖y‖ + 1)(‖ǫ‖ + ‖ǫ‖2).

As before, to avoid making our equations too cumbersome,
we shall ignore in the analysis below the higher order term
‖ǫ‖2, sinceǫ converges to0 in probability and therefore it
becomes insignificant compared to‖ǫ‖. Also, since we con-
veniently assume thatHµ,i,j passes through the origin, then
any normal to a point inHµ,i,j ∩ Bc lies outsideB. This
is not critical for our analysis (in the general case, we could
have simply definedB as centered on some point inHµ,i,j),
but does simplify things a bit. With these observations, we
have that

∫

F ′
max

∩Bc

∣

∣

∣

∣

∣

∫ ℓ̃
ǫ′ (y)

ℓ̃ǫ(y)

p(y, ξ)dξ

∣

∣

∣

∣

∣

dy

≤
∫

F ′
max

∩Bc

|ℓ̃ǫ(y) − ℓ̃ǫ′(y| sup
ξ∈R

p(y, ξ)dy

≤
∫

F ′
max

∩Bc

(|ℓ̃ǫ(y)| + |ℓ̃ǫ′(y)|) sup
ξ∈R

p(y, ξ)dy

≤ a(‖ǫ‖ + ‖ǫ′‖)
∫

F ′
max

∩Bc

(‖y‖ + 1) sup
ξ∈R

p(y, ξ)dy

≤ a(‖ǫ‖ + ‖ǫ′‖)
∫

Hµ,i,j∩Bc

(‖x‖ + 1)g(‖x‖)dx

≤ a(‖ǫ‖ + ‖ǫ′‖)
∫ ∞

r=R

(r + 1)g(r) ∗ ern−1dr,

whereg(·) is the dominating function onp(·) assumed
to exist by the regularity conditions (see section 2), ande is
the surface area of ann dimensional unit sphere. By the as-
sumptions ong(·) and the fact that‖ǫ‖, ‖ǫ′‖ = Op(1/

√
m),

we have that

∫

F ′
max

∩Bc

∣

∣

∣

∣

∣

∫ ℓ̃
ǫ′ (y)

ℓ̃ǫ(y)

p(y, ξ)dξ

∣

∣

∣

∣

∣

dy = Op

(

h(R)/
√
m
)

,

(10)
whereh(R) → 0 asR → ∞. Notice that to reach this

conclusion, we did not use any characteristics ofF ′
max, be-

side it being a subset ofHµ,i,j . Therefore, since
|l(x, ci, c

′
j)| ≤ a(‖x‖ + 1)(‖ǫ‖ + ‖ǫ′‖)/√m for some con-

stanta > 0, a very similar analysis reveals that

∫

F ′∩Bc

p(y, 0)|l(x, ci, c
′
j)|dy = Op

(

h(R)/
√
m
)

. (11)

We note for later that none of the constants implicit in the
Op(·) notation, other thanh(R), depend onR. Turning now
to what happens inside the ball, we have by Lemma 3 that

∫

F ′
max

∩B

∣

∣

∣

∣

∣

∫ ℓ̃
ǫ′ (y)

ℓ̃ǫ(y)

p(y, ξ)dξ

∣

∣

∣

∣

∣

dy

=

∫

F ′
max

∩B

|ℓ̃ǫ′(y) − ℓ̃ǫ(y)|p(y, 0)dy + op(1/
√
m).

(12)

Leaving this equation aside for later, we will now show

374

that
∣

∣

∣

∣

∣

∫

F ′
max

∩B

|ℓ̃ǫ′(y) − ℓ̃ǫ(y)|p(y, 0)dy

−
∫

F ′∩B

|ℓ̃ǫ′(y) − ℓ̃ǫ(y)|p(y, 0)dy

∣

∣

∣

∣

= op(1/
√
m). (13)

The l.h.s can be upper bounded by
∫

(F ′
max

△F ′)∩B

|ℓ̃ǫ(y) − ℓ̃ǫ′(y)|p(y, 0)dy

≤
∫

(F ′
max

△F ′)∩B

(|ℓ̃ǫ(y)| + |ℓ̃ǫ′(y)|)p(y, 0)dy.

As ǫ, ǫ′ have the same distribution, we just need to show
that

∫

(F ′
max

△F ′)∩B

|ℓ̃ǫ(y)|p(y, 0)dy = op(1/
√
m). (14)

By Lemma 2, inside the bounded domain ofB, we have
that |ℓ̃ǫ(y)| ≤ a‖ǫ‖ for some constanta dependent solely
on µ andR (as before, to avoid making the equations too
cumbersome, we ignore terms involving higher powers of
‖ǫ‖). Moreover, sincep(y, 0) is bounded, we can absorb
this bound intoa and get that

∫

(F ′
max

△F ′)∩B

|ℓ̃ǫ(y)|p(y, 0)dy ≤ a‖ǫ‖
∫

(F ′
max

△F ′)∩B

1dy,

(15)

Note that
∫

(F ′
max

△F ′)∩B

1dy is a continuous function of

ǫ, ǫ′ in some neighborhood of0. Moreover, sinceF ′
max = F ′

whenǫ = ǫ′ = 0, the integral above is0 atǫ = ǫ′ = 0. Since
‖ǫ‖, ‖ǫ‖ converge to0 in probability, it follows that

∫

(F ′
max

△F ′)∩B

1dy = op(1).

Combining this with Eq. (15), and the fact that‖ǫ‖ =
Op(1/

√
m), justifies Eq. (14), and hence Eq. (13). Combin-

ing Eq. (10),Eq. (12) and Eq. (13), we get that
∫

F ′
max

∣

∣

∣

∣

∣

∫ ℓ̃
ǫ′ (y)

ℓ̃ǫ(y)

p(y, ξ)dξ

∣

∣

∣

∣

∣

dy

=

∫

F ′∩B

|ℓ̃ǫ′(y) − ℓ̃ǫ(y)|p(y, 0)dy

+ op(1/
√
m) +Op(h(R)/

√
m). (16)

By Lemma 2, definition ofl(x, ci, bc
′
j), and the fact that

‖ǫ‖, ‖ǫ′‖ = Op(1/
√
m), we have that̃ℓǫ(y)−ℓ̃ǫ′(y) is equal

to |l(x, ci, c
′
j)| + op((‖y‖ + 1)/

√
m). This implies that the

distribution of the r.h.s of Eq. (16) is equal to
∫

F ′∩B

p(y, 0)|l(x, ci, c
′
j)|dy+op(1/

√
m)+Op(h(R)/

√
m).

By Eq. (11), this is equal in turn to
∫

F ′

p(y, 0)|l(x, ci, c
′
j)|dy + op(1/

√
m) +Op(h(R)/

√
m).

We now use the fact thatR can be picked arbitrarily.
Notice that the first remainder term has implicit constants
which depend onR, but the second remainder term depends
onR only throughh(R) (recall the development leading to
Eq. (10) and Eq. (11)). Therefore, the first remainder term
converges to0 at a rate faster than1/

√
m in probability for

anyR, and the second remainder term can be made arbi-
trarily smaller than1/

√
m in high probability by pickingR

to be large enough, sinceh(R) → 0 asR → ∞. Thus,
for any δ > 0, we can pickR so that the remainder terms
eventually become smaller thanδ/

√
m with arbitrarily high

probability. As a result, we can replace the remainder terms
by op(1/

√
m), with implicit constants not depending onR,

and get that Eq. (16) can be rewritten as

∫

F ′
max

∣

∣

∣

∣

∣

∫ ℓ̃
ǫ′ (y)

ℓ̃ǫ(y)

p(y, ξ)dξ

∣

∣

∣

∣

∣

dy

=

∫

F ′

p(y, 0)|l(x, ci, c
′
j)|dy + op(1/

√
m).

This gives us an equivalent formulation of the upper bound
in Eq. (9). As discussed immediately after Eq. (9), an identi-
cal analysis can be performed for the lower bound appearing
there, and this leads to the result of the lemma.

We now turn to prove Thm. 1. Lett(c, c′, i, j) be as de-
fined in Lemma 4. Let̂Cc,c′,i denote the set of points in
R

n which remain in the same clusteri for both clusterings
defined byc, c′. Then by definition,dm

D (Ak(S1), Ak(S2)) is
equal to

2
∑

1≤i<j≤k

(

∫

bC
c,c′,i∪ bC

c,c′,j

p(x)dx

)

√
mt(c, c′, i, j).

(17)
As a straightforward consequence of‖ǫ‖ = Op(1/

√
m),

we have that
∫

bC
c,c′,i∪ bC

c,c′,j

p(x)dx =

∫

Cµ,i∪Cµ,j

p(x)dx+op(1). (18)

By Lemma 4, we have that
√
mt(c, c′, i, j) is of the form

∫

Fµ,i,j

√
mp(x)

‖µi − µj‖

∣

∣

∣

∣

∣

(

µi − x

x − µj

)⊤(
ǫi − ǫ′i
ǫj − ǫ′j

)

∣

∣

∣

∣

∣

dx + op(1).

(19)
By the continuous mapping theorem [18] and standard

results on the difference of independent, identically distributed
Gaussian vectors [17], we have that

√
m(ǫi − ǫ′i, ǫj − ǫ′j)

⊤

converges in distribution to
√

2(vi,vj)
⊤, wherev is as de-

fined in Lemma 1. Moreover, it is not difficult to show that
Eq. (19), ignoring the remainder term, is a continuous func-
tion of (ǫi−ǫ′i, ǫj−ǫ′j)

⊤. The idea is that it is obviously con-
tinuous with the integral restricted to some fixed ball around
the origin, and the contributions outside the ball can be made
arbitrarily small if the ball is large enough, by the assump-
tions onp(x) (a similar argument was made in the proof
of Lemma 4). Thus, by the continuous mapping theorem,√
mt(c, c′, i, j) converges in distribution to
∫

Fµ,i,j

√
2p(x)

‖µi − µj‖

∣

∣

∣

∣

∣

(

µi − x

x − µj

)⊤(
vi

vj

)

∣

∣

∣

∣

∣

dx. (20)

375

Q(c, c′, i, j)

ℓ(x, ci, cj)

ci

µi

x

cj

µj

Hc,i,j, Fc,i,j

Hµ,i,j, Fµ,i,j

Fµ,i,j

Hµ,i,j

Hc,i,j

Hc
′,i,j

Fmin(µ, c, c′, i, j)

Fmax(µ, c, c′, i, j)

Figure 3: An illustrative drawing of some of the notation and
geometrical constructs used in the proof of Thm. 1. Solid
lines represent cluster boundaries with respect to the opti-
mal cluster centroidsµ, while dashed lines represent cluster
boundaries with respect to cluster centroidsc or c

′ returned
by the clustering algorithm based on an empirical sample.
See the text for more details.

Substituting Eq. (18) and Eq. (20) into Eq. (17), we get
convergence in distribution to the one specified in our theo-
rem.

The only thing remaining is to derive the expected value
of this distribution. For notational convenience, letΣ =
Γ−1V Γ−1, and

ψ(x, i, j) =

∣

∣

∣

∣

∣

(

µi − x

x − µj

)⊤(
Σi,i Σi,j

Σj,i Σj,j

)(

µi − x

x − µj

)

∣

∣

∣

∣

∣

.

the expected value of the distribution is equal to:

E



2
√

2
∑

1≤i<j≤k

(

∫

Cµ,i∪Cµ,j

p(x)dx

)

×
(

∫

Fµ,i,j

p(x)

‖µi − µj‖

∣

∣

∣

∣

∣

(

µi − x

x − µj

)⊤(
vi

vj

)

∣

∣

∣

∣

∣

dx

)]

.

By Fubini’s theorem, this is equal to:

2
√

2
∑

1≤i<j≤k

(

∫

Cµ,i∪Cµ,j

p(x)dx

)

×
(

∫

Fµ,i,j

p(x)

‖µi − µj‖
E

[
∣

∣

∣

∣

∣

(

µi − x

x − µj

)⊤(
vi

vj

)

∣

∣

∣

∣

∣

]

dx

)

.

The expression inside the expectation is normally dis-
tributed, as a linear transformation of a normal random vec-
tor. Using standard results on the distribution of such trans-
formations [17], and since for any univariatea ∼ N (µ, σ2)

it holds thatE[|a|] = σ
√

2/π, we can reduce the above to

4√
π

∑

1≤i<j≤k

[(

∫

Cµ,i∪Cµ,j

p(x)dx

)

×
(

∫

Fµ,i,j

p(x)

√

ψ(x, i, j)

‖µi − µj‖
dx

)]

.

The final form ofînstab(Ak,D) is achieved by rewriting
Σ as(V 1/2Γ−1)⊤V 1/2Γ−1, substituting into the expression
ψ(x, i, j), and simplifying.

4.2 Proof of Thm. 2

The proof is composed of several lemmas. The key insight is
that the asymptotic distribution ofdm

D (Ak(S1), Ak(S2)) can
be viewed as a certain non-standard norm of a Gaussian ran-
dom vector. Using theorems on Gaussian measures in Ba-
nach spaces allows us to bound the probability of
dm
D (Ak(S1), Ak(S2)) being much larger or much smaller than

its expectation, and thus bound the probability that the em-
pirical clustering stability estimator will return deceiving re-
sults.

Lemma 5. The asymptotic distribution ofdm
D (Ak(S1), Ak(S2))

is equal to that of‖v‖∗, wherev ∼ N (0,Γ−1V Γ−1) and
‖v‖∗ is a norm onRnk.

Proof. Denotev = (v1, . . . ,vn) wherevi ∈ R
n. By Thm. 1,

the asymptotic distribution ofdm
D (Ak(S1), Ak(S2)) is equal to

∑

1≤i<j≤k

ai,j

∫

Fµ,i,j

p(x)
∣

∣

∣

(

µi − x

x − µj

)⊤(
vi

vj

)

∣

∣

∣
dx, (21)

wherev is as defined in the lemma, andai,j are certain pos-
itive constants dependent onD. Perhaps unexpectedly, it
turns out that this expression defines a norm onv: linearity
and the triangle inequality are easy to show. Also, Eq. (21) is
always non-negative. Finally, Eq. (21) is zero if and only if
v = 0. One direction is trivial. For the other direction, note
that p(·) must be strictly positive for some non-degenerate
subset of some cluster boundary, in order that̂instab(Ak,D)
be positive (which is implied by the assumptions in the the-
orem). From this, it is straightforward to show that ifv 6= 0
then Eq. (21) is larger than0.

Lemma 6. Let v be a non-degenerate normally distributed
random vector inRn, let‖·‖∗ be a norm onRn as defined in
Lemma 5, and letθ ∈ (1/2, 1) be a free parameter. Introduce
the following two parameters which depend onθ:

aθ = 1+
2(1 − θ)

log
(

θ
1−θ

) , bθ = 1−θ+1 − exp(−(erf−1(θ))2)√
πerf−1(θ)

.

Then for anyM, ǫ such thatMbθ > 1 andǫaθ < 1, it holds
that

Pr(‖v‖∗ > ME‖v‖∗) ≤ θ

(

1 − θ

θ

)(1+Mbθ)/2

,

and
Pr(‖v‖∗ ≤ ǫE‖v‖∗) ≤ erf(erf−1(θ)aθǫ).

Proof. The distribution of a norm of a Gaussian random vec-
tor is continuous, except possibly at0 (cf. [3]). For any
θ ∈ (1/2, 1), let medθ be a positive number which satisfies:

Pr(‖v‖∗ ≤ medθ) = θ.

Using two results from the literature on Gaussian mea-
sures in Banach spaces (theorem III.3 in [11], and theorem 1

376

from [8]), we have that for anyM ≥ 1, and for anyǫ ∈ [0, 1],
it holds that:

Pr(‖v‖∗ > Mmedθ) ≤ θ

(

1 − θ

θ

)(1+M)/2

(22)

Pr(‖v‖∗ ≤ ǫmedθ) ≤ erf(erf−1(θ)ǫ). (23)

It remains to convert these bounds on the deviation from
medθ to the deviation fromE‖v‖∗. To achieve this, we need
to upper and lower boundE‖v‖∗/medθ. By substitution of
variables, we have thatE‖v‖∗ is equal to
∫ ∞

0

Pr(‖v‖∗ > t)dt = medθ

∫ ∞

0

Pr(‖v‖∗ > Mmedθ)dM.

Using Eq. (22), this can be upper bounded by

medθ

(

1 +

∫ ∞

1

θ

(

1 − θ

θ

)(1+M)/2

dM

)

,

which after straightforward computations leads toE[‖v‖∗] ≤
medθaθ, whereaθ is as defined in the lemma.

In a similar manner, we can writeE‖v‖∗ as
∫ ∞

0

1 − Pr(‖v‖∗ ≤ t)dt

= medθ

∫ ∞

0

1 − Pr(‖v‖∗ ≤ ǫmedθ)dǫ,

which is lower bounded in term, using Eq. (23), by

medθ

∫ 1

0

1 − erf(erf−1(θ)ǫ)dǫ

Again by straightforward computations, we reach the con-
clusion thatE‖v‖∗ ≥ medθbθ, wherebθ is as defined in the
lemma.

Therefore, we have that ifMbθ > 1, thenPr(‖v‖∗ >
ME‖v‖∗) is upper bounded by

Pr(‖v‖∗ > Mbθmedθ) ≤ θ

(

1 − θ

θ

)(1+Mbθ)/2

.

The other bound in the lemma is derived similarly.

We can now turn to the proof of Thm. 2. By Lemma 5,
both dm

D (Aks(S1), Aks(S2)) and dm
D (Aku(S1), Aku(S2)) con-

verge in distribution to‖vku
‖∗ and‖vks

‖∗, wherevku
,vks

are Gaussian random variables (non-degenerate by the as-
sumptions onΓ andV). By Slutsky’s theorem and the defi-
nition of convergence in distribution,

Pr(dm
D (Aku(S1), Aku(S2)) ≤ 1.1dm

D (Aks(S1), Aks(S2)))

(24)

= Pr(‖vku
‖∗ ≤ 1.1‖vks

‖∗) + o(1).

The combination of Lemma 5 and Lemma 6 allows us to
upper bound the probability that‖vku

‖∗ is smaller than its
expectation by a factorǫ < 1, and upper bound the probabil-
ity that ‖vks

‖∗ is larger than its expectation by some factor
M > 1, provided thatǫ,M satisfy the conditions specified
in Lemma 6.

By a union bound argument, if we chooseM and ǫ so
that1.1M/ǫ ≤ R, whereR is as defined in the lemma, we
get thatPr(‖vku

‖∗ ≤ 1.1‖vks
‖∗) is upper bounded by

θ1

(

1 − θ1
θ1

)((1+M)bθ1
)/2

+ erf(erf−1(θ2)aθ2
ǫ), (25)

for anyθ1, θ2 ∈ (1/2, 1). Choosing different values for them
(as well as the choice of appropriateM, ǫ) leads to differ-
ent bounds, with a trade off between the tightness of the
constants, and minimality requirements onR (which stem
from the requirements onM, ǫ by Lemma 6). Choosing
θ1 = 0.9, θ2 = 0.8, M = 2 log(R)/(bθ1

log(θ1/(1 − θ1))),
ǫ = 1.1M/R, and using the fact that erf(x) ≤ (2/

√
π)x

for any x ≥ 0, we get that Eq. (25) is upper bounded by
(0.3 + 3 log(R))/R for anyR > 3, and therefore Eq. (24) is
upper bounded by(0.3 + 3 log(R))/R+ o(1).

Assume the event

dm
D (Aku(S1), Aku(S2)) > 1.1dm

D (Aks(S1), Aks(S2)), (26)

occurs. Recall that the quantities in Eq. (26) depend on the
unknown underlying distributionD, and therefore cannot be
calculated directly. Instead, we empirically estimate these
quantities (divided by

√
m to be exact), as defined in the

theorem statement, to get the stability estimatorsθ̂ku,4m and
θ̂ks,4m. Thus, even if Eq. (26) occurs, it is still possible that
θ̂ku,4m ≤ θ̂ks,4m. Luckily, by Thm. 2 in [15], the probability
for this, conditioned on the event in Eq. (26) iso(1) (namely,
converges to0 asm → ∞). Therefore, the probability that
Eq. (26) does not occur, or that it does occur but the empirical
comparison of these quantities fail, is(0.3 + 3 log(R))/R+
o(1) as required.

4.3 Proof of Thm. 3

To prove the theorem, we will borrow a setting discussed in
[10] for a different purpose.

Let ∆ be some small positive constant (say∆ < 0.1).
Consider the parameterized family of distributions{Dǫ}
(whereǫ ∈ (0, 1/4)) on the real line, which assigns probabil-
ity mass(1−ǫ)/4 tox = −1 andx = −1−∆, and(1+ǫ)/4
to x = 1 andx = 1 + ∆. Any such distribution satisfies
the requirements of Thm. 1, except continuity. However, as
mentioned in Sec. 2, the theorem only requires continuity in
some region around the boundary points, so we may ignore
this difficulty. Alternatively, we may introduce continuity by
convolution with a small local smoothing operator. For any
ǫ, it is easily seen thatdm

Dǫ
(Ak(S1), Ak(S2)) converges to0 in

probability, since the boundary points between the optimal
clusters have zero density.

Let A1
m,ǫ denote the event where for a sample of size

m drawn i.i.d fromDǫ, there are more instances on{−1 −
∆,−1} than on{1, 1 + ∆}. Also, letA2

m,ǫ denote the event
that for a sample of sizem drawn i.i.d fromDǫ, there are
more instances on{1, 1 + ∆} than on{−1 − ∆,−1}. Fi-
nally, letBm,ǫ denote the event that every point in{−1 −
∆,−1, 1, 1+∆} is hit by at least one instance from the sam-
ple. Clearly, ifA1

m,ǫ ∩Bm,ǫ occurs, then the optimal cluster
centers for the sample are{−1 − ∆,−1, 1 + ∆′} for some
∆′ ∈ [0,∆], and ifA2

m,ǫ ∩ Bm,ǫ occurs, then the optimal

377

cluster centers for the sample are{−1 − ∆′, 1, 1 + ∆} for
some∆′ ∈ [0,∆].

By Thm. 2.1 in [16], for any Bernoulli random variable
X such thatE[X] = p ≤ 1/2, and any whole numbera such
thata/m ≤ 1 − p, if X1, . . . , Xm arem i.i.d copies ofX,
then

Pr

(

1

m

m
∑

i=1

Xi ≥
a

m

)

≥ 1−Φ

(
√

m

p(1 − p)

(a

m
− p
)

)

,

whereΦ(·) is the cumulative normal distribution func-
tion. The probability of the eventA1

m,ǫ is equal to the prob-
ability of a success rate of more than half inm Bernoulli
trials, whose probability of success is(1 − ǫ)/2. Using the
theorem above, we get after a few straightforward algebraic
manipulations and relaxations that

Pr(A1
m,ǫ) ≥ 1 − Φ

(

4√
m

+ 2ǫ
√
m

)

. (27)

The probability of the eventA2
m,ǫ is equal to the proba-

bility of a success rate of less than half inm Bernoulli trials,
whose probability of success is(1−ǫ)/2. By a standard nor-
mal approximation argument, we have that for large enough
values ofm, and for anyǫ ∈ (0, 1/4), it holds that

Pr(A2
m,ǫ) ≥ 1/2. (28)

Finally, it is straightforward to show thatPr(Bm,ǫ) is ar-
bitrarily close to1 uniformly for anyǫ, if m is large enough.
Combining this with Eq. (27), Eq. (28) and the easily proven
formulaPr(A ∩ B) ≥ Pr(A) − Pr(B∁) for any two events
A,B, we get that by choosing a large enough sample size
m > m0, and an appropriate valueǫ, it holds that

Pr(A1
m,ǫ ∩Bm,ǫ),Pr(A2

m,ǫ ∩Bm,ǫ) ≥ 1/2 − ν

for an arbitrarily smallν > 0. For that choice ofm, ǫ, if we
draw and cluster two independent samplesS1, S2 of sizem
fromDǫ, then the probability that eventA1

m,ǫ′ ∩Bm,ǫ occurs
for one sample, andA2

m′,ǫ∩Bm,ǫ occurs for the second sam-
ple, is at least2(1/2−ν)2, or at least1/3 for a small enough
ν. Note that in this case, we get the two different clusterings
discussed above, and

dm
Dǫ

(A3(S1), A3(S2)) =

√
m(1 + ǫ2)

4
>

√
m

4
.

So with a probability of at least1/3 over drawing and
clustering two independent samples, the distance between
the clusterings is more than

√
m/4, as required.

5 Conclusions and Future Work

In this paper, we analyzed the behavior of clustering sta-
bility in the k-means framework. We were able to explic-
itly characterize its asymptotic behavior, concluded that it
does not ’break down’ in the large sample regime, and made
some preliminary observations about the factors influencing
it. These factors appear to be reasonable requirements from
a ’correct’ model, and accords with clustering stability work-
ing successfully in many situations. However, they also im-
ply that clustering stability might sometimes behave unex-
pectedly, for example in hierarchical clustering situations, as
illustrated in subsection 3.3.

There are several directions for future research. The most
obvious perhaps is to extend our results and observations
from the asymptotic domain to the finite sample size domain.
Showing that clustering stability does not ’break down’ in
the large sample regime has theoretical and practical rele-
vance, but leaves open the question of why clustering sta-
bility can work well for small finite samples. One route to
achieve this might be through finite sample guarantees, but as
demonstrated in Thm. 3, additional assumptions are needed
for such results. Also, it would be interesting to perform a
similar analysis for other clustering methods beyond thek-
means framework.

Acknowledgements: The authors wish to thank Gideon
Schechtman and Leonid Kontorovich for providing the nec-
essary pointers for the proof of Thm. 2.

References
[1] Shai Ben-David, Ulrike von Luxburg, and Dávid Ṕal. A

sober look at clustering stability. InProceedings of the Nine-
teenth Annual Conference on Computational Learning The-
ory, pages 5–19, 2006.

[2] Asa Ben-Hur, Andŕe Elisseeff, and Isabelle Guyon. A stability
based method for discovering structure in clustered data. In
Pacific Symposium on Biocomputing, pages 6–17, 2002.

[3] V.I. Bogachev.Gaussian Measures. American Mathematical
Society, 1998.

[4] S. Dudoit and J. Fridlyand. A prediction-based resampling
method for estimating the number of clusters in a dataset.
Genome Biology, 3(7), 2002.

[5] Roger A. Horn and Charles R. Johnson.Matrix Analysis.
Cambridge University Press, 1985.

[6] A. Krieger and P. Green. A cautionary note on using internal
cross validation to select the number of clusters.Psychome-
trika, 64(3):341–353, 1999.

[7] Tilman Lange, Volker Roth, Mikio L. Braun, and Joachim M.
Buhmann. Stability-based validation of clustering solutions.
Neural Computation, 16(6):1299–1323, June 2004.

[8] RafałLatała and Krzysztof Oleszkiewicz. Gaussian measures
of dilatations of convex symmetric sets.Annals of Probability,
27(4):1922–1938, 1999.

[9] Erel Levine and Eytan Domany. Resampling method for unsu-
pervised estimation of cluster validity.Neural Computation,
13(11):2573–2593, 2001.

[10] T. Linder. Principles of nonparametric learning, chapter 4:
Learning-theoretic methods in vector quantization. Number
434 in CISM Courses and Lecture Notes (L. Gyorfi ed.).
Springer-Verlag, New York, 2002.

[11] Vitali D. Milman and Gideon Schechtman.Asymptotic Theory
of Finite Dimensional Normed Spaces. Springer, 1986.

[12] David Pollard. Personal communication.
[13] David Pollard. A central limit theorem for k-means clustering.

The Annals of Probability, 10(4):919–926, November 1982.
[14] Peter Radchenko.Asymptotics Under Nonstandard Condi-

tions. PhD thesis, Yale University, 2004.
[15] Ohad Shamir and Naftali Tishby. Cluster stability for finite

samples. InAdvances in Neural Information Processing Sys-
tems 21, 2007.

[16] E. V. Slud. Distribution inequalities for the binomial law.The
Annals of Probability, 5(3):402–412, June 1977.

[17] Y.L. Tong. The Multivariate Normal Distribution. Springer,
1990.

[18] Aad W. Van Der Vaart and Jon A. Wellner.Weak Conver-
gence and Empirical Processes : With Applications to Statis-
tics. Springer, 1996.

378

Relating clustering stability to properties of cluster boundaries

Shai Ben-David
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, Ontario, Canada

shai@cs.uwaterloo.ca

Ulrike von Luxburg
Max Planck Institute for Biological Cybernetics

Tübingen, Germany
ulrike.luxburg@tuebingen.mpg.de

Abstract

In this paper, we investigate stability-based meth-
ods for cluster model selection, in particular to se-
lect the number K of clusters. The scenario un-
der consideration is that clustering is performed
by minimizing a certain clustering quality func-
tion, and that a unique global minimizer exists. On
the one hand we show that stability can be upper
bounded by certain properties of the optimal clus-
tering, namely by the mass in a small tube around
the cluster boundaries. On the other hand, we pro-
vide counterexamples which show that a reverse
statement is not true in general. Finally, we give
some examples and arguments why, from a theo-
retic point of view, using clustering stability in a
high sample setting can be problematic. It can be
seen that distribution-free guarantees bounding the
difference between the finite sample stability and
the “true stability” cannot exist, unless one makes
strong assumptions on the underlying distribution.

1 Introduction
In the domain of data clustering, the problem of model se-
lection is one of the most difficult challenges. In particular
the question of selecting the number of clusters has drawn a
lot of attention in the literature. A very popular method to
solve this problem is to use a stability-based approach. The
overall idea is that a clustering algorithm with a certain set-
ting of parameters is meaningful for a given input data if it
produces “stable” results, that is, inputs similar to that data
lead to similar clustering results. The other way round, an al-
gorithm which is unstable cannot be trusted. This argument
is then turned into a model selection criterion: to determine
a “good” number K of clusters on a particular data set, one
runs a clustering algorithm with different choices of K on
many perturbed versions of that data set and selects the pa-
rameter K where the algorithm gives the most stable result.

This stability approach has been implemented in various
different ways (e.g., Levine and Domany, 2001, Ben-Hur
et al., 2002, Lange et al., 2004, Smolkin and Ghosh, 2003)
and gains more and more influence in applications, for
example in the domain of bioinformatics (Bittner et al.,

2000, Fridlyand and Dudoit, 2001, Kerr and Churchill,
2001, Bertoni and Valentini, 2007). However, its theoretical
foundations are not yet well understood. While it is a rea-
sonable requirement that an algorithm should demonstrate
stability in general, it is not obvious that, among several
stable algorithms, the one which is most stable leads to the
best performance.

One important situation has been analyzed in Ben-David
et al. (2006) and Ben-David et al. (2007). There it has
been proved that in a setting where clustering is performed
by globally minimizing an objective function, clustering
stability can be characterized by simple properties of the
underlying objective function. Namely, given a data set from
some particular input distribution, a clustering algorithm
is stable for this distribution for large sample sizes if and
only if its objective function has a unique global minimizer
for that input. As several counter-examples have shown,
the latter property is not necessarily related to the fact that
the algorithm constructs the correct number of clusters.
Some examples for this behavior have also been given in
Krieger and Green (1999) (but without rigorous analysis).
The dilemma worked out by Ben-David et al. (2006) and
Ben-David et al. (2007) is not so much that algorithms get
unstable in case of multiple global optima, but the fact that
all algorithms with unique global optima are stable. That
is, for large sample size (in)stability converges to the same
value 0, no matter what parameter K we choose. This result
suggests that for large sample size, stability criteria are
unsuitable for model selection.

While this looks like a very negative result on the first glance,
recent follow-up work by Shamir and Tishby (2008b) and
Shamir and Tishby (2008a) indicates a possible way out of
this trap. In a simple situation where the data is distributed
according to well separated, univariate Gaussians, the au-
thors show that even though the K-means algorithm is stable
for many values of K, the rate of convergence of a rescaled
measure of stability behaves differently for different num-
bers of clusters. In this example, the authors show that a
model selection criterion based on stability can be used to
select the correct number of clusters. The difference to the
approach considered in Ben-David et al. (2006) and Ben-
David et al. (2007) is that the scaling constant in the defi-
nition of stability is chosen as 1/

√
n rather than 1/n. Hence,

the authors consider a central limit theorem setting rather

379

than a law of large numbers. In the central limit theorem
setting, they show that stability does not necessarily con-
verge to 0, but to some normal distribution with particular
parameters. Intuitively this means that stability behaves like
c(K)/

√
n where the constant c(K) depends (in some com-

plicated way) on the number K of clusters. In the simple uni-
variate mixture of Gaussian settings studied in Shamir and
Tishby (2008b) and Shamir and Tishby (2008a), this con-
stant is higher for the ”incorrect” parameter choice. This
work indicates that even for large sample size, stability cri-
teria might be useful for model selection after all. It remains
to be seen whether this approach can successfully extended
to more complex data scenarios reflecting real world data.

The work of Shamir and Tishby (2008b) shows how stability
might be used to select the number of clusters in the setting
of large sample size and unique global optimizer. However,
one crucial question still remains unanswered: what is it re-
ally that stability reflects, how will stable clusterings look
like in general, and what properties will they have? This is
the direction we want to take in our current paper. The gen-
eral setup is similar to the one discussed above, that is we
study clustering algorithms which minimize a certain clus-
tering quality function. As the other case has already been
treated completely in Ben-David et al. (2006) and Ben-David
et al. (2007), we are now solely concerned with the setting
where the clustering quality function has one unique global
optimizer. Our goal is to relate the stability of clustering al-
gorithms (on finite sample sizes) to properties of the optimal
data clustering itself.

One candidate for such a relation is the conjecture that in
the large sample regime, differences in stability of clustering
algorithms can be explained by whether the cluster bound-
aries of the optimal clustering of the underlying space lie in
a low or a high density areas of the underlying space. The
conjecture is that if the boundaries are in low density areas
of the space, an algorithm which constructs clusterings suf-
ficiently close to the optimal clustering will be stable. The
other way round, we expect it to be more unstable if the de-
cision boundaries of the optimal clustering are in a high den-
sity area. The intuition behind this conjecture is simple: if
the decision boundary is in a low density area of the space,
small perturbations of the samples might move the bound-
ary a bit, but this movement of the boundary will only af-
fect the cluster labels of very few points (as there are not
many points close to the boundary). On the other hand, if the
boundary is in a high density area, even small perturbations
in the samples will change the cluster assignments of many
data points. If this conjecture were true, it would have a very
large impact on understanding the mechanism of stability-
based model selection.

In this paper, we first prove one direction of this conjecture:
the quantitative value of stability can be upper bounded by
the mass in a small tube around the optimal clustering bound-
ary. Such a statement has already been implicitly used in
Shamir and Tishby (2008b), but only in a very simple one-
dimensional setting where the cluster boundary just consists
of one single point. The challenge is to prove this statement

in a more general, multidimensional setting.

Unfortunately, it turns out that the opposite direction of the
conjecture does not hold. In general, there can be clusterings
whose decision boundary lies in a high density area, but we
have high stability. We demonstrate this fact with counterex-
amples which also shed light on the reasons for the failure of
this direction of the conjecture.

Finally, we end our paper with a few cautionary thoughts
about using stability in large sample scenarios. Essentially,
we argue that even if one found satisfactory reasons which
explain why a certain clustering tends to be more stable than
an other one, such statements are not very useful for draw-
ing conclusions about stability measures of any given finite
sample size. The reason is that as opposed to the standard
statistical learning theory settings, there cannot exist uniform
convergence bounds for stability. Thus there is no way one
can state any theoretical guarantees on the decisions based
on stability for any fixed sample size, unless one makes very
strong assumptions on the underlying data distributions.

2 Notation and ingredients
2.1 General setup
Let (X , d) denote an arbitrary metric space. For convenience,
in the following we will always assume that X is compact.
By diamX := maxx,y∈X d(x, y) we denote the diameter of
the space. The space of all probability measures on X (with
respect to the Borel σ-algebra) is denoted by M1(X). Let
P be a fixed probability measure on X , and X1, ..., Xn a
sample of points drawn i.i.d. from X according to P . The
empirical measure of this sample will be denoted by Pn.

Let F be a set of admissible clustering functions of the form
f : X → {1, ...,K}, where K ∈ N denotes the number of
clusters. In the following, we will consider clusterings with
respect to the equivalence relation of renaming the cluster
labels. Namely, define the equivalence relation ∼ on F by

f ∼ g : ⇐⇒ ∃π : f(x) = π(g(x))
where π is a permutation of the set {1, ...,K}. Denote by
F := F/∼ the space of equivalence classes of this relation.
This will be the space of clusterings we will work with. To
perform clustering, we will rely on a clustering quality func-
tion Q : F ×M1(X) → R. The optimal “true” clustering of
X with respect to P is defined as

f∗ := argmin
f∈F

Q(f, P).

Throughout this paper we will assume that f∗ is the unique
global optimizer of Q. If this is not the case, it has already
been proved that the corresponding clustering algorithm is
not stable anyway (Ben-David et al., 2006, 2007).

When working on a finite sample, we will use an empirical
quality function Qn : F × M1(X) → R. We consider the
clustering algorithm which, on any given sample, selects the
clustering fn by

fn := argmin
f∈F

Qn(f, Pn).

380

Note that implicit in this formulation, one makes the
assumption that the clustering algorithm is able to detect
the global minimum of Qn. Of course, this is not the
case for many commonly used clustering algorithms. For
example, the standard K-means algorithm is not guaranteed
to do so. Even though in applications, experience shows
that the K-means algorithm is reasonably successful on
“well-clustered” data sets, to get provable guarantees
one has to revert to other algorithms, such as the nearest
neighbor clustering introduced in von Luxburg et al. (2008)
or approximation schemes such as the one introduced in
Ostrovsky et al. (2006).

In the following, we will only deal with clustering algo-
rithms which are statistically consistent, that is Q(fn, P) →
Q(f∗, P) in probability. It has been proved that minimizing
well-known objective functions such as the one used by K-
means or the normalized cut used in spectral clustering can
be performed consistently (von Luxburg et al., 2008).

For two independent samples {X1, ..., Xn} and {X ′
1, ..., X

′
n}

denote the clustering solutions based on minimizing a quality
function Qn by fn and f ′n, respectively. For a given distance
function D : F × F → R which measures some kind of
distance between clusterings, the instability of the clustering
algorithm minimizing the quality function Q based on sam-
ple size n is defined as

InStabD(Q,n, P) := E (D(fn, f ′n))

where the expectation is over the random drawing of the two
samples. So, the stability (or instability) is a function of sev-
eral quantities: the input data distribution P , the clustering
algorithm (defined by the quality function Q that the algo-
rithm optimizes), the sample size n, and the clustering dis-
tance measure used. Unless otherwise mentioned, we shall
be using the minimal matching distance (see below) for the
definition of instability and drop the subscript D in the insta-
bility notation. Also, if it is clear which objective function Q
we refer to, we drop the dependence on Q, too, and simply
write InStab(n, P) for instability.

2.2 Distance functions between clusterings
Various measures of clustering distances have been used and
analyzed in the literature (see for example Meila, 2005). We
define below two measures that our most relevant to our dis-
cussion.

Minimal matching distance. This is perhaps the most widely
used distance between clusterings. For two clusterings de-
fined on a finite point set X1, ..., Xn, this distance is defined
as

DMinMatch(fn, f ′n) := min
π

1
n

n∑
i=1

1f(Xi)6=π(g(Xi))

where the minimum is taken over all permutations π of the
set {1, ...,K}. This distance is close in spirit to the 0-1-
loss used in classification. It is well known that DMinMatch
is a metric, and that it can be computed efficiently using a
minimal bipartite matching algorithm.

A distance based on cluster boundaries. For our current
work, we need to introduce a completely new distance be-
tween clusterings. Intuitively, this distance measures how far
the class boundaries of two clusterings are away from each
other. Let X be a compact subset of Rs, d a metric on Rs

such as the Euclidean one, and F the space of all clustering
functions f : X → {1, ...,K}, up to the equivalence relation
∼. For a given f ∈ F , we define the boundary B(f) of f
as the set

B(f) := {x ∈ X | f discontinuous at x}.
The distance of a point x to the boundary B(f) is defined as
usual by

d(x,B(f)) := inf{d(x, y) | y ∈ B(f)}.
For γ > 0, we then we define the tube Tγ(f) as the set

Tγ(f) := {x ∈ X | d(x, B(f)) ≤ γ}.
For γ = 0 we set T0(f) = B(f).

We say that a clustering function g is in the γ-tube of f ,
written g / Tγ(f), if

∀x, y 6∈ Tγ(f) : f(x) = f(y) ⇐⇒ g(x) = g(y).

Finally, we define the distance function Dboundary on F as

Dboundary(f, g) := inf
γ>0

{f / Tγ(g) and g / Tγ(f)}.

The distance Dboundary satisfies several nice properties:

Proposition 1 (Properties of Dboundary) Assume that the met-
ric space X ⊂ Rs is compact. Let F be the set of equiva-
lence classes of clustering functions f : X → {1, ...,K} as
defined above. Then the following technical properties hold:

1. Dboundary is well-defined on the equivalence classes.
2. Let f, g ∈ F . Then: g / Tγ(f) implies that B(g) ⊂

Tγ(f).
3. Let f, g two clusterings with Dboundary(f, g) ≤ γ. Then

there exists a permutation π such that for all x ∈ X ,

f(x) 6= π(g(x)) =⇒ x ∈ Tγ(g).

Furthermore, the following fundamental properties hold:

5. The distance function Dboundary is a metric on F .
6. F is relatively compact under the topology induced by

Dboundary.

Proof.

1. The definitions of all quantities above do not depend on
the particular labeling of the clusters, but only on the
positions of the cluster boundaries.

2. Let g / Tγ(f), but assume that B(g) 6⊆ Tγ(f). That
is, there exists a point x ∈ B(g) with x 6∈ Tγ(f). By
definition of B(g), x is a point of discontinuity of g,
thus the clustering g changes its label at x. On the other
hand, by the definition of Tγ(f), f does not change its
label at x (otherwise, x would be in B(f) ⊂ Tγ(f)).
But the latter contradicts the definition of g / Tγ(f)
which requires that f and g only change their labels at
the same points outside of Tγ(f). Contradiction.

381

3. Similar to Part 2.

4. Dboundary(f, g) ≤ diamX < ∞: As X is compact,
it has a finite diameter diamX . Then for all f, g ∈
F we have TdiamX (f) = X and TdiamX (g) = X .
Thus, trivially f / TdiamX (g) and vice versa, that
is Dboundary(f, g) ≤ diamX .

Dboundary(f, g) ≥ 0: clear.

Dboundary(f, f) = 0: clear.

Dboundary(f, g) = 0 =⇒ f = g: Dboundary(f, g) = 0
implies that B(f) ⊂ T0(g) = B(g) and vice versa,
thus we have B(f) = B(g). So the class boundaries
of both clusterings coincide. Moreover, we have that
for all x, y 6∈ B(g), f(x) = f(y) ⇐⇒ g(x) = g(y).
Thus there exists a permutation of the labeling of g such
that f(x) = π(g(x)) for all x 6∈ B(g). Thus f and g
are in the same equivalence class with respect to∼, that
is f = g in the space F .

Triangle inequality: assume that Dboundary(f, g) = γ1

and Dboundary(g, h) = γ2, that is

∀x, y 6∈ Tγ1(f) : [f(x) = f(y) ⇐⇒ g(x) = g(y)]
∀x, y 6∈ Tγ1(g) : [f(x) = f(y) ⇐⇒ g(x) = g(y)]
∀x, y 6∈ Tγ2(g) : [h(x) = h(y) ⇐⇒ g(x) = g(y)]
∀x, y 6∈ Tγ2(h) : [h(x) = h(y) ⇐⇒ g(x) = g(y)].

(1)

Now define γ := γ1+γ2. We first need to prove a small
sub-statement, namely that

x 6∈ Tγ(f) =⇒ x 6∈ Tγ2(g). (2)

To this end, let x ∈ Tγ2(g), that is there exists some
point y ∈ B(g) with d(x, y) ≤ γ2. As we know that
g / Tγ1(f), we also have B(g) ⊂ Tγ1(f), that is for
all y ∈ B(g) exists z ∈ B(f) such that d(y, z) ≤ ε1.
Combining those two statements and using the triangle
inequality for the metric d on the original space X , we
can conclude that d(x, z) ≤ d(x, y) + d(y, z) = γ1 +
γ2 = γ, that is x ∈ Tγ(f). This shows statement (2) by
its contra-position. Now we can go ahead and prove the
triangle inequality for Dboundary. Using the property (2)
and the equations (1) we get that

x, y 6∈ Tγ(f) =⇒ x, y 6∈ Tγ2(g)
=⇒ [g(x) = g(y) ⇐⇒ h(x) = h(y)].

Moreover, by the definition of Tγ(f) and the fact that
γ ≥ γ1 we trivially have that x, y 6∈ Tγ(f) implies
x, y 6∈ Tγ1(f). Together with equations (1) this leads to

x, y 6∈ Tγ(f) =⇒ x, y 6∈ Tγ1(f)
=⇒ [g(x) = g(y) ⇐⇒ f(x) = f(y)].

Combining those two statements we get

x, y 6∈ Tγ(f) =⇒ [f(x) = f(y) ⇐⇒ h(x) = h(y)],

that is h / Tγ(f). Similarly we can prove that f /
Tγ(h), that is we get Dboundary(f, h) ≤ γ. This proves
the triangle inequality.

All statements together prove that Dboundary is a metric.

5. By the theorem of Heine-Borel, a metric space is rel-
atively compact if it is totally bounded, that is for any
γ > 0 it can be covered with finitely many γ-balls. By
assumption, we know that X is compact. Thus we can
construct a finite covering of balls of size γ of X (in
the metric d). Denote the centers of the covering balls
as x1, ..., xs. We want to use this covering to construct
a finite covering of F . To this end, let f ∈ F be an
arbitrary function (for now let us fix a labeling, we will
go over to the equivalence class in the end). Given f ,
we reorder the centers of the covering balls such that
all centers xi with xi 6∈ T2γ(f) come in the ordering
before the points xj with xj ∈ T2γ(f), that is:

xi 6∈ T2γ(f) and xj ∈ T2γ(f) =⇒ i < j.

Now we construct a clustering f̃ as follows: one after
the other, in the ordering determined before, we color
the balls of the covering according to the color f(xi) of
its center, that is we set:

• x ∈ B(x1) =⇒ f̃(x) := f(x1)

• x ∈ B(x2) \B(x1) =⇒ f̃(x) := f(x2)
...

• x ∈ B(xi) \ ∪t=1,...,i−1B(xt) : f̃(x) := f(xi)

By construction, for all points x 6∈ Tγ(f) we have f̃(x) =
f(x). Consequently, f̃ / Tγ(f). Similarly, the other
way round we have f / Tγ(f̃). Thus, Dboundary(f, f̃) ≤
γ. Note that given two representatives f, g of the same
clustering in F (that is, two functions such that f =
π(g) for some permutation π), the corresponding func-
tions f̃ and g̃ are also representatives of the same clus-
tering, that is f̃ = π(g̃). Thus the whole construction is
well-defined on F .

Finally, it is clear that the set F̃ := {f̃ | f ∈ F} has
finitely many elements: there only exist finitely many
orderings of the s center points x1, ..., xs and finitely
many labelings of those center points using K labels.
Hence, the set F̃ forms a finite γ-covering of F .

,

In the current paper, we will only use the distance Dboundary
for clusterings of Rs, but its construction is very general.
The distance Dboundary can also be defined on more general
metric spaces, and even discrete spaces. One just has to give
up defining B(f) and directly define the set Tγ(f) as the set
{x ∈ X | ∃y ∈ X : f(x) 6= f(y) and d(x, y) ≤ ε}. How-
ever, in that case, some care has to be taken when dealing
with “empty regions” of the space.

382

3 Upper bounding stability by the mass in
γ-tubes

In this section we want to establish a simple, but potentially
powerful insight: given any input data distribution, P , for
large enough n, the stability of a quality-optimizing consis-
tent clustering algorithm can be described in terms of the P -
mass of along the decision boundaries of the optimal clus-
tering. The intuition is as follows. The distance DMinMatch
counts the number of points for which two clusterings do
not coincide, that is it counts the number of points which
lie “between” the decision boundaries of the two clusterings.
Stability is the expectation over DMinMatch, computed on dif-
ferent random samples.

3.1 Relation between stability and tubes
Let us first assume that we know that with high proba-
bility over the random drawing of samples, we have that
Dboundary(fn, f) ≤ γ for some constant γ. Then the follow-
ing proposition holds:

Proposition 2 (Relating stability and mass in tubes) Let
f be any fixed clustering, and fn the clustering computed
from a random sample of size n. Assume that with proba-
bility at least 1 − δ over the random samples, we have that
Dboundary(fn, f) ≤ γ. Then the instability (based on distance
DMinMatch) satisfies

InStab(n, P) ≤ 2δ + 2P (Tγ(f)).

Proof. Denote the set of samples on which the event
Dboundary(fn, f) ≤ γ is true by M . W.l.o.g. assume that
for all n, the labels of the clustering fn are chosen such that
they already coincide with the ones of f , that is the permu-
tation for which the minimum in DMinMatch(fn, f) is attained
is the identity. Then we have:

InStab(n, P) = E(DMinMatch(fn, f ′n))

≤ E(DMinMatch(fn, f) + DMinMatch(f ′n, f))
= 2EDMinMatch(fn, f)

= 2
∫

M

1fn(X)6=f(X) dP (X) + 2
∫

Mc

1fn(X)6=f(X) dP (X)

(on M, fn(x) 6= f(x) =⇒ x ∈ Tγ(f), see Prop. 1)

≤ 2
∫

M

1X∈Tγ(f) dP (X) + 2P (M c)

= 2P (Tγ(f) + 2δ

,

Proposition 2 gives several very plausible reasons for why a
clustering can be unstable:
• The decision boundaries themselves vary a lot (i.e., γ is

large). This case is pretty obvious.
• The decision boundaries do not vary so much (i.e., γ is

small), but lie in an area of high density. This is a more
subtle reason, but a very valuable one. It suggests that if
we compare two clusterings, one of them has its cluster
boundary in a high density area and the other one in a low
density area, then the first one tends to be more unstable

than the second one. However, to formally analyze such
a comparison between stability values of different algo-
rithms, one also has to prove a lower bound on stability,
see later.

• The decision boundaries do not vary so much (i.e., γ
is small), are in a region of moderate density, but they
are very long, so significant mass accumulates along the
boundary.

3.2 Determining the width γ in terms of the limit
clustering

Now we want to apply the insight from the last subsection
to relate properties of the optimal clustering to stability. In
this section, we still want to work in an abstract setting, with-
out fixing a particular clustering objective function. In order
to prove our results, we will have to make a few crucial as-
sumptions:
• The objective function Q has a unique global minimum.

Otherwise we know by Ben-David et al. (2006) and Ben-
David et al. (2007) that the algorithm will not be stable
anyway.

• The clustering algorithm is consistent, that is
Q(fn, P) → Q(f∗, P) in probability. If this as-
sumption is not true, any statement about the stability on
a finite sample is pretty meaningless, as the algorithm
can change its mind with the sample size. For example,
consider the trivial algorithm which returns a fixed func-
tion f1 if the sample size n is even, and another fixed
function f2 if the sample size is odd. This algorithm is
perfectly stable for every n, but since the results do not
converge, it is completely meaningless.

• The sample size n is sufficiently large so that
Q(fn) − Q(f∗) is sufficiently small: fn is inside
the region of attraction of the global minimum. With
this assumption we want to exclude trivial cases where
instability is induced due to too high sample fluctuations.
See also Section 5 for discussion.

To state the following proposition, we recall the definition of
a quasi-inverse of a function. The quasi-inverse of a function
is a generalization of the inverse of a function to cases where
the function is not injective. Let f : X → Y be a function
with range rg(f) ⊂ Y . A function g : rg(f) → X which
satisfies f ◦ g ◦ f = f is called a quasi-inverse of f . Note
that quasi-inverses are not unique, unless the function f is
injective.

Proposition 3 (Consequences of unique global optimum)
Let (X , d) a compact metric space with probability distribu-
tion P , andF the space of P -measurable clusterings with K
clusters on X . As a topology on F , consider the one induced
by the distance Dboundary. Let Q := Q(·, P) : F → R be
continuous and assume that it has a unique global minimizer
f∗. Then, every quasi-inverse Q−1 : rg(Q) ⊂ R → F is
continuous at Q(f∗). In particular, for all γ > 0 there exists
some ε(γ, f∗, P) > 0 such that for all f ∈ F ,

|Q(f, P)−Q(f∗, P)| ≤ ε =⇒ Dboundary(f, f∗) ≤ γ.
(3)

383

Proof. Assume Q−1 is not continuous at Q(f∗), that is
there exists a sequence of functions (gn)n ⊂ F such that
Q(gn) → Q(f∗) but gn 6→ f∗. By the compactness as-
sumption, the sequence (gn)n has a convergent subsequence
(fnk

)k with fnk
→ f̃ for some f̃ ∈ F . Also by assumption,

we can find such a subsequence such that f̃ 6= f∗. By the
continuity of Q we know that Q(fnk

) → Q(f̃), and by the
definition of (gn)n we know also that Q(fnk

) → Q(f∗). So
we know that Q(f∗) = Q(f̃), and by the uniqueness of the
optimum f∗ this leads to f∗ = f̃ . Contradiction. ,

Note that the “geometry of Q” plays an important role in this
proposition. In particular, the size of the constant ε heavily
depends on the “steepness” of Q in a neighborhood of the
global optimum and on “how unique” the global optimum is.
We formalize this by introducing the following quantity:

UQ
P (γ) := sup

{
ε > 0 :

|Q(f, P)−Q(f∗, P)| ≤ ε =⇒ Dboundary(f, f∗) ≤ γ
}

.

One can think of UQ
P as indicating how unique is the optimal

clustering f∗ of P is.

The following theorem bounds the stability of a clustering
algorithm on a given input data distribution by the mass it
has in the tube around the decision boundary. It replaces the
assumption of uniform convergence of the empirical cluster-
ings under the Dboundary metric of Proposition 2 by the more
intuitive assumption that the underlying clustering algorithm
is uniformly consistent. That is, Q(fn, P) → Q(f∗, P) in
probability, uniformly over all probability distributions P :

∀ε > 0 ∀δ > 0 ∃n ∈ N ∀P :
P (|Q(fn, P)−Q(f∗, P)| > ε) ≤ δ.

In particular, for any positive ε and δ, the required sample
size n does not depend on P . Such an assumption holds, for
example, for the algorithm constructing the global minimum
of the K-means objective function, as shown by Ben-David
(2007). For background reading on consistency of clustering
algorithms and bounds for many types of objective function
see von Luxburg et al. (2008). When such uniform consis-
tency holds for Q, let us quantify the sample size by defining

CQ(ε, δ) := min
{

m ∈ N :

∀P ∀n ≥ m P (|Q(fn, P)−Q(f∗, P)| > ε) ≤ δ
}

.

We can now provide a bound on stability which refers to
the following quantities: the uniqueness UQ

P of the optimal
clustering, the consistency CQ of the quality measure, and
the P -weight of the tubes around the optimal clustering of
the input data distribution.

Theorem 4 (High instability implies cut in high density
region) Let X be a compact subset of Rs, Assume that the
cluster quality function Q(·, P) : F → R is continuous
with respect to the topology on F induced by Dboundary. Let

Q(·, P) have a unique global minimizer f∗, and assume that
Q(·, P) can be minimized uniformly consistently, Then, for
all γ > 0 and for all δ > 0,
if

n ≥ CQ(UQ
P (γ), δ)

then

InStab(n, P) ≤ 2δ + 2P (Tγ(f∗)).

Proof. By definition of CQ we know that if n ≥
CQ(UQ

P (γ), δ) then we have that

P (|Q(fn, P)−Q(f∗, P)| ≤ UQ
P (γ)) > 1− δ.

By definition of UQ
P (γ) we know that if

|Q(fn, P) − Q(f∗, P)| ≤ UQ
P (γ), then we have that

Dboundary(fn, f∗) ≤ γ. Together this means that whenever
n ≥ CQ(UQ

P (γ), δ) then with probability at least 1 − δ we
have that Dboundary(fn, f∗) ≤ γ. Now the statement of the
theorem follows by Proposition 2. ,

3.3 Application to particular objective functions
In this subsection we briefly want to show that the condi-
tions in Theorem 4 are satisfied for many of the commonly
used clustering quality functions. The major conditions to
investigate are the consistency condition and the condition
that Q is continuous with respect to Dboundary on F .

K-means objective function. The empirical K-means ob-
jective function Qn on a finite sample of n points is defined
as

Qn(f) =
1
n

n∑
i=1

K∑
k=1

1f(Xi)=k‖Xi − ck‖2

where ci denote the cluster centers. Its continuous counter-
part is the quality function

Q(f) =
∫ K∑

k=1

1f(X)=k‖X − ck‖2 dP (X).

Assume that on any finite sample, the clustering algorithm
returns the global optimizer of the empirical K-means func-
tion. Then it is known that this empirical optimizer con-
verges to the true optimum uniformly over all probability
distributions (e.g., Corollary 8 in Ben-David, 2007). (How-
ever, note that this guarantee does not apply to the standard
K-means algorithm, which only constructs local optima of
the empirical quality function.)
Moreover, the K-means objective function is continuous
with respect to Dboundary, as can be seen by the following
proposition:

Proposition 5 (Continuity of K-means wrt. Dboundary)
Let X ⊂ Rs compact, and P a probability distribution on X
with a density with respect to the Lebesgue measure. Then
the K-means quality function Q is continuous with respect
to Dboundary.

384

Proof. Assume f and g are two K-means clusterings with
distance Dboundary(f, g) ≤ γ. W.l.o.g. assume that the la-
beling of g is permuted such that outside of the γ-tubes, the
labels of f and g coincide. Denote the complement of a set
T by T c. Then we can compute:

Q(g) =
∫ K∑

k=1

1g(X)=k‖X − ck(g)‖2 dP (X)

≤
∫ K∑

k=1

1g(X)=k‖X − ck(f)‖2 dP (X)

=
∫

Tγ(f)c

K∑
k=1

1g(X)=k‖X − ck(f)‖2 dP (X)

+
∫

Tγ(f)

K∑
k=1

1g(X)=k‖X − ck(f)‖2 dP (X)

(now on Tγ(f)c : f(X) = k ⇐⇒ g(X) = k)

=
∫

Tγ(f)c

K∑
k=1

1f(X)=k‖X − ck(f)‖2 dP (X)

+
∫

Tγ(f)

K∑
k=1

1g(X)=k‖X − ck(f)‖2 dP (X)

≤ Q(f) + diam(X)2 · P (Tγ(f)).
By the symmetry in f and g this leads to

|Q(g)−Q(f)| ≤ diam(X)2 ·max{P (Tγ(f)), P (Tγ(g))}.
Finally, the assumption g / Tγ(f) implies that Tγ(g) ⊂
T2γ(f). Thus we finally get that

|Q(f)−Q(g)| ≤ diam(X)2 · P (T2γ(f)),
which shows the continuity of Q at function f , that is

∀f ∀γ ∃δ ∀g : Dboundary(f, g) ≤ δ =⇒ |Q(f)−Q(g)| ≤ γ.

,

Case of graph cut objective functions. As an example,
consider the normalized cut objective function, which is de-
fined as follows. Let s : Rd × Rd → R+ be a similar-
ity function which is upper bounded by a constant C. For
a given cluster described by the cluster indicator function
fk : Rd → {0, 1}, we set
cut(fk) := cut(fk, P) := Efk(X1)(1− fk(X2))s(X1, X2)
vol(fk) := vol(fk, P) := Efk(X1)s(X1, X2)
For a clustering function f ∈ F we can then define the nor-
malized cut by

Ncut(f) := Ncut(f, P) :=
K∑

k=1

cut(fk)
vol(fk)

.

In Bubeck and von Luxburg (2007) it has been proved that
there exists an algorithm such that Ncut can be minimized
uniformly consistently. So it remains to be shown that Ncut
is continuous with respect to Dboundary.

Proposition 6 (Continuity of Ncut wrt. Dboundary) Let
X ⊂ Rs compact, and P a probability distribution on X
with a density with respect to the Lebesgue measure. For a
fixed constant C > 0, let FC be the space of all clusterings
f : X → {1, ...,K} such that all clusters have a minimal
P -mass C. Then the Ncut objective function is continuous
with respect to Dboundary on FC .

Proof. The proof is very similar to the one for the K-means
case, thus we just provide a sketch. We consider the
enumerator and denominator of Ncut separately. As for
the K-means case, one splits the integrals over X in a sum
of the integrals over Tγ(f) and Tγ(f)c. Both parts are
dominated by the contributions from points in T c

γ , and the
contributions from inside the tubes can be bounded by some
constant times the mass in the tubes. This leads to a similar
argument as in the K-means case. ,

Explicit form of the constant γ. We have seen that Theorem
4 can be applied to several of the standard clustering objec-
tive functions, such as the K-means one and the normalized
cut. What remains a bit vague is the exact functional form
of the constant γ in this theorem. Essentially, this constant
is the result of an existence statement in Proposition 3. For
the case of K-means, it is possible to upper bound this con-
stant by using the tools and methods from Meila (2006) and
Meila (2007). There it has been proved in a finite sample set-
ting that under certain conditions, if |Q(f)−Q(g)| is small,
then also the DMinMatch(f, g) is small. For K-means, one can
show that small DMinMatch(f, g) implies small Dboundary. Fur-
thermore, all quantities used in the finite sample results of
Meila (2006) need to be carried over to the limit setting. For
example, the eigenvalues of the similarity matrices have to be
replaced by eigenvalues of the corresponding limit operators,
for example by using results from Blanchard et al. (2007).
Combining all those arguments leads to an explicit upper
bound for the constant γ in Theorem 4 for the K-means ob-
jective function. However, this upper bound became so tech-
nical that we refrain from deriving it in this paper. A similar
argument might be possible for the normalized cut, as the
results of Meila (2007) also cover this case. However, we
have not worked out this case in detail, so we do not know
whether it really goes through. If it does, the result is likely
to look even more complicated than in the K-means case.

3.4 High-density boundaries do not imply instability
In the following example we demonstrate that, in some
sense, the converse of Theorem 4 fails. We construct a data
distribution over the two-dimensional plane for which the 2-
means clustering has high probability mass in a narrow tube
around the optimal clustering boundary, and yet the instabil-
ity levels converge to zero fast (as a function of the sample
sizes).

Example 1 Let P ν
η be a mixture distribution consisting

of the following components (see Figure 1 for illustra-
tion). Define the sets A = {−1} × [−1, 1], B =
{1} × [−1, 1], C = {(−η, 0)}, and D = {(η, 0)}. Let
UA and UB be the uniform distributions on A and B,
and δC and δD the probability distributions giving weight

385

1 to the point C and D, respectively. Define P ν
η =

1
2 ((1− ν)(UA + UB) + ν(δC + δD)). Namely, the distri-
bution that allocates weight ν/2 to each of the singleton
points C and D, and the rest of its weight is uniformly spread
over the two vertical intervals at x = −1 and at x = 1.

X

1 1

η η

A BC D

1

1

0
X

Figure 1: Illustration of Example 1

Clearly, the optimal 2-means clustering, f∗, divides the
plane along the y axis. It is straight forward to see that if
the parameters η and ν are, say, η = 0.01 and ν = 0.2, then
the following statements hold:

1. For γ comparable to the variance of Dboundary(fn, f∗),
the γ-tube around this optimal boundary includes the
points C and D and therefore has significant weight,
namely P (Tγ(f∗)) = ν.

2. InStab(n, P ν
η) goes to zero exponentially fast (as a

function of n).
To see this, note that as long as both of the cluster cen-
ters are outside the interval, [−1+η, 1−η], the cluster-
ing will be fixed (cutting along the y axis). This condi-
tion, in turn, holds whenever the sample S satisfies

|S ∩A| > 20|S ∩ C|

and
|S ∩B| > 20|S ∩D|

(’20’here just stands for ’many times’). Note that
these conditions are implied by having, for every T ∈
{A,B,C, D},∣∣∣∣ |S ∩ T |

|S|
− P (T)

∣∣∣∣ < 0.01

Finally, note that, by the Chernoff Bound, the probabil-
ity (over samples S of size n) that this condition fails
is bounded by c′e−cn for some constants c, c′. Conse-
quently, for every sample size, n,

InStab(n, P ν
η) ≤ c′e−cn

3. For any ε > 0, P (|Q(fn) − Q(f∗)| > ε) goes to zero
exponentially fast with n.

Thus, while the preconditions of Theorem 4 hold, in spite of
having γ-tubes with significant P -weight, the instability val-
ues are going to zero at an extremely fast rate. The reason
is that the sample fluctuations will move the cluster centers
up and down in a rather narrow tube around the two vertical
intervals. The resulting fluctuations of the empirical clus-
tering boundary will (with overwhelming probability) keep
the boundary between the points C and D. Therefore the
instability will practically be zero (no points change cluster
membership). On the other hand, those up and down sample-
based fluctuations of cluster centers cause the boundary be-
tween the two empirical clusters to rotate around the origin
point (for example, if the cluster center corresponding to A
sits above the x-axis, and the center corresponding to B sits
below the x-axis). Such rotations result in relatively high
expected value for the Dboundary distance between the sam-
ple based empirical clusterings and the optimal clustering.
These fluctuations could even be be made larger by concen-
trating the probability weight of the two vertical intervals at
the end points of these intervals.
Furthermore, the phenomena of having significant weight in
Tγ(f∗), for small γ (i.e., comparable to the variance of the
cluster centers) and yet retaining negligible instability can be
shown for arbitrarily large sample sizes. Given any sample
size n, one can choose η small enough so that, in spite of
the decrease in the expected Dboundary empirical-to-optimal
distances (due to having large samples), the points C and D
will remain inside the Tγ(f∗), for γ equal the variance of
that Dboundary distance. Such a choice of parameters can be
done while retaining the property that empirical clusterings
are unlikely to move these points between clusters, and
hence the stability.

High boundary density version: Example 1 has large
weight on the γ-tube around the boundary of its optimal
clustering partition. Yet, the value of the probability den-
sity function on the boundary is zero. One can construct a
similar example, in which the probability density along the
boundary itself is high, and yet the data has close-to-zero
instability.

Example 2 Similar to the example above, we consider a
mixture distribution made up of three parts: S and T are
the vertical intervals S = {−1} × [−1/2, 1/2] and T =
{1} × [−1/2, 1/2]. However, now the third component is a
the rectangle R = [−η, η]× [−1, 1]. Our data space is then
defined as X := R ∪ S ∪ T , and as probability distribution
we choose Dν

η = (1− ν)/2 · (US + UT) + ν · UR. Finally,
we define a distance dX on this space by letting dX (a, b) be
the usual Euclidean distance whenever a and b belong to the
same component of X , and dX (a, b) is defined as the dis-
tance between the projections of a and b on the x-axis when-
ever a and b belong to different components. Note that this
metric is not Euclidean and that S∪R∪T is our full domain
space, not the real plane.

Once again the optimal 2-means clustering splits the space
along the y-axis. However, now this boundary has signifi-
cantly high density. Yet, we claim that Dν

η instability goes
to zero exponentially fast with the sample size. Intuitively,
this is because the up and down fluctuations of the centers

386

R

η η

1

1

TS

Figure 2: Illustration of Example 2

of the two clusters do not perturb the boundary between the
two clusters.
More concretely, say we pick η < 0.01 and ν = 0.1. we
wish to show that, with high probability over the choice of
samples, the 2-means optimal sample clustering has its clus-
ter centers in the sets S and T . Note that by our choice of
distance function, if one center is in S and the other is in T
then the clustering cuts our domain set along the y axis (re-
gardless of the y coordinates of the centers).
Since our domain set equals S ∪ R ∪ T (there are no other
points in our domain space), it suffices to show that it is un-
likely that a sample based clustering will have a cluster cen-
ter in the set R. To see that, note that if for some sample W ,
the 2-means cost clustering based on W has a cluster center,
say of the left-hand cluster, is in R then the 2-means cost of
that clustering is at least |S ∩W |0.99. On the other hand, if
the center of that cluster is in S then the 2-means cost of that
cluster is at most |S ∩W |0.25 + |W ∩R|(1.01)2. It follows
that, as long as |W ∩ R| < 0.11|W | the optimal 2-means
clustering of the sample W will have one cluster center in S
and the other cluster center in T . We can now apply a sim-
ilar argument to the one used for example 1. Namely, note
that as long as the empirical weight of each of the three data
components is within 0.01 of its true weight it will indeed be
the case that |W ∩R| < 0.11|W |. It therefore follows, by the
Chernoff Bound, that the probability of having a sample W
violate this condition is bounded by c′e−c|W | for some con-
stants c, c′. Consequently, except for such minuscule proba-
bility, the clustering always splits our domain set along the y
axis. Consequently the 2-means instability of our data distri-
bution is exponentially small (in the sample size).

4 Some inherent limitations of the stability
approach in the large sample regime

We consider a setting in which one tries to gain insight
into the structure of some unknown data set (or probability
distribution over such a set) by sampling i.i.d. from that set.
A major question is when can such samples be considered a
reliable reflection of structure of that unknown domain. This
is the typical setting in which notions of stability are applied.
The most common use of stability is as a model selection
tool. In that context stability is viewed as an indication that a
clustering algorithm does the ”right thing” and, in particular,
that its choice of number of clusters is ”correct”. The work

of Shamir and Tishby (2008b) as well as the analysis in this
paper claim that stability can be viewed as an indication that
the clusters output by an algorithm are ”correct” in the sense
of having their boundaries pass through low-density data
regions.

However, all such results relate the desired clustering proper-
ties to the eventual values of stability when the sample sizes
grow unboundedly. Since in applications a user always ex-
amines finite size samples, the reliability of stability as a
model selection tool requires the bound on the rate by which
stabilities over n-size samples converge to their limit values
to be uniform over the class of potential data distributions.
We show below that no such bounds hold. Arbitrarily large
sample sizes can have arbitrarily misleading stability values.
The implications of stability values discussed in these pa-
pers kick in for sample sizes that depend upon the data dis-
tribution, and are therefore not available to the user in most
practical applications. We are going to analyze this behavior
based on the following example.

Example 3 Consider the following probability distribution
over the two dimensional plane (see Figure 3). Let B be
the disk {(x, y) : (x − 1)2 + y2 ≤ 1/2}, let C be the disk
{(x, y) : (x + 1)2 + y2 ≤ 1/2}. Let x0 be the point (0,M)
for some large positive M (say, M = 100). Given ε > 0, let
PM

ε be the probability distribution defined as PM
ε = εδx0 +

(1−ε)/2(UB+UC) (in the notation of the example in Section
3.4), where ε is some small number, say ε = 0.01.

x

1 1

Point x0

M Disc BDisc C

Figure 3: Illustration of Example 3

No distribution-free stability convergence rates possible.
Consider the distribution of Example 3, and let A be an
algorithm that finds an optimal 2-means solution for every
input data set. For n rather small, a sample of n points is
rather unlikely to contain the point x0 as it has a very small
mass on it. In those cases, the algorithm A will cluster
the data by vertically splitting between the disks B and C.
Thus, InStab(n, PM

ε) computed on such a data set is very
low. However, as the sample size grows, the probability that
a sample will contain the point x0 becomes significant. Now
observe that as we chose M to be very large, then whenever
x0 is a member of a sample S the optimal 2-clustering of
S will have one of its center points at x0. Consequently, as
long as n is such that a significant fraction of the n-samples
pick x0 and a significant fractions of the samples miss it,
InStab(n, PM

ε) is very high. Finally, when the sample size
are large enough to guarantee that hardly any sample misses

387

x0, stability is regained.

All in all we have constructed an example of a probability
distribution where the 2-means optimizing algorithm is very
stable for sample size n, is very unstable for some sample
size n′ > n and converges to perfect stability as the sample
sizes go to infinity. By playing with the parameters of PM

ε
one can in particular adjust the sample size n′ for which the
instable regime holds. As a consequence, there cannot be a
distribution-free convergence rate for stability.

It is also worth while to note that throughout the above
family of distributions (for all non-degenerate values of M
and ε), the optimal clustering has a wide tube of zero-density
around it. Just the same, for arbitrarily large values of n′,
n′-size samples display large instability. In particular, this
example shows that the assumption “Dboundary(fn, f) ≤ γ”
in Proposition 2, is indeed necessary.

Stability does not imply close-to-optimal clustering cost.
Proposition 2 states that when sample sizes are such that the
sample based clustering quality is close to its optimal value,
and if that optimum is achieved with low-density tubes, then
the value of instability is low. Example 3 shows that the
converse of this statement does not always hold. For data
distributions of the form PM

ε , due to having a far outlier,
x0, when a sample misses that outlier point, the cost of the
sample-based clusterings is at least M2ε. On the other hand,
the cost of the optimal clustering (that allocates a center
to cover the outlier point) is less than 3(1 − ε). As long
as ε ≤ 1/n2, samples are unlikely to hit x0 and therefore
InStab(n, PM

ε) is very low. However, if M is picked to
be greater than, say 10/ε we get a large gap between the
cost of the sample based clustering and the cost of the
distribution-optimal clustering.

Stability does not imply proximity between the sample
based clustering and the optimal clustering. Again,
it can be readily seen that the above family of PM

ε data
distributions demonstrates this point as well.

Stability is not monotone as a function of the sam-
ple sizes. Clearly Example 3 demonstrates such non-
monotonicity. The values of InStab(n, PM

ε) decrease with
n for n < 1/

√
ε, they increase with n for values of n round

1/ε and the they decrease to zero for n ≥ 1/ε2.

We end this section with a few further observations demon-
strating the somewhat “erratic behavior” of stability.

No uniform convergence of cluster centers to a normal
distribution. Although Pollard (1982) has proved that as
the sample sizes grow to infinity, the distribution of the
empirical cluster centers converges to a normal distribution,
there is no uniform bound on the rate of this convergence.
For example, consider a two-mode probability distribution
over the real line that has high peeks of its density function
at the points (0,−ε) and (0, ε), has 0 density for x = 0, and
then tails off smoothly as |x| goes to infinity. Obviously,
for every sample size, n, by choosing small enough ε, the

distribution of each of the cluster centers for 2-means of
random n-samples drawn from this distribution is highly
non-symmetric (it has higher variance in the direction away
from the 0 than its variance towards 0), and therefore far
from being a normal distribution.

Arbitrarily slow convergence of stability for ‘nice’ data.
Even when data is stable and has a rather regular structure
(no outliers like in the example discussed above), and the
optimal boundaries pass through wide low-density data re-
gions, the convergence to this stability, although asymptot-
ically fast, is not uniformly bounded over different (well
structured) data distributions. For every n there exists a
data distribution Dn that enjoys the above properties, and
yet InStab(n, Dn) is large. As an example of this type of
non-uniformity, consider a planar distribution having its sup-
port on four small (say, of radius 0.1) discs centered on the
four corners of the unit square. Assume the distribution is
uniform over each of the discs, is symmetric around the x
axis, but gives slightly more weight to the left hand side two
disks than to the right hand side disks. For such a distrib-
ution, the optimal 2-means clustering is a unique partition
along the x axis, and has wide 0-density margins around its
boundary. Just the same, as long that the sample sizes are
not big enough to detect the asymmetry of the distribution
(around the y axis), a significant fraction of the sample based
2-means clustering will pick a partition along the y axis and
a significant fraction of samples will pick a partition along
the x axis, resulting in high instability. This instability can
be made to occur for arbitrarily large sample sizes, by just
making the asymmetry of the data sufficiently small.

5 Discussion
In this paper, we discuss the mechanism of stability-based
model selection for clustering. The first part of the paper
investigates a promising conjecture: in the large sample
regime, the stability of a clustering algorithm can be
described in terms of properties of the cluster boundary,
particularly whether the boundary lies in a small or high
density area. In the case of K-means, this would explain
the success of stability-based methods by demonstrating
that stability adds the “the missing piece” to the algorithm.
As the K-means clustering criterion is only concerned
by within-cluster similarity, but not with between-cluster
dissimilarity, a model selection criterion based on low
density areas would add a valuable aspect to the algorithm.

In parts, our results are promising: the conjecture holds at
least in one direction. However, it is pretty discouraging
that the conjecture does not hold the other way round, as
we can show by a simple counterexample. This counterex-
ample also indicates that a simple mechanism such as “low
density” vs. “high density” does not exist. So, after all, the
question which are the underlying geometric principles of
stability-based model selection in the large sample regime
remains unanswered.

On the other hand, we also provide some reasons why using
stability-based methods in the large sample setting might be
problematic in general. The reason is that it is impossible to

388

give global convergence guarantees for stability. Thus, while
one can use stability criteria in practice, it is impossible to
give distribution-free performance guarantees on any of its
results. No matter how large our sample size n is, we can
always find distributions where the stability evaluated on
that particular sample size is misleading, in the sense that it
is far from the “true stability”

Finally, we would like to put our results in a broader context
and point out future research directions for investigating
stability. In general, there are different reasons why cluster
instability can arise:

Instability due to multiple global optima. If the global
optimizer of the clustering objective function is not unique,
this always leads to instability. However, this kind of
instability is usually not related to the correct number of
clusters, as has been proved in Ben-David et al. (2006),
Ben-David et al. (2007). Instead, it might depend on
completely unrelated criteria, for example symmetries in the
data. In this situation, stability criteria are not useful for
selecting the number of clusters.

Geometric instability in the large sample setting. This is
the kind of instability we considered in this paper. Here one
assumes that no issues with local optima exist, that is the
algorithm always ends up in the global optimum, and that
a unique global optimum exists (for all values of K under
consideration). In this paper, we made an attempt to connect
the mechanism behind stability-based model selection to
geometric properties of the underlying distribution and
clustering, but with moderate success only. On the other
hand, we can demonstrate that using stability in the large
sample setting has problems in general. While it might
be possible that future work shows a tighter connection
between geometric properties of the data space and stability
issues, we are doubtful whether those methods can be
applied successfully in practice, unless one makes strong
assumptions on the underlying distributions.

Instability due to too small sample size. If the sample
size is too small, and the cluster structure is not sufficiently
well pronounced in the data set, we will observe instability.
Here, clustering stability can be a useful criterion to detect
whether the number of clusters is much too high. If this
is the case, the algorithm will construct clusters which are
mainly based on sampling artifacts, and those clusters will
be rather unstable. Here, stability tells us whether we have
enough data to support a given cluster structure. This is
of course a useful thing to know. However, it is still not
obvious whether stability can be used to detect the “best”
number of clusters, as there might be several values of K
which lead to stable results. We believe that it is a very
important direction to investigate what guarantees can be
given on stability-based methods in this scenario.

Algorithmic instability. This kind of instability occurs if
the algorithm itself can converge to very different solutions,
for example it ends up in different local optima, depending
on starting conditions. Note that algorithmic instability

is rather a property of an algorithm than of an underlying
distribution or sample. If we had a perfect algorithm
which always found the global optimum, then this kind of
instability would not occur. In our opinion, in a setting of
algorithmic instability it is not clear that stability selects
the “best” or “correct” number of clusters. Essentially, in
this case stability simply detects whether there is a well-
pronounced local optimum where the objective function has
the shape of a “wide bowl” such that the algorithm gets
trapped in this local optimum all the time. However, we
find it unlikely that the conclusion “local optimum in wide
bowl implies good K” is true. It has been argued that the
conclusion the other way round is true: “distribution with
well-pronounced cluster structure implies global optimum
in wide bowl” (e.g., Meila, 2006 or Srebro et al., 2006).
However, this is not the direction which is needed to show
that clustering stability is a good criterion to select the
number of clusters. We conclude that in the “algorithmic
instability” scenario, stability is not very well understood,
and it would be very interesting to give conditions on
distributions and algorithms in which this kind of stability
can provably be useful for model selection.

In all settings discussed above, stability is useful in one re-
spect: high instability can be used as an alarm sign to distrust
the clustering result, be it for sampling, algorithmic or other
reasons. However, the other way round, namely that the most
stable algorithm leads to the best clustering result, so far has
not been established for any of the settings above in a satis-
factory way.

Acknowledgments
We are grateful to Markus Maier who pointed out an error in
an earlier version of this manuscript, and to Nati Srebro and
David Pal for insightful discussions.

References
S. Ben-David. A framework for statistical clustering with

constant time approximation algorithms for k-median and
k-means clustering. Machine Learning, 66:243 – 257,
2007.

S. Ben-David, U. von Luxburg, and D. Pál. A sober look on
clustering stability. In G. Lugosi and H. Simon, editors,
Proceedings of the 19th Annual Conference on Learning
Theory (COLT), pages 5 – 19. Springer, Berlin, 2006.

S. Ben-David, D. Pál, and H.-U. Simon. Stability of k -means
clustering. In N. Bshouty and C. Gentile, editors, Confer-
ence on Learning Theory (COLT), pages 20–34. Springer,
2007.

A. Ben-Hur, A. Elisseeff, and I. Guyon. A stability based
method for discovering structure in clustered data. In Pa-
cific Symposium on Biocomputing, pages 6 – 17, 2002.

A. Bertoni and G. Valentini. Model order selection for bio-
molecular data clustering. BMC Bioinformatics, 8(Suppl
2):S7, 2007.

389

M. Bittner, P. Meltzer, Y. Chen, Y. Jiang, E. Seftor, M. Hen-
drix, M. Radmacher, R. Simon, Z. Yakhini, A. Ben-
Dor, N. Sampas, E. Dougherty, E. Wang, F. Marin-
cola, C. Gooden, J. Lueders, A. Glatfelter, P. Pollock,
J. Carpten, E. Gillanders, D. Leja, K. Dietrich, C. Beaudry,
M. Berens, D. Alberts, V. Sondak, M. Hayward, and
J. Trent. Molecular classification of cutaneous malig-
nant melanoma by gene expression profiling. Nature, 406:
536 – 540, 2000.

G. Blanchard, O. Bousquet, and L. Zwald. Statistical prop-
erties of kernel principal component analysis. Machine
Learning, 66(2-3):259–294, 2007.

S. Bubeck and U. von Luxburg. Overfitting of clustering and
how to avoid it. Preprint, 2007.

J. Fridlyand and S. Dudoit. Applications of resampling meth-
ods to estimate the number of clusters and to improve the
accuracy of a clustering method. Technical Report 600,
Department of Statistics, University of California, Berke-
ley, 2001.

M. K. Kerr and G. A. Churchill. Bootstrapping cluster analy-
sis: Assessing the reliability of conclusions from microar-
ray experiments. PNAS, 98(16):8961 – 8965, 2001.

A. Krieger and P. Green. A cautionary note on using inter-
nal cross validation to select the number of clusters. Psy-
chometrika, 64(3):341 – 353, 1999.

T. Lange, V. Roth, M. Braun, and J. Buhmann. Stability-
based validation of clustering solutions. Neural Computa-
tion, 16(6):1299 – 1323, 2004.

E. Levine and E. Domany. Resampling Method for Unsuper-
vised Estimation of Cluster Validity. Neural Computation,
13(11):2573 – 2593, 2001.

M. Meila. Comparing clusterings: an axiomatic view. In
Proceedings of the International Conference of Machine
Learning (ICML), pages 577–584, 2005.

M. Meila. The uniqueness of a good optimum for K-
means. In W. Cohen and A. Moore, editors, Proceedings
of the Twenty-Third International Conference on Machine
Learning (ICML), pages 625–632. ACM, 2006.

M. Meila. The stability of a good clustering. Manuscript in
preparation, 2007.

R. Ostrovsky, Y. Rabani, L. J. Schulman, and C. Swamy. The
effectiveness of Lloyd-type methods for the k-means prob-
lem. In FOCS, pages 165–176. IEEE Computer Society,
2006.

D. Pollard. A central limit theorem for k-means clustering.
Annals of Probability, 10(4):919 – 926, 1982.

O. Shamir and N. Tishby. Model selection and stability in
k-means clustering. In Conference on Learning Theory
(COLT), to appear, 2008a.

O. Shamir and T. Tishby. Cluster stability for finite samples.
In J.C. Platt, D. Koller, Y. Singer, and S. Rowseis, edi-
tors, Advances in Neural Information Processing Systems
(NIPS) 21. MIT Press, Cambridge, MA, 2008b.

M. Smolkin and D. Ghosh. Cluster stability scores for mi-
croarray data in cancer studies. BMC Bioinformatics, 36
(4), 2003.

N. Srebro, G. Shakhnarovich, and S. Roweis. An investiga-
tion of computational and informational limits in Gaussian
mixture clustering. In Proceedings of the 23rd Interna-
tional Conference on Machine Learning (ICML), pages
865 – 872. ACM Press, New York, 2006.

U. von Luxburg, S. Bubeck, S. Jegelka, and M. Kaufmann.
Consistent minimization of clustering objective functions.
In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, edi-
tors, Advances in Neural Information Processing Systems
(NIPS) 21, Cambridge, MA, 2008. MIT Press.

390

Finding Metric Structure in Information Theoretic Clustering

Kamalika Chaudhuri
University of California, San Diego
kamalika@soe.ucsd.edu

Andrew McGregor
University of California, San Diego

andrewm@ucsd.edu

Abstract

We study the problem of clustering discrete
probability distributions with respect to the
Kullback-Leibler (KL) divergence. This prob-
lem arises naturally in many applications. Our
goal is to pick k distributions as “representa-
tives” such that the average or maximum KL-
divergence between an input distribution and
the closest representative distribution is min-
imized. Unfortunately, no polynomial-time
algorithms with worst-case performance guar-
antees are known for either of these problems.

The analogous problems for l1, l2 and l22 (i.e.,
k-center, k-median and k-means) have been ex-
tensively studied and efficient algorithms with
good approximation guarantees are known. How-
ever, these algorithms rely crucially on the
(geo-)metric properties of these metrics and
do not apply to KL-divergence. In this paper,
our contribution is to find a “relaxed” metric-
structure for KL-divergence. In doing so, we
provide the first polynomial-time algorithm for
clustering using KL-divergences with provable
guarantees for general inputs.

1 Introduction
In this paper, we consider the problem of clustering dis-
crete probability distributions with respect to the Kullback-
Liebler (KL) divergence where, the KL-divergence from
p = (p1, . . . , pd) to distribution q = (q1, . . . , qd) is de-
fined as

KL(p, q) =
∑
i∈[d]

pi ln
pi

qi
.

Specifically, we consider two problems that take n distri-
butions p1, . . . , pn on [d] as input. In MTCKL (minimum
total cost), the goal is to find distributions c1, . . . , ck such
that the total KL-divergence from each pj to its closest
ci, i.e., ∑

j∈[n]

min
i∈[k]

KL(pj , ci)

is minimized. In MMCKL (minimum maximum cost),
the goal is to find distributions c1, . . . , ck such that the
maximum KL-divergence from each pj to its closest ci,

max
j∈[n]

min
i∈[k]

KL(pj , ci)

is minimized. It turns out that polynomial time algo-
rithms do not exist for either of these problems unless
P = NP . Therefore, we are interested in α-approximation
algorithms, i.e., algorithms that find c̃1, . . . , c̃k satisfying
the guarantee that∑

j∈[n] mini∈[k] KL(pj , c̃i)

minc1,...,cn

∑
j∈[n] mini∈[k] KL(pj , ci)

≤ α

for some α ≥ 1. The smaller the value of α, the better
the approximation.

Both problems have been studied extensively when
the input is a set of arbitrary points (not necessarily dis-
tributions), and instead of KL, the measure of distance
between two points is either a metric (`1 or `2 or an ar-
bitrary metric), with symmetry and the triangle inequal-
ity, or a measure such as `22. The problems are usually
referred to as k-median if the measure is a metric or
k-means if the measure is `22. However, previous algo-
rithms for these problems typically rely crucially on the
(geo-)metric properties of these distances, which do not
hold for the KL-divergence. For example, KL is not
symmetric and does not satisfy the triangle inequality.

In the remainder of the introduction, we motivate the
need to cluster distributions and the reason why KL is
a natural measure in this context. We then review the
related work and summarize our contributions.

Why cluster distributions? A natural application of
distributional clustering is in clustering words for doc-
ument classification by topic [4]. In document classi-
fication, we are given a training set of documents (or
collections of words) whose labels indicate the topic they
represent, and the goal is to classify other similar docu-
ments according to topic. A natural approach is to look
at the words in a document as features that are some-
how correlated with the document labels; each word is
viewed as a frequency distribution over labels, and given
a new document containing a set of words, the distribu-
tions corresponding to the words in it are used to find

391

the most-likely label for the new document. However,
such data is typically very sparse, because each specific
word occurs a few times in the document corpora. So
a common approach is to cluster together similar word
distributions, for more robust inference algorithms.

Other applications of distributional clustering include
clustering words according to context for language mod-
eling [24], information bottleneck techniques [27, 24,
25], and clustering users according to their preference
for movies in collaborative filtering.

Why KL-divergence? KL-divergence arises as a nat-
ural measure of the dissimilarity between two distribu-
tions in numerous ways. We direct the interested reader
to Pereira et al. [24] for a wider discussion on the moti-
vations. In what follows, we describe the motivation in
terms of compressibility.

Given an alphabet Σ of size d where the i-th symbol
has relative frequency pi, an important question is to
find the binary encoding of the alphabet such the average
number of bits required for an encoded symbol is mini-
mized. This classic problem in information theory was
essentially solved by Huffman who presented a simple
encoding scheme that achieved the optimum value of

H(p) = −
∑
i∈[d]

pi lg pi

if all pi were negative powers of two.
We consider an issue that arises when we have two

or more distributions over Σ. Consider the problem of
trying to encode multiple texts with different statistics
such as texts written in different languages or magazine
articles covering different topics. For example, the word
“perforation” may be common in articles from Gibbons
Stamp Monthly Magazine1 whereas “peroxide” may be
more frequent in issues of Hairdressers Journal Inter-
national2. Hence, if the origin of the text is known it
will make sense to tailor the encoding to the statistics
of the the source. However, it is likely to be unfeasible
to have a different scheme for every possible periodical.
Rather, we consider the problem of designing k encoding
schemes and assigning each of n periodicals to one of
the encoding schemes. How should this be done such
that extra cost of using k encoding schemes rather than
n is minimized?

More formally, let pj be distribution over symbols
in the j-th periodical. We wish to design k encoding
schemes E1, . . . , Ek : Σ → {0, 1}∗ along with an as-
signment of distributions to encoding schemes f : [n] →
[k] such that the increase in average encoding length,∑

j∈[n]

∑
i∈[d]

pj
i |Ef(j)(i)|+

∑
j∈[n]

∑
i∈[d]

pj
i lg pj

i

is minimized. Each encoding scheme Ej can be char-
acterized by a distribution qj over [d] that will capture

1http://www.gibbonsstampmonthly.com/
2http://www.hji.co.uk/

the aggregate statistics of the distributions that use Ej .
Hence we may rewrite the quantity to be minimized as

−
∑
j∈[n]

∑
i∈[d]

pj
i lg q

f(j)
i +

∑
j∈[n]

∑
i∈[d]

pj
i lg pj

i

=
∑
j∈[n]

∑
i∈[d]

pj
i lg

pj
i

q
f(j)
i

= (lg e)
∑
j∈[n]

KL(pj , qf(j))

which is exactly the objective function to be minimized
in MTCKL.

1.1 Prior Work on Clustering
There has been a rich body of research on approximation
algorithms for various forms of clustering. We restrict
ourselves to those on hard-clustering, i.e., each input dis-
tributions is “assigned” to only the closest picked center.
Even so, there is a considerable number of incomparable
results in a variety of settings.

The common optimization measures when clustering
points in general metrics are (a) k-median, in which the
goal is to partition the input points into k sets, while min-
imizing the sum of the distances between each point and
the center of the cluster it is assigned to, and (b) k-center,
where the goal is to again partition the input points to
k sets, while minimizing the maximum diameter of a
cluster. When clustering in Euclidean spaces, an addi-
tional optimization measure which is commonly used is
k-means, in which the goal is to partition the input points
into k clusters, while minimizing the sum of the squares
of the Euclidean distances between each point and the
center of the cluster it is assigned to.

General “Metrics”: For metric k-center, the best ap-
proximation algorithm is due to [16], which achieves an
approximation factor of 2 and this is the best possible
in polynomial time unless P = NP . For asymmet-
ric k-center, when the directed triangle inequality holds,
the best known approximation algorithm is due to [23],
which achieves a factor of O(log∗ n), and this is also
optimal in terms of hardness [7]. For metric k-median,
the best known approximation algorithm is due to [2],
which achieves an approximation factor of 3, when the
distances between points are symmetric, and there is a
triangle inequality.

Euclidean Space: When the input points lie in Eu-
clidean space, two versions of the clustering problems
have been studied. In the restricted version, we require
the cluster centers to be input points, while in the unre-
stricted version,we allow the cluster centers to be any
point in the Euclidean space. For more details about
restricted and unrestricted versions of the problems, see
Section 5. Most results for clustering in Euclidean space
deal with the unrestricted version of the problem.

When the input points lie in d-dimensional Euclidean
spaces, Kolliopoulos and Rao [21] showed an algorithm
for k-median which provides a (1 + ε) approximation,
and runs in time

O(2(O(1+ε−1 log ε−1))d−1
n log k log n) .

392

Har-Peled and Mazumdar [19] gave a (1+ ε) approxima-
tion algorithm which runs in time

O(n + 2O(1+ε−1 log ε−1)d−1
kO(1) logO(1) n) .

A third algorithm was proposed by Badoiu et al. [3] with
a running time of

O(dO(1)n logO(k) n2O(k/ε)) .

For Euclidean k-means, Har-Peled and Mazumdar
[19] provided an (1 + ε) approximation algorithm with
running time

O(n + (ε−1)2d+1kk+2 logk+1 n logk ε−1) .

A second (1 + ε) approximation algorithm is due to
Feldman et al. [15], which achieves a running time of

O(ndk + d(kε−1)O(1) + 2O(kε−1)) .

Kumar et al. [22] provided a simple algorithm based on
sampling for Euclidean k-means which gave a (1 + ε)-
approximation in

O(dn2poly(kε−1))

time. This was improved by Chen [6] to provide an
algorithm which ran in

O(ndk + d2nσ2poly(kε−1))

time, for any σ > 0. Kanungo et al. [20] gives a (9 +
ε)-approximation for k-means in time O(n3/εd). For
Euclidean k-center, Feder and Greene [13] show that it
is NP-Hard to find an approximation-factor better than
1.822 for this problem.

KL-clustering: In this paper we are interested in KL-
clustering on the probability simplex. We first note that
algorithms that cluster distributions with respect to ei-
ther `1 or `22 may give arbitrarily bad solutions for the
KL-divergence. The following example shows this for
MTCKL.

Example 1 Consider the following three distributions:

p = (
1
2
,
1− ε

2
,
ε

2
), q = (

1
2
,
1
2
, 0), r = (

1
2
+ε,

1
2
−ε, 0) .

We consider the costs of all possible partitions of {p, q, r}
into two groups.

Clustering `22-cost `1-cost KL-cost
{p, q}, {r} ε2/4 ε ε/2 + O(ε2)
{p}, {q, r} ε2 2ε O(ε2)
{p, r}, {q} 3ε2/4 2ε ε/2 + O(ε2)

Note that the clustering {{p, q}, {r}}minimizes the `22 or
`1 cost but that this clustering is a factor Ω(1/ε) from op-
timal in terms of MTCKL. Since ε may be made arbitrarily
small, we conclude that clustering the distributions ac-
cording to either `22 or `1 can lead to arbitrarily bad
solutions.

There has been previous work on methods for KL-
clustering [24, 4, 26, 5, 11]. However, none of these
algorithms achieve guaranteed approximations in the
worst case. The most directly relevant paper is a recent
paper by Ackermann et al. [1]. They present a very
nice algorithm that returns a good approximation for
MTCKL on the assumption that all distributions to be
clustered have constant mass on each coordinate, i.e.,
for some constant γ, pj

i ≥ γ for all j ∈ [t], i ∈ [d].
This implies that d ≤ 1/γ is also constant and even
for distributions with constant dimension, rules out any
sparse data where some coordinates will have zero mass.
Sparse data is common in many applications. In contrast,
the algorithms we present are fully general and require
no assumptions on the sparsity or the dimensionality of
the input distributions.

1.2 Our Contributions
Our main contribution in this paper is to provide al-
gorithms for clustering in the KL-divergence measure
which achieve guaranteed approximations in the worst
case. Our specific contributions are the following:

1. Minimizing Average Distortion: We provide the
first guaranteed approximation algorithm for the
problem of minimizing average distortion in the
KL-divergence measure, when the input is a set of
n arbitrary distributions. To show our result, we first
provide constant factor approximation algorithms
for the related divergences, Hellinger and Jensen-
Shannon. These results exploit the fact that these
divergences satisfy a relaxation of the triangle in-
equality and are closely related to the k-means prob-
lem on the sphere. We then show that although the
KL-divergence between two distributions can be in-
finitely larger than the Jensen-Shannon or Hellinger
divergence, one can relate the average clustering dis-
tortion in terms of the Hellinger cost to the average
clustering distortion in terms of the KL-divergence.
This yields an O(log n)-approximation algorithm
for MTCKL.

We note that while a guarantee of O(log n)-factor
from optimality is weaker than we would like, this
does not preclude the possibility that the algorithm
achieves better results in practice. Furthermore, the
clustering found could be used as a preprocessing
step for a improvement heuristic for which there ex-
ist no guarantees. The most important contribution
of a O(log n)-factor approximation is to understand-
ing the structure of the problem.

2. Minimizing Maximum Distortion: We provide the
first guaranteed approximation algorithm for min-
imizing the maximum distortion, when the input
is a set of n arbitrary distributions. To show our
result, we relate the maximum clustering distor-
tion in terms of the KL-divergence to the maxi-
mum diameter of a cluster measured in terms of
the JS-divergence. We then show a constant factor

393

approximation to the problem of minimizing the
JS diameter. This yields an O(min(log n, log d))-
approximation algorithm for MMCKL.

3. Hardness Results: Finally, we provide hardness re-
sults for the above problems. First, we show that
when we restrict the cluster centers to be in the set of
input distributions, no polynomial-time approxima-
tion is possible, unless P 6= NP . In addition, when
the centers are unrestricted, we show a hardness
of approximation result for k-center by demonstrat-
ing that KL behaves like `22 near the middle of the
probability simplex.

Notation: We denote the probability simplex over Rd

as ∆. We write a = b ± c as short hand for a ∈ [b −
c, b + c].

2 Information Geometry
In this section we review some known results about the
geometry of KL and prove some new results. As we
mentioned, KL(p, q) is asymmetric, does not satisfy a
directed triangle inequality, and can be infinite even if
p and q are on the probability simplex. (It is, however,
at least always positive by Gibb’s inequality.) Further-
more, KL does not even satisfy a relaxed directed triangle
inequality, that is

KL(p, r) + KL(r, q)
KL(p, q)

can be made arbitrarily small with p, q, r ∈ ∆.3 The
following example demonstrates this.

Example 2 KL is not a relaxed metric. Consider
p = (1/2, 1/2), q = (e−c, 1− e−c), r = (ε, 1− ε)

where 1/2 ≥ ε > e−c. Then
KL(p, q) ≥ c/2− ln 2
KL(p, r) ≤ (ln ε−1 − ln 2)/2
KL(r, q) ≤ εc− 1

Hence, by increasing c and decreasing ε, the ratio
(KL(p, r) + KL(r, q))/KL(p, q)

can be made arbitrarily small.

Two other information divergences that will play an
important role in our results are the Hellinger and Jensen-
Shannon divergences. These are both divergences from
the family of f -divergences [10].

Definition 1 The Hellinger and Jensen-Shannon diver-
gence between p, q ∈ ∆ are defined as

He(p, q) =
∑
i∈[d]

(
√

pi −
√

qi)2

JS(p, q) = KL(p,
p + q

2
) + KL(q,

p + q

2
) .

3We note that this ratio can be bounded below for some
families of distributions in terms of the ratio of eigenvalues of
a related Hessian matrix [9].

Both JS(p, q) and He(p, q) are symmetric and bounded:
it can easily be shown that JS(p, q) ≤ 2 and He(p, q) ≤ 2
for all p, q ∈ ∆. Note that since KL(p, q) may be infinite
this rules out any multiplicative relationship in general.

Relationships between JS(p, q) and He(p, q) are given
in the next lemma [18, 28].

Lemma 2 For all distributions p and q,
He(p, q)/2 ≤ JS(p, q) ≤ 2 ln(2) He(p, q) . (1)

Unfortunately, neither JS or He are metrics but we
can show that they are “almost metrics” in that they sat-
isfy non-negativity, identity of indiscernibles, symmetry,
and a relaxation of the triangle inequality. We say that
a measure D satisfies an α-relaxed triangle inequality if
for all p, q, r ∈ ∆,

D(p, r) + D(r, q) ≥ D(p, q)/α.

(When α = 1, this is the usual triangle inequality.)

Lemma 3 He and JS obey the 2-relaxed triangle equal-
ity.

Proof: We note that He and JS are both the square of
metrics: this is obvious for He and the result for JS was
proved in [12]. Therefore, for all p, q, r ∈ ∆,√

He(p, q) +
√

He(q, r) ≥
√

He(p, r)
and hence
He(p, q)+He(q, r)+2

√
He(p, q)He(q, r) ≥ He(p, r) .

By an application of the AM-GM inequality we deduce:
2(He(p, q) + He(q, r)) ≥ He(p, r)

as required. The result for JS follows similarly.

The next lemma is a well-known identity (see, e.g.,
[8]) that relates the KL and JS divergence.

Lemma 4 For all p, q, c ∈ ∆:
KL(p, c) + KL(q, c) = JS(p, q) + 2KL((p + q)/2, c) .

This is referred to as the parallelogram property.

Another useful property that we will exploit is that
the He-balls are convex.

Lemma 5 B`(p) = {p′ : He(p, p′) ≤ `} is convex for
all ` ≥ 0 and p ∈ ∆. Furthermore, for all p, q, r ∈ ∆
and α ∈ (0, 1),
He(p, αq + (1−α)r) ≤ αHe(p, q) + (1−α)He(p, r) .

Proof: Consider any ball B`(p) = {p′ : He(p, p′) ≤ `}
and let q, s ∈ B`(p) and α ∈ (0, 1). Then it suffices to
show that αq + (1−α)r ∈ B`(p). Let β = 1−α. Note
that

α(
√

pi −
√

qi)2 + β(
√

pi −
√

ri)2

(
√

pi −
√

αqi + βri)2
≥ 1

⇔ α
√

qi + β
√

ri ≤
√

αqi + βri

⇔ α2qi + β2ri + 2αβ
√

qiri ≤ αqi + βri

⇔ 2αβ
√

qiri ≤ αβqi + αβri

⇔ 2
√

qiri ≤ qi + ri

and this is true by the AM-GM inequality.

394

Properties of Cluster Centers: For the remaining re-
sult of this section we need to introduce some further
notation. For any measure D : ∆×∆ → R+:

SumCostD(p1, . . . , pt; c) =
∑
j∈[t]

D(pj , c)

SumCostD(p1, . . . , pt) = min
c∈∆

SumCostD(p1, . . . , pt; c)

MaxCostD(p1, . . . , pt; c) = max
j∈[t]

D(pj , c)

MaxCostD(p1, . . . , pt) = min
c∈∆

MaxCostD(p1, . . . , pt; c)

We denote the centroid of a set of distributions as

cent(p1, . . . , pt) = t−1
∑

pi .

The next lemma (a special case of more general result
for all Bregman divergences [5]) shows that the center
that minimizes the average `22 or KL distortion is the
centroid of the distributions being clustered.

Lemma 6 For any distributions p1, . . . , pt,

cent(p1, . . . , pt) = argminq∈∆ SumCost`22(p
1, . . . , pt; q)

= argminq∈∆ SumCostKL(p1, . . . , pt; q),

i.e., the cluster centers for `22 and KL are at centroids.

The next lemma shows that when we are clustering
distributions near the middle of the probability simplex,
the centers that minimize either the maximum or average
KL distortion also lie near the middle of the probability
simplex. Define,

A(r) = {p ∈ ∆ : pj =
1
d
± r for all j ∈ [d]} . (2)

Lemma 7 Let p1, . . . , pt ∈ A(ε/d) and 0 < ε < 1/10.
Then,

argminc∈∆ SumCostKL(p1, . . . , pt; c) ∈ A(ε/d) .

If
MaxCostKL(p1, . . . , pt; c)
MaxCostKL(p1, . . . , pt)

≤ 10

then c ∈ A(10
√

ε).

Proof: The first claim follows from Lemma 6 and the
fact that cent(p1, . . . , pt) is a convex combination of
p1, . . . , pt. For the second claim note that for i ∈ [t],

KL(pi; p1) ≤ ln
1 + ε

1− ε
≤ 3ε,

and hence MaxCostKL(p1, . . . , pt) ≤ 3ε. Consider q /∈
A(10

√
ε). Then

KL(pi; q) ≥ `21(p
i; q) ≥ (10

√
ε− ε/d)2 > 30ε ,

where the first inequality follows by Pinsker’s inequality.
Hence q does not satisfy,

MaxCostKL(p1, . . . , pt; q) ≤ 10·MaxCostKL(p1, . . . , pt) .

3 Minimizing Average Distortion
In this section, we address the problem of computing a
clustering of the input distributions which approximately
minimizes the average Kullback-Liebler divergence be-
tween an input distribution and the center of the cluster
it belongs to. We provide an algorithm that computes a
clustering in which the average KL-divergence between
an input distribution, and the center of the cluster it be-
longs to is at most O(log n) times the optimal cost. The
main theorem in this section is the following.

Theorem 8 There exists a polynomial time O(log n)-
approximation algorithm for MTCKL.

The main idea behind our algorithm is the obser-
vation that even though, in general, the KL-divergence
between two distributions can be infinitely larger than the
He-divergence between them, a clustering of the input
distributions with low average distortion according to
the He-divergence also has low average distortion by the
KL-divergence. Therefore, our analysis proceeds in two
steps. First, we show in Section 3.1 how to compute a
clustering that approximately (within a factor of 2 + ε)
minimizes the average Hellinger divergence between in-
put distributions and the closest cluster center. Then, we
show in Section 3.2 how this leads to a clustering with
low average distortion in the KL-divergence.

3.1 Hellinger Clustering
In this section we present an algorithm for minimizing
average He distortion. The main idea behind our algo-
rithm is the simple observation that the Hellinger distance
between two distributions p and q is the square of the
Euclidean distance between the points

√
p and

√
q where√

p is a shorthand for the vector in the positive quadrant
of the unit sphere:

√
p = (

√
p1, . . . ,

√
pd) .

Therefore, mapping each point pi to
√

pi and then com-
puting a clustering that minimizes the average `22 mea-
sure between each transformed point and the center of
the cluster it belongs to, should give us a good clustering
for minimizing average Hellinger distortion. However,
there will be a slight issue that arises because we insist
that the cluster centers lie on the probability simplex.

Before we address the issue, we present the algo-
rithm:

1. For each input distribution i ∈ [n], compute
√

pi

2. Compute a (1 + ε)-approximation to

MTC`22
(
√

p1, . . . ,
√

pn) ,

using any (1 + ε)-approximation algorithm for k-
means. Let the cluster centers be c̃1, . . . , c̃k. Note
that in general c̃j is not on the unit sphere.

3. Let {pj1 , . . . , pjt} be the set of input distribution
whose closest cluster center is c̃j . Let the final
center for this cluster be cent(pj1 , . . . , pjt).

395

The issue we need to address is that the cluster center
c that minimizes SumCostHe(p1, . . . , pt; c) need not lie
on ∆: this can be seen as a consequence of the fact that
c̃j is not on the unit sphere in general. Thus the actual
average Hellinger divergence for the same clustering may
be much higher than the k-means cost of the transformed
points. However, the following lemma establishes that
setting c = cent(p1, . . . , pt) (which necessary lies on ∆)
produces a clustering whose average Hellinger distortion
is at most a factor 2 away from the k-means cost of the
transformed points.

Before we state the lemma, we define some notation.
For a vector p = (p1, . . . , pd) over d dimensions, we use
p2 to denote the vector

p2 = (p2
1, . . . , p

2
d)

Lemma 9 For p1, . . . , pt ∈ ∆, for i ∈ [d], define

ai =
∑
j∈[t]

pj
i and bi =

∑
j∈[t]

√
pj

i .

and let a = (a1, . . . , ad) and b = (b1, . . . , bd).

SumCostHe(p1, . . . , pt; a/t)
≤ 2SumCostHe(p1, . . . , pt; (b/t)2)

Proof:∑
j

(
√

pj
i −

√
ai/t)2 = ai +

∑
j

ai/t− 2
√

ai/tbi

= 2ai − 2t−1/2√aibi

and

2
∑

j

(
√

pj
i − bi/t)2 ≤ 2ai − 2t−1b2

i .

Therefore it suffices to show that bi ≤ t1/2√ai but
this follows because

b2
i = ai +

∑
j 6=k

√
pj

ip
k
i ≤ ai + (t− 1)ai .

where the inequality follows by AM-GM inequality.

Theorem 10 There exists a polynomial-time (2 + ε)-
approximation algorithm for MTCHe.

Proof: The result for MTCHe is achieved as described
above: first we map each distribution from the probability
simplex to the positive quadrant of the unit sphere:

f : ∆ → {x ∈ Rd : `2(x) = 1, xi ≥ 1}
(p1, . . . , pd) 7→ (

√
p1, . . . ,

√
pd) .

We then run an algorithm for MTC`22
. For each cluster

formed, return the centroid of the original probability
distributions. This is clearly a probability distribution.
The cost of using this center rather than the center of

mass of the probability distributions once mapped to the
sphere is a factor 2 as shown in Lemma 9.

We conclude this section by noting that our algorithm
also leads to a good clustering for minimizing average
distortion according to the Jensen-Shannon measure us-
ing Eq. 1.

Lemma 11 There exists a polynomial-time (8 ln 2 + ε)-
approximation algorithm for MTCJS.

3.2 Kullback-Leibler Clustering
The following lemma relates SumCostKL(p1, . . . , pt) and
SumCostHe(p1, . . . , pt). We note that that a later result
in Section 4 could be used (in conjunction with Lemma 2)
to achieve a result with that shows the ratio scales with
lg t in the worst case. However, the following proof
establishes better constants and has the benefit that the
proof is more geometric.

Lemma 12 For any distributions p1, . . . , pt,

1/2 ≤ SumCostKL(p1, . . . , pt)
SumCostHe(p1, . . . , pt)

≤ dlg te (ln 16).

Proof: The first inequality follows because for p, q ∈ ∆,
JS(p, q) = minc∈∆(KL(p, c) + KL(q, c)) ≤ KL(p, q)
(this follows from e.g., Lemma 6) and Eq. 1.

We now prove the second inequality. Without loss
of generality assume that t is a power of 2 (otherwise
consider adding (2dlog te − t) new points at He center of
p1, . . . , pt – this can only increases the middle term of
the equation.)

Consider a balanced binary tree on the nodes of the
cluster. For an internal node at height j, associate a multi-
set of distributions S(v) consisting of 2j copies p(u), the
center of mass of the 2j distributions at the leaves of the
subtree rooted at v. Let Sj be the set of distributions at
height j. Note that S0 = {p1, . . . , pt}.

The lemma follows from the next three claims.

Claim 13 For all j, SumCostHe(Sj) ≤ SumCostHe(S0).

Proof: Let c be an arbitrary distribution. By Lemma 5,

2jHe(p, c) + 2jHe(q, c) ≥ 2j+1He((p + q)/2, c)

and therefore SumCostHe(Sj ; c) decreases as j increases
and the result follows.

Claim 14 For all j,∑
v:height(v)=j+1

SumCostKL(∪u:u∈ch(v)S(u))

≤ (ln 16)SumCostHe(Sj) .

where ch(v) denotes the children of v.

396

Proof: Let u and w be the children of a node v at height
j + 1. Let c = (p(u) + p(w))/2.Then,

SumCostKL(S(u), S(w))

= 2jJS(p(u), p(w))

≤ 2j+1(ln 2)He(p(u), p(w))

≤ 2j+2(ln 2)(He(p(u), c) + He(p(w), c))
≤ (ln 16)SumCostHe(S(u), S(w))

Claim 15∑
j

∑
v:height(v)=j+1

SumCostKL(∪u:u∈ch(v)S(u))

= SumCostKL(p1, . . . , pt) .

Proof: Let v be at height j + 1. Let v have children u
and w and grandchildren u1, u2, w1, w2. Then the result
follows because

SumCostKL(S(u1), S(u2))
+SumCostKL(S(w1), S(w2))
+SumCostKL(S(u), S(w))

= 2j−1(KL(p(u1), p(u)) + KL(p(u2), p(u))
+KL(p(w1), p(w)) + KL(p(w2), p(w))
+2KL(p(u), p(v)) + 2KL(p(w), p(v)))

= 2j−1(KL(p(u1), p(v)) + KL(p(u2), p(v))
+KL(p(w1), p(v)) + KL(p(w2), p(v)))

= SumCostKL(S(u1), S(u2), S(w1), S(w2))

where the second inequality follows from the parallelo-
gram property and the fact that p(u) = (p(u1)+p(u2))/2
and p(w) = (p(w1) + p(w2))/2.

We next show that the above lemma is nearly tight.

Lemma 16 There exists (pi)i∈[t] on d ≥ t coordinates
such that,

SumCostKL(p1, . . . , pt)
SumCostHe(p1, . . . , pt)

= Ω(log t) .

Proof: Let (pi)i∈[t] be t distributions where pi takes
value i with probability 1. Then

SumCostKL(p1, . . . , pt) = t ln t

whereas

SumCostHe(p1, . . . , pt; c) = t

(
(1− 1√

t
)2 +

t− 1
t

)
= 2t− 2

√
t ,

where c = t−1
∑

i pi. Then appeal to Lemma 9.

Then the proof of Theorem 8 follows immediately
from Lemma 12 and Theorem 10.

4 Minimizing Maximum Distortion
In this section, we provide an algorithm for clustering
the input distributions such that the maximum Kullback-
Liebler divergence between an input distribution and
the center of the cluster it belongs to is approximately
minimized. In particular, our algorithm produces a clus-
tering in which the maximum KL-divergence between
an input distribution, and the closest center is at most a
min(O(log d), O(log n)) factor greater than optimal.

Our algorithm is pleasantly simple: we use a variant
of Gonzalez’s algorithm [16] to cluster the input distribu-
tions such that the Jensen-Shannon divergence between
any two points in the same cluster is minimized. We then
show that although the KL-divergence between two distri-
butions can be infinitely larger than their JS-divergence,
this procedure still produces a good clustering according
to the KL-divergence. The main theorem in this section
can be stated as follows.

Theorem 17 There exists a polynomial-time

O(min(log d, log n))

approximation for MMCKL.

Before proving the theorem, we show a lemma which
establishes a general relationship between the KL-divergence
and JS-divergence between two distributions, when the
ratio of probability masses that the two distributions as-
sign to any coordinate is bounded. This lemma may be
of independent interest.

Lemma 18 Let p, q ∈ ∆ such that, for all i, pi/qi ≤ t,
where t ≥ e2. Then,

KL(p, q) ≤ 2 ln t

ln(6/5)
JS(p, q)

Proof: For each i, let δi = (pi − qi)/qi so that pi =
(1 + δi)qi. Then,

∑
i δiqi =

∑
i pi − qi = 0,

KL(p, q) =
∑

i

qi(1 + δi) ln(1 + δi) ,

and

JS(p, q) =
∑

i

qi((1+δi) ln(1+δi)−(2+δi) ln(1+
δi

2
))

Since pi/qi ≤ t, and δi ≤ t− 1, from Lemma 19,

KL(p, q) ≤ Λ · JS(p, q) +
∑

i

δiqi

where Λ = 2 ln t
ln 6/5 . The lemma follows from the fact that∑

i δiqi = 0 and t ≥ 4.

Lemma 19 For any x ∈ [−1, 2],

(1 + x) ln(1 + x) ≤ 4((1 + x) ln(1 + x)
−2(1 + x/2) ln(1 + x/2)) + x .

397

For any x ∈ (2, x∗],

(1 + x) ln(1 + x) ≤ 2 ln x∗

ln(6/5)
((1 + x) ln(1 + x)

−2(1 + x/2) ln(1 + x/2)) + x .

Proof: Let Λ be a parameter and let

Y (x) = (1 + x) ln(1 + x)− Λ((1 + x) ln(1 + x)
−2(1 + x/2) ln(1 + x/2))− x

.

Our goal is to show that Y (x) ≤ 0 for suitable values of
the parameter Λ. The first and second order derivatives
of Y can be written as follows:

Y ′(x) = Λ ln(1 + x/2)− (Λ− 1) ln(1 + x)

and
Y ′′(x) =

2− Λ + x

(1 + x)(2 + x)
.

We first consider x ∈ [−1, 2) and Λ = 4. If x < 2,
then Y ′′(x) < 0. Therefore, Y ′(x) is strictly decreas-
ing in the range [−1, 2). We note that Y ′(−1) = ∞
and Y ′(0) = 0; therefore Y is a strictly increasing func-
tion from [−1, 0) and strictly decreasing from (0, 2]. As
Y (0) = 0, Y (x) < 0 for x < 0 and Y (x) < 0 for x > 0,
and the first part of the lemma follows.

To prove the second part, we write the derivative
Y ′(x) as follows:

Y ′(x) = Λ · ln 1 + x/2
1 + x

+ ln(1 + x)

If x > 2, then ln 1+x/2
1+x < ln(5/6). By plugging in

Λ = 2 ln x∗

ln 6/5 ,

Y ′(x) < −2 lnx∗ + ln(1 + x) < 0

for x in (2, x∗], which means that Y is strictly decreasing
in this interval. As t ≥ e2, here Λ ≥ 4. The previous
part of the lemma implies that Y (2) < 0, for any Λ > 4,
and hence the lemma follows.

Lemma 20 Consider t distributions p1, . . . , pt such that
He(pi, pj) ≤ r for all i, j ∈ [t]. Then He(pi, c) ≤ r
for all i ∈ [t] where c is any convex combination of
p1, . . . , pt.

Proof: The result follows by Lemma 5: Consider distri-
bution pi and the set of distributions in Br(pi) = {q :
He(pi, q) ≤ r}. By Lemma 5, Br(pi) is convex. Since
pj ∈ Br(pi) for all j ∈ [t] and c is a convex combi-
nation of {pj}j∈[t] we deduce that c ∈ Br(pi). Hence
He(pi, c) ≤ r as required. Since i was arbitrary the result
follows.

Lemma 21 Let p1, . . . , pt be t distributions over [d] and
let c = cent(p1, . . . , pt). Then,

MaxCostKL(p1, . . . , pt; c)
maxi,j JS(pi, pj)

≤ O(log t) .

Moreover, there exists some c∗ which is a convex combi-
nation of p1, . . . , pt such that:

MaxCostKL(p1, . . . , pt; c∗)
maxi,j JS(pi, pj)

≤ O(log d) .

Proof: To show the first inequality, we observe that for
any i ∈ [d], j ∈ [t]: pj

i/ci ≤ t. Using this fact along
with Lemma 18, we conclude that:

MaxCostKL(p1, . . . , pt; c) ≤ O(log t) ·max
i

JS(pi, c)

The rest of the inequality follows from the fact that JS is
constant factor related to He (Lemma 2), followed by an
application of Lemma 20.

To show the second inequality, let

q1, . . . , qd ⊂ {p1, . . . , pt}
be distributions such that for any i ∈ [d] and any j ∈ [n],
qi
i ≥ pj

i . We define

c∗ = cent(q1 + . . . + qd) .

Observe that for any i ∈ [d], j ∈ [t]: pj
i/c∗i ≤ d. There-

fore, from Lemma 18, for any i,

MaxCostKL(p1, . . . , pt; c∗) ≤ O(log d)JS(pi, c∗)

From Lemma 2, JS(pi, c∗) ≤ O(He(pi, c∗)). As c∗ is a
convex combination of p1, . . . , pt, the rest of the lemma
follows from an application of Lemma 20.

Lemma 22 Let p1, . . . , pt be t distributions over [d].

1
2
≤ MaxCostKL(p1, . . . , pt)

maxi,j JS(pi, pj)

Proof: Let (i, j) = argmax JS(pi, pj). Note that since
we allow unrestricted centers,

MaxCostKL(pi, pj) ≤ MaxCostKL(p1, . . . , pt; c) ,

and let q minimize max{KL(pi, q), KL(pj , q)}. But

2 max{KL(pi, q), KL(pj , q)} ≥ KL(pi, q) + KL(pj , q)

≥ min
q

KL(pi, q) + KL(pj , q)

= JS(pi, pj) .

from which the Lemma follows.

We now are in a position to complete the proof of
Theorem 17.
Proof: From Lemmas 21 and 22, and the fact that for
any c,

MaxCostKL(p1, . . . , pt; c) ≥ MaxCostKL(p1, . . . , pt)

(by definition), we know that if we α-approximate the
problem of minimizing the maximum JS diameter of a
cluster, we get a min(O(α log d), O(α log n)) approxi-
mation for k-center KL clustering. In the rest of the proof
we show that we may assume α = 4.

398

We use a variant of an algorithm by Gonzalez [16]
that is applicable to divergences that satisfy a relaxed
triangle inequality. Recall that JS satisfies,

JS(p, q) + JS(q, r) ≥ JS(p, r)/2 .

for all p, q, r. The algorithm assumes knowledge of the
optimum JS diameter (note that there are at most n2 possi-
ble values and thus we can check them all); let this value
be D. Initially, let all pj be “unmarked.” The algorithm
proceeds by picking an arbitrary unmarked distribution
pi, marking all pj such that JS(pj , pi) ≤ D and repeating
until all distributions are marked. Define the each cluster
as the set of distributions marked in the same iteration
and call pi the “center” of this cluster. This results in a
clustering such that the maximum diameter is at most
2(D +D) = 4D. We need to show that the process does
not determine more than k centers. Suppose we pick
k + 1 centers. Note that each of these centers are strictly
greater than (D + D)/2 = D apart and hence no two
may be in the same cluster for the optimum clustering.
This is a contradiction.

5 Hardness Results
In this final section of our paper, we prove hardness of
approximation results for MMCKL and MTCKL, i.e., we
show lower bounds of the approximation factors possible
in polynomial time on the assumption that P 6= NP . We
consider two variants of these problems. For all the algo-
rithms we presented in the previous sections, we insisted
that the centers c1, . . . , ck lay in ∆ but other than this the
centers were unrestricted. In some of the previous work
on approximation algorithms for clustering a variant is
considered in which it is required that c1, . . . , ck are cho-
sen from among the input distributions {p1, . . . , pn}. We
call this the restricted center version.

When a metric is used rather than KL, the restricted
and unrestricted versions of the problems are closely re-
lated: it can be shown that the restriction can at most
double the clustering cost. However, for KL we show
that, while we have presented approximation algorithms
for the unrestricted case, no approximation to any multi-
plicative factor is possible in the restricted case.

5.1 Unrestricted Centers
In this section, we prove an approximation hardness re-
sult for MMCKL. Our result is based on demonstrating
that near the center of the simplex KL behaves similarly
to `22. We then use a result by Feder and Greene [13] that
showed an approximation hardness of 1.822 for k-center
in the plane where distance are measured as `2. (Hence,
this gives a 1.8222 < 3.320 approximation hardness
result for `22.)

Recall the definition,

A(r) = {p ∈ ∆ : pj = 1/d± r for all j ∈ [d]} . (3)

Lemma 23 For p, q ∈ A(ε/d),

KL(p, q) = (1± 5ε)d`22(p, q) .

Proof: We apply Taylor’s Theorem to the terms of the
KL divergence:

KL(p, q) =
∑
i∈[d]

pi log
pi

qi
− pi + qi

=
∑
i∈[d]

−pi log
(

1− pi − qi

pi

)
− pi + qi

=
∑
i∈[d]

(pi − qi)2

pi
+ η3

i pi

for some ηi with |ηi| ≤ |pi − qi|/pi. Note that

|ηi|3pi ≤
(pi − qi)2

pi
· |pi − qi|

pi
≤ 3ε

(pi − qi)2

pi

and therefore

KL(p, q) = (1±3ε)
∑
i∈[d]

(pi − qi)2

pi
≤ (1±5ε)d`22(p−q) .

Using the above lemma, the next theorem shows that
if the distributions to be clustered are near the center of
the simplex, then we can use an approximation algorithm
for MTCKL or MMCKL to get a good approximation for
MTC`22

or MMC`22
respectively.

Theorem 24 Let τ ∈ (1, 10) and let

p1, . . . , pn ∈ A(ε2/(502d3)) .

Then, a τ -approximation for MTCKL yields a (τ + 5ε)-
approximation for MTC`22

. Similarly, a τ -approximation
for MMCKL yields a (τ + 5ε)-approximation for MMC`22

.

Proof: We first consider MTCKL. Suppose we want to
solve MTC`22

on the input p1, . . . , pn ∈ ∆ and let

{c̃1, . . . , c̃k}
be a τ -approximation for MTCKL. Without loss of gen-
erality, we may assume that c̃1, . . . , c̃k are in the con-
vex hull of p1, . . . , pn since if c̃j is the closest center to
{pi}i∈I then the objective function only decreases if we
let c̃j = cent(pi : i ∈ I).

Denote the convex hull of p1, . . . , pn by H and note
that q ∈ H implies that q ∈ A(ε2/(502d3)) ⊂ A(ε/(5d)).
Hence, by appealing to Lemmas 7 and 23, we deduce,∑

j∈[n]

min
i∈[k]

`22(p
j , c̄i)

=
1

d(1± ε)2
∑
j∈[n]

min
i∈[k]

KL(pj , c̄i)

≤ τ

d(1± ε)2
min

c1,...,ck∈H

∑
j∈[n]

min
i∈[k]

KL(pj , ci)

≤ τ

(1± ε)4
min

c1,...,ck∈H

∑
j∈[n]

min
i∈[k]

`22(p
j , ci)

=
τ

(1± ε)4
min

c1,...,ck∈∆

∑
j∈[n]

min
i∈[k]

`22(p
j , ci) .

399

where the last line follows because the optimum centers
for MTC`22

lie in convex(P).
We now consider MMCKL and suppose {c̃1, . . . , c̃k}

is a τ -approximation for MMCKL. By appealing to Lemma
7, we may assume

c̃1, . . . , c̃k ∈ A(10
√

ε2/(502d2)) = A(ε/(5d)) .

Hence,

max
j∈[n]

min
i∈[k]

`22(p
j , c̄i)

=
1

d(1± ε)2
max
j∈[n]

min
i∈[k]

KL(pj , c̄i)

≤ τ

d(1± ε)2
min

c1,...,ck∈A(ε
5d)

(
max
j∈[n]

min
i∈[k]

KL(pj , ci)
)

≤ τ

(1± ε)4
min

c1,...,ck∈A(ε
5d)

(
max
j∈[n]

min
i∈[k]

`22(p
j , ci)

)
=

τ

(1± ε)4
min

c1,...,ck∈∆

(
max
j∈[n]

min
i∈[k]

`22(p
j , ci)

)
.

where the last line follows because the optimum centers
for MMC`22

lie in A(ε/(5d)). This can be shown using
ideas contained in Lemma 7:

`22(p
i, p1) ≤ d max

j∈[d]
(pi

j − p1
j)

2 ≤ 4ε4/(504d5)

while for q /∈ A(ε/(5d)),

`22(p
i, q) ≥ (ε2/(5d)2 − ε2/(502d3))2 ≥ 4ε4/(504d5) .

To show a hardness result for unrestricted centers it is
therefore sufficient to show a hardness result for MMC`22
when the points to be clustered lie near the middle of
the probability simplex. We do this by taking Feder and
Greene [13] result the showed the hardness of MMC`2
in the plane and demonstrating that the plane can be
mapped into the middle of the probability simplex in a
manner that preserves approximation factors. This will
give the following theorem.

Theorem 25 For any α < 3.320, unless P = NP , no
polynomial-time, α-approximation algorithm exists for
MMCKL.

k-means on the middle of ∆: Given an instance I of
MMC`2 on a bounded domain A of the x1 − x2 plane,
we show how to produce an instance I ′ of MMC`2 on
the three-dimensional simplex, such that, there is an
approximation preserving bijection between the solutions
to I and the solutions to I ′.

To show this, we first assume without loss of gener-
ality that A ⊆ [0, 1/4] × [0, 1/4]. We can assume this
because translating and scaling scales down the distance
between every pair of points by the same number. For
any x ∈ A, we define a map φ(x) as follows:

φ(x) = Ux + [1/3, 1/3, 1/3]T

where U is the matrix:

U =


1√
2

0 1√
3

− 1√
2

1√
2

1√
3

0 − 1√
2

1√
3


Lemma 26 If x ∈ A, φ(x) lies on the simplex.

Proof: We first show that if x lies on the x1 − x2 plane,
then Ux lies on the plane x1 + x2 + x3 = 0. Let

y1 = (1/
√

2,−1/
√

2, 0) and y2 = (0, 1/
√

2,−1/
√

2) .

As y1 = Ux1 and y2 = Ux2, if x = α1x1 + α2x2, then,
Ux = α1y1 + α2y2. Since

y1 · (1, 1, 1) = y2 · (1, 1, 1) = 0 ,

Ux · (1, 1, 1) = 0 as well, which means that Ux lies on
the plane x1 + x2 + x3 = 0.

Since Ux lies on the plane x1 + x2 + x3 = 0, we
deduce that φ(x) lies on the plane x1 + x2 + x3 = 1.
Since x ∈ [0, 1/4]× [0, 1/4], for any i ∈ {1, 2, 3},

(Ux)i ≥ −1
4
× 1√

2
≥ −1

3
.

Therefore, for any i, (φ(x))i ≥ 0. Again, as x ∈
[0, 1/4]× [0, 1/4], for any i ∈ {1, 2, 3},

(Ux)i ≤
1
4
× 1√

2
≤ 2

3
.

Therefore, (φ(x))i ≤ 1 for each i, from which the lemma
follows.

To map an instance I of MMC`2 on the x1−x2 plane
to the probability simplex, we simply apply the map φ
on each point of I . This produces another instance I ′

of the problem on the simplex, which has the following
property.

Lemma 27 There is an approximation-preserving bijec-
tion between the solutions of I and the solutions of I ′.

Proof: We observe that as U is a unitary matrix, the map
φ is a bijection. Moreover, since φ consists of a trans-
lation and a rotation, it preserves the distance between
every pair of points. Therefore, applying φ on a solution
of I produces a solution of I ′ of the same cost. The
mapping φ is thus approximation preserving.

Finally, by mapping each point x ∈ I ′ to εx+(1−ε)u
where u = [1/3, 1/3, 1/3]T we generate a set of points
that lie arbitrarily close to the center of ∆ (setting ε as
small as necessary.) Again, this transformation can be
seen to be approximation preserving.

5.2 Restricted Centers
In this section, we consider the restricted version of
MMCKL and MTCKL where we insist that the cluster cen-
ters c1, . . . , cn ∈ {p1, . . . , pn}. Our result is based on
relating the problem to the SET-COVER problem and ap-
pealing to a result of Feige [14].

400

Theorem 28 For any α ≥ 1, unless P = NP , no
polynomial-time, α-approximation algorithm exists for
either MTCKL or MMCKL.

Proof: Consider a reduction from the problem SET-
COVER: Consider S1, . . . , Sn−d−1 ∈ [d− 1] and k ≤ d.
It was shown by Feige [14] that it is NP-hard to de-
termine if there exists S = {Si1 , . . . , Sik−1} such that⋃

Sij
= [d− 1].

We first consider MMCKL. Let c1, c2 > 1 such that

(d− 1)e−c1 < 1 and (d− 1)e−c2 < e−c1 .

Let qi be the probability distribution with mass e−c1 on
each element in Si, and the remaining mass on {d}. Let
pi = ei (i.e., the i-th vector of the standard basis) for
i ∈ [d − 1]. Let r be the probability distribution with
e−c2 mass on each element in [d− 1] and the remaining
mass on {d}.

Note that KL(pi, qj) = c1, KL(pi, r) = c2, and

KL(qj , r) = (1− |Sj |e−c1) ln
1− |Sj |e−c1

1− (d− 1)e−c2

+|Sj |e−c1 ln(e−c1/e−c2)

≤ |Sj |e−c1(c2 − c1) ≤ de−c1c2

Hence, if there exists S, the clustering with cen-
ters pi1 , . . . , pik−1 , r costs at most max{c1, de−c1c2}
whereas otherwise the cost is

max{c1, c2, de−c1c2} ≥ c2 .

Hence the ratio difference is at least
c2

max{c1, de−c1c2}

which we can make arbitrarily large.
This also implies that no approximation is possi-

ble for MTCKL because any α′-approximate solution for
MTCKL is also a αn-approximation solution for MMCKL
for k-median when centers must be original points.

Bi-criteria Approximation: We briefly mention an
approximation algorithm for the related approximation
problem of finding the minimum number k′ of centers
c1, c2, . . . , ck′ ∈ {p1, . . . , pn} such that for all i ∈ [n],

min
j∈[k′]

KL(pi, cj) ≤ r

for some given r. This can be approximated up to a
factor of O(log n) using a well-known approximation
algorithm for SET-COVER. Specifically, for each pi we
define a set Si = {j ∈ [n] : KL(pj , pi) ≤ r}. Then,
our problem becomes picking the smallest number of
sets Si1 , Si2 , . . . such that ∪j≥1Sij = [n]. An O(log n)-
approximation algorithm exists for this problem.

Acknowledgements: We would like to thank Sanjoy
Dasgupta for helpful discussions.

References

[1] M. R. Ackerman, J. Blomer, and C. Sohler. Clus-
tering for metric and non-metric distance measures.
In ACM-SIAM Symposium on Discrete Algorithms,
2008.

[2] V. Arya, N. Garg, R. Khandekar, K. Munagala, and
V. Pandit. Local search heuristic for k-median and
facility location problems. In ACM Symposium on
Theory of Computing, pages 21–29, 2001.

[3] M. Badoiu, S. Har-Peled, and P. Indyk. Approxi-
mate clustering via core-sets. In ACM Symposium
on Theory of Computing, pages 250–257, 2002.

[4] L. D. Baker and A. K. McCallum. Distributional
clustering of words for text classification. In W. B.
Croft, A. Moffat, C. J. van Rijsbergen, R. Wilkin-
son, and J. Zobel, editors, Proceedings of SIGIR-98,
21st ACM International Conference on Research
and Development in Information Retrieval, pages
96–103, Melbourne, AU, 1998. ACM Press, New
York, US.

[5] A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh.
Clustering with bregman divergences. Journal of
Machine Learning Research, 6:1705–1749, 2005.

[6] K. Chen. On k-median clustering in high dimen-
sions. In Symposium on Discrete Algorithms, 2006.

[7] J. Chuzhoy, S. Guha, E. Halperin, S. Khanna, G. Ko-
rtsarz, R. Krauthgamer, and J. Naor. Asymmetric
k-center is log∗ n-hard to approximate. J. ACM,
52(4):538–551, 2005.

[8] T. M. Cover and J. A. Thomas. Elements of Informa-
tion Theory. Wiley Series in Telecommunications.
John Wiley & Sons, New York, NY, USA, 1991.

[9] K. Crammer, M. Kearns, and J. Wortman. Learning
from multiple sources. In NIPS, pages 321–328,
2006.

[10] I. Csiszár. Why least squares and maximum en-
tropy? an axiomatic approach to inference for lin-
ear inverse problems. Ann. Statist., 19:2032–2056,
1991.

[11] I. S. Dhillon, S. Mallela, and R. Kumar. A divisive
information-theoretic feature clustering algorithm
for text classification. JMLR, 3:1265–1287, 2003.

[12] D. M. Endres and J. E. Schindelin. A new metric
for probability distributions. IEEE Transactions on
Information Theory, 49(7):1858–1860, 2003.

[13] T. Feder and D. Greene. Optimal algorithms for
approximate clustering. In ACM Symposium on
Theory of Computing, 1988.

[14] U. Feige. A threshold of ln for approximating set
cover. J. ACM, 45(4):634–652, 1998.

[15] D. Feldman, M. Monemizadeh, and C. Sohler. A
ptas for k-means clustering based on weak coresets.
In Symposium on Computational Geometry, pages
11–18, 2007.

[16] T. F. Gonzalez. Clustering to minimize the max-
imum intercluster distance. Theor. Comput. Sci.,
38:293–306, 1985.

[17] S. Guha, P. Indyk, and A. McGregor. Sketching

401

information divergences. Submitted to Journal of
Machine Learning, 2007.

[18] S. Guha, A. McGregor, and S. Venkatasubrama-
nian. Streaming and sublinear approximation of
entropy and information distances. In ACM-SIAM
Symposium on Discrete Algorithms, pages 733–742,
2006.

[19] S. Har-Peled and S. Mazumdar. Coresets for k-
means and k-median clustering and their applica-
tions. In ACM Symposium on Theory of Computing,
2004.

[20] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D.
Piatko, R. Silverman, and A. Y. Wu. A local search
approximation algorithm for k-means clustering.
Comput. Geom., 28(2-3):89–112, 2004.

[21] S. G. Kolliopoulos and S. Rao. A nearly linear-time
approximation scheme for the euclidean kappa-
median problem. In European Symposium on Algo-
rithms, pages 378–389, 1999.

[22] A. Kumar, Y. Sabharwal, and S. Sen. A simple
linear time (1 + ε)-approximation algorithm for
k-means clustering in any dimensions. In IEEE
Symposium on Foundations of Computer Science,
pages 454–462. IEEE Computer Society, 2004.

[23] R. Panigrahy and S. Vishwanathan. An o(log∗ n)
approximation algorithm for the asymmetric p-
center problem. J. Algorithms, 27(2):259–268,
1998.

[24] F. C. N. Pereira, N. Tishby, and L. Lee. Distribu-
tional clustering of english words. In ACL, pages
183–190, 1993.

[25] N. Slonim, R. Somerville, N. Tishby, and O. Lahav.
Objective classification of galaxy spectra using the
information bottleneck method. Monthly Notes
of the Royal Astronomical Society, 323:270–284,
2001.

[26] N. Slonim and N. Tishby. Agglomerative informa-
tion bottleneck. In NIPS, pages 617–623, 1999.

[27] N. Tishby, F. Pereira, and W. Bialek. The infor-
mation bottleneck method. In Proceedings of the
37-th Annual Allerton Conference on Communi-
cation, Control and Computing, pages 368–377,
1999.

[28] F. Topsøe. Some inequalities for information diver-
gence and related measures of discrimination. IEEE
Transactions on Information Theory, 46(4):1602–
1609, 2000.

402

An Information Theoretic Framework for Multi-view Learning

Karthik Sridharan and Sham M. Kakade
Toyota Technological Institute at Chicago
{karthik, sham}@tti-c.org

Abstract

In the multi-view learning paradigm, the input
variable is partitioned into two different views X1

and X2 and there is a target variable Y of inter-
est. The underlying assumption is that either view
alone is sufficient to predict the target Y accu-
rately. This provides a natural semi-supervised
learning setting in which unlabeled data can be
used to eliminate hypothesis from either view,
whose predictions tend to disagree with predic-
tions based on the other view.

This work explicitly formalizes an information
theoretic, multi-view assumption and studies the
multi-view paradigm in the PAC style semi-
supervised framework of Balcan and Blum [2006].
Underlying the PAC style framework is that an in-
compatibility function is assumed to be known —
roughly speaking, this incompatibility function is
a means to score how good a function is based
on the unlabeled data alone. Here, we show how
to derive incompatibility functions for certain loss
functions of interest, so that minimizing this in-
compatibility over unlabeled data helps reduce ex-
pected loss on future test cases. In particular, we
show how the class of empirically successful co-
regularization algorithms fall into our framework
and provide performance bounds (using the results
in Rosenberg and Bartlett [2007], Farquhar et al.
[2005]).

We also provide a normative justification for
canonical correlation analysis (CCA) as a dimen-
sionality reduction technique. In particular, we
show (for strictly convex loss functions of the form
`(w·x, y)) that we can first use CCA as dimension-
ality reduction technique and (if the multi-view
assumption is satisfied) this projection does not
throw away much predictive information about the
target Y — the benefit being that subsequent learn-
ing with a labeled set need only work in this lower
dimensional space.

1 Introduction

The “multi-view” approach to learning has been receiving in-
creasing attention as a paradigm for semi-supervised learn-
ing. The implicit assumption is that either view alone has
sufficient information about the target Y . The basic intu-
ition as to why this assumption is helpful is that the complex-
ity of the learning problem could be reduced by eliminating
hypothesis from each view that tend not to agree with each
other, which, crucially, can be done using unlabeled data.

There are many natural applications for which this as-
sumption is applicable. For example, consider a setting
where it is easy to obtain pictures of objects from different
camera angles and say our supervised task is one of object
recognition. Intuitively, we can think of unlabeled data as
providing examples of viewpoint invariance. One can even
consider multi-modal views, e.g. identity recognition where
the task might be to identify a person with one view being a
video stream and the other an audio stream — each of these
views would be sufficient to determine the identity. In NLP,
an example would be a paired document corpus, consisting
of a document and its translation into another language, and
the supervised task could be predicting some high level prop-
erty of the document. The motivating example in Blum and
Mitchell [1998] is a web-page classification task, where one
view was the text in the page and the other was the hyper-link
structure.

This work explicitly formalizes a general information
theoretic multi-view assumption. Based on this assumption,
we seek to understand the reduction in label complexity from
using unlabeled data. There are two natural classes of algo-
rithms in the literature which can be considered multi-view
algorithms. These classes are the co-regularization algo-
rithms and algorithms based on CCA. For the former, we
analyze the co-regularization algorithms of Sindhwani et al.
[2005], Brefeld et al. [2006] (and the related SVM-2K al-
gorithm of Farquhar et al. [2005]) in a generalization of the
PAC style semi-supervised framework of Balcan and Blum
[2006]. Technically, this PAC model is for the 0/1 loss, but
we generalize the framework to arbitrary loss functions. For
the latter class of algorithms, we generalize the CCA results
in Kakade and Foster [2007] to show how CCA can be used
for dimensionality reduction, when dealing with convex loss
functions (under linear prediction). In the Discussion, we
present a practical answer to the open problem presented in
Balcan and Blum [2007] (presented at COLT 2007) using

403

co-regularization algorithms, under the theory of surrogate
loss functions [Bartlett et al., 2006], and we also discuss the
connection to the Information Bottleneck method of Tishby
et al. [1999].

In the remainder of the Introduction, we present our set-
ting and main information theoretic assumption, and then
summarize our contributions and related work.

1.1 A Multi-View Assumption
In the (multi-view) semi-supervised setting, we assume that
we have n labeled examples S = {(xi1, xi2, yi)}ni=1 and m
unlabeled examples U = {(xi1, xi2)}n+m

i=n+1, where yi ∈ Y
and xiv ∈ Xv for v ∈ {1, 2}, which are both sampled in an
i.i.d. manner from some unknown underlying joint distribu-
tion (typically m >> n). In particular, the joint underly-
ing distribution is over X1 × X2 × Y . As usual, the goal is
to predict Y , as measured with respect to some known loss
function.

Information theory provides the natural language to state
an assumption for multi-view learning. In particular, the con-
ditional mutual information I(A : B|C) (between random
outcomes A and B conditioned on C) measures how much
information is shared between A and B conditioned on al-
ready knowing C, which can be viewed as how much know-
ing A reduces our uncertainty of B, conditioned on already
knowing C. We now state our first main assumption.

Assumption 1 (Multi-View Assumption) There exists an
εinfo > 0 such that

I(Y : X2|X1) ≤ εinfo

and
I(Y : X1|X2) ≤ εinfo

Let us try to get an intuitive feel for this assumption. The
assumption states that (on average) if we already knew X1

then there is little more information that we could gain about
Y from learning X2 (and vice-versa) — this small potential
gain is quantified by εinfo. Hence, we can think of this as-
sumption as stating that bothX1 andX2 are (approximately)
redundant with regards to their information about Y .

Let us examine how the compatibility assumption made
in the co-training case [Blum and Mitchell, 1998], where
Y ∈ {0, 1}, is related to this assumption. Here, it was as-
sumed that a perfect prediction of Y is possible using the
knowledge of either view alone. This implies the above con-
ditions are satisfied with εinfo = 0, since conditioned on
either view, the target Y is already known (so there is no
possible reduction in uncertainty with knowledge from the
remaining view).

However, note that under this assumption, neither view
need accurately predict the target, just that they both carry
(roughly) the same information about the target. Hence, the
assumption is well suited to situations with noise. In fact,
even if εinfo = 0, there need not exist perfect predictions of
the target — though for this case we would expect that the
optimal predictions should perfectly agree (as they carry the
same information about Y), a point which we return to.

The work in Blum and Mitchell [1998] also introduced
a further conditional independence assumption, which states

that X1 and X2 are independent conditioned on the knowl-
edge of Y . The work of Dasgupta et al. [2001], Abney
[2004] shows how unreasonably strong this extra assump-
tion is, with regards to classification. In our work, we make
no further assumptions on the underlying data distribution.

1.2 Co-Regularization
There is a recent class of algorithms which control model
complexity in the two view setting by co-regularizing [Sind-
hwani et al., 2005, Brefeld et al., 2006]. A related algorithm
is the two view SVM-2K algorithm of Farquhar et al. [2005].
These class of algorithms all have demonstrated empirical
successes. The question we seek to understand is how unla-
beled data improves the performance of these algorithms.

These co-regularization algorithms add an additional
regularizer which penalizes using functions from either view
which tend to disagree. The (kernelized) algorithm of Sind-
hwani et al. [2005], Brefeld et al. [2006] is to find two pre-
dictors f1 and f2 (where f1 : X1 → Y and f2 : X2 → Y)
which minimize the following co-regularized loss:

1
2

(ÊS [`(f1(x1), y)] + ÊS [`(f2(x2), y)])

λ‖f1‖2K + λ‖f2‖2K + λcoÊU (f1(x1)− f2(x2))2 (1)

where ‖ · ‖K is a pre-specified norm over functions; ÊS and
ÊU are empirical averages with respect to the labeled and
unlabeled sets S and U , respectively; and ` is some convex
loss (such as the hinge loss or squared loss). The last term is
the co-regularizer. Note that if λco = 0 then this problem just
reduces to solving two independent (regularized) problems.
The SVM-2K algorithm of Farquhar et al. [2005] is simi-
lar — it essentially imposes an agreement constraint into the
SVM objective function, based on the L1 norm (which al-
lows for an efficient implementation).

Rosenberg and Bartlett [2007] provide generalization
bounds for co-regularization (using a co-regularizer that is
the square loss) in terms of Rademacher complexities. Far-
quhar et al. [2005] also provide generalization bounds (again
using Rademacher complexities) for the SVM-2K algorithm.
These bounds characterize how much the complexity class
of the hypothesis space decreases with the co-regularization.
We can view these bounds as characterizing how much the
variance of the algorithm decreases. In particular, as λco in-
creases, this has the effect of decreasing the variance (as a
harder constraint is being imposed). While these are valid
generalization bounds (which compare the empirical expec-
tation of a predictor to the true expectation), they do not
address the bias issue of how performance could decrease
as λco is increased too much. In particular, as λco is in-
creased, the algorithm is not as free to use certain hypoth-
esis (which we can think of as the bias). Roughly speaking,
these previous multi-view results quantify how model com-
plexity is reduced, but they do not specify why this is reason-
able to do. Hence, to understand how unlabeled data could
improve performance, we must characterize how much the
co-regularization effects this bias-variance trade-off.

We address these issues under the recent PAC framework
for semi-supervised learning of Balcan and Blum [2006] —
though we generalize the setting for arbitrary loss functions
(Balcan and Blum [2006] only considered the 0/1 loss).

404

Their framework assumes an incompatibility function — a
function which scores how good hypothesis are just based
on the underlying data distribution. They provide a gen-
eral framework for characterizing how such an incompati-
bility function can reduce the need for labeled samples. In-
tuitively, one can view the co-regularizer as an incompatibil-
ity function, as it is scoring hypothesis based on unlabeled
data — if a pair of hypothesis disagree strongly under the
co-regularizer it is unlikely that they would be good predic-
tors.

One of our main contributions for analyzing these co-
regularization algorithms is that we show how the incompati-
bility function is really a derived property of the loss function
— the incompatibility function needs to satisfy a rather mild
inverse Lipschitz condition. Under relatively general condi-
tions, incompatibility functions can be derived for many loss
functions of interest — we provide examples for the (regu-
larized) hinge loss, the square loss, for the 0/1 loss, and for
strictly convex losses. Interestingly (and rather subtly), our
incompatibility function for the 0/1 loss makes use of Tsy-
bakov’s noise condition.

We then explicitly use the Rademacher bounds in Rosen-
berg and Bartlett [2007], Farquhar et al. [2005] to pro-
vide performance bounds under the multi-view assumption.
These bounds characterize the bias-variance trade-off. We
explicitly quantify how to set the co-regularization parame-
ter λco in terms of εinfo, showing that an appropriate setting
of λco is O(1/

√
εinfo). In particular, this shows it is appro-

priate for λco → ∞ as εinfo → 0, i.e. when the information
theoretic assumption is as sharp as possible, we are permitted
to co-regularize as hard as possible (without introducing any
bias). For this case, the co-regularization algorithms obtain
their maximal reduction in variance.

1.3 Dimensionality Reduction

While PCA is the time-honoured and simplest dimensional-
ity reduction technique, there are few normative reasons as
to why this technique is appropriate. The typical justifica-
tion is that the top k principal directions are those which best
reconstruct the data, in a mean squared sense. One common
criticism of this oft used justification is that a rescaling of the
data could change the outcome of PCA.

Canonical Correlation Analysis (CCA) [Hotelling,
1935] — like PCA but for the two view setting — also serves
as a rather general and widely used dimensionality reduction
technique. Roughly speaking, it uses the cross-correlation
matrix between the two views to find the canonical direc-
tions — those directions which are most correlated (in a nor-
malized sense) between the views. As a dimensionality re-
duction procedure, one can take the top k CCA directions
which, roughly speaking, preserves the most correlated co-
ordinates. However, unlike PCA, CCA is invariant to linear
transformations of the data. (Under the linear transforma-
tion x1 → Lx1 and x2 → L′x2, the result of CCA does not
change. This is because CCA works in terms of normalized
correlation coefficients.) We define CCA more precisely in
Section 3.

In certain special cases, there are normative justifica-
tions for CCA as a dimensionality reduction technique.
When x1 and x2 are jointly distributed as a Gaussian, the

Gaussian Information Bottleneck method [Chechik et al.,
2005] shows that CCA provides an appropriate compression
scheme (under the Information Bottleneck criterion [Tishby
et al., 1999]). In a semi-supervised multi-view setting,
Kakade and Foster [2007] show that CCA provides the nat-
ural dimensionality reduction technique by which one can
project x onto a lower dimensional space (using CCA) and
yet still retain predictive information about y. However, this
work was rather specific to the square loss and used a multi-
view assumption tailored to the square loss.

This work provides a normative justification of CCA in
a rather broad sense — we generalize the work of Kakade
and Foster [2007]. We consider a setting where have a con-
vex loss function of the form `(w · x, y), where either the
loss function is strictly convex (e.g. log loss, square loss) or
we use a strictly convex regularizer (e.g. hinge loss with L2

regularization). We show that, under the multi-view assump-
tion above, if we perform CCA and project the data onto
to the top k canonical directions (where k is determined by
the canonical eigenspectrum), then this projection loses little
predictive information about Y . Hence, our subsequent su-
pervised learning problem is simpler as we can work with a
lower dimensional space (with the knowledge that we have
not thrown away useful predictive information in working
with this lower dimensional space). We state this precisely
in Section 3.

2 Co-Regularization and Compatibility
We now consider the PAC style semi-supervised framework
introduced in Balcan and Blum [2006] and generalize the
framework to general loss functions. We work with a pre-
diction space Ŷ that need not be equal to Y . The goal is to
learn a pair of predictors (f1, f2), where f1 : X1 → Ŷ and
f2 : X2 → Ŷ , based on the labeled and unlabeled data such
that the expected loss of any one of these predictors is small.
We work with loss functions (bounded in [0, 1]) of the form
`(f ; (x1, x2, y)) (usually the loss functions are of the more
restricted form `(f(x), y) though in some cases, e.g. Ex-
ample 4, this more general form is appropriate). Denote by
L(f1) the expected loss of f1, i.e. L(f1) = E`(f1; (x1, y)),
and L(f2) is similarly defined. Let F1 and F2 denote the
hypothesis classes of interest, consisting of functions from
X1 (and, respectively, X2) to the prediction space Ŷ . Let a
Bayes optimal predictor with respect to lossL based on input
X1, X2 be denoted by y∗(X1, X2). So y∗ ∈ argminf L(f),
where the argmin is over all functions. Similarly, let y∗v for
v ∈ {1, 2} be Bayes optimal predictors with respect to loss
function L based on input Xv .

2.1 Compatible Function Classes
As discussed in the Introduction, to leverage our informa-
tion theoretic assumption, we would like to say that a near
optimal predictor using information from one view tends to
agree with a near optimal predictor from another view. If this
were the case, then the intuitive basis for an algorithm would
be to find predictors from either view which tend to agree.
However, quantifying this statement depends on the details
of the loss function and the prediction space, since we need
to specify a relationship between a measure of “closeness”

405

of the loss function and a measure of agreement between hy-
pothesis. We do this in the following assumption, which can
be considered an inverse Lipschitz condition, which bounds
how close two functions are in terms of how close their loss
is.

Assumption 2 (Inverse Lipschitz Condition) There exists
a symmetric function d : Ŷ × Ŷ → R+ and a monotoni-
cally increasing non-negative function Φ on the reals (with
Φ(0) = 0) such that for all f ,

E[d(f(x), y∗(x))] ≤ Φ(L(f)− L(y∗))

where the expectation is with respect to x = (x1, x2), and
y∗ is some Bayes optimal predictor with respect to loss L.
Furthermore, for v ∈ 1, 2 and all fv ,

E[d(fv(x), y∗v(x))] ≤ Φ(L(fv)− L(y∗v))

where y∗v is a Bayes optimal predictor using only knowledge
of xv .

While we this assumption seems natural enough, we
should note that there some subtleties. For example, if we are
dealing with binary prediction and the 0/1 loss function (the
binary classification loss), consider the case where the target
function is complete noise. Here, all predictors are Bayes
optimal and have the maximal error rate of 0.5. Hence, pre-
dictors can be far from agreeing yet they are all optimal. In
general, for the 0/1 loss, the higher the noise, the less near-
optimal predictors need to agree. In the next Subsection, we
consider this case in more detail (in Example 2), and we also
consider other commonly used loss functions.

While it is natural to assume that d satisfies the triangle
inequality, there are some natural choices of d which do not
satisfy this. In particular, in some cases we would like to
use d(y, y′) = (y − y′)2, which does not satisfy the triangle
inequality. Hence, we only assume a relaxed version of the
triangle inequality.

Assumption 3 (Relaxed Triangle Inequality) For the
function d, there exists a cd ≥ 1 such that

∀ŷ1, ŷ2, ŷ3 ∈ Ŷ, d(ŷ1, ŷ2) ≤ cd(d(ŷ1, ŷ3) + d(ŷ3, ŷ2))

We now introduce the incompatibility framework of Bal-
can and Blum [2006] for the multi-view setting. Here, we
have a function χ : Ŷ × Ŷ → R+, which we think of as
scoring how incompatible two functions are. In particular,
in this framework, they desire to use functions which are
highly compatible. To formalize this, define the compatible
function class with respect to incompatibility function χ and
some t ≥ 0 as those pairs of functions which are compatible
to the tune of t, more precisely:

Cχ(t) = {(f1, f2) : f1 ∈ F1, f2 ∈ F2 andE[χ(f1, f2)] ≤ t}
where we are slightly abusing notation by referring to
χ(f, f ′) as meaning χ(f(x1, x2), f ′(x1, x2)), which we do
throughout.

In order to characterize how good this compatibility class
is, in terms of our multi-view assumption, we need to also
define the Bayes regret:

εbayes = max{L(f∗1)− L(y∗1), L(f∗2)− L(y∗2)}

where f∗v ∈ Fv is the optimal predictor for view v within the
hypothesis class Fv .

Our first result shows that for a particular choice of t, the
incompatibility class contains a good pair of hypothesis.

Theorem 1 (Bias) If Assumptions 1, 2, and 3 are satisfied,
then given a loss function ` bounded by 1 and if we set the
incompatibility function to be d, i.e. χ = d, then for t =
2c2d(Φ(

√
εinfo) + Φ(εbayes)), we have:

inf
(f1,f2)∈Cχ(t)

L(f1) + L(f2)
2

≤ L(y∗) + εbayes +
√
εinfo

(The proof is provided in the Appendix).
Of course, for convex loss functions we have

L(f1+f22) ≤ L(f1)+L(f2)
2 .

The need for stating the bound in terms of the Bayes
regret εbayes is due to our information theoretic Assump-
tion 1 not explicitly referring to any hypothesis classes F1

and F2. The square root dependence on εinfo is a result of
using Pinsker’s equality in the proof, which relates the L1

distance to the KL-distance (see Cover and Thomas [1991]).
Note that in Balcan and Blum [2006] they did not ex-

plicitly characterize the quality of the incompatibility class
— they assumed that χ was known and that a setting of
t was known such that Cχ(t) contained a ’good’ predictor.
Here, we derive our incompatibility function and we specify
a value t. Intuitively, this lemma characterizes the bias —
the reduction in performance — by using Cχ(t) instead of
the full hypothesis classes F1 and F2, in terms of the error
εinfo.

We now provide examples of pairs χ and Φ for com-
monly used loss functions, showing that our multi-view
framework is quite general.

2.2 Examples of Loss/Incompatibility Pairs

Example 1 (Squared Loss) Let Y, Ŷ = R. Consider the
loss function `(ŷ, y) = (y − ŷ)2. Here, we can choose the
incompatibility function χ(ŷ1, ŷ2) = d(ŷ1, ŷ2) = (ŷ1 − ŷ2)2
and Φ(x) = x. To see that this satisfies all the requisite
assumptions, note that since (a− b)2 ≤ 2(a2 + b2), we have
that χ satisfies the relaxed triangle inequality with cd = 2.
Also, since that y∗v = E[Y |Xv] and y∗ = E[Y |X1, X2], we
have:

E(fv − y∗v)2 = E(fv − y)2 − E(y∗v − y)2 ,

E(f − y∗)2 = E(f − y)2 − E(y∗ − y)2

so our inverse Lipschitz condition is satisfied with equality.

Example 2 (Zero-one Loss) Here, we have Y, Ŷ =
{1,−1} with `(ŷ, y) = 11{y 6=by}. As discussed in the pre-
vious Subsection, there is no natural choice of d and Φ for
this loss function, without further restrictions on the noise.
Hence, let us assume that Tsybakov’s noise condition [Tsy-
bakov, 2004] holds for each view independently and for both
views together for some noise exponent α ∈ (0, 1], which we
define below. Now we can choose the incompatibility func-
tion χ(ŷ1, ŷ2) = 11{by1 6=by2} with Φ(x) = cxα where c > 0
(defined below). Here, χ is in fact a metric and hence satis-
fies the triangle inequality.

406

To see that the choice of Φ is appropriate, first note that
by definition of Tsybakov’s noise condition, for all f1 : X1 →
Ŷ , f2 : X2 → Ŷ and f : X1 × X2 → Ŷ there exists c > 0
such that for v ∈ {1, 2}

Pr(f(Xv)(ηv(Xv)−
1
2

) ≤ 0) ≤ c(L(fv)− L(y∗v))α

and

Pr(f(X1, X2)(η(X)− 1
2

) ≤ 0) ≤ c(L(f)− L(y∗))α

where ηv and η stand for P (Y = 1|Xv) and P (Y =
1|X1, X2) respectively. Now since sign(η(X) − 1

2)
is the Bayes optimal predictor, 11{f(X)(η(X)− 1

2)≤0} =
11{f(X)6=y∗(X)} = χ(f, y∗) and thus, under Tsybakov’s noise
condition, Assumption 2 is satisfied.

Example 3 (Strictly Convex Losses) Consider a loss
function `(ŷ, y) where, for each y, `(·, y) is strictly convex
with respect to pseudo-metric d with modulus of convexity δ
(defined below). Let the prediction space Ŷ and output space
Y be bounded a subset of R. Here, χ(ŷ1, ŷ2) = δ(d(ŷ1, ŷ2))
satisfies Assumption 2 with Φ(x) = x

2 (provided the modulus
of convexity function δ(ε) ≤ εp for some p > 0). In this
case it is easy to check that cd = 1 if p < 1 and cd = 2p−1

otherwise.

To see this, we first define modulus of convexity of the
loss function ` with respect to pseudometric d (in its first
parameter). We say that for a given y, `(·, y) has modulus of
convexity δ if,

δy(ε) = inf{`(ŷ, y) + `(ŷ′, y)
2

− `(ŷ + ŷ′

2
, y) : d(ŷ, ŷ′) ≥ ε}

where the inf is over ŷ, ŷ′ ∈ Ŷ . We actually want to work
with a uniform bound on this function and so we define δ to
be any function satisfying,

δ(ε) ≤ inf
y∈Y

δy(ε)

Now note that

L(fv) + L(y∗v)
2

− L(
fv + y∗v

2
) ≥ Eδ(d(fv, y∗v))

and

L(f) + L(y∗)
2

− L(
f + y∗

2
) ≥ Eδ(d(f, y∗))

Since L(fv+y
∗
v

2) ≥ L(y∗v) and L(f+y
∗

2) ≥ L(y∗) we have
that,

E[χ(fv, y∗v)] = Eδ(d(fv, y∗v)) ≤ L(fv)− L(y∗v)
2

and

E[χ(f, y∗)] = Eδ(d(f, y∗)) ≤ L(f)− L(y∗)
2

which shows our choice of χ and Φ is appropriate.

Remark 1 It is worth noting that whenever Assumption 2
is satisfied with χ(ŷ1, ŷ2) = g(d(ŷ1, ŷ2)) where d is some
pseudo-metric and g is an invertible convex function then As-
sumption 2 is also with χ′ = d as the incompatibility func-
tion and Φχ′ = g−1(Φ). This is a simple consequence of
Jensen’s inequality.

Example 4 (L2 Regularized Losses) Say we have some
loss function ` that is convex and Ŷ = R. Now consider
the regularized loss functional for a certain RKHS function
class F ,

`λ(f ;x, y) := `(f(x), y) + λ‖f‖2K (2)

Taking χ(ŷ1, ŷ2) = (ŷ1− ŷ2)2 we can show that Assumption
2 is satisfied for the regularized loss with Φ(x) = (K+λ)2

2λ x,
where K := supx∈X

√
K(x, x) (note that here we overload

the notation K, but it is clear from context).
To see this, define for f, f ′ ∈ F the metric

dλ,x(f, f ′) = |f(x)− f ′(x)|+ λ‖f − f ′‖K

One can show thatE[`λ(f)] is strictly convex with respect to
dλ,x (Steinwart and Scovel [2006], Lemma 6.4) with modu-
lus of convexity δ(ε) = λε2

(K+λ)2 . From this we see that

E[`λ(f ;x, y)]− E[`λ(f∗;x, y)]
2

≥ E[
`λ(f ;x, y) + `λ(f∗;x, y)

2
− `λ(

f + f∗

2
;x, y)]

≥ Eδ(d′λ,x(f, f∗))

≥ Eδ(|f(x)− f∗(x)|+ λ‖f − f∗‖)
≥ Eδ(|f(x)− f∗(x)|)

≥ λ

(K + λ)2
E(f(x)− f∗(x))2

Thus we see that for the regularized loss functional `λ the
squared incompatibility satisfies Assumption 2, with our
choice of Φ(x) = (K+λ)2

2λ x.

2.3 Convergence Bounds
We now characterize the sample complexity of an algorithm
which uses a labeled and unlabeled data set, sampled from
the underlying distribution. Our framework again parallels
that of Balcan and Blum [2006] — broadened to include
more general loss functions.

The basic algorithm we consider is identical to that in
Balcan and Blum [2006]. Given an unlabeled data set U , we
define the empirical compatibility class as:

Ĉχ(t) = {(f1, f2) : f1 ∈ F1, f2 ∈ F2 and ÊU [χ(f1, f2)] ≤ t}

where the empirical expectation is:

ÊU [χ(f1, f2)] =
1
m

∑
(x1,x2)∈U

χ(f1(x1), f2(x2)) .

The algorithm simply minimizes the average loss of predic-
tions over labeled data subject to the constraint of choosing

407

hypothesis from Ĉχ(t). More precisely, for a given t, the
algorithm simply chooses the best pair in this class:

(f̂1, f̂2) = argmin
f1,f2∈cCχ(t)

ÊS [`(f1(x1), y) + `(f2(x2), y)] (3)

The co-regularization algorithm can viewed as a dual ver-
sion of this algorithm, which we consider in the following
Subsection.

As we are dealing with abstract hypothesis classes, as
in Balcan and Blum [2006], we make an assumption about
the learning complexity with respect to these abstract hy-
pothesis class — we give examples shortly. This assump-
tion is stated in terms of both S and U , which allows us to
use data-dependent sample complexity bounds (such as the
Rademacher bounds), which is important in the next Subsec-
tion (for the analysis of the co-regularization algorithms and
SVM-2K).

Assumption 4 (Sample Complexity) For the hypothesis
classes F1 and F2,

Unlabeled: With probability greater than 1−δ over the i.i.d.
sampling of unlabeled data set U we have that ∀(f1, f2) ∈
F1 ×F2

Ê[χ(f1, f2)] ≤ E[χ(f1, f2)] +Gχ(F1 ×F2, U, δ)

where Gχ is some notion of the generalization of the
function class.

Labelled Case: For any given unlabeled data set U , with
probability greater than 1− δ over i.i.d sampling of labeled
data set S we have that for all pairs (f1, f2) ∈ Ĉχ(t),

|L(f1) + L(f2)− (L̂(f1) + L̂(f2))| ≤ G`(Ĉχ(t), S, δ)

whereG` is some notion of the generalization of the function
class.

We now provide some standard sample complexity
bounds.

Remark 2 (Examples of Gχ and G`) Assumption 4 is sat-
isfied in the following standard examples.
Finite Hypothesis Class: If the hypothesis classes are finite,
then using Chernoff and union bounds we have

Gχ(H, U, δ) = O

√ log(|H|) + log(1
δ)

m


and Gχ = G`.

Finite VC Class: If the hypotheses map to [0, 1] and the VC
dimension is finite, then

Gχ(H, U, δ) = O

√V Cdim(H) + log(1
δ)

m


and Gχ = G`.

Rademacher Bounds : For bounded loss and incompatibil-
ity functions, Rademacher bounds give us:

Gχ(H, U, δ) = O

(
R̂m(H) + 3

√
ln(2/δ)

2m

)
andGχ = G`. Here, R̂n(H) = 1

nEσ supf∈H
∑n
i=1 σif(xi)

where σi are Rademacher variables.

We are now ready to state our main result on the com-
plexity of our multi-view algorithm.

Theorem 2 Assume that the function ` is bounded by 1, the
incompatibility function χ = d and that Assumptions 1, 2, 3
and 4 hold. Set

t = 2c2d(Φ(
√
εinfo) + Φ(εbayes)) +Gχ(F1 ×F2, U, δ)

and let the pair (f̂1, f̂2) be the output of the algorithm (as
defined by Equation 3) with this setting of t. Then with prob-
ability greater than 1 − δ over an i.i.d sample of both the
labeled dataset S and unlabeled dataset U , we have

L(f̂1) + L(f̂2)
2

≤ L(y∗)+G`(Ĉχ(t), S, δ/3)

+ εbayes +
√
εinfo

(The proof is provided in the Appendix).
This statement is analogous to the main complexity state-

ments in the semi-supervised PAC framework of Balcan and
Blum [2006]. In particular, the unlabeled complexity Gχ
only alters the setting of t, just as in Balcan and Blum [2006].
The labeled complexity term, G`, appears as a penalization
to the bound, again as in the semi-supervised PAC frame-
work.

The main difference is that we now specify the value of t
to be used and compare ourselves to the Bayes optimal. Note
that in Balcan and Blum [2006], there is no explicit charac-
terization as to how much bias is introduced by using Cχ(t)
as opposed to using the unconstrained hypothesis space. The
information theoretic assumption is what allows us to make
this explicit characterization. The term

√
εinfo is the bias

introduced by using the constrained hypothesis space rather
than the unconstrained hypothesis space. The benefit is that
we could substantially reduce the variance. In particular, this
variance reduction is reflected by that the labeled complex-
ity term,G`, only depends on the restricted hypothesis space,
Ĉχ(t), rather than the full hypothesis space — the former of
which could have significantly less complexity.

We now show specific algorithms and analyses fit into
this framework.

2.4 Algorithms
We now provide bounds for co-regularization algorithms and
the SVM-2K algorithm of Farquhar et al. [2005]. For v ∈
{1, 2} let Fv be some RKHS with respect to norm ‖ · ‖K .
Define `λ as in Example 4, i.e.

`λ(f ;x, y) := `(f(x), y) + λ‖f‖2K (4)

where `(f(x), y) is convex. Define

Lλ(f) := E`λ(f ; (x1, x2, y)) .

408

Also let
f∗ = argmin

f
E[Lλ(f)]

where the argmin is over all functions (so f∗ is the Bayes
optimal predictor). By the Representer Theorem, f∗ lives in
the RKHS. This implies that εbayes = 0.

Throughout this section we overload notation by using
K := supx∈X

√
K(x, x) (when it is clear from context).

Co-Regularization (with squared incompatibility)
The original co-regularization algorithm introduced in Sind-
hwani et al. [2005] and also the co-regularized least squares
regression Brefeld et al. [2006] both minimize the objec-
tive in Equation 1. Recall that for the regularized con-
vex loss functions in Example 4, we already showed that
χ(f1(x1), f2(x2)) = (f1(x1) − f2(x2)2 satisfies Assump-
tion 2. Therefore we see that Theorem 2 justifies these
co-regularization algorithms under the information theoretic
Assumption 1.

Rosenberg and Bartlett [2007] provide an estimate for the
Rademacher complexity of kernel class for co-regularization
in a transductive type setting (i.e. conditioned on the unla-
beled data). The bound given is exactly of the form needed
in Assumption 4. The subtlety in using these complexity
bounds is that the co-regularization algorithms are a dual
formulation of our Algorithm (see Equation 3), the latter of
which imposes a hard agreement constraint. Hence, to pro-
vide a bound we need find an appropriate setting of the pa-
rameter λco. The following theorem does this.

Corollary 3 Assume we are working in the transductive set-
ting (where U is known and the underlying data distribution
is uniform over U). Let Clip be the Lipschitz constant for
the loss. Let Kv

S×S , Kv
S×U and Kv

U×U stand for the kernel
matrix between labeled examples, between labeled and un-
labeled examples, and unlabeled and unlabeled samples for
view v ∈ {1, 2} respectively.

Given λ > 0, if we set λco = λ
4(K+λ)2

√
εinfo

then for

the pair of functions (f̂1, f̂2) ∈ F1 × F2 returned by the co-
regularization algorithm (Equation 1), with probability at
least 1− δ over labeled samples,

Lλ(
bf1+ bf2

2) ≤ Lλ(f∗) +
1√
n

2 + 3

√
ln(2

δ)
2


+ 2CLipR̂n(Ĉχ(1

λco
)) +

√
εinfo

Where,

R̂n(Ĉχ(1
λco

)) ≤ R

n

R2 =λ−1tr(K1
S×S) + λ−1tr(K2

S×S)

− λ

4(K + λ)2
√
εinfo

tr(JT (I + λM)−1J)

J = λ−1K1
U×S−λ−1K2

U×S , M = λ−1K1
U×U−λ−1K2

U×U

(The proof is provided in the Appendix).
An important difference between our bounds and that

in Rosenberg and Bartlett [2007] is that the above bound

compares to the Bayes optimal predictor f∗, while Rosen-
berg and Bartlett [2007] only compare to the best function
in Ĉχ(t) (without any normative justification for how to set
the parameter t). Our comparison to f∗ leads to the addi-
tional penalty of

√
εinfo (and we specify a value of λco in the

bound).
Note that the appropriate setting of λco is O(1/

√
εinfo).

In particular, this shows it is appropriate for λco → ∞ as
εinfo → 0, i.e. when the information theoretic assumption
is as sharp as possible, we are permitted to co-regularize
as hard as possible (without introducing any bias). For this
case, the co-regularization algorithms obtain their maximal
reduction in variance.

To convert the above corollary to an inductive bound
(where U is a random sample) we need to establish an un-
labeled complexity statement of the kind in Assumption 4.
Note that if the prediction space is bounded then it can be
shown using covering number arguments (Zhang [2002])

that Gχ(F1 × F2, U, δ) will be c
√

log(1/δ)
m where c is some

constant (which depends of λco and K). Hence by setting

t = 2c2d(Φ(εbayes) + Φ(
√
εinfo)) + c

√
log(1/δ)

m we can get
the inductive statement required.

Two View SVM
The SVM-2K approach proposed by Farquhar et al. [2005]
can be formulated as the following optimization problem:

argmin
(f1,f2)∈F1×F2

1
2

(ÊS [`(f1(x1), y)] + ÊS [`(f2(x2), y)])

+ λ‖f1‖2K + λ‖f2‖2K + λcoÊU [|f1(x1)− f2(x2)|] (5)

where ` is the hinge loss. Technically, the formulation in
Farquhar et al. [2005] uses slack variables (more in line with
the usual SVM formulation), but the above formulation is
identical. 1

SVM-2K can be viewed as using the incompatibility
function χ(ŷ1, ŷ2) = |ŷ1 − ŷ2|. Recall that for regular-
ized convex loss functions in Example 4, we already showed
that (f1(x1) − f2(x2))2 satisfies Assumption 2. Hence us-
ing Remark 1 we see that this incompatibility function for
SVM-2K also satisfies Assumption 3 and 2 with cd = 1 and

φ(x) =
√

(K+λ)2

2λ x. Hence, we get the following Corollary.

Corollary 4 Assume we are working in the transductive set-
ting (where U is known and the underlying data distribu-
tion is uniform over U). Given λ > 0, if we set and λco =√

λ
2(K+λ)2

√
εinfo

then with probability at least 1− δ over la-

beled samples, for the pair of functions (f̂1, f̂2) ∈ F1 × F2

returned by SVM-2K algorithm (Equation 5),

Lλ(
bf1+ bf2

2) ≤ Lλ(f∗) + 2R̂n(Ĉχ(1
λco

)) + 3

√
ln(2

δ)
2n

+
√
εinfo

where R̂n(Ĉχ(1
λco

)) is the data-dependent Rademacher
complexity.

1Technically, the SVM-2K algorithm has a parameter ε which
allows a little more disagreement, but the algorithm we specify is
equivalent to the SVM-2K algorithm with ε = 0.

409

In particular, Farquhar et al. [2005] show how to upper
bound R̂n(Ĉχ(t)) as a solution to a particular optimization
problem. The proof is essentially identical to the previous
Corollary, and is not provided.

Again, the main extension in our work is that we compare
the algorithm’s performance to the loss of the Bayes optimal
predictor f∗, while Farquhar et al. [2005] only compares to
the best function in Ĉχ(t). Our comparison to f∗ leads to the
additional penalty of

√
εinfo (and we specify a value of t in

the bound).
The appropriate setting of λco is O(1/

√
εinfo) which

again shows that smaller εinfo gets, the harder we can co-
regularize.

3 Dimensionality Reduction and CCA
Consider a setting where X = X1×X2 is a real vector space
(of finite or countably infinite dimension). Here, we work
with linear predictors of the form wTx and convex losses
of form `(wTx, y) that satisfy Assumptions 2 and 3 with
respect to the squared incompatibility function. For exam-
ple, most strictly convex loss functions can be used with the
squared incompatibility function, including the square loss,
log loss, exponential loss, and L2 regularized losses. Let
L(w) = E[`(wTx, y)]. For simplicity, we work in the trans-
ductive setting — in particular, we only assume knowledge
of the second order statistics of the underlying data distribu-
tion (i.e. we know the covariance matrix of X).

Assume that the loss function is twice differentiable and
that the second derivative of the loss function is bounded
from above by some constant C, that is

∀z d
2`(z, y)
dz2

≤ C (6)

Note that this assumption is satisfied for common strictly
convex losses.

Define canonical correlation analysis (CCA) as follows:

Definition 5 The bases B1, B2 for X1 and X2 is the canon-
ical basis for the two views if for (x1, x2) in this basis the
following holds:

1. Orthogonality Conditions: For v ∈ {1, 2}

E[(xv)i(xv)j] =
{

1 if i = j
0 otherwise

2. Correlation Conditions:

E[(x1)i(x2)j] =
{
γi if i = j
0 otherwise

where γi is the ith correlation coefficient. We assume without
loss of generality that 1 ≥ γ1 ≥ γ2 ≥ ... ≥ 0.

Now we present the main algorithm, which uses CCA as
a dimensionality reduction technique. Consider some thresh-
old, 0 < γthresh < 1. Let ithresh be the smallest i such that

γi < γthresh

First, project xv to the subspace spanned by the first
1, ..., ithresh canonical coordinates. Denote this projection

by Πcca(xv). Let β(v)
proj be the optimal linear predictor for

view v using only the projected Πcca(xv) as input.
We now show that the loss of performance due to this

projection is small if εinfo is small.

Theorem 6 Assume that Equation 6 holds, that Assump-
tion 1 is satisfied, and that Assumptions 2 and 3 hold with
respect to the squared incompatibility function. Then

L(β(v)
proj)− L(y∗v) ≤

4C
(
Φ(
√
εinfo) + Φ(εbayes)

)
1− γthresh

+ εbayes

where C satisfies Equation 6.

(The proof is provided in the Appendix).
In particular, if the cutoff, γthresh, is 1

2 , then makes the
1

1−γthresh
factor in the bound into 2.

Let us consider the implications for learning with a ran-
dom labeled data set S using Πcca(xv). Here, the a learn-
ing algorithm only needs to work with the coordinates which
have sufficiently large γi. Hence, the supervised learning
problem is simpler as we can work with a lower dimensional
space. This Theorem is analogous to the dimensionality re-
duction statements in Kakade and Foster [2007] — though
there the statements were restricted to the square loss (and a
multi-view assumption based on the square loss).

4 Discussion

An Open Problem from Balcan and Blum [2007]
This problem (presented at COLT 2007) is where we have the
0/1 loss, and it is assumed that classifiers from either view
can perfectly predict the data (so the best classifiers agree
completely on the unlabeled data). Furthermore, they as-
sume that the classifiers are linearly separable. The question
posed is can an efficient algorithm be found? A more general
and practically relevant question is this case but with noise,
which of course makes the problem harder. Here, the optimal
predictors (from either view) may not agree perfectly on the
unlabeled data. However, under Example 2, we know that
choosing d to be the 0/1 loss is a suitable discrepancy func-
tion (with Φ being defined in terms of the Tsybakov noise
exponent).

In practice, even in the single view case, one is rarely able
to directly minimize the 0/1 loss. Instead, what one actually
does is minimize a surrogate loss function, such as the hinge
loss, logistic loss, or exponential loss. Furthermore, through
the work of Bartlett et al. [2006], we have an understanding
of how minimizing these surrogate losses relate to the 0/1
loss.

In our framework, we are able to choose a discrepancy
functions tailored to our loss (as long as the discrepancy sat-
isfies Assumption 2). Hence, if we are using a surrogate loss
(for the 0/1 loss) then we should choose a incompatibility
function that satisfies Assumption 2 with respect to this sur-
rogate loss. We view both the co-regulation algorithms and
the SVM-2K algorithm as the solution to this problem, under
the theory of surrogate losses (where both these algorithms
are using the surrogate hinge loss).

410

4.1 Relations to the Information Bottleneck
We end with a note on the connection to the Information Bot-
tleneck method. In this method, the goal is to compress X1

to Z such that Z has maximum information about X2 — in
particular, Z is a compression of X1 that retains all the in-
formation that X1 has about X2, that is,

Z = argmin
A

I(A : X1)

s.t. I(A : X2) = I(X1 : X2)
where the argmin is over compression functions A of X1.

In the multi-view setting, if we find such a Z (with re-
spect to to X1 and X2), it can be shown that

I(Z : Y) ≥ I(X1 : Y)− εinfo

This shows that Z looses little predictive information about
Y . In this sense, the Information Bottleneck is not throwing
much relevant information with regards to Y and can be used
as a semi-supervised algorithm.

In fact, using Lemma 7, one can show that for any loss
bounded by 1, the Bayes optimal predictor which uses only
knowledge of Z has a regret of at most

√
εinfo with respect to

the Bayes optimal predictor y∗. An interesting direction to
pursue is to learn with Z as inputs to our learning algorithm
rather than Xv , since Z has lower entropy. Two issues to
consider are: 1) the mapping Z has an abstract range (so one
needs to take care in how to learn a function from Z → Y)
and 2) it is not clear how to implement the Information Bot-
tleneck without knowledge of the underlying distribution.

Acknowledgements
We thank Gilles Blanchard for a number of helpful sugges-
tions.

References
Steven Abney. Understanding the yarowsky algorithm. Com-

put. Linguist., 30(3):365–395, 2004. ISSN 0891-2017.

Maria-Florina Balcan and Avrim Blum. A pac-style model
for learning from labeled and unlabeled data. In Semi-
Supervised Learning, pages 111–126. MIT Press, 2006.

Maria-Florina Balcan and Avrim Blum. Open problems in
efficient semi-supervised pac learning. In Conference on
Computational Learning Theory (COLT), 2007.

Peter L. Bartlett, Michael I. Jordan, and Jon D. McAuliffe.
Convexity, classification, and risk bounds. In Journal
of the American Statistical Association, volume 101, No.
473, pages 138–156, 2006.

Avrim Blum and Tom Mitchell. Combining labeled and unla-
beled data with co-training. In COLT’ 98: Proceedings of
the eleventh annual conference on Computational learn-
ing theory, pages 92–100, New York, NY, USA, 1998.
ACM Press. ISBN 1-58113-057-0.

Ulf Brefeld, Thomas Gartner, Tobias Scheffer, and Stefan
Wrobel. Efficient co-regularised least squares regression.
In ICML ’06: Proceedings of the 23rd international con-
ference on Machine learning, pages 137–144, New York,
NY, USA, 2006. ACM Press. ISBN 1-59593-383-2.

Gal Chechik, Amir Globerson, Naftali Tishby, and Yair
Weiss. Information bottleneck for gaussian variables. J.
Mach. Learn. Res., 6:165–188, 2005. ISSN 1533-7928.

Thomas M. Cover and Joy A. Thomas. Elements of informa-
tion theory. Wiley-Interscience, 1991.

Sanjoy Dasgupta, Michael L. Littman, and David A.
McAllester. Pac generalization bounds for co-training. In
NIPS, pages 375–382, 2001.

Jason D. R. Farquhar, David R. Hardoon, Hongying Meng,
John Shawe-Taylor, and Sndor Szedmk. Two view learn-
ing: Svm-2k, theory and practice. In NIPS, 2005.

H. Hotelling. The most predictable criterion. Journal of
Educational Psychology, 26:139–142, 1935.

Sham M. Kakade and Dean P. Foster. Multi-view regression
via canonical correlation analysis. In Nader H. Bshouty
and Claudio Gentile, editors, COLT, volume 4539 of Lec-
ture Notes in Computer Science, pages 82–96. Springer,
2007.

David Rosenberg and Peter L. Bartlett. The rademacher
complexity of co-regularized kernel classes. In Proceed-
ings of the Eleventh International Conference on Artificial
Intelligence and Statistics, 2007.

V. Sindhwani, P. Niyogi, and M. Belkin. A Co-
Regularization Approach to Semi-supervised Learning
with Multiple Views. In Workshop on Learning with Mul-
tiple Views, Proceedings of International Conference on
Machine Learning, 2005.

Ingo Steinwart and C. Scovel. Fast rates for support vector
machines using gaussian kernels. In Los Alamos National
Laboratory Technical Report LA-UR-04-8796, editor, An-
nals of Statistics, 2006.

N. Tishby, F. Pereira, and W. Bialek. The information bottle-
neck method. In Proceedings of the 37-th Annual Allerton
Conference on Communication, Control and Computing,
pages 368–377, 1999.

A. Tsybakov. Optimal aggregation of classifiers in statistical
learning. In Annals of Statistics, volume 32 No. 1, 2004.

Tong Zhang. Covering number bounds of certain regular-
ized linear function classes. Journal of Machine Learning
Research, 2:527–550, 2002.

A Proofs
First we state two Lemmas that will be used in proving the
theorem.

Lemma 7 For v ∈ {1, 2}, if the loss function ` is bounded
by 1 then we have that

|L(y∗)−L(y∗v)| ≤
√
εinfo and |L(y∗1)−L(y∗2)| ≤ 2

√
εinfo

411

Proof: Consider some function g : X → [0, 1] and some
two probability measures P and Q. We have that

|
∫
g(x)dQ−

∫
g(x)dP | = |

∫
(1− β)g(x)dQ|

≤
∫
|1− β|dQ

≤
√
DK(Q‖P) (7)

where β = dP
dQ and the last step is because the L1 varia-

tional distance is bounded by square root of the KL diver-
gence (Pinsker’s Inequality). Now using this we get that for
a fixed x1, x2 we have that

|EY |X1=x1`(y
∗(x1, x2), y)− EY |X=(x1,x2)`(y

∗(x1, x2), y)|

≤
√
DK(PY |X=(x1,x2)‖PY |X1=x1)

Taking expectation with respect to X = (X1, X2) and using
Jensen’s inequality twice (once on the left for convex func-
tion |x| and once on the right for concave function

√
x) we

get that

|EXEY |X1=x1`(y
∗(x1, x2), y)− L(y∗)|

≤
√
EXDK(PY |X=(x1,x2)‖PY |X1=x1)

Now note that since

L(y∗1) ≤ EXEY |X1=x1`(y
∗(x1, x2), y)

and L(y∗1) ≥ L(y∗), we get

|L(y∗1)− L(y∗)|

≤
√
EXDK(PY |X=(x1,x2)‖PY |X1=x1)

Also,

EXDK(PY |X=(x1,x2)‖PY |X1=x1) = IY :X2|X1

and so we have that

|L(y∗1)− L(y∗)| ≤
√
εinfo

similarly we have

|L(y∗2)− L(y∗)| ≤
√
εinfo

Also the above two inequalities together imply that

|L(y∗1)− L(y∗2)| ≤ 2
√
εinfo

Lemma 8 For any f1, f2 assume

L(f1)− L(y∗1) ≤ ε′, L(f2)− L(y∗1) ≤ ε′

then given Assumptions 1, 2 and 3 and that the loss function
is bounded by B, we have that

E[χ(f1, f2)] ≤ 2c2d(Φ(ε′) + Φ(
√
εinfo))

Proof: First note that by Assumptions 2 and 3 we have that
for f1 and f2 there exists y∗1 and y∗2 such that

E[χ(f1, y∗1)] ≤ Φ(L(f1)− L(y∗1)) and

E[χ(f2, y∗2)] ≤ Φ(L(f2)− L(y∗2))

and since Φ is monotonically increasing we have that

E[χ(f1, y∗1)] ≤ Φ(ε′) and

E[χ(f2, y∗2)] ≤ Φ(ε′)

Again by Assumptions 2 and 3 we have that for some
specific y∗,

E[χ(y∗1 , y
∗)] ≤ Φ(L(y∗1)− L(y∗)) ≤ Φ(

√
εinfo)

and

E[χ(y∗2 , y
∗)] ≤ Φ(L(y∗2)− L(y∗)) ≤ Φ(

√
εinfo)

Since χ satisfies the relaxed triangle inequality Assumption
3, we get that

E[χ(y∗2 , y
∗
1)] ≤ cdΦ(

√
εinfo)

Again using relaxed triangle inequality Assumption 3, we
get the required result that

E[χ(f1, f2)] ≤ c2d(E[χ(f1, y∗1)] + E[χ(y∗1 , y
∗
2)] + E[χ(f2, y∗2)])

≤ 2c2d(Φ(ε′) + Φ(
√
εinfo))

Proof:[of Theorem 1]
Using Lemma 8 we see that

E[χ(f∗1 , f
∗
2)] ≤ 2c2d(Φ(εbayes) + Φ(

√
εinfo))

Therefore setting t = 2c2d(Φ(εbayes) + Φ(
√
εinfo)) we find

that (f∗1 , f
∗
2) ∈ Cχ(t) and thus,

(f∗1 , f
∗
2) = argmin

(f1,f2)∈Cχ(t)

L(f1) + L(f2)
2

Now by definition of εbayes we have that

min
fv∈Fv

L(fv)− L(y∗v) ≤ εbayes

Therefore,

min
(f1,f2)∈Cχ(t)

L(f1) + L(f2)
2

≤ L(y∗1) + L(y∗2)
2

+ εbayes

(8)
Now by Lemma 7 we see that for each v ∈ {1, 2}, L(y∗v) −
L(y∗) ≤ √εinfo . Hence using this in Equation (8) we con-
clude that

min
(f1,f2)∈Cχ(t)

L(f1) + L(f2)
2

≤ L(y∗) + εbayes +
√
εinfo

Proof:[of Theorem 2] Let (f∗1 cCo, f∗2 cCo) ∈ Ĉχ(t) be the min-
imizer of L(f1) + L(f2) in the class Ĉχ(t). Using statement
Assumption 4 (labeled) we have that with probability at least
1− δ over the sample S,

L̂(f∗1 cCo) + L̂(f∗2 cCo)− L(f∗1 cCo)− L(f∗2 cCo)
≤ G`(Ĉχ(t), S, δ)

412

Also for any (f1, f2) ∈ Ĉχ(t) we have that with probability
at least 1− δ over the sample S,

L(f1) + L(f2)− L̂(f1)− L̂(f2) ≤ G`(Ĉχ(t), S, δ)

Hence combining the two, for the pair (f̂1, f̂2) ∈ Ĉχ(t) that
minimizes L̂(f1) + L̂(f1) we have that with probability at
least 1− 2δ over the sample S,

L(f̂1) + L(f̂2)− L(f∗1 bcot)− L(f∗2 bcot)
≤ 2G`(Ĉχ(t), S, δ)

Now Let t′ = 2c2d(Φ(
√
εinfo) + Φ(εbayes)) then we see that

if (f1, f2) ∈ Cχ(t′) then,

E[χ(f1, f2)] ≤ t′

However applying Assumption 4 (unlabeled) we find that
with probability greater than1− δ over the unlabeled dataset
U we have that

Êχ(f1, f2) ≤ E[χ(f1, f2)] +Gχ(F1 ×F2, U, δ)

Thus we can conclude that with probability greater than 1−
δ over the i.i.d. unlabeled sample we have that (f1, f2) ∈
Ĉχ(t). Now using the above we see that with probability
1− δ over unlabeled data

min
(f1,f2)∈cCχ(t)

L(f1) + L(f2) = min
(f1,f2)∈Cχ(t′)

L(f1) + L(f2)

Hence using the result of Theorem 1 we can conclude that
with probability 1− 3δ over both labeled and unlabeled data
we have that

L(f̂1) + L(f̂2) ≤ 2L(y∗) + 2G`(Ĉχ(t), S, δ)
+ 2εbayes + 2

√
εinfo

Proof:[Proof of Corollary 3] First note that we can write
f1 ∈ F1 as (f1, 0) ∈ F1 × F2 and similarly we can define
any f2 ∈ F2 as (0, f2) ∈ F1 × F2 so that we can consider
only the joint RKHS defined by sum of f1 and f2. From Ex-
ample 4 we first of all have that for the regularized loss As-
sumption 2 is satisfied by the squared incompatibility (i.e..
χ(ŷ1, ŷ2) = (ŷ1 − ŷ2)2) function with Φ(x) = (K+λ)2

2λ x.
Also note that in this case εbayes = 0 since f∗ is in the
RKHS (in fact for the regularized loss to even be applicable
the function needs to live in the RKHS). Hence if we restrict
ourselves to the class Cχ(t) where t = 8(λ+K)2

√
εinfo

λ then
using Theorem 2, we see that we can get a low regularized
regret with respect to f∗. Now without loss of generality as-
sume that for the given loss ` we have that `(0, y) = 1. Then
using this in Equation 1 we see that,

λco ÊU [f1(x1)− f2(x2)]2 ≤ 1

and so using λco = 1
t we see that for any function pairs

(f1, f2) returned by the algorithm ÊU [χ(f1, f2)] ≤ t.
However since we are in the transductive setting
ÊU [χ(f1, f2)] = E[χ(f1, f2)]. Now we use the result
from Rosenberg and Bartlett [2007] to establish a statement

of the form Assumption 4 (labeled).

To this end define,

H(t) = {(f1, f2) : λ‖f1‖2 + λ‖f2‖2

+ λcoÊU (f1(x1)− f2(x2))2 ≤ 1}

Notice that the solution of the co-regularization algorithm is
contained in this class. Further as in Rosenberg and Bartlett
[2007] define J (t) = {x → f1(x1)+f2(x2)

2 : (f1, f2) ∈ H}.
Now we can directly use Theorem 2 of their paper (assuming
` is bounded by 1) to get that with probability at least 1 − δ
over labeled samples, for all (f1, f2) ∈ Ĉχ(t)

L(f1)+L(f2) ≤ L̂(f1) + L̂(f2)

+ 2CLipR̂n(J (t)) +
1√
n

(2 + 3

√
ln(2/δ)

2
) (9)

Where by Theorem 3 of Rosenberg and Bartlett [2007] we
find that

R̂n(J (t)) ≤ R

n
where

R2 =λ−1tr(K1
S×S) + λ−1tr(K2

S×S)

− λ

(λ+K)2t
tr(JT (I + λM)−1J)

and

J = λ−1K1
U×S−λ−1K2

U×S M = λ−1K1
U×U−λ−1K2

U×U

Now this establishes the Assumption 4 , labeled statement
we were aiming for.

Now putting the regularization term on both sides of the
inequality in Equation 9 we get that

E[`λ(f1, x1,y) + `λ(f2, x2, y)] ≤
Ê[`λ(f1, x1, y) + `λ(f2, x2, y)]

+ 4CLipR̂n(J (t)) +
1√
n

(2 + 3

√
ln(2/δ)

2
)

Now this is essentially the labeled statement in Assumption
4 and since we are in the transductive case we do not need
the unlabeled part of the assumption. Hence using Theorem
2 we see that with probability at least 1 − δ over labeled
samples for the pair f̂1, f̂A2 returned by co-regularization al-
gorithm,

E
`(f̂1x1, y) + `(f̂2, x2, y)

2
] ≤ E[`λ(f∗, x1, x2, y)]

+ 2CLipR̂n(J (t)) +
1√
n

(2 + 3

√
ln(2/δ)

2
) +
√
εinfo

Now using Jensen’s Inequality we see that the regularized
loss of the average predictor is bounded by average of regu-
larized loss of the predictors and hence the result.

Proof:[of Theorem 6] Without loss of generality we assume
we are in the CCA basis. For each v ∈ {1, 2} let β(v) be the

413

minimizer with respect to β of E[`(βTxv, y)]. From the re-
sult of Lemma 8 using the the squared incompatibility func-
tion (cd = 2 in this case) we have that

8Φ(
√
εinfo) + 8Φ(εbayes) ≥ E[(xT1 β

(1) − xT2 β(2))2]

=
∑
i

[(β(1)
i)2 + (β(2)

i)2 − 2γiβ
(1)
i β

(2)
i]

≥
∑
i

[(1− γi)(β(1)
i)2 + (1− γi)(β(2)

i)2]

(the last step is due to the identity 2ab ≤ a2 + b2). Hence we
conclude that∑

i

(1− γi)(β(v)
i)2 ≤ 8Φ(

√
εinfo) + 8Φ(εbayes) (10)

Let β(v)
P be the projection of β(v) on to the first ithresh co-

ordinates. Consider a twice differentiable loss function. By
Taylor’s theorem (second order) we have that there exists
some β̃ such that

`(xTv β
(v)
P , y) = `(xTv β

(v), y) + (β(v)
P − β

(v))T∇`(βv)

+
1
2

(β(v)
P − β

(v))T∇2`(β̃Txv, y)(β(v)
P − β

(v))

Taking expectation and noting that since β(v) is the mini-
mizer of the expected loss we find that

L(β(v)
P)− L(β(v)) =

1
2

(β(v) − β(v)
P)TE[∇2`(β̃Txv, y)](β(v) − β(v)

P)

Let β(v)
res = β(v) − β(v)

P . Note that since (β(v)
P)i = (β(v))i

for all i’s corresponding to correlation values greater than
the threshold we see that β(v)

res is zero in the first ithresh co-
ordinates and is equal to β(v) on the rest. Now note that for
a loss function that is twice differentiable and a function of
β̃Txv we have that by chain rule

∇2`(β.xv, y) =
d2`(β̃Txv, y)

d(β̃Txv)
2 xvx

T
v

Now using the assumption that the second derivative of the
loss function is bounded by some C we then see that

L(β(v)
P)− L(β(v)) ≤ C

2
(β(v)
res)

TE[xvxTv](β(v)
res)

Note that since we are in the CCA basis we have that
E[(xv)i(xv)j] = 0 when i 6= j and is 1 otherwise. Now
note that for all i > itresh we have that 1− γi > 1− γthresh

and so,

L(β(v)
P)− L(β(v)) ≤ C

2
‖β(v)

res‖2

=
C

2

∑
i>ithresh

(β(v)
i)2

≤ C

2

∑
i>ithresh

1− γi
1− γthresh

(β(v)
i)2

≤ C

2(1− γthresh)

∑
i>ithresh

(1− γi)(β(v)
i)2

≤ C

2(1− γthresh)

∑
i

(1− γi)(β(v)
i)2

Hence using Equation 10 we can conclude that

L(β(v)
P)− L(β(v)) ≤

4C
(
Φ(
√
εinfo) + Φ(εbayes)

)
(1− γthresh)

Now since L(β(v)
P) ≥ L(β(v)

proj) we conclude that

L(β(v)
proj)− L(β(v)) ≤

4C
(
Φ(
√
εinfo) + Φ(εbayes)

)
(1− γthresh)

Finally since L(β(v))−L(y∗v) ≤ εbayes we have the required
result.

414

Optimal Strategies and Minimax Lower Bounds for Online Convex Games

Jacob Abernethy∗
UC Berkeley

jake@cs.berkeley.edu

Peter L. Bartlett†
UC Berkeley

bartlett@cs.berkeley.edu

Alexander Rakhlin∗
UC Berkeley

rakhlin@cs.berkeley.edu

Ambuj Tewari
TTI Chicago

ambuj@cs.berkeley.edu

Abstract

A number of learning problems can be cast as an
Online Convex Game: on each round, a learner
makes a prediction x from a convex set, the envi-
ronment plays a loss function f , and the learner’s
long-term goal is to minimize regret. Algorithms
have been proposed by Zinkevich, when f is as-
sumed to be convex, and Hazan et al., when f is
assumed to be strongly convex, that have provably
low regret. We consider these two settings and
analyze such games from a minimax perspective,
proving minimax strategies and lower bounds in
each case. These results prove that the existing al-
gorithms are essentially optimal.

1 Introduction
The decision maker’s greatest fear is regret: knowing, with
the benefit of hindsight, that a better alternative existed. Yet,
given only hindsight and not the gift of foresight, imperfect
decisions can not be avoided. It is thus the decision maker’s
ultimate goal to suffer as little regret as possible.

In the present paper, we consider the notion of “regret
minimization” for a particular class of decision problems.
Assume we are given a set X and some set of functions F
on X . On each round t = 1, . . . , T , we must choose some
xt from a set X . After we have made this choice, the envi-
ronment chooses a function ft ∈ F . We incur a cost (loss)
ft(xt), and the game proceeds to the next round. Of course,
had we the fortune of perfect foresight and had access to
the sum f1 + . . . + fT , we would know the optimal choice
x∗ = arg minx

∑T
t=1 ft(x). Instead, at time t, we will have

only seen f1, . . . , ft−1, and we must make the decision xt

with only historical knowledge. Thus, a natural long-term
goal is to minimize the regret, which here we define as

T∑
t=1

ft(xt)− inf
x∈X

T∑
t=1

ft(x).

A special case of this setting is when the decision space X is
a convex set and F is some set of convex functions on X . In

∗Division of Computer Science
†Division of Computer Science, Department of Statistics

the literature, this framework has been referred to as Online
Convex Optimization (OCO), since our goal is to minimize a
global function, i.e. f1 + f2 + · · ·+ fT , while this objective
is revealed to us but one function at a time. Online Convex
Optimization has attracted much interest in recent years [4,
9, 6, 1], as it provides a general analysis for a number of
standard online learning problems including, among others,
online classification and regression, prediction with expert
advice, the portfolio selection problem, and online density
estimation.

While instances of OCO have been studied over the past
two decades, the general problem was first analyzed by Zinke-
vich [9], who showed that a very simple and natural algo-
rithm, online gradient descent, elicits a bound on the regret
that is on the order of

√
T . Online gradient descent can be

described simply by the update xt+1 = xt − η∇ft(xt),
where η is some parameter of the algorithm. This regret
bound only required that ft be smooth, convex, and with
bounded derivative.

A regret bound of order O(
√

T) is not surprising: a num-
ber of online learning problems give rise to similar bounds.
More recently, however, Hazan et al. [4] showed that when
F consists of curved functions, i.e. ft is strongly convex,
then we get a bound of the form O(log T). It is quite sur-
prising that curvature gives such a great advantage to the
player. Curved loss functions, such as square loss or loga-
rithmic loss, are very natural in a number of settings.

Finding algorithms that can guarantee low regret is, how-
ever, only half of the story; indeed, it is natural to ask “can we
obtain even lower regret?” or “do better algorithms exist?”
The goal of the present paper is to address these questions, in
some detail, for several classes of such online optimization
problems. We answer both in the negative: the algorithms of
Zinkevich and Hazan et al. are tight even up to their multi-
plicative constants.

This is achieved by a game-theoretic analysis: if we pose
the above online optimization problem as a game between a
Player who chooses xt and an Adversary who chooses ft, we
may consider the regret achieved when each player is playing
optimally. This is typically referred to as the value VT of the
game. In general, computing the value of zero-sum games
is difficult, as we may have to consider exponentially many,
or even uncountably many, strategies of the Player and the
Adversary. Ultimately we will show that this value, as well
as the optimal strategies of both the player and the adversary,

415

can be computed exactly and efficiently for certain classes of
online optimization games.

The central results of this paper are as follows:
• When the adversary plays linear loss functions, we use

a known randomized argument to lower bound the value
VT . We include this mainly for completeness.

• We show that indeed this same linear game can be solved
exactly for the case when the input space X is a ball,
and we provide the optimal strategies for the player and
adversary.

• We perform a similar analysis for the quadratic game,
that is where the adversary must play quadratic func-
tions. We describe the adversary’s strategy, and we
prove that the well-known Follow the Leader strategy
is optimal for the player.

• We show that the above results apply to a much wider
class of games, where the adversary can play either con-
vex or strongly convex functions, suggesting that indeed
the linear and quadratic games are the “hard cases”.

2 Online Convex Games
The general optimization game we consider is as follows.
We have two agents, a player and an adversary, and the game
proceeds for T rounds with T known in advance to both
agents. The player’s choices will come from some convex
set X ⊂ Rn, and the adversary will choose functions from
the class F . For the remainder of the paper, n denotes the
dimension of the space X . To consider the game in full gen-
erality, we assume that the adversary’s “allowed” functions
may change on each round, and thus we imagine there is a
sequence of allowed sets L1, L2, . . . , LT ⊂ F .

Online Convex Game

G(X, {Lt}):
1: for t = 1 to T do
2: Player chooses (predicts) xt ∈ X .
3: Adversary chooses a function ft ∈ Lt.
4: end for
5: Player suffers regret

RT =
T∑

t=1

ft(xt)− inf
x∈X

T∑
t=1

ft(x).

From this general game, we obtain each of the examples
above with appropriate choice of X,F and the sets {Lt}. We
define a number of particular games in the definitions below.

It is useful to prove regret bounds within this model as
they apply to any problem that can be cast as an Online Con-
vex Game. The known general upper bounds are as follows:
• Zinkevich [9]: If L1 = . . . = LT = F consist of con-

tinuous twice differentiable functions f , where ‖∇f‖ ≤
G and ∇2f � 0, then1

RT ≤ 1
2
DG

√
T .

1This bound can be obtained by a slight modification of the anal-
ysis in [9].

where D := maxx,y∈X ‖x−y‖ and G is some positive
constant.

• Hazan et al. [4]: If L1 = . . . = LT = F consist
of continuous twice differentiable functions f , where
‖∇f‖ ≤ G and ∇2f � σI , then

RT ≤ 1
2

G2

σ
log T,

where G and σ are positive constants.

• Bartlett et al. [1]: If Lt consists of continuous twice
differentiable functions f , where ‖∇f‖ ≤ Gt and∇2f �
σtI , then

RT ≤ 1
2

T∑
t=1

G2
t∑t

s=1 σs

,

where Gt and σt are positive constants. Moreover, the
algorithm does not need to know Gt, σt on round t.

All three of these games posit an upper bound on ‖∇f‖
which is required to make the game nontrivial (and is natural
in most circumstances). However, the first requires only that
the second derivative be nonnegative, while the second and
third game has a strict positive lower bound on the eigenval-
ues of the Hessian ∇2f . Note that the bound of Bartlett et al
recovers the logarithmic regret of Hazan et al whenever Gt

and σt do not vary with time.
In the present paper, we analyze each of these games with

the goal of obtaining the exact minimax value of the game,
defined as:

VT (G(X, {Lt})) =

inf
x1∈X

sup
f1∈L1

. . . inf
xT∈X

sup
fT∈LT

(
T∑

t=1

ft(xt)− inf
x∈X

T∑
t=1

ft(x)

)
.

The quantity VT (G) tells us the worst case regret of an opti-
mal strategy in this game.

First, in the spirit of [1], we consider VT for the games
where constants G and σ, which respectively bound the first
and second derivatives of ft, can change throughout the game.
That is, the Adversary is given two sequences before the
game begins, 〈G1, . . . , GT 〉 and 〈σ1, . . . , σT 〉. We also re-
quire only that the gradient of ft is bounded at the point xt,
i.e. ‖∇ft(xt)‖ ≤ Gt, as opposed to the global constraint
‖∇ft(x)‖ ≤ Gt for all x ∈ X . We may impose both of the
above constraints by carefully choosing the sets Lt ⊆ F , and
we note that these sets will depend on the choices xt made
by the Player.

We first define the Linear and Quadratic Games, which
are the central objects of this paper.

Definition 1 The Linear Game Glin(X, 〈Gt〉) is the game
G(X, {Lt}) where

Lt = {f : f(x) = v>(x−xt)+c, v ∈ Rn, c ∈ R; ‖v‖ ≤ Gt}.

Definition 2 The Quadratic Game Gquad(X, 〈Gt〉, 〈σt〉) is the
game G(X, {Lt}) where

Lt = {f : f(x) = v>(x− xt) +
σt

2
‖x− xt‖2 + c,

v ∈ Rn, c ∈ R; ‖v‖ ≤ Gt}.

416

The functions in these definitions are parametrized through
xt to simplify proofs of the last section. In Section 4, how-
ever, we will just consider the standard parametrization f(x) =
w · x.

We also introduce more general games: the Convex Game
and the Strongly Convex Game. While being defined with
respect to a much richer class of loss functions, we show that
these games are indeed no harder than the Linear and the
Quadratic Games defined above.

Definition 3 The Convex Game Gconv(X, 〈Gt〉) is the game
G(X, {Lt}) where

Lt = {f : ‖∇f(xt)‖ ≤ Gt,∇2f � 0}.

Definition 4 The Strongly Convex Game Gst-conv(X, 〈Gt〉, 〈σt〉)
is the game G(X, {Lt}) where

Lt = {f : ‖∇f(xt)‖ ≤ Gt,∇2f − σtI � 0}.

We write G(G) instead of G(〈Gt〉) when all values Gt =
G for some fixed G. This holds similarly for G(σ) instead of
G(〈σt〉). Furthermore, we suppose that σ1 > 0 throughout
the paper.

3 Previous Work
Several lower bounds for various online settings are avail-
able in the literature. Here we review a number of such re-
sults relevant to the present paper and highlight our primary
contributions.

The first result that we mention is the lower bound of
Vovk in the online linear regression setting [8]. It is shown
that there exists a randomized strategy of the Adversary such
that the expected regret is at least

[
(n− ε)G2 lnT − Cε

]
for

any ε > 0 and Cε a constant. One crucial difference be-
tween this particular setting and ours is that the loss func-
tions of the form (yt−xt ·wt)2 used in linear regression are
curved in only one direction and linear in all other, thus this
setting does not quite fit into any of the games we analyze.
The lower bound of Vovk scales roughly as n log T , which
is quite interesting given that n does not enter into the lower
bound of the Strongly Convex Game we analyze.

The lower bound for the log-loss functions of Ordentlich
and Cover [5] in the setting of Universal Portfolios is also
logarithmic in T and linear in n. Log-loss functions are pa-
rameterized as ft(x) = − log(w·x) for x in the simplex, and
these fit more generally within the class of “exp-concave”
functions. Upper bounds on the class of log-loss functions
were originally presented by Cover [3] whereas Hazan et
al. [4] present an efficient method for competing against
the more general exp-concave functions. The log-loss lower
bound of [5] is quite elegant yet, contrary to the minimax
results we present, the optimal play is not efficiently com-
putable.

The work of Takimoto and Warmuth [7] is most closely
related to our results for the Quadratic Game. The authors
consider functions f(x) = 1

2
||x− y||2 corresponding to the

log-likelihood of the datapoint y for a unit-variance Gaus-
sian with mean x. The lower bound of 1

2
D2(lnT − ln lnT +

O(ln lnT/ lnT)) is obtained, where D is the bound on the
norm of adversary’s choices y. Furthermore, they exhibit the

minimax strategy which, in the end, corresponds to a biased
maximum-likelihood solution. We emphasize that these re-
sults differ from ours in several ways. First, we enforce a
constraint on the size of the gradient of ft whereas [7] con-
strain the location of the point y when ft(x) = 1

2
||x− y||2.

With our slightly weaker constraint, we can achieve a regret
bound of the order log T instead of the log T − log log T of
Takimoto and Warmuth. Interestingly, the authors describe
the “− log log T ” term of their lower bound as “surprising”
because many known games “were shown to have O(log T)
upper bounds”. They conjecture that the apparent slack is
due to the learner being unaware of the time horizon T . In
the present paper, we resolve this issue by noting that our
slightly weaker assumption erases the additional term; it is
thus the limit on the adversary, and not knowledge of the
horizon, that gives rise to the slack. Furthermore, the mini-
max strategy of Takimoto and Warmuth, a biased maximum
likelihood estimate on each round, is also an artifact of their
assumption on the boundedness of adversary’s choices. With
our weaker assumption, the minimax strategy is exactly max-
imum likelihood (generally called “Follow The Leader”).

All previous work mentioned above deals with “curved”
functions. We now discuss known lower bounds for the Lin-
ear Game. It is well-known that in the expert setting, it is im-
possible to do better than O(

√
T). The lower bound in Cesa-

Bianchi and Lugosi [2], Theorem 3.7, proves an asymptotic
bound: in the limit of T → ∞, the value of the game be-
haves as

√
(lnN)T/2, where N is the number of experts.

We provide a similar randomized argument, which has been
sketched in the literature (e.g. Hazan et al [4]), but our addi-
tional minimax analysis indeed gives the tightest bound pos-
sible for any T .

Finally, we provide reductions between Quadratic and
Strongly Convex as well as Linear and Convex Games. While
apparent that the Adversary does better by playing linear ap-
proximations instead of convex functions, it requires a care-
ful analysis to show that this holds for the minimax setting.

4 The Linear Game
In this section we begin by providing a relatively standard
proof of the O(

√
T) lower bound on regret when competing

against linear loss functions. The more interesting result is
our minimax analysis which is given in Section 4.2.

4.1 The Randomized Lower Bound
Lower bounds for games with linear loss functions have ap-
peared in the literature though often not in detail. The rough
idea is to imagine a randomized Adversary and to compute
the Player’s expected regret. This generally produces an
O(
√

T) lower bound yet it is not fully satisfying since the
analysis is not tight. In the following section we provide a
much improved analysis with minimax strategies for both the
Player and Adversary.

Theorem 5 Suppose X = [−D/(2
√

n), D/(2
√

n)]n, so that
the diameter of X is D. Then

VT (Glin(X, 〈Gt〉)) ≥
D

2
√

2

√√√√ T∑
t=1

G2
t

417

Proof: Define the scaled cube

Ct = {−Gt/
√

n, Gt/
√

n}n.

Suppose the Adversary chooses functions from

L̂t = {f(x) = w · x : w ∈ Ct}.

Note that ‖∇f‖ = ‖wt‖ = Gt for any f ∈ L̂t.
Since we are restricting the Adversary to play linear func-

tions with restricted w,

VT (Glin(X, 〈Gt〉)) ≥ VT (G(X, L̂1, . . . , L̂T))

= inf
x1∈X

sup
f1∈L̂1

. . . inf
xT∈X

sup
fT∈L̂T

[
T∑

t=1

ft(xt)− inf
x∈X

T∑
t=1

ft(x)

]

= inf
x1∈X

sup
w1∈C1

. . . inf
xT∈X

sup
wT∈CT

[
T∑

t=1

wt · xt − inf
x∈X

x ·
T∑

t=1

wt

]

≥ inf
x1∈X

Ew1 . . . inf
xT∈X

EwT

[
T∑

t=1

wt · xt − inf
x∈X

x ·
T∑

t=1

wt

]
,

where Ewt
denotes expectation with respect to any distribu-

tion over the set Ct. In particular, it holds for the uniform
distribution, i.e. when the coordinates of wt are ±Gt/

√
n

with probability 1/2. Since in this case EwT
wT ·xT = 0 for

any xT , we obtain

VT (Glin(X, 〈Gt〉))
≥ inf

x1∈X
Ew1 . . . inf

xT−1∈X
EwT−1 inf

xT∈X

EwT

[
T∑

t=1

wt · xt − inf
x∈X

x ·
T∑

t=1

wt

]
= inf

x1∈X
Ew1 . . . inf

xT−1∈X
EwT−1 inf

xT∈X[
T−1∑
t=1

wt · xt − EwT
inf
x∈X

x ·
T∑

t=1

wt

]
= inf

x1∈X
Ew1 . . . inf

xT−1∈X

EwT−1

[
T−1∑
t=1

wt · xt − EwT
inf
x∈X

x ·
T∑

t=1

wt

]
,

where the last equality holds because the expression no longer
depends on xT . Repeating the process, we obtain

VT (Glin(X, 〈Gt〉)) ≥ −Ew1,...,wT
inf
x∈X

x ·
T∑

t=1

wt

= −E{εi,t} min
x∈

n
− D

2
√

n
, D
2
√

n

on

(
x ·

T∑
t=1

wt

)
,

where wt(i) = εi,tGt/
√

n, with i.i.d. Rademacher variables
εi,t = ±1 with probability 1/2. The last equality is due to
the fact that a linear function is minimized at the vertices of
the cube. In fact, the dot product is minimized by matching
the sign of x(i) with that of the ith coordinate of

∑T
t=1 wt.

Hence,

VT (Glin(X, 〈Gt〉)) ≥ −E{εi,t}

n∑
i=1

− D

2
√

n

∣∣∣∣∣
T∑

t=1

εi,t
Gt√

n

∣∣∣∣∣
=

D

2
E{εi,t}

∣∣∣∣∣
T∑

t=1

εi,tGt

∣∣∣∣∣ ≥ D

2
√

2

√√√√ T∑
t=1

G2
t ,

where the last inequality follows from the Khinchine’s in-
equality [2].

4.2 The Minimax Analysis
While in the previous section we found a particular lower
bound on VT (Glin), here we present a complete minimax
analysis for the case when X is a ball in Rn (of dimension n
at least 3). We are indeed able to compute exactly the value

VT (Glin(X, 〈Gt〉))

and we provide the simple minimax strategies for both the
Player and the Adversary. The unit ball, while a special case,
is a very natural choice for X as it is the largest convex set
of diameter 2.

For the remainder of this section, let ft(x) := wt · x
where wt ∈ Rn with ‖wt‖ ≤ Gt. Also, we define Wt =∑t

s=1 ws, the cumulative functions chosen by the Adver-
sary.

Theorem 6 Let X = {x : ‖x‖2 ≤ D/2} and suppose the
Adversary chooses functions from

Lt = {f(x) = w · x : ‖w‖2 ≤ Gt}.

Then the value of the game

VT (Glin(X, 〈Gt〉)) =
D

2

√√√√ T∑
t=1

G2
t .

Furthermore, the optimal strategy for the player is to choose

xt+1 =

 −D

2
√
‖Wt‖2 +

∑T
s=t+1 Gs

Wt.

To prove the theorem, we will need a series of short lem-
mas.

Lemma 7 When X is the unit ball B = {x : ‖x‖ ≤ 1}, the
value VT can be written as

inf
x1∈B

sup
w1∈L1

. . . inf
xT∈B

sup
wT∈LT

[
T∑

t=1

wt · xt + ‖WT ‖

]
(1)

In addition, if we choose a larger radius D, the value of the
game will scale linearly with this radius and thus it is enough
to assume X = B.

Proof: The last term in the regret

inf
x∈B

∑
t

ft(x) = inf
x∈B

WT · x = −‖WT ‖

418

since the infimum is obtained when x = WT

‖WT ‖ . This implies
equation (1). The fact that the bound scales linearly with
D/2 follows from the fact that both the norm ‖WT ‖ will
scale with D/2 as well as the terms wt · xt.

For the remainder of this section, we simply assume that
X = B, the unit ball with diameter D = 2.

Lemma 8 Regardless of the Player’s choices, the Adversary
can always obtain regret at least√√√√ T∑

t=1

G2
t (2)

whenever the dimension n is at least 3.

Proof: Consider the following adversarial strategy and as-
sume X = B. On round t, after the Player has chosen xt,
the adversary chooses wt such that ‖wt‖ = Gt, wt · xt = 0
and wt ·Wt−1 = 0. Finding a vector of length Gt that is per-
pendicular to two arbitrary vectors can always be done when
the dimension is at least 3. With this strategy, it is guaranteed
that

∑
t wt · xt = 0 and we claim also that

‖WT ‖ =

√√√√ T∑
t=1

G2
t .

This follows from a simple induction. Assuming ‖Wt−1‖ =√∑t−1
s=1 G2

s, then

‖Wt‖ = ‖Wt−1 + wt‖ =
√
‖Wt−1‖2 + ‖wt‖2,

implying the desired conclusion.

The result of the last lemma is quite surprising: the ad-
versary need only play some vector with length Gt which
is perpendicular to both xt and Wt−1. Indeed, this lower
bound has a very different flavor from the randomized ar-
gument of the previous section. To obtain a full minimax
result, all that remains is to show that the Adversary can do
no better!

Lemma 9 Let w0 = 0. If the player always plays the point

xt =
−Wt−1√

‖Wt−1‖2 +
∑T

s=t G2
s

(3)

then

sup
w1

sup
w2

. . . sup
wT

[
T∑

t=1

wt · xt + ‖WT ‖

]
≤

√√√√ T∑
t=1

G2
t

i.e., the regret can be no greater than the value in (2).

Proof: As before, Wt =
∑t

s=1 ws. Define Γ2
t =

∑T
s=t G2

s,
the forward sum, with ΓT+1 = 0. Define

Φt(w1, . . . ,wt−1) =
t−1∑
s=1

xs ·ws +
√
‖Wt−1‖2 + Γ2

t

Figure 1: Illustration for the proof of the minimax strategy
for the ball. We suppose that xt is aligned with Wt−1 and
depict the plane spanned by Wt−1 and wt. We assume that
wt has angle α with the line perpendicular to Wt−1 and
show that α = 0 is optimal.

where xt is as defined in (3) and Φ1 is
√∑T

t=1 G2
t . Let

Vt(w1, . . . ,wt−1) = sup
wt

. . . sup
wT

[
T∑

t=1

wt · xt + ‖WT ‖

]
be the optimum payoff to the adversary given that he plays
w1, . . . ,wt−1 in the beginning and then plays optimally. The
player plays according to (3) throughout. Note that the value
of the game is V1.

We prove by backward induction that, for all t ∈ {1, . . . , T},

Vt(w1, . . . ,wt−1) ≤ Φt(w1, . . . ,wt−1)

The base case, t = T + 1 is obvious. Now assume it holds
for t + 1 and we will prove it for t. We have

Vt(w1, . . . ,wt−1)
= sup

wt

Vt+1(w1, . . . ,wt)

(induc.) ≤ sup
wt

Φt+1(w1, . . . ,wt)

=
t−1∑
s=1

xs ·ws +

(∗) sup
wt

[
xt ·wt +

√
‖Wt−1 + wt‖2 + Γ2

t+1

]
Let us consider the final supremum term above. If we

can show that it is no more than√
‖Wt−1‖2 + Γ2

t (4)

then we will have proved Vt ≤ Φt thus completing the in-
duction. This is the objective of the remainder of this proof.

We begin by noting two important facts about the expres-
sion (*). First, the supremum is taken over a convex function
of wt and thus the maximum occurs at the boundary, i.e.
where ‖wt‖ = Gt exactly. This is easily checked by com-
puting the Hessian with respect to wt. Second, since xt is
chosen parallel to Wt−1, the only two vectors of interest are

419

wt and Wt−1. Without loss of generality, we can assume
that Wt−1 is the 2-dim vector 〈F, 0〉, where F = ‖Wt−1‖,
and that wt = 〈−Gt sinα, Gt cos α〉 for any α. Plugging in
the choice of xt in (3), we may now rewrite (*) as

sup
α

FGt sinα√
F 2 + G2

t + Γ2
t+1

+
√

F 2 + G2
t + Γ2

t+1 − 2FGt sinα

︸ ︷︷ ︸
φ(α)

We illustrate this problem in Figure 1. Bounding the above
expression requires some care, and thus we prove it in Lemma 16
found in the appendix. The result of Lemma 16 gives us that,
indeed,

φ(α) ≤
√

F 2 + G2
t + Γ2

t+1 =
√
‖Wt−1‖2 + Γ2

t .

Since (*) is exactly supα φ(α), which is no greater than√
F 2 + Γ2

t ,

we are done.

We observe that the minimax strategy for the ball is ex-
actly the Online Gradient Descent strategy2 of Zinkevich [9].
The value of the game for the ball is exactly the upper bound
for the proof of Online Gradient Descent if the initial point is
the center of the ball. The lower bound of the randomized ar-
gument in the previous section differs from the upper bound
for Online Gradient Descent by

√
2.

5 The Quadratic Game
As in the last section, we now give a minimax analysis of
the game Gquad. Ultimately we will be able to compute the
exact value of VT (Gquad(X, 〈Gt〉, 〈σt〉)) and provide the op-
timal strategy of both the Player and the Adversary. What is
perhaps most interesting is that the optimal Player strategy is
the well-known Follow The Leader approach. This general
strategy can be defined simply as

xt+1 = arg min
x∈X

t∑
s=1

fs(x);

that is, we choose the best x “in hindsight”. As has been
pointed out by several authors, this strategy can incur Ω(T)
regret when the loss functions are linear. It is thus quite sur-
prising that this strategy is optimal when instead we are com-
peting against quadratic loss functions.

For this section, define Ft(x) :=
∑t

s=1 fs(x) and x∗t :=
arg minx Ft(x). Define σ1:t =

∑t
s=1 σs. We assume from

the outset that σ1 > 0. We also set σ1:0 = 0.

5.1 A Necessary Restriction
Recall that the upper bound in Hazan et al. [4] is

RT ≤ 1
2

G2

σ
log T

2This does require some work to show, and more information
will be available in the full version of this paper.

and note that this expression has no dependence on the size
of X . We would thus ideally like to consider the case when
X = Rn, for this would seem to be the “hardest” case for the
Player. The unbounded assumption is problematic, however,
not because the game is too difficult for the Player, but the
game is too difficult for the Adversary!. This ought to come
as quite a surprise, but arises from the particular restrictions
we place on the Adversary.

Proposition 5.1 For G, σ > 0, if maxx,y∈X ‖x − y‖ =
D > 4G/σ, there is an α > 0 such that VT (Gquad(X, G, σ)) ≤
−αT .

Proof: Fix xo,xe ∈ X with ‖xo − xe‖ > 4G/σ. Consider
a player that plays x2k−1 = xo, x2k = xe. Then for any
x ∈ X ,

f2k−1(x) ≥ f2k−1(xo)−G‖x− xo‖+
σ

2
‖x− xo‖2,

And similarly for f2k and xe. Summing over t (assuming
that T is even) shows that Vt(Gquad(X, G, σ)) is no more than

T∑
t=1

ft(xt)−
T∑

t=1

ft(x) ≤ T

2

(
G‖x− xo‖ −

σ

2
‖x− xo‖2

+G‖x− xe‖ −
σ

2
‖x− xe‖2

)
.

But by the triangle inequality, any x ∈ X has ‖x − xo‖ +
‖x − xe‖ ≥ D. Subject to this constraint, plus the con-
straints 0 ≤ ‖x − xo‖ ≤ D, 0 ≤ ‖x − xe‖ ≤ D shows
that Vt(Gquad(X, G, σ)) ≤ T (GD − σD2/4)/2 ≤ −αT for
some α > 0, since D > 4G/σ.

As we don’t generally expect regret to be negative, this
example suggests that the Quadratic Game is uninteresting
without further constraints on the Player. While an explicit
bound on the size of X is a possibility, it is easier for the
analysis to place a slightly weaker restriction on the Player.

Assumption 5.1 Let x∗t−1 be the minimizer of Ft−1(x). We
assume that the Player must choose xt such that

σt‖xt − x∗t−1‖ < 2Gt.

This restriction is necessary for non-negative regret. Indeed,
it can be shown that if we increase the size of the above ball
by only ε, the method of Proposition 5.1 above shows that
the regret will be negative for large enough T .

5.2 Minimax Analysis
With the above restriction in place, we now simply write the
game as G′quad(〈Gt〉, 〈σt〉), omitting the input X . We now
proceed to compute the value of this game exactly.

Theorem 10 Under Assumption 5.1, the value of the game

VT (G′quad(〈Gt〉, 〈σt〉)) =
T∑

t=1

G2
t

2σ1:t
.

With uniform Gt and σt, we obtain the harmonic series, giv-
ing us our logarithmic regret bound. We note that this is
exactly the upper bound proven in [1, 4], even with the con-
stant.

420

Corollary 11 For the uniform parameters of the game,

G

2σ
log(T + 1) ≤ VT (G′quad(G, σ)) ≤ G

2σ
(1 + log T).

The main argument in the proof of Theorem 10 boils
down to reducing the multiple round game to a single round
game. The following lemma gives the value of this single
round game. Since the proof is somewhat technical, we post-
pone it to the Appendix.

Lemma 12 For arbitrary Gt, σt,σ1:t−1 > 0,

inf
∆:||∆||≤ 2Gt

σt

sup
δ

(
Gt‖∆− δ‖ − 1

2
σt‖∆− δ‖2 − 1

2
σ1:t−1‖δ‖2

)
=

G2
t

2σ1:t
=

G2
t

2σ1:t
,

and indeed the optimal strategy pair is ∆ = 0 and δ any
vector for which ‖δ‖ = Gt

σ1:t
.

We now show how to “unwind” the recursive inf sup
definition of VT (G′quad(〈Gt〉, 〈σt〉)), where the final term we
chop off is the object we described in the above lemma.

Proof: [Proof of Theorem 10] Let x∗t−1 be the minimizer
of Ft−1(x) and z ∈ X be arbitrary. Note that Ft is σ1:t-
quadratic, so

Ft(z) = Ft−1(z) + ft(z)
= Ft−1(x∗t−1 + (z− x∗t−1)) + ft(z)
= Ft−1(x∗t−1) +∇Ft−1(x∗t−1)(z− x∗t−1)

+ 1

2
σ1:t−1‖z− x∗t−1‖2 + ft(z)

= Ft−1(x∗t−1) + 1

2
σ1:t−1‖z− x∗t−1‖2 + ft(z),

where the last equality holds by the definition of x∗t−1. Hence,

t∑
s=1

fs(xs)− Ft(z) =

(
t−1∑
s=1

fs(xs)− Ft−1(x∗t−1)

)
+
(
ft(xt)− ft(z)− 1

2
σ1:t−1‖z− x∗t−1‖2

)
.

Expanding ft around xt,

ft(xt)− ft(z) = −∇ft(xt)(z− xt)− 1

2
σt‖z− xt‖2.

Substituting,

t∑
s=1

fs(xs)− Ft(z) =

(
t−1∑
s=1

fs(xs)− Ft−1(x∗t−1)

)
+
(
∇ft(xt)(xt − z)− 1

2
σt‖z− xt‖2 − 1

2
σ1:t−1‖z− x∗t−1‖2

)
.

Then

Vt := inf
x1

sup
f1

. . . inf
xt

sup
ft

(
t∑

s=1

fs(xs)− inf
z

Ft(z)

)

= inf
x1

sup
f1

. . . inf
xt

sup
ft,z

(
t∑

s=1

fs(xs)− Ft(z)

)

= inf
x1

sup
f1

. . . inf
xt−1

sup
ft−1

[(
t−1∑
s=1

fs(xs)− Ft−1(x∗t−1)

)
+ inf

xt

sup
ft,z

(
∇ft(xt)(xt − z)− 1

2
σt‖z− xt‖2

− 1

2
σ1:t−1‖z− x∗t−1‖2

)]
.

However, we can simplify the final inf sup as follows. We
note that the quantity ∇ft(xt)(xt − z) is maximized when
∇ft(xt) = Gt

xt−z
‖xt−z‖ . Second, we can instead use the vari-

ables ∆ = xt − x∗t−1 and δ = z− x∗t−1 in the optimization.
Recall from Assumption 5.1 that ‖xt−x∗t−1‖ = ‖∆‖ ≤ 2Gt

σt
.

Then,

Vt = inf
x1

sup
f1

. . . inf
xt−1

sup
ft−1

[(
t−1∑
s=1

fs(xs)− Ft−1(x∗t−1)

)
+ inf

∆:||∆||≤ 2Gt
σt

sup
δ

(Gt‖∆− δ‖

− 1

2
σt‖∆− δ‖2 − 1

2
σ1:t−1‖δ‖2

)]
= inf

x1
sup
f1

. . . inf
xt−1

sup
ft−1

[(
t−1∑
s=1

fs(xs)− Ft−1(x∗t−1)

)
+

G2
t

2σ1:t

]

= Vt−1 +
G2

t

2σ1:t
,

where the second equality is obtained by applying Lemma 12.
Unwinding the recursion proves the theorem.

Corollary 13 The optimal Player strategy is to set xt =
x∗t−1 on each round.

Proof: In analyzing the game, we found that the optimal
choice of ∆ = xt − x∗t−1 was shown to be 0 in Lemma 12.

6 General Games
While the minimax results shown above are certainly inter-
esting, we have only shown them to hold for the rather re-
stricted games Glin and Gquad. For these particular cases,
the class of functions that the Adversary may choose from
is quite small: both the set of linear functions and the set
quadratic functions can be parameterized by O(n) variables.
It would of course be more satisfying if our minimax analy-
ses held for more richer loss function spaces.

421

Indeed, we prove in this section that both of our minimax
results hold much more generally. In particular, we prove
that even if the Adversary were able to choose any convex
function on round t, with derivative bounded by Gt, then he
can do no better than if he only had access to linear functions.
On a similar note, if the Adversary is given the weak restric-
tion that his functions be σt-strongly convex on round t, then
he can do no better than if he could only choose σt-quadratic
functions.

Theorem 14 For fixed X, 〈Gt〉, and 〈σt〉, the values of the
Quadratic Game and the Strongly Convex Game are equal3:

VT (Gst-conv(X, 〈Gt〉, 〈σt〉)) = VT (Gquad(X, 〈Gt〉, 〈σt〉)).

For a fixed X and 〈Gt〉, the values of the Convex Game and
the Linear Game are equal:

VT (Gconv(X, 〈Gt〉)) = VT (Glin(X, 〈Gt〉)).

We need the following lemma whose proof is postponed
to the appendix. Define the regret function

R(x1, f1, . . . ,xT , fT) =
T∑

t=1

ft(xt)−min
x∈X

T∑
t=1

ft(x).

Lemma 15 Consider a sequence of sets {Ns}T
s=1 and M ⊆

Nt for some t. Suppose that for all ft ∈ Nt and xt ∈ X
there exists f∗t ∈ M such that for all

(x1, f1, . . . ,xt−1, ft−1,xt+1, ft+1, . . . ,xT , fT),

R(x1, f1, . . . ,xt, ft, . . . ,xT , fT)
≤ R(x1, f1, . . . ,xt, f

∗
t , . . . , . . . ,xT , fT).

Then

inf
x1

sup
f1∈N1

. . . inf
xt

sup
ft∈Nt

. . . inf
xT

sup
fT∈NT

R(x1, f1, . . . ,xT , fT)

= inf
x1

sup
f1∈N1

. . . inf
xt

sup
ft∈M

. . . inf
xT

sup
fT∈NT

R(x1, f1, . . . ,xT , fT).

Proof:[Proof of Theorem 14] Given the sequences 〈Gt〉, 〈σt〉,
let Lt(xt) be defined as for the Strongly Convex Game (Def-
inition 3) and L∗

t (xt) be defined as for the Quadratic Game
(Definition 2). Observe that L∗

t ⊆ Lt for any t. Moreover,
for any ft ∈ Lt and xt ∈ X , define f∗t (x) = ft(xt) +
∇ft(xt)>(x−xt)+ 1

2
σt‖x−xt‖2. By definition, ft(xt) =

f∗t (xt) and ∇ft(xt) = ∇f∗t (xt). Hence, f∗t ∈ L∗
t . Further-

more, ft(x) ≥ f∗t (x) for any x ∈ X , and x∗ in particular.
Hence, for all (x1, f1, . . . ,xt−1, ft−1,xt+1, ft+1, . . . ,xT , fT),

R(x1, f1, . . . ,xt, ft, . . . ,xT , fT)
≤ R(x1, f1, . . . ,xt, f

∗
t , . . . , . . . ,xT , fT).

The statement of the first part of the theorem follows by
Lemma 15, applied for every t ∈ {1, . . . , T}. The second
part is proved by analogous reasoning.

3We note that the computation of VT for the Quadratic Game re-
quired a particular restriction on the player, Assumption 5.1, where
here we only consider a fixed domain X .

Acknowledgments
We gratefully acknowledge the support of DARPA under
grant FA8750-05-2-0249 and NSF under grant DMS-0707060.

Appendix
Proof:[Proof of Lemma 12] We write
Pt(∆, δ) := Gt‖∆− δ‖ − 1

2
σt‖∆− δ‖2 − 1

2
σ1:t−1‖δ‖2

and
Qt(∆) := sup

δ
Pt(∆, δ),

then our goal is to obtain inf
∆:‖∆‖≤ 2Gt

σt

Qt(∆). We now pro-

ceed to show that the choice ∆ = 0 is optimal. For this
choice,

Qt(0) = sup
δ

Gt‖δ‖ − 1

2
σ1:t‖δ‖2 =

G2
t

2σ1:t
.

Here the optimal choice of δ is any vector such that ‖δ‖ =
Gt

σ1:t
.
Now let us consider the case that ∆ 6= 0. First, sup-

pose ∆ 6= δ. Note that the optimum supδ Pt(∆, δ) will be
obtained when the gradient with respect to δ is zero, i.e.

−Gt
∆− δ

‖∆− δ‖
− σt(δ −∆)− σ1:t−1δ = 0

implying that δ is a linear scaling of ∆, i.e. δ = c∆. The
second case, ∆ = δ, also implies that δ is a linear scaling of
∆. Substituting this optimal form of δ,

Qt(∆) = sup
c∈R

[Gt|1− c| · ‖∆‖

− 1

2
σt(1− c)2‖∆‖2 − 1

2
σ1:t−1c

2‖∆‖2
]
.

We now claim that the supremum over c ∈ R occurs at some
c∗ ≤ 1 for any choice of ∆. Assume by contradiction that
c∗ > 1 for some ∆. Then c̃ = −c∗ + 2 achieves at least the
same value as c∗ since |1− c∗| = |1− c̃| while (c∗)2 > (c̃)2,
making the last term larger, which is a contradiction. Hence,
c ≤ 1 and, collecting the terms,

Qt(∆) = sup
c≤1

[(
Gt‖∆‖ − 1

2
σt‖∆‖2

)
+c ·

(
σt‖∆‖2 −Gt‖∆‖

)
− c2 ·

(
1

2
σ1:t‖∆‖2

)]
.

Since we now assume ‖∆‖ 6= 0, we see that the supre-
mum is achieved for c∗ = σt‖∆‖2−Gt‖∆‖

σ1:t‖∆‖2 = σt‖∆‖−Gt

σ1:t‖∆‖ ≤ 1
and

Qt(∆) =

(
σt‖∆‖2 −Gt‖∆‖

)2
2σ1:t‖∆‖2

+ (Gt‖∆‖ − 1

2
σt‖∆‖2)

=
σ2

t ‖∆‖2 − σt‖∆‖Gt + G2
t

2σ1:t

+ (Gt‖∆‖ − 1

2
σt‖∆‖2)

=
σt

σ1:t

(
1

2
σt‖∆‖2 − ‖∆‖Gt

)
+ (Gt‖∆‖ − 1

2
σt‖∆‖2) +

G2
t

2σ1:t

=
σ1:t−1

σ1:t

(
Gt − 1

2
σt‖∆‖

)
‖∆‖+

G2
t

2σ1:t
>

G2
t

2σ1:t
,

422

where the last inequality holds by because ‖∆‖ ≤ 2Gt

σt
.

Hence, the value Qt(∆) is strictly larger than G2
t /(2σ1:t)

whenever ‖∆‖ > 0 and is equal to this value if ∆ = 0.
Hence, the optimal choice for the Player is to choose ∆ = 0.

Proof:[Proof of Lemma 15] Fix ft ∈ Lt and xt ∈ X . Let
f∗t ∈ M be as in the statement of the lemma. Define

h1(x1, f1, . . . ,xt−1, ft−1,xt+1, ft+1, . . . ,xT , fT)
:= R(x1, f1, . . . ,xt, ft, . . . ,xT , fT)

h2(x1, f1, . . . ,xt−1, ft−1,xt+1, ft+1, . . . ,xT , fT)
:= R(x1, f1, . . . ,xt, f

∗
t , . . . ,xT , fT).

By assumption, h1 ≤ h2. Hence, we can inf/sup over the
variables xt+1, ft+1, . . . ,xT , fT , obtaining

inf
xt+1

sup
ft+1∈Nt+1

. . . inf
xT

sup
fT∈NT

R(x1, f1, . . . ,xt, ft, . . . ,xT , fT)

≤ inf
xt+1

sup
ft+1∈Nt+1

. . . inf
xT

sup
fT∈NT

R(x1, f1, . . . ,xt, f
∗
t , . . . ,xT , fT)

for any (x1, f1, . . . ,xt−1, ft−1). Hence, since f∗t ∈ M

sup
ft∈Nt

inf
xt+1

sup
ft+1∈Nt+1

. . . inf
xT

sup
fT∈NT

R(x1, f1, . . . ,xt, ft, . . . ,xT , fT)

≤ sup
ft∈M

inf
xt+1

sup
ft+1∈Nt+1

. . . inf
xT

sup
fT∈NT

R(x1, f1, . . . ,xt, ft, . . . ,xT , fT)

for all (x1, f1, . . . ,xt−1, ft−1,xt). Since M ⊆ Nt, the
above is in fact an equality. Since the two functions of the
variables (x1, f1, . . . ,xt−1, ft−1,xt) are equal, taking inf’s
and sup’s over these variables we obtain the statement of the
lemma.

Lemma 16 The expression

FG sinα√
F 2 + G2 + K2

+
√

F 2 + G2 + K2 − 2FG sinα

is no more than
√

F 2 + G2 + K2 for constants F,G,K > 0
and any α.

Proof: We are interested in proving that the supremum of

φ(α) =
FG sinα√

F 2 + G2 + K2
+
√

F 2 + G2 + K2 − 2FG sinα

over [−π/2, π/2] is attained at α = 0. Setting the derivative
of Φ(α) to zero,

FG cos α√
F 2 + G2 + K2

− FG cos α√
F 2 + G2 + K2 − 2FG sinα

= 0

which implies that either cos α = 0 or sinα = 0, i.e. α ∈
{−π/2, 0, π/2}. Taking the second derivative, we get

φ′′(α) = − FG sinα√
F 2 + G2 + K2

−
(
− FG sinα√

F 2 + G2 + K2 − 2FG sinα

+
(FG cos α)(FG cos α)

(F 2 + G2 + K2 − 2FG sinα)3/2

)
.

Thus, φ′′(0) < 0. We conclude that the optimum is attained
at α = 0 and therefore

φ(α) ≤
√

F 2 + G2 + K2

References
[1] Peter Bartlett, Elad Hazan, and Alexander Rakhlin.

Adaptive online gradient descent. In J.C. Platt, D. Koller,
Y. Singer, and S. Roweis, editors, Advances in Neural
Information Processing Systems 20. MIT Press, Cam-
bridge, MA, 2008.

[2] Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction,
Learning, and Games. Cambridge University Press,
2006.

[3] T.M. Cover. Universal portfolios. Mathematical Fi-
nance, 1(1):1–29, January 1991.

[4] Elad Hazan, Adam Kalai, Satyen Kale, and Amit Agar-
wal. Logarithmic regret algorithms for online convex
optimization. In COLT, pages 499–513, 2006.

[5] Erik Ordentlich and Thomas M. Cover. The cost of
achieving the best portfolio in hindsight. Math. Oper.
Res., 23(4):960–982, 1998.

[6] Shai Shalev-Shwartz and Yoram Singer. Convex re-
peated games and Fenchel duality. In B. Schölkopf,
J. Platt, and T. Hoffman, editors, Advances in Neural
Information Processing Systems 19. MIT Press, Cam-
bridge, MA, 2007.

[7] Eiji Takimoto and Manfred K. Warmuth. The mini-
max strategy for gaussian density estimation. pp. In
COLT ’00: Proceedings of the Thirteenth Annual Con-
ference on Computational Learning Theory, pages 100–
106, San Francisco, CA, USA, 2000. Morgan Kaufmann
Publishers Inc.

[8] V. Vovk. Competitive on-line linear regression. In NIPS
’97: Proceedings of the 1997 conference on Advances in
neural information processing systems 10, pages 364–
370, Cambridge, MA, USA, 1998. MIT Press.

[9] Martin Zinkevich. Online convex programming and gen-
eralized infinitesimal gradient ascent. In ICML, pages
928–936, 2003.

423

424

Regret Bounds for Sleeping Experts and Bandits

Robert D. Kleinberg∗

Department of Computer Science
Cornell University
Ithaca, NY 14853

rdk@cs.cornell.edu

Alexandru Niculescu-Mizil†

Department of Computer Science
Cornell University
Ithaca, NY 14853

alexn@cs.cornell.edu

Yogeshwer Sharma‡

Department of Computer Science
Cornell University
Ithaca, NY 14853

yogi@cs.cornell.edu

Abstract

We study on-line decision problems where the
set of actions that are available to the decision
algorithm vary over time. With a few notable
exceptions, such problems remained largely unad-
dressed in the literature, despite their applicability
to a large number of practical problems. Departing
from previous work on this “Sleeping Experts”
problem, we compare algorithms against the pay-
off obtained by thebest orderingof the actions,
which is a natural benchmark for this type of prob-
lem. We study both the full-information (best ex-
pert) and partial-information (multi-armed bandit)
settings and consider both stochastic and adaptive
adversaries. For all settings we give algorithms
achieving (almost) information-theoretically opti-
mal regret bounds (up to a constant or a sub-
logarithmic factor) with respect to the best-ordering
benchmark.

1 Introduction

In on-line decision problems, or sequential prediction prob-
lems, an algorithm must choose, in each of theT consecutive
rounds, one of then possible actions. In each round, each ac-
tion receives a real valued positive payoff in[0, 1], initially
unknown to the algorithm. At the end of each round the al-
gorithm is revealed some information about the payoffs of
the actions in that round. The goal of the algorithm is to
maximize the total payoff, i.e. the sum of the payoffs of the
chosen actions in each round. The standard on-line decision
settings are thebest expertsetting (or the full-information
setting) in which, at the end of the round, the payoffs ofall n
strategies are revealed to the algorithm, and themulti-armed
bandit setting (or the partial-information setting) in which
only the payoff of the chosen strategy is revealed. Customar-
ily, in the best expert setting the strategies are calledexperts
and in the multi-armed bandit setting the strategies are called
banditsor arms. We useactionsto generically refer to both

∗Supported by NSF grants CCF-0643934 and CCF-0729102.
†Supported by NSF grants 0347318, 0412930, 0427914, and

0612031.
‡Supported by NSF grant CCF-0514628.

types of strategies, when we do not refer particularly to ei-
ther.

The performance of the algorithm is typically measured
in terms ofregret. The regret is the difference between the
expected payoff of the algorithm and the payoff of a single
fixed strategy for selecting actions. The usual single fixed
strategy to compare against is the one which always selects
the expert or bandit that has the highest total payoff over the
T rounds (in hindsight).

The usual assumption in online learning problems is that
all actions are available at all times. In many applications,
however, this assumption is not appropriate. In network rout-
ing problems, for example, some of the routes are unavail-
able at some point in time due to router or link crashes. Or, in
electronic commerce problems, items are out of stock, sell-
ers are not available (due to maintenance or simply going
out of business), and buyers do not buy all the time. Even in
the setting that originally motivated the multi-armed bandit
problems, a gambler playing slot machines, some of the slot
machines might be occupied by other players at any given
time.

In this paper we relax the assumption that all actions are
available at all times, and allow the set of available actions to
vary from one round to the next, a model known as “predic-
tors that specialize” or “sleeping experts” in prior work. The
first foundational question that needs to be addressed is how
to define regret when the set of available actions may vary
over time. Defining regret with respect to the best action
in hindsight is no longer appropriate since that action might
sometimes be unavailable. A useful thought experiment for
guiding our intuition is the following: if each action had
a fixed payoff distribution that wasknownto the decision-
maker, what would be the best way to choose among the
available actions? The answer is obvious: one should or-
der all of the actions according to their expected payoff, then
choose among the available actions by selecting the one which
ranks highest in this ordering. Guided by the outcome of this
thought experiment, we define our base to be the best order-
ing of actions in hindsight (see Section 2 for a formal defi-
nition) and contend that this is a natural and intuitive way to
define regret in our setting. This contention is also supported
by the informal observation that order-based decision rules
seem to resemble the way people make choices in situations
with a varying set of actions, e.g. choosing which brand of
beer to buy at a store.

We prove lower and upper bounds on the regret with re-

425

spect to the best ordering for both the best expert setting and
the multi-armed bandit settings. We first explore the case of
stochastic adversary, where the payoffs received by expert
(bandit)i at each time step are independent samples from an
unknown but fixed distributionPi(·) supported on[0, 1] with
meanµi. Assuming thatµ1 > µ2 > · · · > µn (and the
algorithm, of course, does not know the identities of these
actions) we show that the regret of any learning algorithm

will necessarily be at leastΩ
(

∑n−1
i=1

1
µi−µi+1

)

in the best

expert setting, andΩ
(

log(T)
∑n−1

i=1
1

µi−µi+1

)

in the multi-

armed bandit setting if the game is played forT rounds (for
T sufficiently large). We also present efficient learning algo-
rithms for both settings. For the multi-armed bandit setting,
our algorithm, calledAUER, is an adaptation of theUCB1
algorithm in Auer et al [ACBF02], which comes within a
constant factor of the lower bound mentioned above. For
the expert setting, a very simple algorithm, called “follow-
the-awake-leader”, which is a variant of “follow-the-leader”
[Han57, KV05], comes within a constant factor of the lower
bound above. While our algorithms are adaptations of ex-
isting techniques, the proofs of the upper and lower bounds
hinge on some technical innovations. For the lower bound,
we must modify the classic asymptotic lower bound proof of
Lai and Robbins [LR85] to obtain a bound which holds at all
sufficiently large finite times. We also prove a novel lemma
(Lemma 3) that allows us to relate a regret upper bound aris-
ing from application ofUCB1 to a sum of lower bounds for
two-armed bandit problems.

Next we explore the fully adversarial case where we make
no assumptions on how the payoffs for each action are gen-
erated. We show that the regret of any learning algorithm

must be at leastΩ
(

√

Tn log(n)
)

for the best expert setting

andΩ
(√

Tn2
)

for the multi-armed bandit setting. We also

present algorithms whose regret is within a constant factor
of the lower bound for the best expert setting, and within

O
(

√

log(n)
)

of the lower bound for the multi-armed ban-

dit setting. It is worth noting that the gap ofO
(√

log n
)

also
exists in the all-awake bandit problem.

The fully adversarial case, however, proves to be harder,
and neither algorithm is computational efficient. To appreci-
ate the hardness of the fully adversarial case, one can prove1

that, unlessP = NP, any low regret algorithm that learns
internally a consistent ordering over experts can not be com-
putationally efficient. Note that this does not mean that there
can be no computationally efficient, low regret algorithms
for the fully adversarial case. There might exist learning al-
gorithms that are able to achieve low regret without actually
learning a consistent ordering over experts. Finding such al-
gorithms, if they do indeed exist, remains an open problem.

1.1 Related work

Sequential prediction problems. The best-expert and multi-
armed bandit problems correspond to special cases of our
model in which every action is always available. These prob-

1It is a simple reduction from feedback arc set problem, which
is omitted from this extended abstract.

lems have been widely studied, and we draw on this literature
to design algorithms and prove lower bounds for the gener-
alizations considered here. The adversarial expert paradigm
was introduced by Littlestone and Warmuth [LW94], and
Vovk [Vov90]. Cesa-Bianchi et al [CBFH+97] further de-
veloped this paradigm in work which gave optimal regret
bounds of

√

T (ln n) and Vovk [Vov98] characterized the
achievable regret bounds in these settings.

The multi-armed bandit model was introduced by Rob-
bins [Rob]. Lai and Robbins [LR85] gave asymptotically op-
timal strategies for the stochastic version of bandit problem—
in which there is a distribution of rewards on each arm and
the rewards in each time step are drawn according to this
distribution. Auer, Cesa-Bianchi, Fischer [ACBF02] intro-
duced the algorithmUCB1 and showed that the optimal re-
gret bounds ofO(log T) can be achieved uniformly over
time for the stochastic bandit problem. (In this bound, the
big-O hides a constant depending on the means and differ-
ences of means of payoffs.) For the adversarial version of
the multi-armed bandit problem, Auer, Cesa-Bianchi, Fre-
und, and Schapire [ACBFS02] proposed the algorithmExp3
which achieves the regret bound ofO(

√
Tn log n), leaving

a
√

log n factor gap from the lower bound ofΩ(
√

nT). It is
worth noting that the lower bound holds even for an oblivious
adversary, one which chooses a sequence of payoff functions
independently of the algorithm’s choices.

Prediction with sleeping experts. Freund, Schapire, Singer,
and Warmuth [FSSW97] and Blum and Mansour [BM05]
have considered sleeping experts problems before, analyzing
algorithms in a framework different from the one we adopt
here. In the model of Freund et al., as in our model, a set of
awake experts is specified in each time period. The goal of
the algorithm is to choose one expert in each time period so
as to minimize regret against the best “mixture” of experts
(which constitutes their benchmark). A mixtureu is a prob-
ability distribution(u1, u2, . . . , un) overn experts which in
time periodt selects an expert according to the restriction of
u to the set of awake experts.

We consider a natural evaluation criterion, namely the
best ordering of experts. In the special case when all ex-
perts are always awake, both evaluation criteria degenerate
to picking the best expert. Our “best ordering” criterion can
be regarded as a degenerate case of the “best mixture” cri-
terion of Freund et al. as follows. For the orderingσ, we
assign probabilities1Z (1, ǫ, ǫ2, . . . , ǫn−1) to the sequence of
experts(σ(1), σ(2), . . . , σ(n)) whereZ = 1−ǫn

1−ǫ is the nor-
malization factor andǫ > 0 is an arbitrarily small positive
constant. The only problem is that the bounds that we get
from [FSSW97] in this degenerate case are very weak. As
ǫ → 0, their bound reduces to comparing the algorithm’s
performance to the orderingσ’s performance only for time
periods whenσ(1) expert is awake, and ignoring the time
periods whenσ(1) is not awake. Therefore, a natural reduc-
tion of our problem to the problem considered by Freund et
al. defeats the purpose of giving equal importance to all time
periods.

Blum and Mansour [BM05] consider a generalization of
the sleeping expert problem, where one has a set oftime se-
lection functionsand the algorithm aims to have low regret

426

with respect to every expert, according to every time selec-
tion function. It is possible to solve our regret-minimization
problem (with respect to the best ordering of experts) by re-
ducing to the regret-minimization problem solved by Blum
and Mansour, but this leads to an algorithm which is neither
computationally efficient nor information-theoretically opti-
mal. We now sketch the details of this reduction. One can
define a time selection function for each (ordering, expert)
pair (σ, i), according toIσ,i(t) = 1 if i �σ j for all j ∈ At

(that is,σ choosesi in time periodt if Iσ,i(t) = 1). The
regret can now be bounded, using Blum and Mansour’s anal-
ysis, as

n
∑

i=1

O
(

√

Ti log(n · n! · n) + log(n! · n2)
)

= O
(

√

Tn2 log n + n log n
)

.

This algorithm takes exponential time (due to the exponential
number of time selection functions) and gives a regret bound
of O(

√

Tn2 log n) against the best ordering, a bound which
we improve in Section 4 using a different algorithm which
also takes exponential time but is information-theoretically
optimal. (Of course, Blum and Mansour were designing their
algorithm for a different objective, not trying to get low re-
gret with respect to best ordering. Our improved bound for
regret with respect to the best ordering does not imply an im-
proved bound for experts learning with time selection func-
tions.)

A recent paper by Langford and Zhang [LZ07] presents
an algorithm called theEpoch-Greedy algorithmfor bandit
problems with side information. This is a generalization of
the multi-armed bandit problem in which the algorithm is
supplied with a piece ofside informationin each time period
before deciding which action to play. Given a hypothesis
classH of functions mapping side information to actions,
the Epoch-Greedy algorithm achieves low regret against a
sequence of actions generated by applying a single function
h ∈ H to map the side information in every time period to
an action. (The functionh is chosen so that the resulting se-
quence has the largest possible total payoff.) The stochastic
case of our problem is reducible to theirs, by treating the set
of available actions,At, as a piece of side information and
considering the hypothesis classH consisting of functions
hσ, for each total orderingσ of the set of actions, such that
hσ(A) selects the element ofA which appears first in the or-
deringσ. The regret bound in [LZ07] is expressed implicitly
in terms of the expected regret of an empirical reward max-
imization estimator, which makes it difficult to compare this
bound with ours. Instead of pursuing this reduction from our
problem to the contextual bandit problem in [LZ07], Sec-
tion 3.1.1 presents a very simple bandit algorithm for the
stochastic setting with an explicit regret bound that is prov-
ably information-theoretically optimal.

2 Terminology and Conventions

We assume that there is a fixed pool of actions,{1, 2, ...n},
with n known. We will sometimes refer to an action byex-
pert in the best expert setting and byarm or bandit in the
multi-armed bandit setting. At each time stept ∈ {1, 2, ..., T},

an adversary chooses a subsetAt ⊆ {1, 2, ..., n} of the ac-
tions to be available. The algorithm can only choose among
available actions, and only available actions receive rewards.
The reward received by an available actioni at time t is
ri(t) ∈ [0, 1].

We will consider two models for assigning rewards to
actions: a stochastic model and an adversarial model. (In
contrast, the choice of the set of awake experts is always
adversarial.) In the stochastic model the reward for armi at
time t, ri(t), is drawn independently from a fixed unknown
distribution Pi(·) with meanµi. In the adversarial model
we make no stochastic assumptions on how the rewards are
assigned to actions. Instead, we assume that the rewards are
selected by an adversary. The adversary is potentially but not
necessarily randomized.

Let σ be an ordering (permutation) of then actions, and
A a subset of the actions. We denote byσ(A) the action in
A that is highest ranked inσ. The reward of an ordering is
the reward obtained by selecting at each time step the highest
ranked action available.

Rσ,T =

T
∑

t=1

rσ(At)(t) (1)

Let RT = maxσ Rσ,T (maxσ E[Rσ,T] in the stochastic
rewards model) be the reward obtained by the best order-
ing. We define the regret of an algorithm with respect to the
best ordering as the expected difference between the reward
obtained by the best ordering and the total reward of the al-
gorithm’s chosen actionsx(1), x(2), ..., x(t):

REGT = E

[

RT −
T
∑

t=1

rx(t)(t)

]

(2)

where the expectation is taken over the algorithm’s random
choices and the randomness of the reward assignment in the
stochastic reward model.

3 Stochastic Model of Rewards

We first explore the stochastic rewards model, where the re-
ward for actioni at each time step is drawn independently
from a fixed unknown distributionPi(·) with meanµi. For
simplicity of presentation, throughout this section we assume
that µ1 > µ2 > · · · > µn. That is the lower numbered
actions are better than the higher numbered actions. Let
∆i,j = µi − µj for all i < j be the expected increase in
the reward of experti over expertj.

We present optimal (up to a constant factor) algorithms
for both the best expert and the multi-armed bandit setting.
Both algorithms are natural extensions of algorithms for the
all-awake problem to the sleeping-experts problem. The anal-
ysis of the algorithms, however, is not a straightforward ex-
tension of the analysis for the all-awake problem and new
proof techniques are required.

3.1 Best expert setting

In this section we study algorithms for the best expert setting
with stochastic rewards. We prove matching (up to a constant
factor) information-theoretic upper and lower bounds on the
regret of such algorithms.

427

3.1.1 Upper bound (algorithm: FTAL)
To get an upper bound on regret we adapt the “follow the
leader” algorithm [Han57, KV05] to the sleeping experts set-
ting: at each time step the algorithm chooses the awake ex-
pert that has the highest average payoff, where the average is
taken over the time steps when the expert was awake. If an
expert is awake for the first time, then the algorithm chooses
it. (If there are more than one such such experts, then the
algorithm chooses one of them arbitrarily.) The pseudocode
for the algorithm is shown in Algorithm 1. The algorithm is
calledFollow TheAwakeLeader (FTALfor short).

Initialize zi = 0 andni = 0 for all i ∈ [n].1

for t = 1 to T do2

if ∃j ∈ At s.t.nj = 0 then3

Play expertx(t) = j4

else5

Play expertx(t) = arg maxi∈At

(

zi

ni

)

6

end7

Observe payoffri(t) for all i ∈ At8

zi ← zi + ri(t) for all i ∈ At9

ni ← ni + 1 for all i ∈ At10

end11

Algorithm 1: Follow-the-awake-leader (FTAL) algo-
rithm for sleeping experts problem with stochastic ad-
versary.

Theorem 1 TheFTAL algorithm has a regret of at most

n−1
∑

j=1

32

∆j,j+1

with respect to the best ordering.

The theorem follows immediately from the following pair
of lemmas. The second of these lemmas will also be used in
Section 3.2.

Lemma 2 TheFTAL algorithm has a regret of at most

n
∑

j=2

j−1
∑

i=1

8

∆2
i,j

(∆i,i+1 + ∆j−1,j)

with respect to the best ordering.

Proof: Let ni,t be the number of times experti has been
awake until timet. Let µ̂i,t be experti’s average payoff until
time t. The Azuma-Hoeffding Inequality [Azu67, Hoe63]
says that

P[nj,tµ̂j,t > nj,tµj + nj,t∆i,j/2]

≤ e
−

n2
j,t

∆
2
i,j

8·nj,t = e−
∆

2
i,j

nj,t

8 ,

and

P[ni,tµ̂i,t < ni,tµi − ni,t∆i,j/2]

≤ e
−

n2
i,t

∆
2
i,j

8·ni,t = e−
∆

2
i,j

ni,t

8 .

Let us say that theFTAL algorithm suffers an(i, j)-anomaly
of type 1at timet if xt = j and µ̂j,t − µj > ∆i,j/2. Let
us say thatFTAL suffers an(i, j)-anomaly of type 2at time
t if i∗t = i andµi − µ̂i,t > ∆i,j/2. Note that whenFTAL
picks a strategyxt = j 6= i = i∗t , it suffers an(i, j)-anomaly
of type 1 or 2, or possibly both. We will denote the event
of an (i, j)-anomaly of type1 (resp. type2) at time t by
E(1)

i,j (t) (resp.E(2)
i,j (t), and we will useM (1)

i,j , resp.M (2)
i,j , to

denote the total number of(i, j)-anomalies of types1 and2,
respectively. We can bound the expected value ofM

(1)
i,j by

E[M
(1)
i,j] ≤

∞
∑

t=1

e−
∆

2
i,j

nj,t

8 1 {j ∈ At} (3)

≤
∞
∑

n=1

e−
∆

2
i,j

n

8 (4)

=
1

e∆2

i,j
/8 − 1

≤ 8

∆2
i,j

,

where line (4) is justified by observing that distinct nonzero
terms in (3) have distinct values ofnj,t. The expectation of

M
(2)
i,j is also bounded by8/∆2

i,j , via an analogous argument.
Recall thatAt denotes the set of awake experts at timet,

xt ∈ At denotes the algorithm’s choice at timet, andri(t)
denotes the payoff of experti at timet (which is distributed
according toPi(·)). Let i∗t ∈ At denote the optimal expert
at timet (i.e., the lowest-numbered element ofAt). Let us
bound the regret of theFTAL algorithm now.

E

[

T
∑

t=1

(

ri∗t
(t)− rxt

(t)
)

]

= E

[

T
∑

t=1

∆i∗t ,xt

]

= E

[

T
∑

t=1

1

{

E(1)
i∗t ,xt

(t) ∨ E(2)
i∗t ,xt

(t)
}

∆i∗t ,xt

]

≤ E

[

T
∑

t=1

1

{

E(1)
i∗t ,xt

(t)
}

∆i∗t ,xt

]

+ E

[

T
∑

t=1

1

{

E(2)
i∗t ,xt

(t)
}

∆i∗t ,xt

]

With the convention that∆i,j = 0 for j ≤ i, the first
term can be bounded by:

E

[

T
∑

t=1

1

{

E(1)
i∗t ,xt

(t)
}

∆i∗t ,xt

]

= E





T
∑

t=1

n
∑

j=2

1

{

E(1)
i∗t ,j(t)

}

∆i∗t ,j





(Since the eventE(1)
i∗t ,j(t) occurs only forj = xt.)

= E





T
∑

t=1

n
∑

j=2

1

{

E(1)
i∗t ,j(t)

}

j−1
∑

i=i∗t

(∆i,j −∆i+1,j)



 (5)

428

≤ E





T
∑

t=1

n
∑

j=2

j−1
∑

i=i∗t

1

{

E(1)
i,j (t)

}

∆i,i+1





(Since1
{

E(1)
i1,j(t)

}

≤ 1

{

E(1)
i2,j(t)

}

for all i1 ≤ i2 < j.)

≤ E





n
∑

j=2

j−1
∑

i=1

∆i,i+1

T
∑

t=1

1

{

E(1)
i,j (t)

}





=

n
∑

j=2

j−1
∑

i=1

∆i,i+1E[M
(1)
i,j]

≤
∑

1≤i<j≤n

8

∆2
i,j

∆i,i+1.

Similarly, the second term can be bounded by

E

[

T
∑

t=1

1

{

E(2)
i∗t ,xt

(t)
}

∆i∗t ,xt

]

= E

[

T
∑

t=1

n−1
∑

i=1

1

{

E(2)
i,xt

(t)
}

∆i,xt

]

(Since eventE(2)
i,xt

(t) occurs only fori = i∗t .)

= E





T
∑

t=1

n−1
∑

i=1

1

{

E(2)
i,xt

(t)
}

xt
∑

j=i+1

(∆i,j −∆i,j−1)



 (6)

≤ E





T
∑

t=1

n−1
∑

i=1

xt
∑

j=i+1

1

{

E(2)
i,j (t)

}

∆j−1,j





(Since1
{

E(2)
i,j1

(t)
}

≥ 1

{

E(2)
i,j2

(t)
}

for all i < j1 ≤ j2.)

≤ E





n−1
∑

i=1

n
∑

j=i+1

∆j−1,j

T
∑

t=1

1

{

E(2)
i,j (t)

}





=
n−1
∑

i=1

n
∑

j=i+1

∆j−1,jE[M
(2)
i,j]

≤
∑

1≤i<j≤n

8

∆2
i,j

∆j−1,j

Adding the two bounds gives the statement of the lemma.

Lemma 3 For ∆i,j = µi − µj defined as above

∑

1≤i<j≤n

∆−2
i,j ∆i,i+1 ≤ 2

n
∑

j=2

∆−1
j−1,j

and

∑

1≤i<j≤n

∆−2
i,j ∆j−1,j ≤ 2

n
∑

j=2

∆−1
j−1,j .

Proof: It suffices to prove the first of the two inequalities
stated in the lemma; the second follows from the first by re-
placing eachµi with 1−µi, which has the effect of replacing
∆i,j with ∆n+1−j,n+1−i.

For a fixedi ∈ [n], we write
∑

j:j>i ∆−2
i,j as follows.

∑

j:j>i

∆−2
i,j =

n
∑

j=2

1 {j > i}∆−2
i,j (7)

=

∫ ∞

x=0

#
{

j : j > i,∆−2
i,j ≥ x

}

dx

=

∫ ∞

x=0

#
{

j > i,∆i,j ≤ x−1/2
}

dx

= −2

∫ 0

y=∞
{j > i,∆i,j ≤ y} y−3dy

(Changing the variable of integrationx−1/2 = y)

= 2

∫ ∞

y=0

{j > i,∆i,j ≤ y} y−3dy. (8)

Let us make the following definition, which will be used in
the proof below.

Definition 4 For an expertj and y ≥ 0, let iy(j) be the
minimum numbered experti ≤ j such that∆i,j is no more
thany. That is

iy(j) := arg min{i : i ≤ j,∆i,j ≤ y}.
Now we can write the following chain of inequalities. (Note
that the best (highest payoff) expert is indexed as 1, and low-
est payoff is indexedn.)

n
∑

j=2

j−1
∑

i=1

∆−2
i,j ∆i,i+1 (9)

=

n−1
∑

i=1

∆i,i+1

∑

j:j>i

∆−2
i,j

= 2

n−1
∑

i=1

∆i,i+1

(
∫ ∞

y=0

{j : j > i,∆i,j ≤ y} y−3dy

)

(From (8).)

= 2

∫ ∞

y=0

y−3

(

n−1
∑

i=1

∆i,i+1 · # {j > i,∆i,j ≤ y}
)

dy

(Changing the order of integration and summation.)

= 2

∫ ∞

y=0

y−3





n−1
∑

i=1

∆i,i+1

n
∑

j=i+1

1 {j > i,∆i,j ≤ y}



 dy

(Expanding# {·} into sum of1 {·}.)

= 2

∫ ∞

y=0

y−3





n
∑

j=2

j−1
∑

i=1

∆i,i+11 {j > i,∆i,j ≤ y}



 dy

429

(Changing the order of summation.) Recall from Definition 4
that for anyj andy ≥ 0, iy(j) is the least indexed experti
such that∆i,j is still less thany. We get the following.

= 2

∫ ∞

y=0

y−3





n
∑

j=2

j−1
∑

i=iy(j)

∆i,i+1



 dy

= 2

∫ ∞

y=0

y−3





n
∑

j=2

(

µiy(j) − µj

)



 dy

= 2

n
∑

j=2

∫ ∞

y=0

y−3
(

µiy(j) − µj

)

dy

(Changing the order of summation and integration.)

= 2
n
∑

j=2

∫ ∞

y=∆j−1,j

y−3
(

µiy(j) − µj

)

dy (10)

(This is because for values ofy less than∆j−1,j , iy(j) = j
and integrand is equal to zero.)

≤ 2
n
∑

j=2

∫ ∞

y=∆j−1,j

y−3 · y dy

(Sinceµiy(j) − µj ≤ y.)

= 2

n
∑

j=2

∫ ∞

y=∆j−1,j

y−2dy

= 2

n
∑

j=2

∆−1
j−1,j (11)

This concludes the proof of the lemma.

Remarks for small∆i,i+1 Note that the upper bound stated
in Theorem 1 become very large when∆i,i+1 is very small
for somei. Indeed, when mean payoffs of all experts are
equal,∆i,i+1 = 0 for all i and upper bound becomes trivial,
while the algorithm does well (picking any expert is as good
as any other). We suggest a slight modification of the proof
to take care of such case.

Let ǫ > 0 be fixed (the original theorem corresponds to
the caseǫ = 0). Recall the definition ofiǫ(j) from Defini-
tion 4. We also define the inverse,jǫ(i) as the maximum
numbered expertj such that∆i,j is no more thanǫ, i.e.,
jǫ(i) = arg max{j : j ≥ i,∆i,j ≤ ǫ}. Note that the three
conditions: (1)i < iǫ(j), (2) j > jǫ(i), and (3)∆i,j > ǫ
are equivalent. The idea in this new analysis is to “identify”
experts that have means withinǫ of each other. (We cannot
just make equivalence classes based on this, since the rela-
tion of “being within ǫ of each other” is not an equivalence
relation.)

Lemma 2 can be modified to prove that the regret of the
algorithm is bounded by

2ǫT +
∑

1≤i<j≤n,

∆i,j>ǫ

8

∆2
i,j

(∆i,i+1 + ∆j−1,j).

This can be seen by rewriting Equation (5) as

E





T
∑

t=1

n
∑

j=2

1

{

E(1)
i∗t ,j(t)

}

iǫ(j)−1
∑

i=i∗t

∆i,i+1





+ E





T
∑

t=1

n
∑

j=2

1

{

E(1)
i∗t ,j(t)

}

j−1
∑

i=iǫ(j)

∆i,i+1





and noting that the second term is at most

E





T
∑

t=1

n
∑

j=2

1

{

E(1)
i∗t ,j(t)

}

ǫ



 = E

[

ǫ

T
∑

t=1

1

]

= ǫT,

since only one of the eventsE(1)
i∗t ,j(t) (corresponding toj =

xt) can occur for eacht. Equation (6) can be similarly mod-
ified by splitting the summationj = i + 1 . . . xt to j =
i + 1 . . . jǫ(i) andj = jǫ(i) + 1 . . . xt.

Similarly, Lemma 3 can be modified as follows. In equa-
tion (7), instead of rewriting

∑

j:j>i ∆−2
i,j , we rewrite

∑

j:j>i,i<iǫ(j)

∆−2
i,j

to get

2

∫ ∞

y=0

{j > i, ǫ < ∆i,j ≤ y} y−3dy,

in Equation (8).
Equation (9) can be rewritten as

n
∑

j=1

iǫ(j)−1
∑

i=1

∆−2
i,j ∆i,i+1.

The rest of the analysis goes through as it is written, except
that the limits of integration in Equation (10) now become
y = max{ǫ,∆j−1,j} . . .∞ instead ofy = ∆j−1,j . . .∞,
resulting in the final expression of

2
n
∑

j=2

(max{ǫ,∆j−1,j})−1
,

in Equation (11).
Therefore, the denominators of regret expression in The-

orem 1 can be made at leastǫ, if we are willing to pay2ǫT
upfront in terms of regret.

3.1.2 Lower bound
In this section, assuming that the meansµi are bounded away
from 0 and1, we prove that in terms of the regret, theFTAL
algorithm presented in the section above is optimal (up to
constant factors). This is done by showing the following
lower bound on the regret guarantee of any algorithm.

Lemma 5 Assume that the meansµi are bounded away from
0 and1. Any algorithm for the stochastic version of the best
expert problem must have regret at least

Ω

(

n−1
∑

i=1

1

∆i,i+1

)

,

asT becomes large enough.

430

To prove this lemma, we first prove its special case for the
case of two experts.

Lemma 6 Suppose we are given two numbersµ1 > µ2,
both lying in an interval[a, b] such that0 < a < b < 1,
and suppose we are given any online algorithmφ for the
best expert problem with two experts. Then there is an input
instance in the stochastic rewards model, with two experts
L and R whose payoff distributions are Bernoulli random
variables with meansµ1 andµ2 or vice-versa, such that for
large enoughT , the regret of algorithmφ is

Ω
(

δ−1
)

,

whereδ = µ1 − µ2 and the constants inside theΩ(·) may
depend ona, b.

Proof: Let us define some joint distributions:p is the distri-
bution in which both experts have average payoffµ1, qL is
the distribution in which they have payoffs(µ1, µ2) (left is
better), andqR is the distribution in which they have payoffs
(µ2, µ1) (right expert is better).

Let us define the following events:EL
t is true if φ picks

L at timet, and similarlyER
t .

We denote bypt(·) the joint distribution for firstt time
steps, where the distribution of rewards in each time period
is p(·). Similarly for qt(·). We havept[EL

t] + pt[ER
t] = 1.

Therefore, for everyt, there existsM ∈ {L,R} such that
pt[EM

t] ≥ 1/2. Similarly, there existsM ∈ {L,R} such
that

#

{

t : 1 ≤ t ≤ T, pt[EM
t] ≥ 1

2

}

≥ T

2
.

TakeT0 = c
δ2 for a small enough constantc. We will

prove the claim below forT = T0; for larger values ofT ,
the claim follows easily from this.

Without loss of generality, assume thatM = L. Now
assume the algorithm faces the input distributionqR, and de-
fine q = qR. UsingKL(·; ·) to denote the KL-divergence of
two distributions, we have

KL(pt; qt) ≤ KL(pT ; qT) = T · KL(p; q)

= cδ−2 · KL(µ1;µ2) ≤ cδ−2 · O(δ2) ≤ 1

50
,

for a small enough value ofc which depends ona andb be-
cause the constant inside theO(·) in the line above depends
ona andb.

Karp and Kleinberg [KK07] prove the following lemma.
If there is an eventE with p(E) ≥ 1/3 andq(E) < 1/3,
then

KL(p; q) ≥ 1

3
ln

(

1

3q(E)

)

− 1

e
. (12)

We have that for at leastT/2 values oft, pt(EL
t) ≥ 1/3 (it

is actually at least1/2). In such time steps, we either have
qt(EL

t) ≥ 1/3 or the lemma applies, yielding

1

50
≥ KL(pt; qt) ≥ 1

3
ln

(

1

qt(EL
t)

)

− 1

e
.

This gives

qt(EL
t) ≥ 1

10
.

Therefore, the regret of the algorithm in time periodt is
at least

µ1 −
(

9

10
µ1 +

1

10
µ2

)

≥ 1

10
δ.

SinceT = Ω(δ−2), we have that the regret is at least

1

10
δ · Ω(δ−2) = Ω(δ−1).

This finishes the proof of the lower bound for two experts.

Proof of Lemma 5: Let us group experts in pairs of2 as
(2i − 1, 2i) for i = 1, 2, . . . , ⌊n/2⌋. Apply the two-expert
lower bound from Lemma 6 by creating a series of time steps
whenAt = {2i − 1, 2i} for eachi. (We need a sufficiently
large time horizon — namelyT ≥ ∑⌊n/2⌋

i=1 c∆−2
2i−1,2i — in

order to apply the lower bound to all⌊n/2⌋ two-expert in-
stances.) The total regret suffered by any algorithm is the
sum of regret suffered in the independent⌊n/2⌋ instances
defined above. Using the lower bound from Lemma 6, we
get that the regret suffered by any algorithm is at least

⌊n/2⌋
∑

i=1

Ω

(

1

∆2i−1,2i

)

.

Similarly, if we group the experts in pairs according to(2i, 2i+
1) for i = 1, 2, . . . , ⌊n/2⌋, then we get a lower bound of

⌊n/2⌋
∑

i=1

Ω

(

1

∆2i,2i+1

)

.

Since both of these are lower bounds, so is their average,
which is

1

2

n−1
∑

i=1

Ω

(

1

∆i,i+1

)

= Ω

(

n−1
∑

i=1

∆−1
i,i+1

)

.

This proves the lemma.

3.2 Multi-armed bandit setting

We now turn our attention to the multi-armed bandit setting
against a stochastic adversary. We first present a variant of
UCB1 algorithm [ACBF02], and then present a matching
lower bound based on idea from Lai and Robbins [LR85],
which is a constant factor away from theUCB1-like upper
bound.

3.2.1 Upper bound (algorithm: AUER)
Here the optimal algorithm is again a natural extension of the
UCB1 algorithm [ACBF02] to the sleeping-bandits case. In
a nutshell, the algorithm keeps track of the running average
of payoffs received from each arm, and also a confidence in-

terval of width2
√

8 ln t
nj,t

around armj, wheret is the current

time interval andnj,t is the number of timesj’s payoff has
been observed (number of times armj has been played). At

431

time t, if an arm becomes available for the first time then
the algorithm chooses it. Otherwise the algorithm optimisti-
cally picks the arm with highest “upper estimated reward”
(or “upper confidence bound” inUCB1 terminology) among
the available arms. That is, it picks the armj ∈ At with

maximumµ̂j,t +
√

8 ln t
nj,t

whereµ̂j,t is the mean of the ob-

served rewards of armj up to timet. The algorithm is shown
in Figure 2. The algorithm is calledAwakeUpperEstimated
Reward (AUER).

Initialize zi = 0 andni = 0 for all i ∈ [n].1

for t = 1 to T do2

if ∃j ∈ At s.t.nj = 0 then3

Play armx(t) = j4

else5

Play arm6

x(t) = arg maxi∈At

(

zi

ni
+
√

8 log t
ni

)

end7

Observe payoffrx(t)(t) for armx(t)8

zx(t) ← zx(t) + rx(t)(t)9

nx(t) ← nx(t) + 110

end11

Algorithm 2: The AUER algorithm for sleeping bandit
problem with stochastic adversary.

We first need to state a claim about the confidence inter-
vals that we are using.

Lemma 7 With the definition ofni,t andµi and µ̂i, the fol-
lowing holds for all1 ≤ i ≤ n and1 ≤ t ≤ T :

P

[

µi 6∈
[

µ̂i,t −
√

8 ln t

ni,t
, µ̂i,t +

√

8 ln t

ni,t

]]

≤ 1

t4
.

Proof: The proof is an application of Chernoff-Hoeffding
bounds, and follows from [ACBF02, pp. 242–243].

Theorem 8 The regret of theAUER algorithm is at most

(64 ln T) ·
n−1
∑

j=1

1

∆j,j+1
.

up to timeT .

The theorem follows immediately from the following lemma
and Lemma 3.

Lemma 9 TheAUER algorithm has a regret of at most

(32 ln T) ·
n
∑

j=2

j−1
∑

i=1

(

1

∆2
i,j

)

∆i,i+1

Proof: We bound the regret of the algorithm arm by arm.
Let us consider an arm2 ≤ j ≤ n. Let us count the number
of timesj was played, where some arm in1, 2, . . . , i could
have been played (in these iterations, the regret accumulated

is at least∆i,j and at most∆1,j). Call thisNi,j for i < j.
We claim thatNi,j ≤ 32 ln T

∆2

i,j

with probability1− 2
t4 .

Let us defineQi,j = 32 ln T
∆2

i,j

. We want to claim that af-

ter playingj for Qi,j number of times, we will not make
the mistake of choosingj instead of something from the set
{1, 2, . . . , i}; that is, if some arm in[i] is awake as well asj
is awake, then some awake arm in[i] will be chosen, and not
the armj (with probability at least1− 2

t4).
Let us bound the probability of choosingj whenAt ∩

[i] 6= ∅ afterj has been playedQi,j number of times.

T
∑

t=Qi,j+1

T
∑

k=Qi,j+1

P

[

(xt = j) ∧ (j is playedk-th time)

∧ (At ∩ [i] 6= ∅)
]

≤
T
∑

t=Qi,j+1

T
∑

k=Qi,j+1

P

[

(nj,t = k)

∧
(

µ̂j,t +

√

8 ln t

k
≥ µ̂ht,t +

√

8 ln t

nht,t

)]

,

whereht is the indexg in At ∩ [i] which maximizeŝµg,t +
√

(8 ln t)/ng,t, i.e. h = arg maxg∈At
µ̂g,t +

√

(8 ln t)/ng,t

=

T
∑

t=Qi,j+1

T
∑

k=Qi,j+1

O
(

1

t4

)

+ P [µj + ∆i,j ≥ µht
]

= O(1).

Here, the first 1
t4 term comes from the probability thatj’s

confidence interval might be wrong, orht’s confidence in-
terval might be wrong (it follows from Lemma 7). Since
k > 32 ln t

∆2

i,j

, j’s confidence interval is at most∆i,j/2 wide.

Therefore, with probability1− 2
t4 , we havêµj,t +

√

8 ln t
k ≤

µj + ∆i,j andµ̂ht,t +
√

8 ln t
nht,t

≥ µht
. Also, the probability

P[µj +∆i,j ≥ µht
] = 0 since we know thatµj +∆i,j ≤ µht

asht ∈ [i]. Therefore, we can mess up only constant num-
ber of times between[i] andj after j has been playedQi,j

number of times. We get that

E[Ni,j] ≤ Qi,j +O(1).

Now, it is easy to bound the total regret of the algorithm,
which is

E





n
∑

j=2

j−1
∑

i=1

(Ni,j −Ni−1,j)∆i,j



 (13)

=
n
∑

j=2

j−1
∑

i=1

Ni,j (∆i,j −∆i+1,j) ,

which follows by regrouping of terms and the convention
thatN0,j = 0 and∆j,j = 0 for all j. Taking the expectation
of this gives the regret bound of

(32 ln T) ·
n
∑

j=2

j−1
∑

i=1

(

1

∆2
i,j

)

(∆i,j −∆i+1,j).

432

This gives the statement of the lemma.

Remarks for small ∆i,i+1 As noted in the case of expert
setting, the upper bound above become trivial if some∆i,i+1

are small. In such case, the proof can be modified by chang-
ing equation (13) as follows.

n
∑

j=2

j−1
∑

i=1

(Ni,j −Ni−1,j)∆i,j

=

n
∑

j=2

iǫ(j)
∑

i=1

(Ni,j −Ni−1,j)∆i,j

+

n
∑

j=2

j−1
∑

i=iǫ(j)+1

(Ni,j −Ni−1,j)∆i,j

≤
n
∑

j=2

iǫ(j)−1
∑

i=1

Ni,j∆i,i+1 +
n
∑

j=2

Niǫ(j),j∆iǫ(j),j

+

n
∑

j=2

j−1
∑

i=iǫ(j)+1

(Ni,j −Ni−1,j)ǫ

≤
n
∑

j=2

iǫ(j)−1
∑

i=1

Ni,j∆i,i+1 + ǫ
n
∑

j=2

Niǫ(j),j

+ ǫ

n
∑

j=2

(Nj−1,j −Niǫ(j),j)

≤
∑

1≤i<j≤n,∆i,j>ǫ

Ni,j∆i,i+1 + ǫT,

where the last step follows from
∑n

j=2 Nj−1,j ≤ T .
Taking the expectation, and using the modification of

Lemma 3 suggested in Section 3.1.1 gives us an upper bound
of

ǫT + (64 ln T)
n−1
∑

i=1

(max{ǫ,∆i,i+1})−1,

for anyǫ ≥ 0.

3.2.2 Lower bound
In this section, we prove that theAUER algorithm presented
is information theoretically optimal up to constant factors
when the means of armsµi’s are bounded away from0 and
1. We do this by presenting a lower bound of

Ω

(

ln T ·
n−1
∑

i=1

∆−1
i,i+1

)

for this problem. This is done by closely following the lower
bound of Lai and Robbins [LR85] for two armed bandit prob-
lems. The difference is that Lai and Robbins prove their
lower bound only in the case whenT approaches∞, but
we want to get bounds that hold for finiteT . Our main result
is stated in the following lemma.

Lemma 10 Suppose there aren arms andn Bernoulli dis-
tributionsPi with meansµi, with eachµi ∈ [α, β] for some

0 < α < β < 1. Letφ be an algorithm for picking amongn
arms which, up to timet, plays a suboptimal bandit at most
o(ta) number of times for everya > 0. Then, there is an
input instance withn arms endowed with some permutation
of above mentionedn distributions, such that the regret ofφ
has to be at least

Ω

(

n−1
∑

i=1

(log t)(µi − µi+1)

KL(µi+1;µi)

)

,

for t ≥ n2.

We first prove the result for two arms. For this, in the
following, we extend the Lai and Robbins result so that it
holds (with somewhat worse constants) for finiteT , rather
than only in the limitT →∞.

Lemma 11 Let there be two arms and two distributionsP1(·)
andP2(·) with meansµ1 andµ2 with µi ∈ [α, β] for i = 1, 2
and0 < α < β < 1. Let φ be any algorithm for choosing
the arms which never picks the worse arm (for any values of
µ1 andµ2 in [α, β]) more thano(T a) times (for any value of
a > 0).

Then there exists an instance forφ with two arms en-
dowed with two distributions above (in some order) such that
the regret of the algorithm if presented with this instance is
at least

Ω

(

(log t)(µ1 − µ2)

KL(µ2;µ1)

)

,

where the constant inside the big-omega is at least1/2.

Proof: Since we are proving a lower bound, we just focus on
Bernoulli distributions, and prove that if we have two ban-
dits, with Bernoulli payoffs with meansµ1 andµ2 such that
α ≤ µ2 < µ1 ≤ β, then we can get the above mentioned
lower bound.

Let us fix aδ < 1/10. From the assumption thatµ1 and
µ2 are bounded away from0 and1, there exists a Bernoulli
distribution with meanλ > µ1 with

|KL(µ2;λ)− KL(µ2;µ1)| ≤ δ · KL(µ2;µ1),

because of the continuity of KL divergence in its second ar-
gument.

This claim provides us with a Bernoulli distribution with
meanλ and

KL(µ2;λ) ≤ (1 + δ)KL(µ2;µ1). (14)

From now on, until the end of the proof, we work with the
following two distributions ont-step histories:p is the distri-
bution induced by Bernoulli arms with means(µ1, µ2), and
q is the distribution induced by Bernoulli arms with means
(µ1, λ). From the assumption of the lemma, we have

Eq[t− n2,t] ≤ o(ta), for all a > 0.

We choose anya < δ. By an application of Markov’s in-
equality, we get that

Pq[n2,t < (1− δ)(log t)/KL(µ2;λ)]

≤ Eq[t− n2,t]

t− (1− δ)(log t)/KL(µ2;λ)
≤ o(ta−1). (15)

433

LetE denote the event thatn2,t < (1−δ) log t/KL(µ2;λ).
If Pp(E) < 1/3, then

Ep[n2,t] ≥ Pp(E) · (1− δ) log t/KL(µ2, λ)

≥ 2

3
· (1− δ) log t/KL(µ2, λ)

≥ 2

3

(

1− δ

1 + δ

log t

KL(µ2;µ1)

)

,

which implies the stated lower bound forδ = 1/10.
Henceforth, we will assumePp(E) ≥ 1/3. We have

Pq(E) < 1/3 using (15). Now we can apply the lemma from
[KK07] stated in (12), we have

KL(p; q) ≥ 1

3
ln

(

1

3 o(ta−1)

)

− 1

e

= (1− a) ln t−O(1). (16)

The chain rule for KL divergence [CT99, Theorem 2.5.3]
implies

KL(p; q) = Ep[n2,t] · KL(µ2;λ) (17)

Combining (16) with (17), we get

Eµ1,µ2
[n2,t] ≥

(1− a) ln t−O(1)

KL(µ2;λ)

≥ 1− a

1 + δ

ln t

KL(µ2;µ1)
−O(1). (18)

Usinga < δ < 1/10, the regret bound follows.

We now extend the result from2 to n bandits.
Proof of Lemma 10: A naive way to extend the lower bound
is to divide the time line betweenn/2 blocks of length2T/n
each and usen/2 separate two-armed bandit lower bounded
as done in the proof of Lemma 5.

We can pair the arms in pairs of(2i − 1, 2i) for i =
1, 2, . . . , ⌊n/2⌋. We present the algorithm with two arms
2i − 1 and2i in the i-th block of time. The lower bound
then is

log

(

T

n

)(

µ1 − µ2

KL(µ2;µ1)
+ · · ·+ µ2⌊n/2⌋−1 − µ2⌊n/2⌋

KL(µ2⌊n/2⌋;µ2⌊n/2⌋−1)

)

= Ω



(log T) ·





⌊n/2⌋
∑

i=1

∆−1
2i,2i−1







 ,

if we takeT > n2. Using the fact thatµi ∈ [α, β], we have
KL(µi;µj) = O(∆−2

i,j) which justifies the derivation of the
second line above.

We get a similar lower bound by presenting the algorithm
with (2i, 2i + 1), which gives us a lower bound of

Ω



(log T) ·





⌊n/2⌋
∑

i=1

∆−1
2i,2i+1







 .

Taking their averages gives the required lower bound, prov-
ing the lemma.

4 Adversarial Model of Rewards

We now turn our attention to the case where no distributional
assumptions are made on the generation of rewards. In this
section we prove information theoretic lower bounds on the
regret of any online learning algorithm for both the best ex-
pert and the multi-armed bandit settings. We also present
online algorithms whose regret is within a constant factor of
the lower bound for the expert setting and within a subloga-
rithmic factor of the lower bound for the bandit setting. Un-
like in the stochastic rewards setting, however, these algo-
rithms are not computationally efficient. It is an open prob-
lem if there exists an efficient algorithm whose regret grows
as polynomial inn.

4.1 Best expert

Theorem 12 For every online algorithmALG and every time
horizonT , there is an adversary such that the algorithm’s re-
gret with respect to the best ordering, at timeT , is

Ω(
√

Tn log(n)).

Proof: We construct a randomized oblivious adversary (i.e.,
a distribution on input sequences) such that the regret of
any algorithmALG is at leastΩ(

√

Tn log(n)). The ad-
versary partitions the timeline{1, 2, . . . , T} into a series of
two-expert games, i.e. intervals of consecutive rounds during
which only two experts are awake and all the rest are asleep.
In total there will beQ(n) = Θ(n log n) two-expert games,
whereQ(n) is a function to be specified later in (20). For
i = 1, 2, . . . , Q(n), the set of awake experts throughout the
i-th two-experts game is a pairA(i) = {xi, yi}, determined
by the adversary based on the (random) outcomes of previ-
ous two-experts games. The precise rule for determining the
elements ofA(i) will be explained later in the proof.

Each two-experts game runs forT0 = T/Q(n) rounds,
and the payoff functions for the rounds are independent, ran-
dom bijections fromA(i) to {0, 1}. Lettingg(i)(xi), g(i)(yi)
denote the payoffs ofxi andyi, respectively, during the two-
experts game, it follows from Khintchine’s inequality [Khi23]
that

E

(∣

∣

∣
g(i)(xi)− g(i)(yi)

∣

∣

∣

)

= Ω
(

√

T0

)

. (19)

The expected payoff for any algorithm can be at mostT0

2 ,
so for each two-experts game the regret of any algorithm is
at leastΩ(

√
T0). For each two-experts game we define the

winnerWi to be the element of{xi, yi} with the higher pay-
off in the two-experts game; we will adopt the convention
thatWi = xi in case of a tie. TheloserLi is the element of
{xi, yi} which is not the winner.

The adversary recursively constructs a sequence ofQ(n)
two-experts games and an ordering of the experts such that
the winner of every two-experts game precedes the loser in
this ordering. (We call such an orderingconsistentwith the
sequence of games.) In describing the construction, we as-
sume for convenience thatn is a power of2. If n = 2 then
we setQ(2) = 1 and we have a single two-experts game and
an ordering in which the winner precedes the loser. Ifn > 2
then we recursively construct a sequence of games and an
ordering consistent with those games, as follows:

434

1. We constructQ(n/2) games among the experts in the
set{1, 2, . . . , n/2} and an ordering≺1 consistent with
those games.

2. We constructQ(n/2) games among the experts in the
set{(n/2) + 1, . . . , n} and an ordering≺2 consistent
with those games.

3. Let k = 2Q(n/2). For i = 1, 2, . . . , n/2, we define
xk+i andyk+i to be thei-th elements in the orderings
≺1,≺2, respectively. The(k + i)-th two-experts game
uses the setA(k+i) = {xk+i, yk+i}.

4. The ordering of the experts puts the winner of the game
betweenxk+i andyk+i before the loser, for everyi =
1, 2, . . . , n/2, and it puts both elements ofA(k+i) be-
fore both elements ofA(k+i+1).

By construction, it is clear that the ordering of experts is con-
sistent with the games, and that the number of games satisfies
the recurrence

Q(n) = 2Q(n/2) + n/2, (20)

whose solution isQ(n) = Θ(n log n).
The best ordering of experts achieves a payoff at least as

high as that achieved by the constructed ordering which is
consistent with the games. By (19), the expected payoff of
that ordering isT/2 + Q(n) ·Ω(

√
T0). The expected payoff

of ALG in each roundt is 1/2, because the outcome of that
round is independent of the outcomes of all prior rounds.
Hence the expected payoff ofALG is onlyT/2, and its regret
is

Q(n) · Ω(
√

T0) = Ω(n log n
√

T/(n log n))

= Ω(
√

Tn log n).

This proves the theorem.

It is interesting to note that the adversary that achieves
this lower bound is not adaptive in either choosing the pay-
offs or choosing the awake experts at each time step. It only
needs to be able to carefully coordinate which experts are
awake based on the payoffs at previous time steps.

Even more interesting, this lower bound is tight, so an
adaptive adversary is not more powerful than an oblivious
one. There is a learning algorithm that achieves a regret
of O(

√

Tn log(n)), albeit not computationally efficient. To
achieve this regret we transform the sleeping experts prob-
lem to a problem withn! experts that are always awake. In
the new problem, we have one expert for each ordering of
the originaln experts. At each round, each of then! experts
makes the same prediction as the highest ranked expert in
its corresponding ordering, and receives the payoff of that
expert.

Theorem 13 An algorithm that makes predictions using
Hedge on the transformed problem achievesO(

√

Tn log(n))
regret with respect to the best ordering.

Proof: Every expert in the transformed problem receives the
payoff of its corresponding ordering in the original problem.
SinceHedge achieves regretO(

√

T log(n!)) with respect to
the best expert in the transformed problem, the same regret
is achieved by the algorithm in the original problem.

4.2 Multi-armed bandit setting

Theorem 14 For every online algorithmALG and every time
horizonT , there is an adversary such that the algorithm’s re-
gret with respect to the best ordering, at timeT , isΩ(n

√
T).

Proof: To prove the lower bound we will rely on the lower
bound proof for the multi-armed bandit in the usual setting
when all the experts are awake [ACBFS02]. In the usual ban-
dit setting with a time horizon ofT0, any algorithm will have
at leastΩ(

√
T0n) regret with respect to the best expert. To

ensure this regret, the input sequence is generated by sam-
pling T0 times independently from a distribution in which
every bandit but one receives a payoff of1 with probability
1
2 and0 otherwise. The remaining bandit, which is chosen
at random, incurs a payoff of1 with probability 1

2 + ǫ for an
appropriate choice ofǫ.

To obtain the lower bound for the sleeping bandits set-
ting we set up a sequence ofn multi-armed bandit games as
described above. Each game will run forT0 = T

n rounds.
The bandit that received the highest payoff during the game
will become asleep and unavailable in the rest of the games.

In gamei, any algorithm will have a regret of at least

Ω
(
√

T
n (n− i)

)

with respect to the best bandit in that game.

In consequence, the total regret of any learning algorithm
with respect to the best ordering is:

n−1
∑

i=1

√

T

n
(n− i) =

√

T

n

n−1
∑

j=1

j1/2

≥
√

T

n

∫ n−1

x=0

x1/2dx =

√

T

n

2

3

(

(n− 1)3/2
)

= Ω
(

n
√

T
)

.

The theorem follows.

To get an upper bound on regret, we will use theExp4
algorithm [ACBFS02]. SinceExp4 requires an oblivious ad-
versary, in the following, we assume that the adversary is
oblivious (as opposed to adaptive).Exp4 chooses an action
by combining the advice of a set of “experts.” At each round,
each expert provides advice in the form of a probability dis-
tribution over actions. In particular the advice can be a point
distribution concentrated on a single action. (It is required
that at least one of the experts is theuniform expertwhose
advice is always the uniform distribution over actions.) To
useExp4 for the sleeping experts setting, in addition to the
uniform expert we have an expert for each ordering over ac-
tions. At each round, the advice of that expert is a point
distribution concentrated on the highest ranked action in the
corresponding ordering.

Since the uniform expert may advise us to pick actions
which are not awake, we assume for convenience that the
problem is modified as follows. Instead of being restricted
to choose an action in the setAt at time t, the algorithm
is allowed to choose any action at all, with the proviso that
the payoff of an action in the complement ofAt is defined
to be0. Note that any algorithm for this modified problem
can easily be transformed into an algorithm for the original

435

problem: every time the algorithm chooses an action in the
complement ofAt we instead play an arbitrary action inAt.
Such a transformation can only increase the algorithm’s pay-
off, i.e. decrease the regret. Hence, to prove the regret bound
asserted in Theorem 15 below, it suffices to prove the same
bound for the modified problem.

Theorem 15 Against an oblivious adversary, theExp4 algo-
rithm as described above achieves a regret ofO(n

√

T log(n))
with respect to the best ordering.

Proof: We haven actions and1 + n! experts, so the re-
gret ofExp4 with respect to the payoff of the best expert is
O(
√

Tn log(n! + 1)) [ACBFS02]. Since the payoff of each
expert is exactly the payoff of its corresponding ordering we
obtain the statement of the theorem.

The upper bound and lower bound differ by a factor of
O(
√

log(n)). The same gap exists in the usual multi-armed
bandit setting where all actions are available at all times,
hence closing the logarithmic gap between the lower and up-
per bounds in Theorems 14 and 15 is likely to be as difficult
as closing the corresponding gap for the nonstochastic multi-
armed bandit problem itself.

5 Conclusions

We have analyzed algorithms for full-information and partial-
information prediction problems in the “sleeping experts”
setting, using a novel benchmark which compares the algo-
rithm’s payoff against the best payoff obtainable by selecting
available actions using a fixed total ordering of the actions.
We have presented algorithms whose regret is information-
theoretically optimal in both the stochastic and adversarial
cases. In the stochastic case, our algorithms are simple and
computationally efficient. In the adversarial case, the most
important open question is whether there is a computation-
ally efficient algorithm which matches (or nearly matches)
the regret bounds achieved by the exponential-time algorithms
presented here.

References

[ACBF02] Peter Auer, Nicol̀o Cesa-Bianchi, and Paul Fis-
cher. Finite-time analysis of the multiarmed
bandit problem. Machine Learning, 47(2-
3):235–256, 2002.

[ACBFS02] Peter Auer, Nicolò Cesa-Bianchi, Yoav Fre-
und, and Robert E. Schapire. The nonstochas-
tic multiarmed bandit problem.SIAM J. Com-
put., 32(1):48–77, 2002.

[Azu67] K. Azuma. Weighted sums of certain de-
pendent random variables.Tohoku Math. J.,
19:357–367, 1967.

[BM05] Avrim Blum and Yishay Mansour. From exter-
nal to internal regret. InCOLT, pages 621–636,
2005.

[CBFH+97] Nicolò Cesa-Bianchi, Yoav Freund, David
Haussler, David P. Helmbold, Robert E.
Schapire, and Manfred K. Warmuth. How to
use expert advice.J. ACM, 44(3):427–485,
1997.

[CT99] Thomas M. Cover and Joy A. Thomas.Ele-
ments of Information Theory. J. Wiley, 1999.

[FSSW97] Yoav Freund, Robert E. Schapire, Yoram
Singer, and Manfred K. Warmuth. Using and
combining predictors that specialize. InSTOC,
pages 334–343, 1997.

[Han57] J. Hannan. Approximation to Bayes risk in re-
peated plays. volume 3, pages 97–139, 1957.
in: M. Dresher, A. Tucker, P. Wolfe (Eds.),
Contributions to the Theory of Games, Prince-
ton University Press.

[Hoe63] W. Hoeffding. Probability inequalities for
sums of bounded random variables.J. Amer-
ican Stat. Assoc., 58:13–30, 1963.

[Khi23] Aleksandr Khintchine. Über dyadische
Brüche.Math Z., 18:109–116, 1923.

[KK07] Richard M. Karp and Robert Kleinberg. Noisy
binary search and its applications. InSODA,
pages 881–890, 2007.

[KV05] Adam Tauman Kalai and Santosh Vempala.
Efficient algorithms for on-line optimization.
J. Computer and System Sciences, 71(3):291–
307, 2005.

[LR85] T. L. Lai and Herbert Robbins. Asymptoti-
cally efficient adaptive allocations rules.Adv.
in Appl. Math., 6:4–22, 1985.

[LW94] Nick Littlestone and Manfred K. Warmuth.
The weighted majority algorithm.Inf. Com-
put., 108(2):212–261, 1994. An extended ab-
stract appeared in IEEE Symposium on Foun-
dations of Computer Science, 1989, pp. 256–
261.

[LZ07] John Langford and Tong Zhang. The epoch-
greedy algorithm for multiarmed bandits with
side information. InNIPS, 2007.

[Rob] H. Robbins. Some aspects of the sequential de-
sign of experiments.Bulletin of the American
Mathematical Society, 58:527–535.

[Vov90] V. G. Vovk. Aggregating strategies. InCOLT,
pages 371–386, 1990.

[Vov98] V. G. Vovk. A game of prediction with expert
advice. J. Comput. Syst. Sci., 56(2):153–173,
1998. An extended abstract appeard in COLT
1995, pp. 51–60.

436

Optimal Strategies from Random Walks

Jacob Abernethy∗
Division of Computer Science

UC Berkeley
jake@cs.berkeley.edu

Manfred K. Warmuth†
Department of Computer Science

UC Santa Cruz
manfred@cse.ucsc.edu

Joel Yellin
Division of Physical and

Biological Sciences
UC Santa Cruz

yellin@soe.ucsc.edu

Abstract

We analyze a sequential game between a Gam-
bler and a Casino. The Gambler allocates bets
from a limited budget over a fixed menu of gam-
bling events that are offered at equal time intervals,
and the Casino chooses a binary loss outcome for
each of the events. We derive the optimal min-max
strategies for both participants. We then prove that
the minimum cumulative loss of the Gambler, as-
suming optimal play by the Casino, is exactly a
well-known combinatorial quantity: the expected
number of draws needed to complete a multiple
set of “cards” in the generalized Coupon Collec-
tor’s Problem. We show that this quantity and the
optimal strategy of the Gambler can be efficiently
estimated from a simple random walk.

1 Introduction
This paper analyzes the problem of sequential prediction and
decision making from the perspective of a two player game.
The game is played by a learner, called here the Gambler,
who makes a sequence of betting decisions. The Gambler’s
opponent is the Casino in which he plays.

Gambler vs. Casino:
1. On each day, the Gambler arrives at the Casino with $1.

The Casino presents n events and each event is played
once per day. The Gambler chooses a distribution vec-
tor w ∈ [0, 1]n, where

∑
wi = 1, and bets the portion

wi of his $1 budget on event i.

2. On each day the Casino determines the outcome of each
event with the objective of winning as much money
from the Gambler as possible. In particular, after ob-
serving the distribution of the Gambler’s bets the Casino
decides between a loss or a no loss for all daily events.
These choices are summarized by a loss vector ` ∈
{1, 0}n where `i = 1 implies that on event i, the Gam-
bler lost. (For simplicity, we assume the only relevant
quantities are losses. By shifting our baseline we can
model wins as non-losses).

∗Supported by DARPA grant FA8750-05-2-0249 and NSF grant
DMS-0707060.

†Supported by NSF grant CCR 9821087.

3. At the end of each day, the Gambler leaves the Casino
having lost w · ` =

∑
i wi`i and the cumulative loss of

the gambler is updated as L← L+w · `. The Gambler
also monitors the cumulative performance of each event
with a state vector s ∈ Nn, where si is the current total
loss of event i. After incurring loss ` at the current day,
the state vector is updated to s← s + `.

4. The Gambler stops playing as soon as he observes that
each even has suffered more than k losses, where k is
some fixed positive integer known to both. The Casino
is aware of this decision and behaves accordingly.

Gambling against a casino may seem an unlikely start-
ing point for a model of sequential decision making – we
generally consider the typical environment for learning to be
stochastic rather than adversarial. Yet are these two envi-
ronments necessarily incompatible? Among the objectives
of this paper is to address questions such as: “What will be
the Gambler’s worst-case cumulative loss?”; and “What is
the optimal betting strategy?” These questions, while clearly
game-theoretic, are ultimately answered here by considering
a randomized Casino rather than an adversarial one. From
this perspective, randomness may indeed be the Gambler’s
worst adversary.

Early work on sequential decision making focused on the
problem of predicting a binary outcome given advice from a
set of n experts. In that setting, the goal of the predictor is to
combine the predictions of the experts to make his own pre-
diction, with the objective of performing well, in hindsight,
compared to the best expert. The performance of both the
learner and the experts is measured by a loss function that
compares predictions to outcomes. One of the early algo-
rithms, the Weighted Majority algorithm [LW94], utilizes a
distribution corresponding to the degree of trust in each ex-
pert.

It was observed by Freund and Schapire [FS97] that the
analysis of the Weighted Majority algorithm can be applied
to the so-called hedge setting. Rather than predict a binary
outcome, the learner now plays some distribution over the
experts on every round, a loss value is assigned to each ex-
pert independently, and the learner suffers the expected loss
according to his chosen distribution. In this case, the learner
bears the exact burden of the Gambler - that of “hedging” his
bets so as to minimize his cumulative loss. To emphasize that
the Gambler/Casino game is useful for settings other than
prediction, we use the term “event” rather than “expert”.

437

A central theme of much of the sequential decision mak-
ing literature is the use of so-called “exponential weights” to
determine the learner’s distribution on each round. Use of
the exponential weighting scheme in the case of the Casino
game results in the following strategy for the Gambler: At a
state s, bet

wi =
βsi∑
j βsj

on event i, (1)

where the factor β lies in [0, 1).
From the analysis of the Weighted Majority algorithm it

follows that the cumulative loss of the Gambler using the
above strategy is bounded by

lnn + k ln 1
β

1− β
.

Under the assumption that the loss of the best event is at most
k, the factor β can be tuned [FS97] so that the above bound
becomes

k +
√

2k lnn + lnn.

The exponential weights framework, as well as other on-
line learning techniques, can be motivated using the method
of relative entropy regularization [KW99]. While the result-
ing algorithms are elegant and in some cases can be shown
to be asymptotically optimal [CBFHW96], they do not opti-
mally solve the underlying game. Some improvements have
been made using, for example, binomial weights that lead to
slightly better but still non-optimal solutions [CBFHW96]
in a setting where the experts must produce a prediction.
While it is formally easy to define the optimal algorithms
using minimax expressions, it has generally been assumed
that actually computing an efficient solution is quite chal-
lenging [CBFH+97]. More recently, however, a minimax
result [ALW07] was obtained for the specific game of pre-
diction with absolute loss. The resulting algorithm, Binning,
is efficient and optimal in a slightly relaxed setting.

In this paper we show that the minimax solution to the
Gambler/Casino prediction game, which is identical to the
underlying game of the hedge setting with binary losses, can
be obtained efficiently. In addition, the game can be fully
analyzed using a simple Markov process: a random walk on
an n-dimensional lattice. The value of the game, that is the
cumulative loss of an optimal Gambler, can be interpreted as
the expected length of such a random walk. The Gambler’s
optimal play, the portion of his budget he should bet on a
given event, can similarly be interpreted as manifesting an
assessment of the probability of a specific random outcome
of this walk.

The game’s stopping criterion, that is when all events
have lost at least k + 1 times, may seem unusual at first yet
fits quite naturally within the experts framework. Indeed,
online learning bounds are often tuned with an explicit a
priori knowledge of the cumulative loss of the best expert,
which here would be k1. While perhaps not realistic in prac-

1Strictly speaking, in the expert setting it is assumed that at
least one expert has not crossed the k-mistake threshold, while here
we stop the Gambler/Casino game when the loss of the last ex-
pert/event goes beyond this threshold. It is easy to show that this
slight modification, made for convenience, increases the worst-case
loss of the Gambler by exactly 1.

tice, k can be estimated and various techniques such as suc-
cessive doubling can be used to obtain near-optimal bounds
[CBFH+97].

The paper is structured as follows. In Section 2 we give a
minimax definition of the optimal value of the game consid-
ered here. In Section 2.1 we modify the game by restricting
the adversary’s choices to unit loss vectors. In Section 3,
we then turn our attention to a specific Markov process with
a number of relevant properties. We apply this randomized
approach to the Casino game in Section 4, where we prove
our main results. In Section 5 we give recurrences and exact
formulas, based on sums over multinomials, for the value of
the game and for the optimal probabilities. We set out an
efficient method to compute both the optimal strategy of the
Gambler and the value of the game. In Section 6 we com-
pare the optimal regret bound to previous results, and in Sec-
tion 7 we draw a connection between our game and a well
studied version of the coupon collector problem. We also
briefly summarize what is known about the asymptotics of
this problem. We conclude with a discussion of our results
and list open problems (Section 8).

2 The Value of the Game
Assume that in each event the Gambler has already suffered
some losses specified by state vector s. Define V (s) to be
the total money lost by an optimal Gambler playing against
an optimal Casino starting from the state s. That is, V (s)
is the amount of money that the optimal Gambler will lose
(against an optimal Casino) from now until the end of the
game. Roughly speaking, the value of the game is computed
as:

V (s) ?= min
dist. w

max
`∈{0,1}n

w · ` + V (s + `)

The Gambler chooses w to minimize the loss while the Casino
chooses ` to maximize the loss, where the loss is computed
as the loss w·` on this round plus the worst case loss V (s+`)
on future rounds. However, we have to be careful, as this re-
cursive definition doesn’t address the following issues:

• When is the game over? What is the base case of V (·)?

• Is this recursion bounded?

• Do we need to record the losses si that go above k?

We address these issues beginning with some simplifica-
tions and notational conventions. First, we assume that the
state vector s lies within the set S = {0, 1, . . . , k+1}n. Note
that it is not necessary to record the losses of events that have
already crossed the k threshold. We call such events dead.
Since the losses of dead events are not restricted, having loss
k + 3 is the same as loss k + 100. We therefore “round” all
states s into the state space {0, 1, . . . , k + 1}n using the no-
tation +̇ which we define below. We use the notation λ(s) to
record the set of live events; the statement i /∈ λ(s) is exactly
the statement si = k + 1.

Second, as the game is defined recursively, we must guar-
antee that this recursion terminates. If the Casino repeatedly
chose ` = 〈0, . . . , 0〉, for example, the game would make
no progress. The same problem occurs if the Casino causes

438

losses on only dead events. We must therefore place addi-
tional restrictions so that the dead state is reached eventu-
ally. The simplest way to ensure this is to forbid the Casino
from inflicting loss on only dead events. Yet this is not suf-
ficient: with this restriction alone the Gambler would have
a guaranteed non-losing strategy by betting solely on dead
events. We thus assume that neither can the Casino can in-
flict losses on dead events nor can the Gambler bet money on
them (keeping in mind that all such bets are in any case non-
optimal). We must enforce this explicitly in order to have a
well-defined game.

We use two notational conventions to describe the above
restrictions. First, we write w ∼ λ(s) to describe the set
{w ∈ ∆n | wi = 0 ∀i /∈ λ(s)} where ∆n is the n-simplex.
We also abuse notation slightly and write ` ⊂ λ(s) to mean
that ` ∈ {0, 1}n and `i = 0 for all i /∈ λ(s).

We now define the value of the game precisely.

Definition 1 Define the value V (s) of the game as follows.

• At the dead state, V (d) := 0.

• For any other s ∈ S, we define V (s) recursively as

V (s) := min
w∼λ(s)

max
06=`⊂λ(s)

w · ` + V (s + `). (2)

In our notation, we commonly make use of several spe-
cial states. The state where the game begins is the “initial”
state, s = 0. Once all events have lost more than k times
the game is over and we refer to this as the dead state d. It
will also be useful to consider one-live states oi, where all
events except i are dead, and the remaining event has exactly
k losses. By the game definition, it is easy to check that
V (oi) = 1, since the Gambler must bet all of his money on
this event, and the Casino must inflict a corresponding loss,
charging the Gambler $1 and ending the game.

Below, we include a list of notations for reference:

Notation:

S :={0, . . . , k + 1}n (the state space)
0 := 〈0, 0, . . . , 0〉 = 〈0n〉 (the initial state)
d := 〈(k + 1)n〉 (the dead state)
oi := d− ei (ith one-live state)

λ(s) := {i ∈ [n] : si ≤ k} (set of live events)

s+̇` := 〈min(si + `i, k + 1)〉 (“rounded” addition)

|s| :=
∑

si (elementwise sum)

∆n := {w ∈ Rn
+ : |w| = 1} (the n-simplex)

2.1 The Modified Game
We also consider a modified game that we make easier for
the Gambler. In this new game, we restrict the Casino to
inflict loss on exactly one event in each round, i.e. ` must be
a basis vector e1, . . . , en. So for ` = ei we have w · ` = wi.
We can then precisely define the value V̂ (·) of the modified
game:

Definition 2 Define V̂ (d) := V (d) = 0. Otherwise

V̂ (s) := min
w∼λ(s)

max
i∈λ(s)

wi + V̂ (s + ei). (3)

One of the central results of this paper is that the above game,
while seemingly more restricted, is ultimately just as difficult
for the Gambler as the original game. It is easy to show that
V (s) ≥ V̂ (s), since the Casino has strictly more choices in
the original game. We go further and prove as our main result
in Theorem 12 that

V (s) = V̂ (s).

Thus both games have the same worst-case outcome.
Both the analysis of the modified game, as well as the

proof of the above result, requires a different formulation of
the Casino’s actions.

3 A Randomized Casino
In Section 2 we presented a game-theoretic analysis of a
well-known sequential prediction problem characterized as
a game between a Gambler and a Casino. In the present sec-
tion, we consider a different framework, in which the Casino
uses random events. We will show that introducing a ran-
domized strategy of the Casino enables us to specify the op-
timal strategy of the Gambler.

3.1 A Random Walk on the State Graph
Let us now imagine that our Casino does not fix outcomes
deterministically, but instead chooses the outcome of each
event using the following random process. Assume we are at
state s and that, on each day, an event i is chosen uniformly
at random from {1, . . . , n} and a loss is assigned to event
i. In other words, the loss vector ` is a uniformly sampled
unit vector ei, and after the loss the new state is s+̇ei. This
process continues until we reach the dead state d.

We can model this behavior as a Markov process on the
state space as follows. Consider any sequence of indices
I1, I2, . . . ∈ [n], and let St :=

∑t
m=1 eIm

, where S0 := 0.
Assuming that we start at state s, this induces a sequence of
states

s = s+̇S0 → s+̇S1 → s+̇S2 → . . .→ s+̇St.

Notice that this process has “self-loops”; i.e. it is quite pos-
sible that s+̇St = s+̇St+1. This occurs when (s+̇St)It+1 is
already at k + 1.

If we imagine the state space S as an n-dimensional lat-
tice, which we will call the state lattice, then the Markov
process above can be interpreted as a random walk on this
lattice. The walker starts at the initial state 0, and on every
time interval a positively directed single step is taken along
an axis drawn uniformly at random. If the walker has already
reached the k + 1 boundary in this dimension, he remains in
place. The walk stops once the dead state d is reached. We
will show that the value V is 1/n times the expected total
number of random draws that achieves this position. Thus V
is the expected walk/path length from s to d.

3.2 Survival Probabilities
We now define a survival probability at a state s. We will
show in the next section that such probabilities are the basis
for the Gambler’s optimal strategy.

Definition 3 Assume we are at state s, and let the random
state s+̇St be the result of the above random walk after t

439

steps. Define the ith survival probability p̂i(s) to be the prob-
ability that

∃t : s+̇St = oi.

Equivalently,

p̂i(s) = Pr(λ(s+̇St) = {i} for some t).

We call these survival probabilities since p̂i(s) is the prob-
ability that, if the losses were assigned randomly to the events
in sequence, the ith event would be the last non-dead event.

Lemma 4 For any s 6= d, the vector

p̂(s) := 〈p̂i(s)〉ni=1

defines a distribution on {1, . . . , n}.
Proof: The quantity

∑
i p̂i(s) is the probability that eventu-

ally there is exactly one live event. This probability is exactly
1, given that the current state is not the dead state d.

We list some examples of survival probabilities:

• When s = 0 (or any other symmetric state), we have

p̂i(s) =
1
n

, ∀i

bexause there is a uniform chance of survival.

• When i is a dead event, i.e. si = k + 1, then

p̂i(s) = 0

because no dead event can be the last remaining live
event.

• If there is only one remaining live event, i.e. λ(s) =
{i}, then

p̂i(s) = 1.

Computing p̂i(s) for more general s requires a recursion, and
we leave this discussion for Section 5.

3.3 Expected Path Lengths
Another important quantity we consider is the length of a
random path, i.e. the number of steps in the random walk on
the state lattice required until the dead state d is reached.

Definition 5 For a sequence S0, S1, . . ., let

T (s) := min{t ≥ 0 : s+̇St = d}.
That is, T (s) is the length of the random path starting at s
and just entering d. Furthermore, let

τ(s) := E T (s)

be the expected path length.

We note that paths may be infinitely long due to self-loops,
yet such paths occur with probability 0. A key fact is that the
expected path length τ(s) can be rewritten using indicator
variables:

T (s) =
∞∑

t=0

1[s+̇St 6= d], (4)

i.e. T (s) is the number of initial segments (including the
empty segment) of a random path starting at s that has not
reached the dead state d.

We now prove a relationship between expected path length
τ(s) and survival probabilities p̂i(s):

Lemma 6 For any state s and event i,

p̂i(s) =
1
n

(τ(s)− τ(s+̇ei)).

Proof: When i /∈ λ(s), then s = s+̇ei and it is trivially true
that

p̂i(s) = 0 =
1
n

(τ(s)− τ(s+̇ei)).

The interesting case is when i ∈ λ(s). Indeed, Using (4), we
have

τ(s)− τ(s + ei)
= E T (s)− E T (s + ei)

= E

[∞∑
t=0

1[s+̇St 6= d]− 1[(s + ei)+̇St 6= d]

]
.

Since the dead state d is an absorbing state we have that
for any path S, if s+̇S = d, then s + ei+̇S = d as well.
Equivalently, if (s + ei)+̇S 6= d, then s+̇S 6= d. Thus
in the difference between the expectations, we only need be
concerned with sequences St that are accounted for in the
first expectation but not in the second. Therefore the above
difference becomes

= E

[∞∑
t=0

1[(s+̇St 6= d) ∧ ((s + ei)+̇St) = d]

]
.

We claim that any sequence St that satisfies the conjunction
must have the property that (St)i = k − si. This is true
because (s + ei)+̇St = d and therefore (St)i ≥ k + 1− si.
Also (St)j ≥ k + 1 − sj , for j 6= i. This implies that
s+̇St = oi and the above difference becomes

E
[∑∞

t=0 1[s+̇St = oi]
]
.

The last term is exactly p̂i(s), the probability that s+̇St even-
tually arrives at oi, times the expected number of iterations
spent in state oi before arriving at d. To leave oi, the ran-
dom walk must make a step in the ith direction, and thus the
expected “waiting time” at oi is can be computed as

∞∑
q=1

q (1− 1
n

)q−1︸ ︷︷ ︸
prob. of q − 1 loops

1
n︸︷︷︸

prob. of leaving

= n.

The last lemma implies an important fact about the state
lattice. Interpret the state lattice as a directed graph with
directed edges at all pairs (s, s + ei) for each i ∈ λ(s). Also
associate the edge (s, s + ei) with the survival probability
p̂i(s). Consider starting at state s and walking through this
directed graph:

s→ s + ei1 → s + ei1 + ei2 → . . .

Corollary 7 Consider any two states s, s′. For any path
from s to s′ through the directed state graph, the sum of
all edge weights p̂i(·) along this path is independent of the
choice of path.

440

Proof: Assume the path s = s1, s2, . . . , sT , sT+1 = s′ de-
fined by a sequence of moves is i1, i2, . . . , iT , where st+1 =
st + eit . By Lemma 6 the total weight sum is

T∑
t=1

p̂it(s
t) =

T∑
t=1

1
n

(τ(st)− τ(st+1)) =
1
n

(τ(s)− τ(s′)),

which is independent of the choice of path.

Note that in the definition of the directed state graph
above and in the corollary we ignore loops, which occur
when s = s+̇ei (or equivalently i /∈ λ(s)). Such loops out
of state s are immaterial because they correspond to dead
events, and i /∈ λ(s) iff p̂i(s) = 0.

4 The Optimal Strategy

We now have the all the tools to express V̂ (s) in terms of
the expected path length τ(s), prove that V (s) = V̂ (s), and
show that the optimal betting strategy for the gambler is p̂(s).

We prove two major theorems in this section. We pro-
vide the mathematically precise argument for each but, as
formality often obscures the true intuition, we also provide
an “English Version” so that the reader sees a rough sketch.
Our mathematical proofs require induction on the state space
S, so we need a “measure of progress” for state vectors s.
For any s ∈ S, define m(s) := n(k + 1) − |s|, the num-
ber of steps required before reaching the dead state. Clearly
m(s) = 0 if and only if s = d.

Theorem 8 For all states s,

V̂ (s) =
1
n

τ(s).

Proof: (English Version) Assume that the Gambler always
plays according to the distribution vector p̂(s). Then we may
think of the Casino’s choices as a walk around the state graph
and, as we discussed at the end of Section 3, a collection of
the “weights” p̂i(·) along the way, ending at d. But as we
proved in Corollary 7 for the weights p̂(.), it doesn’t matter
what path is taken: the Casino will always receive 1

n (τ(s)−
τ(d)) = 1

nτ(s) on any path from s that just ended in d.
If the Gambler ever chooses a distribution w different

from p̂(s) at some state s, then the Casino can simply let
` = ej for any j for which wj > p̂j(s), and on this round
the casino will force loss greater than p̂j(s). This means that
on some path starting from s, the Casino will accrue total
weight/loss larger than 1

nτ(s), and therefore that the distri-
bution w at s was non-optimal for the Gambler. We conclude
that for the Gambler p̂(.) is the only optimal assignment of
distributions to states.

Proof: (Formal Version) We induct on m(s). First we check
the base case s = d. In this case, the expected path length is
exactly 0 since we have already reached the dead state. Thus
τ(s)

n = 0 = V̂ (d) as desired.

Now assume that m(s) > 0. Then

V̂ (s) = min
w∼λ(s)

max
i∈λ(s)

wi + V̂ (s + ei)

(induc.) = min
w∼λ(s)

max
i∈λ(s)

wi +
1
n

τ(s + ei)

≤ max
i∈λ(s)

p̂i(s) +
1
n

τ(s + ei)

(Lem. 6) = max
i

1
n

(τ(s)− τ(s + ei)) +
1
n

τ(s + ei)

=
1
n

τ(s).

We prove V̂ (s) ≥ 1
nτ(s) by a similar induction. Assume

that the Gambler chooses the optimal distribution w∗ which
may indeed be different from p̂(s). For any i /∈ λ(s), p̂i(s)
is defined as zero. For the optimal strategy w∗

i = 0 as
well because otherwise the Casino can incurr unbounded loss
by playing ei repeatedly. Since w∗ and p̂(s) are different
distributions on the live events λ(s), there must exist some
j ∈ λ(s) for which w∗

j > p̂j(s). We now have

V̂ (s) = max
i∈λ(s)

w∗
i + V̂ (s + ei)

(induc.) = max
i∈λ(s)

w∗
i +

1
n

τ(s + ei)

≥ w∗
j +

1
n

τ(s + ei)

> p̂j(s) +
1
n

τ(s + ei)

(Lem.6) =
1
n

(τ(s)− τ(s + ei)) +
1
n

τ(s + ei)

=
1
n

τ(s).

Corollary 9 For any s 6= d, p̂(s) is the unique optimal prob-
ability vector for the learner for the game related to V̂ .

Proof: See end of last proof.

Corollary 10 For all s and all i ∈ [n],

p̂i(s) = V̂ (s)− V̂ (s+̇ei)

Proof: This follows from the previous theorem and Lemma
6.

We need one more lemma before we can prove our main
result.

Lemma 11 For any state s and distinct events i, j ∈ λ(s),
we have

p̂i(s) < p̂i(s + ej).

This fact is intuitive: if losses are randomly assigned then
the probability that the ith event will survive last strictly in-
creases when another event suffers a loss. We prove this
precisely below.

441

Proof: To show that p̂i(s) ≤ p̂i(s + ej) is straightforward.
Any sequence S0, S1, S2, . . . that brings s to the one-live
state oi also brings s + ej to oi. Indeed, if s+̇St = oi

for some t then certainly (s + ej)+̇St = oi as well.
To show that this inequality is strict, we need only find

one random sequence for which s+ej is brought to oi but not
s. Take any sequence S0, S1, . . . such that s+̇St = d− ei −
ej (where the only events remaining are i and j) and where
St+1 = St + ei. Then (s + ej)+̇St = oi but s+̇St+1 =
s+̇(St + ei) = oj .

Theorem 12 For all states s,

V (s) = V̂ (s) =
1
n

τ(s).

Proof: (English Version) Imagine a gambler who plays the
distribution p̂(s) at every state s. We already know that the
Casino can use its modified game strategy and simply play
unit vectors ` = ei on each round to force 1

nτ(s) loss. Yet
since ` is unrestricted, can it obtain more? The answer is
No: consider what happens if the Casino decides to choose `
larger than a unit vector, e.g. let ` = ei + ej for simplicity.
Then on this round it obtains p̂i(s) + p̂j(s), but it can do
better! We proved in Lemma 11 that survival probabilities
strictly increase and therefore p̂i(s) < p̂i(s + ej). Thus,
a more patient Casino could choose ` = ej on this round,
obtain p̂j(s), and then choose ` = ei on the next round to
obtain p̂i(s+ej). As p̂j(s)+ p̂i(s+ej) > p̂j(s)+ p̂i(s), the
Casino only does worse by playing non-unit vectors. Indeed,
this suggests that the Gambler has a strategy by which the
Casino can inflict only as much loss as in the modified game,
and thus the value V (s) is no different from V̂ (s).

Proof: (Formal Version) Certainly V (s) ≥ V̂ (s), since the
Casino is given strictly fewer choices in the modified game.
Thus we are left to show that V (s) ≤ V̂ (s). We proceed
via induction on m(s). By definition, V (s) = V̂ (s) for the
case s = d. Now assume that, for all successive states s′

where m(s′) < m(s), V (s′) = V̂ (s′). We proceed by di-
rectly analyzing the recursive definition (2). Assume that the
Gambler has chosen the (possibly non-optimal) distribution
w = p̂(s) to distribute his wealth on the live events λ(s), and
let `∗ ∈ {0, 1}n be an optimal choice of the Casino (which
can depend on the Gambler’s choice). By definition (1) of
V (s), the chosen loss vector can’t be 0 and all events with
loss one must be in λ(s). More precisely,

V (s) = min
w∼λ(s)

max
06=`⊂λ(s)

w · ` + V (s + `)

(ind.) = min
w∼λ(s)

max
06=`⊂λ(s)

w · ` + V̂ (s + `)

≤ max
06=`⊂λ(s)

p̂(s) · ` + V̂ (s + `)

= p̂(s) · `∗ + V̂ (s + `∗)

If `∗ is any unit vector ei, s.t. i ∈ λ(s), then

V (s) ≤ p̂(s) · ei + V̂ (s + ei)

= p̂i(s) + V̂ (s + ei) = V̂ (s)

and in this case, V (s) = V̂ (s) and we are done. We now
prove by contradiction that `∗ can have no more than one
non-zero coordinate. Assume indeed that |`∗| > 1, i.e. it
admits a decomposition `∗ = ei +¯̀ for some i and bit vector
¯̀ 6= 0 with ¯̀

i = 0. Applying Lemma 11 repeatedly, we have
that p̂i(s) < p̂i(s + ¯̀) and therefore

p̂(s) · `∗ + V̂ (s + `∗)

= p̂i(s) + p̂(s) · ¯̀ + V̂ (s + `∗)

(Lem. 11) < p̂i(s + ¯̀) + p̂(s) · ¯̀ + V̂ (s + `∗)

(Cor. 10) = V̂ (s + ¯̀)− V̂ (s + `∗) + p̂(s) · ¯̀ + V̂ (s + `∗)

= p̂(s) · ¯̀ + V̂ (s + ¯̀).

But the statement p̂(s) ·`∗+ V̂ (s+`∗) < p̂(s) · ¯̀+ V̂ (s+¯̀)
implies `∗ is a non-optimal choice for the Casino and this
contradicts our assumption that `∗ was optimum.

Corollary 13 For any s 6= d, if the learner plays with the
optimum probability vector p̂(s), then the only optimal re-
sponses of the adversary in the recurrence (2) for V is to
choose a unit vector of a live event.

Proof: Proved at the end of the last theorem.

5 Recurrences, Combinatorics and
Randomized Algorithms

The quantities V (s), τ(s) and p̂i(s) have a number of inter-
esting properties that we lay out in this section.

5.1 Some Recurrences
The expected path length, τ(s) satisfies a very natural recur-
sion. When s = d, then the path length is deterministically 0
and therefore τ(d) = 0. Otherwise, we see that the expected
path length is

τ(s) = 1 +
∑n

i=1 τ(s+̇ei)
n

. (5)

That is, the expected path length is 1, for the current step in
the path, plus the expected path length of the next random
state. Since the next state is chosen randomly from the set
{s+̇ei : i = 1, . . . , n}, the probability of any given state is
1
n , hence the normalization factor.

Of course, our original quantity of interest is V (s), and as
we showed in Theorem 12 V (s) = 1

nτ(s). This immediately
gives us a recursion for V :

V (s) =
1
n

(
1 +

1
n

n∑
i=1

τ(s+̇ei)

)

=
1 +

∑n
i=1 V (s+̇ei)

n
.

This recurrence, while true for the function V (·), is ambigu-
ous because V (s) can occur on both sides of the equation.
Indeed, whenever i /∈ λ(s), V (s+̇ei) = V (s). However, we
can rearrange all V (s) terms to obtain the following well-
defined recursion:

V (s) =
1 +

∑
i∈λ(s) V (s + ei)

|λ(s)|
. (6)

442

We can find a similar recurrence for p̂i(·). For the one-
live states oi we have p̂j(oi) = 1 if i = j and 0 otherwise.
If |λ(s)| > 1, then

p̂i(s) =

∑n
j=1 p̂i(s+̇ej)

n
.

As p̂i(s) is the probability of ending at state oi after exe-
cuting the Markov chain, this formula is obtained by con-
ditioning on one step of the Markov process. That is, the
probability of ending at state oi is∑

j

Pr(j chosen)Pr(random process takes s+̇ej to oi).

This recurrence suffers from the same problem as did our
initial recurrence for V (·): p̂(s) can occur on both sides of
the equality. We again solve this problem by rearranging
terms and obtain

p̂i(s) =

∑
j∈λ(s) p̂i(s + ej)

|λ(s)|
.

5.2 Combinatorial Sums
A further analysis gives us exact expressions for both p̂i(s)
and V (s) in terms of infinite sums of multinomials.

Proposition 5.1 For any state s ∈ S,

p̂i(s) =
∑

r:s+̇r=oi

(
|r|

r1, r2, . . . , rn

)(
1
n

)|r|+1

.

Proof: By definition, p̂i(s) is the probability that s reaches
the one-live state oi eventually. To compute this probabil-
ity, we consider at what point the Markov process exits the
state oi and into d. Recall the random variable St defined in
Section 3. Take any r for which s+̇r = oi and condition on
St = r. Then

p̂i(s) =
∑

r:s+̇r=oi

Pr(St = r)Pr(St+1 = r + ei|St = r)

The first probability is exactly
(|r|
r1,r2,...,rn

)
n−|r| and the sec-

ond probability is exactly 1/n.

Since V (s) can be written as an expected path length, we
can obtain a similar expression as a sum of multinomials for
V (s):

Proposition 5.2

V (s) =
n∑

i=1

∑
r:r+̇s=oi

(|r|+ 1)
(

|r|
r1, r2, . . . , rn

)(
1
n

)|r|+1

.

5.3 Randomized Approximations
Computing the exact value V (s) for large but non-asymptotic
values of the state vector is difficult because we have no poly-
nomial time algorithm. On the other hand, finding a random-
ized approximation to V (s) can be done very efficiently. In-
deed, as we now have a representation of V (s) in terms of the
length of a random walk, we can simply run the random walk
S1, S2, . . . several times, note the length T (s), and return the

mean. Such random approximations require that the distri-
bution on T (s) has low-variance, yet this certainly holds in
the case at hand. While the random walk requires at least
n(k + 1) iterations to finish, a simple argument shows that
with probability 1−δ the random walk completes in less than
nk log(nk/δ) rounds.

Algorithm 1 Random Approximation to V (s)
Input: state s
t← 0
for i = 1, . . . , NUMITER do

z← s
repeat

Sample i ∈ {1, . . . , n} u.a.r.
z← z+̇ei

t← t + 1
until z = d

end for
Return t

n·NUMITER .

If R(s) is the random variable returned by the above al-
gorithm, then clealy ER(s) = V (s). By increasing NUMITER,
the variance of this estimate can be reduced quickly.

A randomized approximation for p̂(s) can be obtained
similarly. Again the above algorithm approximately com-

Algorithm 2 Random Approximation to p̂(s)
Input: state s 6= d
p← 0
for i = 1, . . . , NUMITER do

z← s
repeat

Sample i ∈ {1, . . . , n} u.a.r.
z← z+̇ei

until z = oj for some j
p← p + ej

end for
Return p

NUMITER
.

putes p̂(s) in the following sense: If R(s) is the random vari-
able returned by the above algorithm, then clearly ER(s) =
p̂(s). Again increasing NUMITER, reduces the variance of the
estimate.

5.4 A Simple Strategy in a Randomized Setting
In the particular case of betting against the Casino, it may
be necessary for the Gambler to compute p̂i(s) in order to
place his bets optimally. In an alternative setting, however,
a randomized algorithm may be sufficient. Let us consider
the case in which the Gambler chooses to bet according to
the outcome of several coin tosses. Further assume that the
Casino can observe his strategy but cannot see the outcome
of the coin tosses or his final bets. In this scenario, the
Gambler can even bet all of his money on a random event
I ∈ {1, . . . , n} drawn according to some distribution as long

443

0 5 10 15 20 25 30 35 40
4

6

8

10

12

14

16

18

20

22

The parameter k

T
h
e

v
a
lu

e
V

(0
)
−

k
Randomly Computing V

10 Samples

1 Sample

Exact Value of V

Figure 1: We illustrate the accuracy of the randomized approxima-
tion to V (0) stated in Algorithm 1. The plot compares the exact
value of V (0) to that obtained by using either 1 or 10 samples of
the random walk. Here n = 100.

as E1[I = i] = p̂i(s) for all i, and indeed his expected loss
would be p̂(s) · `.

For this scenario, randomly approximating p̂ is not nec-
essary: only one sample is needed! To be precise, the Gam-
bler can take the state s, run the random walk until the state
reaches oi for some i, and then bet his full dollar on event i.
This bet will be correct in expectation, i.e. he will pick event
i with probability p̂i(s), and thus his expected loss will be
exactly p̂ · `. The key here is that sampling from the distribu-
tion p̂(s) may be quite easy even when computing it exactly
may take more time.

Note that the above method based on one sample is sim-
ilar to the way the Randomized Weighted Majority algo-
rithm approximates the Weighted Majority algorithm (more
precisely the WMC algorithm of [LW94]). More precisely
NUMITER=1 of Algorithm 5.3 corresponds to WMR, and
NUMITER→∞ corresponds to WMC.

6 Comparison to Previous Bounds
As mentioned in the introduction, the bound obtainable base
on exponential weights [FS97] is

k +
√

2k log n + log n (7)

and can be shown to be asymptotically optimal [Vov98].2
Having computed the minimax solution to the same game,
we can compute the game-theoretically optimal bound of
V (0) using Algorithm 1. For small values of n and k, these
bounds do differ quite substantially. We present in Figure 2 a

2A slightly better but more complicated bound than (7) was
given in [Vov98]. In the full paper we compare the optimal bound
to this one as well.

comparison of the regret for n = 2, 10, 100 and k = 1, . . . , 20.

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

T he parameter k

R
e
gr

e
t

The Optimal Bound vs. the Hedge Bound

Optimal, n=2
Hedge, n=2
Optimal, n=10
Hedge, n=10
Optimal, n=100
Hedge, n=100

Figure 2: We compare the optimal regret bound we obtain from
V (0) to that found in [FS97], which we refer to as the hedge bound.
While asymptotically optimal, we observed that the hedge bound of
k +

√
2k log n + log n is not tight for small values of n and k.

7 Connections to classic problems of
probabilistic enumerative combinatorics.

Theorem 12 shows that an optimal strategy for the Casino re-
quires unit vector plays. This leads to alternative interpreta-
tions of the game in terms of well studied random processes.

For example, one can easily confirm that our game also
describes the random process underlying a generalized form
of the Coupon Collector’s Problem [?] in which the collec-
tor buys cereal boxes one by one in order to obtain K = k+1
complete sets of n baseball cards, assuming one card is ran-
domly placed within each cereal box. The value of our game,
V (0, 0), is in fact the expected number of cereal boxes, per
baseball card, needed to obtain the desired K complete sets.

Specifically, the probability generating function for the
generalized Coupon Collector’s Problem is [MW03]

Gn,K(z) =
n

(K − 1)!

∫ ∞

0

e−nt/ztK−1

∑
j≥k

tj

j!

n−1

dt.

Taking the derivative at z = 1 and dividing by n, we derive
the expected number of steps to obtain K sets, which is also
the value of our game, viz.

V (0n) =
n

(K − 1)!

∫ ∞

0

tKe−nt

∑
j≥k

tj

j!

n−1

dt. (8)

Equation (8) gives us an elegant closed form for the two-card
case (n = 2):

V (〈0, 0〉) = K +
K

22K

(
2K

K

)

444

From (8) we also obtain the well known asymptotic expres-
sion for the value, for large n and fixed K,

V (0n)→n→∞ log n + (K − 1) log log n[1 + o(1)].

The same asymptotic form appears in the analysis of an evolv-
ing random graph. [ER60] The random walk on the state lat-
tice provides yet another interpretation of the same dynam-
ics.

For K >> n >> 1, the law of large numbers gives
[NS60]

V (〈0n〉) = K + O(K1/2).

8 Conclusion
We showed in Corollary 13 that against the optimal learning
algorithm the optimal strategy of the adversary is to choose
one of the unit loss vectors as his response. Curiously enough
it can be show that this is also true of the Weighted Majority
algorithm (1). That is, any trial in which q > 1 experts in-
curred a unit of loss can be split into q trials in which a single
expert has a unit of loss, and doing this always increases the
loss of the algorithm for all update factor β ∈ [0, 1). This ob-
servation about the Weighted Majority algorithm might actu-
ally lead to improved loss bounds for this algorithm, perhaps
in the way the parameter β is tuned.

There remains also a deep question regarding the tech-
niques introduced in this paper: how general is this method
of computing the value of a game based on a random path?
Can it handle slightly more involved problems? Examples
we have considered include competing against m-sized sets
of experts, discussed in [WK06], in which the loss of the
algorithm is compared to the loss of the best m-subset. An-
other example is the problem of competing against permuta-
tions of n objects [HW07], where the loss of a permutation
is linearly assigned. Our preliminary investigation suggests
that similar techniques can be adapted to also handle such
more complex problems. In the full paper we hope to de-
lineate the scope of our new method of optimal algorithm
design.

References
[ALW07] J. Abernethy, J. Langford, and M. K. War-

muth. Continuous experts and the Binning al-
gorithm. In Proceedings of the 19th Annual
Conference on Learning Theory (COLT06),
pages 544–558. Springer, June 2007.

[CBFH+97] Nicolò Cesa-Bianchi, Yaov Freund, David
Haussler, David P. Helmbold, Robert E.
Schapire, and Manfred K. Warmuth. How to
use expert advice. J. ACM, 44(3):427–485,
1997.

[CBFHW96] N. Cesa-Bianchi, Y. Freund, D. P. Helm-
bold, and M. K. Warmuth. On-line prediction
and conversion strategies. Machine Learning,
25:71–110, 1996.

[ER60] P. Erdos and A. Renyi. On the evolution of
random graphs. Publ. Math. Inst. Hung. Acad.
Sci., 5A:17–61, 1960.

[FS97] Yoav Freund and Robert E. Schapire. A
decision-theoretic generalization of on-line
learning and an application to Boosting. J.
Comput. Syst. Sci., 55(1):119–139, 1997. Spe-
cial Issue for EuroCOLT ’95.

[HW07] D. Helmbold and M. K. Warmuth. Learn-
ing permutations with exponential weights. In
Proceedings of the 20th Annual Conference on
Learning Theory (COLT07). Springer, 2007.

[KW99] Jyrki Kivinen and Manfred K. Warmuth. Av-
eraging expert predictions. In Computa-
tional Learning Theory, 4th European Con-
ference, EuroCOLT ’99, Nordkirchen, Ger-
many, March 29-31, 1999, Proceedings, vol-
ume 1572 of Lecture Notes in Artificial Intel-
ligence, pages 153–167. Springer, 1999.

[LW94] N. Littlestone and M. K. Warmuth. The
Weighted Majority algorithm. Inform. Com-
put., 108(2):212–261, 1994. Preliminary ver-
sion in in FOCS 89.

[MW03] A. Myers and H. S. Wilf. Some new aspects
of the Coupon-Collector’s problem. SIAM J.
Disc. Math., 17:1–17, 2003.

[NS60] D. Newman and L. Shepp. The Double Dixie
Cup problem. Amer. Math Monthly., 67:541–
574, 1960.

[Vov98] V. Vovk. A game of prediction with expert ad-
vice. J. of Comput. Syst. Sci., 56(2):153–173,
1998. Special Issue: Eighth Annual Confer-
ence on Computational Learning Theory.

[WK06] M. K. Warmuth and D. Kuzmin. Random-
ized PCA algorithms with regret bounds that
are logarithmic in the dimension. In Advances
in Neural Information Processing Systems 19
(NIPS 06). MIT Press, December 2006.

445

446

On-line sequential bin packing

Andr ás Gÿorgy1 and Gábor Lugosi2 and György Ottucsák3

1Machine Learning Research Group, Computer and Automation Research Institute, Budapest, Hungary∗

gya@szit.bme.hu
2 ICREA and Department of Economics, Universitat Pompeu Fabra, Barcelona, Spain†

gabor.lugosi@gmail.com
3 GusGus AB, Budapest, Hungary

ottucsak@gmail.com

Abstract

We consider a sequential version of the classical
bin packing problem in which items are received
one by one. Before the size of the next item is re-
vealed, the decision maker needs to decide whether
the next item is packed in the currently open bin or
the bin is closed and a new bin is opened. If the
new item doesn’t fit, it is lost. If a bin is closed,
the remaining free space in the bin accounts for a
loss. The goal of the decision maker is to min-
imize the loss accumulated overn periods. The
main result of the paper is an algorithm that has a
cumulative loss not much larger than any strategy
that uses a fixed threshold at each step to decide
whether a new bin is opened.

1 Introduction

In the classicaloff-line bin packing problem, an algorithm
receivesitems(also calledpieces)x1, x2, . . . , xn ∈ (0, 1].
We have an infinite number of bins, each with capacity1,
and every item is to be assigned to a bin. Further, the sum
of the sizes of the items assigned to any bin cannot exceed
its capacity. A bin is empty if no item is assigned to it, oth-
erwise, it is used. The goal of the algorithm is to minimize
the number of used bins. This is one of the classicalNP-hard
problems and heuristic and approximation algorithms have
been investigated thoroughly, see, e.g., Coffman, Garey, and
Johnson [3].

Another well-studied version of the problem is the so-
calledon-line bin packing problem. Here items arrive one
by one and each itemxt must be assigned to a bin (with
free space at leastxt) immediately, without any knowledge
of the next pieces. In this setting the goal is the same as in
the off-line problem, that is, the number of used bins is to be
minimized, see, e.g., Seiden [8], He and Dósa [6].

In both the off-line and on-line problems the algorithm
has access to the bins in arbitrary order. In this paper we

∗The first author acknowledges support by the Hungarian Sci-
entific Research Fund (OTKA F60787) and the Mobile Innovation
Center of Hungary.

†The second author acknowledges support by the Spanish Min-
istry of Science and Technology grant MTM2006-05650 and by the
PASCAL Network of Excellence under EC grant no. 506778.

abandon this assumption and introduce a more restricted ver-
sion that we callsequential bin packing. In this setting items
arrive one by one (just like in the on-line problem) but in each
round the algorithm has only two possible choices: assign
the given item to the (only) open bin or to the “next” empty
bin (in this case this will be the new open bin), and items can-
not be assigned anymore to closed bins. An algorithm thus
determines a sequence of binary decisionsi1, . . . , in where
it = 0 means that the next item is assigned to the open bin
andit = 1 means that a new bin is opened and the next item
is assigned to that bin. Of course, ifit = 0, then it may hap-
pen that the itemxt doesn’t fit in the open bin. In that case
the item is “lost.” If the decision isit = 1 then the remaining
empty space in the last closed bin is counted as a loss. The
measure of performance we use is the total sum of all lost
items and wasted empty space.

Just as in the original bin packing problem, we may dis-
tinguish off-line and on-line versions of the sequential bin
packing problem. In theoff-line sequentialbin packing prob-
lem the entire sequencex1, . . . , xn is known to the algorithm
at the outset. Note that unlike in the classical bin packing
problem, the order of the items is relevant. This problem
turns out to be computationally significantly easier than its
non-sequential counterpart. In Section 3 we present a sim-
ple algorithm with running time ofO(n2) that minimizes the
total loss in the off-line sequential bin packing problem.

Much more interesting is the on-line variant of the se-
quential bin packing problem. Here the itemsxt are re-
vealed one by one,after the corresponding decisionit has
been made. In other words, each decision has to be made
without any knowledge on the size of the item. Formulated
this way, the problem is reminiscent to an on-lineprediction
problem, see [2]. However, unlike in standard formulations
of on-line prediction, here the loss the predictor suffers de-
pends not only on the outcomext and decisionit but also on
the “state” defined by the fullness of the open bin.

Our goal is to extend the usual bin packing problems to
situations in which one can handle only one bin at a time, and
items must be processed immediately so they cannot wait
for bin changes. To motivate the on-line sequential model,
one may imagine a simple revenue management problem in
which a decision maker has a unit storage capacity at his
disposal. A certain product arrives in packages of different
size and after each arrival, it has to be decided whether the
stored packages are shipped or not. (Storing of the product
is costly.) If the stored goods are shipped, the entire storage

447

capacity becomes available again. If they are not shipped
one waits for the arrival of the next package. However, if the
next package is too large to fit in the remaining open space,
it is lost.

In another example of application, a sensor collects mea-
surements that can be compressed to variable size (these are
the items). The sensor communicates its measurements by
sending frames of some fixed size (bins). Since it has lim-
ited memory, it cannot store more data than one frame. To
save energy, the sensor must maximize its throughput (the
proportion of useful data in each frame) and at the same time
minimize data loss (this trade-off is reflected in the definition
of the loss function).

Just like in on-line prediction, we compare the perfor-
mance of an algorithm with the best in a pool of reference
algorithms (experts). Arguably the most natural comparison
class contains all algorithms that use a fixed threshold to de-
cide whether a new bin is opened. In other words, reference
predictors are parameterized by a real numberp ∈ (0, 1]. An
expert with parameterp simply decides to open a new bin
whenever the remaining free space in the open bin is less than
p. We call such an expert aconstant-thresholdstrategy. The
main result of this paper is the construction of a randomized
algorithm for the sequential on-line bin packing problem that
achieves a cumulative loss (measured as the sum of the total
wasted capacity and lost items) that is less than the total loss
of the best constant-threshold strategy (determined in hind-
sight) plus a quantity of the order ofn2/3 log1/3 n.

The principal difficulty of the problem lies in the fact
that each action of the decision maker takes the problem in
a new “state” (determined by the remaining empty space in
the open bin) which has an effect on future losses. More-
over, the state of the algorithm is typically different from the
state of the experts which makes comparison difficult. In re-
lated work, Merhav, Ordentlich, Seroussi, and Weinberger
[7] considered a similar setup in which the loss function has
a “memory,” that is, the loss of a predictor depends on the
loss of past actions. Furthermore, Even-Dar, Kakade and
Mansour [4] considered theMDP case where the adversarial
reward function changes according to some fixed stochastic
dynamics. However, there are several main additional diffi-
culties in the present case. First, unlike in [7], but similarly
to [4], the loss function has an unbounded memory as the
state may depend on an arbitrarily long sequence of past pre-
dictions. Second, the state space is infinite (the[0, 1) inter-
val) and the class of experts we compare to is also infinite,
in contrast to both of the above papers. However, the spe-
cial properties of the bin packing problem make it possible
to design a prediction strategy with small regret.

Note that theMDP setting of [4] would be a too pes-
simistic approach to our problem, as in our case there is a
strong connection between the rewards in different states,
thus the absolute adversarial reward function results in an
overestimated worst case. Also in the present case, state
transitions are deterministically given by the outcome, the
previous state, and the action of the decision maker, while
in the setup of [4] transitions are stochastic and depend only
on the state and the decision of the algorithm, but not on the
reward (or on the underlying individual sequence generating
the reward).

We also mention here the similaron-line bin packing
with rejectionproblem where the algorithm has an oppor-
tunity to reject some items and the loss function is the sum
of the number of the used bins and the “costs” of the rejected
items1 (see He and D́osa [6]). However, instead of the num-
ber of used bins, we use the sum of idle capacities (missed
or free spaces) in the used bins to measure the loss.

The following example may help explain the difference
between various versions of the problem.

Example 1 Let the sequence of the items be〈0.4, 0.5, 0.2,
0.5, 0.5, 0.3, 0.5, 0.1〉. Then the cumulative loss of the opti-
mal off-line bin packing is0 and it is0.4 in the case of se-
quential off-line bin packing (see Figure 1). In the sequential
case the third item (0.2) has been rejected.

0.5

0.5

0.5

0.5

0.5
0.5

0.5

0.5

0.4 0.4

0.3

0.3
0.2

0.1
0.1

a) off-line b) sequential off-line

Figure 1: The difference between the optimal solutions for
the off-line and sequential off-line problems.

The rest of the paper is organized as follows. In Section 2
the problem is defined formally. In Section 3 the complexity
of the off-line sequential bin packing problem is analyzed.
The main results of the paper are presented in Section 4.

2 Setup

We use a terminology borrowed from the theory of on-line
prediction with expert advice. Thus, we call the sequential
decisions of the on-line algorithmpredictionsand we use
forecasteras a synonym for algorithm.

We denote byIt ∈ {0, 1} the action of the forecaster at
time t (that is, whent− 1 items have been received). Action
0 means that the next item will be assigned to the open bin
and action1 represents the fact that a new bin is opened and
the next item is assigned to the next empty bin. Note that
we assume that we start with an open empty bin, thus for
any reasonable algorithm,I1 = 0, and we will restrict our
attention to such algorithms. The sequence of decisions up
to timet is denoted byIt ∈ {0, 1}t.

Denote byŝt ∈ [0, 1) the free space in the open (last)
bin at time t ≥ 1, that is, after having placed the items
x1, x2, . . . , xt according to the sequenceIt of actions. This
is thestateof the forecaster. More precisely, the state of the
forecaster is defined, recursively, as follows: As at the begin-
ning we have an empty bin,̂s0 = 1. For t = 1, 2, . . . , n,

• ŝt = 1− xt, when the algorithm assigns the item to the
next empty bin (i.e.,It = 1);

1In sequential bin packing we assume that the cost of the items
coincides with their size. In this case the optimal solution of bin-
packing with rejection is to reject all items.

448

• ŝt = ŝt−1, when the assigned item does not fit in the
open bin (i.e.,It = 0 andŝt−1 < xt);

• ŝt = ŝt−1 − xt, when the assigned item fits in the open
bin (i.e.,It = 0 andŝt−1 ≥ xt).

This may be written in a more compact form:

ŝt = ŝt(It, xt, ŝt−1) (1)

= It(1 − xt) + (1 − It)(ŝt−1 − I{bst−1≥xt})

whereI{·} denotes the indicator function of the event in brack-
ets, that is, it equals 1 if the event is true and0 otherwise. The
loss suffered by the forecaster at roundt is

ℓ(It, xt | ŝt−1),

where the loss functionℓ is defined by

ℓ(0, x | s) =

{

0, if s ≥ x;

x, otherwise
(2)

and
ℓ(1, x | s) = s . (3)

The goal of the forecaster is to minimize its cumulative loss
defined by

̂Lt = LIt,t =

t
∑

s=1

ℓ(Is, xs | ŝs−1) .

In the off-line version of the problem, the entire sequence
x1, . . . , xn is given and the solution is the optimal sequence
I
∗
n of actions

I
∗
n = arg min

In∈{0,1}n
LIn,n .

In the on-line version of the problem the forecaster does not
know the size of the next items, and the sequence of items
can be completely arbitrary. We allow the forecaster to ran-
domize its decisions, that is, at each time instancet, It is al-
lowed to depend on a random variableUt whereU1, . . . , Un

are i.i.d. uniformly distributed random variables in[0, 1].
Since we allow the forecaster to randomize, it is impor-

tant to clarify that the entire sequence of items are deter-
minedbeforethe forecaster starts making decisions, that is,
x1, . . . , xn ∈ (0, 1] are fixed and cannot depend on the ran-
domizing variables. (This is the so-calledoblivious adver-
sarymodel known in the theory of sequential prediction, see,
e.g., [2].)

The performance of a sequential on-line algorithm is mea-
sured by its cumulative loss. It is natural to compare it to the
cumulative loss of the off-line solutionI∗n. However, it is
easy to see that in general it is impossible to achieve an on-
line performance that is comparable to the optimal solution.
(This is in contrast with the non-sequential counterpart of the
bin packing problem in which there exist on-line algorithms
for which the number of used bins is within a constant factor
of that of the optimal solution.)

So in order to measure the performance of a sequen-
tial on-line algorithm in a meaningful way, we adopt an ap-
proach extensively used in on-line prediction (the so-called
“experts” framework). We define a set of reference forecast-
ers, the so-calledexperts. The performance of the algorithm

SEQUENTIAL ON-LINE BIN PACKING PROBLEM
WITH EXPERT ADVICE

Parameters: set E of experts, state spaceS =
[0, 1), action spaceA = {0, 1}, nonnegative loss
function ℓ : (A × (0, 1]|S) → [0, 1), numbern of
items.
Initialization: ŝ0 = 1 andsE,0 = 1 for all E ∈ E .

For each roundt = 1, . . . , n,

(a) each expert forms its actionfE,t ∈ A;

(b) the forecaster observes the actions of the ex-
perts and forms its own decisionIt ∈ A;

(c) the next itemxt ∈ (0, 1] is revealed;

(d) the algorithm incurs lossℓ(It, xt | ŝt−1) and
each expert incurs lossℓ(fE,t, xt | sE,t−1).
The states of the experts and the algorithm are
updated.

Figure 2: Sequential on-line bin packing problem with expert
advice.

is evaluated relative to this set of experts, and the goal is to
perform asymptotically as well as the best expert from the
reference class.

Formally, letfE,t ∈ {0, 1} be the decision of an expertE
at roundt, whereE ∈ E andE is the set of the experts. This
set may be finite or infinite, we consider both cases below.
Similarly we denote the state of expertE with sE,t after the
t-th item has been revealed. Then the loss of expertE at
roundt is

ℓ(fE,t, xt | sE,t−1)

and the cumulative loss of expertE is

LE,n =
n
∑

t=1

ℓ(fE,t, xt | sE,t−1).

The goal of the algorithm is to perform almost as well as the
best expert from the reference classE . Ideally, the normal-
ized difference of the cumulative losses (the so-calledregret)
should vanish asn grows, that is, one wishes to achieve

lim sup
n→∞

1

n
(̂Ln − inf

E∈E
LE,n) ≤ 0

with probability one, regardless of the sequence of items.
This property is calledHannan consistency, see [5]. The
model of sequential on-line bin packing with expert advice
is given in Figure 2.

In Section 4 we design sequential on-line bin packing
algorithms for two cases. In the first (and simpler) case
we assume that the classE of experts is finite. In the sec-
ond case we consider the (infinite) class of experts defined
by constant-threshold strategies. But before turning to the
on-line problem, we show how the off-line problem can be
solved by a simple quadratic-time algorithm.

449

3 Sequential off-line bin packing

As it is well known, most variants of the bin packing prob-
lem areNP-hard, including bin packing with rejection [6],
and maximum resource bin packing [1]. In this section we
show that the sequential bin packing problem is significantly
easier. Indeed, we offer an algorithm to find the optimal se-
quential strategy with time complexityO(n2) wheren is the
number of the items.

The key property is that after thet-th item has been re-
ceived, the2t possible sequences of decisions cannot lead to
more thant different states.

Lemma 1 For any fixed sequence of itemsx1, x2, . . . , xn

and for every1 ≤ t ≤ n,

|St| ≤ t,

where
St = {s : s = sIt,t, It ∈ {0, 1}t}

and sIt,t is the state reached after the sequenceIt of deci-
sions.

Proof: The proof goes by induction. Note that sinceI1 = 0,
we always havesI1,1 = 1 − x1, and therefore|S1| = 1.
Now assume that|St−1| ≤ t − 1. At time t, the state of
every sequence of decisions withIt = 0 belongs to the set
S ′

t = {s′ : s′ = s − I{s≥xt}xt, s ∈ St−1} and the state of
those withIt = 1 becomes1 − xt. Therefore,

|St| ≤ |S ′
t| + 1 ≤ |St−1| + 1 ≤ t

as desired.

To describe a computationally efficient algorithm to com-
puteI

∗
n, we set up a graph with the set of possible states as

a vertex set (there areO(n2) of them by Lemma 1) and we
show that the shortest path on this graph yields the optimal
solution of the sequential off-line bin packing problem.

To formalize the problem, consider a finite directed acy-
clic graph with a set of verticesV = {v1, . . . , v|V |} and a set
of edgesE = {e1, . . . , e|E|}. Each vertexvk = v(sk, tk) of
the graph is defined by a time indextk and a statesk ∈ Stk

and corresponds to statesk reachable aftertk steps. To show
the latter dependence, we will writevk ∈ Stk

. Two vertices
(vi, vj) are connected by an edge if and only ifvi ∈ St−1,
vj ∈ St and statevj is reachable from statevi. That is,
by choosing either action0 or action1 in statevi, the new
state becomesvj after itemxt has been placed. Each edge
has a label and a weight: the label corresponds to the action
(zero or one) and the weight equals the loss, dependig on
the initial state, the action, and the size of item. Figure 3
shows the proposed graph. Moreover a sink vertexv|V | is
introduced that is connected with all vertices inSn. These
edges have weight equal to the loss of the final states. The
losses of these edges only depend on the initial state of the
edges. More precisely, for(vi, v|V |) the loss is1− vi, where
vi ∈ Sn.

Notice that there is a one to one coresspondence between
paths fromv1 to v|V | and possible sequences of actions of
lengthn. Furthermore, the total weight of each path (calcu-
lated as the sum of the weights on the edges of the path) is

v1 v2

v3

v4

v5

v6 . . .

. . .

. . .
0/ℓ(0, x1 |s1)

1/ℓ(1, x
1 |s

1)

0/ℓ(0, x2 |s2)

1/ℓ(1, x2 |s3)

0/ℓ(0, x
2 |s

3)

1/ℓ(1, x
2 |s

2)

Figure 3: The graph corresponding to the off-line sequential
bin packing problem.

equal to the loss of the corresponding sequence of actions.
Thus, if we find a path with minimal total weight fromv1

to v|V |, we also find the optimal sequence of actions for the
off-line bin packing problem. It is well known that this can
be done inO(|V | + |E|) time. Now by Lemma 1,|V | ≤
n(n+1)/2+1, where the additional vertex accounts for the
sink. Moreover it is easy to see that|E| ≤ n(n−1)+n = n2.
Hence the total time complexity of finding the off-line solu-
tion isO(n2).

4 Sequential on-line bin packing

In this section we study the sequential on-line bin packing
problem with expert advice, as described in Section 2. We
deal with two special cases. First we consider finite classes
of experts (i.e., reference algorithms) without any assump-
tion on the form or structure of the experts. We construct a
randomized algorithm that, with large probability, achieves
a cumulative loss not larger than that of the best expert plus
O(n2/3 ln1/3 N) whereN = |E| is the number of experts.
Then we consider the class of all constant-threshold experts
and show that a regret of the orderO(n2/3 ln1/3 n) may be
achieved with high probability.

The following simple lemma is a key ingredient of the
results of this section. It shows that in sequential on-line
bin packing the cumulative loss is not sensitive to the initial
states in the sense that the cumulative loss depends on the
initial state in a minor way.

Lemma 2 Let i1, . . . , im ∈ {0, 1} be a fixed sequence of
decisions and letx1, . . . , xm ∈ (0, 1] be a sequence of items.
Let s0, s

′
0 ∈ [0, 1) be two different initial states. Finally,

let s0, . . . , sm ands′0, . . . , s
′
m denote the sequences of states

generated byi1, . . . , im andx1, . . . , xm starting from initial
statess0 ands′0, respectively. Then

∣

∣

∣

∣

∣

m
∑

t=1

ℓ(it, xt | s′t−1) −
m
∑

t=1

ℓ(it, xt | st−1)

∣

∣

∣

∣

∣

≤ s′0 + s0 ≤ 2 .

Proof: Let m′ denote the smallest index for whichim′ = 1.

450

Note thatst−1 = s′t−1 for all t > m′. Therefore, we have
m
∑

t=1

ℓ(it, xt | s′t−1) −
m
∑

t=1

ℓ(it, xt | st−1)

=

m′

∑

t=1

ℓ(it, xt | s′t−1) −
m′

∑

t=1

ℓ(it, xt | st−1)

=
m′−1
∑

t=1

ℓ(0, xt | s′t−1) −
m′−1
∑

t=1

ℓ(0, xt | st−1)

+ℓ(1, xm′ | s′m′−1) − ℓ(1, xm′ | sm′−1) .

Now using the definition of the loss (see (2) and (3)), we
write

m
∑

t=1

ℓ(it, xt | s′t−1) −
m
∑

t=1

ℓ(it, xt | st−1)

=
m′−1
∑

t=1

xt(I{s′
t−1

<xt} − I{st−1<xt})

+s′m′−1 − sm′−1

≤
m′−1
∑

t=1

xt(1 − I{st−1<xt}) + s′m′−1 − sm′−1

≤
m′−1
∑

t=1

xt(1 − I{st−1<xt}) + s′0

≤ s0 + s′0
where the next-to-last inequality holds becauses′m′−1 ≤ s′0
andsm′−1 ≥ 0, and the last inequality follows from the fact
that

0 ≤ sm′−1 = sm′−2 − I{sm′−2
≥xm′−1

}xm′−1

= sm′−3 − I{sm′−3
≥xm′−2

}xm′−2

−I{sm′−2
≥xm′−1

}xm′−1

= s0 −
m′−1
∑

t=1

I{st−1≥xt}xt .

Similarly,
m
∑

t=1

ℓ(it, xt | st−1) −
m
∑

t=1

ℓ(it, xt | s′t−1)

≤ s′0 + s0

and the statement follows.

The following example shows that upper bound of the
lemma is tight.

Example 2 Letx1 = s0, s′0 < s0, andm′ = 2. Then
m
∑

t=1

ℓ(it, xt | s′t−1) −
m
∑

t=1

ℓ(it, xt | st−1)

= ℓ(0, x1 | s′0) + ℓ(1, x2 | s′1)

−
(

ℓ(0, x1 | s0) + ℓ(1, x2 | s1)
)

= ℓ(0, s0 | s′0) + ℓ(1, x2 | s′0)

−
(

ℓ(0, s0 | s0) + ℓ(1, x2 | 0)
)

= s0 + s′0 − (0 + 0) .

4.1 Finite sets of experts

First we consider the on-line sequential bin packing problem
when the goal of the algorithm is to keep its cumulative loss
close to the best in a finite set of experts. In other words, we
assume that the class of experts is finite, say|E| = N , but we
do not assume any additional structure of the experts. The
ideas presented here will be used below when we consider
the infinite class of constant-threshold experts.

The proposed algorithm partitions the time periodt =
1, . . . , n into segments of lengthm wherem < n is a posi-
tive integer whose value will be specified later. This way we
obtainn′ = ⌊n/m⌋ segments of lengthm, and, if m does
not dividen, an extra segment of length less thanm. At the
beginning of each segment, the algorithm selects an expert
randomly, according to an exponentially weighted average
distribution. During the entire segment, the algorithm fol-
lows the advice of the selected expert. By changing actions
so rarely, the algorithm achieves a certain synchronization
with the chosen expert, since the effect of the difference in
the initial states is minor, according to Lemma 2. (A similar
idea was used in [7] in a different context.) The algorithm
is described in Figure 4. Recall that each expertE ∈ E
recommends an actionfE,t ∈ {0, 1} at every time instance
t = 1, . . . , n. Since we haveN experts, we may identifyE
with the set{1, . . . , N}. Thus, experts will be indexed by
the positive integersi ∈ {1, . . . , N}. At the beginning of
each segment, the algorithm chooses experti randomly, with
probabilitypi,t, where the distributionpt = (p1,t, . . . , pN,t)
is specified below. The random selection is made indepen-
dently for each segment.

The following theorem establishes a performance bound
of the algorithm. Recall that̂Ln denotes the cumulative loss
of the algorithm whileLi,n is that of experti.

Theorem 3 Let n, N ≥ 1, η > 0, 1 ≤ m ≤ n, and δ ∈
(0, 1). For any sequencex1, . . . , xn ∈ (0, 1] of items, the
cumulative losŝLn of the randomized strategy defined above
satisfies, with probability at least1 − δ,

̂Ln − min
i=1,...,N

Li,n

≤ m lnN

η
+

nη

8
+

√

nm

2
ln

1

δ
+

2n

m
+ 2m

In particular, choosingm = (16n/ ln(N/δ))1/3 and η =
√

8m ln N/n, one has

̂Ln − min
i=1,...,N

Li,n

≤ 3
3
√

2
n2/3 ln1/3 N

δ
+ 4

(

2n

ln(N/δ)

)1/3

.

Proof: We introduce an auxiliary quantity, the so-calledhy-
pothetical loss, defined as the loss the algorithm would suffer
if it had been in the same state as the selected expert. This
hypothetical loss does not depend on previous decisions of
the algorithm. More precisely, the true loss of the algorithm
at time instancet is ℓ(It, xt | ŝt) and its hypothetic loss is
ℓ(It, xt | sJt,t). Introducing the notation

ℓi,t = ℓ(fi,t, xt | si,t) ,

451

SEQUENTIAL ON-LINE BIN PACKING ALGORITHM

Parameters: Real numberη > 0 andm ∈ N
+.

Initialization: wi,0 = 1 and si,0 = 1 for i =
1, . . . , N , andŝ0 = 1.

For each roundt = 1, . . . , n,

(a) If ((t − 1) modm) = 0 then
– calculate the updated probability distribu-

tion
pi,t =

wi,t−1
∑N

j=1 wj,t−1

for i = 1, . . . , N ;
– randomly select an expertJt ∈
{1, . . . , N} according to the proba-
bility distributionpt = (p1,t, . . . , pN,t);

otherwise, letJt = Jt−1.

(b) Follow the chosen expert:It = fJt,t.

(c) The size of next itemxt ∈ (0, 1] is revealed.

(d) The algorithm incurs loss

ℓ(It, xt | ŝt−1)

and each experti incurs lossℓ(fi,t, xt | si,t−1).
The states of the experts and the algorithm are
changed.

(e) Update the weights

wi,t = wi,t−1e
−ηℓ(fi,t,xt|si,t−1)

for all i ∈ {1, . . . , N}.

Figure 4: Sequential on-line bin packing algorithm.

the hypothetical loss of the algorithm is just

ℓ(It, xt | sJt,t) = ℓ(fJt,t, xt | sJt,t) = ℓJt,t .

Now it follows by a well-known result of randomized on-line
prediction (see, e.g., [2, Corollary 4.2]) that the hypothetical
loss of the sequential on-line bin packing algorithm satisfies,
with probability at least1 − δ,

n
∑

t=1

ℓJt,t − min
i=1,...,N

n
∑

t=1

ℓi,t (4)

≤ m

(

lnN

η
+

n′η

8
+

√

n′

2
ln

1

δ

)

+ m ,

wheren′ = ⌊ n
m⌋ and the lastm term comes from bounding

the difference on the last, not necessarily complete segment.

Now we may decompose the regret as follows:

̂Ln − min
i=1,...,n

Li,n

=

(

̂Ln −
n
∑

t=1

ℓJt,t

)

+

(

n
∑

t=1

ℓJt,t − min
i=1,...,n

Li,n

)

.

The second term on the right-hand side is bounded using (4).
To bound the first term, observe that by Lemma 2,

̂Ln − min
i=1,...,n

Li,n

=
n
∑

t=1

ℓ(It, xt | ŝt−1) −
n
∑

t=1

ℓ(It, xt | sJt−1)

≤ m +
n′−1
∑

s=0

m
∑

t=1

(

ℓ(Ism+t, xsm+t | ŝsm+t−1)

−ℓ(Ism+t, xsm+t | sJsm+t−1,sm+t−1)
)

≤ m + 2n′

where in the second inequality we bounded the difference on
the last segment separately.

4.2 Constant-threshold experts

Now we are prepared to address the sequential on-line bin
packing problem when the goal is to perform almost as well
as the best in the class of all constant-threshold strategies.
Recall that a constant-threshold strategy is parameterized by
a numberp ∈ (0, 1] and it opens a new bin if and only if
the remaining empty space in the bin is less thanp. More
precisely, if the state of the algorithm defined by expert with
parameterp is sp,t−1, then at timet the expert’s advice is
I{sp,t−1<p}. To simplify notation, we will refer to each ex-
pert with its parameter, and, similarly to the previous section,
fp,t andsp,t will denote the decision of expertp at timet, and
its state after the decision, respectively.

The difficulty in this setup is that there are uncountably
many constant-threshold experts. In this section we provide
a solution to this problem by reducing it to the case of finite
expert classes. The main observation that enables this reduc-
tion is that on any sequence ofn items, experts can exhibit
only a finite number of different behaviors. In a sense, the
“effective” number of experts is not too large and this fact
may be exploited by the algorithm.

For t = 1, . . . , n we call two expertst-indistinguishable
(with respect to the sequence of itemsx1, . . . , xt) if their
decision sequences are identical up to timet. This prop-
erty defines a natural partitioning of the class of experts into
maximalt-indistinguishable sets, where any two experts that
belong to the same set aret-indistinguishable, and experts
from different sets are nott-indistinguishable. Obviously,
there are no more than2t maximalt-indistinguishable sets.
This bound, although finite, is still too large to be useful.
However, it turns out that the number of maximalt-indistin-
guishable sets only grows quadratically witht.

452

The first step in proving this fact is the next lemma that
shows that the maximalt-indistinguishable expert sets are
intervals.

Lemma 4 Let 1 ≥ p > r > 0 be such that expertp and ex-
pertr aret-indistinguishable. Then for anyp > q > r expert
q is t-indistinguishable from both expertsp andr. Thus, the
maximalt-indistinguishable expert sets form subintervals of
(0, 1].

Proof: By the assumption of the lemma the decision se-
quences of expertsp andr coincide, that is,

fp,u = fr,u and sp,u = sr,u

for all u = 1, 2, . . . , t. Let t1, t2, . . . denote the time in-
stances when expertp (or expertr) assigns the next item to
the next empty bin (i.e.,fp,u = 1 for u = t1, t2, . . .). If
expertq also decides1 at timetk for somek, then it will de-
cide0 for t = tk + 1, . . . , tk+1 − 1 since so does expertp
andp > q, and will decide1 at timetk+1 asq > r. Thus the
decision sequence of expertq coincides with that of expertp
andr for time instancestk + 1, . . . , tk+1 in this case. Since
all experts start with the empty bin at time0, the statement
of the lemma follows by induction.

Based on the lemma we can identify thet-indistinguish-
able sets by their end points. LetQt = {q1,t, . . . , qNt,t}
denote the set of the end points after receivingt items, where
Nt = |Qt| is the number of maximalt-indistinguishable sets,
andq0,t = 0 < q1,t < q2,t < · · · < qNt,t = 1. Then the
t-indistinguishable sets are(qk−1,t, qk,t] for k = 1, . . . , Nt.
The next result shows that the number of maximalt-indistin-
guishable sets cannot grow too fast.

Lemma 5 The number of the maximalt-indistinguishable
sets is at most quadratic in the number of the itemst. More
precisely,Nt ≤ 1 + (t − 1)t/2 for any1 ≤ t ≤ n.

Proof: The proof is by induction. First,N1 = 1 (andQ1 =
{1}) since the first decision of each expert is1. Now assume
thatNt−1 ≤ 1 + (t − 2)(t − 1)/2 for some1 ≤ t ≤ n − 1.
When the next itemxt arrives, an expertp with states de-
cides1 in the next step if and only if0 ≤ s− xt < p. There-
fore, as each expert belonging to the same indistinguishable
set has the same state, thek-th maximal(t−1)-indistinguish-
able interval with states is split into two subintervals if and
only if qk−1,t−1 < s − xt ≤ qk,t−1 (experts in this interval
with parameters larger thans− xt will form one subset, and
the ones with parameter at mosts − xt will form the other
one). As the number of possible states at timet−1 is at most
t− 1 by Lemma 1, it follows that at mostt− 1 intervals can
be split, and soNt ≤ Nt−1 + t− 1 ≤ 1 + (t− 1)t/2, where
the second inequality holds by the induction hypothesis.

This lemma makes it possible to apply our earlier algo-
rithm for the case of finite expert classes. However, note that
the number of “distinguishable” experts, that is, the number
of the maximal indistinguishable sets, constantly grows with
time, and each indistinguishable set contains a continuum
number of experts. Therefore we need to redefine the algo-
rithm carefully. This may be done by a two-level random

SEQUENTIAL ON-LINE BIN PACKING ALGORITHM
WITH CONSTANT-THRESHOLD EXPERTS

Parameters:η > 0 andm ∈ N
+.

Initialization: w0,1 = 1, N1 = 1, Q1 = {1},
s1,0 = 1 andŝ0 = 1.

For each roundt = 1, . . . , n,

(a) If ((t − 1) modm) = 0 then
– for i = 1, . . . , Nt, compute the probabili-

ties
pi,t =

wi,t−1
∑Nt

j=1 wj,t−1

;

– randomly select an intervalJt ∈
{1, . . . , Nt} according to the probability
distributionpt = (p1,t, . . . , pNt,t);

– choose an expertpt uniformly from the in-
terval(qJt−1,t, qJt,t];

otherwise, letpt = pt−1.

(b) Follow the decision of expertpt: It = fpt,t.

(c) xt ∈ (0, 1], the size of the next item is revealed.

(d) The algorithm incurs loss

ℓ(It, xt | ŝt−1)

and each expertp ∈ (0, 1] incurs loss
ℓ(fp,t, xt | sp,t−1), wherep ∈ [0, 1).

(e) Compute the statêst of the algorithm by (2),
and calculate the auxiliary weights and states
of the expert sets for alli = 1, . . . , Nt by

w̃i,t = wi,t−1e
−ηℓ(fi,t,xt|si,t−1)

s̃i,t = fi,t(1 − xt)

+(1 − fi,t)(si,t − I{si,t≥xt}).

(f) Update the end points of the intervals:

Qt+1 = Qt ∪
Nt
⋃

i=1

{s̃i,t : qi−1,t < s̃i,t ≤ qi,t}

andNt+1 = |Qt+1|.
(g) Assign the new states and weights to the(t+1)-

indistinguishable sets

si,t+1 = s̃j,t and wi,t+1 = w̃j,t

for all i = 1, . . . , Nt+1 andj = 1, . . . , Nt such
thatqj−1,t < qi,t+1 ≤ qj,t.

Figure 5: Sequential on-line bin packing algorithm with
constant-threshold experts.

453

choice of the experts: first we choose an indistinguishable
expert set, then we pick one expert from this set randomly.
The resulting algorithm is given in Figure 5.

Up to step (e) the algorithm is essentially the same as
in the case of finitely many experts. The two-level random
choice of the expert is performed in step (a). In step (f)
we update thet-indistinguishable sets, and usually introduce
new indistinguishable expert sets. Because of these new ex-
pert sets, the update of the weightswi,t and the statessi,t are
performed in two steps, (e) and (g), where the actual update
is made in step (e), and reordering of these quantities accord-
ing to the new indistinguishable sets is performed in step (g)
together with the introduction of the weights and states for
the newly formed expert sets.

The performance and complexity of the algorithm is given
in the next theorem.

Theorem 6 LetN = 1+n(n−1)/2, m = (16n/ ln(n2/δ))1/3

andη = 4
√

m ln n/n andδ ∈ (0, 1). Then the regret of the
algorithm defined above is bounded, with probability at least
1 − δ, by

̂Ln − inf
p∈(0,1]

Lp,n

≤ 3
3
√

2
n2/3 ln1/3 n2

δ
+ 4

(

2n

ln(n2/δ)

)1/3

.

Moreover, the algorithm can be implemented with time com-
plexityO(n3) and space complexityO(n2).

Proof: It is easy to see that the two-level choice of the expert
pt ensures that the algorithm is the same as for the finite ex-
pert class with the experts defined byQn. Thus, Theorem 3
can be used to bound the regret, where the number of experts
is Nt. By Lemma 5, the latter is bounded byN < n2, which
finishes the proof of the first statement.

For the second part note that the algorithm has to store
the states, the intervals, the weights and the probabilities,
each on the order ofO(n2) based on Lemma 5. Concern-
ing time complexity, the algorithm has to update the weights
and states in each round (requiringO(n2) computations per
round), and has to compute the probabilities in everym step,
which requiresO(n3/m) computations. Thus the time com-
plexity of the algorithm isO(n3).

The next example reveals that the loss of the best expert
can be arbitrarily far from that of the optimal sequential off-
line packing.

Example 3 Let the sequence of items be

〈 ε, 1−ε, ε, 1−ε, . . . , ε, 1−ε
︸ ︷︷ ︸

2k

, ε, 1, 1, . . . , 1
︸ ︷︷ ︸

k

〉,

where the number of items isn = 3k + 1 and0 < ε < 1.
An optimal sequential off-line packing is achieved if we drop
anyone of theε terms; then the total loss isε. In contrast to
this, the loss of the constant-threshold experts is1 − ε + k
independently of the choice of the parameterp. Namely, if
p ≤ 1−ε then the loss is0 for the first2k items, but after the
algorithm is stuck and suffersk + 1 − ε loss. Ifp > 1 − ε,
then the loss isk for the first2k items and after that1−ε for
the rest of the sequence.

5 Conclusions
In this paper we provide an extension of the classical bin
packing problems to an on-line sequential scenario. In this
setting items are received one by one, and before the size of
the next item is revealed, the decision maker needs to decide
whether the next item is packed in the currently open bin or
the bin is closed and a new bin is opened. If the new item
doesn’t fit, it is lost. If a bin is closed, the remaining free
space in the bin accounts for a loss. The goal of the decision
maker is to minimize the loss accumulated overn periods.

As the main result of the paper, we give an algorithm
that has a cumulative loss not much larger than any finite
set of reference algorithms, and, more importantly, another
algorithm that has a cumulative loss not much larger than
any strategy that uses a fixed threshold at each step to decide
whether a new bin is opened. An interesting aspect of the
problem is that the loss function has an (unbounded) mem-
ory. The presented solutions rely on the fact that one can
“synchronize” the loss function in the sense that no matter in
what state an algorithm is started, its loss may change only
by a small additive constant. The second result is obtained
by a covering of the uncountable set of constant-threshold
experts such that the cardinality of the chosen finite set of ex-
perts grows only quadratically with the sequence length. The
approach in the paper can easily be extended to any control
problem where the loss function has such a synchronizable
property.

References
[1] J. Boyar, L. Epstein, L.M. Favrholdt, J.S. Kohrt,

K.S. Larsen, M.M. Pedersen, and S. Wøhlk. The max-
imum resource bin packing problem.Theoretical Com-
puter Science, 362:127–139, 2006.

[2] N. Cesa-Bianchi and G. Lugosi.Prediction, Learning,
and Games. Cambridge University Press, 2006.

[3] E.G. Coffman, M.R. Garey, and D.S. Johnson.Approx-
imation algorithms for bin packing: a survey. In Ap-
proximation algorithms for NP-hard problems, pp. 46–
93, PWS Publishing Co., Boston, MA, 1997.

[4] E. Even-Dar, S.M. Kakade, and Y. Mansour. Experts in
a Markov Decision Process. In L.K. Saul, Y. Weiss, and
L. Bottou, editors,Advances in Neural Information Pro-
cessing Systems 17, pp. 401–408. MIT Press,Cambridge,
MA, 2005.

[5] J. Hannan. Approximation to Bayes risk in repeated
plays. In M. Dresher, A. Tucker, and P. Wolfe, editors,
Contributions to the Theory of Games, volume 3, pp. 97–
139. Princeton University Press, 1957.

[6] Y. He and Gy. D́osa. Bin packing and covering problems
with rejection.Lecture Notes in Computer Science 3595,
pp. 885–894, 2005.

[7] N. Merhav, E. Ordentlich, G. Seroussi, and M. J. Wein-
berger. On sequential strategies for loss functions with
memory. IEEE Transactions on Information Theory,
48:1947-1958, 2002.

[8] S.S. Seiden. On the online bin packing problem. inPro-
ceedings of the 28th International Colloquium on Au-
tomata, Languages and Programming, pp. 237 - 248,
2001.

454

Time Varying Undirected Graphs

Shuheng Zhou, John Lafferty and Larry Wasserman∗

Carnegie Mellon University
{szhou, lafferty}@cs.cmu.edu, larry@stat.cmu.edu

Abstract

Undirected graphs are often used to describe
high dimensional distributions. Under spar-
sity conditions, the graph can be estimated us-
ing ℓ1 penalization methods. However, cur-
rent methods assume that the data are inde-
pendent and identically distributed. If the dis-
tribution, and hence the graph, evolves over
time then the data are not longer identically
distributed. In this paper, we show how to es-
timate the sequence of graphs for non-identically
distributed data, where the distribution evolves
over time.

1 Introduction

Let Z = (Z1, . . . , Zp)
T be a random vector with dis-

tribution P . The distribution can be represented by an
undirected graphG = (V, F). The vertex setV has one
vertex for each component of the vectorZ. The edge set
F consists of pairs(j, k) that are joined by an edge. If
Zj is independent ofZk given the other variables, then
(j, k) is not inF . WhenZ is Gaussian, missing edges
correspond to zeroes in the inverse covariance matrix
Σ−1. Suppose we have independent, identically dis-
tributed dataD = (Z1, . . . , Zt, . . . , Zn) from P . When
p is small, the graph may be estimated fromD by test-
ing which partial correlations are not significantly differ-
ent from zero [DP04]. Whenp is large, estimatingG is
much more difficult. However, if the graph is sparse and
the data are Gaussian, then several methods can success-
fully estimateG; see [MB06, BGd08, FHT07, LF07,
BL08, RBLZ07].

All these methods assume that the graphical struc-
ture is stable over time. But it is easy to imagine cases
where such stability would fail. For example,Zt could

∗This research was supported in part by NSF grant CCF-
0625879. SZ thanks Alan Frieze and Giovanni Leoni for
helpful discussions on sparsity and smoothness of functions.
We thank J. Friedman, T. Hastie and R. Tibshirani for mak-
ing GLASSO publicly available, and anonymous reviewers for
their constructive comments.

represent a large vector of stock prices at timet. The
conditional independence structure between stocks could
easily change over time. Another example is gene ex-
pression levels. As a cell moves through its metabolic
cycle, the conditional independence relations between
proteins could change.

In this paper we develop a nonparametric method
for estimating time varying graphical structure for mul-
tivariate Gaussian distributions usingℓ1 regularization
method. We show that, as long as the covariances change
smoothly over time, we can estimate the covariance ma-
trix well (in predictive risk) even whenp is large. We
make the following theoretical contributions: (i) non-
parametric predictive risk consistency and rate of con-
vergence of the covariance matrices, (ii) consistency and
rate of convergence in Frobenius norm of the inverse
covariance matrix, (iii) large deviation results for co-
variance matrices for non-identically distributed obser-
vations, and (iv) conditions that guarantee smoothness
of the covariances. In addition, we provide simulation
evidence that we can recover graphical structure. We
believe these are the first such results on time varying
undirected graphs.

2 The Model and Method
Let Zt ∼ N(0, Σ(t)) be independent. It will be useful
to index time ast = 0, 1/n, 2/n, . . . , 1 and thus the data
areDn = (Zt : t = 0, 1/n, . . . , 1). Associated with
each eachZt is its undirected graphG(t). Under the
assumption that the lawL(Zt) of Zt changes smoothly,
we estimate the graph sequenceG(1), G(2), . . . ,. The
graphG(t) is determined by the zeroes ofΣ(t)−1. This
method can be used to investigate a simple time series
model of the form:W 0 ∼ N(0, Σ(0)), and

W t = W t−1 + Zt, where Zt ∼ N(0, Σ(t)).

Ultimately, we are interested in the general time series
model where theZt’s are dependent and the graphs change
over time. For simplicity, however, we assume indepen-
dence but allow the graphs to change. Indeed, it is the
changing graph, rather than the dependence, that is the
biggest hurdle to deal with.

In the iid case, recent work [BGd08, FHT07] has
consideredℓ1-penalized maximum likelihood estimators

455

over the entire set of positive definite matrices,

̂Σn = argmin
Σ≻0

{

tr(Σ−1
̂Sn) + log |Σ| + λ|Σ−1|1

}

(1)

wherêSn is the sample covariance matrix. In the non-iid
case our approach is to estimateΣ(t) at timet by

̂Σn(t) = argmin
Σ≻0

{

tr(Σ−1
̂Sn(t)) + log |Σ| + λ|Σ−1|1

}

where ̂Sn(t) =

∑

s wstZsZ
T
s

∑

s wst
(2)

is a weighted covariance matrix, with weightswst =

K
(

|s−t|
hn

)

given by a symmetric nonnegative function

kernel over time; in other words,̂Sn(t) is just the ker-
nel estimator of the covariance at timet. An attraction
of this approach is that it can use existing software for
covariance estimation in the iid setting.

2.1 Notation

We use the following notation throughout the rest of the
paper. For any matrixW = (wij), let |W | denote the
determinant ofW , tr(W) the trace ofW . Letϕmax(W)
andϕmin(W) be the largest and smallest eigenvalues,
respectively. We writeWց = diag(W) for a diagonal
matrix with the same diagonal asW , andW ♦ = W −
Wց. The matrix Frobenius norm is given by‖W‖F =
√

∑

i

∑

j w2
ij . The operator norm‖W‖2

2 is given by

ϕmax(WWT). We write | · |1 for theℓ1 norm of a ma-
trix vectorized, i.e., for a matrix|W |1 = ‖vecW‖1 =
∑

i

∑

j |wij |, and write‖W‖0 for the number of non-
zero entries in the matrix. We useΘ(t) = Σ−1(t).

3 Risk Consistency

In this section we define the loss and risk. Consider es-
timateŝΣn(t) and ̂Gn(t) = (V, ̂Fn). The first risk func-
tion is

U(G(t), ̂Gn(t)) = EL(G(t), ̂Gn(t)) (3)

whereL(G(t), ̂Gn(t)) =
∣

∣

∣
F (t) ∆ ̂Fn(t)

∣

∣

∣
, that is, the

size of the symmetric difference between two edge sets.

We say that̂Gn(t) is sparsistentif U(G(t), ̂Gn(t))
P→ 0

asn → ∞.
The second risk is defined as follows. LetZ ∼

N(0, Σ0) and letΣ be a positive definite matrix. Let

R(Σ) = tr(Σ−1Σ0) + log |Σ|. (4)

Note that, up to an additive constant,

R(Σ) = −2E0(log fΣ(Z)),

wherefΣ is the density forN(0, Σ). We say that̂Gn(t)
is persistent[GR04] with respect to a class of positive

definite matricesSn if R(̂Σn) − minΣ∈Sn
R(Σ)

P→ 0.
In the iid case,ℓ1 regularization yields a persistent esti-
mator, as we now show.

The maximum likelihood estimate minimizes

̂Rn(Σ) = tr(Σ−1
̂Sn) + log |Σ|,

wherêSn is the sample covariance matrix. Minimizing
̂Rn(Σ) without constraints giveŝΣn = ̂Sn. We would
like to minimize ̂Rn(Σ) subject to‖Σ−1‖0 ≤ L. This
would give the “best” sparse graphG, but it is not a
convex optimization problem. Hence we estimatêΣn

by solving a convex relaxation problem as written in (1)
instead. Algorithms for carrying out this optimization
are given by [BGd08, FHT07]. GivenLn, ∀n, let

Sn = {Σ : Σ ≻ 0,
∣

∣Σ−1
∣

∣

1
≤ Ln}. (5)

We define the oracle estimator and write (1) as (7)

Σ∗(n) = arg min
Σ∈Sn

R(Σ), (6)

̂Σn = arg min
Σ∈Sn

̂Rn(Σ). (7)

Note that one can choose to only penalize off-diagonal
elements ofΣ−1 as in [RBLZ07], if desired. We have
the following result, whose proof appears in Section 3.2.

Theorem 1 Suppose thatpn ≤ nξ for someξ ≥ 0 and

Ln = o

(

n

log pn

)1/2

for (5). Then for the sequence of empirical estimators
as defined in (7) andΣ∗(n), ∀n as in(6),

R(̂Σn) − R(Σ∗(n))
P→ 0.

3.1 Risk Consistency for the Non-identical Case

In the non-iid case we estimateΣ(t) at timet ∈ [0, 1].
GivenΣ(t), let

̂Rn(Σ(t)) = tr(Σ(t)−1
̂Sn(t)) + log |Σ(t)|.

For a givenℓ1 boundLn, we definêΣn(t) as the mini-
mizer of ̂Rn(Σ) subject toΣ ∈ Sn,

̂Σn(t) = arg min
Σ∈Sn

{

tr(Σ−1
̂Sn(t)) + log |Σ|

}

(8)

wherêSn(t) is given in (2), withK(·) a symmetric non-
negative function with compact support:

A1 The kernel functionK has a bounded support[−1, 1].

Lemma 2 Let Σ(t) = [σjk(t)]. Suppose the following
conditions hold:

1. There existsC0 > 0, C such thatmaxj,k supt |σ′
jk(t)|

≤ C0 andmaxj,k supt |σ′′
jk(t)| ≤ C.

2. pn ≤ nξ for someξ ≥ 0.

3. hn ≍ n−1/3.

Thenmaxj,k |̂Sn(t, j, k) − Σ(t, j, k)| = OP

(√
log n

n1/3

)

for all t > 0.

456

Proof: By the triangle inequality,

|̂Sn(t, j, k)−Σ(t, j, k)| ≤ |̂Sn(t, j, k)−ÊSn(t, j, k)|+

|ÊSn(t, j, k) − Σ(t, j, k)|.
In Lemma 14 we show that

max
j,k

sup
t

|ÊSn(t, j, k) − Σ(t, j, k)| = O(C0hn).

In Lemma 15, we show that

P

(

|̂Sn(t, j, k) − ÊSn(t, j, k))| > ǫ
)

≤ exp
{

−c1hnnǫ2
}

for somec1 > 0. Hence,

P

(

max
j,k

|̂Sn(t, j, k) − ÊSn(t, j, k)| > ǫ

)

≤

exp
{

−nhn(Cǫ2 − 2ξ log n/(nhn))
}

and (9)

maxj,k |̂Sn(t, j, k) − ÊSn(t, j, k)| = OP

(√

log n
nhn

)

.

Hence the result holds forhn ≍ n−1/3. �

With the use of Lemma 2, the proof of the following
follows the same lines as that of Theorem 1.

Theorem 3 Suppose all conditions in Lemma 2 and the
following hold:

Ln = o
(

n1/3/
√

log n
)

. (10)

Then,∀t > 0, for the sequence of estimators as in (8),

R(̂Σn(t)) − R(Σ∗(t))
P→ 0.

Remark 4 If a local linear smoother is substituted for
a kernel smoother, the rate can be improved fromn1/3

to n2/5 as the bias will be bounded asO(h2) in (3.1).

Remark 5 Suppose that∀i, j, if θij 6= 0, we haveθij =
Ω(1). Then Condition(10) allows that |Θ|1 = Ln;
hence ifp = nξ and ξ < 1/3, we have that‖Θ‖0 =
Ω(p). Hence the family of graphs that we can guaran-
tee persistency for, although sparse, is likely to include
connected graphs, for example, whenΩ(p) edges were
formed randomly amongp nodes.

The smoothness condition in Lemma 2 is expressed in
terms of the elements ofΣ(t) = [σij(t)]. It might be
more natural to impose smoothness onΘ(t) = Σ(t)−1

instead. In fact, smoothness ofΘt implies smoothness
of Σt as the next result shows. Let us first specify two
assumptions. We useσ2

i (x) as a shorthand forσii(x).

Definition 6 For a functionu : [0, 1] → R, let‖u‖∞ =
supx∈[0,1] |u(x)|.

A2 There exists some constantS0 < ∞ such that

max
i=1...,p

sup
t∈[0,1]

|σi(t)| ≤ S0 < ∞, hence (11)

max
i=1...,p

‖σi‖∞ ≤ S0. (12)

A3 Letθij(t), ∀i, j, be twice differentiable functions such
that θ′ij(t) < ∞ andθ′′ij(t) < ∞, ∀t ∈ [0, 1]. In addi-
tion, there exist constantsS1, S2 < ∞ such that

sup
t∈[0,1]

p
∑

k=1

p
∑

ℓ=1

p
∑

i=1

p
∑

j=1

|θ′ki(t)θ
′
ℓj(t)| ≤ S1 (13)

sup
t∈[0,1]

p
∑

k=1

p
∑

ℓ=1

|θ′′kℓ(t)| ≤ S2, (14)

where the first inequality guarantees that
supt∈[0,1]

∑p
k=1

∑p
ℓ=1 |θ′kℓ(t)| <

√
S1 < ∞.

Lemma 7 Denote the elements ofΘ(t) = Σ(t)−1 by
θjk(t). Under A 2 and A 3, the smoothness condition in
Lemma 2 holds.

The proof is in Section 6. In Section 7, we show some
preliminary results on achieving upper bounds on quan-
tities that appear in Condition 1 of Lemma 2 through
the sparsity level of the inverse covariance matrix, i.e.,
‖Θt‖0 , ∀t ∈ [0, 1].

3.2 Proof of Theorem 1

Note that∀n, supΣ∈Sn
|R(Σ) − ̂Rn(Σ)| ≤

∑

j,k

|Σ−1
jk | |̂Sn(j, k) − Σ0(j, k)| ≤ δn

∣

∣Σ−1
∣

∣

1
,

where it follows from [RBLZ07] that

δn = max
j,k

|̂Sn(j, k) − Σ0(j, k)| = OP (
√

log p/n).

Hence, minimizing overSn with Ln = o
(

n
log pn

)1/2

,

supΣ∈Sn
|R(Σ) − ̂Rn(Σ)| = oP (1). By the definitions

of Σ∗(n) ∈ Sn and ̂Σn ∈ Sn, we immediately have
R(Σ∗(n)) ≤ R(̂Σn) and ̂Rn(̂Σn) ≤ ̂Rn(Σ∗(n)); thus

0 ≤ R(̂Σn) − R(Σ∗(n))

= R(̂Σn) − ̂Rn(̂Σn) + ̂Rn(̂Σn) − R(Σ∗(n))

≤ R(̂Σn) − ̂Rn(̂Σn) + ̂Rn(Σ∗(n)) − R(Σ∗(n))

Using the triangle inequality and̂Σn, Σ∗(n) ∈ Sn,

|R(̂Σn) − R(Σ∗(n))| ≤
|R(̂Σn) − ̂Rn(̂Σn) + ̂Rn(Σ∗(n)) − R(Σ∗(n))|

≤ |R(̂Σn) − ̂Rn(̂Σn)| + | ̂Rn(Σ∗(n)) − R(Σ∗(n))|
≤ 2 sup

Σ∈Sn

|R(Σ) − ̂Rn(Σ)|. Thus∀ǫ > 0,

the event
{∣

∣

∣
R(̂Σn) − R(Σ∗(n))

∣

∣

∣
> ǫ
}

is contained in

the event
{

supΣ∈Sn
|R(Σ) − ̂Rn(Σ)| > ǫ/2

}

. Thus,

for Ln = o((n/ log n)1/2), and∀ǫ > 0, asn → ∞,

P

(∣

∣

∣
R(̂Σn) − R(Σ∗(n))

∣

∣

∣
> ǫ
)

≤

P

(

supΣ∈Sn
|R(Σ) − ̂Rn(Σ)| > ǫ/2

)

→ 0. �

457

4 Frobenius Norm Consistency

In this section, we show an explicit convergence rate
in the Frobenius norm for estimatingΘ(t), ∀t, where
p, |F | grow with n, so long as the covariances change
smoothly overt. Note that certain smoothness assump-
tions on a matrixW would guarantee the corresponding
smoothness conditions on its inverseW−1, so long as
W is non-singular, as we show in Section 6. We first
write our time-varying estimator̂Θn(t) for Σ−1(t) at
time t ∈ [0, 1] as the minimizer of theℓ1 regularized
negative smoothed log-likelihood over the entire set of
positive definite matrices,

̂Θn(t) = argmin
Θ≻0

{

tr(Θ̂Sn(t))−log |Θ|+λn|Θ|1
}

(15)

whereλn is a non-negative regularization parameter, and
̂Sn(t) is the smoothed sample covariance matrix using a
kernel function as defined in (2).

Now fix a point of interestt0. In the following, we
useΣ0 = (σij(t0)) to denote the true covariance matrix
at this time. LetΘ0 = Σ−1

0 be its inverse matrix. Define
the setS = {(i, j) : θij(t0) 6= 0, i 6= j}. Then|S| = s.
Note that|S| is twice the number of edges in the graph
G(t0). We make the following assumptions.

A4 Letp+s = o
(

n(2/3)/ log n
)

andϕmin(Σ0) ≥ k >
0, henceϕmax(Θ0) ≤ 1/k. For some sufficiently large

constantM , let ϕmin(Θ0) = Ω

(

2M
√

(p+s) log n
n2/3

)

.

The proof draws upon techniques from [RBLZ07], with
modifications necessary to handle the fact that we pe-
nalize|Θ|1 rather than|Θ♦|1 as in their case.

Theorem 8 Let ̂Θn(t) be the minimizer defined by(15).
Suppose all conditions in Lemma 2 and A 4 hold. If

λn ≍
√

log n

n2/3
, then

‖̂Θn(t)−Θ0‖F = OP

(

2M

√

(p + s) log n

n2/3

)

. (16)

Proof: Let 0 be a matrix with all entries being zero. Let

Q(Θ) = tr(Θ̂Sn(t0)) − log |Θ| + λ|Θ| −
tr(Θ0

̂Sn(t0)) + log |Θ0| − λ|Θ0|1
= tr

(

(Θ − Θ0)(̂Sn(t) − Σ0)
)

−
(log |Θ| − log |Θ0|) + tr ((Θ − Θ0)Σ0)

+ λ(|Θ|1 − |Θ0|1). (17)

̂Θ minimizesQ(Θ), or equivalentlŷ∆n = ̂Θ−Θ0 min-
imizesG(∆) ≡ Q(Θ0 + ∆). HenceG(0) = 0 and
G(̂Θn) ≤ G(0) = 0 by definition. Define for some

constantC1, δn = C1

√

log n
n2/3

. Now, let

λn =
C1

ε

√

log n

n2/3
=

δn

ε
for some 0 < ε < 1. (18)

Consider now the set

Tn = {∆ : ∆ = B − Θ0, B, Θ0 ≻ 0, ‖∆‖F = Mrn},
where

rn =

√

(p + s) log n

n2/3
≍ δn

√
p + s → 0. (19)

Claim 9 Under A 4, for all∆ ∈ Tn such that‖∆‖F =
o(1) as in(19), Θ0 + v∆ ≻ 0, ∀v ∈ I ⊃ [0, 1].

Proof: It is sufficient to show thatΘ0 + (1 + ε)∆ ≻
0 andΘ0 − ε∆ ≻ 0 for some1 > ε > 0. Indeed,
ϕmin(Θ0 + (1 + ε)∆) ≥ ϕmin(Θ0) − (1 + ε) ‖∆‖2 >
0 for ε < 1, given thatϕmin(Θ0) = Ω(2Mrn) and
‖∆‖2 ≤ ‖∆‖F = Mrn. Similarly, ϕmin(Θ0 − ε∆) ≥
ϕmin(Θ0) − ε ‖∆‖2 > 0 for ε < 1. �

Thus we have thatlog det(Θ0 + v∆) is infinitely
differentiable on the open intervalI ⊃ [0, 1] of v. This
allows us to use the Taylor’s formula with integral re-
mainder to obtain the following lemma:

Lemma 10 With probability1 − 1/nc for somec ≥ 2,
G(∆) > 0 for all ∆ ∈ Tn.

Proof: Let us useA as a shorthand for

vec∆T

(
∫ 1

0

(1 − v)(Θ0 + v∆)−1 ⊗ (Θ0 + v∆)−1dv

)

vec∆,

where⊗ is the Kronecker product (ifW = (wij)m×n,
P = (bkℓ)p×q, thenW ⊗ P = (wijP)mp×nq), and
vec∆ ∈ R

p
2

is ∆p×p vectorized. Now, the Taylor ex-
pansion gives
log |Θ0 + ∆| − log |Θ0| = d

dv log |Θ0 + v∆||v=0∆ +
∫ 1

0
(1 − v) d2

dv2 log det(Θ0 + v∆)dv = tr(Σ0∆) + A,
where by symmetry,tr(Σ0∆) = tr(Θ −Θ0)Σ0. Hence

G(∆) = (20)

A + tr
(

∆(̂Sn − Σ0)
)

+ λn (|Θ0 + ∆|1 − |Θ0|1) .

For an index setS and a matrixW = [wij], writeWS ≡
(wijI((i, j) ∈ S)), whereI(·) is an indicator function.
RecallS = {(i, j) : Θ0ij 6= 0, i 6= j} and letSc =

{(i, j) : Θ0ij = 0, i 6= j}. HenceΘ = Θց + Θ♦
S +

Θ♦
Sc , ∀Θ in our notation. Note that we haveΘ♦

0Sc = 0,

|Θ♦
0 + ∆♦|1 = |Θ♦

0S + ∆♦
S |1 + |∆♦

Sc |1,
|Θ♦

0 |1 = |Θ♦
0S |1, hence

|Θ♦
0 + ∆♦|1 − |Θ♦

0 |1 ≥
∣

∣∆♦
Sc

∣

∣

1
−
∣

∣∆♦
S

∣

∣

1
,

|Θց

0 + ∆ց|1 − |Θց

0 |1 ≥ −|∆ց|1,
where the last two steps follow from the triangle in-
equality. Therefore

|Θ0 + ∆|1 − |Θ0|1 =

|Θ♦
0 + ∆♦|1 − |Θ♦

0 |1 + |Θց

0 + ∆ց|1 − |Θց

0 |1
≥

∣

∣∆♦
Sc

∣

∣

1
−
∣

∣∆♦
S

∣

∣

1
− |∆ց|1. (21)

458

Now, from Lemma 2,maxj,k |̂Sn(t, j, k)−σ(t, j, k)| =

OP

(√
log n

n1/3

)

= OP (δn). By (9), with probability1− 1
n2

∣

∣

∣
tr
(

∆(̂Sn − Σ0)
)

∣

∣

∣
≤ δn |∆|1 , hence by (21)

tr
(

∆(̂Sn − Σ0)
)

+ λn (|Θ0 + ∆|1 − |Θ0|1)

≥ −δn |∆ց|1 − δn

∣

∣∆♦
Sc

∣

∣

1
− δn

∣

∣∆♦
S

∣

∣

1

−λn|∆ց|1 + λn

∣

∣∆♦
Sc

∣

∣

1
− λn

∣

∣∆♦
S

∣

∣

1

≥ −(δn + λn)
(

|∆ց|1 +
∣

∣∆♦
S

∣

∣

1

)

+ (λn − δn)
∣

∣∆♦
Sc

∣

∣

1

≥ −(δn + λn)
(

|∆ց|1 +
∣

∣∆♦
S

∣

∣

1

)

, where (22)

(δn + λn)
(

|∆ց|1 +
∣

∣∆♦
S

∣

∣

1

)

≤ (δn + λn)
(√

p‖∆ց‖F +
√

s‖∆♦
S‖F

)

≤ (δn + λn)
(√

p‖∆ց‖F +
√

s‖∆♦‖F

)

≤ (δn + λn)max{√p,
√

s}
(

‖∆ց‖F + ‖∆♦‖F

)

≤ (δn + λn)max{√p,
√

s}
√

2‖∆‖F

≤ δn
1 + ε

ε

√
p + s

√
2‖∆‖F . (23)

Combining (20), (22), and (23), we have with probabil-
ity 1 − 1

nc , for all ∆ ∈ Tn,

G(∆) ≥ A − (δn + λn)
(

|∆ց|1 +
∣

∣∆♦
S

∣

∣

1

)

≥ k2

2 + τ
‖∆‖2

F − δn
1 + ε

ε

√
p + s

√
2‖∆‖F

= ‖∆‖2
F

(

k2

2 + τ
− δn

√
2(1 + ε)

ε‖∆‖F

√
p + s

)

= ‖∆‖2
F

(

k2

2 + τ
− δn

√
2(1 + ε)

εMrn

√
p + s

)

> 0

for M sufficiently large, where the bound onA comes
from Lemma 11 by [RBLZ07]. �

Lemma 11 ([RBLZ07]) For someτ = o(1), under A 4,

vec∆T
(

∫ 1

0
(1 − v)(Θ0 + v∆)−1 ⊗ (Θ0 + v∆)−1dv

)

vec∆

≥ ‖∆‖2
F

k2

2+τ , for all ∆ ∈ Tn.

We next show the following claim.

Claim 12 If G(∆) > 0, ∀∆ ∈ Tn, thenG(∆) > 0 for
all ∆ in Vn = {∆ : ∆ = D − Θ0, D ≻ 0, ‖∆‖F >
Mrn, for rn as in(19)}. Hence ifG(∆) > 0, ∀∆ ∈
Tn, thenG(∆) > 0 for all ∆ ∈ Tn ∪ Vn.

Proof: Now by contradiction, supposeG(∆′) ≤ 0 for
some∆′ ∈ Vn. Let ∆0 = Mrn

‖∆′‖F
∆′. Thus∆0 = θ0 +

(1− θ)∆′, where0 < 1− θ = Mrn

‖∆′‖F
< 1 by definition

of ∆0. Hence∆0 ∈ Tn given thatΘ0 + ∆0 ≻ 0 by
Claim 13. Hence by convexity ofG(∆), we have that
G(∆0) ≤ θG(0) + (1 − θ)G(∆′) ≤ 0, contradicting
thatG(∆0) > 0 for ∆0 ∈ Tn. �

By Claim 12 and the fact thatG(̂∆n) ≤ G(0) = 0,
we have the following: IfG(∆) > 0, ∀∆ ∈ Tn, then
̂∆n 6∈ (Tn ∪ Vn), that is,‖̂∆n‖F < Mrn, given that
̂∆n = ̂Θn − Θ0, wherêΘn, Θ0 ≻ 0. Therefore

P

(

‖̂∆n‖F ≥ Mrn

)

= 1 − P

(

‖̂∆n‖F < Mrn

)

≤ 1 − P (G(∆) > 0, ∀∆ ∈ Tn)

= P (G(∆) ≤ 0 for some∆ ∈ Tn) <
1

nc
.

We thus establish that‖̂∆n‖F ≤ OP (Mrn). �

Claim 13 Let B be ap × p matrix. If B ≻ 0 andB +
D ≻ 0, thenB + vD ≻ 0 for all v ∈ [0, 1].

Proof: We only need to check forv ∈ (0, 1), where1−
v > 0; ∀x ∈ R

p, byB ≻ 0 andB +D ≻ 0, xT Bx > 0
andxT (B + D)x > 0; hencexT Dx > −xT Bx. Thus
xT (B+vD)x = xT Bx+vxT Dx > (1−v)xT Bx > 0.
�

5 Large Deviation Inequalities
Before we go on, we explain the notation that we fol-
low throughout this section. We switch notation from
t to x and form a regression problem for non-iid data.
Given an interval of[0, 1], the point of interest isx0 =
1. We form a design matrix by sampling a set ofn p-
dimensional Gaussian random vectorsZt at t = 0, 1/n,
2/n, . . . , 1, whereZt ∼ N(0, Σt) are independently
distributed. In this section, we index the random vectors
Z with k = 0, 1, . . . , n such thatZk = Zt for k = nt,
with corresponding covariance matrix denoted byΣk.
Hence

Zk = (Zk1, . . . , Zkp)
T ∼ N(0, Σk), ∀k. (24)

These are independent but not identically distributed.
We will need to generalize the usual inequalities. In
Section A, via a boxcar kernel function, we use moment
generating functions to show that for̂Σ = 1

n

∑n
k=1 ZkZT

k ,

Pn(|̂Σij − Σij(x0)| > ǫ) < e−cnǫ2 (25)
wherePn = P1×· · ·×Pn denotes the product measure.
We look acrossn time-varying Gaussian vectors, and
roughly, we comparêΣij with Σij(x0), whereΣ(x0) =
Σn is the covariance matrix in the end of the window
for t0 = n. Furthermore, we derive inequalities in Sec-
tion 5.1 for a general kernel function.

5.1 Bounds For Kernel Smoothing

In this section, we derive large deviation inequalities for
the covariance matrix based on kernel regression estima-
tions. Recall that we assume that the symmetric nonneg-
ative kernel functionK has a bounded support[−1, 1] in
A 1. This kernel has the property that:

2

∫ 0

−1

vK(v)dv ≤ 2

∫ 0

−1

K(v)dv = 1 (26)

2

∫ 0

−1

v2K(v)dv ≤ 1. (27)

459

In order to estimatet0, instead of taking an average of
sample variances/covariances over the lastn samples,
we use the weighting scheme such that data close tot0
receives larger weights than those that are far away. Let
Σ(x) = (σij(x)). Let us definex0 = t0

n = 1, and
∀i = 1, . . . , n, xi = t0−i

n and

ℓi(x0) =
2

nh
K

(

xi − x0

h

)

≈ K
(

xi−x0

h

)

∑n
i=1 K

(

xi−x0

h

) (28)

where the approximation is due to replacing the sum
with the Riemann integral:

n
∑

i=1

ℓi(x0) =

n
∑

i=1

2

nh
K

(

xi − x0

h

)

≈ 2

∫ 0

−1

K(v)dv = 1,

due to the fact thatK(v) has compact support in[−1, 1]
andh ≤ 1. Let Σk = (σij(xk)) , ∀k = 1, . . . , n, where
σij(xk) = cov(Zki, Zkj) = ρij(xk)σi(xk)σj(xk) and
ρij(xk) is the correlation coefficient betweenZi andZj

at timexk. Recall that we have independent(ZkiZkj)
for all k = 1, . . . , n such thatE(ZkiZkj) = σij(xk).
Let

Φ1(i, j) =
1

n

n
∑

k=1

2

h
K

(

xk − x0

h

)

σij(xk), hence

E

n
∑

k=1

ℓk(x0)ZkiZkj =

n
∑

k=1

ℓk(x0)σij(xk) = Φ1(i, j).

We thus decompose and bound for point of interestx0
∣

∣

∣

∣

∣

n
∑

k=1

ℓk(x0)ZkiZkj − σij(x0)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

E

n
∑

k=1

ℓk(x0)ZkiZkj − σij(x0)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

n
∑

k=1

ℓk(x0)ZkiZkj − E

n
∑

k=1

ℓk(x0)ZkiZkj

∣

∣

∣

∣

∣

(29)

=

∣

∣

∣

∣

∣

n
∑

k=1

ℓk(x0)ZkiZkj − Φ1(i, j)

∣

∣

∣

∣

∣

+ |Φ1(i, j) − σij(x0)| .

Before we start our analysis on large deviations, we first
look at the bias term.

Lemma 14 Suppose there existsC > 0 such that

max
i,j

sup
t

|σ′′(t, i, j)| ≤ C. Then

∀t ∈ [0, 1], max
i,j

|ÊSn(t, i, j) − σij(t)| = O(h).

Proof: W.l.o.g, lett = t0, henceÊSn(t, i, j) = Φ1(i, j).
We use the Riemann integral to approximate the sum,

Φ1(i, j) =
1

n

n
∑

k=1

2

h
K

(

xk − x0

h

)

σij(xk)

≈
∫ x0

xn

2

h
K

(

u − x0

h

)

σij(u)du

= 2

∫ 0

−1/h

K(v)σij(x0 + hv)dv.

We now use Taylor’s Formula to replaceσij(x0 + hv)

and obtain2
∫ 0

−1/h K(v)σij(x0 + hv)dv =

2
∫ 0

−1
K(v)

(

σij(x0) + hvσ′
ij(x0) +

σ′′
ij(y(v))(hv)2

2

)

dv

= σij(x0) + 2
∫ 0

−1
K(v)

(

hvσ′
ij(x0) + C(hv)2

2

)

dv,

where 2

∫ 0

−1

K(v)

(

hvσ′
ij(x0) +

C(hv)2

2

)

dv

= 2hσ′
ij(x0)

∫ 0

−1

vK(v)dv +
Ch2

2

∫ 0

−1

v2K(v)dv

≤ hσ′
ij(x0) +

Ch2

4
, wherey(v) − x0 < hv.

ThusΦ1(i, j) − σij(x0) = O(h). �

We now move on to the large deviation bound for all
entries of the smoothed empirical covariance matrix.

Lemma 15 For ǫ <
C1(σ2

i (x0)σ
2

j (x0)+σ2

ij(x0))
maxk=1,...,n

“

2K
“

xk−x0

h

”

σi(xk)σj(xk)
” ,

whereC1 is defined in Claim 18, for someC > 0,

P

(

|̂Sn(t, i, j) − ÊSn(t, i, j)| > ǫ
)

≤ exp
{

−Cnhǫ2
}

.

Proof: Let us defineAk = ZkiZkj − σij(xk).

P

(

|̂Sn(t, i, j) − ÊSn(t, i, j)| > ǫ
)

= P

(

n
∑

k=1

ℓk(x0)ZkiZkj −
n
∑

k=1

ℓk(x0)σij(xk) > ǫ

)

For everyt > 0, we have by Markov’s inequality

P

(

n
∑

k=1

nℓk(x0)Ak > nǫ

)

= P

(

et
Pn

k=1

2

h
K(xi−x0

h)Ak > entǫ
)

≤ Eet
Pn

k=1

2

h
K(xi−x0

h)Ak

entǫ
. (30)

Before we continue, for a givent, let us first define the
following quantities, wherei, j are omitted fromΦ1(i, j)

• ak = 2t
h K

(

xk−x0

h

)

(σi(xk)σj(xk) + σij(xk))

• bk = 2t
h K

(

xk−x0

h

)

(σi(xk)σj(xk)−σij(xk)) thus

• Φ1 = 1
n

∑n
k=1

ak−bk

2t , Φ2 = 1
n

∑n
k=1

a2

k+b2k
4t2

• Φ3 = 1
n

∑n
k=1

a3

k−b3k
6t3 , Φ4 = 1

n

∑n
k=1

a4

k+b4k
8t4

• M = maxk=1,...,n

(

2
hK

(

xk−x0

h

)

σi(xk)σj(xk)
)

We now establish some convenient comparisons; see Sec-
tion B.1 and B.2 for their proofs.

Claim 16 Φ3

Φ2
≤ 4M

3 andΦ4

Φ2
≤ 2M2, where both equal-

ities are established atρij(xk) = 1, ∀k.

460

Lemma 17 For bk ≤ ak ≤ 1
2 , ∀k, 1

2

∑n
k=1 ln 1

(1−ak)(1+bk)

≤ ntΦ1 + nt2Φ2 + nt3Φ3 + 9
5nt4Φ4.

To show the following, we first replace the sum with a
Riemann integral, and then use Taylor’s Formula to ap-
proximateσi(xk), σj(xk), andσij(xk), ∀k = 1, . . . , n
with σi, σj σij and their first derivatives atx0 respec-
tively, plus some remainder terms; see Section B.3 for
details.

Claim 18 For h = n−ǫ for some1 > ǫ > 0, there exists
some constantC1 > 0 such that

Φ2(i, j) =
C1(σ

2
i (x0)σ

2
j (x0) + σ2

ij(x0))

h
.

Lemma19 computes the moment generating function for
2
hK

(

xk−x0

h

)

Zki · Zkj . The proof proceeds exactly as
that of Lemma 21 after substitutingt with 2t

h K
(

xk−x0

h

)

everywhere.

Lemma 19 Let 2t
h K

(

xk−x0

h

)

(1+ρij(xk))σi(xk)σj(xk)
< 1, ∀k. For bk ≤ ak < 1.

Ee
2t
h

K
“

xk−x0

h

”

ZkiZkj = ((1 − ak)(1 + bk))
−1/2

.

Remark 20 Thus when we sett = ǫ
4Φ2

, the bound onǫ
implies thatbk ≤ ak ≤ 1/2, ∀k:

ak = t(1 + ρij(xk))σi(xk)σj(xk)

≤ 2tσi(xk)σj(xk) =
ǫσi(xk)σj(xk)

2Φ2
≤ 1

2
.

We can now finish showing the large deviation bound
for maxi,j |̂Si,j − ESi,j |. Given thatA1, . . . , An are
independent, we have

Ee
t

P

n
k=1

2

h
K

“

xk−x0

h

”

Ak =
n
∏

k=1

Ee
2t
h

K(x1−x0

h)Ak

=

n
∏

k=1

exp

(

−2t

h
K

(

xk − x0

h

)

σij(xk)

)

·

n
∏

k=1

Ee
2t
h

K
“

xk−x0

h

”

ZkiZkj (31)

By (30), (31), Lemma 19, fort ≤ ǫ
4Φ2

,

P

(

n
∑

k=1

2

h
K

(

xk − x0

h

)

Ak > nǫ

)

≤ Ee
t

P

n
k=1

2

h
K

“

xk−x0

h

”

Ak

e−ntǫ
= e−ntǫ ·

∏n
k=1 e

− 2t
h

K
“

xk−x0

h

”

σij(xk) · Ee
2t
h

K
“

xk−x0

h

”

ZkiZkj

= e
−ntǫ−ntΦ1(i,j)+ 1

2

P

n
k=1

ln 1

(1−ak)(1+bk)

≤ exp

(

−ntǫ + nt2Φ2 + nt3Φ3 +
9

5
nt4Φ4

)

,

where the last step is due to Remark 20 and Lemma 17.
Now let us consider takingt that minimizes
exp

(

−ntǫ + nt2Φ2 + nt3Φ3 + 9
5nt4Φ4

)

; Let t = ǫ
4Φ2

:
d
dt

(

−ntǫ + nt2Φ2 + nt3Φ3 + 9
5nt4Φ4

)

≤ − ǫ
40 ; Now

given that ǫ2

Φ2
< 1

M , Claim 16 and 18:

P

(

n
∑

k=1

2

h
K

(

xk − x0

h

)

Ak > nǫ

)

≤ exp

(

−ntǫ + nt2Φ2 + nt3Φ3 +
9

5
nt4Φ4

)

≤ exp

(−nǫ2

4Φ2
+

nǫ2

16Φ2
+

nǫ2

64Φ2

ǫΦ3

Φ2
2

+
9

5

nǫ2

256Φ2

ǫ2Φ4

Φ3
2

)

≤ exp

(−3nǫ2

20Φ2

)

≤ exp

(

− 3nhǫ2

20C1(σ2
i (x0)σ2

j (x0) + σ2
ij(x0))

)

.

Finally, let’s check the requirement onǫ ≤ Φ2

M ,

ǫ ≤
(

C1(1 + ρ2
ij(x0))σ

2
i (x0)σ

2
j (x0)

)

/h

maxk=1,...,n

(

2
hK

(

xk−x0

h

)

σi(xk)σj(xk)
)

=

(

C1(1 + ρ2
ij(x0))σ

2
i (x0)σ

2
j (x0)

)

maxk=1,...,n

(

2K
(

xk−x0

h

)

σi(xk)σj(xk)
) .

�

For completeness, we compute the moment generat-
ing function forZk,iZk,j .

Lemma 21 Let t(1 + ρij(xk))σi(xk)σj(xk) < 1, ∀k,
so thatbk ≤ ak < 1, omittingxk everywhere,

EetZk,iZk,j =
(

1

(1 − t(σiσj + σij)(1 + t(σiσj − σij))

)1/2

.

Proof: W.l.o.g., leti = 1 andj = 2.

E
(

etZ1Z2

)

= E
(

E
(

etZ2Z1 |Z2

))

= E exp

((

tρ12σ1

σ2
+

t2σ2
1(1 − ρ2

12)

2

)

Z2
2

)

=

(

1 − 2

(

tρ12σ1

σ2
+

t2σ2
1(1 − ρ2

12)

2

)

σ2
2

)−1/2

=

(

1

1 − (2tρ12σ1σ2 + t2σ2
1σ

2
2(1 − ρ2

12))

)1/2

=

(

1

(1 − t(1 + ρ12)σ1σ2)(1 + t(1 − ρ12)σ1σ2)

)1/2

where2tρ12σ1σ2 + t2σ2
1σ

2
2(1− ρ2

12) < 1. This requires
thatt < 1

(1+ρ12)σ1σ2

which is equivalent to2tρ12σ1σ2+

t2σ2
1σ2

2(1 − ρ2
12) − 1 < 0. One can check that if we

requiret(1+ρ12)σ1σ2 ≤ 1, which implies thattσ1σ2 ≤
1− tρ12σ1σ2 and hencet2σ2

1σ
2
2 ≤ (1− tρ12σ1σ2)

2, the
lemma holds. �

461

6 Smoothness and Sparsity ofΣt via Σ
−1

t

In this section we show that if we assumeΘ(x) = (θij(x))
are smooth and twice differentiable functions ofx ∈
[0, 1], i.e.,θ′ij(x) < ∞ andθ′′ij(x) < ∞ for x ∈ [0, 1], ∀i, j,
and satisfyA 3, then the smoothness conditions of Lemma 2
are satisfied. The following is a standard result in matrix
analysis.

Lemma 22 Let Θ(t) ∈ Rp×p has entries that are dif-
ferentiable functions oft ∈ [0, 1]. Assuming thatΘ(t) is
always non-singular, then

d

dt
[Σ(t)] = −Σ(t)

d

dt
[Θ(t)]Σ(t).

Lemma 23 SupposeΘ(t) ∈ Rp×p has entries that each
are twice differentiable functions oft. Assuming that
Θ(t) is always non-singular, then

d2

dt2
[Σ(t)] = Σ(t)D(t)Σ(t), where

D(t) = 2
d

dt
[Θ(t)]Σ(t)

d

dt
[Θ(t)] − d2

dt2
[Θ(t)].

Proof: The existence of the second order derivatives for
entries ofΣ(t) is due to the fact thatΣ(t) and d

dt [Θ(t)]
are both differentiable∀t ∈ [0, 1]; indeed by Lemma 22,

d2

dt2
[Σ(t)] =

d

dt

[

−Σ(t)
d

dt
[Θ(t)]Σ(t)

]

= − d

dt
[Σ(t)]

d

dt
[Θ(t)]Σ(t) − Σ(t)

d

dt

[

d

dt
[Θ(t)]Σ(t)

]

= − d

dt
[Σ(t)]

d

dt
[Θ(t)]Σ(t) − Σ(t)

d2

dt2
[Θ(t)]Σ(t) −

Σ(t)
d

dt
[Θ(t)]

d

dt
[Σ(t)]

= Σ(t)

(

2
d

dt
[Θ(t)]Σ(t)

d

dt
[Θ(t)] − d2

dt2
[Θ(t)]

)

Σ(t),

hence the lemma holds by the definition ofD(t). �

Let Σ(x) = (σij(x)) , ∀x ∈ [0, 1]. Let Σ(x) =
(Σ1(x), Σ2(x), . . . ,Σp(x)), whereΣi(x) ∈ Rp denotes
a column vector. By Lemma 23,

σ′
ij(x) = −ΣT

i (x)Θ′(x)Σj(x), (32)

σ′′
ij(x) = ΣT

i (x)D(x)Σj(x), (33)

whereΘ′(x) =
(

θ′ij(x)
)

, ∀x ∈ [0, 1].

Lemma 24 Given A 2 and A 3,∀x ∈ [0, 1],

|σ′
ij(x)| ≤ S2

0

√

S1 < ∞.

Proof: |σ′
ij(x)| = |ΣT

i (x)Θ′(x)Σj(x)|

≤ max
i=1...,p

|σ2
i (x)|

p
∑

k=1

p
∑

ℓ=1

|θ′kℓ(x)| ≤ S2
0

√

S1.

�

We denote the elements ofΘ(x) by θjk(x). Let θ′ℓ
represent a column vector ofΘ′.

Theorem 25 Given A 2 and A 3,∀i, j, ∀x ∈ [0, 1],

sup
x∈[0,1]

∣

∣σ′′
ij(x)

∣

∣ < 2S3
0S1 + S2

0S2 < ∞.

Proof: By (33) and the triangle inequality,
∣

∣σ′′
ij(x)

∣

∣ =
∣

∣ΣT
i (x)D(x)Σj(x)

∣

∣

≤ max
i=1...,p

∣

∣σ2
i (x)

∣

∣

p
∑

k=1

p
∑

ℓ=1

|Dkℓ(x)|

≤ S2
0

p
∑

k=1

p
∑

ℓ=1

2|θ′Tk (x)Σ(x)θ′ℓ(x)| + |θ′′kℓ(x)|

= 2S3
0S1 + S2

0S2,

where by A 3,
∑p

k=1

∑p
ℓ=1 |θ′′kℓ(x)| ≤ S2, and

p
∑

k=1

p
∑

ℓ=1

∣

∣θ′Tk (x)Σ(x)θ′ℓ(x)
∣

∣

=

p
∑

k=1

p
∑

ℓ=1

p
∑

i=1

p
∑

j=1

∣

∣θ′ki(x)θ′ℓj(x)σij(x)
∣

∣

≤ max
i=1...,p

|σi(x)|
p
∑

k=1

p
∑

ℓ=1

p
∑

i=1

p
∑

j=1

∣

∣θ′ki(x)θ′ℓj(x)
∣

∣

≤ S0S1. �

7 Some Implications of a Very SparseΘ

We useL1 to denote Lebesgue measure onR. The aim
of this section is to prove some bounds that correspond
to A 3, but only forL1 a.e.x ∈ [0, 1], based on a single
sparsity assumption onΘ as inA 5. We letE ⊂ [0, 1]
represent the “bad” set withL1(E) = 0. andL1 a.e.
x ∈ [0, 1] refer to points in the set[0, 1] \ E such that
L1([0, 1] \ E) = 1. When‖Θ(x)‖0 ≤ s + p for all
x ∈ [0, 1], we immediately obtain Theorem 26, whose
proof appears in Section 7.1. We like to point out that al-
though we apply Theorem 26 toΘ and deduce smooth-
ness ofΣ, we could apply it the other way around. In
particular, it might be interesting to apply it to the cor-
relation coefficient matrix(ρij), where the diagonal en-
tries remain invariant. We useΘ′(x) andΘ′′(x) to de-
note(θ′ij(x)) and(θ′′ij(x)) respectively∀x.

A5 Assume that‖Θ(x)‖0 ≤ s + p ∀x ∈ [0, 1].

A6 ∃S4, S5 < ∞ such that

S4 = max
ij

∥

∥θ′ij
∥

∥

2

∞ and S5 = max
ij

∥

∥θ′′ij
∥

∥

∞ . (34)

We state a theorem, the proof of which is in Section 7.1
and a corollary.

Theorem 26 UnderA 5, we have‖Θ′′(x)‖0 ≤ ‖Θ′(x)‖0

≤ ‖Θ(x)‖0 ≤ s + p for L1 a.e.x ∈ [0, 1].

462

Corollary 27 Given A 2 and A 5, forL1 a.e.x ∈ [0, 1]

|σ′
ij(x)| ≤ S2

0

√

S4(s + p) < ∞. (35)

Proof: By proof of Lemma 24,
|σ′

ij(x)| ≤ maxi=1...,p ‖σ2
i ‖∞

∑p
k=1

∑p
ℓ=1 |θ′kℓ(x)|.

Hence by Theorem 26, forL1 a.e.x ∈ [0, 1], |σ′
ij(x)| ≤

maxi=1...,p ‖σ2
i ‖∞

∑p
k=1

∑p
ℓ=1 |θ′kℓ(x)|

≤ S2
0 maxk,ℓ ‖θ′kℓ‖∞ ‖Θ′(x)‖0 ≤ S2

0

√
S4(s + p). �

Lemma 28 UnderA 5 and 6, forL1 a.e.x ∈ [0, 1],
p
∑

k=1

p
∑

ℓ=1

p
∑

i=1

p
∑

j=1

∣

∣θ′ki(x)θ′ℓj(x)
∣

∣ ≤ (s + p)2 max
ij

∥

∥θ′ij
∥

∥

2

∞

p
∑

k=1

p
∑

ℓ=1

θ′′kℓ ≤ (s + p)max
ij

∥

∥θ′′ij
∥

∥

∞ , hence

ess sup
x∈[0,1]

σ′′
ij(x) ≤ 2S3

0(s + p)2S4 + S2
0(s + p)S5.

Proof: By the triangle inequality, forL1 a.e.x ∈ [0, 1],
∣

∣σ′′
ij(x)

∣

∣ =
∣

∣ΣT
i DΣj

∣

∣

=

∣

∣

∣

∣

∣

p
∑

k=1

p
∑

ℓ=1

σik(x)σjℓ(x)Dkℓ(x)

∣

∣

∣

∣

∣

≤ max
i=1...,p

∥

∥σ2
i

∥

∥

∞

p
∑

k=1

p
∑

ℓ=1

|Dkℓ(x)|

≤ 2S2
0

p
∑

k=1

p
∑

ℓ=1

|θ′Tk Σθ′ℓ| + S2
0

p
∑

k=1

p
∑

ℓ=1

|θ′′kℓ|

= 2S3
0(s + p)2S4 + S2

0(s + p)S5,

where forL1 a.e.x ∈ [0, 1],

p
∑

k=1

p
∑

ℓ=1

∣

∣θ′Tk Σθ′ℓ
∣

∣ ≤
p
∑

k=1

p
∑

ℓ=1

p
∑

i=1

p
∑

j=1

∣

∣θ′kiθ
′
ℓjσij

∣

∣

≤ max
i=1...,p

‖σi‖∞
p
∑

k=1

p
∑

ℓ=1

p
∑

i=1

p
∑

j=1

∣

∣θ′kiθ
′
ℓj

∣

∣

≤ S0(s + p)2S4

and
∑p

k=1

∑p
ℓ=1 |θ′′kℓ| ≤ (s + p)S5. The first inequal-

ity is due to the following observation: at most(s + p)2

elements in the sum of
∑

k

∑

i

∑

ℓ

∑

j

∣

∣

∣
θ′ki(x)θ′ℓj(x)

∣

∣

∣

for L1 a.e. x ∈ [0, 1], that is, except forE, are non-
zero, due to the fact that forx ∈ [0, 1] \N , ‖Θ′(x)‖0 ≤
‖Θ(x)‖0 ≤ s + p as in Theorem 26. The second in-
equality is obtained similarly using the fact that forL1

a.e.x ∈ [0, 1], ‖Θ′′(x)‖0 ≤ ‖Θ(x)‖0 ≤ s + p. �

Remark 29 For the bad setE ⊂ [0, 1] with L1(E) =
0, σ′

ij(x) is well defined as shown in Lemma 22, but it
can only be loosely bounded byO(p2), as‖Θ′(x)‖0 =
O(p2), instead ofs+p, for x ∈ E; similarly, σ′′

ij(x) can
only be loosely bounded byO(p4).

By Lemma 28, using the Lebesgue integral, we can
derive the following corollary.

Corollary 30 Under A 2, A 5, and A 6,
∫ 1

0

(

σ′′
ij(x)

)2
dx ≤ 2S3

0S4s + p2 + S2
0S5(s + p) < ∞.

7.1 Proof of Theorem 26.

Let ‖Θ(x)‖0 ≤ s + p for all x ∈ [0, 1].

Lemma 31 Let a functionu : [0, 1] → R. Supposeu
has a derivative onF (finite or not) withL1(u(F)) = 0.
Thenu′(x) = 0 for L1 a.e.x ∈ F .

TakeF = {x ∈ [0, 1] : θij(x) = 0} andu = θij . For
L1 a.e.x ∈ F , that is, except for a setNij of L1(Nij) =
0, θ′ij(x) = 0. Let N =

⋃

ij Nij . By Lemma 31,

Lemma 32 If x ∈ [0, 1] \ N , whereL1(N) = 0, if
θij(x) = 0, thenθ′ij(x) = 0 for all i, j.

Let vij = θ′ij . TakeF = {x ∈ [0, 1] : vij(x) = 0}.
For L1 a.e. x ∈ F , that is, except for a setN1

ij with
L(N1

ij) = 0, v′ij(x) = 0. Let N1 =
⋃

ij N1
ij . By

Lemma 31,

Lemma 33 If x ∈ [0, 1] \ N1, whereL1(N1) = 0, if
θ′ij(x) = 0, thenθ′′ij(x) = 0, ∀i, j.

Thus this allows to conclude that

Lemma 34 If x ∈ [0, 1]\N∪N1, whereL1(N∪N1) =
0, if θij(x) = 0, thenθ′ij(x) = 0 andθ′′ij(x) = 0, ∀i, j.

Thus for allx ∈ [0, 1]\N∪N1, ‖Θ′′(x)‖0 ≤ ‖Θ′(x)‖0 ≤
‖Θ(x)‖0 ≤ (s + p). �

8 Examples

In this section, we demonstrate the effectiveness of the
method in a simulation. Starting at timet = t0, the
original graph is as shown at the top of Figure 1. The
graph evolves according to a type of Erdős-Rényi ran-
dom graph model. Initially we setΘ = 0.25Ip×p, where
p = 50. Then, we randomly select50 edges and up-
dateΘ as follows: for each new edge(i, j), a weight
a > 0 is chosen uniformly at random from[0.1, 0.3];
we subtracta from θij andθji, and increaseθii, θjj by
a. This keepsΣ positive definite. When we later delete
an existing edge from the graph, we reverse the above
procedure with its weight. Weights are assigned to the
initial 50 edges, and then we change the graph structure
periodically as follows: Every200 discrete time steps,
five existing edges are deleted, and five new edges are
added. However, for each of the five new edges, a target
weight is chosen, and the weight on the edge is gradu-
ally changed over the ensuing200 time steps in order
ensure smoothness. Similarly, for each of the five edges
to be deleted, the weight gradually decays to zero over
the ensuing200 time steps. Thus, almost always, there
are55 edges in the graph and10 edges have weights that
are varying smoothly.

463

Original Graph

0.0 0.1 0.2 0.3 0.4 0.5

0
20

40
60

80
10

0

Precision

ρ

ra
te

 %

n = 200
n = 400
n = 600
n = 800
Oracle

0.0 0.1 0.2 0.3 0.4 0.5

0
20

40
60

80
10

0

Recall

ρ

ra
te

 %

n = 200
n = 400
n = 600
n = 800
Oracle

20 40 60 80 100

90
10

0
11

0
12

0
13

0
14

0
15

0

Risk

|Σ~|1

pr
ed

ic
tiv

e
ris

k

n = 200
n = 400
n = 600
n = 800
Oracle

n=200
ρ=0.24

n=200
ρ=0.2

n=200
ρ=0.14

Figure 1: Plots from top to bottom show that as the pe-
nalization parameterρ increases, precision goes up, and
then down as no edges are predicted in the end. Recall
goes down as the estimated graphs are missing more and
more edges. The oracleΣ∗ performs the best, given the
same value for|̂Σn(t0)|1 = |Σ∗|1, ∀n.

8.1 Regularization Paths

We increase the sample size fromn = 200, to 400,
600, and800 and use a Gaussian kernel with bandwidth
h = 5.848

n1/3
. We use the following metrics to evaluate

model consistency risk for(3) and predictive risk(4) in
Figure1 as theℓ1 regularization parameterρ increases.

• Let ̂Fn denote edges in estimated̂Θn(t0) and F
denote edges inΘ(t0). Let us define

precision = 1 −
̂Fn \ F

̂Fn

=
̂Fn ∩ F

̂Fn

,

recall = 1 − F \ ̂Fn

F
=
̂Fn ∩ F

F
.

Figure1 shows how they change withρ.

• Predictive risks in(4) are plotted for both the or-
acle estimator(6) and empirical estimators(7) for
eachn. They are indexed with theℓ1 norm of var-
ious estimators vectorized; hence| · |1 for ̂Σn(t0)
andΣ∗(t0) are the same along a vertical line. Note
that |Σ∗(t0)|1 ≤ |Σ(t0)|1, ∀ρ ≥ 0; for every esti-
mator˜Σ (the oracle or empirical),|˜Σ|1 decreases as
ρ increases, as shown in Figure1 for |̂Σ200(t0)|1.

Figure 2 shows a subsequence of estimated graphs asρ
increases for sample sizen = 200. The original graph
at t0 is shown in Figure1.

G(p, ̂Fn) G(p, ̂Fn \ F) G(p, F \ ̂Fn)

Figure 2:n = 200 andh = 1 with ρ = 0.14, 0.2, 0.24
indexing each row. The three columns show sets of
edges in̂Fn, extra edges, and missing edges with respect
to the true graphG(p, F). This array of plots show that
ℓ1 regularization is effective in selecting the subset of
edges in the true modelΘ(t0), even when the samples
beforet0 were from graphs that evolved over time.

464

Edges
0.35 0.4875 0.52 0.5275 0.6125

0.02 0.0825 0.1275 0.21 0.595

Figure 3: There are400 discrete steps in[0, 1] such that the edge setF (t) remains unchanged before or aftert = 0.5.
This sequence of plots shows the times at which each of the new edges added att = 0 appears in the estimated graph
(top row), and the times at which each of the old edges being replaced is removed from the estimated graph (bottom
row), where the weight decreases from a positive value in[0.1, 0.3] to zero during the time interval[0, 0.5]. Solid and
dashed lines denote new and old edges respectively.

8.2 Chasing the Changes

Finally, we show how quickly the smoothed estimator
using GLASSO [FHT07] can include the edges that are
being added in the beginning of interval[0, 1], and get
rid of edges being replaced, whose weights start to de-
crease atx = 0 and become0 atx = 0.5 in Figure3.

9 Conclusions and Extensions

We have shown that if the covariance changes smoothly
over time, then minimizing anℓ1-penalized kernel risk
function leads to good estimates of the covariance ma-
trix. This, in turn, allows estimation of time varying
graphical structure. The method is easy to apply and is
feasible in high dimensions.

We are currently addressing several extensions to
this work. First, with stronger conditions we expect that
we can establishsparsistency, that is, we recover the
edges with probability approaching one. Second, we can
relax the smoothness assumption using nonparametric
changepoint methods [GH02] which allow for jumps.
Third, we used a very simple time series model; exten-
sions to more general time series models are certainly
feasible.

References

[BGd08] O. Banerjee, L. E. Ghaoui, and
A. d’Aspremont. Model selection through
sparse maximum likelihood estimation.
Journal of Machine Learning Research,
9:485–516, March 2008.

[BL08] P.J. Bickel and E. Levina. Covariance reg-
ularization by thresholding.The Annals of
Statistics, 2008. To appear.

[DP04] M. Drton and M.D. Perlman. Model se-
lection for gaussian concentration graphs.
Biometrika, 91(3):591–602, 2004.

[FHT07] J. Friedman, T. Hastie, and R. Tibshirani.
Sparse inverse covariance estimation with
the graphical lasso.Biostat, 2007.

[GH02] G. Grégoire and Z. Hamrouni. Change point
estimation by local linear smoothing.J.
Multivariate Anal., 83:56–83, 2002.

[GR04] E. Greenshtein and Y. Ritov. Persistency in
high dimensional linear predictor-selection
and the virtue of over-parametrization.Jour-
nal of Bernoulli, 10:971–988, 2004.

[LF07] Clifford Lam and Jianqing Fan. Spar-
sistency and rates of convergence in
large covariance matrices estimation, 2007.
arXiv:0711.3933v1.

[MB06] N. Meinshausen and P. Buhlmann. High
dimensional graphs and variable selection
with the lasso. The Annals of Statistics,
34(3):1436–1462, 2006.

[RBLZ07] A.J. Rothman, P.J. Bickel, E. Levina, and
J. Zhu. Sparse permutation invariant covari-
ance estimation, 2007. Technical report 467,
Dept. of Statistics, Univ. of Michigan.

A Large Deviation Inequalities for
Boxcar Kernel Function

In this section, we prove the following lemma, which
implies the i.i.d case as in the corollary.

Lemma 35 Using a boxcar kernel that weighs uniformly
over n samplesZk ∼ N(0, Σ(k)), k = 1, . . . , n, that
are independently but not identically distributed, we have
for ǫ small enough, for somec2 > 0,

P

(

|̂Sn(t, i, j) − ÊSn(t, i, j)| > ǫ
)

≤ exp
{

−c2nǫ2
}

.

Corollary 36 For the i.i.d. case, for somec3 > 0,

P

(

|̂Sn(i, j) − ÊSn(i, j)| > ǫ
)

≤ exp
{

−c3nǫ2
}

.

465

Lemma 35 is implied by Lemma 37 for diagonal entries,
and Lemma 38 for non-diagonal entries.

A.1 Inequalities for Squared Sum of Independent
Normals with Changing Variances

Throughout this section, we useσ2
i as a shorthand forσii

as before. Henceσ2
i (xk) = Var(Zk,i) = σii(xk), ∀k =

1, . . . , n. Ignoring the bias term as in (29), we wish to
show that each of the diagonal entries of̂Σii is close to
σ2

i (x0), ∀i = 1, . . . , p. For a boxcar kernel that weighs
uniformly overn samples, we mean strictlyℓk(x0) =
1
n , ∀k = 1, . . . , n, andh = 1 for (28) in this context.
We omit the mention ofi or t in all symbols from here
on. The following lemma might be of its independent
interest; hence we include it here. We omit the proof
due to its similarity to that of Lemma 15.

Lemma 37 We letz1, . . . , zn represent a sequence of
independent Gaussian random variables such thatzk ∼
N(0, σ2(xk)). Let σ2 = 1

n

∑n
k=1 σ2(xk). Using a

boxcar kernel that weighs uniformly overn samples,
∀ǫ < cσ2, for somec ≥ 2, we have

P

(∣

∣

∣

∣

∣

1

n

n
∑

k=1

z2
k − σ2

∣

∣

∣

∣

∣

> ǫ

)

≤ exp

{−(3c − 5)nǫ2

3c2σ2σ2
max

}

,

whereσ2
max = maxk=1,...,n{σ2(xk)}.

A.2 Inequalities for Independent Sum of Products
of Correlated Normals

The proof of Lemma 38 follows that of Lemma 15.

Lemma 38 Let Ψ2 = 1
n

∑n
k=1

(σ2

i (xk)σ2

j (xk)+σ2

ij(xk))

2

andc4 = 3
20Ψ2

. Using a boxcar kernel that weighs uni-

formly overn samples, forǫ ≤ Ψ2

maxk(σi(xk)σj(xk)) ,

P

(

|̂Sn(t, i, j) − ÊSn(t, i, j)| > ǫ
)

≤ exp
{

−c4nǫ2
}

.

B Proofs for Large Deviation Inequalities

B.1 Proof of Claim 16

We show one inequality; the other one is bounded sim-
ilarly. ∀k, we compare thekth elementsΦ2,k, Φ4,k that
appear in the sum forΦ2 andΦ4 respectively:

Φ4,k

Φ2,k
=

(a4
k + b4

k)4t2

(a2
k + b2

k)4t4

=

(

2

h
K

(

xk − x0

h

)

σi(xk)σj(xk)

)2

·

2
(

(1 + ρij(xk))4 + (1 − ρij(xk))4
)

8(1 + ρ2
ij(xk))

≤ max
k

(

2

h
K

(

xk − x0

h

)

σi(xk)σj(xk)

)2

·

max
0≤ρ≤1

(1 + ρ)4 + (1 − ρ)4

4(1 + ρ2)
= 2M2. �

B.2 Proof of Lemma 17

We first use the Taylor expansions to obtain:

ln (1 − ak) = −ak − a2
k

2
− a3

k

3
− a4

k

4
−

∞
∑

l=5

(ak)l

l
,

where,
∞
∑

l=5

(ak)l

l
≤ 1

5

∞
∑

l=5

(ak)5 =
a5

k

5(1 − ak)
≤ 2a5

k

5
≤ a4

k

5

for ak < 1/2; Similarly,

ln (1 + bk) =

∞
∑

n=1

(−1)l−1(bk)l

l
, where

∞
∑

l=4

(−1)l(bk)l

l
> 0 and

∞
∑

l=5

(−1)n(bk)l

l
< 0.

Hence forbk ≤ ak ≤ 1
2 , ∀k,

1

2

n
∑

k=1

ln
1

(1 − ak)(1 + bk)

≤
n
∑

k=1

ak − bk

2
+

a2
k + b2

k

4
+

a3
k − b3

k

6
+

9

5

a4
k + b4

k

8

= ntΦ1 + nt2Φ2 + nt3Φ3 +
9

5
nt4Φ4. �

B.3 Proof of Claim 18

We replace the sum with the Riemann integral, and then
use Taylor’s Formula to replaceσi(xk), σj(xk), andσij(xk),

Φ2(i, j) =
1

n

n
∑

k=1

2

h2
K2

(

xk − x0

h

)

(

σ2
i (xk)σ2

j (xk) + σ2
ij(xk)

)

≈
∫ x0

xn

2

h2
K2

(

u − x0

h

)

(

σ2
i (u)σ2

j (u) + σ2
ij(u)

)

du

=
2

h

∫ 0

− 1

h

K2(v)
(

σ2
i (x0 + hv)σ2

j (x0 + hv) + σ2
ij(x0 + hv)

)

dv

=
2

h

∫ 0

−1

K2(v)

(

σi(x0) + hvσ′
i(x0) +

σ′′
i (y1)(hv)2

2

)2

(

σj(x0) + hvσ′
j(x0) +

σ′′
j (y2)(hv)2

2

)2

+

(

σij(x0) + hvσ′
ij(x0) +

σ′′
ij(y3)(hv)2

2

)2

dv

=
2

h

∫ 0

−1

K2(v)
(

(1 + ρ2
ij(x0))σ

2
i (x0)σ

2
k(x0)

)

dv +

C2

∫ 0

−1

vK2(v)dv + O(h)

=
C1(1 + ρ2

ij(x0))σ
2
i (x0)σ

2
j (x0)

h
wherey0, y1, y2 ≤ hv + x0 andC1, C2 are some con-
stants chosen so that all equalities hold. �

466

Learning in the Limit with Adversarial Disturbances

Constantine Caramanis∗ and Shie Mannor†‡

Abstract

We study distribution-dependent, data-dependent,
learning in the limit with adversarial disturbance.
We consider an optimization-based approach to learn-
ing binary classifiers from data under worst-case
assumptions on the disturbance. The learning pro-
cess is modeled as a decision-maker who seeks to
minimize generalization error, given access only to
possibly maliciously corrupted data. Two models
for the nature of the disturbance are considered:
disturbance in the labels of a certain fraction of
the data, and disturbance that also affects the po-
sition of the data points. We provide distribution-
dependent bounds on the amount of error as a func-
tion of the noise level for the two models, and de-
scribe the optimal strategy of the decision-maker,
as well as the worst-case disturbance.

1 Introduction

Most of the work on learning in the presence of malicious
noise has been within the PAC framework, focusing ona pri-
ori, distribution independent bounds on generalization error
and sample complexity. This work has not fully addressed
the question of what a decision-maker must do when faced
with a particular realization of the data, and perhaps some
knowledge of the underlying distribution and the corrupting
disturbance. The main contribution of this paper is the de-
velopment of a robust optimization-based, algorithmic data-
dependent, distribution-dependent approach to minimizing
error of learning subject to adversarial disturbance.

In the adversarial PAC setup, a decision-maker has ac-
cess to IID samples from some source, only that a fraction
of these points are altered by an adversary. There are several
models for the noise which we discuss below. The decision-
maker is givenǫ > 0 andδ > 0 and attempts to learn an
ǫ-optimal classifier with probability of at least1 − δ. The
emphasis in [KL93], as well as in several follow-up works

∗Department of Electrical and Computer Engineering, The Uni-
versity of Texas at Austin, cmcaram@ece.utexas.edu

†Department of Electrical and Computer Engineering, McGill
University, shie.mannor@mcgill.ca

‡This work was partially supported by NSF Grants CNS-
0721532, EFRI-0735905, and the Canada Research Chairs Program

(e.g., [BEK02, ACB98, CBDF+99, Ser03]) is on the sample
complexity of learning in such setups and on particularly bad
data sources.

The algorithmic issue of the decision-maker’s optimal
strategy when faced with a certain disturbance level, i.e., a
certain amount of possible data corruption, and a realization
of the data has not been adequately explored; see [Lai88]
for an initial discussion. While there are quite a few possi-
ble disturbance models that differ on the precise setup (what
the adversary know, what the adversary can do and in which
order), we focus on the strongest disturbance model where
the adversary has access to the actual distribution and can
modify it adversarialy within a constraint on the disturbance
level. This “learning in the information limit” model is used
to abstract other issues such as finite sample or limited ad-
versary (see [CBDF+99] for a discussion on some relevant
models). In this paper we consider two different noise mod-
els, with the intention of addressing the algorithmic aspects
and the effect of the disturbance level. We note that we use
the term disturbance rather than noise because in our model
data are corrupted in a possibly adversarial way and the prob-
abilistic aspect is essentially not relevant.

We deviate from the traditional learning setup in three
major assumptions. First, we focus on the question of how
the decision-maker should minimize error, rather than fol-
lowing PAC-style results of computinga priori bounds on
that error. Moreover, our analysis is distribution specific and
we do not focus on particularly bad data sources. Second, the
noise level is not assumed small and the decision-maker has
to incur error in all but trivial problems (this has been stud-
ied in the malicious noise setup; see [CBDF+99]). Third,
we do not ask how many samples are needed to obtain low
generalization error, instead we assume that the distribution
of the samples is provided to the decision-maker (equiva-
lently, one may think of this as considering the large sample
or “information theoretic” limit). However, this distribution
is corrupted by potentially persistent noise; we may consider
it as first tampered with by an adversary. After observing
the modified distribution, the decision-maker has to commit
to a single classifier from some predefined setH. The per-
formance of the classifier chosen by the decision-maker is
measured on the original, true distribution (this is similar to
the agnostic setup of [KSS92]). The question is what should
the decision-maker do? And how much error will he incur in
the worst case?

In order to answer these questions we adopt a robust

467

optimization-theoretic perspective, where we regard our decision-
maker as trying to make optimal decisions while facing an
adversary. Our aim is to provide an analysis by identifying
optimal strategies, and quantify the error as a function of the
adversary’s strategy, i.e., the nature of the corrupting distur-
bance. We refer to the disturbance as selected by an adver-
sary merely as a conceptual device, and not in strict analogy
to game theory. In particular, the decision-maker does not
assume that the corrupting noise is chosen with any specific
aim; rather, the decision-maker selects a strategy to protect
himself in the worst-case scenario.

The true probability distribution is defined over the input
space and on the labels. We focus on the case of proper learn-
ing, where this amounts to a distribution and the true classi-
fier. Then the adversary modifies the distribution of the input
points and the labels. The decision-maker observes the mod-
ified distribution and chooses a classifier inH to minimize
theworst-caseerror. We note the relationship with [KSS92]
who use a slightly different model. In their model, the de-
cision maker chooses a classifier inH knowing that the true
classifier is in some “touchstone” classT ⊆ H. They say
that an algorithm facilitates learning (with respect to a loss
function) if it learns a function fromH that is close to a func-
tion fromT in the usual PAC sense (i.e., with high probabil-
ity and small error after observing a number of samples poly-
nomial in one over the error, and one over the confidence).
As opposed to [KSS92] and most subsequent works, we do
not focus on small noise and we ignore the sample complex-
ity aspect altogether. Instead, we focus on the policy chosen
by the decision maker and on the informational limits. In that
respect, our work is most related to [CBDF+99] who consid-
ered the case of substantial noise. Their proposed strategy
that deals with noise, however, is based on randomizing two
strategies or using majority vote (phase 2 of the randomized
Algorithm SIH in [CBDF+99]). We propose a more princi-
pled approach to handling adversarial noise, leading to im-
proved results.

If the noise level and characteristics are unlimited, the
decision-maker cannot hope to do better than randomly guess-
ing. We therefore limit the noise, and allow the adversary to
change only a given fraction of the distribution, which we
refer to as “the power of the adversary”. An alternative view,
which is common in robust optimization [BTN99], is to con-
sider the power of the adversary as adesign parameter. Ac-
cording to this view, the decision-maker tries to be resilient
to a specified amount of uncertainty in the parameters of the
problem.

The paper is structured as follows. In Section 2 we de-
scribe the setup. We define two types of adversaries: one that
can only flip a fraction of the points, and one that can also
move the points to another location. In Section 3 we con-
sider the optimal solution pairs for the two different set-ups.
We characterize the strategy of both the decision-maker and
the adversary as a function of the level of noise (the power of
the adversary) and the specific distribution that generates the
data. Taking such a distribution-dependent perspective al-
lows us to characterize the decision-maker’s optimal strategy
as the solution to a linear program if the adversary can only
flip labels, or a robust optimization problem in the case of the
more powerful adversary that can also modify the measure.

We further bound the error that may be incurred and show
that in the worst case, both adversaries can cause an error
twice their power. In Section 4 we show how performance
degrades with the increase of this power. A technical proof
along with a somewhat surprising worked out example are
deferred to the online appendix [CM08].

2 Setup and Definitions

In this section we give the basic definitions of the noisy learn-
ing setup. Also, we formulate the optimization problem which
characterizes the optimal policy of the decision-maker, and
the worst-case noise. The decision-maker, after observing
the noisy data, and knowing the power of the adversary, out-
puts a decision in the classifier space. The disagreement with
the true classifier, is the generalization error. The decision-
maker’s goal is to minimize this, in the worst case. We allow
our decision-maker to output a so-called mixed strategy.1

Throughout this paper we focus on proper learning. We
let H denote a predefined set of classifiers from which the
true classifier is drawn, and from which the decision-maker
must choose. Moreover, we assume thatH is finite for the
sake of simplicity and to avoid some (involved but straight-
forward) technicalities. Indeed, there are three natural exten-
sions to our work that we postpone, primarily due to space
limitations. First, while we focus on the proper learning
setup, the non-proper setup (as in [KSS92]) seems to nat-
urally follow our framework. Second, the case of an infinite
set of classifiersH could be resolved by eliminating clas-
sifiers that are “close” according to the observed measure.
This is particularly useful for the flip-only setup where the
adversary cannot make two classifiers substantially differ-
ent. Finally, while we do not consider sample complexity,
such results should not be too difficult to derive by imitating
the arguments in [CBDF+99].

2.1 The Learning Model

In this paper, we deviate from the PAC learning setup, and
consider ana priori fixed underlying distributionµ, that gen-
erates the location (not the labels) of the training data. Thus
the error calculations we make are a function of the power
of the adversary and also of the fixed probability measure
µ. We use the symbolµ throughout this paper, exclusively
in reference to the true probability distribution which gener-
ates the location (not the label) of the points, and hence, is
used to determine the generalization error. Given a partic-
ular classifier̂h, a true classifierhtrue, and the underlying
probability measureµ, the generalization error is given by
the error function

Eµ(htrue; ĥ)
△
= µ{x : htrue(x) 6= ĥ(x)}.

We can extend this definition to a probability measure over
H, or, in the game-theory terminology, a mixed strategy over
H, given by a weighting vectorα = (α1, α2, . . .) where
∑

i αi = 1 andαi ≥ 0. In that case, denoting the space of
mixed strategies by∆H, and a particular mixed strategy by

1That is, rather than commit to a single classifier, our decision-
maker can commit to a randomized strategy, involving possibly
multiple classifiers.

468

α ∈ ∆H, we have

Eµ(htrue; α)
△
=
∑

i

αiEµ(htrue; hi).

We note that the mixing is often referred to as “proba-
bilistic concepts” or “probabilistic hypotheses” in machine
learning. In the context of learning with adversarial noise
see [CBDF+99].

2.2 The Noise Model and The Decision-Maker

We next define the possible actions of the adversary and of
the decision-maker. As discussed above, in this paper we do
not consider sample complexity, and effectively consider the
situation where the training sample is infinite in size (the in-
formation theoretic limit). We model this situation by assum-
ing that rather than training samples, the decision-maker re-
ceives a distribution for each of the two labels. Since the ad-
versary modifies this object in various ways (noise is added
to the observations) we make some formal definitions which
facilitate discussion of this in the sequel.

Let X denote the space in which the training data exist.
In the typical, finite training data model, the decision-maker
has access to a collection of labelled points,{(xi, li)}, where
xi ∈ X , andli ∈ {+,−}. In our case then, the decision-
maker receives a probability measure over this spaceσ ∈
M(X × {+,−}) (M denotes the space of probability mea-
sures). We can represent such a measureσ by a triple(λ, µ+, µ−),
whereµ+, µ− are probability measures onX , and represent
the distribution of the positive and negative-labelled points
respectively, andλ ∈ [0, 1] is the weight (or probability) of
the positively labelled region, and(1 − λ) that of the nega-
tively labelled region. The interpretation is that a point-label
pair is generated by first choosing a label ‘+’ or ‘−’ with
probabilityλ or 1−λ, respectively, and then a point is gener-
ated according to the corresponding distribution,µ+ or µ−.
Thus, the underlying distributionµ generating the location
of the points (not the labels) is given by(λµ+ +(1−λ)µ−).
Thus, if htrue is the true classifier, then in the absence of
any noise, we would observeσ = (λ, µ+, µ−), whereµ+

is the scaled restriction ofµ to the regionhtrue(+)
△
= {x :

htrue(x) = +}, and similarly forµ−:

λ = µ(htrue(+)); µ+ =
µ · χ{htrue(+)}

λ
;

µ− =
µ · χ{htrue(−)}

1 − λ
,

where if λ = 0 there is noµ+, and if λ = 1 there is no
µ−. Indeed, the triple(λ, µ+, µ−) is completely defined by
µ and the true classifierhtrue. Sinceµ is fixed, we write
(λ, µ+, µ−)htrue

to denote the triple determined byµ and
htrue.

Using this terminology, the adversary’s action is a map

T : M(X × {+,−}) −→ M(X × {+,−})
(λ, µ+, µ−) 7−→ (λ̂, µ̂+, µ̂−).

We use the hat symbol, ‘̂ ’ throughout, to denote the
observation of the decision-maker. Therefore, while the true
probability measure generating the point location is given,
as above, byµ = λµ+ + (1 − λ)µ−, the decision-maker

observes an underlying probability measure of the formµ̂ =

λ̂µ̂+ + (1 − λ̂)µ̂−.
The restrictions on this map determine the nature and

level of noise. We consider two models for the noise, i.e.,
two adversaries. First, we have a ‘flip-only’ adversary, cor-
responding to the noise model where the adversary can flip
some fixed fraction of the labels. We also consider a stronger
‘move-and-flip’ adversary who can not only flip a constant
fraction of the points, but may also change their location. For
the flip-only adversary the underlying measureµ is the same
as the observed measureµ̂. Therefore the decision-maker
minimizes the worst-case error where the worst case is over
all possibleh ∈ H. This need not be true for the move-and-
flip adversary. In this case, the decision-maker has only par-
tial information of the measureµ against which generaliza-
tion error is computed, and hence the decision-maker must
protect himself against the worst-case error, considering all
possible classifiersh ∈ H, as well as all possible underlying
measures̃µ consistent with the observations(λ̂, µ̂+, µ̂−).

We do not intend measurability questions to be an issue
in this paper. Therefore we assume throughout that all mea-
sures (and images under the adversary’s action) are measur-
able with respect to some naturalσ-field G.

In each of the two cases above, the level of noise is de-
termined by how different the output probability measure
T (λ, µ+, µ−) = (λ̂, µ̂+, µ̂−) can be from the true proba-
bility measure(λ, µ+, µ−). A natural measure for this is the
notion of total variation. The distance, in total variation, be-
tween measuresν1, ν2 is defined as

||ν1 − ν2||TV =
1

2
sup

k, A1, . . . , Ak ∈ G
s.t.Ai ∩ Aj = ∅ for i 6= j

k
∑

i=1

|ν1(Ai) − ν2(Ai)|.

This definition also holds for unnormalized measures. We
extend this definition to triples(λ, µ+, µ−) by

||(λ, µ+, µ−) − (λ̂, µ̂+, µ̂−)||TV
△
= ||λµ+ − λ̂µ̂+||TV +

||(1 − λ)µ− − (1 − λ̂)µ̂−||TV .

Therefore, we have:

Definition 1 An adversary using policyT (either flip-only,
or move-and-flip)has powerη if given any triple(λ, µ+, µ−),
his policyT satisfies||T (λ, µ+, µ−)−(λ, µ+, µ−)||TV ≤ η.
We abbreviate this, and simply write||T || ≤ η.

We can now define the two notions of adversary introduced
above.

Definition 2 A flip-only adversary of powerη can choose
any policyT such that||T || ≤ η, and(λ̂, µ̂+, µ̂−) = T (λ, µ+, µ−)
satisfies

µ = λµ+ + (1 − λ)µ− = λ̂µ̂+ + (1 − λ̂)µ̂− = µ̂.

Definition 3 A move-and-flip adversary of powerη can choose
any policyT such that||T || ≤ η.

469

The decision-maker must base his decision on the ‘noisy ob-
servations’ he receives, in other words, on the triple(λ̂, µ̂+, µ̂−) =
T (λ, µ+, µ−) which he sees. His goal is to minimize the
worst-case generalization error, where the worst case is taken
over consistenth ∈ H, and also over consistent measures
µ̃. We allow our decision-maker to play a so-called mixed
strategy, and rather than output a single classifierh ∈ H,
to output a randomized strategy,α, interpreted to mean that
classifierhi is chosen with probabilityαi. We denote the
set of these mixed strategies by∆H, and a particular mixed
strategy byα ∈ ∆H. Then, the decision-maker’s strategy is
a map:

Dη,H : M(X × {+,−}) −→ ∆H
(λ̂, µ̂+, µ̂−) 7−→ α.

The idea is that if the decision-maker can eliminate some el-
ements ofH, but cannot identify a unique optimal choice,
then the resulting strategyDη,H will output some measure
supported over the ambiguous elements ofH. We explic-
itly assume that the decision-maker’s policy is a function
of η, the power of the adversary. In a worst-case formula-
tion, a decision-maker without knowledge ofη is necessarily
powerless. We also assume that the decision-maker knows
whether the adversary has flip-only, or move-and-flip power.
We do not assume that the decision-maker has any knowl-
edge of the underlying distributionµ that generates the loca-
tion of the points. For the flip-only adversary, the decision-
maker receives exact knowledge ‘for free’ since by ignoring
the {+,−}-labels, he obtains the true underlying distribu-
tion µ. Therefore in this case there is only a single consis-
tent underlying measure, namely, the correct measureµ, and
the decision-maker need only protect against the worst-case
h ∈ H. In the case of the move-and-flip adversary, however,
the decision-maker receives only partial knowledge of the
probability measure that generates the location of the points.

Given a strategyD of the decision maker and a ruleT
for the adversary, we define the error for a given measureµ
and a true classifierhtrue as:

Error(µ, htrue, η, D, T)
△
= [Eµ(htrue; D(T ((λ, µ+, µ−)htrue

)))] .
(2.1)

2.3 An Optimization-Based Characterization

In this section we characterize the optimal policy of the decision-
maker, and also the worst-case policy of the adversary, i.e.,
the worst-case noise, given the policy of the decision-maker.
The noise-selecting adversary has access to the true triple
(λ, µ+, µ−), and seeks to maximize the true error incurred.
The decision-maker sees only the corrupted version(λ̂, µ̂+, µ̂−),
and minimizes the worst-case error, where the worst case is
taken over all possible, or consistent triples(λ̃, µ̃+, µ̃−) that
the particular adversary with powerη (flip-only, or move-
and-flip) could, under any policy, map to the observed triple
(λ̂, µ̂+, µ̂−).2

For the flip-only adversary, any consistent triple(λ̃, µ̃+, µ̃−)

the decision-maker considers must satisfyλ̃µ̃++(1−λ̃)µ̃− =

2We remark again that unlike the game-theoretic setup, the
decision-maker does not assume a rational adversary. We consider
this case elsewhere.

µ. Therefore the worst case over all consistent triples be-
comes a worst case over all consistent classifiers.

When facing the move-and-flip adversary, it may no longer
be true that̃λµ̃+ + (1 − λ̃)µ̃− = µ. Therefore the decision-
maker must consider the worst case over all consistent classi-
fiers, and also over all consistent underlying measuresν such
thatν = λ̃µ̃+ + (1 − λ̃)µ̃− for some possible(λ̃, µ̃+, µ̃−)

with total variation at mostη from (λ̂, µ̂+, µ̂−). We refer to
this set of consistent underlying measures as

Φ
△
= Φ(η, (λ̂, µ̂+, µ̂−)).

We define the following two setups for a fixed measureµ
onX , htrue ∈ H, and a valueη for the power of the adver-
sary.

(S1) The flip-only setup:

D1
△
= argmin

Dη,H

[

max
T :||T ||≤η

T flip-only

[

max
h∈H

(2.2)

Error(µ, h, η, D, T)
]

]

T1
△
= argmax

T :||T ||≤η

T flip-only

[Error(µ, htrue, η, D1, T)] .

The decision-maker knowsη andH, and can inferµ
since the adversary is flip-only. Thus he choosesD1 to
minimize the worst-case error, where the worst case is
over classifiersh ∈ H. The adversary has prior knowl-
edge ofµ, htrue andH, and of courseη, and chooses his
strategy to maximize thetrue error, i.e., the error with
respect tohtrue andµ.

(S2) The move-and-flip setup:

D2
△
= argmin

Dη,H

[

max
T :||T ||≤η

[

max
ν∈Φ

h∈H
(2.3)

Error(ν, h, η, D, T)
]

]

T2
△
= argmax

T :||T ||≤η

[Error(µ, htrue, η, D2, T)] .

Here the adversary is no longer constrained to pickT so
thatµ̂ = µ. In this case the decision-maker must choose
a policyD2 to minimize the worst-case generalization
error, with respect toh ∈ H and also measuresν ∈
Φ. The adversary again tries to maximize the true error
w.r.t. htrue andµ.

We useErrori (i = 1, 2) to denote the error inS1 and
S2 when µ, htrue, and η are clear from the context, i.e.,
Errori = Error(η, htrue, η, Di, Ti). We show below that the
max and min in both (2.2) and (2.3) are attained, and can be
computed by solving appropriate optimization problems. We
interpret the argmin/argmax as selecting an arbitrary optimal
solution if there are more than one.

The fact that the max and min in both (2.2) and (2.3) are
attained by some rule requires a proof. We show below that
this is indeed the case for both setups since the respective
rules can be computed by solving appropriate optimization
problems.

470

S1 and S2 are not equivalent.
We first show by example that the “flip only” setup and the
“move and flip” setup are not equivalent. This is the case
even for two classifiers. Indeed, consider the caseX =
[−5, 5] ⊆ R, with threshold classifiersH = {h1, h2} with
h1(+) = [0, 5] andh2(+) = [1, 5]. Then the disagreement
region is [0, 1). Supposeh1 is the true classifier, and that
the true underlying measureµ is uniform on[−5, 5], so that
µ([0, 1)) = 10%. For η < 5%, Error1 = Error2 = 0.
For η ≥ 5%, however, both the flip-only and move-and-
flip adversaries can cause error. Supposeη = 10%. In
S1, the decision-maker knows the trueµ, and hence knows
that µ([0, 1)) = η = 10%. Thus regardless of the action
of the adversary, the decision-maker’s optimal strategy is
(α1, α2) = (1/2, 1/2), and the error is thereforeError1 =
10/2 = 5%. In S2, however, the optimal strategy of the ad-
versary is unique: flip the labels of all the points in[0, 1).
The decision-maker seeŝµ([0, 1)) = 10%, but because the
adversary has move-power, the decision-maker does not know
µ exactly. His goal is to minimize the error in the worst
case, where now the worst case is over classifiers, and also
over possible underlying measures. From his observations,
the decision-maker can only conclude that ifhtrue = h1

then 0% ≤ µ([0, 1)) ≤ 10%, and if htrue = h2, then
0% ≤ µ([0, 1)) ≤ 20%. The worst-case error corresponding
to a strategy(α1, α2) is thereforemax{10α1; 20α2}. Min-
imizing this objective function subject toα1 + α2 = 1,
and α1, α2 ≥ 0, we find (α1, α2) = (1/3, 2/3), and the
true error (as opposed to the worst-case error) isError2 =
(1/3) · 0 + (2/3) · 10 = 20/3, which is greater thanError1.

3 Optimal Strategy and Worst-Case Noise

In this section we consider S1 and S2, and determine optimal
strategies for the decision-maker, and the optimal strategy for
the adversary, i.e., the worst-case noise.

3.1 The Decision-Maker inS1

First we consider the decision-maker’s optimal strategy for
S1, i.e., in the face of the flip-only adversary. The decision-
maker outputs a mixed strategyα ∈ ∆H. The support of the
weight vectorα is the subsetF of ‘feasible’ classifiers inH,
which incur at most errorη. This set is often referred to as
the “version space”.

Definition 4 Given the output(λ̂, µ̂+, µ̂−) = T (λ, µ+, µ−)
of a flip-only adversary with powerη, the set offeasible, and

henceambiguousclassifiers,F △
= Fη(λ̂, µ̂+, µ̂−) ⊆ H, is

given by

F △
= {h ∈ H : λ̂µ̂+(h(−)) + (1 − λ̂)µ̂−(h(+)) ≤ η}.

(3.4)

Here we defineh(+) to be the positively labelled region,
andh(−) the negatively labelled region, so thatλ̂µ̂+(h(−))
is the measure of the positive labels observed in the region
h(−). The measure of the region where the true classifier
disagrees with the observed measure can be at mostη. That
is,

λ̂µ̂+(htrue(−)) + (1 − λ̂)µ̂−(htrue(+)) ≤ η.

This follows by our assumption that the adversary has power
η, and becauseλµ+(htrue(−))+ (1−λ)µ−(htrue(+)) = 0.
Therefore,F is the set of classifiers inH that could possibly
be equal tohtrue and thus Definition 4 above indeed gives
the set of feasible, and therefore ambiguous, classifiers. In
particular, under the assumption of proper learning,htrue ∈
F .

Next, the decision-maker must compute the value ofαh

for everyh ∈ F , the feasible subset of classifiers. For any
mixed strategy (this is sometimes referred to as a “proba-
bilistic hypothesis”)α ∈ ∆H that the decision-maker might
choose, the error incurred is

Eµ(htrue; α) =
∑

h 6=htrue

αhµ(N(h, htrue)), (3.5)

where for any two classifiersh′, h′′, we defineN(h′, h′′)
△
=

{x : h′(x) 6= h′′(x)} to be the region where they differ.
The decision-maker, however, does not knowhtrue, and

hence his optimal strategy is the one that minimizes the worst-
case error,maxhtrue∈H Eµ(htrue; α). In the case of the flip-
only adversary, the decision-maker sees the probability mea-
sure(λ̂, µ̂+, µ̂−), and since he knows thatµ = µ̂, he can
correctly compute the valueµ(N(h′, h′′)) for any two clas-
sifiersh′, h′′. In other words, the decision-maker knows the
true weight of any region where two classifiers disagree, and
therefore we can state the following result which is a restate-
ment of the above.

Proposition 5 The optimal policy of the decision-maker in
S1 is given by computing the minimizer of:

min
α

max
htrue∈F

∑

h 6=htrue

αhµ(N(h, htrue)). (3.6)

Enumerating the setF as {h1, . . . , hk}, the optimalα is
computed by solving the following linear optimization prob-
lem:

min : u
s.t. : u ≥∑i6=j αiµ(N(hi, hj)) j = 1, . . . , k

∑

i αi = 1
αi ≥ 0 i = 1, . . . , k.

PROOF. The proof follows directly from the definition of
the error associated to any mixed strategyα, given in (3.5).
�

We note that in [CBDF+99] the question of how to choose
the best probabilistic hypothesis was considered. The solu-
tion there was to randomize between two (maximally apart)
classifiers or to choose a majority vote. We now explain why
this is suboptimal. Consider three linear classifiers in general
position in the planeH = {h1, h2, h3} and let’s suppose that
there are 7 regions in the plane according to the agreement
of the classifiers (assume thath1(+)∩h2(+)∩h3(+) 6= ∅).
Suppose that the decision maker observes thatµ̂+ has sup-
port only onh1(+) ∩ h2(+) ∩ h3(+) (assume that̂λ =
1 − 3η and thatη < 1/4) and thatµ̂− has equal support of
η onh1(−) ∩ h2(−) ∩ h3(+), h1(−) ∩ h2(+) ∩ h3(−) and
h1(+)∩h2(−)∩ h3(−). The example is constructed so that
choosing any one classifier, in the worst case can lead to an
error of2η. It is easy to see that a majority vote would lead to

471

a worst case error of2η. Mixing between any two classifiers
would lead to a worst case error of2η as well. Mixing be-
tween the 3 classifiers, which is suggested by Proposition 5
leads to a worst case error of4η/3 since we will get the clas-
sifier right with probability 1/3 and incur the2η loss with
probability 2/3.

3.2 The Decision-Maker inS2

Next we consider the setupS2, with the more powerful move-
and-flip adversary. Again, the goal of the decision-maker is
to pick a mixed strategyα ∈ ∆H, that minimizes the error
given in (3.5). The setF of ambiguous classifiers is as de-
fined in (3.4). In this case, however, in addition to not know-
ing htrue, the decision-maker also does not know the under-
lying measureµ, and hence the valuesµ(N(h′, h′′)), exactly.

As introduced in Section 2.3, we useΦ
△
= Φ(η, (λ̂, µ̂+, µ̂−))

to denote the set of measures consistent with(λ̂, µ̂+, µ̂−).
Thus the decision-maker seeks to minimize the worst-case
error, now overH andΦ.

Any points that have the wrong label w.r.t.h could have
been both moved and flipped. Therefore, to compute the
worst case possible values ofµ(N(h′, h′′)), for each clas-
sifier h the decision-maker considers, he must consider the
observed measure of the points that have thecorrect label,
and thewrong label, with respect toh. Thus we define:

wrong

µ̂h (N(h′, h′′))
△
= λ̂µ̂+(N(h′, h′′) ∩ h(−)) + (3.7)

(1 − λ̂)µ̂−(N(h′, h′′) ∩ h(+))
correct

µ̂h (N(h′, h′′))
△
= µ̂(N(h′, h′′))−

wrong

µ̂h (N(h′, h′′)).

In Proposition 6 below, the decision-maker uses these
quantities to compute his optimal strategy that protects against
the worst-case consistent classifierh ∈ F , and underlying
measureν ∈ Φ. The worst-case classifierh and measure
ν may depend on the actionα the decision-maker chooses.
Thus, the decision-maker must solve amin max linear pro-
gram. In doing so, he implicitly computes the worst-case
measureν as well, by computing a saddle point.

Proposition 6 (a) The decision-maker’s optimal policy, is
to compute the setF , and then compute the optimal
weight-vectorα that is the minimizer of

min
α

max
ν∈Φ

htrue∈H
Eν(htrue; α) = min

α
max
ν∈Φ

htrue∈H
(3.8)

∑

h 6=htrue

αhν(N(h, htrue)),

where the max is overH andΦ. Themin and themax
are both attained.

(b) Moreover, the optimal strategy of the decision-maker is
obtained as the solution to a robust linear optimization
problem, which we reformulate as a single linear opti-
mization.

Recall that inS2, in addition to the labels, the underlying
measureµ is also corrupted. Therefore the decision-maker
must compute the strategyα with respect to the worst-case
feasible classifier, and the worst-case consistent values for

µ(N(h′, h′′)), i.e., the worst-case values forν(N(h′, h′′)) for
ν ∈ Φ.

The worst case overν depends on the worst case over
h ∈ H. That is, ifh1 is the true classifier, then the worst-case
values forν(N(h′, h′′)) may be different from the worst-case
value ifh2 is the true classifier.

The worst-case values are computed using
wrong

µ̂h (N(h′, h′′))

and
correct

µ̂h (N(h′, h′′)). The idea is as follows: if someh is
the true classifier, then any measure in the regionN(h′, h′′)
that is incorrectly labelled with respect toh may have also
been moved from some other region. Therefore in the case
thath = htrue, the weight of any particular regionN(h′, h)
could be as large as the weight of the correctly labeled points

underµ̂,
correct

µ̂h (N(h′, h′′)), plus the weight (again under̂µ) of
the mislabelled points with respect toh in all other regions,
plus the additional weight that could be moved toN(h′, h)
using any ‘unused’ power of the adversary. The weight of
the mislabelled points is

λ̂µ̂+(h(−)) + (1 − λ̂)µ̂−(h(+)).

The unused power is

η − λ̂µ̂+(h(−)) + (1 − λ̂)µ̂−(h(+)).

Therefore the weight (under̂µ) of the mislabelled points with
respect to anyh, plus the unused power, must be exactlyη.

If h = htrue, consider some regionN(h′, h). The reason-
ing above tells us that the worst-case measure of this region

is
correct

µ̂h (N(h′, h)) + η. The following lemma makes this intu-
ition precise, and shows that this is indeed the case.

Lemma 7 Assume thatN(h, h′) 6= ∅ for anyh 6= h′. Then,
if h = htrue, we have

µ(N(h, h′)) ≤
correct

µ̂h (N(h, h′)) + η.

This bound is tight in the sense that there is a measure(λ̃, µ̃+, µ̃−)
with total variation at mostη from the observations, that at-
tains the upper bound.

PROOF. We exhibit the following triple(λ̃, µ̃+, µ̃−) that sat-
isfies||(λ̃, µ̃+, µ̃−) − (λ̂, µ̂+, µ̂−)||TV ≤ η: Assume, with-
out loss of generality, thatN(h, h′) ⊆ h(+). Let θ be any
probability measure overX , supported onN(h, h′). Then,
define:

λ̃ = λ̂ + (1 − λ̂)µ̂−(h(+)),

µ̃− = µ̂− − µ̂−
∣

∣

∣

h(+)
,

µ̃+ =

(

λ̂

(

µ̂+ − µ̂+

∣

∣

∣

h(−)

)

+ κθ

)

λ̂ + (1 − λ̂)µ̂−(h(+))
,

whereκ =
(

(1 − λ̂)µ̂−(h(+)) + λ̂µ̂+(h(−))
)

. For the

triple (λ̃, µ̃+, µ̃−), there exists a move-and-flip policyT with
||T || ≤ η, such thatT (λ̃, µ̃+, µ̃−) = (λ̂, µ̂+, µ̂−), hence the
scalar upper bound is attainable. �

472

For the vector case, ifN(h, h1) ∩ · · · ∩ N(h, hk) 6= ∅,
there exists a triple(λ̃, µ̃+, µ̃−) that satisfies

(µ(N(h, h1)), . . . , µ(N(h, hk))) = (
correct

µ̂ (N(h, h1)), . . . ,
correct

µ̂ (N(h, hk))) + η(1, . . . , 1).

This follows by replacingN(h, h′) byN(h, h1)∩· · ·∩N(h, hk)
in the proof above. In general, however, the tightness result
does not hold simultaneously for many classifiers. That is
to say, given classifiers{h1, . . . , hk} different from some
h, if N(h, h1) ∩ · · · ∩ N(h, hk) = ∅ (as is in general the

case), then, while the lemma tells us thatµ(N(h, hi)) ≤
correct

µ̂
(N(h, hi)) + η for eachi, there will be no measureν ∈ Φ
which realizes these upper bounds simultaneously. More-
over, the worst-case values then will depend on the decision-
maker’s particular choice ofα. Theα-dependent worst-case
consistent values forµ(N(h′, h′′)) are computed implicitly
in the robust LP below.

With this intuition, and the result of the lemma, we can
now prove the proposition, and explicitly give the LP that
yields the optimal strategy of the decision-maker.

PROOF. (of Proposition 6) The proof proceeds in three main
steps:

(i) First we show that the error, and hence the optimal strat-
egy of the decision-maker, depends only on a finite di-
mensional equivalence class of measuresν ∈ Φ. The
first part of the proof is to characterize this finite di-
mensional set.

(ii) Next, we establish the connection to robust optimization,
and write a robust optimization problem that we claim
yields the decision-maker’s optimal strategy. Proving
this claim is the second part of the proof.

(iii) Finally, we show that the robust optimization problem
may in fact be rewritten as a single LP, using duality
theory of linear programming.

ForF the set of ambiguous classifiers, the decision-maker’s
policy is given by

min
α

max
ν∈Φ

htrue∈F
Eν(htrue; α) = min

α
max
ν∈Φ

htrue∈F
∑

h 6=htrue

αhν(N(h, htrue)),

whereα is supported onF . While the worst case is over
classifiersh ∈ F and all measuresν ∈ Φ, the worst-case
error incurred for any particular strategyα in fact can only
depend on the values ofν(N(h′, h′′)) for everyh′, h′′ ∈ F .
Therefore we can consider equivalence classes of measures
in Φ that have the same valuesν(N(h′, h′′)). This reduces
the inner maximization to a finite dimensional one. Enumer-
ate the setF as{h1, . . . , hk}. Then for any fixedhj ∈ F , if
htrue = hj , then the regions whose measure is important for
the error computation, are those that can be written as

(

⋂

i∈S

N(hi, hj)

)

∩
(

⋂

i/∈S

N(hi, hj)
c

)

,

for someS ⊆ {1, . . . , k}. We useN(hi, hj)
c to denote the

complement of the set. We define a variableξ̂S,j to represent
the amount of mass that can be added (in the worst case) to
the region

(
⋂

i∈S N(hi, hj)
)

∩
(
⋂

i/∈S N(hi, hj)
c
)

in the case
wherehj is the true classifier. We can consider these as com-

ponents of a vector inR2k−1, indexed by nonempty subsets
S ⊆ {1, . . . , k}. Any such vector corresponds to an equiv-
alence class of measuresν ∈ Φ, that are indistinguishable
to the decision-maker, in the sense that they induce precisely
the same error. Given such a vector, the weight of the region

N(hi, hj) is then

[

correct

µ̂hj
(N(hi, hj)) +

∑

S⊆{1,...,k}

i∈S
ξ̂S,j

]

and

thus for a givenα, the error would be

∑

i6=j

αi







correct

µ̂hj
(N(hi, hj)) +

∑

S⊆{1,...,k}

i∈S

ξ̂S,j






.

For any fixedj, the collection of variables
(

ξ̂S,j

)

S⊆{1,...,k}
must satisfy four properties in order to correspond to some
measureν ∈ Φ. The variables must be nonnegative, and the
sum overS of ξ̂S,j must be at mostη. This follows since
the total amount of mass moved or flipped must be at most
η, by definition of the power of the adversary. Third, if the
set
(
⋂

i∈S N(hi, hj)
)

∩
(
⋂

i/∈S N(hi, hj)
c
)

is empty, then the

corresponding variablêξS,j must be zero. Finally, the weight
of each regionN(hi, hj) can be at most100%, and thus we
must have







correct

µ̂hj
(N(hi, hj)) +

∑

S⊆{1,...,k}

i∈S

ξ̂S,j






≤ 100%.

Therefore, ifhj = htrue, the possible values of̂ξ·,j ∈ R
2k−1

are given by:

Ξ(j) =



































(

ξ̂·,j
)

:

∑

S ξ̂S,j ≤ η,

ξ̂S,j ≥ 0, ∀S ⊆ {1, . . . , k}, S 6= ∅,
ξ̂S,j = 0, ∀S :

(
⋂

i∈S N(hi, hj)
)

∩
(
⋂

i/∈S N(hi, hj)
c
)

= ∅,
∑

S∋i ξ̂S,j ≤ 100 −
correct

µ̂hj
(N(hi, hj))

∀i 6= j.



































For everyj, the setΞ(j) is a polytope. The decision-maker
must choose someα that minimizes the worst-case error,
where the worst case is over possiblehtrue ∈ F = {h1, . . . , hk},
and then once thathj is fixed, the worst case over all possi-
ble (ξ̂·,j) ∈ Ξ(j). Therefore the optimal strategyα of the
decision-maker is the solution to the following robust opti-

473

mization problem:

min : u

s.t. : u ≥ max
n

(ξ̂S,j)
S⊆{1,...,k}

∈Ξ(j)
o

∑

i6=j

αi







correct

µ̂hj
(N(hi, hj)) +

∑

S⊆{1,...,k}

i∈S

ξ̂S,j






, j = 1, . . . , k

∑

i

αi = 1, αi ≥ 0,

Ξ(j) =



































(

ξ̂·,j
)

:

∑

S ξ̂S,j ≤ η,

ξ̂S,j ≥ 0, ∀S ⊆ {1, . . . , k}, S 6= ∅,
ξ̂S,j = 0, ∀S :

(
⋂

i∈S N(hi, hj)
)

∩
(
⋂

i/∈S N(hi, hj)
c
)

= ∅,
∑

S∋i ξ̂S,j ≤ 100 −
correct

µ̂hj
(N(hi, hj))

∀i 6= j.



































First we prove that this robust optimization indeed yields
the strategy of the decision-maker that minimizes the worst-
case effort. The proof of this follows by a combination of
the methods used to prove Proposition 5 and Lemma 7. Cer-
tainly, for anyhj ∈ F and ν ∈ Φ, there exists a vector
(ξ̂·,j) ∈ Ξ(j) such that

ν(N(hi, hj) =







correct

µ̂hj
(N(hi, hj)) +

∑

S⊆{1,...,k}

i∈S

ξ̂S,j






, ∀i 6= j.

The technique of Lemma 7 establishes the converse, namely,
for any feasible vector(ξ̂·,j) ∈ Ξ(j) there exists a measure
ν ∈ Φ that is consistent with the observed measure, and such
that for anyi ∈ {1, . . . , k},

ν(N(hi, hj)) =
correct

µ̂hj
(N(hi, hj)) +

∑

S⊆{1,...,k}

i∈S

ξ̂S,j.

Thus we have shown that the setsΞ(j) are indeed the sets we
should be considering. Next we show that the optimization
we write down is the correct one. The proof of this follows
that of Proposition5. Let α∗ be the minimizer of the expres-
sion above, and letu∗ be the optimal value of the optimiza-
tion. If the decision-maker chooses some mixed strategyρ
that is not a minimizer of the above, then there must exist
somer ∈ {1, . . . , k}, corresponding to somehtrue ∈ F ,
and also a vector(ξ̂·,r) ∈ Ξ(r) feasible for the above linear
optimization, for which

∑

i6=r

ρi







correct

µ̂hr
(N(hi, hr)) +

∑

S⊆{1,...,k}

i∈S

ξ̂S,r






> u∗.

Thus, we must have

∑

i6=r

ρi







correct

µ̂hr
(N(hi, hr)) +

∑

S⊆{1,...,k}

i∈S

ξ̂S,r






>

max
j∈{1,...,k}

ξ̂S,j∈Ξ(j)

∑

i6=j

α∗
i







correct

µ̂hj
(N(hi, hj)) +

∑

S⊆{1,...,k}

i∈S

ξ̂S,j






.

But then there must exist a measureν ∈ Φ consistent with
the observed measure, for which

ν(N(hi, hj)) =
correct

µ̂hj
(N(hi, hj)) +

∑

S⊆{1,...,k}

i∈S

ξ̂S,j,

and thus we have:

max
µ∈Φ

htrue∈H
Eµ(htrue; ρ) ≥ Eν(hr; ρ)

> max
ν∈Φ

htrue∈H
Eν(htrue; α

∗).

Therefore, ifν is indeed the true probability measure gener-
ating the location of the points, and ifhr is the true classifier,
then the error incurred by using strategyρ is strictly greater
than the error incurred using strategyα∗. Since bothν and
hr are consistent with the observed probability measure and
labels, respectively, the mixed strategyρ does not minimize
the worst-case error.

On the other hand, by similar reasoning, ifρ is not an op-
timal strategy, i.e., if it is does not minimize the worst-case
error as given in(3.8), then it is a strictly suboptimal solu-
tion to the linear optimization. This completes the proof that
the robust optimization above indeed yields the strategy of
the adversary which minimizes the worst-case error, where
the worst case is overh ∈ F and alsoν ∈ Φ. This concludes
the proofs of parts(i) and(ii) .

We have left to prove the second part of the proposition,
and part(iii) in the outline, namely, that we can rewrite the
robust optimization problem as a single LP. First, we remark
that for eachj, the setΞ(j) is a polytope. The problem then,
is a robust linear optimization problem. Using standard re-
sults from duality theory [BTN99], this can be reformulated
as an ordinary linear optimization problem.

474

We have the robust linear optimization problem:

min : u

s.t. : u ≥ max
n

(ξ̂S,1)
S⊆{1,...,k}

∈Ξ(1)
o

∑

i6=1

αi







correct

µ̂h1
(N(hi, h1)) +

∑

S⊆{1,...,k}

i∈S

ξ̂S,1







u ≥ max
n

(ξ̂S,2)
S⊆{1,...,k}

∈Ξ(2)
o

∑

i6=2

αi







correct

µ̂h2
(N(hi, h2)) +

∑

S⊆{1,...,k}

i∈S

ξ̂S,2







...

u ≥ max
n

(ξ̂S,k)
S⊆{1,...,k}

∈Ξ(k)
o

∑

i6=k

αi







correct

µ̂hk
(N(hi, hk)) +

∑

S⊆{1,...,k}

i∈S

ξ̂S,k







∑

i

αi = 1, αi ≥ 0.

Note that the robustification here is constraintwise-rectangular,
that is, the uncertainty set has the form

Ξ = Ξ(1) × · · · × Ξ(k).

Therefore, we can consider each constraint individually. In-
deed, each inequality can be rewritten as

u −
∑

i6=j

αi

correct

µ̂hj
(N(hi, hj)) ≥

max
n

(ξ̂S,j)
S⊆{1,...,k}

∈Ξ(j)
o

∑

i6=j

αi







∑

S⊆{1,...,k}

i∈S

ξ̂S,j






,

and thus we can consider the linear optimization:

max :
∑

i6=j

αi







∑

S⊆{1,...,k}

i∈S

ξ̂S,j






(3.9)

s.t. :
(

ξ̂S,j

)

S⊆{1,...,k}
∈ Ξ(j).

The objective function is bilinear in bothαi and ξ̂S,j. We
have

∑

i6=j

αi







∑

S⊆{1,...,k}

i∈S

ξ̂S,j






=

∑

S⊆{1,...,k}
ξ̂S,j

[

∑

i∈S

αi

]

,

and hence defining the vectorc by cS =
∑

i∈S αi we can

write the objective function asc′ξ̂·,j . The polytopeΞ(j) is

defined by equalities and inequalities among the variables.
Writing these in vector form, we have:

−[I]ξ̂·,j ≤ 0,

[Q(j)]ξ̂·,j = 0,

(1, 1, . . . , 1)′ξ̂·,j ≤ η,

[R(j)]ξ̂·,j ≤ (100 −
correct

µ̂hj
(N(h1, hj)), . . .

, 100 −
correct

µ̂hj
(N(hk, hj))).

(3.10)
Here,I is the identity matrix,Q(j) is a subset of the iden-
tity matrix corresponding to the setsS for which we have
(
⋂

i∈S N(hi, hj)
)

∩
(
⋂

i/∈S N(hi, hj)
c
)

= ∅, and the generic
row of R(j) contains a 1 in every index containing a particu-
lar i. Writing the equality as[Q(j)]ξ̂·,j ≤ 0, and−[Q(j)]ξ̂·,j ≤
0, we can express the constraints definingΞ(j) more com-
pactly as

Ξ(j) =

{

(

ξ̂S,j

)

S⊆{1,...,k}
: A(j)ξ̂·,j ≤ b

}

.

The matricesA(j), and the vectorb, are given by the vector
inequalities in (3.10) above:

A(j) =













−I

Q(j)

−Q(j)

R(j)

1 1 · · · 1 1













b =































0
0
...
0

100 −
correct

µ̂hj
(N(h1, hj))
...

100 −
correct

µ̂hj
(N(hk, hj))
η































.

Note that while the vectorc(j) is a linear function ofα, the
matricesA(j) and the vectorb are constant. We can then
rewrite the linear optimization (3.9) as

max : c′ξ̂·,j

s.t. : A(j)ξ̂·,j ≤ b.

The linear programming dual to this program is then

min : (b)
′
p(j)

s.t. :
(

p(j)
)′

A(j) = c

p
(j)
S ≥ 0, ∀S ⊆ {1, . . . , k}.

Recalling thatcS =
∑

i∈S αi, the robust linear optimization
problem determining the optimal strategy of the decision-
maker can now be rewritten:

min : u

s.t. :

(

u −∑i6=j αi

correct

µ̂hj
(N(hi, hj))

)

≥ (b)
′
p(j),

j = 1, . . . , k
[

(

p(j)
)′

A(j)
]

S
=
∑

i∈S αi , ∀S, j = 1, . . . , k

p
(j)
S ≥ 0, ∀S, j = 1, . . . , k
∑

i αi = 1
αi ≥ 0.

475

The variables of optimization are{u, αi, p
(j)
S }. The matrices

A(j) and the vectorb are constants, determined by (3.10).
Therefore this is indeed a linear optimization. Thus the proof
of parts(i), (ii) and (iii) is complete, as is the proof of the
proposition. �

From a complexity perspective the linear program is ex-
ponential in the size ofF since all subsets are considered.
This complexity is not an added feature of our development,
as even linear classification over non-separable data becomes
combinatorial. Still, in spite of this exponential nature the
linear program can consider several approximation schemes
such as constraint sampling. Moreover, pruning can be used
for the classifiers inF ; this is pursued elsewhere.

We have thus derived the optimal policy of the decision-
maker for bothS1 andS2. We denote these asD∗

1 andD∗
2,

respectively.

3.3 Bounding the Decision-Maker’s Error

As defined above, the decision-maker’s policy is a mixed
strategy – a randomized policy. In the setting of the worst-
case analysis which we consider, the decision-maker stands
to benefit from the randomization. For example, suppose
H = {h1, h2}, andµ(N(h1, h2)) = 2η, where the adver-
sary’s power isη. We consider the general optimal strategy
for the adversary in the next section. In this case, however,
it is clear that the optimal strategy for both the flip-only and
the move-and-flip adversary, is to flip half of the ‘points’, or
measure, inN(h1, h2). Then the decision-maker cannot dis-
tinguish betweenh1 andh2, and the optimal policy is12h1 +
1
2h2 The expected worst-case error is1

2µ(N(h1, h2)) = η.
If not for randomization, the worst-case error would have
been2η. Thus there is a concrete benefit to randomization.
The next proposition quantifies this benefit (this is similar to
Proposition 4.1 from [CBDF+99], but has a slightly tighter
lower bound3), and obtains bounds on the error an adversary
with powerη can obtain in any possible setup.

Proposition 8 In both S1 and S2, for an adversary with
powerη ≤ 1/2, there is a setup whereErrori ≥ (1 − η)2η
for i = 1, 2. On the other hand, we always haveErrori ≤ 2η
for i = 1, 2 and ifF is finite we haveErrori ≤ (1−1/|F|)2η
for i = 1, 2.

PROOF. We need to show that the lower bound can be
approached arbitrarily closely in the case of the weaker ad-
versary (flip-only), and the upper bound can never be ex-
ceeded by the more powerful adversary (move-and-flip). Let
X be the unit circle inR2, with µ the uniform measure on
the disk. Ifη = p/q is rational, divide the disk intoq equal,
numbered wedges, and defineq classifiers, so that classifier
i assigns positive labels to wedges{i, i + 1, . . . , i + p − 1}
mod q, and negative labels to the remainingq − p wedges.
As in Figure 1 suppose the true classifier ish1. The optimal
action of the adversary with powerη is to flip all positive
labels. Now all classifiers are indistinguishable, and thus
the decision-maker’s optimal strategy is the uniform mea-
sure over all{hi}. The probability of full overlap withhtrue

3The lower bound of Proposition 4.1 from [CBDF+99] trans-
lates toErrori ≥ η/(2 − η) which is smaller than the bound of
Proposition 8.

is 1/q, the probability of no overlap is(q − 2p + 1)/q, and
of overlapr for 0 < r < p is 2/q. Computing the expec-
tation, we haveError1 = (2p(q − p))/q2 = (1 − η)2η, as
claimed. Forη irrational, we can approximate it arbitrarily
closely with a rational number. In this case we can approach
the lower bound arbitrarily closely.

Next we show that even the more powerful move-and-
flip adversary can never exceed the upper bound. Observe
that if the power of the adversary isη, then for any two clas-
sifiershi andhj , we must haveµ(N(hi, hj)) ≤ 2η. Then, if
the decision-maker uses the possibly sub-optimal strategy of
choosingα = (1/n, 1/n, . . . , 1/n) (wheren = |F|), then
since by definitionN(h, h) = ∅ for all h, from expression
(3.5) above, it follows that the expected error will never ex-
ceed(1 − 1/n)2η.

h1
h2

h3 h4

h1
h2

h3 h4
T

Figure 1: Here we haveη = 2/5, so p = 2 andq = 5. The
figure on the left shows the correct labels. The adversary flips all
+-labels to−. In the figure on the right, all classifiers are indis-
tinguishable to the decision-maker. The decision-maker, therefore,
outputs a randomized strategy that is uniform over alln classifiers
(heren = 5).

3.4 The Adversary

First we considerS1 and the flip-only adversary. From Propo-
sition 5, the optimal strategy of the decision-maker is spec-
ified by the subset of ambiguous classifiers,F . We call
this α(F). Therefore the true error is also a function of

F . By an abuse of notation, we can denote this byE(F)
△
=

∑

h 6=htrue
αh(F)µ(N(h, htrue)). Then the optimal strategy

of the adversary is to create an ambiguous setF with as
large an error as possible. Given any legal strategyT of the
adversary, we denote byFT the resulting set of ambiguous
classifiers. Therefore we have:

Proposition 9 In S1, the adversary’s optimal strategy is to
maximizeE(F):

T ∗
1 = arg max

T:||T||≤η

T flip-only

E(FT). (3.11)

Themax here is attained since there are only finitely many
different setsF . If there are more than one (as in general
there will be) mapsT corresponding to the optimalF , we
arbitrarily choose one. ThereforeT ∗

1 is well-defined, and is
the optimal strategy for the adversary inS1, and the propo-
sition follows.

Next we considerS2, and the case of the move-and-flip
adversary. From Proposition 6, the decision-maker’s optimal

476

action is given by an LP that is a function of the ambiguity

setF , and the values{
correct

µ̂h′ (N(h′′, h′))} for h′, h′′ ∈ F .

As above, we denote this optimal solution byβ
△
= β(

correct

µ̂h′

(N(h′′, h′))), and the associated true generalization error is
thenEµ(htrue; β). For a given triple(λ, µ+, µ−), and power
η of the adversary, not all ambiguity setsF , and values for

{
correct

µ̂h′ (N(h′′, h′))} are attainable. We define the set of such
attainable values.

Definition 10 LetA be the set of values{
correct

µ̂h′ (N(h′′, h′))},
for h′, h′′ ∈ F for someF , such that there exists a triple
(λ̂, µ̂+, µ̂−) that meets three conditions:

(a) F must be the ambiguity set corresponding to(λ̂, µ̂+, µ̂−),
as in (3.4).

(b) The triple must satisfy

wrong

µ̂h (N(h′, h′′)) = λ̂µ̂+(N(h′, h′′) ∩ h(−)) +

(1 − λ̂)µ̂−(N(h′, h′′) ∩ h(+))
correct

µ̂h (N(h′, h′′)) = µ̂(N(h′, h′′))−
wrong

µ̂h (N(h′, h′′)).

(c) We must have||(λ, µ+, µ−) − (λ̂, µ̂+, µ̂−)||TV ≤ η.

Lemma 11 (a) The setA is a finite union of polyhedral
sets, and it is compact.

(b) The functionEµ(htrue; β(
correct

µ̂h (N(h′, h′′))) is piecewise
continuous, with finitely many discontinuities.

We defer the proof of this lemma to [CM08]. The next propo-
sition gives the optimal policy of the adversary forS2:

Proposition 12 The adversary’s optimal strategyT ∗
2 maps

(λ, µ+, µ−) to a triple (λ̂, µ̂+, µ̂−) that matches the values
correct

µ̂h (N(h′, h′′)) from the solution to the (nonlinear) pro-
gram:

max : Eµ(htrue; β(
correct

µ̂h (N(h′, h′′)))

s.t. : {
correct

µ̂h (N(h′, h′′))} ∈ A.
(3.12)

PROOF. By Lemma 11,A is compact, andEµ(htrue; β)
is piecewise continuous. Therefore, the optimal value is at-
tained for some ambiguity setF , and corresponding element

{
correct

µ̂h (N(h′, h′′))} of A. By the definition ofA, there exists
at least one such mapT ∗

2 , with ||T ∗
2 || ≤ η, that attains this

value. �

Thus the optimal policies for the decision-maker and ad-
versary are each given by respective optimization problems.
In summary, we have:

Theorem 13 The pair of strategies(D∗
i , T ∗

i) (i = 1, 2) for
the decision-maker and the adversary, gives optimal solu-
tions toS1 andS2, respectively.

4 Error and the Power of the Adversary

While we treat the noise as generated by an adversary, we
may also consider it to be a design parameter chosen ac-
cording to how we care to trade off optimality for robust-
ness. Indeed, upon seeing some realization(λ̂, µ̂+, µ̂−), the
decision-maker may have partial knowledge of the levelη of
noise. Equally, the decision-maker may specifically be inter-
ested in choosing a solution appropriate for some particular
level η̃ of noise. For any fixed level̃η, from the results in
Section 3, the decision-maker obtains the resulting optimal
policy. Whenη̃ = 0, the optimal strategy of the decision-
maker is to deterministically choose the single classifier that
minimizes the empirical error. If indeedη = 0, then this
is the optimal strategy. As̃η grows, the optimal strategy of
the decision-maker becomes increasingly random, and in the
limit as η̃ → 100%, the optimal policy approaches the uni-
form distribution over all classifiers.

For a fixed measureµ, H, andhtrue ∈ H we consider
the error as a function ofη. Graphing this function allows
the decision-maker, in the scenario described above, to con-
sider the tradeoff of robustness and optimality, and thus may
choose the desirable design parameterη̃, with respect to which
the optimal mixed strategy is obtained. In addition, this graph
provides other information that is of interest. The graph of
the error is not continuous. Rather, it is piecewise continuous
(not necessarily linear), with certain break points. The loca-
tion of these break points is important, and it is a function of
the structure ofH. A particular solutionα of the decision-
maker might be optimal for anỹη in some interval[η1, η2),
but not optimal for̃η ≥ η2.

We consider the example from the end of Section 2.3
whereh1 is the true classifier. There, the move-and-flip ad-
versary is strictly more powerful than the flip-only adversary
whenη > 5, and hence the setupsS1 andS2 are not equiva-
lent. The graphs in Figure 2 showErrori(µ, htrue, η, T ∗

i , D∗
i)

for fixedµ andhtrue, and varying values ofη. In the left side
of Figure 2 we have the superimposed graphs for this exam-
ple, for S1 andS2 for 0 ≤ η ≤ 11. In the right side of
Figure 2 we show the full graph of the true errorError2, for
0 ≤ η ≤ 100.

The graph forS2 is obtained by using the results of Propo-
sitions 6 and 12. The optimal policy of the move-and-flip
adversary differs for the three regions0 ≤ η < 5, 5 ≤
η ≤ 10, 10 ≤ η ≤ 100. In the first region, the adver-
sary is powerless regardless of his action. In the second
region, the optimal strategy is to flipη% of the labels in
N(h1, h2). For10 ≤ η ≤ 100, the adversary’s optimal strat-
egy is to flip all the points inN(h1, h2), and also move and
label ‘−’ a (η − 10) fraction of the mass intoN(h1, h2), so
thatµ̂(N(h1, h2)) = η.

The decision-maker’s policy, as given by Proposition 6,
protects the decision-maker against the worst possible (con-
sistent) triple(λ̃, µ̃+, µ̃−). Solving the robust LP from the
proposition reveals both the true error, and the worst-case er-
ror. Both of these quantities may be of interest. In [CM08]
we show, for this example, both the true error, and the worst-
case error, for all values ofη. The true error exhibits nu-
merous interesting properties. For instance, as shown in the
figure, the true error isnot monotonicin the power of the

477

adversary (the worst-case error over measures and classifiers
is, of course, monotonic). This is a direct consequence of
Proposition 6. In [CM08] we pay particular attention to this,
and other properties of the graph. Also, we give the details
of the computations.

0 1 2 3 4 5 6 7 8 9 10 11
−1

0

1

2

3

4

5

6

7

Power η of the Adversary (%)

T
ru

e
 E

rr
o

r
In

cu
rr

e
d

Error in S1 vs S2

S2 Error
S1 Error

0 10 20 30 40 50 60 70 80 90 100
−1

0

1

2

3

4

5

6

7

Power η of the Adversary (%)

T
ru

e
 E

rr
o

r
In

cu
rr

e
d

The Full S2 Error Graph

Figure 2:The graph above shows the error incurred inG1 on the
same axes as the error incurred inS2, for 0 ≤ η ≤ 11. As soon as
η > 5, we see that the move-and-flip adversary is more powerful.
Note thatError2 grows sublinearly forη ≥ 5. In the graph on the
right we show the error graph for the more powerful adversary for
0 ≤ η ≤ 100. The true error is not monotonic, as it decreases
(non-linearly) forη ≥ 50%.

5 Discussion

This work takes a learning in the information theoretic limit
view of learning with adversarial disturbance. Our main con-
tribution is the introduction of an optimization-theoretic al-
gorithmic framework for finding a classifier in the presence
of such disturbance. We characterized the optimal policy of
the decision-maker (as a function of the data) in terms of
a tractable and easily solved optimization problem. This
is a first step in developing the theory for a range of se-
tups. For example, the Bayesian setup may be of interest.
Here, the decision-maker has a prior over the possible clas-
sifiers, and instead of minimizing generalization error with
respect to the worst-case consistent classifier and (inS2) un-
derlying measurẽµ, he considers minimizing expected (un-
der the Bayesian posterior) error. Extending this algorithmic
approach to the game-theoretic setup, where the decision-
maker plays against a rational adversary, is also of inter-
est, and allows the possibility of more complex information

structures.
Considering the noise level as a design parameter and

viewing the resulting error as a function of it yielded sur-
prising results that show how counterintuitive the mini-max
formulation of learning with adversarial noise could be. We
showed for a simple example that while the worst-case error
is monotone in the power of the adversary, the actual error
(which depends on the particular underlying true probabil-
ity measure) may not be monotone in the power of the ad-
versary! This is because even though the adversary is more
powerful, the decision maker is also better prepared.

There are three natural extensions to our work that we did
not pursue here mostly due to space limits. First, while we
considered the proper learning setup, the non-proper setup
(as in [KSS92]) seems to naturally follow our framework.
Second, the case of infinite set of classifierH could be re-
solved by eliminating classifiers that are “close” according
to the observed measure. This is particularly useful for the
flip-only setup where the adversary cannot make two clas-
sifiers substantially different. Finally, while we do not con-
sider sample complexity, such results should not be too dif-
ficult to derive by imitating the arguments in [CBDF+99].

References

[ACB98] P. Auer and N. Cesa-Bianchi. On-line learning
with malicious noise and the closure algorithm.
Annals of AI and Mathematics, 23(1):83–99,
1998.

[BEK02] N. H. Bshouty, N. Eiron, and E. Kushilevitz.
PAC learning with nasty noise.Theoretical
Computer Science, 288(2):255–275, 2002.

[BTN99] A. Ben-Tal and A. Nemirovski. Robust solu-
tions of uncertain linear programs.Operations
Research Letters, 25(1):1–13, August 1999.

[CBDF+99] N. Cesa-Bianchi, E. Dichterman, P. Fischer,
E. Shamir, and H. Ulrich Simon. Sample-
efficient strategies for learning in the presence
of noise. Journal of the ACM, 46(5):684–719,
1999.

[CM08] C. Caramanis and S. Mannor. Be-
yond PAC: A robust optimization ap-
proach for learning in the presence of
noise: Online appendix. Available from
http://users.ece.utexas.edu/˜cmcaram/pubs/
RobustLearningOnlineApp.pdf, 2008.

[KL93] M. Kearns and M. Li. Learning in the presence
of malicious errors.SIAM Journal on Comput-
ing, 22(4):807–837, 1993.

[KSS92] Michael J. Kearns, Robert E. Schapire, and
Linda Sellie. Toward efficient agnostic learn-
ing. In Computational Learing Theory, pages
341–352, 1992.

[Lai88] P. D. Laird.Learning from good and bad data.
Kluwer Academic Publishers, Norwell, MA,
USA, 1988.

[Ser03] R. Servedio. Smooth boosting and learning
with malicious noise. Journal of Machine
Learning Research, 4:633–648, 2003.

478

On the Margin Explanation of Boosting Algorithms

Liwei Wang∗1, Masashi Sugiyama2, Cheng Yang1, Zhi-Hua Zhou3, and Jufu Feng1

1 Key Laboratory of Machine Perception, MOE, School of Electronics Engineering and Computer Science,
Peking University, Beijing, 100871, P.R.China. {wanglw,yangch,fjf}@cis.pku.edu.cn

2 Department of Computer Science, Tokyo Institute of Technology,
2-12-1, O-okayama, Meguro-ku, Tokyo, 152-8552, Japan. sugi@cs.titech.ac.jp

3 National Key Laboratory for Novel Software Technology, Nanjing University
Nanjing 210093, P.R. China. zhouzh@nju.edu.cn

Abstract

Much attention has been paid to the theo-
retical explanation of the empirical success of
AdaBoost. The most influential work is the
margin theory, which is essentially an upper
bound for the generalization error of any vot-
ing classifier in terms of the margin distribu-
tion over the training data. However, Breiman
raised important questions about the margin
explanation by developing a boosting algo-
rithm arc-gv that provably generates a larger
minimum margin than AdaBoost. He also gave
a sharper bound in terms of the minimum mar-
gin, and argued that the minimum margin gov-
erns the generalization. In experiments how-
ever, arc-gv usually performs worse than Ad-
aBoost, putting the margin explanation into
serious doubts. In this paper, we try to give
a complete answer to Breiman’s critique by
proving a bound in terms of a new margin
measure called Equilibrium margin (Emargin).
The Emargin bound is uniformly sharper than
Breiman’s minimum margin bound. This re-
sult suggests that the minimum margin is not
crucial for the generalization error. We also
show that a large Emargin implies good gener-
alization. Experimental results on benchmark
datasets demonstrate that AdaBoost usually
has a larger Emargin and a smaller test error
than arc-gv, which agrees well with our theory.

1 Introduction

The AdaBoost algorithm [FS96, FS97] has achieved
great success in the past ten years. It has demonstrated
excellent experimental performance both on benchmark
datasets and real applications [BK99, Die00, VJ01]. It
is observed in experiments that the test error of a com-
bined voting classifier usually keeps decreasing as its
size becomes very large and even after the training er-
ror is zero [Bre98, Qui96]. This fact, on the first sight,
obviously violates Occam’s razor.

∗This work was supported by NSFC(60775005, 60635030,
60721002) and Global COE Program of Tokyo Institute of
Technology.

Schapire et al. [SFBL98] tried to explain this phe-
nomenon in terms of the margins of the training ex-
amples. Roughly speaking, the margin of an example
with respect to a classifier is a measure of the confidence
of the classification result. Schapire et al. [SFBL98]
proved an upper bound for the generalization error of
a voting classifier that does not depend on how many
classifiers were combined, but only on the margin distri-
bution over the training set, the number of the training
examples and the size (the VC dimension for example)
of the set of base classifiers. They also demonstrate
that AdaBoost has the ability to produce a good mar-
gin distribution. This theory indicates that producing
a good margin distribution is the key to the success of
AdaBoost and explains well the surprising phenomenon
observed in experiments.

Soon after that however, Breiman [Bre99] cast seri-
ous doubts on this margin explanation. He developed a
boosting-type algorithm called arc-gv, which provably
generates a larger minimum margin than AdaBoost1
(Minimum margin is the smallest margin over all the
training examples, see Section 2 for the formal defini-
tion). Then he gave an upper bound for the generaliza-
tion error of a voting classifier in terms of the minimum
margin, as well as the number of training examples and
the size of the set of base classifiers. This bound is
sharper than the bound based on the margin distribu-
tion given by Schapire et al.

Breiman argued that if the bound of Schapire et
al. implied that the margin distribution is the key to the
generalization error, his bound implied more strongly
that the minimum margin is the key to the generaliza-
tion error, and the arc-gv algorithm would achieve the
best performance among all boosting-type algorithms.
In experiments, even though arc-gv always produces
larger minimum margins than AdaBoost, its test error
is consistently higher. Breiman also investigated the
margin distributions generated by AdaBoost and arc-
gv, and found that arc-gv actually produced uniformly
better margin distributions than AdaBoost. Thus he
concluded that neither the minimum margin nor the
margin distribution determined the generalization error
and a new theoretical explanation is needed.

1Actually, the minimum margin of arc-gv converges to
the largest possible value among all voting classifiers.

479

Breiman’s argument seems convincing and put the
margin explanation into serious doubts. Recently how-
ever, Reyzin and Schapire [RS06] gained important dis-
covery after a careful study on Breiman’s arc-gv algo-
rithm. Note first that the bounds of both Breiman
and Schapire et al. state that the generalization er-
ror also depends on the complexity of the set of base
classifiers as well as the minimum margin or the mar-
gin distribution. To investigate how the margin affects
the generalization error, one has to keep the complexity
of the base classifiers fixed. In Breiman’s experiments,
he tried to control this by always using CART trees
[BFOS84] of a fixed number of leaves as the base clas-
sifier. Reyzin and Schapire re-conducted Breiman’s ex-
periments and found that the trees produced by arc-gv
were much deeper than those produced by AdaBoost.
Since deeper trees are more complex even though the
number of leaves is the same, arc-gv uses base classi-
fiers of higher complexity than AdaBoost in Breiman’s
experiments. Thus it was not a fair comparison.

In order to study the margin explanation in a fair
manner, a more controlled setting is needed. Reyzin
and Schapire then compared arc-gv and AdaBoost by
using the decision stump, whose complexity is fixed, as
the base classifier. Experiments showed that arc-gv pro-
duced larger minimum margins yet still a higher error
rate. But this time, the margin distribution generated
by arc-gv is not as “good” as that AdaBoost generated
(see Fig.7 in [RS06]). So they argued that according
to the Schapire et al. bound in terms of the margin
distribution, the empirical observation, i.e., the inferior
performance of arc-gv, could be explained.

From a more critical point of view however,
Breiman’s doubt has not been fully answered by the
above results. First of all, Breiman backed up his ar-
gument with a sharper bound in terms of the minimum
margin. In Reyzin and Schapire’s experiment with the
decision stumps, arc-gv still produced larger minimum
margin and had worse performance. Even though Ad-
aBoost generates a “better” margin distribution than
arc-gv, it would not disprove Breiman’s critique unless
we could show a bound in terms of the margin distribu-
tion and is uniformly sharper than Breiman’s minimum
margin bound. Another problem is how to measure the
“goodness” of a margin distribution. The statement
that AdaBoost generates “better” margin distributions
than arc-gv is vague. Reyzin and Schapire used the
average margin as a measure to compare margin dis-
tributions produced by AdaBoost and arc-gv. But the
average margin does not explicitly appear in the bound
of Schapire et al. Thus a larger average margin does
not necessarily imply a smaller generalization error in
theory.

In this paper, we try to give a complete answer to
Breiman’s doubt by solving the two problems mentioned
above. We first propose a novel upper bound for the
generalization error of voting classifiers. This bound is
uniformly sharper than Breiman’s bound. The key fac-
tor in this bound is a new margin notion which we refer
to as the Equilibrium margin (Emargin). The Emar-

gin can be viewed as a measure of how good a margin
distribution is. In fact, the Emargin depends, in a com-
plicated way, on the margin distribution, and has little
relation to the minimum margin. Experimental results
show that AdaBoost usually produces a larger Emargin
than arc-gv when the complexity of the base classifier
is well controlled. Our results thus explain the inferior
performance of arc-gv and give Breiman’s doubt a neg-
ative answer.

The rest of this paper is organized as follows: In Sec-
tion 2 we briefly describe the margin theory of Schapire
et al. and Breiman’s argument. Our main results are
given in Section 3. We provide further explanation of
the main bound in Section 4. All the proofs can be found
in Section 5. We provide experimental justification in
Section 6 and conclude in Section 7.

2 Background and Related Work

In this section we briefly review the existing margin
bounds and the two boosting algorithms.

Consider binary classification problems. Examples
are drawn independently according to an underlying dis-
tribution D over X ×{−1,+1}, where X is an instance
space. Let H denote the space from which the base
hypotheses are chosen. A base hypothesis h ∈ H is a
mapping from X to {−1,+1}. A voting classifier f(x)
is of the form

f(x) =
∑

αihi(x),

where ∑
αi = 1, αi ≥ 0.

An error occurs on an example (x, y) if and only if

yf(x) ≤ 0.

We use PD(A(x, y)) to denote the probability of the
event A when an example (x, y) is chosen randomly ac-
cording to the distribution D. Therefore, PD(yf(x) ≤
0) is the generalization error which we want to bound.
We also use PS(A(x, y)) to denote the probability with
respect to choosing an example (x, y) uniformly at ran-
dom from the training set S.

For an example (x, y), the value of yf(x) reflects the
confidence of the prediction. Since each base classifier
outputs −1 or +1, one has

yf(x) =
∑

i:y=hi(x)

αi −
∑

i:y 6=hi(x)

αi.

Hence (yf(x) is the difference between the weights as-
signed to those base classifiers that correctly classify
(x, y) and the weights assigned to those that misclassify
the example. yf(x) is called the margin for (x, y) with
respect to f . If we consider the margins over the whole
set of training examples, we can regard PS(yf(x) ≤ θ)
as a distribution over θ (−1 ≤ θ ≤ 1), since PS(yf(x) ≤
θ) is the fraction of training examples whose margin is
at most θ. This distribution is referred to as the margin
distribution. The minimum margin of f , which is the
smallest margin over the training examples, then can

480

Input: S = (x1, y1), (x2, y2), . . . , (xn, yn)
where xi ∈ X, yi ∈ {−1, 1}.

Initialization: D1(i) = 1/n.
for t = 1 to T do

1. Train base learner using distribution Dt.
2. Get base classifier ht : X → {−1, 1}.
3. Choose αt.
4. Update:

Dt+1(i) =
Dt(i) exp(−αtyiht(xi))

Zt
,

where Zt is a normalization factor chosen so
that Dt+1 will be a distribution.

end
Output: The final Classifier

H(x) = sgn

(
T∑
t=1

αtht(x)

)
.

Algorithm 1: A unified description of AdaBoost and
arc-gv.

be equivalently represented by the maximum value of θ
such that PS(yf(x) ≤ θ) = 0.

A unified description of AdaBoost and arc-gv is
shown in Algorithm 1. The only difference of the two
algorithms is the choice of αt. AdaBoost sets αt as

αt =
1
2

log
1 + γt
1− γt

,

where γt is the edge of the base classifier ht, defined as:

γt =
n∑
i=1

Dt(i)yiht(xi).

The edge γt is an affine transformation of the error rate
of ht with respect to the distribution Dt.

Arc-gv chooses αt in a different way. It takes into
consideration of the minimum margin of the composite
classifier up to the current round. Denote by ρt the
minimum margin of the voting classifier of round t− 1,
that is,

ρt = min
i

(
yi

∑t−1
s=1 αshs(xi)∑t−1

s=1 αs

)
.

Let
βt =

1
2

log
1 + γt
1− γt

− 1
2

log
1 + ρt
1− ρt

.

Arc-gv sets αt as [Bre99]:

αt =

{ 1 : βt > 1,
βt : 0 ≤ βt ≤ 1,
0 : βt < 0.

The first margin explanation of the AdaBoost algo-
rithm [SFBL98] is to upper bound the generalization
error of voting classifiers in terms of the margin distri-
bution, the number of training examples and the com-
plexity of the set from which the base classifiers are

chosen. The theory contains two bounds: one applies
to the case that the base classifier set H is finite, and
the other applies to the general case that H has a finite
VC dimension.

Theorem 1 [SFBL98] For any δ > 0, with probability
at least 1− δ over the random choice of the training set
S of n examples, every voting classifier f satisfies the
following bounds:

PD

(
yf(x) ≤ 0

)
≤ inf
θ∈(0,1]

[
PS

(
yf(x) ≤ θ

)
+O

(
1√
n

(
log n log |H|

θ2
+ log

1
δ

)1/2
)]

,

if |H| <∞. And

PD

(
yf(x) ≤ 0

)
≤ inf
θ∈(0,1]

[
PS

(
yf(x) ≤ θ

)
+O

(
1√
n

(
d log2(n/d)

θ2
+ log

1
δ

)1/2
)]

,

where d is the VC dimension of H.

The theorem states that if the voting classifier gen-
erates a good margin distribution, that is, most training
examples have large margins so that PS(yf(x) ≤ θ) is
small for not too small θ, then the generalization error
is also small. In [SFBL98] it has also been shown that
for the AdaBoost algorithm, PS(yf(x) ≤ θ) decreases
to zero exponentially fast with respect to the number
of boosting iterations if θ is not too large. These re-
sults imply that the excellent performance of AdaBoost
is due to its good margin distribution.

Breiman’s doubts on the margin explanation came
from the arc-gv algorithm. It can be shown that the
minimum margin generated by arc-gv converges to the
largest possible value among all voting classifiers. In
practice, arc-gv has larger minimum margins than Ad-
aBoost in most cases for a finite number of boosting
iterations. Breiman also proved an upper bound for the
generalization error of voting classifiers. This bound de-
pends only on the minimum margin, not on the entire
margin distribution.

Theorem 2 [Bre99] Let θ0 be the minimum margin de-
fined as

θ0 = min {yf(x) : (x, y) ∈ S} , (1)

where S is the training set. If

|H| <∞,

θ0 > 4

√
2
|H|

,

R =
32 log(2|H|)

nθ20
≤ 2n,

481

then for any δ > 0, with probability at least 1 − δ over
the random choice of the training set S of n examples,
every voting classifier f satisfies the following bounds:

PD

(
yf(x) ≤ 0

)
≤ R

(
log(2n) + log

1
R

+ 1
)

+
1
n

log(
|H|
δ

). (2)

Breiman pointed out that his bound is sharper than
the margin distribution bound of Schapire et al. If θ
in Theorem 1 is taken to be the minimum margin θ0,
the bound in Theorem 2 is about the square of the
bound in terms of the margin distribution, since the
bound in Theorem 2 is O(log n/n) and the bound in
Theorme 1 is O(

√
log n/n). Breiman then argued that

compared to the margin distribution explanation, his
bound implied more strongly that the minimum mar-
gin governs the generalization error. However, arc-gv
performs almost consistently worse than AdaBoost in
experiments2. These empirical results contradict what
the margin theory predicts and therefore put the margin
explanation into serious doubts.

A lot of efforts have been made on providing better
explanation of the boosting algorithms in recent years
[MBG02, KP02, KP05, AKLL02]. Koltchinskii and
Panchanko [KP02, KP05] proved a number of bounds in
terms of the margin distribution which are sharper than
Theorem 1. However, it is difficult to compare the min-
imum margin bound to these bounds since they contain
unspecified constants. Nevertheless, these results imply
that the margin distribution might be more important
than the minimum margin for the generalization error
of voting classifiers.

3 Main Results

In this section we propose upper bounds in terms of
the Emargin. The bound is uniformly sharper than
Breiman’s minimum margin bound.

First let us introduce some notions. Consider the
Bernoulli relative entropy function D(q||p) defined as

D(q||p) = q log
q

p
+ (1− q) log

1− q
1− p

, 0 ≤ p, q ≤ 1.

For a fixed q, D(q||p) is a monotone increasing function
of p for q ≤ p ≤ 1. It is easy to check that

D(q||p) = 0 when p = q,

and
D(q||p)→∞ as p→ 1.

Thus one can define the inverse function of D(q||p) for
fixed q as D−1(q, u), such that

D(q||D−1(q, u)) = u for all u ≥ 0 and D−1(q, u) ≥ q.

See also [Lan05].

2Actually, the inferior performance has also been ob-
served when using other voting classifiers that maximize the
minimum margin (see also [GS98, RW02]).

The next theorem is our main result: the Emargin
bound. Here we consider the case that the base classifier
set H is finite. For the case that H is infinite but has
a finite VC dimension, the bound is more complicated
and will be given in Theorem 8. All the proofs can be
found in Section 5.

Theorem 3 If |H| < ∞, then for any δ > 0, with
probability at least 1 − δ over the random choice of the
training set S of n examples, every voting classifier f
satisfies the following bound:

PD

(
yf(x) ≤ 0

)
≤ log |H|

n
+ inf
q∈{0, 1n ,

2
n ,...,1}

D−1
(
q, u

[
θ̂(q)

])
, (3)

where

u
[
θ̂(q)

]
=

1
n

(
8

θ̂2(q)
log
(

2n2

log |H|

)
log |H|

+ log |H|+ log
n

δ

)
,

and θ̂(q) is given by

θ̂(q) = sup

{
θ ∈

(√
8/|H|, 1

]
: PS

(
yf(x) ≤ θ

)
≤ q

}
.

(4)

Clearly the key factors in this bound are the optimal q
and the corresponding θ̂(q).

Definition 4 Let q∗ be the optimal q in Eq.(3), and
denote

θ∗ = θ̂(q∗).
We call θ∗ the Equilibrium margin (Emargin).

The name equilibrium is due to the following fact.

Proposition 5 q∗ is the empirical error at the Emargin
θ∗.

PS

(
yf(x) < θ∗

)
= q∗. (5)

With Definition 4, the Emargin bound (3) can be simply
written as

PD

(
yf(x) ≤ 0

)
≤ log |H|

n
+D−1

(
q∗, u (θ∗)

)
. (6)

Theorem 3 then states that the generalization error of
a voting classifier depends on its Emargin and the em-
pirical error at the Emargin.

Our Emargin bound has a similar flavor to Theo-
rem 1. Note that the Emargin depends, in a compli-
cated way, on the whole margin distribution. Roughly,
if most training examples have large margins, then θ∗

is large and q∗ is small. The minimum margin is only
a special case of the Emargin. From Eq.(4) one can see
that θ̂(0) is the minimum margin. Hence the Emargin is

482

equal to the minimum margin if and only if the optimal
q∗ is zero.

We next compare our Emargin bound to Breiman’s
minimum margin bound. We show that the Emargin
bound is uniformly sharper than the minimum margin
bound.

Theorem 6 The bound given in Theorem 3 is uni-
formly sharper than the minimum margin bound in The-
orem 2. That is

log |H|
n

+D−1
(
q∗, u (θ∗)

)
≤ R

(
log(2n) + log

1
R

+ 1
)

+
1
n

log
|H|
δ
,

where

R =
32 log(2|H|)

nθ20
≤ 2n.

According to this theorem, the minimum margin is
not crucial for the generalization error, i.e., a larger min-
imum margin does not necessarily imply a smaller test
error. Thus arc-gv does not necessarily have better per-
formance than AdaBoost. Our new bound implies that
it is the Emargin θ∗ and the empirical error q∗ at θ∗ that
govern the performance of the classifier. The following
theorem describes how the Emargin θ∗ and the Emargin
error q∗ affect the generalization ability. It states that
a larger Emargin and a smaller Emargin error result in
a lower generalization error.

Theorem 7 Let f1, f2 be two voting classifiers. Denote
by θ1, θ2 the Emargin and by q1, q2 the empirical error
at θ1, θ2 of f1, f2 respectively. That is

qi = PS

(
yfi(x) < θi

)
, i = 1, 2.

Also denote by B1, B2 the Emargin upper bound of the
generalization error of f1, f2 (i.e. the right-hand side
of Eq.(3)). Then

B1 ≤ B2,

if
θ1 ≥ θ2 and q1 ≤ q2.

Theorem 7 suggests that the Emargin and the Emar-
gin error can be used as measures of the goodness of
a margin distribution. A large Emargin and a small
Emargin error indicate a good margin distribution. Ex-
perimental results in Section 6 show that AdaBoost usu-
ally has larger Emargins and smaller Emargin errors
than arc-gv.

The last theorem of this section is the Emargin
bound for the case that the set of base classifiers has
a finite VC dimension.

Theorem 8 Suppose the set of base classifiers H has
VC dimension d. Then for any δ > 0, with probability
at least 1− δ over the random choice of the training set

S of n examples, every voting classifier f satisfies the
following bounds:

PD

(
yf(x) ≤ 0

)
≤ d2 + 1

n
+ inf
q∈{0, 1n ,

2
n ,...,1}

n

n− 1
·D−1

(
q, u

[
θ̂(q)

])
,

where

u
[
θ̂(q)

]
=

1
n

(
16d

θ̂2(q)
log

n

d
log

en2

d

+ 3 log

(
16

θ̂2(q)
log

n

d
+ 1

)
+ log

2n
δ

)
,

and θ̂(q) is

θ̂(q) = sup

{
θ ∈

(
0, 1
]

: PS
(
yf(x) ≤ θ

)
≤ q

}
. (7)

4 Explanation of the Emargin Bound

In Theorem 3, we adopt the partial inverse of the
relative entropy to upper bound the generalization
error. The key term in the Emargin bound is
infqD−1(q, u[θ̂(q)]). To better understand the bound,
we make use of three different upper bounds of
infqD−1(q, u) to obtain simpler forms of the Emargin
bound. We list in the following lemma the upper bounds
of infqD−1(q, u[θ̂(q)]).

Lemma 9 The following bounds holds.

1.

inf
q
D−1

(
q, u

[
θ̂(q)

])
≤ D−1

(
0, u

[
θ̂(0)

])
≤ u

[
θ̂(0)

]
.

2.

inf
q
D−1

(
q, u

[
θ̂(q)

])
≤ inf

q

q +

u
[
θ̂(q)

]
2

1/2
 .

3.

inf
q
D−1

(
q, u

[
θ̂(q)

])
≤ inf

q≤Cu[θ̂(q)]
D−1

(
q, u

[
θ̂(q)

])
≤ inf

q≤Cu[θ̂(q)]
C ′u[θ̂(q)],

where C > 0 is any constant and C ′ = max(2C, 8).

Note from Theorem 3 that

u
[
θ̂(q)

]
= O

(
1
n

(
log n log |H|

θ̂(q)2
+ log

1
δ

))
,

and
q = PS

(
yf(x) ≤ θ̂(q)

)
.

Thus we can derive the following three bounds from
the Emargin bound by using the three inequalities in
Lemma 9 respectively.

483

Corollary 10 If |H| < ∞, then for any δ > 0, with
probability at least 1 − δ over the random choice of the
training set S of n examples, every voting classifier f
satisfies the following bounds:

1.

PD(yf(x) ≤ 0) ≤ O
(

1
n

(
log n log |H|

θ20
+ log

1
δ

))
,

where θ0 is the minimum margin.
2.

PD

(
yf(x) ≤ 0

)
≤ inf
θ∈(0,1]

[
PS

(
yf(x) ≤ θ

)
+O

(
1√
n

(
log n log |H|

θ2
+ log

1
δ

)1/2
)]

,

3.

PD(yf(x) ≤ 0) ≤ O
(

1
n

(
log n log |H|

θ2
+ log

1
δ

))
,

for all θ such that

PS(yf(x) ≤ θ) ≤ O
(

1
n

(
log n log |H|

θ2
+ log

1
δ

))
.

The first bound in the Corollary has the same or-
der of magnitude as the minimum margin bound. The
second bound is the same as Theorem 1. So essen-
tially, previous bounds can be derived from the Emar-
gin bound. The third bound in the Corollary is new.
It states that the generalization error is O(logn log |H|

nθ2)
even in the non-zero error case, provided the margin
error PS(yf(x) ≤ θ) is small enough.

5 Proofs

In this section, we give proofs of the theorems, lemmas
and corollaries.

5.1 Proof of Theorem 3
The proof uses the tool developed in [SFBL98]. The
difference is that we do not bound the deviation of the
generalization error from the empirical margin error di-
rectly, instead we consider the difference of the general-
ization error to a zero-one function of a certain empiri-
cal measure. This allows us to unify the zero-error and
nonzero-error cases and it results in a sharper bound.
For the sake of convenience, we follow the convention in
[SFBL98].

Let C(H) denote the convex hull of H. Also let
CN (H) denote the set of unweighted averages over N
elements from the base classifier set H. Formally,

CN (H) =

{
g : g =

1
N

N∑
j=1

hj , hj ∈ H

}
.

For any voting classifier

f =
∑

βihi ∈ C(H),

where ∑
βi = 1, βi ≥ 0,

there can be associated with a distribution over H by
the coefficients {βi}. We denote this distribution as
Q̃(f). By choosing N elements independently and ran-
domly from H according to Q̃(f), we can generate a
classifier g ∈ CN (H). The distribution of g is denoted
by Q(f). For any fixed α (0 < α < 1)

PD

(
yf(x) ≤ 0

)
≤ PD,g∼Q(f)

(
yg(x) ≤ α

)
+ PD,g∼Q(f)

(
yg(x) > α, yf(x) ≤ 0

)
≤ PD,g∼Q(f)

(
yg(x) ≤ α

)
+ exp

(
−Nα

2

2

)
. (8)

We next bound the first term on the right-hand side of
the inequality. For any fixed g ∈ CN (H), and for any
positive number ε and nonnegative integer k such that
k ≤ nε, we consider the probability (over the random
draw of n training examples) that the training error at
margin α is less than k/n, while the true error of g at
margin α is larger than ε. A compact representation of
this probability is

Pr
S∼Dn

(
PD(yg(x) ≤ α) > I

[
PS

(
yg(x) ≤ α) >

k

n

)]
+ ε

)
where PrS∼Dn denotes the probability over n training
samples chosen independently at random according to
D, and I is the indicator function. Note that

Pr
S∼Dn

(
PD

(
yg(x) ≤ α

)
> I

[
PS

(
yg(x) ≤ α

)
>
k

n

]
+ ε

)

≤ Pr
S∼Dn

(
PS

(
yg(x) ≤ α

)
≤ k

n

∣∣∣∣∣ PD(yg(x) ≤ α
)
> ε

)

≤
k∑
r=0

(
n

r

)
εr(1− ε)n−r.

Then applying the relative entropy Chernoff bound to
the Bernoulli trials, we further have

k∑
r=0

(
n

r

)
εr(1− ε)n−r ≤ exp

(
−nD

(
k

n

∥∥∥ε)) .
We thus obtain

Pr
S∼Dn

(
PD

(
yg(x) ≤ α

)
> I

[
PS

(
yg(x) ≤ α

)
>
k

n

]
+ ε

)

≤ exp
(
−nD

(
k

n

∥∥∥ε)) . (9)

484

We only consider α at the values in the set

U =
{

1
|H|

,
2
|H|

, . . . , 1
}
.

There are no more than |H|N elements in CN (H). Using
the union bound we get

Pr
S∼Dn

(
∃g ∈ CN (H), ∃α ∈ U, PD

(
yg(x) ≤ α

)
> I

[
PS

(
yg(x) ≤ α

)
>
k

n

]
+ ε

)

≤ |H|(N+1) exp
(
−nD

(
k

n

∥∥∥ε)) .
Note that

Eg∼Q(f)PD

(
yg(x) ≤ α

)
= PD,g∼Q(f)

(
yg(x) ≤ α

)
,

Eg∼Q(f)I

[
PS

(
yg(x) ≤ α

)
>
k

n

]
= Pg∼Q(f)

(
PS

(
yg(x) ≤ α

)
>
k

n

)
.

We have

Pr
S∼Dn

(
∃f ∈ C(H),∃α ∈ U, PD,g∼Q(f)

(
yg(x) ≤ α

)
> Pg∼Q(f)

(
PS(yg(x) ≤ α) >

k

n

)
+ ε

)

≤ |H|(N+1) exp
(
−nD

(
k

n

∥∥∥ε)) .
Let

δ = |H|(N+1) exp
(
−nD

(
k

n

∥∥∥ε)) ,
then

ε = D−1

(
k

n
,

1
n

[
(N + 1) log |H|+ log

1
δ

])
.

We obtain that with probability at least 1− δ over the
draw of the training samples, for all f ∈ C(H), all α ∈
U ,

PD,g∼Q(f)

(
yg(x) ≤ α

)
≤ Pg∼Q(f)

(
PS

(
yg(x) ≤ α

)
>
k

n

)
+D−1

(
k

n
,

1
n

[
(N + 1) log |H|+ log

1
δ

])
.

Using the union bound over k = 0, 1, . . . , n, then with
probability at least 1 − δ over the draw of the training
samples, for all f ∈ C(H), all α ∈ U , and all k

PD,g∼Q(f)

(
yg(x) ≤ α

)
≤ Pg∼Q(f)

(
PS

(
yg(x) ≤ α

)
>
k

n

)
+D−1

(
k

n
,

1
n

[
(N + 1) log |H|+ log

n

δ

])
. (10)

We next bound the first term in the right-hand side of
Eq.(10). Using the same argument for deriving Eq.(8),
we have for any θ > α

Pg∼Q(f)

(
PS

(
yg(x) ≤ α

)
>
k

n

)
≤ I

[
PS

(
yf(x) ≤ θ

)
>
k

n

]
+ Pg∼Q(f)

(
PS

(
yg(x) > α

)
>
k

n
,

PS

(
yf(x) ≤ θ

)
≤ k

n

)
. (11)

Note that the last term in Eq.(11) can be further
bounded by

Pg∼Q(f)

(
∃(xi, yi) ∈ S : yig(xi) ≤ α and yif(xi) > θ

)

≤ n exp
(
−N(θ − α)2

2

)
. (12)

Combining (8), (10), (11) and (12), we have that with
probability at least 1 − δ over the draw of training ex-
amples, for all f ∈ C(H), all α ∈ U , all θ > α, and all
k, but fixed N

PD

(
yf(x) ≤ 0

)
≤ exp

(
−Nα

2

2

)
+ n exp

(
−N(θ − α)2

2

)
+ I

[
PS

(
yf(x) ≤ θ

)
>
k

n

]
+D−1

(
k

n
,

1
n

[
(N + 1) log |H|+ log

n

δ

])
.

Let
α =

θ

2
− η

|H|
∈ U,

where 0 ≤ η < 1. It is easy to check that the sum of
the first two terms on the right-hand side of the above
inequality can be bounded by

max
(

2n, exp
(

N

2|H|

))
exp

(
−Nθ

2

8

)
.

Let
δN = δ · 2−N ,

we can get a union bound over all N . Put

N =
8
θ2

log
(

2n2

log |H|

)
,

note that if

θ >

√
8
|H|

,

then

2n > exp
(

N

2|H|

)
.

485

We obtain

PD

(
yf(x) ≤ 0

)
≤ log |H|

n

+ inf
0≤k<n

(
I

[
PS

(
yf(x) ≤ θ

)
>
k

n

]
+D−1

(
k

n
, u

))
,

where

u =
1
n

(
8
θ2

log
(

2n2

log |H|

)
log |H|+ log |H|+ log

n

δ

)
.

The theorem follows.

5.2 Proof of Proposition 5
Let M be the set defined as

M =
{
q : θ̂(q) = θ̂(q∗) = θ∗

}
.

Let q0 be the minimal q in M . We will show that

q∗ = q0, (13)

and
PS

(
yf(x) < θ∗

)
= q0. (14)

To show q∗ = q0, note thatD−1(q, u) is an increasing
function of q for fixed u. Since q∗ is the optimal value
such that D−1

(
q, u
(
θ̂(q)

))
achieves the minimum, one

must have q∗ = q0.
To show

PS

(
yf(x) < θ∗

)
= q0,

first note that

PS

(
yf(x) < θ∗

)
∈M.

For every q ∈M , by the definition of θ̂(q), one has

PS

(
yf(x) < θ∗

)
≤ q.

This implies

PS

(
yf(x) < θ∗

)
= q0.

This completes the proof.

5.3 Proof of Theorem 6
The following lemma will be used to prove Theorem 6.

Lemma 11 D−1(0, p) ≤ p for p ≥ 0.

Proof of Lemma 11. We only need to show

D(0||p) ≥ p,

since D(q||p) is a monotonic increasing function of p for
p ≥ q. By the Taylor expansion

D(0||p) = − log(1− p) = p+
p2

2
+
p3

3
+ · · · ≥ p.

Proof of Theorem 6. The right-hand side of the
Emargin bound (3) is the minimum over all q ∈

{
0, 1

n ,
2
n , . . . , 1

}
. Take q = 0, it is clear that θ̂(0) is the

minimum margin. By Lemma 9, the Emargin bound
can be relaxed to

PD

(
yf(x) ≤ 0

)
≤ 1
n

(
8
θ20

log
(

2n2

log |H|

)
log |H|

+ 2 log |H|+ log
n

δ

)
. (15)

We show that this relaxed bound is sharper than The-
orem 2. For the minimum margin bound, we only con-
sider the case that R ≤ 1, since otherwise the bound
is larger than one. Simple calculations show that the
right-hand side of (15) is smaller than the minimum
margin bound. The theorem then follows.

5.4 Proof of of Theorem 7

According to Proposition 5, we have that qi =
PS(yfi(x) < θi) is also the optimal q∗ in the Emargin
bound. Thus we only need to show

D−1
(
q1, u(θ1)

)
≤ D−1

(
q2, u(θ2)

)
.

Note that if θ1 ≥ θ2, then u(θ1) ≤ u(θ2). So

D−1
(
q2, u(θ2)

)
≥ D−1

(
q2, u(θ1)

)
,

since D−1(q, u) is an increasing function of u for fixed
q. Also D−1(q, u) is an increasing function of q for fixed
u, we have

D−1
(
q2, u(θ1)

)
≥ D−1

(
q1, u(θ1)

)
since q1 ≤ q2. This completes the proof.

5.5 Proof of Theorem 8

The next lemma is a modified version of the uniform
convergence result of [VC71, Vap98] and its refinement
[Dev82]. It will be used for proving Theorem 8.

Lemma 12 Let A be a class of subsets of a space Z.
Let NA(z1, z2, . . . , zn) be the number of different sets in{

{z1, z2, . . . , zn}
⋂
A : A ∈ A

}
.

Define

s(A, n) = max
(z1,z2,...,zn)∈Zn

NA(z1, z2, . . . , zn).

Then for any fixed integer k

Pr
S∼Dn

(
∃A ∈ A : PD(A) > I

[
PS(A) >

k

n

]
+ ε

)
≤ 2 · s(A, n2) exp

(
−nD

(
k

n

∥∥∥ε′)) ,
where

ε′ =
n

n− 1
ε− 1

n
.

486

Proof of Lemma 12. The proof is the standard argu-
ment. We first show that for any 0 < α < 1, ε > 0, and
any integer n′

Pr
S∼Dn

(
∃A ∈ A : PD(A) > I

[
PS(A) >

k

n

]
+ ε

)
≤
(

1
1− e−2n′α2ε2

)
Pr

S∼Dn, S′∼Dn′

(
∃A ∈ A : PS′(A)

> I

[
PS(A) >

k

n

]
+ (1− α)ε

)
.

Or equivalently,

Pr
S∼Dn

(
sup
A∈A

(
PD(A)− I

[
PS(A) >

k

n

])
> ε

)
≤
(

1
1− e−2n′α2ε2

)
Pr

S∼Dn, S′∼Dn′

(
sup
A∈A

(
PS′(A)

− I
[
PS(A) >

k

n

])
> (1− α)ε

)
. (16)

Let V denote the event

sup
A∈A

(
PD(A)− I

[
PS(A) >

k

n

])
> ε.

Let A∗ be (one of) the optimal A so that

PD(A)− I
[
PS(A) >

k

n

]

achieves the maximum. Note that the following two
events

PS′(A∗) ≥ PD(A∗)− αε

and

PD(A∗)− I
[
PS(A∗) >

k

n

]
> ε

imply that

PS′(A∗)− I
[
PS(A∗) >

k

n

]
> (1− α)ε.

Then

Pr
S∼Dn, S′∼Dn′

(
sup
A∈A

(
PS′(A)− I

[
PS(A) >

k

n

])

> (1− α)ε

)

=
∫
dP

∫
I

[
sup
A∈A

(
PS′(A)− I

[
PS(A) >

k

n

])

> (1− α)ε

]
dP ′

≥
∫
V

dP

∫
I

[
sup
A∈A

(
PS′(A)− I

[
PS(A) >

k

n

])

> (1− α)ε

]
dP ′

≥
∫
V

dP

∫
I

[
PS′(A∗)− I

[
PS(A∗) >

k

n

]

> (1− α)ε

]
dP ′

≥
∫
V

dP

∫
I

[
PS′(A∗) ≥ PD(A∗)− αε

]
dP ′

≥
(

1− e−2n′α2ε2
)∫

V

dP

=
(

1− e−2n′α2ε2
)

× Pr
S∼Dn

(
sup
A∈A

(
PD(A)− I

[
PS(A) >

k

n

])
> ε

)
.

This completes the proof of (16).
Take

n′ = n2 − n,

α =
1

(n− 1)ε
,

we have

Pr
S∼Dn

(
∃A ∈ A : PD(A) > I

[
PS(A) >

k

n

]
+ ε

)
≤ 2 Pr

S∼Dn, S′∼Dn′

(
∃A ∈ A : PS′(A)

> I

[
PS(A) >

k

n

]
+ (ε− 1

n− 1
)

)
.

Proceeding as [Dev82] and using the relative entropy
Hoeffding inequality, the theorem follows.

Proof of Theorem 8. The proof is the same as The-
orem 3 until we have Eq.(9). Let α = θ

2 , we need to

487

bound

Pr
S∼Dn

(
∃g ∈ CN (H), ∃θ > 0, PD

(
yg(x) ≤ θ

2

)
> I

[
PS

(
yg(x) ≤ θ

2

)
>
k

n

]
+ ε

)
.

Note that we only need to consider θ = 0, 1
N ,

2
N , . . . , 1.

Let

A(g) =
{

(x, y) ∈ X × {−1, 1} : yg(x) ≤ θ

2

}
,

and
A = {A(g) : g ∈ CN (H)} .

By Sauer’s lemma [Sau72] it is easy to see that

s(A, n) ≤
(en
d

)Nd
,

where d is the VC dimension of H. By Lemma 12, we
have

Pr
S∼Dn

(
∃g ∈ CN (H), ∃θ > 0, PD

(
yg(x) ≤ θ

2

)
> I

[
PS

(
yg(x) ≤ θ

2

)
>
k

n

]
+ ε

)

≤ 2(N + 1)
(
en2

d

)Nd
exp

(
−nD

(
k

n

∥∥∥ε′)) ,
where

ε′ =
n

n− 1
ε− 1

n
.

Using the argument as Theorem 3, the theorem
follows.

Proof of Lemma 9. The first inequality has already
been proved in Lemma 11.

For the second inequality, we only need to show

D−1(q, u) ≤ q +
√
u/2,

or equivalently

D(q, q +
√
u/2) ≥ u,

since D is an increasing function in the second param-
eter. But this is immediate by a well known result
[Hoe63]:

D(q, q + δ) ≥ 2δ2.
For the third inequality we first show that for all

0 < q < 1
D−1(

q

2
,
q

8
) ≤ q, (17)

which is equivalent to

D(
q

2
||q) ≥ q

8
.

For fixed q, let φ(x) = D(qx||q), 0 < x ≤ 1. Note that

φ(1) = φ′(1) = 0,

and
φ′′(x) =

q

x(1− qx)
≥ q,

we have

D(
q

2
||q) = φ(

1
2

) ≥ q

8
.

This completes the proof of Eq. (17).
Now if q ≤ Cu[θ̂(q)], recall that C ′ = max(2C, 8),

and note D−1 is increasing function on its first and sec-
ond parameter respectively. We have

D−1
(
q, u

[
θ̂(q)

])
≤ D−1

(
C ′

2
u
[
θ̂(q)

]
, u
[
θ̂(q)

])
≤ D−1

(
C ′

2
u
[
θ̂(q)

]
,
C ′

8
u
[
θ̂(q)

])
≤ C ′u

[
θ̂(q)

]
.

The lemma then follows.

6 Experiments

In this section we provide experimental results to verify
our theory. We compare AdaBoost and arc-gv in terms
of their Emargin, Emargin error and the generalization
error. Theorem 7 indicates that if a voting classifier f1
has a larger Emargin and a smaller Emargin error than
another classifier f2, then f1 would have better perfor-
mance on the test data. The goal of the experiment
is to see whether the empirical results agree with the
theoretical prediction.

The experiments are conducted on 10 benchmark
datasets described in Table 1. Except the USPS which
contains handwritten digits, all datasets are from the
UCI repository [AN07]. If the data is multiclass, we
group them into two classes, since we study the binary
classification problem. For instance, the “letter” dataset
has 26 classes, we use the first 13 as the positive and the
others as the negative. In the preprocessing stage, each
feature is normalized to [0, 1]. All datasets are used in a
five-fold cross validation manner. For the USPS which
originally has a training set and a test set, we merge
them and regenerate the cross validation data.

In all experiments, decision stumps are adopted as
the base learner, so the complexity of the base classifiers
is well controlled. We use a finite set of possible decision
stumps. Specifically, for each feature we consider 100
thresholds uniformly distributed on [0, 1]. Therefore the
size of the base classifier set is 2 × 100 × k, where k
denotes the number of features.

We run AdaBoost and arc-gv for 500 rounds, then
calculate the Emargin, Emargin error, test error as well
as the minimum margin of them respectively. The re-
sults are described in Table 2. AdaBoost has a larger or
equal Emargin and a smaller Emargin error than arc-gv
on all the datasets except German and Ionosphere. Ac-
cording to our theory, it predicts that AdaBoost would
have a lower generalization error. The experiments show
that among these eight datasets, AdaBoost outperforms
arc-gv on six datasets, ties on one dataset, and loses

488

Table 1: Description of the datasets

Dataset # Examples # Features Dataset # Examples # Features
Breast 683 9 Letter 20000 16
Diabetes 768 8 Satimage 6435 36
German 1000 24 USPS 9298 256
Image 2310 16 Vehicle 846 20
Ionosphere 351 34 Wdbc 569 30

Table 2: Margin measures and performances of AdaBoost and arc-gv. For the datasets in bold-face, AdaBoost
generates larger Emargins and smaller Emargin errors than arc-gv. AdaBoost outperforms arc-gv on all these
datasets except the Image dataset.

Emargin Emargin Error Test Error Minimum margin
Breast AdaBoost 0.313 0.803 0.052 0.005

arc-gv 0.281 0.909 0.057 0.008
Diabetes AdaBoost 0.110 0.748 0.255 -0.064

arc-gv 0.049 0.759 0.256 -0.017
German AdaBoost 0.157 0.824 0.258 -0.118

arc-gv 0.034 0.780 0.261 -0.026
Image AdaBoost 0.196 0.610 0.023 -0.009

arc-gv 0.195 0.705 0.021 -0.003
Ionosphere AdaBoost 0.323 0.800 0.100 0.084

arc-gv 0.131 0.577 0.106 0.061
Letter AdaBoost 0.078 0.645 0.174 -0.165

arc-gv 0.063 0.958 0.178 -0.034
Satimage AdaBoost 0.133 0.521 0.053 -0.054

arc-gv 0.133 0.956 0.057 -0.019
USPS AdaBoost 0.108 0.972 0.450 -0.142

arc-gv 0.053 0.990 0.460 -0.024
Vehicle AdaBoost 0.129 0.737 0.297 -0.117

arc-gv 0.052 0.794 0.304 -0.033
Wdbc AdaBoost 0.350 0.581 0.035 -0.130

arc-gv 0.350 0.710 0.035 -0.100

only on one dataset. These results agree well with our
theory.

Note also that on all the datasets except Ionosphere,
arc-gv has a larger minimum margin than AdaBoost,
but arc-gv has a lower test error than AdaBoost only
on one dataset. This verifies that the minimum margin
is not crucial for the generalization error.

7 Conclusions

In this paper we tried to give a complete answer to
Breiman’s doubt on the margin explanation of the Ad-
aBoost algorithm. We proposed a bound in terms of
a new margin measure called the Emargin, which de-
pends on the whole margin distribution. This bound
is uniformly sharper than the minimum margin bound
used by Breiman to back up his argument. According to
our theory, arc-gv does not necessarily outperform Ad-
aBoost even though it generates larger minimum mar-
gins.

Our bounds also imply that the Emargin and the

Emargin error are the key to the generalization error
of a voting classifier—a larger Emargin and a smaller
Emargin error result in better generalization ability. Ex-
periments on benchmark datasets agree well with our
theory.

A future work is to study why AdaBoost generates
larger Emargins and smaller Emargin errors, i.e., better
margin distributions, than arc-gv. Can we find a strat-
egy that optimizes the margin distribution? If such an
algorithm exists, it would be a good test of our theory to
see whether it has better performance than AdaBoost
as we predict.

References

[AKLL02] A. Antos, B. Kégl, T. Linder, and G. Lu-
gosi. Data-dependent margin-based general-
ization bounds for classification. Journal of
Machine Learning Research, 3:73–98, 2002.

[AN07] A. Asuncion and D. J. Newman. UCI ma-
chine learning repository, 2007.

489

[BFOS84] L. Breiman, J. H. Friedman, R. A. Olshen,
and C. J. Stone. Classification and Regres-
sion Trees. Wadsworth, 1984.

[BK99] E. Bauer and R. Kohavi. An empirical com-
parison of voting classification algorithms:
Bagging, boosting and variants. Machine
Learning, 36:105–139, 1999.

[Bre98] L. Breiman. Arcing classifiers. The Annals
of Statistics, 26:801–849, 1998.

[Bre99] L. Breiman. Prediction games and arcing
algorithms. Neural Computation, 11:1493–
1517, 1999.

[Dev82] L. Devroye. Bounds for the uniform devia-
tion of empirical measures. Journal of Mul-
tivariate Analysis, 12:72–79, 1982.

[Die00] T. Dietterich. An experimental comparison
of three methods for constructing ensembles
of decision trees: Bagging, boosting and ran-
domization. Machine Learning, 40:139–157,
2000.

[FS96] Y. Freund and R. E. Schapire. Experiments
with a new boosting algorithm. In Inter-
national Conference on Machine Learning,
1996.

[FS97] Y. Freund and R. E. Schapire. A decision-
theoretic generalization of on-line learning
and an application to boosting. Journal of
Computer and System Sciences, 55:119–139,
1997.

[GS98] A. J. Grove and D. Schuurmans. Boosting in
the limit: Maximizing the margin of learned
ensembles. In National Conference on Arti-
ficial Intelligence, 1998.

[Hoe63] W. Hoeffding. Probability inequalities for
sum of bounded random variables. Jour-
nal of American Statistical Society, 58:13–
30, 1963.

[KP02] V. Koltchinskii and D. Panchanko. Empir-
ical margin distributions and bounding the
generalization error of combined classifiers.
Annals of Statistics, 30:1–50, 2002.

[KP05] V. Koltchinskii and D. Panchanko. Complex-
ities of convex combinations and bounding
the generalization error in classification. An-
nals of Statistics, 33:1455–1496, 2005.

[Lan05] J. Langford. Tutorial on practical prediction
theory for classification. Journal of Machine
Learning Research, 6:273–306, 2005.

[MBG02] L. Mason, P. Bartlett, and M. Golea.
Generalization error of combined classifiers.
Journal of Computer and System Sciences,
65:415–438, 2002.

[Qui96] J. R. Quinlan. Bagging, boosting, and c4.5.
In 13th International Conference on Artifi-
cial Intelligence, 1996.

[RS06] L. Reyzin and R. E. Schapire. How boosting
the margin can also boost classifier complex-
ity. In International Conference on Machine
Learning, 2006.

[RW02] G. Rätsch and M. Warmuth. Maximizing the

margin with boosting. In 15th Annual Con-
ference on Computational Learning Theory,
2002.

[Sau72] N. Sauer. On the density of family of sets.
Journal of Combinatorial Theory, Series A,
13:145–147, 1972.

[SFBL98] R. Schapire, Y. Freund, P. Bartlett, and
W. Lee. Boosting the margin: A new expla-
nation for the effectiveness of voting meth-
ods. Annals of Statistics, 26:1651–1686,
1998.

[Vap98] V. Vapnik. Statistical Learning Theory. John
Wiley and Sons Inc., 1998.

[VC71] V. N. Vapnik and A. YA. Chervonenkis. On
the uniform convergence of relative frequen-
cies of events to their probabilities. Theory of
Probability and Its Applications, 16:264–280,
1971.

[VJ01] P. Viola and M. Jones. Rapid object detec-
tion using a boosted cascade of simple fea-
tures. In IEEE Computer Society Conference
on Computer Vision and Pattern Recogni-
tion, 2001.

490

Adaptive Hausdorff Estimation of Density Level Sets

Aarti Singh and Robert D. Nowak∗ Clayton D. Scott
University of Wisconsin - Madison, USA University of Michigan - Ann Arbor, USA

singh@cae.wisc.edu, nowak@engr.wisc.edu cscott@eecs.umich.edu

Abstract

Hausdorff accurate estimation of density level sets
is relevant in applications where a spatially uni-
form mode of convergence is desired to ensure that
the estimated set is close to the target set at all
points. The minimax optimal rate of error con-
vergence for the Hausdorff metric is known to be
(n/ log n)−1/(d+2α) for level sets with boundaries
that have a Lipschitz functional form, and where
the parameterα characterizing the regularity of
the density around the level of interest is known.
Thus, all previous work is non-adaptive to the den-
sity regularity and assumes knowledge of the reg-
ularity parameterα. Moreover, the estimators pro-
posed in previous work achieve the minimax op-
timal rate for rather restricted classes of sets (for
example, the boundary fragment and star-shaped
sets) that effectively reduce the set estimation
problem to a function estimation problem. This
characterization precludes level sets with multi-
ple connected components, which are fundamental
to many applications. This paper presents a fully
data-driven procedure that is adaptive to unknown
local density regularity, and achieves minimax op-
timal Hausdorff error control for a class of level
sets with very general shapes and multiple con-
nected components.

1 Introduction
Density level sets provide useful summaries of a density
function for many applications including clustering [Har75,
Stu03], anomaly detection [SHS05, SN06, VV06], and data
ranking [LPS99]. In practice, however, the density function
itself is unknown a priori and only a finite number of ob-
servations from the density are available. LetX1, . . . , Xn

be independent, identically distributed observations drawn
from an unknown probability measureP , having densityf
with respect to the Lebesgue measure, and defined on the do-
mainX ⊆ R

d. Given a desired density levelγ, consider the
γ-level set of the densityf

G∗
γ := {x ∈ X : f(x) ≥ γ}.

∗This work was partially supported by the National Science
Foundation grants CNS-0519824 and ECS-0529381.

The goal of the density level set estimation problem is to
generate an estimatêG of the level set based on then obser-
vations{Xi}n

i=1, such that the error between the estimatêG
and the target setG∗

γ , as assessed by some performance mea-
sure which gauges the closeness of the two sets, is small.

Most literature available on level set estimation [SHS05,
SN06, SD07, WN07, KT93, Tsy97, Pol95, RV06] considers
global error measures related to the symmetric set difference.
However some applications may need a more local or spa-
tially uniform error measure as provided by the Hausdorff
metric, for example, to ensure robustness to outliers or pre-
serve topological properties of the level set. The Hausdorff
error metric is defined as follows between two non-empty
sets:

d∞(G1, G2) = max{ sup
x∈G2

ρ(x, G1), sup
x∈G1

ρ(x, G2)}

whereρ(x, G) = infy∈G ||x − y||, the smallest Euclidean
distance of a point inG to the pointx. If G1 or G2 is empty,
then letd∞(G1, G2) be defined as the largest distance be-
tween any two points in the domain. Control of this error
measure provides a uniform mode of convergence as it im-
plies control of the deviation of a single point from the de-
sired set. A symmetric set difference based estimator may
not provide such a uniform control as it is easy to see that
a set estimate can have very small symmetric difference er-
ror but large Hausdorff error. Conversely, as long as the set
boundary is not space-filling, small Hausdorff error implies
small symmetric difference error.

Existing results pertaining to nonparametric level set es-
timation using the Hausdorff metric [KT93, Tsy97, Cav97]
focus on rather restrictive classes of level sets (for example,
the boundary fragment and star-shaped set classes). These
restrictions, which effectively reduce the set estimation prob-
lem to a boundary function estimation problem (in rectan-
gular or polar coordinates, respectively), are typically not
met in practical applications. In particular, the character-
ization of level set estimation as a boundary function es-
timation problem precludes level sets with multiple con-
nected components, which are fundamental to many appli-
cations. Moreover, the estimation techniques proposed in
[KT93, Tsy97, Cav97] require precise knowledge of the lo-
cal regularity of the distribution (quantified by the parameter
α, to be defined below) in the vicinity of the desired level set
in order to achieve minimax optimal rates of convergence.
Such prior knowledge is unavailable in most practical ap-

491

plications. Recently, a plug-in method based on sup-norm
density estimation was put forth in [CMC06] that can han-
dle more general classes than boundary fragments or star-
shaped sets, however sup-norm based methods require global
smoothness assumptions on the density to ensure that the
density estimate is good everywhere. Also, the method only
deals with a special case of the density regularity condition
considered in this paper (α = 1), and is therefore not adap-
tive to unknown density regularity.

In this paper, we propose a plug-in procedure based
on a regular histogram partition that can adaptively achieve
minimax optimal rates of Hausdorff error convergence over
a broad class of level sets with very general shapes and
multiple connected components, without assuminga priori
knowledge of the density regularity parameterα. Adaptivity
is achieved by a new data-driven procedure for selecting the
histogram resolution. The procedure is specifically designed
for the level set estimation problem and only requires local
regularity of the density in the vicinity of the desired level.

2 Density assumptions

In this paper, we assume that the densityf is supported on
the unit hypercube ind-dimensions, that isX = [0, 1]d, and
is bounded with range[0, fmax]. Controlling the Hausdorff
accuracy of level set estimates also requires some smooth-
ness assumptions. The most crucial assumption is the first,
which characterizes the relationship between distances and
changes in density. The last two are topological assumptions
on the level set and essentially generalize the notion of Lip-
schitz functions to closed hypersurfaces.

Here we define anǫ-ball centered at a pointx as
B(x, ǫ) = {y ∈ X : ||x − y|| ≤ ǫ}, where|| · || denotes
the Euclidean distance. Also, aninner ǫ-coverof a setG is
defined as the union of allǫ-balls contained inG. Formally,
Iǫ(G) =

⋃

x:B(x,ǫ)⊆G B(x, ǫ).

[A] Local density regularity: The density isα-regular
around theγ-level set,0 < α < ∞ andγ < fmax,
if there exist constantsC2 > C1 > 0 andδ0, δ1 > 0
such that

C1ρ(x, ∂G∗
γ)α ≤ |f(x) − γ| ≤ C2ρ(x, ∂G∗

γ)α

for all x ∈ X with |f(x) − γ| ≤ δ0, where∂G∗
γ

is the boundary of the true level setG∗
γ . And there

exists y0 ∈ ∂G∗
γ such that for allx ∈ B(y0, δ1),

|f(x) − γ| ≤ δ0.

This assumption is similar to the one used in [Tsy97,
Cav97] (we elaborate on the differences later on). The
regularity parameterα determines the rate of error con-
vergence for level set estimation. Accurate estimation
is more difficult at levels where the density is relatively
flat (largeα), as intuition would suggest. In this pa-
per, we do not assume knowledge ofα unlike previous
investigations into Hausdorff accurate level set estima-
tion [KT93, Tsy97, Cav97, CMC06]. Therefore, here
the assumption simply states that there is a relationship
between distance and density level, but the precise na-
ture of the relationship is unknown.

[B] Level set regularity:There exist constantsǫo > 0 and
C3 > 0 such that for allǫ ≤ ǫo, Iǫ(G

∗
γ) 6= ∅ and

ρ(x, Iǫ(G
∗
γ)) ≤ C3ǫ for all x ∈ ∂G∗

γ .

This assumption states that the level set is not arbitrarily
narrow anywhere. It precludes features like cusps and
arbitrarily thin ribbons, as well as connected compo-
nents of arbitrarily small size. This condition is neces-
sary since arbitrarily small features cannot be detected
and resolved from a finite sample. However, from a
practical perspective, if the assumption fails to hold
then it simply means that it is not possible to theoret-
ically guarantee that such small features will be recov-
ered.

[C] Level set boundary dimension:There exists a constant
C4 > 0 such that for allx ∈ ∂G∗

γ and allǫ, δ such that
0 < δ ≤ ǫ, the minimum number ofδ−balls required
to cover∂G∗

γ ∩ B(x, ǫ) is ≤ C4(δ/ǫ)−(d−1).

This assumption is related to the box-counting dimen-
sion [Fal90] of the boundary of the level set. It es-
sentially says that, at any scale, the boundary behaves
locally like a (d − 1)-dimensional surface in thed -
dimensional domain and is not space-filling. This con-
dition is not restrictive since the Hausdorff error itself
is inappropriate for space-filling curves, and in fact it
is not required if the density regularity parameterα is
known. However, the condition is needed to achieve
adaptivity using the proposed method, as we shall dis-
cuss later.

Let F∗
1 (α) denotes the class of densities satisfying as-

sumptions[A, B], andF∗
2 (α) denotes the class of densities

satisfying assumptions[A, B, C]. The dependence on other
parameters is omitted as these do not influence the minimax
optimal rate of convergence. The classesF∗

1 (α),F∗
2 (α) are

a generalization of the Lipschitz boundary fragments or star-
shaped sets considered in [KT93, Tsy97, Cav97] since as-
sumptions[B, C] basically imply that the boundary looks
locally like a Lipschitz function. In fact assumptions[B, C]
are satisfied by a Lipschitz boundary fragment or star-shaped
set; please refer to Section 5.3 for a formal proof. However,
there is a slight difference between the upper bound of as-
sumption[A] here and that employed in [Tsy97, Cav97].
The upper bound assumption in [Tsy97, Cav97] only re-
quires that the set{x : |f(x)−γ| ≤ δ0} be non-empty. So as
long as there is at least one point on the boundary where the
density regularity assumption[A] holds, this determines the
complexity of the class. Our assumption requires the density
regularity to hold for an open neighborhood about at least
one point on the boundary. This is necessary for adaptivity
since a procedure cannot sense the regularity as character-
ized byα unless the regularity holds in a region with positive
measure.

In [Tsy97], Tsybakov established a minimax lower

bound of (n/ logn)−
1

d+2α for the class of Lipschitz star-
shaped sets, which satisfy our assumptions[B, C] (see Sec-
tion 5.3) and the slightly modified version of assumption[A],
as discussed above. His proof uses Fano’s lemma to derive
the lower bound for a discrete subset of densities from this
class. It is easy to see that the discrete subset of densities

492

used in his construction also satisfy our form of assump-
tion [A]. Hence, the same lower bound holds for the classes
F∗

1 (α) andF∗
2 (α) under consideration as well and we have

the following proposition. HereE denotes expectation with
respect to the random data sample.

Proposition 1 There existsc > 0 such that

inf
̂Gn

sup
f∈F∗

1
(α)

E[d∞(̂Gn, G∗
γ)] ≥ inf

̂Gn

sup
f∈F∗

2
(α)

E[d∞(̂Gn, G∗
γ)]

≥ c

(

n

log n

)− 1

d+2α

.

Here theinf is taken over all possible set estimatorŝGn.

In the paper, we present a method that achieves this min-
imax lower bound for the classF∗

1 (α), given knowledge
of the density regularity parameterα. We also extend the
method to achieve adaptivity toα for the classF∗

2 (α) under
the additional assumption[C], while preserving the minimax
optimal rate of convergence.

3 Proposed method

In this section, we propose a plug-in level set estimator that
is based on a regular histogram. The histogram resolution
is adaptively selected in a purely data-driven way without
assuming knowledge of the local density regularity.

LetAj denote the collection of cells in a regular partition
of [0, 1]d into hypercubes of dyadic sidelength2−j, wherej
is a non-negative integer. The estimator at this resolution is
given as

̂Gj = {A ∈ Aj : ̂f(A) ≥ γ}. (1)

Herêf(A) = ̂P (A)/µ(A), wherêP (A) = 1
n

∑n
i=1 I{Xi∈A}

denotes the empirical probability of an observation occurring
in A andµ is the Lebesgue measure.

Our first result shows that, if the density regularity pa-
rameterα is known, then the correct resolution can be cho-
sen (as in [Tsy97, Cav97]), and the corresponding estimator
achieves near minimax optimal rate over the class of densi-
ties given byF∗

1 (α). HereE denotes expectation with re-
spect to the random data sample. We introduce the notation
an ≍ bn to denote thatan = O(bn) andbn = O(an).

Theorem 1 Assume that the local density regularity
α is known. Pick resolutionj such that 2−j ≍
sn(n/ log n)−

1

(d+2α) , wheresn is a monotone diverging se-
quence. Then

sup
f∈F∗

1
(α)

E[d∞(̂Gj , G
∗
γ)] ≤ Csn

(

n

log n

)− 1

d+2α

for all n, whereC ≡ C(C1, C3, ǫo, fmax, δ0, d, α) > 0 is a
constant.

The proof is given in Section 5.1.

Theorem 1 provides an upper bound on the Hausdorff error
of our estimate. Ifsn is slowly diverging, for example if
sn = (log n)ǫ whereǫ > 0, this upper bound agrees with
the minimax lower bound of Proposition 1 up to a(log n)ǫ

factor. Hence the proposed estimator can achieve near min-
imax optimal rates, given knowledge of the density regular-
ity. We would like to point out that if the parameterδ0 char-
acterizing assumption[A] and the density boundfmax are
also known, then the appropriate resolution can be chosen
asj = ⌊log2

(

c−1(n/ logn)1/(d+2α)
)

⌋, where the constant
c ≡ c(δ0, fmax). With this choice, the optimal sidelength
scales as2−j ≍ (n/ logn)−1/(d+2α), and the estimator̂Gj

exactly achieves the minimax optimal rate.

3.1 Adaptivity to unknown local density regularity

In this section we present a procedure that automatically se-
lects the appropriate resolutionj without prior knowledge
of α. The selected resolution needs to be adapted to the lo-
cal regularity of the density around the level of interest. To
achieve this, we propose the followingvernier:

Vγ,j = min
A∈Aj

max
A′∈Aj′∩A

|γ − f̄(A′)|.

Heref̄(A) = P (A)/µ(A), andj′ = ⌊j+log2 sn⌋, wheresn

is a slowly diverging monotone sequence, for examplelog n,
log log n, etc. HenceAj′ ∩ A denotes the collection of sub-
cells with sidelength2−j′ ∈ [2−j/sn, 2−j+1/sn) within the
cell A. The vernier focuses on cellsA at resolutionj that
intersect the boundary (have smallest density deviation from
the desired levelγ), and then evaluates the deviation in av-
erage density within subcells ofA to judge whether or not
the density is uniformly close toγ over the cell. Thus, the
vernier is sensitive to the local density regularity in the vicin-
ity of the desired level and in fact minimizing the vernier
leads to selection of the appropriate resolution adapted to the
unknown density regularity parameterα. By choosingsn

with arbitrarily slow divergence, it is possible to get arbitrar-
ily close to the optimal rate of convergence in the Hausdorff
sense. However, note that the vernier may not function prop-
erly if the boundary ofG∗

γ passes through every subcell of
A (since then the subcell averages may be arbitrarily close
to γ irrespective of the density regularity). Assumption[C]
precludes this possibility at sufficiently high resolutions.

SinceVγ,j requires knowledge of the unknown probabil-
ity measure, we must work with the empirical version, de-
fined analogously as:

̂Vγ,j = min
A∈Aj

max
A′∈Aj′∩A

|γ − ̂f(A′)|.

We propose a complexity regularization scheme wherein the
empirical vernier̂Vγ,j is balanced by a penalty term:

Ψj′ :=

max
A∈Aj′

√

√

√

√8
log(2j′(d+1)16

δ)

nµ(A)
max

(

̂f(A), 8
log(2j′(d+1)16

δ)

nµ(A)

)

where0 < δ < 1 is a confidence parameter, andµ(A) =

2−j′d. Notice that the penalty is computable from the given
observations. The precise form ofΨ is chosen so that min-
imizing the empirical vernier plus penalty provides control
over the true vernier (refer to Section 5.2 for a formal proof).
The final level set estimate is given by

̂G = ̂G
̂j (2)

493

where
̂j = arg min

0≤j≤J

{

̂Vγ,j + Ψj′

}

(3)

Thus the search is focused on regular partitions of dyadic
sidelength2−j , j ∈ {0, 1, . . . , J}. The choice ofJ will
be specified below. Observe that the value of the empirical
vernier decreases with increasing resolution as better approx-
imations to the true level are available. On the other hand, the
penalty is designed to increase with resolution to penalize
high complexity estimates that might overfit the given sam-
ple of data. Thus, the above procedure chooses the appropri-
ate resolution automatically by balancing these two terms.

We now establish that our complexity penalized proce-
dure leads to minimax optimal rates of convergence without
requiring prior knowledge of any parameters.

Theorem 2 Pick J ≡ J(n) such that 2−J ≍
sn(n/ log n)−

1

d , where sn is a monotone diverging se-
quence. Let̂j denote the resolution chosen by the complexity
penalized method as given by Eq. (3), and̂G denote the final
estimate of Eq. (2). Then with probability at least1 − 3/n,
for all densities in the classF∗

2 (α),

c1s
d

d+2α
n

(

n

log n

)− 1

d+2α

≤ 2−
̂j ≤ c2sns

d
d+2α
n

(

n

log n

)− 1

d+2α

for n large enough (so thatsn > c(C4, d)), wherec1, c2 > 0
are constants. In addition,

sup
f∈F∗

2
(α)

E[d∞(̂G, G∗
γ)] ≤ Cs2

n

(

n

log n

)− 1

d+2α

for all n, where C ≡
C(C1, C2, C3, C4, ǫo, fmax, δ0, δ1, d, α) > 0 is a con-
stant.

The proof is given in Section 5.2.

The maximum resolution2J ≍ s−1
n (n/ log n)

1

d can be eas-
ily chosen, based only onn, and allows the optimal resolu-
tion for anyα to lie in the search space. Observe that by ap-
propriate choice ofsn, for examplesn = (log n)ǫ/2 with ǫ a
small number> 0, the bound of Theorem 2 matches the min-
imax lower bound of Proposition 1, except for an additional
(log n)ǫ factor. Hence our methodadaptivelyachieves near
minimax optimal rates of convergence for the classF∗

2 (α).

4 Concluding Remarks

In this paper, we propose a Hausdorff accurate level set esti-
mation method that is adaptive to unknown local density reg-
ularity and achieves minimax optimal rates of error conver-
gence over a very general classes of level sets. The analysis
in this paper assumesα > 0, however the caseα ≥ 0 that al-
lows jumps in the density can also be handled (see [SSN07]),
but is omitted here to keep the presentation and proofs sim-
pler. Also, this paper considers locally Lipschitz bound-
aries, however extensions to additional boundary smooth-
ness (for example, Hölder regularity> 1) may be possible in
the proposed framework using techniques such as wedgelets
[Don99] or curvelets [CD99]. The earlier work on Hausdorff
accurate level set estimation [KT93, Tsy97, Cav97] does ad-
dress higher smoothness of the boundary but that follows as a

straightforward consequence of assuming a functional form
for the boundary. We would also like to comment that while
we only addressed the density level set problem in this paper,
extensions to general regression level set estimation should
be possible using a similar approach.

The complexity regularization approach (Eq. 3) based on
the vernier is similar in spirit to the so-called Lepski methods
(for example, [LMS97]) for function estimation which are
spatially adaptive bandwidth selectors, however the vernier
focuses on cells close to the desired level and thus is specif-
ically tailored to the level set problem. The vernier provides
the key to achieve adaptivity while requiring only local reg-
ularity of the density in the vicinity of the desired level.

In this paper, we assume that the density regularity is the
same everywhere along the level set. This might be some-
what restrictive, particularly if the level set consists of mul-
tiple components. Adaptivity to spatial variations in the den-
sity regularity can be achieved using a spatially adapted par-
tition instead of a regular histogram partition. This might be
possible by developing a tree-based approach or a modified
Lepski method, and is the subject of current research.

5 Proofs

Before proceeding to the proofs, we establish two lemmas
that are used throughout. The first one establishes a bound
on the deviation of true and empirical density averages.

Lemma 1 Consider0 < δ < 1. With probability at least
1 − δ, the following is true for all dyadic resolutionsj:

max
A∈Aj

|f̄(A) − ̂f(A)| ≤ Ψj .

Proof: The proof relies on a pair of VC inequalities (See
[DL01] Chapter 3) that bound therelative deviation of true
and empirical probabilities. For the collectionAj with shat-
ter coefficient bounded by2jd, the relative VC inequalities
state that for anyǫ > 0

P

(

sup
A∈Aj

P (A) − ̂P (A)
√

P (A)
> ǫ

)

≤ 4 · 2jde−nǫ2/4

and

P



 sup
A∈Aj

̂P (A) − P (A)
√

̂P (A)
> ǫ



 ≤ 4 · 2jde−nǫ2/4.

Also observe that

̂P (A) ≤ P (A) + ǫ

√

̂P (A) =⇒ ̂P (A) ≤ 2 max(P (A), 2ǫ2)

P (A) ≤ ̂P (A)+ǫ
√

P (A) =⇒ P (A) ≤ 2 max(̂P (A), 2ǫ2).

To see the first statement, consider 1)̂P (A) ≤ 4ǫ2 - The
statement is obvious. 2)̂P (A) > 4ǫ2 - This gives a bound
on ǫ, which implies ̂P (A) ≤ P (A) + ̂P (A)/2 and hence
̂P (A) ≤ 2P (A). The second statement follows similarly.

Using these statements and the relative VC inequalities
for the collectionAj , we have: With probability> 1 − 8 ·
2jde−nǫ2/4, ∀A ∈ Aj both

P (A) − ̂P (A) ≤ ǫ
√

P (A) ≤ ǫ

√

2 max(̂P (A), 2ǫ2)

494

and

̂P (A) − P (A) ≤ ǫ

√

̂P (A) ≤ ǫ

√

2 max(̂P (A), 2ǫ2)

Settingǫ =
√

4 log(2jd8/δj)/n, we have with probability
> 1 − δj, ∀A ∈ Aj

|P (A) − ̂P (A)|

≤
√

8
log(2jd8/δj)

n
max

(

̂P (A), 8
log(2jd8/δj)

n

)

The result follows by dividing the result byµ(A), setting
δj = δ2−(j+1) and taking union bound.

The next lemma states how the density deviation bound
or penaltyΨj scales with resolution. This will be used to
derive rates of convergence.

Lemma 2 For all resolutions such that 2j =
O((n/ log n)

1

d), there exist constantsc3, c4 ≡ c4(fmax,
d) > 0 such that for alln, with probability at least1 − 1/n,

c3

√

2jd
log n

n
≤ Ψj ≤ c4

√

2jd
log n

n

Proof: The lower bound follows by observing that

1=
∑

A∈Aj

̂P (A) ≤ max
A∈Aj

̂P (A)×|Aj | = max
A∈Aj

̂P (A)

µ(A)
= max

A∈Aj

̂f(A)

and usingδ = 1/n, j ≥ 0 andµ(A) = 2−jd.
To get an upper bound, using the same arguments as in

proof of Lemma 1 based on the relative VC inequality it fol-
lows that [SSN07] with probability> 1− δj , for all A ∈ Aj

̂P (A) ≤ 2 max

(

P (A), 8
log(2jd8/δj)

n

)

.

Dividing by µ(A) = 2−jd, using density boundfmax, set-
ting δj = δ2−(j+1) and taking union bound, we have with
probability> 1 − δ, for all dyadic resolutionsj

max
A∈Aj

̂f(A) ≤ 2 max

(

fmax, 2
jd8

log(2j(d+1)16/δ)

n

)

.

This implies the upper bound usingδ = 1/n and 2j =
O((n/ log n)1/d).

5.1 Proof of Theorem 1

The proof relies on the following lemma that will also be
used in the proof of Theorem 2.

Lemma 3 Consider densities satisfying assumptions[A]
and [B]. Then for all resolutions such that2j =

O(s−1
n (n/ log n)

1

d), wheresn is a monotone diverging se-
quence, andn ≥ n0 ≡ n0(fmax, d, δ0, ǫo, C1, α) with prob-
ability at least1 − 3/n

d∞(̂Gj , G
∗
γ) ≤ max(2C3+3, 8

√
dǫ−1

o)

[

(

Ψj

C1

)
1

α

+
√

d2−j

]

.

Proof: Let J0 = ⌈log2 4
√

d/ǫo⌉, whereǫo is as defined in
assumption[B]. Also define

ǫj :=

[

(

Ψj

C1

)
1

α

+
√

d2−j

]

.

Consider two cases:

I. j < J0.
For this case, since the domainX = [0, 1]d, we use the
trivial bound

d∞(̂Gj , G
∗
γ) ≤

√
d ≤ 2J0(

√
d2−j) ≤ 8

√
dǫ−1

o ǫj .

The last step follows by choice ofJ0 and since
Ψj , C1 > 0.

II. j ≥ J0.
Observe that assumption[B] implies thatG∗

γ is not
empty sinceG∗

γ ⊇ Iǫ(G
∗
γ) 6= ∅ for ǫ ≤ ǫo. We will

show that for large enoughn, with high probability,
̂Gj ∩ G∗

γ 6= ∅ for j ≥ J0 and hencêGj is not empty.
Thus the Hausdorff error is given as

d∞(̂Gj , G
∗
γ) = max{ sup

x∈G∗
γ

ρ(x, ̂Gj), sup
x∈ ̂Gj

ρ(x, G∗
γ)},

(4)
and we need bounds on the two terms in the right hand
side.

We now prove that̂Gj is not empty and obtain bounds
on the two terms in the Hausdorff error. Towards this
end, we establish two propositions. The first proposi-
tion proves that for large enoughn, with high proba-
bility, the distance of all points that are erroneously ex-
cluded or included in the level set estimate, from the
true set boundary is bounded byǫj . Notice that, if̂Gj is
non-empty, this provides an upper bound on the second
term of the Hausdorff error (Eq. 4). The second propo-
sition establishes that, for large enoughn andj ≥ J0,
2ǫj ≤ ǫo and hence the inner coverI2ǫj

(G∗
γ) is not

empty. And using the first proposition, with high prob-
ability, I2ǫj

(G∗
γ) contains points that are correctly in-

cluded in the level set estimate and lie in̂Gj ∩G∗
γ . Thus

̂Gj is not empty. Further, along with assumption[B],
this provides a bound ofǫj on the distance of any point
in G∗

γ from the estimatêGj , thus bounding the first term
of the Hausdorff error (Eq. 4).

We end the proof of the two propositions with a white
box � to indicate that these propositions are included
within the proof of Lemma 3, and do not signify end of
the proof of Lemma 3.

Proposition 2 If ̂Gj∆G∗
γ 6= ∅, then for resolutions sat-

isfying 2j = O(s−1
n (n/ logn)1/d) andn ≥ n1(fmax,

d, δ0) with probability at least1 − 2/n

sup
x∈ ̂Gj∆G∗

γ

ρ(x, ∂G∗
γ) ≤

(

Ψj

C1

)1/α

+
√

d2−j = ǫj .

495

Proof:Since by assumption̂Gj∆G∗
γ 6= ∅, considerx ∈

̂Gj∆G∗
γ . Let Ax ∈ Aj denote the cell containingx at

resolutionj. Consider two cases:

(i) Ax ∩ ∂G∗
γ 6= ∅. This implies that

ρ(x, ∂G∗
γ) ≤

√
d2−j.

(ii) Ax ∩ ∂G∗
γ = ∅. Sincex ∈ ̂Gj∆G∗

γ , it is erro-
neously included or excluded from the level set
estimate ̂Gj . Therefore, if f̄(Ax) ≥ γ, then
̂f(Ax) < γ otherwise if f̄(Ax) < γ, then
̂f(Ax) ≥ γ. This implies that|γ − f̄(Ax)| ≤
|f̄(Ax) − ̂f(Ax)|. Using Lemma 1, we get|γ −
f̄(Ax)| ≤ Ψj with probability at least1 − δ.

Now let x0 be any point inAx such that|γ −
f(x0)| ≤ |γ − f̄(Ax)| (Notice that at least one
such point must exist inAx since this cell does
not intersect the boundary). As argued above,
|γ − f̄(Ax)| ≤ Ψj with probability at least
1 − 1/n (for δ = 1/n) and using Lemma 2,
Ψj decreases withn for resolutions satisfying
2j = O(s−1

n (n/ logn)
1

d) with probability at least
1−1/n. So for large enoughn ≥ n1(fmax, d, δ0),
Ψj ≤ δ0 and hence|γ − f(x0)| ≤ δ0. Thus, the
density regularity assumption[A] holds atx0 with
probability> 1 − 2/n and we have

ρ(x0, ∂G∗
γ) ≤

(|γ − f(x0)|
C1

)
1

α

≤
(|γ − f̄(Ax)|

C1

)

1

α

≤
(

Ψj

C1

)
1

α

.

Sincex, x0 ∈ Ax, ρ(x, ∂G∗
γ) ≤ ρ(x0, ∂G∗

γ) +√
d2−j . Therefore,

ρ(x, ∂G∗
γ) ≤

(

Ψj

C1

)1/α

+
√

d2−j .

So for both cases, we can say that for resolutions sat-
isfying 2j = O(s−1

n (n/ logn)1/d) andn ≥ n1(fmax,

d, δ0) with probability at least1 − 2/n, ∀x ∈ ̂Gj∆G∗
γ

ρ(x, ∂G∗
γ) ≤

(

Ψj

C1

)1/α

+
√

d2−j = ǫj.
�

Proposition 3 Recall assumption[B] and denote the
inner cover ofG∗

γ with 2ǫj-balls, I2ǫj
(G∗

γ) ≡ I2ǫj
.

For resolutions satisfying2j = O(s−1
n (n/ log n)1/d),

j ≥ J0 andn ≥ n0 ≡ n0(fmax, d, δ0, ǫo, C1, α), with
probability at least1 − 3/n,

̂Gj 6= ∅ and sup
x∈I2ǫj

ρ(x, ̂Gj ∩ G∗
γ) ≤ ǫj .

Proof:Observe that forj ≥ J0, 2
√

d2−j ≤
2
√

d2−J0 ≤ ǫo/2. And using Lemma 2 for
large enoughn ≥ n2 ≡ n2(ǫo, fmax, C1, α),

2(Ψj/C1)
1/α ≤ ǫo/2 with probability at least1− 1/n.

Therefore for allj ≥ J0 and n ≥ n2, 2ǫj ≤ ǫo

with probability at least1 − 1/n and henceI2ǫj
6= ∅.

Now consider any2ǫj-ball in I2ǫj
. Then the distance

of all points in the interior of the concentricǫj-ball
from the boundary ofI2ǫj

, and hence from the bound-
ary of G∗

γ is greater thanǫj. As per Proposition 2 for
n ≥ n0 = max(n1, n2), with probability> 1 − 3/n,
none of these points can lie in̂Gj∆G∗

γ , and hence must

lie in ̂Gj ∩ G∗
γ since they are inI2ǫj

⊆ G∗
γ . Therefore,

̂Gj 6= ∅ and sup
x∈I2ǫj

ρ(x, ̂Gj ∩ G∗
γ) ≤ ǫj .

�

Now sinceG∗
γ and ̂Gj are non-empty sets, we bound

the two terms that contribute to the Hausdorff error

sup
x∈G∗

γ

ρ(x, ̂Gj) and sup
x∈ ̂Gj

ρ(x, G∗
γ).

For this, we will use Propositions 2 and 3, hence
all the following statements will hold for resolutions
satisfying 2j = O(s−1

n (n/ log n)1/d), j ≥ J0 and
n ≥ n0 ≡ n0(fmax, d, δ0, ǫo, C1, α), with probability
at least1 − 3/n.

To bound the second term, observe that

(i) If ̂Gj \ G∗
γ = ∅, thensupx∈ ̂Gj

ρ(x, G∗
γ) = 0.

(ii) If ̂Gj \ G∗
γ 6= ∅, it implies that ̂Gj∆G∗

γ 6= ∅.
Hence, using Proposition 2, we have

sup
x∈ ̂Gj

ρ(x, G∗
γ) = sup

x∈ ̂Gj\G∗
γ

ρ(x, G∗
γ)

= sup
x∈ ̂Gj\G∗

γ

ρ(x, ∂G∗
γ)

≤ sup
x∈ ̂Gj∆G∗

γ

ρ(x, ∂G∗
γ) ≤ ǫj .

Thus, for either case

sup
x∈ ̂Gj

ρ(x, G∗
γ) ≤ ǫj . (5)

To bound the first term, observe that

(i) If G∗
γ \ ̂Gj = ∅, thensupx∈G∗

γ
ρ(x, ̂Gj) = 0.

(ii) If G∗
γ \ ̂Gj 6= ∅, we proceed as follows:

sup
x∈G∗

γ

ρ(x, ̂Gj)≤ sup
x∈G∗

γ

ρ(x, ̂Gj ∩ G∗
γ)

= max{ sup
x∈I2ǫj

ρ(x, ̂Gj ∩ G∗
γ),

sup
x∈G∗

γ\I2ǫj

ρ(x, ̂Gj ∩ G∗
γ)}

≤ max{ǫj, sup
x∈G∗

γ\I2ǫj

ρ(x, ̂Gj ∩ G∗
γ)}.

The last step follows using Proposition 3.

496

Now consider anyx ∈ G∗
γ \ I2ǫj

. Then using tri-
angle inequality,∀y ∈ ∂G∗

γ and∀z ∈ I2ǫj
,

ρ(x, ̂Gj ∩ G∗
γ)≤ρ(x, y)+ρ(y, z)+ρ(z, ̂Gj ∩ G∗

γ)

≤ ρ(x, y) + ρ(y, z) +

sup
z∈I2ǫj

ρ(z, ̂Gj ∩ G∗
γ)

≤ ρ(x, y) + ρ(y, z) + ǫj.

The last step follows using Proposition 3. This im-
plies that∀y ∈ ∂G∗

γ ,

ρ(x, ̂Gj ∩ G∗
γ) ≤ ρ(x, y) + inf

z∈I2ǫj

ρ(y, z) + ǫj

= ρ(x, y) + ρ(y, I2ǫj
) + ǫj

≤ ρ(x, y) + sup
y∈∂G∗

γ

ρ(y, I2ǫj
) + ǫj

≤ ρ(x, y) + 2C3ǫj + ǫj.

Here the last step invokes assumption[B]. This in
turn implies that

ρ(x, ̂Gj ∩ G∗
γ) ≤ inf

y∈∂G∗
γ

ρ(x, y) + (2C3 + 1)ǫj

≤ 2ǫj + (2C3 + 1)ǫj .

The second step is true forx ∈ G∗
γ \ I2ǫj

. If it
was not true, then∀y ∈ ∂G∗

γ , ρ(x, y) > 2ǫj and
hence there exists a closed2ǫj-ball aroundx that
is in G∗

γ . This contradicts the fact thatx 6∈ I2ǫj
.

Therefore, we have:

sup
x∈G∗

γ\I2ǫj

ρ(x, ̂Gj ∩ G∗
γ) ≤ (2C3 + 3)ǫj .

And going back to the start of case (ii) we get:

sup
x∈G∗

γ

ρ(x, ̂Gj) ≤ (2C3 + 3)ǫj .

Therefore, for either case we have

sup
x∈G∗

γ

ρ(x, ̂Gj) ≤ (2C3 + 3)ǫj . (6)

From Eq. (5) and (6), we have that for all densities
satisfying assumptions[A, B], for resolutions satisfying
2j = O(s−1

n (n/ log n)1/d), j ≥ J0 andn ≥ n0 ≡
n0(fmax, d, δ0, ǫo, C1, α), with probability> 1 − 3/n,

d∞(̂Gj , G
∗
γ) = max{ sup

x∈G∗
γ

ρ(x, ̂Gj), sup
x∈ ̂Gj

ρ(x, G∗
γ)}

≤ (2C3 + 3)ǫj .

And addressing both Case I (j < J0) and Case
II (j ≥ J0), we finally have that for all densi-
ties satisfying assumptions[A, B], for resolutions sat-
isfying 2j = O(s−1

n (n/ logn)
1

d) and n ≥ n0 ≡
n0(fmax, d, δ0, ǫo, C1, α), with probability> 1 − 3/n,

d∞(̂Gj , G
∗
γ) ≤ max(2C3 + 3, 8

√
dǫ−1

o)ǫj .

Since the chosen resolution2−j ≍ sn(n/ logn)−
1

(d+2α)

satisfies conditions of Lemma 3, proof of Theorem 1 now
follows using the bound onΨj from Lemma 2. LetΩ denote
the event such that the bounds of Lemma 2 and Lemma 3
hold. Then forn ≥ n0, P (Ω̄) ≤ 4/n. Hence for alln,
P (Ω̄) ≤ max(4, n0)/n. So ∀f ∈ F∗

1 (α): (HereC may
denote a different constant from line to line. Explanation for
each step is provided after the equations.)

E[d∞(̂Gj , G
∗
γ)]

= P (Ω)E[d∞(̂Gj , G
∗
γ)|Ω] + P (Ω̄)E[d∞(̂Gj , G

∗
γ)|Ω̄]

≤ E[d∞(̂Gj , G
∗
γ)|Ω] + P (Ω̄)

√
d

≤ C

[

(

Ψj

C1

)1/α

+
√

d2−j +

√
d

n

]

≤ C max

{

(

2jd log n

n

)
1

2α

, 2−j ,
1

n

}

≤ C(C1, C3, ǫo, fmax, δ0, d, α)sn

(

n

log n

)− 1

d+2α

.

The second step follows using the trivial boundsP (Ω) ≤
1 and since the domainX = [0, 1]d, E[d∞(̂Gj , G

∗
γ)|Ω̄] ≤√

d. The third step follows from Lemma 3 and the fourth
one using Lemma 2. The last step follows since the chosen
resolution2−j ≍ sn(n/ log n)−

1

(d+2α) .

5.2 Proof of Theorem 2

To analyze the resolution chosen by the complexity penal-
ized procedure of Eq. (3) based on the vernier, we first es-
tablish two results regarding the vernier. Using Lemma 1,
we have the following corollary that bounds the deviation of
true and empirical vernier.

Corollary 1 Consider0 < δ < 1. With probability at least
1 − δ, the following is true for all dyadic resolutionsj:

|Vγ,j − ̂Vγ,j| ≤ Ψj′ .

Proof: Let A0 ∈ Aj denote the cell achieving the min defin-
ing Vγ,j and A1 ∈ Aj denote the cell achieving the min
defining ̂Vγ,j. Also let A′

0 and A′
1 denote the subcells at

resolutionj′ within A0 andA1, respectively, that have maxi-
mum average density deviation fromγ. Similarly, let ̂A′

0 and
̂A′
1 denote the subcells at resolutionj′ within A0 andA1,

respectively, that have maximum empirical density deviation
from γ. Then we have: (Explanation for the steps are given
after the equations.)

Vγ,j − ̂Vγ,j = |γ − f̄(A′
0)| − |γ − ̂f(̂A′

1)|
≤ |γ − f̄(A′

1)| − |γ − ̂f(̂A′
1)|

≤ |f̄(A′
1) − ̂f(̂A′

1)|
= max{f̄(A′

1) − ̂f(̂A′
1),
̂f(̂A′

1) − f̄(A′
1)}

≤ max{f̄(A′
1) − ̂f(A′

1),
̂f(̂A′

1) − f̄(̂A′
1)}

≤ max
A∈Aj′

|f̄(A) − ̂f(A)|

≤ Ψj′

497

The first inequality invokes definition ofA0, the third in-
equality invokes definitions of the subcellsA′

1, ̂A′
1, and the

last one follows from Lemma 1. Similarly,

̂Vγ,j − Vγ,j = |γ − ̂f(̂A′
1)| − |γ − f̄(A′

0)|
≤ |γ − ̂f(̂A′

0)| − |γ − f̄(A′
0)|

≤ |f̄(A′
0) − ̂f(̂A′

0)|
Here the first inequality invokes definition ofA1. The rest
follows as above, considering cellA0 instead ofA1.

The second result establishes that the vernier is sensitive
to the resolution and density regularity.

Lemma 4 Consider densities satisfying assumptions[A]
and[C]. Recall thatj′ = ⌊j +log2 sn⌋, wheresn is a mono-
tone diverging sequence. Then for all dyadic resolutionsj

min(δ0, C1)2
−j′α ≤ Vγ,j ≤ C(

√
d2−j)α

holds forn large enough such thatsn > 4C46
d. HereC ≡

C(C2, fmax, δ1, α)> 0.

Proof: We first establish the upper bound. Recall assump-
tion [A] and consider the cellA ∈ Aj that contains the point
y0. ThenA ∩ ∂G∗

γ 6= ∅. Let A′ denote the subcell at resolu-
tion j′ within A that has maximum average density deviation
from γ. Consider two cases:

(i) If the resolution is large enough so that
√

d2−j ≤ δ1,
then the density regularity assumption[A] holds∀x ∈
A sinceA ⊂ B(y0, δ1), the δ1-ball aroundy0. The
same holds also for the subcellA′. Hence

|γ − f̄(A′)| ≤ C2(
√

d2−j)α

(ii) If the resolution is not large enough and
√

d2−j > δ1,
the following trivial bound holds:

|γ − f̄(A′)| ≤ fmax ≤ fmax

δα
1

(
√

d2−j)α

The last step holds since
√

d2−j > δ1.

Hence we can say for allj there existsA ∈ Aj such that

|γ − f̄(A′)| ≤ max

(

C2,
fmax

δα
1

)

(
√

d2−j)α

This yields the upper bound on the vernier:

Vγ,j ≤ max

(

C2,
fmax

δα
1

)

(
√

d2−j)α := C(
√

d2−j)α

whereC ≡ C(C2, fmax, δ1, α).
For the lower bound, consider a cellA ∈ Aj . We will

show that assumption[C] on the level set boundary dimen-
sion basically implies that the boundary does not intersect
all subcells at resolutionj′ within the cellA at resolutionj.
And in fact for large enoughn (so that2−j′ is small enough,
recall thatj′ = ⌊j+log2 sn⌋ wheresn is a monotone diverg-
ing sequence), there exists at least one subcellA′

o ∈ A∩Aj′

such that∀x ∈ A′
o,

ρ(x, ∂G∗
γ) ≥ 2−j′ .

We establish this statement formally later on, but for now
assume that it holds. The local density regularity condi-
tion [A] now gives that for allx ∈ A′

o, |γ − f(x)| ≥
min(δ0, C12

−j′α) ≥ min(δ0, C1)2
−j′α. So we have:

max
A′∈A∩Aj′

|γ − f̄(A′)| ≥ |γ − f̄(A′
o)| ≥ min(δ0, C1)2

−j′α

Since this is true for anyA ∈ Aj , in particular, this is true
for the cell achieving the min definingVγ,j. Hence, the lower
bound on the vernierVγ,j follows.

We now formally prove that assumption[C] on the level
set boundary dimension implies that for large enoughn (so
thatsn > 4C46

d), ∃A′
o ∈ A ∩ Aj′ s.t.∀x ∈ A′

o,

ρ(x, ∂G∗
γ) ≥ 2−j′ .

Observe that it suffices to show that for large enoughn,
∃A′′ ∈ A ∩ Aj′−2 s.t. A′′ ∩ ∂G∗

γ = ∅. To prove this last
statement, consider two cases:

(i) A ∩ ∂G∗
γ = ∅. For sn ≥ 8, j′ − 2 ≥ j (recall defini-

tion of j′), and sinceA does not intersect the boundary,
clearly∃A′′ ∈ A ∩ Aj′−2 s.t.A′′ ∩ ∂G∗

γ = ∅.

(ii) A∩ ∂G∗
γ 6= ∅. Letx ∈ A∩ ∂G∗

γ . Considerǫ =
√

d2−j

(the diagonal length of a cell), thenA ⊆ B(x, ǫ).
Also let δ =

√
d2−(j′−2)/2 (the choice will be jus-

tified below). Forsn ≥ 4, 0 < δ ≤ ǫ and using
assumption[C], the minimum number ofδ−balls re-
quired to cover∂G∗

γ ∩ B(x, ǫ) is ≤ C4(δ/ǫ)−(d−1).
SinceA ⊆ B(x, ǫ), the minimum number ofδ−balls
required to cover∂G∗

γ ∩ A is also≤ C4(δ/ǫ)−(d−1).
Now consider a uniform partition of the cellA into sub-
cells of sidelength2δ/

√
d = 2−(j′−2). Since the diag-

onal length of a subcell
√

d2−(j′−2) = 2δ, this choice
of δ implies that a subcell at resolution2−(j′−2) is in-
scribed within an alignedδ-ball. Observe that at this
resolution, in d-dim, an unalignedδ-ball can intersect
up to3d−1 subcells (number of neighbors of any hyper-
cube). Therefore, the number of subcells inA ∩ Aj′−2

that intersect the boundary can be no more than

3dC4(δ/ǫ)−(d−1) = 3dC4

(√
d2−(j′−2)

2
√

d2−j

)−(d−1)

=
C46

d

2
2(j′−2−j)d2−(j′−2−j)

<
4C46

d

sn
2(j′−2−j)d

where the last step uses the fact2−j′ < 2−j+1/sn. For
sn > 4C46

d, the number of subcells withinA at res-
olution j′ − 2 that intersect the boundary is less than
the total number of subcells withinA at that resolution.
Therefore,∃A′′ ∈ A ∩ Aj′−2 s.t.A′′ ∩ ∂G∗

γ = ∅.

This in turn implies that forn large enough (so thatsn >
4C46

d), ∃A′
o ∈ A ∩ Aj′ such that∀x ∈ A′

o, ρ(x, ∂G∗
γ) ≥

2−j′ .

498

We are now ready to prove Theorem 2. Observe that
Lemmas 2, 3 and Corollary 1 hold together with probabil-
ity at least1 − 5/n (takingδ = 1/n). Using these lemmas,
we will show that for the resolution̂j chosen by Eq. (3), both

Vγ,̂j andΨ
̂j′ are upper bounded byCs

dα
d+2α
n (n/ log n)−

α
d+2α ,

whereC ≡ C(C2, fmax, δ1, d, α) > 0. If this holds, then us-
ing Lemma 4 and the definition ofj′, we have the following
upper bound on the sidelength: Forsn > 4C46

d

2−
̂j ≤ sn2−

̂j′ ≤ sn

(Vγ,̂j

min(δ0, C1)

)

1

α

≤ c2sns
d

d+2α
n

(

n

log n

)− 1

d+2α

,

wherec2 ≡ c2(C1, C2, fmax, δ0, δ1, d, α) > 0. Also notice
that since2J ≍ s−1

n (n/ logn)1/d, we have2j′ ≤ 2J′ ≤
sn2J ≍ (n/ log n)1/d, and hence Lemma 2 can be used to
provide a lower bound on the sidelength:

2−
̂j>

sn

2
2−
̂j′ ≥ sn

2

(

Ψ2
̂j′

c2
3

n

log n

)− 1

d

≥ c1sn

(

s
2dα

d+2α
n

(

n

log n

)− 2α
d+2α n

log n

)− 1

d

= c1s
d

d+2α
n

(

n

log n

)
−1

d+2α

,

wherec1 ≡ c1(C2, fmax, δ1, d, α) > 0. So we have for
sn > 4C46

d, with probability at least1 − 5/n,

c1s
d

d+2α
n

(

n

log n

)− 1

d+2α

≤ 2−
̂j ≤ c2sns

d
d+2α
n

(

n

log n

)− 1

d+2α

.

(7)
Hence the automatically chosen resolution behaves as de-
sired.

Let us now derive the claimed bounds onVγ,̂j andΨ
̂j′ .

Using Corollary 1 and Eq. (3), we have the following oracle
inequality:

Vγ,̂j ≤ ̂Vγ,̂j + Ψ
̂j′

= min
0≤j≤J

{

̂Vγ,j + Ψj′

}

≤ min
0≤j≤J

{Vγ,j + 2Ψj′}

Lemma 4 provides an upper bound on the vernierVγ,j, and
Lemma 2 provides an upper bound on the penaltyΨj′ . We
now plug these bounds into the oracle inequality. HereC
may denote a different constant from line to line.

Vγ,̂j ≤ ̂Vγ,̂j + Ψ
̂j′ ≤C min

0≤j≤J

{

2−jα +

√

2j′d
log n

n

}

≤C min
0≤j≤J

{

max

(

2−jα,

√

2jdsd
n

log n

n

)}

≤Cs
dα

d+2α
n

(

n

log n

)− α
d+2α

.

HereC ≡ C(C2, fmax, δ1, d, α). The second step uses the
definition ofj′ and the last step follows by balancing the two

terms for optimal resolution2−j∗ ≍ s
d

d+2α
n

(

n
log n

)− 1

d+2α

.

This establishes the desired bounds onVγ,̂j andΨ
̂j′ .

Now we can invoke Lemma 3 to derive the rate of con-
vergence for the Hausdorff error. Consider large enough
n ≥ n1(C4, d) so thatsn > 4C46

d. Also, recall that the
condition of Lemma 3 requires thatn ≥ n0(fmax, d, δ0, ǫo,
C1, α). Pick n ≥ max(n0, n1) and letΩ denote the event
such that the bounds of Lemma 2, Lemma 3 and Corollary
1 hold with δ = 1/n. Then, we haveP (Ω̄) ≤ 5/n for
n ≥ max(n0, n1), or for all n, P (Ω̄) ≤ max(5, n0, n1)/n.
So ∀f ∈ F∗

2 (α), we have: (HereC may denote a differ-
ent constant from line to line. Explanation for each step is
provided after the equations.)

E[d∞(̂G, G∗
γ)]

= P (Ω)E[d∞(̂G, G∗
γ)|Ω] + P (Ω̄)E[d∞(̂G, G∗

γ)|Ω̄]

≤ E[d∞(̂G, G∗
γ)|Ω] + P (Ω̄)

√
d

≤ C

[

(

Ψ
̂j

C1

)1/α

+
√

d2−
̂j +

√
d

n

]

≤ C max

{

(

2
̂jd log n

n

)
1

2α

, 2−
̂j,

1

n

}

≤ Csns
d

d+2α
n

(

n

log n

)− 1

d+2α

≤ Cs2
n

(

n

log n

)− 1

d+2α

.

Here C ≡ C(C1, C2, C3, C4, ǫo, fmax, δ0, δ1, d, α). The
second step follows by observing the trivial boundsP (Ω) ≤
1 and since the domainX = [0, 1]d, E[d∞(̂G, G∗

γ)|Ω̄] ≤√
d. The third step follows from Lemma 3 and the fourth

one from Lemma 2. The last step follows using the upper
and lower bounds established on2−̂j in Eq. (7).

5.3 Star-shaped sets satisfy assumptions [B] and [C]

Recall the definition ofFSL as defined in [Tsy97]. The class
corresponds to densities bounded above byfmax, satisfying
a slightly modified form of the local density regularity as-
sumption[A]:

[A’] Local density regularity: The density isα-regular
around theγ-level set,0 < α < ∞ andγ < fmax,
if there exist constantsC2 > C1 > 0 andδ0 > 0 such
that

C1ρ(x, ∂G∗
γ)α ≤ |f(x) − γ| ≤ C2ρ(x, ∂G∗

γ)α

for all x ∈ X with |f(x) − γ| ≤ δ0, where∂G∗
γ is

the boundary of the true level setG∗
γ , and the set{x :

|f(x) − γ| ≤ δ0} is non-empty.

and the densities haveγ level sets of the form

G∗
γ = {(r, φ); φ ∈ [0, π)d−2 × [0, 2π), 0 ≤ r ≤ g(φ) ≤ R},

where(r, φ) denote the polar/hyperspherical coordinates and
R > 0 is a constant.g is a periodic Lipschitz function that
satisfiesg(φ) ≥ h, whereh > 0 is a constant, and

|g(φ)−g(θ)| ≤ L||φ−θ||1, ∀ φ, θ ∈ [0, π)d−2×[0, 2π).

499

HereL > 0 is the Lipschitz constant, and|| · ||1 denotes the
ℓ1 norm.

We setR = 1/2 in the definition of the star-shaped set
so that the domain is a subset of[−1/2, 1/2]d. With this
domain, the following lemma shows that the level setG∗

γ of
a densityf ∈ FSL satisfies[B] and[C].

Lemma 5 Consider theγ level setG∗
γ of a densityf ∈ FSL.

ThenG∗
γ satisfies the assumptions[B] and[C] on the level set

regularity and the level set boundary dimension, respectively.

Proof: We first present a sketch of the main ideas, and then
provide a detailed proof. Consider theγ-level setG∗

γ of a
densityf ∈ FSL. To see that it satisfies[B], divide the
star-shaped setG∗

γ into sectors of width≍ ǫ so that each sec-
tor contains at least oneǫ-ball and the inner coverIǫ(G

∗
γ)

touches the boundary at some point(s) in each sector. Now
one can argue that, in each sector, all other points on the
boundary areO(ǫ) from the inner cover since the bound-
ary is Lipschitz. Since this is true for each sector, we have
∀x ∈ ∂G∗

γ , ρ(x, Iǫ(G
∗
γ)) = O(ǫ). To see thatG∗

γ satis-
fies [C], consider any sector of width≍ ǫ and divide it into
sub-sectors of widthO(δ), 0 < δ ≤ ǫ. Since the bound-
ary is Lipschitz, a constant number ofδ-balls can cover the
boundary in each sub-sector. Thus, the minimum number
of δ-balls needed to cover the boundary in all sub-sectors is
of the order of the minimum number of sub-sectors, that is,
O((ǫ/δ)d−1). Hence, the result follows. We now present the
proof in detail.

To see thatG∗
γ satisfies[B], fix ǫo ≤ h/3. Then for all

ǫ ≤ ǫo, B(0, ǫ) ⊆ G∗
γ (sinceg(φ) ≥ h > ǫo), and hence

Iǫ(G
∗
γ) 6= ∅. We also need to show that∃C3 > 0 such that

for all x ∈ ∂G∗
γ , ρ(x, Iǫ(G)) ≤ C3ǫ. For this, divideG∗

γ

into Md−1 sectors indexed bym = (m1, m2, . . . , md−1)
∈ {1, . . . , M}d−1

Sm=
{

(r, φ) : 0 ≤ r ≤ g(φ),

π(mi − 1)

M
≤ φi <

πmi

M
, i = 1, . . . , d − 2,

2π(md−1 − 1)

M
≤ φd−1 <

2πmd−1

M

}

,

whereφ = (φ1, φ2, . . . , φd−1). Let

M =

⌊

π

2 sin−1 ǫ
h−ǫo

⌋

This choice ofM implies that:

(i) There exists anǫ-ball within Sm ∩ B(0, h) for every
m ∈ {1, . . . , M}d−1, and hence within each sector
Sm. This follows because the minimum angular width
of a sector with radiush required to fit anǫ-ball within
is

2 sin−1 ǫ

h − ǫ
≤ 2 sin−1 ǫ

h − ǫo
≤ π

M
.

(ii) The angular-width of the sectors scales asO(ǫ).
π

M
<

π
π

2 sin−1 ǫ
h−ǫo

− 1
=

1
1

2 sin−1 ǫ
h−ǫo

− 1
π

≤ 3 sin−1 ǫ

h − ǫo
≤ 6

ǫ

h− ǫo
≤ 9

h
ǫ

The second inequality follows as

1

π
≤ 1

6 sin−1 ǫ
h−ǫo

since ǫ
h−ǫo

≤ ǫo

h−ǫo
≤ 1

2 by choice ofǫo ≤ h/3. The

third inequality is true sincesin−1(z/2) ≤ z for 0 ≤
z ≤ π/2. The last step follows by choice ofǫo ≤ h/3.

Now from (i) above, each sector contains at least oneǫ-ball.
Consider anym ∈ {1, . . . , M}d−1. We claim that there ex-
ists a pointxm ∈ ∂G∗

γ ∩ Sm, xm = (g(θ), θ) for some
θ ∈ [0, π)d−2 × [0, 2π), such thatρ(xm, Iǫ(G

∗
γ)) = 0.

Suppose not. Then one can slide theǫ-ball within the sec-
tor towards the periphery and never touch the boundary, im-
plying that the setG∗

γ is unbounded. This is a contradic-
tion by the definition of the classFSL. So now we have,
∀y ∈ ∂G∗

γ ∩ Sm, y = (g(φ), φ)

ρ(y, Iǫ(G
∗
γ)) ≤ ρ(y, xm) = ||y − xm||

= ||(g(φ), φ) − (g(θ), θ)||
≤ |g(φ) − g(θ)| + 2

√

g(φ)g(θ) ·
d−1
∑

i=1

∣

∣

∣

∣

sin
φi − θi

2

∣

∣

∣

∣

≤ L||φ − θ||1 +

d−1
∑

i=1

|φi − θi|
2

= (L + 1/2)

d−1
∑

i=1

|φi − θi|

≤ (L + 1/2)d
π

M

≤ 9d(L + 1/2)

h
ǫ := C3ǫ

The third step follows using simple algebra (see [SSN07]),
the fourth step follows by the Lipschitz condition ong(·),
g(·) ≤ R = 1/2 and since| sin(z)| ≤ |z|. The sixth step
follows sincex, y ∈ Sm and hence|φi − θi| ≤ π/M for
i = 1, . . . , d − 2 and|φd−1 − θd−1| ≤ 2π/M . The last step
invokes(ii) above. Therefore, we have for ally ∈ ∂G∗

γ ∩
Sm, ρ(y, Iǫ(G

∗
γ)) ≤ C3ǫ. And since the result is true for

any sector, condition[B] is satisfied by any level setG∗
γ with

densityf ∈ FSL.
To see thatG∗

γ satisfies[C], considerx ∈ ∂G∗
γ . Let x =

(g(φ0), φ0). Also letφ(1)
i = min{φi : (g(φ), φ) ∈ B(x, ǫ)}

andφ
(2)
i = max{φi :(g(φ), φ) ∈B(x, ǫ)}. Define the sector

Sx
ǫ = {(r, φ) : 0 ≤ r ≤ g(φ),

φ
(1)
i ≤ φi ≤ φ

(2)
i , ∀i = 1, . . . , d − 1

}

Observe that ifǫ ≤ πh/4 < h, the width ofSx
ǫ in the ith

coordinate,∆φi = φ
(2)
i − φ

(1)
i ≤ 2 sin−1 ǫ

g(φ
0
)

by con-

struction. Sinceg(·) ≥ h, we have∆φi ≤ 2 sin−1 ǫ
h ≤

4ǫ/h, where the last step follows since for0 ≤ z ≤ π/2,
sin−1(z/2) ≤ z. If ǫ > πh/4, then use the trivial bound

500

∆φi ≤ 2π ≤ 8ǫ/h. Equivalently, we can say for allǫ and all
i,

∆φi ≤ 8ǫ/h. (8)

Further subdivideSx
ǫ into Md−1 sub-sectors indexed by

m = (m1, . . . , md−1)

Sm =
{

(r, φ) : 0 ≤ r ≤ g(φ), φ
(1)
i +

(mi − 1)∆φi

M
≤ φi

< φ
(1)
i +

mi∆φi

M
, ∀i = 1, . . . , d − 1

}

Pick M such that for all coordinates, the sub-sector width
∆φi

M ≤ 2δ
(d−1)(L+1/2) , where0 < δ ≤ ǫ. With this choice of

sub-sector width,Sm ∩ ∂G∗
γ can be covered by aδ-ball. To

see this, consider two points inSm ∩ ∂G∗
γ - (g(φ), φ) and

(g(θ), θ). Proceeding as before, we have:

||(g(φ), φ) − (g(θ), θ)|| ≤ (L + 1/2)

d−1
∑

i=1

|φi − θi|

≤ (L + 1/2)
d−1
∑

i=1

∆φi

M
≤ 2δ.

Since each sub-sector can be covered by aδ-ball, the min-
imum number ofδ-balls needed to coverB(x, ǫ) ∩ ∂G∗

γ
is equal to the minimum number of sub-sectors needed
(Md−1). This corresponds to the smallestM such that
maxi

∆φi

M ≤ 2δ
(d−1)(L+1/2) . Therefore, minimum number

of δ-balls needed to coverB(x, ǫ) ∩ ∂G∗
γ is equal to

(⌈

(d − 1)(L + 1/2)maxi ∆φi

2δ

⌉)d−1

≤
(

(d − 1)(L + 1/2)maxi ∆φi

2δ
+ 1

)d−1

≤
(

2(d − 1)(2L + 1)

h

ǫ

δ
+

ǫ

δ

)d−1

≤
(

2(d − 1)(2L + 1)

h
+ 1

)d−1
(ǫ

δ

)d−1

:= C4

(ǫ

δ

)d−1

The second inequality follows since from Eq. (8),∆φi ≤ 8 ǫ
h

for all i, and sinceδ ≤ ǫ. Therefore, any level setG∗
γ with

densityf ∈ FSL also satisfies[C].

Acknowledgements

The authors would like to thank Rui Castro for helpful dis-
cussions and carefully reviewing the paper.

References

[Cav97] L. Cavalier. Nonparametric estimation of regres-
sion level sets.Statistics, 29:131–160, 1997.

[CD99] E. Candés and D. L. Dohono. Curvelets: A sur-
prisingly effective nonadaptive representation for

objects with edges.Curves and Surfaces, Larry
Schumaker et al., Ed. Vanderbilt University Press,
Nashville, TN, 1999.

[CMC06] A. Cuevas, W. G. Manteiga, and A. R. Casal.
Plug-in estimation of general level sets.Aust. N.
Z. J. Stat., 48(1):7–19, 2006.

[DL01] L. Devroye and G. Lugosi.Combinatorial Meth-
ods in Density Estimation. Springer, NY, 2001.

[Don99] D. L. Donoho. Wedgelets: Nearly-minimax esti-
mation of edges.Ann. Statist., 27:859–897, 1999.

[Fal90] K. Falconer. Fractal Geometry: Mathematical
Foundations and Applications. Wiley, West Sus-
sex, England, 1990.

[Har75] J. A. Hartigan.Clustering Algorithms. Wiley, NY,
1975.

[KT93] A. P. Korostelev and A. B. Tsybakov.Minimax
Theory of Image Reconstruction. Springer, NY,
1993.

[LMS97] O. V. Lepski, E. Mammen, and V. G. Spokoiny.
Optimal spatial adaptation to inhomogeneous
smoothness: An approach based on kernel esti-
mates with variable bandwidth selectors.Ann.
Statist., 25(3):929–947, 1997.

[LPS99] R. Y. Liu, J. M. Parelius, and K. Singh. Multivari-
ate analysis by data depth: Descriptive statistics,
graphics and inference.Ann. Statist., 27(3):783–
858, 1999.

[Pol95] W. Polonik. Measuring mass concentrations and
estimating density contour cluster-an excess mass
approach.Ann. Statist., 23(3):855–881, 1995.

[RV06] Philippe Rigollet and Regis Vert. Fast rates for
plug-in estimators of density level sets, avail-
able at http://www.citebase.org/abstract?id=oai:
arxiv.org:math/0611473, 2006.

[SD07] C. Scott and M. Davenport. Regression level set
estimation via cost-sensitive classification.IEEE
Trans. Signal Process., 55(6):2752–2757, 2007.

[SHS05] I. Steinwart, D. Hush, and C. Scovel. A classifica-
tion framework for anomaly detection.J. Mach.
Learn. Res., 6:211–232, 2005.

[SN06] C. Scott and R. Nowak. Learning minimum vol-
ume sets.J. Mach. Learn. Res., 7:665–704, 2006.

[SSN07] A. Singh, C. Scott, and R. D. Nowak. Adap-
tive hausdorff estimation of density level sets.
Technical Report ECE-07-06, University of
Wisconsin - Madison, ECE Dept., available
at www.cae.wisc.edu/∼singh/TRHausdorff.pdf,
2007.

[Stu03] W. Stuetzle. Estimating the cluster tree of a den-
sity by analyzing the minimal spanning tree of a
sample.J. Classification, 20(5):25–47, 2003.

[Tsy97] A. B. Tsybakov. On nonparametric estimation
of density level sets.Ann. Statist., 25:948–969,
1997.

[VV06] R. Vert and J.-P. Vert. Consistency and conver-
gence rates of one-class svms and related algo-
rithms. J. Mach. Learn. Res., 7:817–854, 2006.

[WN07] R. Willett and R. Nowak. Minimax optimal
level set estimation.IEEE Trans. Image Proc.,
16(12):2965–2979, 2007.

501

502

Density estimation in linear time

Satyaki Mahalanabis
∗ and Daniel Štefankovič

Department of Computer Science
University of Rochester
Rochester, NY 14627

{smahalan,stefanko}@cs.rochester.edu

Abstract

We consider the problem of choosing a den-
sity estimate from a set of densities F , min-
imizing the L1-distance to an unknown dis-
tribution. Devroye and Lugosi [DL01] ana-
lyze two algorithms for the problem: Scheffé
tournament winner and minimum distance es-
timate. The Scheffé tournament estimate re-
quires fewer computations than the minimum
distance estimate, but has strictly weaker guar-
antees than the latter.

We focus on the computational aspect of den-
sity estimation. We present two algorithms,
both with the same guarantee as the minimum
distance estimate. The first one, a modifica-
tion of the minimum distance estimate, uses
the same number (quadratic in |F|) of compu-
tations as the Scheffé tournament. The second
one, called “efficient minimum loss-weight es-
timate,” uses only a linear number of compu-
tations, assuming that F is preprocessed. We
then apply our algorithms to bandwidth selec-
tion for kernel estimates and bin-width selec-
tion for histogram estimates, yielding efficient
procedures for these problems.

We also give examples showing that the guar-
antees of the algorithms cannot be improved
and explore randomized algorithms for density
estimation.

1 Introduction

We study the following density estimation problem con-
sidered in [DL96, DL01, DGL02]. There is an unknown
distribution g and we are given n (not necessarily in-
dependent) samples which define empirical distribution
h. Given a finite class F of densities, our objective is
to output f ∈ F such that the error ‖f − g‖1 is mini-
mized. The use of the L1-norm is well justified because
it has many useful properties, for example, scale invari-
ance and the fact that approximate identification of a

∗Supported by NSF grant IIS-0546554

distribution in the L1-norm gives an estimate for the
probability of every event.

The following two parameters influence the error of
a possible estimate: the distance of g from F and the
empirical error. The first parameter is required since
we have no control over F , and hence we cannot select
a density which is better than the “optimal” density
in F , that is, the one closest to g in L1-norm. It is
not obvious how to define the second parameter—the
error of h with respect to g. We follow the definition
of [DL01], which is inspired by [Yat85] (see Section 1.1
for a precise definition).

Devroye and Lugosi [DL01] analyze two algorithms
in this setting: Scheffé tournament winner and min-
imum distance estimate. The minimum distance es-
timate, defined by Yatracos [Yat85], is a special case
of the minimum distance principle, formalized by Wol-
fowitz in [Wol57]. It is a general density estimation
tool which has been applied, for example, by [DL96,
DL97] to the bandwidth selection problem for kernels
and by [DL04, DL01] to bin-width selection for his-
tograms. The minimum distance estimate also finds ap-
plication in hypothesis testing [DGL02].

The Scheffé tournament winner algorithm requires
fewer computations than the minimum distance esti-
mate, but it has strictly weaker guarantees (in terms of
the two parameters mentioned above) than the latter.
Our main contribution are two procedures for selecting
an estimate from F , both of which have the same guar-
antees as the minimum distance estimate, but are com-
putationally more efficient. The first has a quadratic (in
|F|) cost, matching the cost of the Scheffé tournament
winner algorithm. The second one is even faster, using
linearly many (in |F|) computations (after preprocess-
ing F).

We also apply our estimation procedures to the prob-
lem of bandwidth selection for kernels and to that of bin-
width selection for histograms, following [DL01, DL96,
DL97, DL04]. We show that in each of these applica-
tions “efficient minimum loss-weight estimate” is faster
than our “modified minimum distance estimate,” which
in turn is faster than the minimum distance estimate.

Now we outline the rest of the paper. In Section 1.1
we give the required definitions and introduce the no-
tion of a test-function (a variant of Scheffé set). Then, in
Section 1.2, we restate the previous density estimation

503

algorithms (Scheffé tournament winner and the mini-
mum distance estimate) using test-functions. Next, in
Section 2, we present our algorithms. In Section 3 we
discuss two widely studied nonparametric estimation
problems where the computational cost of efficient min-
imum loss-weight estimate (including preprocessing) is
much smaller than that of both the modified minimum
distance and the minimum distance estimates. In Sec-
tion 4 we explore randomized density estimation algo-
rithms. In the final Section 5, we give examples showing
tightness of the theorems stated in the previous sections.

Throughout this paper we focus on the case when
F is finite, in order to compare the computational costs
of our estimates to previous ones. However our results
generalize in a straightforward way to infinite classes as
well if we ignore computational complexity.

1.1 Definitions and Notations

Throughout the paper g will be the unknown distribu-
tion. We will use h to denote the empirical distribution,
which given samples X1, X2, . . . , Xn, is defined for each
set A ⊆ Ω as

h(A) =
1

n

n
∑

i=1

1[Xi∈A]

Let F be a set of densities. We will assume that F is
finite. Let d1(g,F) be the L1-distance of g from F , that
is, minf∈F ‖f − g‖1.

Given two functions fi, fj on Ω (in this context, den-
sities) we define a test-function Tij : Ω → {−1, 0, 1} to
be the function Tij(x) = sgn(fi(x) − fj(x)). Note that
Tij = −Tji. We also define TF to be the set of all test-
functions for F , that is,

TF = {Tij ; fi, fj ∈ F }.
Let · be the inner product for the functions on Ω, defined
for any 2 functions f, f ′ as f · f ′ =

∫

f f ′. Note that

(fi − fj) · Tij = ‖fi − fj‖1.

We use the inner product of the empirical distribution
h with the test-functions to choose an estimate, which
is a density from F .

In this paper we only consider algorithms which make
their decisions purely on inner products of the test-
functions with h and members of F . It is reasonable
to assume that the computation of the inner product
will take significant time. Hence we measure the com-
putational cost of an algorithm is by the number of inner
products used.

We say that fi wins against fj if

(fi − h) · Tij < (fj − h) · Tji. (1)

Note that either fi wins against fj , or fj wins against
fi, or there is a draw (that is, there is equality in (1)).
We will say that fi loses to fj if

(fi − h) · Tij ≥ (fj − h) · Tji.

The algorithms choose an estimate f ∈ F using the
empirical distribution h. The L1-distance of the esti-
mates from the unknown distribution g will depend on

the following measure of distance between the empirical
and the unknown distribution:

∆ := max
T∈TF

(g − h) · T. (2)

Now we discuss how test-functions can be viewed
as a reformulation of Scheffé sets, defined by Devroye
and Lugosi [DL01] (inspired by [Sch47] and implicit
in [Yat85]), as follows. The Scheffé set of densities fi, fj

is
Aij = {x ; fi(x) > fj(x)}.

Devroye and Lugosi say that fi wins against fj if
∣

∣

∣

∣

∣

∫

Aij

fi − h(Aij)

∣

∣

∣

∣

∣

<

∣

∣

∣

∣

∣

∫

Aij

fj − h(Aij)

∣

∣

∣

∣

∣

. (3)

The advantage of using Scheffé sets is that for a concrete
set F of densities one can immediately use the theory of
Vapnik-Chervonenkis dimension [VČ71] for the family
of Scheffé sets of F (this family is called the Yatracos
class of F), to obtain a bound on the empirical error.

If h, fi, fj are non-negative and integrate to 1 then
the condition (1) is equivalent to (3) (to see this recall
that Tij = −Tji, and add (fi−h) ·1 = (h−fj) ·1 to (1),
where 1 is the constant one function on Ω). Thus, in our
algorithms the test-functions can be replaced by Scheffé
sets and VC dimension arguments can be applied.

We chose to use test-functions for two reasons: first,
they allow us to give succinct proofs of our theorems
(especially Theorem 8), and second, they immediately
extend to the case when the members of F do not corre-
spond to distributions (cf, e. g., Exercise 6.2, in [DL01]).

Remark 1 Note that our value of ∆, defined in terms
of TF , is at most twice the ∆ used in [DL01], which is
defined in terms of Scheffé sets.

1.2 Previous Estimates

In this section we restate the two algorithms for den-
sity estimation from Chapter 6 of [DL01]) using test-
functions. The first algorithm requires less computation
but has worse guarantees than the second algorithm.

Algorithm 1 - Scheffé tournament winner.
Output f ∈ F with the most wins (tie broken arbi-
trarily).

Theorem 2 ([DL01], Theorem 6.2) Let f1 ∈ F be
the density output by Algorithm 1. Then

‖f1 − g‖1 ≤ 9 d1(g,F) + 8∆.

The number of inner products used by Algorithm 1 is
Θ(|F|2).

Algorithm 2 - Minimum distance estimate.
Output f ∈ F that minimizes

max
{

|(f − h) · Tij | ; fi, fj ∈ F
}

. (4)

504

Theorem 3 ([DL01], Theorem 6.3) Let f1 be the den-
sity output by Algorithm 2. Then

‖f1 − g‖1 ≤ 3 d1(g,F) + 2∆.

The number of inner products used by Algorithm 2 is
Θ(|F|3).

Let us point out that Theorems 6.2 and 6.3 in [DL01]
require that each f ∈ F corresponds to a distribution,
that is,

∫

f = 1. Since we use test-functions in the
algorithms instead of Scheffé set based comparisons, the
assumption

∫

f = 1 is not actually needed in the proofs
of Theorems 6.2 and 6.3 (we skip the proof), and is not
used in the proofs of Theorems 4, 8.

2 Our estimators

2.1 A variant of the minimum distance

estimate

The following modified minimum distance estimate uses
only O(|F|2) computations as compared to O(|F|3) com-
putations used by Algorithm 2 (equation (5) takes min-
imum of O(|F|) terms, whereas equation (4) takes min-
imum of O(|F|2) terms), but as we show in Theorem 4,
it gives us the same guarantee as the minimum distance
estimate.

Algorithm 3 - Modified minimum distance esti-

mate.
Output fi ∈ F that minimizes

max
{

|(fi − h) · Tij | ; fj ∈ F
}

. (5)

Theorem 4 Let f1 ∈ F be the density output by Algo-
rithm 3. Then

‖f1 − g‖1 ≤ 3 d1(g,F) + 2∆.

The number of inner products used by Algorithm 3 is
Θ(|F|2).
Proof :

Let f1 ∈ F be the function output by Algorithm 3. Let
f2 = argminf∈F‖f − g‖1. By the triangle inequality we
have

‖f1 − g‖1 ≤ ‖f1 − f2‖1 + ‖f2 − g‖1. (6)
We bound ‖f1 − f2‖1 as follows:

‖f1 − f2‖1 = (f1 − f2) · T12

≤ |(f1 − h) · T12| + |(f2 − h) · T12|
≤ |(f1 − h) · T12| + max

fj∈F
|(f2 − h) · T2,j|

where in the last inequality we used the fact that T12 =
−T21.

By the criteria of selecting f1 we have |(f1−h)·T12| ≤
maxfj∈F |(f2 − h) · T2,j| (since otherwise f2 would be
selected). Hence

‖f1 − f2‖1 ≤ 2 max
fj∈F

|(f2 − h) · T2,j |

≤ 2 max
fj∈F

|(f2 − g) · T2,j|

+2 max
fj∈F

|(g − h) · T2,j|

≤ 2‖(f2 − g)‖1 + 2 max
T∈TF

|(g − h) · T |

= 2‖f2 − g‖1 + 2∆.

Combining the last inequality with (6) we obtain

‖f1 − g‖1 ≤ 3‖f2 − g‖1 + 2∆.

�

Remark 5 Note that one can modify the Lemma to
only require that g and h be “close” with respect to the
test functions for the “best” function in the class, that
is, only |(g − h) · T2,j | need to be small (where f2 is
argminf∈F‖f − g‖1).

One can ask whether the observation in Remark 5
can lead to improved density estimation algorithms for
concrete sets of densities. The bounds on ∆ (which is
given by (2)) are often based on the VC-dimension of
the Yatracos class of F . Recall that the Yatracos class Y
is the set of Aij = {x ; fi(x) > fj(x)} for all fi, fj ∈ F .
Remark 5 implies that instead of the Yatracos class it
is enough to consider the set Yi = {Aij ; fj ∈ F} for
fi ∈ F . Is it possible that the VC-dimension of each
set Yi is smaller the VC-dimension of the Yatracos class
Y ? The following (artificial) example shows that this
can, indeed, be the case. Let Ω = {0, . . . , n}. For each
(n + 1)-bit binary string a0, a1, . . . , an, let us consider
the distribution

P (k) =
1

4n
(1 + (1/2 − a0)(1/2 − ak))2−

Pn
j=1

aj2
j

,

for k ∈ {1, . . . , n} (with P (0) chosen to make P into a
distribution). For this family of 2n+1 distributions the
VC-dimension of the Yatracos class is n, whereas each Yi

has VC-dimension 1 (since a pair of distributions fi, fj

has a non-trivial set Aij if and only if their binary strings
differ only in the first bit).

2.2 An even more efficient estimator -

minimum loss-weight

In this section we present an estimator which, after pre-
processing F , uses only O(|F|) inner products to obtain
a density estimate. The guarantees of the estimate are
the same as for Algorithms 2 and 3.

The algorithm uses the following quantity to choose
the estimate:

loss-weight(f) = max
{

‖f − f ′‖1 ; f loses

to f ′ ∈ F
}

.

Intuitively a good estimate should have small loss-
weight (ideally the loss-weight of the estimate would be
−∞ = max{}, that is, the estimate would not lose at
all). Thus the following algorithm would be a natural
candidate for a good density estimator (and, indeed, it
has a guarantee matching Algorithms 2 and 3), but, un-
fortunately, we do not know how to implement it using
O(|F|) inner products.

Algorithm 4a - Minimum loss-weight estimate.
Output f ∈ F that minimizes loss-weight(f).

The next algorithm, seems less natural than algorithm 4a,
but its condition can be implemented using only O(|F|)
inner products.

505

Algorithm 4b - Efficient minimum loss-weight

estimate.
Output f ∈ F such that for every f ′ to which f loses
we have

‖f − f ′‖1 ≤ loss-weight(f ′). (7)

Before we delve into the proof of (8) let us see how
Algorithm 4b can be made to use |F|−1 inner products.
We preprocess F by computing L1-distances between all
pairs of densities in F and store the distances in an list
sorted in decreasing order. When the algorithm is pre-
sented with the empirical distribution h, all it needs to
do is perform comparison between select pairs of densi-
ties. The advantage is that we preprocess F only once
and, for each new empirical distribution we only com-
pute inner products necessary for the comparisons.

We will compute the estimate as follows.

input : family of densities F , list L of all pairs
{fi, fj} sorted in decreasing order by
‖fi − fj‖1, oracle for computing inner
products h · Tij .

output : f ∈ F such that: (∀f ′) f loses to f ′

=⇒ ‖f − f ′‖1 ≤ loss-weight(f ′).

S ← F1

repeat2

pick the first edge {fi, fj} in L3

if fi loses to fj then f ′ ← fi else f ′ ← fj fi4

remove f ′ from S5

remove pairs containing f ′ from L6

until |S| = 17

output the density in S8

Detailed version of algorithm 4b - using O(|F|)
inner products.

Note that while Algorithm 4b uses only O(|F|) in-
ner products its running time is actually Θ(|F|2), since
it traverses a list of length Θ(|F|2). Are we cheating?
There are two answers to this question: practical and
theoretical. As we will see in applications the inner
products dominate the computation, justifying our fo-
cus on just the inner products (of which there are lin-
early many). Theoretically, if we are willing to spend
exponential time for the preprocessing, we can build the
complete decision tree corresponding to Algorithm 4b
and obtain a linear-time density selection procedure.
We find the following question interesting: Is it possible
to achieve linear running time using only polynomial-
time preprocessing?

Question 6 (Tournament Revelation Problem)

We are given a weighted undirected complete graph on
n vertices. Assume that the edge-weights are distinct.
We preprocess the weighted graph and then play the fol-
lowing game with an adversary until only one vertex
remains: we report the edge with the largest weight and
the adversary chooses one of the endpoints of the edge
and removes it from the graph (together with all the ad-
jacent edges).

Our goal is to make the computational cost during
the game linear-time (in n) in the worst-case (over the

adversary’s moves). Is it possible to achieve this goal
with polynomial-time preprocessing?

We now show that the detailed version of algorithm 4b
outputs f satisfying the required condition.

Lemma 7 The estimate f output by the detailed ver-
sion of algorithm 4b satisfies (7) for every f ′ to which
f loses.

Proof :

We show, using induction, that the following invariant
is always satisfied on line 2. For any f ∈ S and any
f ′ ∈ F \ S we have that if f loses to f ′ then ‖f −
f ′‖1 ≤ loss-weight(f ′). Initially, F \S is empty and the
invariant is trivially true. For the inductive step, let f ′

be the density most recently removed from S. To prove
the induction step we only need to show that for every
f ∈ S we have that if f loses to f ′ then ‖f − f ′‖1 ≤
loss-weight(f ′). Let W be the L1-distance between two
densities in S ∪ {f ′}. Then loss-weight(f ′) ≥ W (since
f ′ lost), and ‖f − f ′‖1 ≤ W (by the definition of W).
�

Theorem 8 Let f1 ∈ F be the density output by Algo-
rithm 4a (or Algorithm 4b). Then

‖f1 − g‖1 ≤ 3 d1(g,F) + 2∆. (8)

Assume that we are given L1-distances between every
pair in F . The number of inner products used by Algo-
rithm 4b is Θ(|F|).
Proof of Theorem 8:

Let f4 = g. Let f2 be the function f ∈ F minimizing
‖g − f‖1. We can reformulate our goal (8) as follows:

(f1 − f4) · T14 ≤ 2∆ + 3(f2 − f4) · T24. (9)

Let f3 ∈ F be the function f ′ ∈ F such that f2 loses
against f ′ and ‖f2 − f ′‖1 is maximal (there must be
at least one function to which f2 loses, otherwise the
algorithm would pick f2 and we would be done). Note
that f1, f2, f3 ∈ F , but f4 does need to be in F .

We know that f2 loses against f3, that is, we have
(see (1))

2h · T23 ≤ f2 · T23 + f3 · T23, (10)

and, since f1 satisfied (7), we also have

(f1 − f2) · T12 ≤ (f2 − f3) · T23. (11)

By (2) we have

2(f4 − h) · T23 ≤ 2∆. (12)

Adding (10), (11), and (12) we obtain

2(f2 − f4) · T23 + (f2 − f1) · T12 + 2∆ ≥ 0. (13)

Note that for any i, j, k, ℓ we have:

(fi − fj) · (Tij − Tkℓ) ≥ 0, (14)

since if fi(x) > fj(x) then Tij − Tkℓ ≥ 0, if
fi(x) < fj(x) then Tij−Tkℓ ≤ 0, and if fi(x) = fj(x)

then the contribution of that x is zero. By applying (14)
four times we obtain

(f2−f4) ·(3T24−2T23−T14)+(f1−f2) ·(T12−T14) ≥ 0.
(15)

Finally, adding (13) and (15) yields (9). �

506

Remark 9 Note that Remark 5 also applies to Algo-
rithms 4a and 4b, since (12) is the only inequality in
which ∆ is used.

Lemma 10 If the condition (7) of Algorithm 4b is re-
laxed to

‖f − f ′‖1 ≤ C · loss-weight(f ′), (16)

for some C ≥ 1, an analogue of Theorem 8 with (8)
replaced by

‖f1 − g‖1 ≤ (1 + 2C) d1(g,F) + 2C∆ (17)

holds.

Proof :

The proof is almost identical to the proof of Theorem 8.
Let f4 = g. Let f2 be the function f ∈ F minimizing
‖g − f‖1. We can reformulate our goal (17) as follows:

(f1 − f4) · T14 ≤ 2C∆ + (1 + 2C)(f2 − f4) · T24. (18)

Let f3 ∈ F be the function f ′ ∈ F such that f2 loses
against f ′ and ‖f2 − f ′‖1 is maximal (there must be
at least one function to which f2 loses, otherwise the
algorithm would pick f2 and we would be done). Note
that f1, f2, f3 ∈ F , but f4 does need to be in F .

Equations (10) and (12) from proof of Theorem 8
are satisfied here as well. Since f1 satisfies (16), we also
have

(f1 − f2) · T12 ≤ C(f2 − f3) · T23. (19)

Adding (10) multiplied by C, (19), and (12) multiplied
by C we obtain

2C(f2 − f4) · T23 + (f2 − f1) · T12 + 2C∆ ≥ 0. (20)

By applying (14) four times we obtain

(f2 − f4) · ((1 + 2C)T24 − 2CT23 − T14)+

(f1 − f2) · (T12 − T14) ≥ 0.
(21)

Finally, adding (20) and (21) yields (18). �

Lemma 10 allows us to run Algorithm 4b with dis-
tances between the densities computed approximately
with relative error (1 ± ε) and obtain analogue of The-
orem 8.

Corollary 11 Assume that we are given approximate
L1-distances between every pair in F with relative error
(1±ε). Let f1 ∈ F be the density output by Algorithm 4a
(or Algorithm 4b), where the algorithm uses the approx-
imate distances (instead of the true distances). Then

‖f1 − g‖1 ≤ 3 + ε

1 − ε
d1(g,F) +

2 + 2ε

1 − ε
∆. (22)

The number of inner products used by Algorithm 4b is
Θ(|F|).

Proof :

Let D(f, f ′) be the approximate L1-distance between f
and f ′ given to the algorithm (for every pair f, f ′ ∈ F).
Let

loss-weight
′

(f) = max
{

D(f, f ′) ; f loses

to f ′ ∈ F
}

.

The proof of Lemma 7 yields that the estimate f
output by the detailed version of algorithm 4b satisfies
the following inequality

D(f, f ′) ≤ loss-weight
′

(f ′).

for every f ′ to which f loses. Now using the fact that
D(f, f ′) is an (1± ε) approximation of ‖f − f ′‖1 we ob-
tain that the estimate f output by algorithm 4b satisfies
the following

‖f − f ′‖1 ≤ 1 + ε

1 − ε
· loss-weight(f ′).

for every f ′ to which f loses. �

3 Applications

We now describe two nonparametric density estimation
problems where our estimates can be used to obtain ef-
ficient algorithms. The first of these problems is that of
selecting the optimal smoothing factor for kernel esti-
mates (Section 3.1) while the second one is that of find-
ing an optimal bin-width for 1-dimensional histograms
(Section 3.3).

3.1 Bandwidth selection for kernel estimates

We are going to show that our estimates give fast algo-
rithms for the bandwidth selection problem for uniform
kernels on R.

Given n i.i.d samples x1, . . . , xn ∈ R drawn from an
unknown distribution g the kernel estimate for g is the
density

fn,s(x) =
1

ns

n
∑

i=1

K

(

x − xi

s

)

where K, the kernel, is a function (usually nonnegative)
with

∫

K = 1 and
∫

|K| < ∞, and s > 0 is called
the smoothing factor. For us K will be the uniform
distribution on [−1, 1].

Given x1, . . . , xn the bandwidth selection problem is
to select an s∗ > 0 such that ‖fn,s∗ − g‖1 is close to
infs>0 ‖fn,s−g‖1 [DL01, DL96, DL97]. The data split-
ting approach to bandwidth selection uses n − m (n ≫
m > 0) samples x1, . . . , xn−m to define the kernel esti-
mate fn−m,s and remaining m samples xn−m+1, . . . , xn

as a test set which defines an empirical measure h. De-
vroye and Lugosi ([DL96]) use the minimum distance
estimate to give an algorithm for selecting s∗. Given
n > 0 samples, they select s from an interval [an, bn]
(where, e. g., an = e−n, bn = en). They discretize
[an, bn] by defining s1 = an, s2 = an(1 + δn), . . . , si =
an(1 + δn)i−1, . . . , sN = an(1 + δn)N−1 where N =
⌊ln(bn/an)/ ln(1+δn)⌋ and δn > 0 is a parameter. They
now select s∗ to be si such that fn−m,si

is the minimum
distance estimate for {fn−m,si

; 1 ≤ i ≤ N} and mea-
sure h. Their main theorem is the following.

Theorem 12 ([DL96]) Let K be nonnegative, Lipschitz
and nonzero only in [−1, 1]. Let an, bn be such that
nan → 0, bn → ∞ as n → ∞. Assume that δn = c√

n

507

and that ln bn

an
≤ c′na where c, c′, a > 0 are constants.

If
m

n
→ 0 and

m

n4/5 ln n
→ ∞ as n → ∞,

then the estimate fn−m,s∗ satisfies

sup
g

lim sup
n→∞

E[‖fn−m,s∗ − g‖1]

infs>0 E[‖fn,s − g‖1]
≤ 3. (23)

Observation 13 For an, bn, δn, a as in Theorem 12,
N = Θ(n1/2+a).

We can replace minimum distance with the mini-
mum loss-weight estimate (Algorithm 4b) in this set-
ting. Simply define ŝ to be si (1 ≤ i ≤ N) such that
fn−m,si

is the efficient minimum loss-weight estimate for
{fn−m,si

; 1 ≤ i ≤ N} and measure h. This requires the
computation of L1 distances between all O(N2) pairs
of densities. Assume however that the kernel K is such
that we are able to compute approximate estimates Di,j ,
1 ≤ i, j ≤ N such that with probability at least 1 − δ,

∀ i, j, (1 − ε)Dij ≤ ‖fn−m,si
− fn−m,sj

‖1 ≤ (1 + ε)Dij

(24)
We can now define the approximate minimum loss-weight
estimate ŝ′ in the same way we defined ŝ. In other
words, ŝ′ is si such that Algorithm 4b outputs fn−m,si

for the class {fn−m,si
; 1 ≤ i ≤ N} and the measure h,

except that it uses Dij instead of ‖fn−m,si
− fn−m,sj

‖1

for each i, j. The following theorem is the analogue of
Theorem 12 for both ŝ and ŝ′.

Theorem 14 Let K, an, bn, δn, a > 0, m be as in Theo-
rem 12. Then ŝ satisfies

sup
g

lim sup
n→∞

E[‖fn−m,ŝ − g‖1]

infs>0 E[‖fn,s − g‖1]
≤ 3. (25)

Morever, if

ε → 0 and
δ

n−2/5
→ 0 as n → ∞

then ŝ′ satisfies

sup
g

lim sup
n→∞

E[‖fn−m,ŝ′ − g‖1]

infs>0 E[‖fn,s − g‖1]
≤ 3. (26)

The proof of Theorem 14 is identical to that of The-
orem 12, except that the use of Theorem 3 needs to
replaced by Theorem 8 for (25), and by Corollary 11 for
(26).

Finally we state a lemma which shows, using ideas
from [Ind06] and [LHC07], that it is indeed possible to
efficiently compute approximate estimates Dij satisfy-
ing (24) (with confidence δ) when the kernel K is the
uniform distribution on [−1, 1].

Lemma 15 Let the kernel K be the uniform distribu-
tion on [−1, 1]. Let ε, δ ∈ (0, 1). Then there is a ran-
domized algorithm which in time
O((1/ε)2(nN + N2) log(nN/δ)) computes Dij for i, j ∈
[N] such that with probability ≥ 1 − δ we have that for
all i, j ∈ [N]

(1 − ε)Dij ≤ ‖fn−m,si
− fn−m,sj

‖1 ≤ (1 + ε)Dij .

Proof :

Follows immediately from Lemma 17. �

Let us analyze the time required for computing ŝ′

for the uniform kernel. Let Tij denote the test function
for fn−m,si

, fn−m,sj
. If we sort x1, . . . , xn−m (using

O(n log n) time) in the preprocessing step then com-
puting the inner product fn−m,si

· Tij for any i, j re-
quires only O(n) time. Computing Tij at any point in
R takes O(log n) time (using a single binary search).
Hence computing the inner product h · Tij can be done
in O(m log n) time.

So the preprocessing time

O((1/ε)2(nN + N2) log(nN/δ) + n log n)

dominates the running time of the rest of the procedure,
which is

O((n + m log n)N).

Choosing ε = 1/ logn and δ = 1/
√

n yields a running
time of O((nN + N2)polylog(n)). In contrast, modified
minimum distance requires N2(m log n + n) time while
the minimum distance estimate requires N3(m log n+n)
time, both of which are much slower since in Theo-
rem 12, m = Ω(n4/5).

3.2 Efficient approximation of L1-distances

using projections.

Our main tool will be the following result of [LHC07]
(for related work see also [Ind06]).

Lemma 16 (Lemma 8 of [LHC07]) Let v1, . . . , vN ∈
R

M . Let ε, δ ∈ (0, 1). Let

d ≥ 11(2 logN − log δ)/ε2

be an integer. Let R be an d × M matrix whose entries
are i.i.d. from the Cauchy distribution C(0, 1). Let wi =
Rvi for i ∈ [N]. Let Dij be the geometric mean of the
coordinates of |wi −wj |. With probability ≥ 1− δ (over
the choice of the entries in R) we have for all pairs
i, j ∈ [N]

(1 − ε)Dij ≤ ‖vi − vj‖1 ≤ (1 + ε)Dij . (27)

As an immediate consequence of Lemma 16 we ob-
tain an efficient algorithm for approximating all pair-
wise L1-distances between N densities each of which is
a mixture of n uniform distributions on intervals.

Lemma 17 Let n and N be positive integers. Let ε, δ ∈
(0, 1). For each i ∈ [N] let fi be a mixture of n uni-
form densities on intervals (fi is given by a set of n
mixture coefficients αi,1, . . . , αi,n and n disjoint inter-
vals [ai,1, bi,1), . . . , [ai,n, bi,n)). There is a randomized
algorithm which in time O((1/ε)2(nN +N2) log(nN/δ))
computes Dij (for i, j ∈ [N]) such that with probability
≥ 1 − δ we have that for all i, j ∈ [N]

(1 − ε)Dij ≤ ‖fi − fj‖1 ≤ (1 + ε)Dij . (28)

508

Proof :

Let S = s0 < s1 < · · · < sM be the sequence obtained
by sorting the set

{ai,j ; i ∈ [N], j ∈ [n]} ∪ {bi,j ; i ∈ [N], j ∈ [n]}.

Note that M < 2Nn. Let vi ∈ R
M be the vector whose

j-th coordinate is the measure of [sj−1, sj) under fi. We
have ‖fi − fj‖1 = ‖vi − vj‖1 for all i, j ∈ [N]. Now we
will apply Lemma 16 to v1, . . . , vN .

Let d = ⌈11(2 log 2nN − log δ)/ε2⌉. Let R be an
d × M matrix whose entries are i.i.d. from the Cauchy
distribution C(0, 1). We can compute R in time O(dM).
Suppose that we computed wi = Rvi for i ∈ [N]. Then
we can compute Dij , the coordinate mean of |wi − wj |
for all i, j ∈ [N] in time O(N2d). The equation (27)
and the fact that ‖fi − fj‖1 = ‖vi − vj‖1 implies (28).
It remains to show how to compute wi = Rvi efficiently.

The j-th coordinate of vi is the measure of [sj−1, sj)
under fi which is (sj − sj−1) times the density of fi on
the interval [sj−1, sj) (the density of fi is constant on
this interval). Let R′ be obtained from matrix R by
multiplying j-th column by (sj − sj−1) for j ∈ [M]. We
can obtain R′ from R in time O(dM). Let R′′ be the
matrix with R′′

ij = R′
i1 + R′

i2 + · · · + R′
ij (again we can

compute R′′ from R′ in time O(dM)). We have

(Rvi)k =
n

∑

j=1

αij

bij − aij

(

R′′
k,r(bij)

− R′′
k,r(aij)−1

)

. (29)

Using equation (29) we can compute all vi in time O(nNd).
�

Remark 18 In a forthcoming paper [MŠ08] we gener-
alize Lemma 17 to piecewise polynomial densities. For
each i ∈ [N], let density fi be specified by n disjoint
intervals

[ai,1, bi,1), . . . [ai,n, bi,n),

and in interval [ai,j , bi,j) for each j ∈ [n] by coefficients

α
(0)
i,j , α

(1)
i,j , . . . , α

(d)
i,j such that

(∀x ∈ [ai,j , bi,j)) f(x) = α
(0)
i,j + α

(1)
i,j x + . . . + α

(d)
i,j xd.

Theorem 5.1 of [MŠ08] states that there is a randomized
algorithm which takes O(N(N +n)(d

ε)3 log N
δ) time and

outputs Dij , 1 ≤ i < j ≤ N such that with probability
at least 1 − δ, for each 1 ≤ i < j ≤ N

(1 − ε)Dij ≤ ‖fi − fj‖1 ≤ (1 + ε)Dij .

3.3 Bin-width selection for histogram

estimates

Here we show how the efficient minimum loss-weight es-
timate yields a fast algorithm for finding the optimal
bin-width of 1-dimensional histograms. The set of den-
sities arising in this problem will be such that for any
subset of them it will be trivial to determine the pair
whose L1-distance is maximal.

Given a bin-width s > 0, define At for each integer
t to be the interval [ts, (t + 1)s). Given n sample points
x1, . . . , xn ∈ R drawn from a distribution g, a regular

histogram estimate fn,s is defined as the density such
that for each t and each x ∈ At

fn,s(x) =
|{xi ; xi ∈ At}|

ns
. (30)

Devroye and Lugosi [DL01, DG85] consider the prob-
lem of finding L1-optimal histogram estimates. As in
the case of kernel estimates, they use the first n − m
sample points x1, . . . , xn−m to define the histogram esti-
mate fn−m,s, and the remaining points xn−m+1, . . . , xn

to define the empirical distribution h. Now, given a
set Θ to choose from, s∗ is defined to be the bin-width
such that fn−m,s∗ is the minimum distance estimate for
{fn−m,s ; s ∈ Θ} and h. If each width in Θ is 2k for
some integer k, Devroye and Lugosi [DL01] prove the
following about s∗.

Theorem 19 ([DL01], Theorem 10.3 and Lemma 10.5)
If Θ ⊆ {2i ; i ∈ Z} then for all n and m, with 0 < m ≤
n/2,

E
[

‖fn−m,s∗ − g‖1

]

≤

3 inf
s∈Θ

E
[

‖fn,s − g‖1

]

(

1 +
2m

n − m
+ 8

√

m

n

)

+8

√

log(2(m + 1)n2)

m
+

3

n
.

Once again, like kernel estimates, we can simply use
efficient minimum loss-weight instead of minimum dis-
tance. Now, define ŝ to be such that fn−m,ŝ is the effi-
cient minimum loss-weight estimate (Algorithm 4b) for
{fn−m,s ; s ∈ Θ} and h.

We state below the analogue of Theorem 19 for the
efficient minimum loss-weight estimate. The proof is the
same, except, one uses Theorem 8 instead of Theorem 3.

Theorem 20 If Θ is as in Theorem 19 then for all n
and m with 0 < m ≤ n/2,

E
[

‖fn−m,ŝ − g‖1

]

≤

3 inf
s∈Θ

E
[

‖fn,s − g‖1

]

(

1 +
2m

n − m
+ 8

√

m

n

)

+8

√

log(2(m + 1)n2)

m
+

3

n
.

Let us now consider the computational cost. For
each n, lets say we choose Θ to be {2i ; −N ≤ i ≤ N}
(where, e. g., N = n is a possible choice) so that we have
2N + 1 densities to select from. Define si = 2−N+i for
each 0 ≤ i ≤ 2N . The following lemma shows that we
need not actually pre-compute pairwise L1-distances in
the preprocessing step of Algorithm 4b.

Lemma 21 For any i ≤ k ≤ ℓ ≤ j,

‖fn,sℓ
− fn,sk

‖1 ≤ ‖fn,sj
− fn,si

‖1.

Proof :

We first prove that for any n and i < j,

‖fn,sj
− fn,si+1

‖1 ≤ ‖fn,sj
− fn,si

‖1, (31)

509

and
‖fn,sj−1

− fn,si
‖1 ≤ ‖fn,sj

− fn,si
‖1. (32)

In order to prove (31), consider any bin

At = [tsi+1, (t + 1)si+1) = [2tsi, 2(t + 1)si).

Denote the density of fn,sj
in this bin by µ, and that of

fn,si
in [2tsi, (2t+1)si), [(2t+1)si, (2t+2)si) respectively

by µ1, µ2. Clearly the density of fn,si+1
in At is µ1+µ2

2 .
However,

∫

At

|fn,sj
− fn,si

| = si(|µ − µ1| + |µ − µ2|)

≥ 2si

∣

∣

∣
µ − µ1 + µ2

2

∣

∣

∣

=

∫

At

|fn,sj
− fn,si+1

|.

Thus

‖fn,sj
− fn,si

‖1 =
∑

t

∫

At

|fn,sj
− fn,si

| ≥

∑

t

∫

At

|fn,sj
− fn,si+1

| = ‖fn,sj
− fn,si+1

‖1.

The proof of (32) is similar. The lemma now follows
by induction. �

So in each iteration of Algorithm 4b, the pair of den-
sities that are picked for comparison simply correspond
to the smallest and the largest bin-widths remaining to
be considered. In other words, if si and sj are respec-
tively the minimum and the maximum width remaining,
fn−m,si

is compared against fn−m,sj
.

Now let Tij denote, as usual, the test function for
fn−m,si

, fn−m,sj
. Now we analyze the time needed to

compute fn−m,si
· Tij and h · Tij . We first preprocess

x1, . . . , xn−m by sorting them (O(n log n) time). For
any x the value of Tij(x) can be computed in time
O(log n) (using binary search on x1, . . . , xn−m) and hence
h·Tij can be computed in O(m log n) time. We can com-
pute fn−m,si

·Tij in O(n) time (using one pass over the
array x1, . . . , xn−m).

Hence the efficient minimum loss-weight estimate re-
quires only O(N(n+m logn)+n logn) computations in
total. In contrast, modified minimum distance requires
O(N2(n+m logn)+n log n) and minimum distance re-
quires O(N3(n + m log n) + n log n), making efficient
minimum loss-weight the fastest of the three.

4 Randomized algorithm and mixtures

In this section we explore the following question: can
constant 3 be improved if we allow randomized algo-
rithms? Let f be the output of a randomized algorithm
(f is a random variable with values in F). We would
like to bound the expected error E

[

‖f − g‖1

]

, where
the expectation is taken only with respect to coin tosses
made by the algorithm (and not with respect to the
distribution of the samples).

If instead of randomization we consider algorithms
which output mixtures of densities in F we obtain a

related problem. Indeed, let α be the distribution on
F produced by a randomized algorithm, and let r =
∑

s∈F αss be the corresponding mixture. Then, by tri-
angle inequality, we have

‖r − g‖1 ≤ E
[

‖f − g‖1

]

.

Hence the model in which the output is allowed to be a
mixture of densities in F is “easier” than the model in
which the density selection algorithm is randomized.

We consider here only the special case in which F
has only two densities f1, f2, and give an randomized
algorithm with a better guarantee than is possible for
deterministic algorithms. Later, in Section 5, we give a
matching lower bound in the mixture model.

To simplify the exposition we will, without loss of
generality, assume that ‖f1 − f2‖1 > 0. Thus for any h
we have (f1 − h) · T12 + (h− f2) · T12 = ‖f1 − f2‖1 > 0.

Algorithm 5 - Randomized estimate.

Let

r =
|(f1 − h) · T12|
|(f2 − h) · T12|

.

With probability 1/(r+1) output f1, otherwise output
f2.

(By convention, if |(f2−h)·T12| = 0 then we take r = ∞
and output f2 with probability 1).

Theorem 22 Let F = {f1, f2}. Let f ∈ F be the den-
sity output by Algorithm 5. Then

E
[

‖f − g‖1

]

≤ 2 d1(g,F) + ∆,

where the expectation is taken only with respect to the
coin tosses made by the algorithm.

Proof :

Without loss of generality assume that

f2 = argminf∈F‖f − g‖1.

First we bound the error of f1 and later use it to bound
the error of f . We have, by triangle inequality,

‖f1 − g‖1 ≤ ‖f1 − f2‖1 + ‖f2 − g‖1.

We can bound ‖f1 − f2‖1 as follows

‖f1 − f2‖1 = (f1 − f2) · T12

≤ |(f1 − h) · T12| + |(f2 − h) · T12|
= (r + 1)|(f2 − h) · T12|

≤ (r + 1)|(f2 − g) · T12| + (r + 1)|(g − h) · T12|.
Thus,

‖f1 − g‖1 ≤ (r + 2)‖f2 − g‖1 + (r + 1)∆. (33)

Hence

E
[

‖f − g‖1

]

=
1

r + 1
‖f1 − g‖1 +

r

r + 1
‖f2 − g‖1

≤ 2‖f2 − g‖1 + ∆

where in the last inequality we used (33). �

510

5 Lower bound examples

In this section we construct an example showing that
deterministic density selection algorithms based on test-
functions cannot improve on the constant 3, that is,
Theorems 2, 3, 4, 8 are tight. For algorithms that out-
put mixtures (and hence randomized algorithms) the
example yields a lower bound of 2, matching the con-
stant in Theorem 22.

Lemma 23 For every ε′ > 0 there exist distributions
f1, f2, and g = h such that

‖f1 − g‖1 ≥ (3 − ε′)‖f2 − g‖1,

and f1 · T12 = −f2 · T12 and h · T12 = 0.

Before we prove Lemma 23 let us see how it is ap-
plied. Consider the behavior of the algorithm on empir-
ical distribution h for F = {f1, f2} and F ′ = {f ′

1, f
′
2},

where f ′
1 = f2 and f ′

2 = f1. Note that T ′
12 = T21 = −T12

and hence

f ′
1 · T ′

12 = −f ′
2 · T ′

12 = f1 · T12 = −f2 · T12.

Moreover, we have h · T12 = h · T ′
12 = 0. Note that all

the test-functions have the same value for F and F ′.
Hence a test-function based algorithm either outputs f1

and f ′
1, or it outputs f2 and f ′

2 = f1. In both cases it
outputs f1 for one of the inputs and hence we obtain
the following consequence.

Corollary 24 For any ε > 0 and any deterministic
test-function based algorithm there exist an input F and
h = g such that the output f1 of the algorithm satisfies
‖f1 − g‖1 ≥ (3 − ε)d1(g,F).

Proof of Lemma 23:

Consider the following probability space consisting of of
4 atomic events A1, A2, A3, A4:

A1 A2 A3 A4

f1 0 1/4 + ε 1/2 1/4 − ε
f2 1/2 + ε 1/4 − ε 0 1/4

g = h 1/2 1/2 0 0
T12 −1 1 1 −1

Note that we have f1 · T12 = −f2 · T12 = 1
2 + 2ε, and

‖f1 − g‖1 = 3
2 − 2ε, ‖f2 − g‖1 = 1

2 + 2ε. The ratio
‖f1 − g‖1/‖f2 − g‖1 gets arbitrarily close to 3 as ε goes
to zero. �

Consider f1 and f2 from the proof of Lemma 23. Let
f = αf1 +(1−α)f2 where α ≥ 1/2. For 0 < ε < 1/4 we
have ‖f − g‖1 = 1/2+ α− 2εα ≥ 1− 2ε. By symmetry,
for one of F = {f1, f2} and F ′ = {f ′

1, f
′
2} (with f ′

1 = f2

and f ′
2 = f1), the algorithm outputs αf1 + (1 − α)f2

with α ≥ 1/2, and hence we obtain the following.

Corollary 25 For any ε > 0 and any deterministic
test-function based algorithm which outputs a mixture
there exist an input F and h = g such that the output
f of the algorithm satisfies ‖f − g‖1 ≥ (2 − ε)d1(g,F).

Thus for two distributions the correct constant is
2 for randomized algorithms using test-functions. For
larger families of distributions we do not know what the
value of the constant is (we only know that it is from
the interval [2, 3]).

Question 26 What is the correct constant for deter-
ministic test-function based algorithm which output a
mixture? What is the correct constant for randomized
test-function based algorithms?

Next we construct an example showing that 9 is the
right constant for Algorithm 1.

Lemma 27 For every ε′ > 0 there exist probability dis-
tributions f1, f2, f3 = f ′

3 and g such that

‖f1 − g‖1 ≥ (9 − ε′)‖f2 − g‖1,

yet the Algorithm 1, for F = {f1, f2, f3, f
′
3}, even when

given the true distribution (that is, h = g) outputs f1.

Proof :

Consider the following probability space with 6 events
A1, . . . , A6 and f1, f2 and g with the probabilities given
by the following two tables:

A1 A2 A3

g = h 2/3 − 21ε 1/9 − 2ε 9ε
f1 0 18ε 2/3 − 12ε
f2 2/3 − 30ε 0 0
f3 2/3 − 21ε 9ε 9ε
T12 -1 1 1
T13 -1 1 1
T23 -1 -1 -1

A4 A5 A6

g = h 0 2/9 + 14ε 0
f1 2/9 − 13ε 9ε 1/9 − 2ε
f2 0 2/9 + 14ε 1/9 + 16ε
f3 2/9 − 4ε 0 1/9 + 7ε
T12 1 -1 -1
T13 -1 1 -1
T23 -1 1 1

Note that we have

f1 · T12 = 7/9 − 14ε, h · T12 = −7/9 + 14ε,

f2 · T12 = −1, f1 · T13 = 1/3 + 30x,

h · T13 = −1/3 + 42x, f3 · T13 = −1 + 36x,

f2 · T23 = −1/3 + 60x, h · T23 = −5/9 + 28x,

f3 · T23 = −7/9 + 14x.

Hence f1 wins over f3, f3 wins over f2, and f2 wins over
f1. Since f3 = f ′

3 we have that f1 is the tournament
winner. Finally, we have ‖f1 − g‖1 = 2− 72ε and ‖f2 −
g‖1 = 2/9+32ε. As ε → 0 the ratio ‖f1−g‖1/‖f2−g‖1

gets arbitrarily close to 9. �

511

References

[DG85] Luc Devroye and László Györfi. Nonparamet-
ric density estimation: the L1 view. Wiley
series in probability and mathematical statis-
tics. John Wiley & Sons, New York, 1985.

[DGL02] Luc Devroye, László Györfi, and Gábor Lu-
gosi. A note on robust hypothesis testing.
IEEE Transactions on Information Theory,
48(7):2111–2114, 2002.

[DL96] Luc Devroye and Gábor Lugosi. A univer-
sally acceptable smoothing factor for kernel
density estimates. Ann. Statist., 24(6):2499–
2512, 1996.

[DL97] Luc Devroye and Gábor Lugosi. Nonasymp-
totic universal smoothing factors, kernel com-
plexity and Yatracos classes. Ann. Statist.,
25(6):2626–2637, 1997.

[DL01] Luc Devroye and Gábor Lugosi. Combinato-
rial methods in density estimation. Springer
Series in Statistics. Springer-Verlag, New
York, 2001.

[DL04] Luc Devroye and Gábor Lugosi. Bin width se-
lection in multivariate histograms by the com-
binatorial method. Test, 13:1–17, 2004.

[Ind06] Piotr Indyk. Stable distributions, pseudoran-
dom generators, embeddings, and data stream
computation. Journal of the ACM, 53(3):307–
323, 2006.

[LHC07] Ping Li, Trevor J. Hastie, and Kenneth W.
Church. Nonlinear estimators and tail bounds
for dimension reduction. Journal of Machine
Learning Research, 8:2497–2532, 2007.

[MŠ08] Satyaki Mahalanabis and Daniel
Štefankovič. Approximating l1-distances
between mixture distributions us-
ing random projections. arXiv.org,
http://arxiv.org/abs/0804.1170, April
2008.

[Sch47] Henry Scheffé. A useful convergence theo-
rem for probability distributions. Ann. Math.
Statistics, 18:434–438, 1947.

[VČ71] Vladimir N. Vapnik and Alexey J.
Červonenkis. The uniform convergence
of frequencies of the appearance of events
to their probabilities. Teor. Verojatnost. i
Primenen., 16:264–279, 1971.

[Wol57] Jacob Wolfowitz. The minimum distance
method. The Annals of Mathematical Statis-
tics, 28:75–88, 1957.

[Yat85] Yannis G. Yatracos. Rates of convergence
of minimum distance estimators and Kol-
mogorov’s entropy. Ann. Statist., 13(2):768–
774, 1985.

512

The Learning Power of Evolution

Vitaly Feldman
IBM Almaden Research Center

650 Harry rd.
San Jose, CA 95120

vitaly@post.harvard.edu

Leslie G. Valiant∗
Harvard University

33 Oxford st.
Cambridge, MA 02138

valiant@seas.harvard.edu

It has been widely recognized that learning and evolu-
tion have the commonality of involving adaptive processes
that once started do not need a programmer or designer. It
is tempting to seek some mystical extra power in evolution,
beyond that of learning, simply because of the apparently
spectacular consequences of evolution that we see around us.
However, such approaches have not succeeded to date.

In response to this situation one of the authors made the,
apparently radical, suggestion that evolution is nothing other
than a constrained form of computational learning. In [Val08]
a notion of evolvability was defined in a similar spirit to the
definition of learnability. The goal of the definition is to of-
fer a rigorous basis for the analysis of evolution and for dis-
tinguishing between efficient evolution and evolution that is
only realized in some exponentially far limit.

Before summarizing this framework we describe the fol-
lowing motivating concrete instance. Consider the 20,000
or so genes in the human genome. For each such gene the
condition under which the protein corresponding to it is ex-
pressed, in terms of all the other proteins, is encoded in its
regulatory region. In other words each of the 20,000 or so
proteins is controlled by a function f of the other 20,000 or
so proteins. The issue here is that if the function f is re-
stricted to too small a class then it will not be expressive
enough to perform the complex functions of biology. On
the other hand, if the function is an arbitrary function, or
from a too extensive a class, then no evolutionary algorithm
will exist to maintain the viability of this genetic network of
functions as environmental conditions change. The goal of
this evolvability theory is, among other things, to understand
how broad and expressive these functions can be allowed to
be while still permitting their efficient evolution.

The following is an abbreviated summary of the basic
definitional framework. Let X = {0, 1}n be an n-dimensional
space of experiences or examples (e.g. in the above instance
the expression levels of the proteins), a set C of functions
(e.g. the functions by which the expression level of each
protein is determined in terms of the expression levels of the
others), and a set R of representations of functions (e.g. the
DNA strings of the genes). Also we define an ideal func-
tion f , which would define for each vector x ∈ X the best
value from the viewpoint of the evolving organism. In the
current instance, for each combination of expression levels

∗Supported by grants from the National Science Foundation
NSF-CCF-04-32037 and NSF-CCF-04-27129.

of the other proteins it would define the ideal expression
level of the protein at hand. For simplicity here we discuss
only Boolean functions with values in {−1, 1}. We define
a distribution D over X that defines the relative probabil-
ities of the various possible vectors x ∈ X that can oc-
cur. We define the performance of a representation r to be
the correlation of r with the ideal function f taken over all
points in X weighted according to D. Formally, we denote
Perff (r,D) = ED[r(x) · f(x)]. In addition, since the
exact performance cannot be efficiently computed in many
cases without exponential resources, we define the empir-
ical performance Perff (r,D, s) of r on samples of size
s. It is a random variable that equals 1

s

∑
i≤s(r(zi) · f(zi))

for z1, z2, . . . , zs ∈ X chosen randomly and independently
according to D. A representation r is good if it is similar
to the ideal f , or Perff (r,D) ≥ 1 − ε for some small
ε > 0. An evolutionary algorithm is defined by a quadru-
ple A = (R, Neigh, µ, t) where:

• R is a set of representations of functions over X;

• Neigh(r, ε) is a function that for r ∈ R, equals the
neighborhood of r, that is, the set of representations
into which r randomly “mutates”. For all r and ε, r ∈
Neigh(r, ε) and |Neigh(r, ε)| ≤ pA(n, 1/ε) for a fixed
polynomial pA.

• µ(r, r1, ε) is a function that for r ∈ R and r1 ∈ Neigh(r, ε),
gives the probability that r “mutates” into r1;

• t(ε) is the function that equals the tolerance of A. The
tolerance determines the difference in performance that
a “mutation” has to exhibit to be considered beneficial
(or deleterious). The tolerance is bounded from below
by a polynomial in 1/n and ε.

Functions Neigh, µ, and t all need to be computable by a
randomized algorithm in time polynomial in n and 1/ε. The
interpretation here is that for each genome the number of
variants, determined by Neigh, that can be searched effec-
tively is not unlimited, because the population at any time is
not unlimited, but is polynomial bounded. But a significant
number of experiences with each variant must be available
so that differences in performance can be detected reliably.

We now describe the basic step of such an evolution-
ary algorithm, designed to model a step of evolution. For
a function f , distribution D, evolutionary algorithm A =

513

(R, Neigh, µ, t), a representation r ∈ R, accuracy ε, and
sample size s, the mutator Mu(f, D, A, r, ε, s) is a random
variable that takes a value r1 determined as follows. For
each r′ ∈ Neigh(r, ε), it first computes an empirical value of
v(r′) = Perff (r′, D, s). Let

Bene = {r′ | v(r′) ≥ v(r) + t(ε)}
and

Neut = {r′ | |v(r′)− v(r)| < t(ε)}.
Then

(i) if Bene 6= ∅ then output r1 ∈ Bene with probability

µ(r, r1, ε)/
∑

r′∈Bene
µ(r, r′, ε);

(ii) if Bene = ∅ then output r1 ∈ Neut with probability

µ(r, r1, ε)/
∑

r′∈Neut
µ(r, r′, ε).

In this definition a distinction between beneficial and neutral
mutations is made as revealed by a set of s experiments. If
some beneficial mutations are available, one is chosen ac-
cording to their relative probabilities assigned by µ. If none
is available then one of the neutral mutations is chosen ac-
cording to their relative probabilities assigned by µ. Since in
our definition we insist that for all r and ε, r ∈ Neigh(r, ε), r
will always be empirically neutral, and hence Neut nonempty.

Finally we say that a class of functions C is evolvable
over distribution D if there is an evolutionary algorithm A =
(R, Neigh, µ, t) that for any starting representation r0 ∈ R
and any ideal function f ∈ C will converge efficiently to
a representation r whose performance is close to the per-
formance of f . Formally, there exist polynomials s(n, 1/ε)
and g(n, 1/ε) such that for every f ∈ C, every ε > 0, and
every r0 ∈ R, with probability at least 1 − ε, a sequence
r0, r1, r2, . . ., where

ri = Mu(f, D, A, ri−1, ε, s(n, 1/ε))

will have Perff (rg(n,1/ε), D) > 1− ε.
The polynomial g(n, 1/ε) upper bounds the number of

generations needed for the evolution process. A concept
class C is evolvable if it is evolvable over all distributions
by a single evolutionary mechanism. We emphasize this by
saying distribution-independently evolvable.

As in other computational models, such as Turing Ma-
chines, the question of how robust the model is under reason-
able variations is an important one. Some results along these
lines are known. These include the equivalence of evolvabil-
ity with fixed tolerance t to evolvability with tolerance that
might depend on r (see [Val08] for the definitions).

Initial results [Val08] say that monotone conjunctions are
evolvable over the uniform distribution and that the evolv-
able is a subclass of the class that is learnable by Statistical
Queries (SQ), defined earlier by Kearns [Kea98], which is
known to be a proper subclass of the PAC learnable . Michael
gives an algorithm for evolving decision trees over the uni-
form distribution that is based on a slightly different notion

of performance [Mic07]. Further, Feldman shows that evolv-
ability is equivalent to learning by a natural restriction of sta-
tistical queries [Fel08], referred to as correlational statistical
queries. A correlational statistical query (or CSQ) is a query
for the correlation of a given function g with the unknown
target function f . The correlation is measured relative to
the distribution D over the domain of the learning problem
and equals Ex∼D[f(x)g(x)]. To such a query a CSQ oracle
returns an estimate of Ex∼D[f(x)g(x)] within certain toler-
ance. For comparison, the general SQ model allows queries
that provide estimates of Ex∼D[ψ(x, f(x))] for any function
on labeled examples ψ : {0, 1}n×{−1, 1} → {−1, 1}. This
equivalence implies that every concept class known to be SQ
learnable is evolvable when the distribution over the domain
is fixed. In addition, it was shown that decision lists are not
evolvable distribution-independently [Fel08], and hence that
the evolvable is a proper subclass of SQ.

Open Problems
The main open problem in this direction is characterizing the
power of distribution-independent evolvability. In particular,
it is unknown whether conjunctions and low-weight linear
threshold functions are evolvable distribution-independently.
It is easy to see that both classes are weakly evolvable distribution-
independently [Fel08] and hence a possible approach is to
design an evolutionary variant of boosting (which may be of
independent interest). Known boosting techniques rely heav-
ily on information that is not available to an evolutionary
algorithm. Evolutionary algorithms for these basic concept
classes that use simple mutation mechanisms and converge
fast over wide classes of natural distributions would be of
particular interest.

More generally, we think that it is important to seek new
learning techniques that rely on evolutionary mechanisms of
adaptation. Such techniques might shed new light on evolu-
tion as it has occurred on Earth and could also find applica-
tions outside of the biological context. Identifying such po-
tential applications is another interesting avenue of research.

References
[Fel08] V. Feldman. Evolvability from learning algorithms.

Manuscript. To appear in Proceedings of STOC,
2008.

[Kea98] M. Kearns. Efficient noise-tolerant learning from
statistical queries. Journal of the ACM, 45(6):983–
1006, 1998.

[Mic07] L. Michael. Evolving decision lists. Manuscript,
2007.

[Val08] L. G. Valiant. Evolvability. To appear in Journal of
the ACM, 2008.

514

A Query Algorithm for Agnostically Learning DNF?

Parikshit Gopalan∗and Adam T. Kalai†and Adam R. Klivans‡

Let f : {−1, 1}n → {−1, 1} be anarbitrary Boolean
function and letC be a concept class where each concept has
size at mostt. Define

opt = min
c∈C

Pr
x∈{−1,1}n

[c(x) 6= f(x)]

wherex is chosen uniformly at random from{−1, 1}n. We
say thatC is agnostically learnable with queries with respect
to the uniform distribution if there exists an algorithm that–
given black box access to anyf– runs in timepoly(n, t, ǫ−1)
and outputs a hypothesish such that

Pr
x∈{−1,1}n

[h(x) 6= f(x)] ≤ opt + ǫ.

The algorithm may be randomized, in which case it must
output such anh with high probability.

The main question is as follows: are polynomial-size
DNF formulas agnostically learnable with queries with re-
spect to the uniform distribution? A related question is, are
halfspaces agnostically learnable with queries with respect
to the uniform distribution?

Motivation: One of the most celebrated results in com-
putational learning theory is Jackson’s query algorithm for
PAC learning DNF formulas with respect to the uniform dis-
tribution [3]. A natural question is whether DNF formulas
can be learned (even with queries and with respect to the
uniform distribution) in a highly noisy setting, i.e., the well-
known agnostic framework of learning [5].

Additionally, it is straightforward to see that an agnostic
learning algorithm for DNF formulas would give algorithms
for weakly learning polynomial-size depth-3 circuits with re-
spect to the uniform distribution in the standard PAC learning
model.

Halfspaces are another simple and important concept class
of functions still not known to be agnostically learnable with
respect to the uniform distribution, even if the learner can
make queries (although some relevant work exists for the
uniform distribution that we mention below).

Current status: Very recently, Gopalan et al. [2] have
shown that the weaker concept class ofdecision trees are

∗University of Washington;parik@cs.washington.edu
†Georgia Tech.;adamology@gmail.com
‡University of Texas at Austin;klivans@cs.utexas.edu

agnostically learnable with queries with respect to the uni-
form distribution. Their algorithm implicitly solves a high-
dimensional convex program using the well-known Kushile-
vitz/Mansour [6] algorithm for finding large Fourier coeffi-
cients as a subroutine.

Applying a result due to Mansour on the sparsity of DNF
formulas [7], the Gopalan et al. query algorithm will agnos-
tically learn DNF formulas with respect to the uniform dis-
tribution in timenO(log(1/ǫ) log log n). If the Friedgut-Kalai
“Entropy/Influence” conjecture [1] is true (or better bounds
are proved on the sparsity of DNF formulas) then the running
time can be improved even further (see also Gil Kalai’s post
on Terry Tao’s weblog [8]).

Gopalan et al. do show, however, that that their algorithm
will not agnostically learn DNF formulas in polynomial time
in all the relevant parameters.

Given Jackson’s algorithm and Gopalan et al.’s recent
work for agnostically learning decision trees, we feel that
the case of DNF formulas is particularly compelling.

Regarding halfspaces, Kalai et al. [4] showed how to ag-
nostically learn halfspaces with respect to the uniform distri-
butionwithout queries in timenO(1/ǫ4). Further, they showed
that any algorithm running in timenO(1/ǫ2−γ) for anyγ > 0
would give the fastest known algorithm for the notoriously
difficult “learning parity with noise problem.” As such, we
do not think that much further progress will be made on this
problem unless the learner is allowed to make queries.

References

[1] E. Friedgut and G. Kalai. Every monotone graph prop-
erty has a sharp threshold.Proceedings of the American
Mathematical Society, 124:2993–3002, 1996.

[2] P. Gopalan, A. Kalai, and A. Klivans. Agnostically
learning decision trees. InProceedings of the 40th ACM
Symp. on Theory of Computing, 2008.

[3] J. Jackson. An efficient membership-query algorithm for
learning DNF with respect to the uniform distribution.
Journal of Computer and System Sciences, 55:414–440,
1997.

[4] A. Kalai, A. Klivans, Y. Mansour, and R. Servedio. Ag-
nostically learning halfspaces. InProceedings of the
46th IEEE Symp. on Foundations of Computer Science,
2005.

[5] M. Kearns, R. Schapire, and L. Sellie. Toward Efficient

515

Agnostic Learning. Machine Learning, 17(2/3):115–
141, 1994.

[6] E. Kushilevitz and Y. Mansour. Learning decision trees
using the Fourier spectrum.SIAM J. on Computing,
22(6):1331–1348, 1993.

[7] Y. Mansour. Ano(nlog log n) learning algorithm for DNF
under the uniform distribution.Journal of Computer and
System Sciences, 50:543–550, 1995.

[8] T. Tao. The entropy/influence conjec-
ture (blog post by gil kalai). Available at
http://terrytao.wordpress.com/2007/08/16/
gil-kalai-the-entropyinfluence-conjecture/.

516

Learning Rotations

Adam M. Smith and Manfred K. Warmuth
University of California - Santa Cruz

{amsmith,manfred}@cs.ucsc.edu

Abstract
Many different matrix classes have been tackled
recently using online learning techniques, but at
least one major class has been left out: rotations.
We pose the online learning of rotations as an open
problem and discuss the importance of this prob-
lem.

1 Problem Statement
Online Rotation Problem:

Given a stream of instances xt, which are unit vectors in
Rn, predict ŷt = Rtxt, a rotated version of xt. Receive the
true result vector yt (the result of some unknown rotation)
and incur a loss Lt(Rt) = |Rtxt − yt|2. Find an online al-
gorithm with bounded regret with respect to the best rotation
chosen offline.

2 Why study rotations?
We claim that the online rotation problem is both hard and in-
teresting. The space of rotations (formally the SO(n) group)
is a curved, compact manifold, ruling out the direct forma-
tion of linear combinations of rotations. Therefore designing
updates for this parameter class is challenging.

From an application standpoint, many seemingly more
general problems reduce to learning rotations. For example,
using a conformal embedding (adding two special dimen-
sions to application-level vectors), rotations naturally extend
to a representation of all Euclidean transformations [WCL05].
Furthermore, learning rotations would bring us closer to rep-
resenting general orthogonal transformations in the O(n,n)
group. This group (with suitable embedding) provides a uni-
versal representation for all Lie groups including many ma-
trix classes of interest that are currently treated individually
[DHSA93]. Clearly, this is an interesting goal to pursue!

3 What needs to be explored?
There are several directions of inquiry that may lead to progress
in this area. (1) Identify online algorithms that exploit the Lie
group structure of the rotations. (2) Identify divergences that
lead to suitable updates. (3) Identify alternative loss func-
tions (other than the square loss between vectors used above)
that better exploit spherical geometry. (4) Identify upper and
lower regret bounds.

4 Related Work
The batch version of related problems have been solved in
other domains. For example, a 3D Euclidean version, esti-
mating spacecraft attitude, has been solved in the field of as-
tronautics where it is known as Wahba’s Problem [Wah65].
Also, in psychometrics, the Orthogonal Procrustes Problem
of estimating the closest orthogonal matrix to a general ma-
trix has been solved [Sch66].

Other matrix classes have been tackled successfully in
the online learning model. For example, linear regression
has been generalized to density matrix parameters (symmet-
ric positive matrices of trace one) [TRW05]. Furthermore,
the class of abitrary matrices has been handled by an ex-
tension of these methods [War07]. Note that algorithms for
arbritrary matrices are not immediately useful for learning
rotations because they do not exploit the special structure
of the rotation group and would require repeated projection
and/or approximation.

For a teaser problem, consider learning rotations on the
unit circle (the S1 group). What does your algorithm do
when it observes a rotation that is the opposite of the best
estimate?

References
[DHSA93] C. Doran, D. Hestenes, F. Sommen, and N. Van

Acker. Lie groups as spin groups. J. Math.
Phys., 34(8):3642–3669, August 1993.

[Sch66] P. Schonemann. A generalized solution of the
orthogonal procrustes problem. Psychometrika,
31(1), March 1966.

[TRW05] K. Tsuda, G. Rätsch, and M. K. Warmuth. Ma-
trix exponentiated gradient updates for on-line
learning and Bregman projections. Journal of
Machine Learning Research, 6:995–1018, June
2005.

[Wah65] G. Wahba. Problem 65-1, a least squares esti-
mate of satellite attitude. SIAM Review, 7(3),
July 1965.

[War07] Manfred K. Warmuth. Winnowing subspaces.
Unpublished manuscript, February 2007.

[WCL05] R. Wareham, J. Cameron, and J. Lasenby. Appli-
cations of conformal geometric algebra in com-
puter vision and graphics. 6th International
Workshop IWMM 2004, pages 329–349, 2005.

517

518

Author Index

A
Abernethy, Jacob ...263, 415, 437
Ailon, Nir...87
Angluin, Dana..169
Aspnes, James..169

B
Balcan, Maria-Florina..45, 287
Bartlett, Peter ...335, 415
Ben-David, Shai...33, 379
Bernstein, Andrey ..323
Blais, Eric ..193
Blum, Avrim..287

C
Campbell, Colin...217
Caramanis, Constantine ...467
Cavallanti, Giovanni ..251
Cesa-Bianchi, Nicolo...251
Chaudhuri , Kamalika ..9, 21, 391
Chen, Jiang ..169
Choi, Sung-Soon..123

D
Dani, Varsha ..335
Dani, Varsha ..355
De Rooij, Steven..275
Doliwa, Thorsten ...157

E
Eisenstat, David ...169

F
Feldman, Vitaly ...147, 513
Fukumizu, Kenji ..111

G
Gentile, Claudio...251
Gopalan, Parikshit..515
Greenwald, Amy..239
Gretton, Arthur ..111
Grunwald , Peter ..1
Gyorgy, Andras..447

H
Hanneke, Steve ..45
Hanson, Robin ...3
Hatano, Kohei ..69
Hayes, Thomas ..335, 355
Hazan, Elad..57, 263
Holte, Robert ...135

I
Ishibashi, Kosuke ..69

J
Jung, Kyomin .. 123

K
Kakade, Sham.. 335, 355, 403
Kalai, Adam... 515
Kale, Satyen...57
Kallweit, Michael .. 157
Kearns, Michael...99
Khot, Subhash ...81
Kim, Jeong Han... 123
Klein, Dan ...5
Kleinberg, Robert D. ... 425
Klivans, Adam R. .. 515
Koltchinskii, Vladimir ... 229
Koolen, Wouter M... 275

L
Lafferty, John .. 455
Lanckriet, Gert... 111
Lange, Steffen ... 135
Li, Zheng ... 239
Lu, Tyler..33
Lugosi, Gabor.. 7, 447

M
Mahalanabis, Satyaki... 503
Mannor, Shie ... 467
McGregor, Andrew.. 391
Mohri, Mehryar ...87

N
Niculescu-Mizil, Alexandru .. 425
Nowack, Robert... 491

O
O'Donnell, Ryan .. 193
Ottucsak, Gyorgy... 447

P
Pal, David ..33
Ponnuswami, Ashok Kumar ..81

R
Rakhlin, Alexander.. 263, 335, 415
Rao, Satish... 9, 21
Reyzin, Lev ... 169
Ritov, Yaacov.. 205
Rubinstein, Benjamin I. P.. 299

519

Author Index

Rubinstein, J. Hyam...299

S
Schudy, Warren ...239
Scott, Clayton ..491
Sellie, Linda...181
Shalev-Shwartz, Shai ...311
Shamir, Ohad ...367
Sharma, Yogeshwer...425
Shimkin, Nahum..323
Shoelkopf, Bernhard ..111
Simon, Hans Ulrich ...157
Singer, Yoram..311
Singh, Aarti..491
Slivkins, Aleksandrs ..343
Smith, Adam M. ..517
Srebo, Nathan ..287
Sridharan, Karthik..403
Sriperumbudur, Bharath...111
Stefankovic, Daniel..503

T
Takeda, Masayuki..69
Tewari, Ambuj...335, 415
Tishby, Naftali ...367

U
Upfal, Eli ...343

V
Valiant, Leslie G..513
von Luxburg,Ulrike ..379

W
Wang, Liwei ..479
Warmuth, Manfred K...437, 517
Wasserman, Larry..455
Wimmer, Karl ..193
Wortman, Jennifer ...45, 99

Y
Yellin, Joel...437
Ying, Yiming ...217
Yuan, Ming..229

Z
Zakai, Alon ..205
Zhou, Shuheng...455
Zilles, Sandra ...135
Zinkevich, Martin ..135

520

	000_ToC_omi
	001_Forward
	002_grunwald
	003_hanson
	004_klein
	005_lugosi
	006_Chaudhuri
	007_Chaudhuri
	Introduction
	Related Work
	A Summary of our Results
	Our Results
	Discussions

	Embedding Distributions onto the Hamming Cube
	Embedding Distributions with Small Separation
	Embedding Distributions with Large Separation
	Combining the Embeddings

	Applications: Learning Mixtures
	Clustering using SVD
	Clustering Using Correlations

	008_Ben-David
	009_Balcan
	010_Hazan
	011_Ishibashi
	012_Khot
	013_Ailon
	014_Kearns
	015_Sriperumbudur
	016_Choi
	017_Zilles
	018_Feldman
	019_Doliwa
	020_Angluin
	021_Sellie
	022_Blais
	023_Zakai
	024_Ying
	025_Koltchinskii
	026_greenwald
	027_Cavallanti
	028_Abernethy
	029_Koolen
	030_Balcan
	031_Rubinstein
	032_Shwartz
	033_Bernstein
	034_Bartlett
	035_Slivkins
	036_Dani
	Introduction
	Summary of Our Results and Related Work
	The Price of Bandit Information

	Preliminaries
	Main Results
	Algorithms
	Upper Bounds
	Lower Bounds
	Computational Efficiency

	Concentration of Martingales
	Upper Bound Analysis
	Proof of Theorem 6
	Proof of Theorem 5
	Concentration

	Lower Bound Analysis
	n=2 case
	General Case

	Extension: time-varying decision sets

	037_Shamir
	038_Ben-David
	039_chaudhuri
	040_Sridharan
	041_Abernethy
	042_Kleinberg
	043_Abernethy
	044_Gyorgy
	045_Zhou
	046_Caramanis
	047_Wang
	048_Singh
	049_Mahalanabis
	050_Feldman-open-question
	051_Gopalan-open-question
	052_Smith-open-question
	099_AuthorIndex_omi

	OMNIBLANK:

