
The Learning Power of Evolution

Vitaly Feldman
IBM Almaden Research Center

650 Harry rd.
San Jose, CA 95120

vitaly@post.harvard.edu

Leslie G. Valiant∗
Harvard University

33 Oxford st.
Cambridge, MA 02138

valiant@seas.harvard.edu

It has been widely recognized that learning and evolu-
tion have the commonality of involving adaptive processes
that once started do not need a programmer or designer. It
is tempting to seek some mystical extra power in evolution,
beyond that of learning, simply because of the apparently
spectacular consequences of evolution that we see around us.
However, such approaches have not succeeded to date.

In response to this situation one of the authors made the,
apparently radical, suggestion that evolution is nothing other
than a constrained form of computational learning. In [Val08]
a notion of evolvability was defined in a similar spirit to the
definition of learnability. The goal of the definition is to of-
fer a rigorous basis for the analysis of evolution and for dis-
tinguishing between efficient evolution and evolution that is
only realized in some exponentially far limit.

Before summarizing this framework we describe the fol-
lowing motivating concrete instance. Consider the 20,000
or so genes in the human genome. For each such gene the
condition under which the protein corresponding to it is ex-
pressed, in terms of all the other proteins, is encoded in its
regulatory region. In other words each of the 20,000 or so
proteins is controlled by a function f of the other 20,000 or
so proteins. The issue here is that if the function f is re-
stricted to too small a class then it will not be expressive
enough to perform the complex functions of biology. On
the other hand, if the function is an arbitrary function, or
from a too extensive a class, then no evolutionary algorithm
will exist to maintain the viability of this genetic network of
functions as environmental conditions change. The goal of
this evolvability theory is, among other things, to understand
how broad and expressive these functions can be allowed to
be while still permitting their efficient evolution.

The following is an abbreviated summary of the basic
definitional framework. Let X = {0, 1}n be an n-dimensional
space of experiences or examples (e.g. in the above instance
the expression levels of the proteins), a set C of functions
(e.g. the functions by which the expression level of each
protein is determined in terms of the expression levels of the
others), and a set R of representations of functions (e.g. the
DNA strings of the genes). Also we define an ideal func-
tion f , which would define for each vector x ∈ X the best
value from the viewpoint of the evolving organism. In the
current instance, for each combination of expression levels

∗Supported by grants from the National Science Foundation
NSF-CCF-04-32037 and NSF-CCF-04-27129.

of the other proteins it would define the ideal expression
level of the protein at hand. For simplicity here we discuss
only Boolean functions with values in {−1, 1}. We define
a distribution D over X that defines the relative probabil-
ities of the various possible vectors x ∈ X that can oc-
cur. We define the performance of a representation r to be
the correlation of r with the ideal function f taken over all
points in X weighted according to D. Formally, we denote
Perff (r,D) = ED[r(x) · f(x)]. In addition, since the
exact performance cannot be efficiently computed in many
cases without exponential resources, we define the empir-
ical performance Perff (r,D, s) of r on samples of size
s. It is a random variable that equals 1

s

∑
i≤s(r(zi) · f(zi))

for z1, z2, . . . , zs ∈ X chosen randomly and independently
according to D. A representation r is good if it is similar
to the ideal f , or Perff (r,D) ≥ 1 − ε for some small
ε > 0. An evolutionary algorithm is defined by a quadru-
ple A = (R, Neigh, µ, t) where:

• R is a set of representations of functions over X;

• Neigh(r, ε) is a function that for r ∈ R, equals the
neighborhood of r, that is, the set of representations
into which r randomly “mutates”. For all r and ε, r ∈
Neigh(r, ε) and |Neigh(r, ε)| ≤ pA(n, 1/ε) for a fixed
polynomial pA.

• µ(r, r1, ε) is a function that for r ∈ R and r1 ∈ Neigh(r, ε),
gives the probability that r “mutates” into r1;

• t(ε) is the function that equals the tolerance of A. The
tolerance determines the difference in performance that
a “mutation” has to exhibit to be considered beneficial
(or deleterious). The tolerance is bounded from below
by a polynomial in 1/n and ε.

Functions Neigh, µ, and t all need to be computable by a
randomized algorithm in time polynomial in n and 1/ε. The
interpretation here is that for each genome the number of
variants, determined by Neigh, that can be searched effec-
tively is not unlimited, because the population at any time is
not unlimited, but is polynomial bounded. But a significant
number of experiences with each variant must be available
so that differences in performance can be detected reliably.

We now describe the basic step of such an evolution-
ary algorithm, designed to model a step of evolution. For
a function f , distribution D, evolutionary algorithm A =



(R, Neigh, µ, t), a representation r ∈ R, accuracy ε, and
sample size s, the mutator Mu(f, D, A, r, ε, s) is a random
variable that takes a value r1 determined as follows. For
each r′ ∈ Neigh(r, ε), it first computes an empirical value of
v(r′) = Perff (r′, D, s). Let

Bene = {r′ | v(r′) ≥ v(r) + t(ε)}
and

Neut = {r′ | |v(r′)− v(r)| < t(ε)}.
Then

(i) if Bene 6= ∅ then output r1 ∈ Bene with probability

µ(r, r1, ε)/
∑

r′∈Bene
µ(r, r′, ε);

(ii) if Bene = ∅ then output r1 ∈ Neut with probability

µ(r, r1, ε)/
∑

r′∈Neut
µ(r, r′, ε).

In this definition a distinction between beneficial and neutral
mutations is made as revealed by a set of s experiments. If
some beneficial mutations are available, one is chosen ac-
cording to their relative probabilities assigned by µ. If none
is available then one of the neutral mutations is chosen ac-
cording to their relative probabilities assigned by µ. Since in
our definition we insist that for all r and ε, r ∈ Neigh(r, ε), r
will always be empirically neutral, and hence Neut nonempty.

Finally we say that a class of functions C is evolvable
over distribution D if there is an evolutionary algorithm A =
(R, Neigh, µ, t) that for any starting representation r0 ∈ R
and any ideal function f ∈ C will converge efficiently to
a representation r whose performance is close to the per-
formance of f . Formally, there exist polynomials s(n, 1/ε)
and g(n, 1/ε) such that for every f ∈ C, every ε > 0, and
every r0 ∈ R, with probability at least 1 − ε, a sequence
r0, r1, r2, . . ., where

ri = Mu(f, D, A, ri−1, ε, s(n, 1/ε))

will have Perff (rg(n,1/ε), D) > 1− ε.
The polynomial g(n, 1/ε) upper bounds the number of

generations needed for the evolution process. A concept
class C is evolvable if it is evolvable over all distributions
by a single evolutionary mechanism. We emphasize this by
saying distribution-independently evolvable.

As in other computational models, such as Turing Ma-
chines, the question of how robust the model is under reason-
able variations is an important one. Some results along these
lines are known. These include the equivalence of evolvabil-
ity with fixed tolerance t to evolvability with tolerance that
might depend on r (see [Val08] for the definitions).

Initial results [Val08] say that monotone conjunctions are
evolvable over the uniform distribution and that the evolv-
able is a subclass of the class that is learnable by Statistical
Queries (SQ), defined earlier by Kearns [Kea98], which is
known to be a proper subclass of the PAC learnable . Michael
gives an algorithm for evolving decision trees over the uni-
form distribution that is based on a slightly different notion

of performance [Mic07]. Further, Feldman shows that evolv-
ability is equivalent to learning by a natural restriction of sta-
tistical queries [Fel08], referred to as correlational statistical
queries. A correlational statistical query (or CSQ) is a query
for the correlation of a given function g with the unknown
target function f . The correlation is measured relative to
the distribution D over the domain of the learning problem
and equals Ex∼D[f(x)g(x)]. To such a query a CSQ oracle
returns an estimate of Ex∼D[f(x)g(x)] within certain toler-
ance. For comparison, the general SQ model allows queries
that provide estimates of Ex∼D[ψ(x, f(x))] for any function
on labeled examples ψ : {0, 1}n×{−1, 1} → {−1, 1}. This
equivalence implies that every concept class known to be SQ
learnable is evolvable when the distribution over the domain
is fixed. In addition, it was shown that decision lists are not
evolvable distribution-independently [Fel08], and hence that
the evolvable is a proper subclass of SQ.

Open Problems
The main open problem in this direction is characterizing the
power of distribution-independent evolvability. In particular,
it is unknown whether conjunctions and low-weight linear
threshold functions are evolvable distribution-independently.
It is easy to see that both classes are weakly evolvable distribution-
independently [Fel08] and hence a possible approach is to
design an evolutionary variant of boosting (which may be of
independent interest). Known boosting techniques rely heav-
ily on information that is not available to an evolutionary
algorithm. Evolutionary algorithms for these basic concept
classes that use simple mutation mechanisms and converge
fast over wide classes of natural distributions would be of
particular interest.

More generally, we think that it is important to seek new
learning techniques that rely on evolutionary mechanisms of
adaptation. Such techniques might shed new light on evolu-
tion as it has occurred on Earth and could also find applica-
tions outside of the biological context. Identifying such po-
tential applications is another interesting avenue of research.

References
[Fel08] V. Feldman. Evolvability from learning algorithms.

Manuscript. To appear in Proceedings of STOC,
2008.

[Kea98] M. Kearns. Efficient noise-tolerant learning from
statistical queries. Journal of the ACM, 45(6):983–
1006, 1998.

[Mic07] L. Michael. Evolving decision lists. Manuscript,
2007.

[Val08] L. G. Valiant. Evolvability. To appear in Journal of
the ACM, 2008.


