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Preface 

 

The Workshop on Prior Knowledge for Text and Language Processing aims at presenting and 

discussing recent advances in machine learning approaches to text and natural language processing 

that capitalize on rich prior knowledge models in these domains. 

Traditionally, in Machine Learning, a strong focus has been put on data-driven methods that assume 

little a priori knowledge on the part of the learning mechanism. Such techniques have proven quite 

effective not only for simple pattern recognition tasks, but also, more surprisingly, for such tasks as 

language modeling in speech recognition using basic n-gram models. However, when the structures 

to be learned become more complex, even large training sets become sparse relative to the task, and 

this sparsity can only be mitigated if some prior knowledge comes into play to constrain the space of 

fitted models. We currently see a strong emerging trend in the field of machine learning for text and 

language processing to incorporate such prior knowledge for instance in language modeling (e.g. 

through non-parametric Bayesian priors) or in document modeling (e.g. through hierarchical 

graphical models). There are complementary attempts in the field of statistical computational 

linguistics to build systems that do not rely uniquely on corpus data, but also exploit some form of a 

priori grammatical knowledge, bridging the gap between purely data-oriented approaches and the 

traditional purely rule-based approaches, that do not rely on automatic corpus training, but only 

indirectly on human observations about linguistic data. The domain of text and language processing 

thus appears as a very promising field for studying the interactions between prior knowledge and raw 

training data, and this workshop aims at providing a forum for discussing recent theoretical and 

practical advances in this area. 

We would like to thank our authors, invited speakers, and panelists, as well as our Program 

Committee for helping make this workshop an interesting event. We would also like to thank the 

workshop chairs at ICML/UAI/COLT, Sanjoy Dasgupta and Michael Littman, as well as the Local 

Organization chair, Hannu Toivonen, for their support.  

--- The Organizers: Guillaume Bouchard, Hal Daumé III, Marc Dymetman, Yee Whye Teh 

This workshop is supported by the European Commission's PASCAL-2 Network of Excellence, and is 

part of its Thematic Programme "Leveraging Complex Prior Knowledge for Learning". 





 

 

Workshop Program 

 
Wednesday, July 9, 2008 

 

9:00-9:05 Opening Remarks 

 

9:05-9:50 Invited Talk: Learning Rules: From PCFGs to Adaptor Grammars 

 Mark Johnson 

 

9:50-10:00 Poster Preview 

 

10:00-10:30 Coffee Break 

 

10:30-10:55 Constraints as Prior Knowledge (pages 1-6) 

 Ming-Wei Chang, Lev Ratinov and Dan Roth 

 

10:55-11:40 Invited Talk: Some thoughts on prior knowledge, deep architectures and NLP 

 Jason Weston 

 

11:40-12:30 Poster Session 

 

 Using Participant Role in Multiparty Meetings as Prior Knowledge for Nonparametric

 Topic Modeling (pages 21-24) 

 Songfang Huang and Steve Renals 

 

 Exponential family sparse coding with application to self-taught learning with text 

 documents (pages 25-30) 

 Honglak Lee, Rajat Raina, Alex Teichman and Andrew Y. Ng 

 

 Using Prior Domain Knowledge to Build HMM-Based Semantic Tagger Trained on 

 Completely Unannotated Data  (pages 31-36) 

 Kinfe Tadesse Mengistu, Mirko Hanneman, Tobias Baum and Andreas Wendemuth 

 

 Knowledge as a Constraint on Uncertainty for Unsupervised Classification: A Study in  

 Part-of-Speech Tagging (pages 37-42) 

 Thomas J. Murray, Panayiotis G. Georgiou and Shrikanth S. Narayanan 

 

 Dirichlet Process Mixture Models for Verb Clustering (pages 43-48) 

 Andrea Vlachos, Zoubin Ghahramani and Anna Korhonen 

 

12:30-14:30 Lunch 

  



14:30-15:15 Invited Talk: Incorporating Prior Knowledge into NLP with Markov Logic 

 Pedro Domingos 

 

15:15-15:40 Expanding a Gazetteer-Based Approach for Geo-Parsing Disease Alerts 

 (pages 11-14) 

 Mikaela Keller, John S. Brownstein and Clark C. Freifeld 

 

15:40-16:05 Bayesian Modeling of Dependency Trees Using Hierarchical Pitman-Yor Priors 

 (pages 15-20) 

 Hanna M. Wallach, Charles Sutton and Andrew McCallum 

 

16:05-16:30 Coffee Break 

 

16:30-17:30 Panel 

 

 David Blei 

 Fabrizio Costa 

 Peter Grünwald 

 Mark Johnson 

 Jason Weston 

 

17:30-17:55 DRASO: Declaratively Regularized Alternating Structural Optimization  

 (pages 7-10) 

 Partha Pratim Talukdar, Ted Sandler, Mark Dredze, Koby Crammer, John Blitzer 

 and Fernando Pereira 

 

17:55-18:00 Wrap-up  

 



Constraints as Prior Knowledge

Ming-Wei Chang mchang21@uiuc.edu

Lev Ratinov ratinov2@uiuc.edu

Dan Roth danr@uiuc.edu

Computer Science Department, University of Illinois at Urbana-Champaign

Abstract

Making complex decisions in real world prob-
lems often involves assigning values to sets
of interdependent variables where an expres-
sive dependency structure among these can
influence, or even dictate, what assignments
are possible. Commonly used models typi-
cally ignore expressive dependencies since the
traditional way of incorporating non-local de-
pendencies is inefficient and hence lead to ex-
pensive training and inference.

This paper presents Constrained Conditional
Models (CCMs), a framework that augments
probabilistic models with declarative con-
straints as a way to support decisions in
an expressive output space while maintain-
ing modularity and tractability of training.
We develop, analyze and compare novel al-
gorithms for training and inference with
CCMs. Our main experimental study ex-
hibits the advantage our framework provides
when declarative constraints are used in the
context of supervised and semi-supervised
training of a probabilistic model.

1. Introduction

Decision making in domains such as natural language
often involve assigning values to sets of interdepen-
dent variables where the expressive dependency struc-
ture among variables of interest can influence, or even
dictate, what assignments are possible. To cope with
these difficulties, problems are typically modeled as
stochastic processes involving both output variables
(whose values are sought) and information sources, of-
ten referred to as input or observed variables.

This work was supported by NSF grant NSF SoD-HCER-0613885, DARPA
funding under the Bootstrap Learning Program and by MIAS, a DHS-IDS
Center for Multimodal Information Access and Synthesis at UIUC.

There exist several fundamentally different approaches
to learning models that can assign values simultane-
ously to several interdependent variables (Punyakanok
et al., 2005). Two extremes are to (1) completely ig-
nore the output structure at the learning stage (by
learning multiple independent models), while enforc-
ing coherent assignments at the inference stage and
(2) model, directly or indirectly, the dependencies
among the output variables in the learning process and
thus induce models that optimize a global performance
measure. In the latter scenario, to allow efficient train-
ing and inference, assumptions on the probability dis-
tribution are made so that it is possible to factor the
model into functions of subsets of the variables, yield-
ing models such as Conditional Random Fields (CRFs)
and Hidden Markov Models (HMMs).

However, in many problems, dependencies among out-
put variables have non-local nature, and incorporating
them into the model as if they were probabilistic phe-
nomena can undo a great deal of the benefit gained by
factorization, as well as making the model more diffi-
cult to design and understand. For example, consider
an information extraction task where two particular
types of entities cannot appear together in the same
document. Modeling mutual exclusion in the scenario
where n random variables can be assigned mutually
exclusive values introduces n2 pairwise edges in the
graphical model, with obvious impact on training and
inference. While efficient algorithms for leveraging a
particular type of constraint can be developed, mod-
eling of declarative non-local constraints this way is
clearly very expensive. Moreover, a lot of parameters
are being wasted in order to to learn something the
model designer already knows.

This paper presents Constrained Conditional Models
(CCMs). Generalizing and formalizing an approach
introduced in (Roth & Yih, 2004; Roth & Yih, 2007),
CCM is a framework that augments linear objective
functions with declarative constraints as a way to sup-
port decisions in an expressive output space. CCMs
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inject the constraints directly instead of doing it indi-
rectly via a probability model. CCM allows the use
of expressive constraints while keeping models simple
and easy to understand. Factoring the models by sep-
arating declarative constraints naturally brings up in-
teresting questions and calls for novel training and in-
ference algorithms, as we discuss in this paper.

One interesting perspective is that the declarative con-
straints can be viewed as domain-specific knowledge
which can be injected into the model in the super-
vised and, more interestingly, in the semi-supervised
setting. We develop a formalism for constraints-based
learning within the CCM framework. Our protocol can
be used in the presence of any learning model, includ-
ing those that acquire additional statistical constraints
from observed data while learning. We experiment and
report results with two models: maximum likelihood
HMM (Rabiner & Juang, 1986) and its discrimina-
tive counterpart–the structured perceptron (Collins,
2002). We exhibit significant reduction in the num-
ber of training examples required in two information
extraction problems. The results show that our ap-
proach yields very good results even in the presence of
a small number of labeled examples.

2. Linear Models for Sequence Labeling

Tasks

Although the discussion in this paper can be applied to
other types of problems, we mainly focus on an impor-
tant type of structured prediction problems: sequence
labeling tasks. Given x as a series of tokens, we denote
xi as the i-th token of x. Assuming there are T tokens
in x, the assignment y can be written as y1, y2, . . . yT ,
where yi is the label for token xi. The task in sequence
labeling is to learn a model that can be used to predict
the correct y given a new instance x.

Linear models are the dominant family in machine
learning, and can be represented as a weight vector w,
corresponding to a set of feature functions {Φ}. For
an input instance x and an output assignment y, the
“score” of the instance can be expressed as a weighted
sum of feature functions: f(x,y) =

∑
wiφi(x,y).

Many different discriminative and generative learning
algorithms can be represented as linear models. For
example, models trained by Perceptron, näıve Bayes,
and SVM, CRF and HMMs are linear models (Roth,
1999; Collins, 2002; Lafferty et al., 2001). Hidden
Markov Model (HMM) is one of the most commonly
used models for sequence labeling. Past works have
shown that the prediction problem in HMMs can be
viewed as a linear model over “local” features (Roth,

1999; Collins, 2002). That is, one can show that:

argmax
y

log P (y|x) = argmax
y

wT Φ(x,y), (1)

where w is a weight vector and Φ represents the feature
functions, is an equivalent representation of HMM.

3. Training and Inference with

Constraints

Although, in general, the feature functions Φ(x,y)
used in Eq. 1 can represent any function of x and y, it
is typical to encode local relationships only, (as in the
linear representation of HMMs (Roth, 1999; Collins,
2002; Lafferty et al., 2001)) for tractable inference.
However, such restriction usually renders the feature
functions not expressive enough to capture non-local
dependencies present in the problem.

In this paper, we propose the Constrained Condi-
tional Model (CCM), which provides a direct way
to inject prior knowledge into a conditional model, in
the form of constraints. The idea is that combining
simple models with expressive constraints is a more
effective approach to making probabilistic models ex-
pressive. Note that we do not increase the feature
space explicitly by adding more conjunctive features
but rather directly incorporate the constraints by aug-
menting the simple linear models. Since within CCMs
we combine declarative constraints, possibly written
as first order logic expressions (Rizzolo & Roth, 2007),
with learned probabilistic models, we can treat CCMs
as a way to combine or bridge logical expressions and
learning statistical models.

Note that by modeling the constraints directly, the in-
ference problem, Eq. 1, becomes harder to solve, com-
pared to the one used by low order HMMs/CRFs. As
we show later, such a sacrifice is usually very reward-
ing in terms of final performance; it is possible to use
exact methods such as integer linear programming or
approximate inference methods that we found to give
good results.

3.1. Model

The formal definition of CCM is as follows.

We assume (1) a set of feature functions Φ = {φi(·)},
φi : X×Y → R, which typically encode local properties
of a pair (x, y). (And often, the image of φi is {0, 1});
(2) a small set of constraints C = {Ci(·)}, Ci : X×Y →
{0, 1} that encode predicates over a pair (x, y); (3) a
set of functions dCi

: X × Y → R that measure the
degree to which the constraint Ci is violated in (x, y).

A Constrained Conditional Model can be repre-
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sented using two weight vectors, w and ρ. The score of
an assignment y ∈ Y on an instance x ∈ X is obtained
by:

fΦ,C(x,y) =
∑

wiφi(x,y) −
∑

ρidCi
(x,y). (2)

A CCM then selects as its prediction:

y∗ = argmax
y

fΦ,C(x,y). (3)

Note that a CCM is not restricted to be trained with
any particular learning algorithm. Similar to other
linear models, specialized algorithms may need to be
developed to train CCMs. Unlike standard linear mod-
els, we assume the availability of some prior knowl-
edge, encoded in the form of constraints, when learn-
ing a CCM. When there is no prior knowledge, there
is no difference between CCMs and linear models.

Although the two terms of Eq. 2 may appear simi-
lar, they are very different in several aspects. Essen-
tially, a predicate C(x,y) is viewed as a“first order log-
ical expression”, which is very different from features
Φ(x,y). Due to their first order logic nature, the set of
constraints is compact. (In our experiments, we only
have about 10 constraints, compared to thousands of
features in a feature vector). Moreover, C(x,y) usu-
ally encodes long distance relationships among y vari-
ables, which cannot be captured by the feature func-
tions Φ(x,y). For example, C(x,y) might be “1, if all
yis in the sequence y are assigned different values, 0
otherwise”, which is difficult to model using features.

Importantly, we separate the constraints from features
in Eq. 2 because we know that the constraints should
be trusted most of the time. Therefore, the penalties
ρ can be fixed or handled separately. If we are con-
fident about our knowledge, rather than learning the
{ρi}, we can directly set them to ∞, thus enforcing
the chosen assignment y to satisfy the constraints. It
is important to note that although ρi is fixed, it may
still impact the learning of the weights wi (this point
will be explained in detail in Section 3.3).

3.2. Inference with Constraints

In the earlier related works that made use of con-
straints, the constraints were assumed to be binary
functions; in most cases, a high level (first order logic)
description of the constraints was compiled into a set of
linear inequalities, and exact inference was done using
a integer linear programming formulation(ILP) (Roth
& Yih, 2004; Roth & Yih, 2007; Barzilay & Lapata,
2006; Clarke & Lapata, 2006). Intractable in principle,
ILP proved to be quite successful in practice, since the

constraints were very sparse (a small number of y vari-
ables present in each constraint) (Roth & Yih, 2007).

However, in our CCM formalism, rather than using bi-
nary constraints, we introduce a “degree of violation”
to each constraint. The significance of this is that it
is possible that a label assignment violates the con-
straints in more than one place. Therefore, if binary
function is used, once the value is set to 1, the algo-
rithm loses the ability to discriminate constraint vio-
lations in other locations of the same instance. Note
that even with such a choice, ILP can still be applied
to solve the inference problem Eq. 3. However, here
we choose not to do it, but rather to approximate the
degree of violation incrementally, by estimating it over
an incomplete label assignment. This allows us to de-
sign a search procedure which finds an approximate
solution to Eq. 3 efficiently. In this work, we rewrite
the constraint function as:

dCi
(x,y) =

T∑

t=1

Ĉi(x; y1, . . . , yt),

where T is number of tokens in this instance, and
Ĉi(x; y1, . . . , yt) is a binary function which approxi-
mates the predicate Ci, by computing it over the t-
prefix of the assignment y, (x; y1, . . . , yt−1).

We use this estimation to guide the search procedure
for optimizing the objective function in Eq. 3 with par-
tially labeled sequence. In this paper, we use beam
search as our search procedure. A* search can be also
applied here with admissible heuristic if the ρis are
positive for all constraints. Note that this approxima-
tion methods may not work for all types of constraints.
For example, constraints such as “label A must appear
at least once in the sequence”, do not have “degree”
of violation. For these constraints, the function dC is
the identity function, essentially making them binary
constraints; these constraints are examined only at the
end of the search procedure.

3.3. Training with CCM

In this section, we propose and describe several ap-
proaches of training CCMs. There are two indepen-
dent decisions to be made, leading to four different
training strategies.

The first decision is whether we want to use factored

approaches or joint approaches. Factored approaches
treat the first term (feature term) and the second term
(constraints term) of Eq. 2 separately. That is, w and
ρ are learned independently. This approach is also re-
ferred to Learning Plus Inference (L+I) (Punyakanok
et al., 2005), since we learn the models separately but
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put the constraints back into consideration at test-
ing time. The joint approach, which we call Infer-

ence Based Training (IBT) (Punyakanok et al., 2005),
learns w and ρ together during training by using the
true objective function with both terms in Eq. 3.

The second decision is whether we want to use hard
constraints or weighted constraints. Using hard con-
straints is equivalent to setting ρ to ∞; in this case, the
notion of “degree” no longer exists, the constraints es-
sentially become Boolean functions, and we do not out-
put assignments which violate them. Using weighted
constraints is important if we know that the prior
knowledge does not hold all the time and it also means
that we need to figure out the penalty ρ for each con-
straint from labeled data.

Training CCMs with factored approaches is simple,
since factored approaches learn w and ρ indepen-
dently. w can be learned with standard algorithms
for training linear models. If we chose to use hard
constraints, the training procedure is complete, given
that the penalty of each constraint is infinity. In this
paper, this approach is called L+CI (Learning Plus
Constrained Inference) . However, it is often the case
that the prior knowledge is not perfect, or that the
weights for every constraint should be different. To
figure out the penalty for each constraint, in this case,
we count how many times it is violated in the labeled
data, and reduce the penalty coefficients for those vi-
olated constraints (refer to (Chang et al., 2008) for
details). This approach is called L+wCI (Learning
Plus weighted Constrained Inference).

Alternatively, we can enforce the constraints during
training as well as testing. In this approach, Inference

Based Training (IBT), the constraints may be hard or
soft, resulting in CIBT and in wCIBT respectively.
Our IBT training algorithms are based on the Percep-
tron update rule.

The pseudocode for CIBT and wCIBT is given in
Algorithm 1, which is similar to the perceptron al-
gorithm. However, the constraints are taken into ac-
count during the training procedure. CIBT is a more
conservative update rule than L+CI, since when the
constraints term “corrects” the label assignment, no
update will be performed. Note that when weighted
constraints are used, the algorithm also updates the
penalty ρ during the training procedure.

Since the constraints in Eq. 2 have non-local nature, we
give up exact inference (with dynamic programming)
and use beam search to find an approximate solution.
The idea of using non-local features in perceptron was
also explored in (Collins & Roark, 2004) that used

Algorithm 1 IBT training: CIBT & wCIBT

Require: D is the training dataset, K is the number
of constraints, M is the number of iterations

1: for i = 1 . . . K do
2: if(hardConstraints) then ρi = ∞ else ρi = 0
3: end for
4: for i = 1 . . . M do
5: for (x,y∗) ∈ D do
6: ŷ = argmax

y
[
∑

wiφi(x,y) −
∑

ρidCi
(x,y)]

7: w = w + Φ(x,y∗) − Φ(x, ŷ)
8: if weightedConstraints then
9: ρ = ρ + dC(x,y∗) − dC(x, ŷ)

10: end if
11: end for
12: end for

beam search for inference with application to syntactic
parsing. Later, (H. Daumé & Marcu, 2005) extended
this idea to other applications. While wCIBT uses a
similar algorithm to assign weights to the constraints,
it differs from (Collins & Roark, 2004; H. Daumé &
Marcu, 2005) in the nature of the “features”: there,
a large number of weights are assigned to “proposi-
tional” non-local features in perceptron, while we as-
sign a small number of weights to constraints that are
high level, ‘first order logic’ predicates.

3.4. Semi-Supervised Learning with CCM

Acquiring labeled data is a difficult and expensive
task. Therefore, an increasing attention has been re-
cently given to semi-supervised learning, where large
amounts of unlabeled data are used to improve models
learned from a small training set (Haghighi & Klein,
2006; Thelen & Riloff, 2002). In this section, we
present COnstraint-Driven Learning (CODL), an al-
gorithm that uses constraints as prior knowledge in
semi-supervised setting (Chang et al., 2007) and show
that prior knowledge plays a crucial role when the
amount of labeled data is limited. CODL makes use
of CCM, which provides a good platform to combine
the learned models and prior knowledge.

As is often the case in semi-supervised learning, the al-
gorithm can be viewed as a process that improves the
model by generating feedback through labeling unla-
beled examples. CODL pushes this intuition further,
in that the use of constraints allows us to better exploit
domain information as a way to label unlabeled exam-
ples, along with the current learned model. Given a
small amount of labeled data and a large unlabeled
pool, CODL initializes the model with the labeled
data and then repeatedly: (1) uses the learned model
and the constraints to label the unlabeled instances,
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and (2) updates the model via the newly labeled data.

Algorithm 2 COnstraint Driven Learning (CODL):
Using constraints to guide semi-supervised learning.

Require: labeled training set L; unlabeled dataset U; N
learning cycles; a balancing parameter with the super-
vised model γ; a set of constraints {C}; a supervised
learning algorithm learn(.)

1: Init: (w, ρ) = (w0, ρ0) = learn[(w)CIBT/L+(w)CI](L).
2: for N iterations do
3: T = ∅
4: for x ∈ U do
5: (x, ŷ) = InferenceWithConstraints(x,w, ρ, {Ci})
6: T = T ∪ {(x, ŷ)}
7: end for
8: (w, ρ) = (1 − γ)learn[(w)CIBT/L+(w)CI](T) +

γ(w0, ρ0)
9: end for

CODL is summarized in Algorithm 2. CODL initial-
izes the model with traditional supervised learning on
a small labeled set L (line 1). The supervised learn-
ing algorithm learn[(w)CIBT/L+(w)CI](.) used in lines 1
and 8, learns (w, ρ) jointly if the wCIBT approach is
used. If the L+wCI approach is used, it learns w in-
dependently from estimating ρ. If CIBT or L+CI is
used, the learning algorithm learn[(w)CIBT/L+(w)CI](.)
always sets ρ to infinity.

Line 8 in the algorithm should be further clarified.
(Nigam et al., 2000) shows that semi-supervised train-
ing can degrade the learned model’s performance and
suggests to balance the contribution of labeled and
unlabeled data. The parameter re-estimation in line 8
uses a similar intuition, but instead of weighting data
instances, we introduce a smoothing parameter γ

which controls the convex combination of models in-
duced by the labeled and unlabeled data. Unlike the
technique mentioned above, which focuses on näıve
Bayes, our method allows us to weight linear mod-
els generated by different learning algorithms. Due
to space limitations we do not address several other
important issues related to the algorithm, for more
details, please refer to (Chang et al., 2008).

4. Experiments and Results.

We applied our approach to two information extraction
tasks: extracting fields from citations and advertise-
ments. Since in both problems, the fields are typically
related and interdependent, these kinds of applications
provide a good test case for an approach like ours
(the data for both problems is available at: http://

L2R.cs.uiuc.edu/~cogcomp/Data/IE.tgz.). Due to
space restrictions, we omit the details of the datasets,
and report only the main results, omitting the analysis
constraints’ utility, sensitivity to constraint violation

Citations

Start The citation must start with author
or editor.

AppearsOnce Each field must be a consecutive list
of words, and can appear at most
once in a citation.

Punctuation State transitions must occur on
punctuation marks.

BookJournal The words proc, journal, proceed-
ings, ACM
are JOURNAL or BOOKTITLE.

. . . . . .
TechReport The words tech, technical are

TECH REPORT.
Title Quotations can appear only in titles.
Location The words CA, Australia, NY are

LOCATION.

Table 1. The list of constraints used in the citations do-
main. Some constraints are relatively difficult to represents
in traditional models.

penalty, etc. The reader is referred to (Chang et al.,
2008) for additional details.

Table 1 illustrates the list of constraints for the cita-
tions domain. We measured token-level accuracy of
the learned models and evaluated the impact of the
constraints in the supervised and semi-supervised set-
tings. Table 2 shows the results for HMM (trained
in a maximum-likelihood way). The results high-
light the effect of applying the constraints. A semi-
supervised model driven by constraints and 20 labeled
samples, using L+wCI, is competitive with the tradi-
tional HMM trained with 300 labeled samples.

Table 3 compares the discriminative approaches for
structured perceptron (the baseline, without con-
straints, is denoted L). It can be seen that while
CIBT seems like a reasonable strategy, it does not
perform well. L+CI performs better than the base-
line structured perceptron and CIBT. Moreover, con-
sistently with (Punyakanok et al., 2005), for a small
number of examples, L+CI outperforms all other al-
gorithms while, when the amount of training data is
large enough, learning the constraint violation penal-
ties from the data (wCIBT) achieves the best results.

As observed already in the literature (see for exam-
ple (Ng & Jordan, 2001)), with small amounts of
labeled data, maximum-likelihood (ML) training ap-
proaches outperform discriminative ones. However, for
sufficient amounts of data, and without constraints,
the discriminative approach outperforms the ML ap-
proach. With 300 training samples on the citations
domain, the structured perceptron achieves accuracy
of 89.83% on the citations domain versus 86.35%,
achieved by ML HMM when trained on the same
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amount of labeled data. However, when learning con-
straint violation penalties, the ML approach consis-
tently outperformed the discriminative approach. One
reason for that is that in L+wCI in ML approach, we
assume that the constraints hold by default, and re-
duce the constraint violation penalty only when the la-
beled data violates the constraints. On the other hand,
in the wCIBT approach in discriminative setting, we
learn constraint violation penalties from scratch. More
data must be needed for successful training. Moreover,
despite trying several learning strategies, we could not
achieve improvements with the semi-supervised train-
ing for the discriminative approach.

Citations(Maximum Likelihood HMM)
Supervised Semi-Supervised

#Train HMM L+wCI HMM L+wCI
5 58.48 70.85 64.39 77.09
10 68.61 75.11 70.34 81.25
20 70.81 81.31 75.83 85.00
300 86.66 94.08 87.80 94.51

Table 2. The impact of using constraints for supervised
and semi-supervised learning (generative HMM) with
5,10,20,300 labeled training samples.

5. Conclusions

This paper provides a unified view of a framework
aimed to facilitate decision making with respect to
multiple interdependent variables the values of which
are determined by learned probabilistic models. We
proposed CCM, a framework that augments linear
models with expressive declarative constraints as a
way to support decisions in an expressive output space
while maintaining modularity and tractability of train-
ing. Importantly, this framework provides a principled
way to incorporate expressive background knowledge
into the decision process. It also provides a way to
combine conditional models, learned independently in
different situations, along with declarative information
to support coherent global decisions.

Supervised setting.
Structured Perceptron-Citations Domain

#Train L L+CI CIBT wCIBT
5 50.14 66.36 64.79 61.65
10 59.90 72.91 68.52 69.64
20 68.26 77.28 72.79 78.46
300 89.83 91.63 87.83 93.89

Table 3. Comparison between discriminative learning
strategies. L+CI outperforms L while CIBT performs
poorly. wCIBT achieves the best results when enough
data is used.
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Abstract
Discovering in a text the geographic references
it may contain, is a task that human readers
perform using both their lexical and contextual
knowledge. Using a gazetteer to label such tar-
geted references in a dataset, this paper proposes
an approach to learning the context in which they
appear and by this means extending the prior
knowledge encoded in the gazetteer. The present
work was carried in the particular framework of a
system for disease outbreak alerts detection and
geo-indexing.

1. Introduction
When presented in a text, with a phrase that is out of his
vocabulary, a human reader would most likely be able to
guess whether this phrase refers to a geographic location or
not. This reader would infer the semantic role of the phrase
with a certain accuracy, because he has a prior knowledge
on the syntactic context on which geographic references
appear, maybe also on their particular character distribution
or on the fact that they generally begin with a capital let-
ter, etc. There have been a number of approaches, exploit-
ing this kind of prior knowledge to named entity recogni-
tion and more generally to information extraction problems
(see eg (Tjong Kim Sang & De Meulder, 2003; Carreras &
Màrquez, 2005)). They often rely on complex feature sets
to represent the words and on heavily annotated datasets to
account for the human experience.

HealthMap (Brownstein & Freifeld, 2007; Freifeld et al.,
2008) is a system that automatically monitors disease out-
break alerts in news media from all around the world. It
queries news aggregators such as Google News, but also
news sources curated by experts, for relevant reports. It fil-
ters the retrieved documents into several taxonomies and

Appearing in Proceedings of the 25 th International Conference
on Machine Learning, Helsinki, Finland, 2008. Copyright 2008
by the author(s)/owner(s).

provides on its website, www.HealthMap.org, a geo-
graphic and by-disease display of the ongoing alerts. Its op-
erating mechanism can be naturally decomposed in a num-
ber of easily identifiable Information Retrieval and Natu-
ral Language Processing tasks, such as document retrieval,
document categorization, information extraction, etc. In
the present work we are interested in a sub-task of the
last phase of the information processing scheme: the geo-
graphic parsing (“geo-parsing”) (Woodruff & Plaunt, 1994)
of a disease outbreak alert or the extraction from one such
textual document of the related geographic information
needed for the precise mapping into a world map.

So far, HealthMap assigns incoming alerts to a low res-
olution geographic description such as its country, and in
some cases its immediately lower geographic designation
(for the USA and Canada, it would provide for example the
state). The system uses a rule-based approach relying on a
purposely crafted gazetteer, which was built incrementally
by adding relevant geographic phrases extracted from the
specific kind of news report intended for mapping. The ap-
proach consists roughly in a look-up tree algorithm which
tries to find a match between the sequences of words in
the alert and the sequences of words in the entries of the
gazetteer. It also implements a set of rules which use the
position of the phrase in the alert to decide whether or not
the phrase is related to the reported disease.

The gazetteer contains around 4000 key phrases, some of
which refers to geographic locations with several resolu-
tion levels (from hospitals’ to countries’), some are nega-
tion phrases (≈ 500 phrases, eg Brazil nut or turkey flock
are not considered location references) as well as phrases
that are specific to the kind of data processed (Center for
Disease Control, Swedish health officials, etc.).

HealthMap is interested in developing a higher resolution
in the geographic assignments outside of those contained
in the gazetteer. The question we would like to answer
is whether we can use the prior knowledge encoded in
the gazetteer to expand the system capabilities in the ge-
ographic parsing of the alerts.
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2. Our Approach
The basic idea behind our approach is to have a dataset of
alerts tagged with the gazetteer-based algorithm as well as
with more general linguistic knowledge (eg part-of-speech
tags, etc.), and then to use this dataset with tags partially
hidden to learn a generalization of the parsing. In the toy
example of Fig. 1, a sentence is enhanced with its cor-
responding part-of-speech tags and gazetteer-based geo-
parsing tags (the blue rectangle). In order to learn a gen-
eralization of the geo-parsing, the same sentence would be
used in our training dataset with the specific identity of the
word New Caledonia, hidden, but its part-of-speech, pre-
served.

NNS IN VBP VBG NN INRB DT NN NNS
Health authorities in are closely monitoring an upsurge of dengue fever cases.

NNP

NNP NNS IN VBP VBG NN INRB DT NN NNS
Health authorities in are closely monitoring an upsurge of dengue fever cases.

NNP

Sentence:

Train sentence:

NNP
New Caledonia

Figure 1. Example of training data.

Our dataset consists of disease outbreak alerts retrieved in
2007 by the HealthMap system. We tagged them with the
part-of-speech tagger provided by NEC’s project SENNA
(Collobert & Weston, 2007), which has a reported accu-
racy of 96.85%. Provided that, in English, location names
often begin with capital letters or appear as acronyms, we
assigned to the words in the alerts, in addition to their part-
of-speech tags, a capitalization status, ie none, first char-
acter, upper case. We used the rule-based approach to tag
the words in the alert that match geographical references
found in the gazetteer. Since the alerts in the dataset have
been displayed (with the supervision of an expert) in the
HealthMap world map, we were able in addition, to distin-
guish among the assigned tags, the ones that actually re-
ferred to a location where the event was taking place (lo-
cation IN or locIN), from those that were foreign mentions
(location OUT or locOUT).

ix  =

capitalization
status

0,  ...  0, 1, 0,  ...  0, 0, ... 0, 1, 0,... 0, 0, 1, 0

dictionary index

part−of−speech

index

Figure 2. Words sparse representation.

From a machine learning perspective, our dataset is com-
posed of alerts examples x = [x1, . . . , xL] of length L, and
their corresponding location labels y = [y1, . . . , yL], yi ∈
{None, locIN, locOUT}. The words xi are represented by

minfreq 0 4 10 20
T0 dict. size 15, 000 5, 000 3, 000 1, 700
T1 dict. size 25, 300 9, 500 5, 900 3, 900

Table 1. Sizes of (sub-)dictionaries extracted from the training
datasets T0 (1000 alerts) and T1 (2500 alerts).

their part-of-speech tag, their capitalization status and oc-
casionally by their index in the dictionary D, extracted
from the training dataset. Figure 2 illustrates the vectorial
representation of words. The |D| (size of D) first compo-
nents of xi correspond to the dictionary indexes and are all
equal to zero, except for the position coinciding with the
word index in D. Similarly, the next K features of xi cor-
respond to the part-of-speech tag indexes in the K part-of-
speech tag list. And finally, the last three features stand for
the three possible capitalization status. As explained pre-
viously, one important characteristic of this experiment, is
the fact that words are only partially accessible to the learn-
ing algorithm. We applied a lower bound minfreq on the
word frequency in the dataset to decide whether or not a
word index was to be hidden. Only frequent word indexes
are visible to the model. This was implemented as a dictio-
nary cut-off, in which infrequent words are removed from
the dictionary. Table 1 reports the resulting sub-dictionaries
size for varying minfreq, in two training datasets T0 and
T1 which respectively have 1000 and 2500 alerts. An out-
of-dictionary word will have its |D| first components equal
to zero.

xi

φ φ φ φ

ψ

P(locIN|x) P(none|x)P(locOUT|x)

xi−hw xi+hwxi−hw+1

Figure 3. Illustration of the neural network.

We trained a neural network, by negative log-likelihood
minimization to output a probability estimate of the label
yi value corresponding to the word xi in ith position of an
alert x,

NN(i,x) = P (yi|xi−hw, . . . , xi, . . . , xi+hw)

given a window (n − 1 = 2 × hw) of preceding and fol-
lowing words.

8



Expanding a Gazetteer-Based Approach for Geo-Parsing Disease Alerts

minfreq 0 4 10 20
% w/o index (T0 dict.) 4.9 9.7 13.6 18.1
% loc w/o index (T0 dict.) 16.8 36.6 47.3 61.4
% w/o index (T1 dict.) 3.0 5.8 8.1 10.6
% loc w/o index (T1 dict.) 6.6 22.1 31.3 38.7

Table 2. Percentage among the validation set words and words
labeled as locations, of words without index in the dictionary.

The neural network, illustrated in Figure 3, can be de-
composed as follow. First, each word in the window se-
quence is given in input to the same multi-layer percep-
tron (MLP) which has been replicated n = 2 × hw + 1
times, in a siamese network fashion (Bromley et al., 1993).
This first MLP can be seen as a function φ mapping
the extremely sparse representation xi of the words into
a new representation, φ(xi) ∈ Rd, which has the ad-
vantage of being learned during the training. This ap-
proach was applied with success for language modelling
in (Bengio et al., 2003) and more recently for semantic
role parsing in (Collobert & Weston, 2007). The outputs
φ(xi−hw), . . . , φ(xi), . . . , φ(xi+hw) are concatenated into
a vector z ∈ Rd×n which is itself given in input to a second
multi-layer perceptron. This second MLP, called ψ in Fig-
ure 3, has as output layer a softmax filtering function which
allows us to consider the outputs of the neural network as
probabilities.

3. Results
We trained several such neural networks on the two datasets
T0 (1,000 alerts) and T1 (2,500 alerts), with extracted dic-
tionaries of varying sizes according to our lower bound
minfreq, as described in Table 1. We tested the mod-
els obtained on a separated validation set of 1000 alerts
(465,297 words to tag, 6,156 with target locIN and 5,013
with locOUT). Table 2 summarizes the percentage in that
set, of words that, as a consequence of the dictionaries cut-
off, do not have an index in the dictionaries extracted from
T0 and T1. The 2nd and 4th lines of Table 2 show the out-
of-dictionary percents among the words that were assigned
a location tag. The much higher proportions confirms the
intuition that individual location mentions are infrequent
words. Note that in the first column of Table 2, where no
word is removed from the original dictionaries, there is still
a certain amount of out-of-dictionary words. This is due to
the fact that the vocabulary of the validation dataset is not
completely covered by the dictionaries extracted from the
training datasets.

Given the approximate nature of the solution found when
training neural networks by stochastic gradient descent we
repeated the learning process for each condition 5 times to
estimate the variance. Figure 4 displays the results in terms
of the obtained F1 score for the parsing of the words tar-

geted with tags location IN and location OUT, as well as
the F1 score obtained if we do not make the distinction be-
tween the two of them (referred as loc), with models trained
both on T0 and T1. There is a discrepancy in the results for
the tag locIN / locOUT and the reported loc tag, showing
that the neural networks confuse locINs for locOUTs tar-
gets, and vice versa. That seems to suggest that our set of
features is not suited to fully make this distinction. The
size of the window in particular which we kept relatively
small (hw = 4) for these preliminary experiments, may
help to narrow this gap. If we consider the performance
on the whole location tags, however, the results seem to be
encouraging. Another encouraging facts is that increasing
the size of the training dataset improves the performance of
the models.

0 5 10 15 20
Minimium frequency term frequency

0.0

0.2

0.4

0.6

0.8

1.0

F-
sc

o
re

loc (T0 trained)
loc (T1 trained)
locIN (T0)
locOUT (T0)
locIN (T1)
locOUT (T1)

Figure 4. F1-score of locIN, locOUT, and the grouped location
labels for two sizes of training dataset (train0: 1000 alerts, train1:
2500 alerts)

In Figure 5, to emphasize the fact that this approach do
differ from the gazetteer-based approach, the results ob-
tained with models trained on T1 have been sliced into the
F1 scores of words that were represented with and with-
out their dictionary index feature. Results for the words
that were not targeted as locations (None tags), are also re-
ported in Figure 5, they oscillated around an F1 score of
99% for words with their index feature and 95% for those
without.

The observed increase in performance for no-index words
proportionally to the size of the dictionary cut-off suggest a
potential for discovering phrases out of the initial gazetteer,
and that, without having a too high lost in performance for
unhidden words. A visual inspection of the false positive
among the words without index, reveals that indeed many
among the words labeled as None that the system decided
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0 5 10 15 20
Minimium frequency term frequency

0.0
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loc words w/o index
loc words with index
none words w/o index
none words with index

Figure 5. F1-score of loc and none targets for words with and
without dictionary index feature in their representation.

were location are in fact location references that are out of
the gazetteer.

4. Conclusion
We have presented a promising approach to incorporate the
prior knowledge encoded in a rule-based procedure into a
more general statistical framework. We have demonstrated
that the described model has the ability to discover geo-
graphic references based solely on the context they appear
in. The experiments also attested that providing additional
training material improves the performance of the model,
suggesting that despite the fabricated nature of the data it
is still able to dispense interesting information. We plan
in the close future to try more complex features for the
word representations such as eg their semantic role labels.
This technique could be integrated to a more conventional
method for geo-parsing based on a geographically anno-
tated dataset. It would be interesting to evaluate the contri-
bution this approach could provide to the final task of in-
dexing disease outbreak reports for geographic information
retrieval.
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Abstract

Recent work has shown that Alternating
Structural Optimization (ASO) can improve
supervised learners by learning feature rep-
resentations from unlabeled data. However,
there is no natural way to include prior
knowledge about features into this frame-
work. In this paper, we present Declar-
atively Regularized Alternating Structural
Optimization (DRASO), a principled way
for injecting prior knowledge into the ASO
framework. We also provide some analysis of
the representations learned by our method.

1. Introduction

While supervised learning algorithms achieve impres-
sive results on a variety of NLP tasks, they rely on the
availability of labeled data. The application of other
available resources to improve over existing supervised
methods has been explored in semi-supervised learn-
ing. There are two primary sources of information
for semi-supervised algorithms: unlabeled data and
prior knowledge. Alternating Structual Optimization
(ASO) (Ando & Zhang, 2005) is a semi-supervised
learning technique based on unlabeled data, which has
achieved considerable success in many important prob-
lems (Blitzer et al., 2006; Blitzer et al., 2007). ASO
learns a new data representation by constructing and
Appearing in Appearing in the Workshop on Prior Knowl-
edge at the 25 th International Conference on Machine
Learning, Helsinki, Finland, 2008. Copyright 2008 by the
author(s)/owner(s).

solving a multitask learning problem using unlabeled
data. While ASO makes excellent use of unlabeled
data, there is currently no way to encode prior in-
formation in learning the representations. For exam-
ple, in the sentiment classification task, a short list of
positive and negative words can be used to bootstrap
learning (Turney, 2002).

In this work we seek to combine ASO with this type
of prior knowledge. We present Declaratively Regu-
larized ASO (DRASO), which favors learning repre-
sentations that are consistent with some side infor-
mation. DRASO combines both unlabeled data and
prior knowledge to find a single representation of the
data. This paper describes DRASO and shows that
the representations learned for sentiment classification
using side information can improve over a standard
ASO representation.

2. DRASO

Given a number of related supervised learning prob-
lems, ASO learns a shared low dimensional representa-
tion of the data in order to minimize the empirical risk
across the various tasks. Specifically, let the training
set for task ` be {(x`i , y`i )}

n`
i=1. Given m such training

sets, ASO learns a shared representation Φ̂ and associ-
ated weight vectors ŵ`, v̂`, ` = 1, ...,m by minimizing
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the loss over the training sets:

[
{ŵ`, v̂`}, Φ̂

]
=

argmin
w`,v`,Φ

m∑
`=1

(
1
n`

n∑̀
i=1

L
(
(w` + Φ′v`)′x`i , y

`
i

)
+ λ||w`||2

)
s.t. ΦΦ′ = Ik×k.

The matrix Φ is a shared transformation which maps
a feature vector x ∈ RD to a low-dimensional vector
in Rk. Given Φ, w`, and v`, the prediction for an
instance x` is the linear function (w`+Φ′v`)′x` where
w` is the weight vector applied to the original instance
and v` is the weight vector applied to the shared, low-
dimensional represention, Φx`.

Unfortunately, as written, the ASO criterion does not
allow one to inject prior knowledge into the learned
shared transformation Φ. For example, in the senti-
ment classification task, we may wish to represent the
fact that presence of excellent or superb in a document
express similar sentiment and hence a classifier should
assign similar weights to the two features correspond-
ing to the presence of these two words. To incorporate
such declarative information, we suppose the existence
of a prior knowledge graph which encodes knowledge
about which features should be similarly correlated
with the class labels in a “good” model. The nodes of
the graph represent features and the edges represent
feature similarities. The edges are weighted by the
strength of similarity. These weights are encoded as a
matrix P ∈ RD×D with each entry Pij ≥ 0, Pii = 0
and

∑
j Pij = 1 for all i.

To enforce the similarity requirements, we replace the
ridge regularization term with a penalty on the in-
duced norm: w

′
Mw, where M = (I − P )

′
(I − P ).

This encourages features to be weighted similarly to
the average of their neighbors’ weights and is closely
related to the LLE objective (Roweis & Saul, 2000;
Sandler et al., 2008). The new optimization problem
is then given as:

[
{ŵ`, v̂`}, Φ̂

]
=

argmin
w`,v`,Φ

m∑
`=1

(
1
n`

n∑̀
i=1

L
(
(w` + Φ′v`)′x`i , y

`
i

)
+ λw

′
Mw

)
s.t. ΦMΦ′ = Ik×k.

We call this new objective DRASO, since the ASO
objective is declaratively regularized. Solving for Φ
yields a new eigenvalue problem, which can be solved
efficiently (section 2.1).

2.1. Solving for Φ

Our main goal is to find the transformation Φ which we
will use to create a new representation for the super-
vised problem. As in (Ando & Zhang, 2005), we can
simplify the problem by making the change of variables
u` = w` + Φ

′
v`. This yields the optimization problem

[
{û`, v̂`}, Φ̂

]
=

argmin
u`,v`,Φ

m∑
`=1

(
1
n`

n∑̀
i=1

L
(

(u
′

`x
`
i , y

`
i

)
+

λ(u` − Φ
′
v`)

′
M(u` − Φ

′
v`)
)

s.t. ΦMΦ′ = Ik×k.

Again following (Ando & Zhang, 2005), we can solve
this problem using an alternating minimization tech-
nique. In the first step of the alternation, we fix Φ
and v` and solve for u. As before, this step amounts
to solving the decoupled linear predictions for each of
the problems. In the second step, we fix u` and solve
for v` and Φ. First we note that v` has a closed form
solution in terms of Φ and u`.

[
{v̂`}, Φ̂

]
=

argmin
v`,Φ

m∑
`=1

(
λ(u` − Φ

′
v`)

′
M(u` − Φ

′
v`)
)

s.t. ΦMΦ′ = Ik×k.

Solving for v` in this quadratic form gives us v` =
ΦMu`. Now we can solve for the following minimiza-
tion problem for Φ:

[
Φ̂
]

= argmax
Φ

m∑
`=1

||ΦMu`||22 s.t. ΦMΦ′ = Ik×k.

Following (Ando & Zhang, 2005), we have that this
problem is equivalent to the problem

[
Φ̂
]

= argmax
Φ

tr
(
ΦMUU

′
Φ
)

s.t. ΦMΦ′ = Ik×k.

By looking at the first order conditions for the La-
grangian, we can see that the solutions have the form

MUU
′
MΦ = αMΦ
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We can transform this generalized eigenvalue problem
into one that is smaller and easier to manage if we let
θ = U

′
MΦ. Now, right multiplying by U

′
, we get:

U
′
MUθ = αθ

That is we can solve for the eigenvectors of the mod-
ified gram matrix (transformed via M). Now, we can
substitute back into the original problem (noting that
M is symmetric).

MUU
′
MΦ = αMΦ

MUθ = αMΦ

Thus we have, Φ = 1
αUθ.

3. Experimental Results

ASO and DRASO representations were compared on
the sentiment classification task using Amazon book
reviews from Blitzer et al. (2007). Auxiliary problems
were selected using mutual information. Prior knowl-
edge was obtained from SentiWordNet (Esuli & Se-
bastiani, 2006) by manually selecting 31 positive and
42 negative words from the top ranked positive and
negative words in SentiWordNet. Each selected word
was connected in graph P to its 10 nearest neighbors
according to SentiWordNet rank.

The learned Φs were used to project 32,502 words into
a two dimensional space (Figure 1). Words on the prior
knowledge lists are indicated by squares (negative) and
triangles (positive). Points are color coded based on
their behavior in a large sample of labeled training
data (13,391 instances) as red (positive), blue (nega-
tive) and grey (neutral). The figures indicate that list
words clumped by ASO are separated by DRASO. Ad-
ditionally, while pulling apart high-sentiment words,
neutral words are left together. Finally, observe that
additional points not on the list have been pulled as
well, showing the effect of prior knowledge on new fea-
tures. These results indicate that DRASO can incor-
porate prior information into ASO in a principled and
effective way.

4. Related Work

The feature graph based additional regularization
term in the DRASO objective is close in spirit to Fused
Lasso (Tibshirani et al., 2005). However, there are
crucial differences. Firstly, fused lasso assumes an or-
dering over the features while no such restriction is

necessary in case of DRASO. Secondly, fused lasso im-
poses an L1 penalty over differences in weights of con-
secutive features (assuming the features are ordered
as mentioned above). In contrast, DRASO uses an L2

norm and the regularization is imposed over immediate
neighborhood rather than pairwise constraints. The
L1 penalty in (Tibshirani et al., 2005) prefers weights
of linked features to be exactly same. However, in
many problem domains (including the ones considered
in this paper), it is desirable to have similar rather
than identical weights.

The additional regularization term in the DRASO ob-
jective is similar to the one in Penalized Discriminant
Analysis (PDA) (Hastie et al., 1995). While PDA per-
forms standard classification, DRASO is focused on
learning a new and more effective representation in
ASO’s multitask learning setting. The learned repre-
sentation could in turn be used as additional features
in a standard classifier, which is currently being inves-
tigated (Section 5).

5. Conclusion

In this paper we have presented DRASO, which ex-
tends ASO by adding a regularization term. This
additional term makes it possible to inject valuable
prior knowledge into the ASO framework. We have
shown that while solving for Φ, incorporation of the
additional regularization term results in an eigenvalue
problem (different from ASO) which can be solved effi-
ciently. We have also presented experimental evidence
demonstrating effectiveness of DRASO over ASO.

For future work, we are considering applications to
learning tasks for which ASO has performed well. For
many of these tasks, prior knowledge can be added
through existing resources or through the use of unsu-
pervised methods to infer relations between features.
We are also investigating under what conditions prior
knowledge can improve over labeled data alone.
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1. Introduction

Recent work on hierarchical priors for n-gram language
modeling [MacKay and Peto, 1995, Teh, 2006, Gold-
water et al., 2006] has demonstrated that Bayesian
methods can be used to reinterpret well-known non-
Bayesian techniques for smoothing sparse counts.
However, sparse counts are not unique to language
modeling—they are ubiquitous throughout NLP—and
the same ideas may be used to reinterpret and enhance
other non-Bayesian NLP models, thereby extending
the reach of Bayesian methods in natural language.

In addition to word order—the focus of n-gram lan-
guage modeling—natural language also exhibits com-
plex syntactic structures. Dependency trees are a
useful way of representing these kinds of structures.
Dependency trees encode relationships between words
and their sentence-level, syntactic modifiers by repre-
senting a sentence as a tree with a node for each word.
The parent of each word is the word that it most di-
rectly modifies. Despite modeling different kinds of
structure, generative models of dependency trees are
similar to n-gram language models in that they both
decompose the probability of a sentence into a product
of probabilities of individual words given some (typ-
ically sparse) word-based context. In n-gram mod-
els, the context is the preceding words, while in de-
pendency modeling it is the word’s parent and some-
times its siblings. Thus, while the actual contexts
used by the models are different, the underlying idea—
that contexts consist of nearby words—is the same.
The models do differ in two important ways, however.
First, while all information (word identities and order)
is observed in an n-gram model, dependency models
require inference of the latent structure of each depen-
dency tree. Second, unlike n-gram modeling, in which

trigrams are smoothed with bigrams and so on, the
choice of context reductions for dependency models is
less obvious and must be decided by the modeler.

In this paper, we describe two hierarchical Bayesian
models for dependency trees. First, we show that
Eisner’s classic generative dependency model [1996]
can be substantially improved by (a) using a hierar-
chical Pitman-Yor process as a prior over the distri-
bution over dependents of a word, and (b) sampling
the model hyperparameters (section 3). These changes
alone yield a significant increase in parse accuracy over
Eisner’s model. Second, we present a Bayesian depen-
dency parsing model in which latent state variables
mediate the relationships between words and their de-
pendents. This model clusters dependencies into states
using a similar approach to that employed by Bayesian
topic models when clustering words into topics (sec-
tion 4). The inferred states have a syntactic flavor and
lead to modestly improved accuracy when substituted
for part-of-speech tags in the parsing model.

2. Background

In this section, we briefly review the hierarchical
Pitman-Yor process and its application to n-gram lan-
guage modeling. The Pitman-Yor process [Pitman and
Yor, 1997] has three parameters: a base measure m,
a concentration parameter α, and a discount param-
eter 0 ≤ ε < 1. In an n-gram language model the
probability of word w in the context of h (a sequence
of n − 1 words) is φw|h. Letting ρ(h) be the reduc-
tion of h, obtained by dropping the left-most word,
each probability vector φh = {φw|h} can be given a
Pitman-Yor prior, with parameters mρ(h), αn−1 and
εn−1. The base measure mρ(h) is shared by all con-
texts h′ with reduction ρ(h′) = ρ(h). The effects of
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P (sn | sπ(n), wπ(n), cπ(n), sσ(n), dn) P (wn | sn, sπ(n), wπ(n), cπ(n), dn) P (cn | sn, wn)

sπ(n), wπ(n), cπ(n), sσ(n), dn sn, sπ(n), wπ(n), cπ(n), dn sn, wn
sπ(n), sσ(n), dn sn, sπ(n), dn sn,
sπ(n), dn sn,

Table 1. Contexts (in order) used by Eisner for estimating probabilities.

using a Pitman-Yor prior are best explained in terms
of drawing a new observation from the predictive dis-
tribution over words given h, obtained by integrating
out φh: If the observation is the first to be drawn, it is
instantiated to the value of a new “internal” draw from
mρ(h). Otherwise, it is instantiated to the value of an
existing internal draw, with probability proportional
to the number of observations previously “matched”
to that draw minus εn−1, or to the value of a new
internal draw, with probability proportional to αn−1.
The Pitman-Yor process may be used hierarchically—
i.e., mρ(h) may be given a Pitman-Yor prior, with pa-
rameters mρ(ρ(h)), αn−2 and εn−2, and integrated out.
Similarly for mρ(ρ(h)) . . .m∅. This yields a hierarchy
of Pitman-Yor processes encompassing all context re-
ductions. The internal draws at one level are treated
as observations by the next level up, and there is path
from each observation to top-level uniform base mea-
sure u via the internal draws. The observation counts
in the predictive distribution are effectively smoothed
with higher-level counts, determined by the number of
observations (or lower-level internal draws) matched to
each internal draw in the hierarchy. The hierarchical
Pitman-Yor process was applied to n-gram language
modeling by Teh [2006] and Goldwater et al. [2006].

For real-world data, the number of internal draws at
each level and the paths from the observations to the
top-level base measure u are unknown. Since these
quantities determine the counts used in the predictive
distribution, they must be inferred using either Gibbs
sampling or an approximate inference scheme.

Bayesian n-gram language modeling was first explored
by MacKay and Peto [1995], who drew connections be-
tween non-Bayesian interpolated language models and
hierarchical Dirichlet priors. Teh [2006] and Goldwater
et al. [2006] showed that using a hierarchical Pitman-
Yor process prior as described above leads to a model
of which Kneser-Ney smoothing is a special case.

3. A Hierarchical Pitman-Yor
Dependency Model

In this section, we describe the first of our Bayesian
dependency parsing models. This model is best ex-
plained by starting with a reinterpretation of Eisner’s

dependency model [1996] from a Bayesian perspective.
Eisner’s model generates sentences using a parent-
outward process. Each parent generates a sequence
of children starting in the center and moving outward
to the left and then similarly to the right. Conditioned
on the parent, the sequence of children in each direc-
tion is a first order Markov chain. The probability of
a sentence consisting of words w, with corresponding
part-of-speech tags s, case values c (see below) and
tree t, generated according to this process, is

P (s,w, c, t) =∏
n

P (sn | sπ(n), wπ(n), cπ(n), sσ(n), dn)

P (wn | sn, sπ(n), wπ(n), cπ(n), dn)
P (cn | sn, wn).

(1)

where dn is the direction of wn with respect to its
parent, π(n) is the position of wn’s parent, σ(n) the
position of wn’s immediately preceding sibling (mov-
ing outward from wn’s parent in direction dn), and
y(n) is the position of wn’s final child. The case cn of
each word wn may be one of four values: lower, upper,
mixed, or first capitalized word in the sentence.

Eisner estimates each probability in equation 1 from
training data D (tagged, cased sentences and their
trees) by interpolating between probability estimates
computed using various reduced conditioning contexts.
The complete set of conditioning contexts for each
variable (i.e., tag, word, case) are shown in table 1.

Alternatively, however, equation 1 can be rewritten as

P (s,w, c, t) =∏
n

θsn | sπ(n)wπ(n)cπ(n)sσ(n)dn

φwn | sn,sπ(n)wπ(n)cπ(n)dn ψcn | snwn

(2)

where θs′w′c′s′′d is the distribution over part-of-speech
tags for the context consisting of parent tag s′, parent
word w′, parent case value c′, sibling tag s′′, and di-
rection d. Similarly, φss′w′c′d is the distribution over
words for the context defined by tag s, parent tag s′,
parent word w′, parent case value c′, and direction d.
Finally, ψsw is the distribution over case values for the
context consisting of tag s and word w. Eisner’s in-
terpolation method is then equivalent to giving each
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probability vector a hierarchical Dirichlet prior—e.g.,

θs′w′c′s′′d ∼ Dir (θs′w′c′s′′d |α2,ms′s′′d) (3)
ms′s′′d ∼ Dir (ms′s′′d |α1,ms′d) (4)
ms′d ∼ Dir (ms′d |α0,u) (5)

with α2 = α1 = 3 and α0 = 0.5 (the parameter val-
ues used by Eisner). Under these hierarchical priors,
the predictive distributions given data D (computed
as described by MacKay and Peto [1995]) are identical
to the interpolated probabilities used by Eisner.

This Bayesian reinterpretation of Eisner’s model has
two advantages: Firstly, the concentration parameters
may be sampled, rather than fixed to some particu-
lar value. Secondly, it is also possible to use priors
other than the hierarchical Dirichlet distribution—for
example, a hierarchical Pitman-Yor process prior:

θs′w′c′s′′d ∼ PY (θs′w′c′s′′d |α2,ms′s′′d, ε2) (6)
ms′s′′d ∼ PY (ms′s′′d |α1,ms′d, ε1) (7)
ms′d ∼ PY (ms′d |α0,u, ε0). (8)

Priors for φss′w′c′d and ψsw can similarly be defined
using the context reductions shown in table 1.

3.1. Inference

Given the above hierarchical Pitman-Yor dependency
parsing model and a training corpus D, consisting of
tagged, cased sentences and their trees, there are two
tasks of interest: sampling hyperparameters (αs and
εs) and inferring trees for unseen test sentences.

Having inferred a set of internal draws for D, typical
concentration and discount parameters can be deter-
mined using slice sampling [Neal, 2003]. Then, given
a set of hyperparameter values U , the parents for all
words in a test sentence can be jointly sampled us-
ing an algorithm that combines dynamic programming
with the Metropolis-Hastings method. The resultant
algorithm is similar to that of Johnson et al. [2007a,b]
for unlexicalized probabilistic context-free grammars.

For each sentencew, a proposal tree t′ is sampled from
the following distribution using a dynamic program
based on Eisner’s O(N3) parsing algorithm 1:

P (t′ | s,w, c,D\s,w,c,t, U)

' P (t′ | s,w, c, {θ̂s′w′c′s′′d, φ̂ss′w′c′d, ψ̂sw}, U) (9)

∝ P (s,w, c, t′ | {θ̂s′w′c′s′′d, φ̂ss′w′c′d, ψ̂sw}, U), (10)

where D\w,s,c,t is the corpus excluding the tagged,
cased sentence of interest and its previously sampled

1Details are omitted due to space restrictions.

tree t. The probability vectors θ̂s′w′c′s′′d, φ̂ss′w′c′d and
ψ̂sw are the predictive distributions over tags, words
and case values given D\w,s,c,t and the current set of
internal draws and paths. The proposal tree t′ is sam-
pled from an approximation to the true posterior since
sampling from the true posterior is not possible.

Having generated a proposal tree t′, it is accepted with
probability given by the minimum of 1 and

P (s,w, c, t′ | D\s,w,c,t, U)
P (s,w, c, t | D\s,w,c,t, U)

P (s,w, c, t | D\s,w,c,t, Θ̂, Φ̂, Ψ̂, U)

P (s,w, c, t′ | D\s,w,c,t, Θ̂, Φ̂, Ψ̂, U)
,

(11)

where Θ̂ = {θ̂w′,s′,c′,s′′,d}, Φ̂ = {φ̂s,w′,s′,c′,d} and Ψ̂ =
{ψ̂w,s}. If t′ is rejected, then the previously sampled
tree t is kept as the current assignment for w.

3.2. Results

Dependency parsing models are typically evaluated by
computing parse accuracy—i.e., the percentage of par-
ents correctly identified. The hierarchical Pitman-Yor
dependency model was used to parse the Wall Street
Journal sections of the Penn Treebank [Marcus et al.,
1993]. To facilitate comparison with other dependency
parsing algorithms, the standard train/test split was
used (sections 2–21 for training and section 23 for test-
ing), and parse accuracies were computed using the
maximum probability trees. The Penn Treebank train-
ing sections consist of 39,832 sentences, while the test
section consists of 2,416 sentences. Words that occur
in the test data but not in training and words that
occur once in training data but never in the test data
were replaced with unseen types. data, while tags
for the test data were inferred using a standard part-
of-speech tagger [Ratnaparkhi, 1996]. 2 Punctuation
words were excluded from all accuracy calculations.

We compared four different priors: (i) Hierarchical
Dirichlet with fixed concentration parameters, set to
the values used by Eisner. When used with an ap-
proximate inference scheme known as the maximal
path assumption, this model variant is identical to
Eisner’s model; (ii) Hierarchical Dirichlet with slice-
sampled concentration parameters; (iii) Pitman-Yor
with fixed concentration parameters, set to the val-
ues used by Eisner, and fixed discount parameters
set to 0.1; (iv) Pitman-Yor with slice-sampled hy-

2The generative nature of the dependency parser means
that it is possible to sample part-of-speech tags for test sen-
tences at the same time as sampling their trees. However,
this is computationally expensive and gives very similar
performance to using tags from Ratnaparkhi’s tagger.
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Path Assumption

Maximal Minimal

Dirichlet fixed α values [Eisner, 1996] 80.7 80.2
Dirichlet sampled α values 84.3 84.1

Pitman-Yor fixed α and ε values 83.6 83.7
Pitman-Yor sampled α and ε values 85.4 85.7

Table 2. Parse accuracy of the hierarchical Pitman-Yor dependency model.

perparameters. For each prior, two approximate in-
ference schemes—the maximal and minimal path as-
sumptions [Cowans, 2006]—were compared. For the
model variants with sampled hyperparameters, fifty
slice sampling iterations was sufficient for convergence.

Parse accuracies are shown in table 2. These re-
sults show that (a) using a hierarchical Pitman-Yor
prior and (b) sampling hyperparameters both give con-
siderable performance improvements over a hierarchi-
cal Dirichlet dependency parser with fixed concentra-
tion parameters and the maximal path assumption
(equivalent to Eisner’s model). Using a hierarchical
Pitman-Yor prior and sampling hyperparameters yield
orthogonal improvements of 3%–5% each over Eisner’s
parser. Together, these two modeling choices yield a
26% error reduction. The differences in parse accuracy
between the approximate inference schemes (maximal
and minimal path assumptions) are not significant.

The accuracies for the model variant that is equivalent
to Eisner’s dependency model (hierarchical Dirichlet
prior, maximal path assumption, fixed concentration
parameters) are lower than those reported in Eisner’s
original work [Eisner, 1996]. This is because Eisner’s
results were obtained using an extensively filtered data
set with only 400 test sentences (e.g., sentences with
conjunctions were discarded). In the time since Eis-
ner’s model was published a different train/test split
has become standard, and the results reported in ta-
ble 2 were computed on the now-standard split.

Although state-of-the-art dependency models, such as
the discriminative maximum-margin method of Mc-
Donald [2006], achieve higher parse accuracy, it is pos-
sible that further enhancements to the Pitman-Yor de-
pendency model would yield similar results while re-
taining the benefits of a generative model. Possible
enhancements include a detailed consideration of con-
texts and reductions, aggregation across multiple tree
samples, Gibbs sampling the internal draws and paths
done by Teh [2006], and using a letter-based language
model as a top-level base measure [Cowans, 2006].

4. A “Syntactic Topic” Dependency
Model

One advantage of a generative approach to dependency
modeling is that other latent variables can be incorpo-
rated into the model. To demonstrate this, we present
a second Bayesian dependency model with latent state
variables that mediate the relationships between words
and their dependents. These variables result in a syn-
tactic clustering of parent–child dependencies. This
model can be considered to be a dependency-based
analogue of the syntactic component from the syntax-
based topic model of Griffiths et al. [2005]. The mod-
els differ in their underlying structure, however: In
the dependency model in this section, the underlying
structure is a tree that combines both words and unob-
served syntactic states; in Griffiths et al.’s model, the
structure is a simply a linear chain over latent states.
This difference means that there are two kinds of latent
information that must be inferred in the dependency-
based model: The structure of each dependency tree
and the identities of the latent states. In Griffiths et
al.’s model, only the latter need be inferred.

4.1. Model

The generative process underlying the model in this
section is similar to that of the model presented in the
previous section. The main difference is that instead
of generating a child directly, a parent word first gen-
erates a syntactic state, which then generates the child
word. Additionally, for computational efficiency, the
children in each direction are independent conditioned
on their parent. The probability of an untagged sen-
tence w with latent states s and tree t is given by

P (s,w, t) =
∏
n

θsn |wπ(n)
φwn | sn , (12)

where θw′ is the distribution over latent states for par-
ent word w′, and φs is the distribution over child words
for latent state s. Parent words are collapsed down to
the latent state space and children are generated on the
basis of these states. As a result, the clusters induced
by the latent states exhibit syntactic properties and
can be thought of as “syntactic topics”—specialized
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distributions over words with a syntactic flavor. Each
of the probability vectors in equation 12 is given a
single-level Dirichlet prior as shown below:

θw′ ∼ Dir (θw′ |α,m) (13)
φs ∼ Dir (φs |β,u) (14)

The base measure m and concentration parameter α
for the prior over over θw′ are optimized together.

4.2. Inference

Given a training corpus D = {w, t} consisting of un-
tagged sentences and their corresponding trees, there
are two tasks of interest: Sampling latent states for
D, and sampling states and trees for unseen test sen-
tences. States for a training sentence are sampled us-
ing Gibbs sampling. Each state sn is sampled from the
conditional distribution for that state given all other
state assignments, and the training data:

P (sn=k | {w}, {s}\n, {t}, U) ∝
P (wn | sn=k, {s}\n, {w}\n, {t})
P (sn=k | {s}\n, {w}\n, {t}),

where the subscript “\n” denotes a quantity that ex-
cludes data from the nth position in the corpus.

Given a set of training sentences and trees and a sin-
gle sample of training states, the trees and states for
unseen test sentences may be sampled using an aug-
mented version of the dynamic program in section 3.1.

4.3. Results

The true dependency trees and words in Penn Tree-
bank sections 2–21 were used to obtain a single sam-
ple of latent states. These states, trees and words were
then used to sample states and trees for the 2,416 sen-
tences in Penn Treebank section 23. Some example
states or “syntactic topics” are shown in table 3. Each
column in each row consists of the words most likely
to be generated by a particular state. The states ex-
hibit a good correspondence with parts-of-speech, but
are more finely grained. For example, the states in
the first and third columns in the top row both corre-
spond to nouns. However, the first contains job titles,
while the third contains place names. The states in
the fourth and fifth columns in the top row both cor-
respond to verbs. However, the fourth contains transi-
tive past-tense verbs, while the fifth contains present-
tense verbs. This kind of specificity indicates that
these states are likely to be beneficial in other tasks
where part-of-speech tags are typically used, such as
named entity recognition and machine translation.

Type of Tree

Sampled Max. Prob.

POS tags 55.3 63.1

50 states 59.2 63.8
100 states 60.0 64.1
150 states 60.5 64.7
200 states 60.4 64.5

Table 4. Parse accuracy of the “syntactic topic” model on
the Penn Treebank (standard train/test split). As a base-
line, the latent states are fixed to part-of-speech tags. Re-
sults for sampled trees are averaged over ten samples.

The quality of these “syntactic topics” was measured
by using them in place of part-of-speech tags in su-
pervised parsing experiments. The latent state depen-
dency model (with 50, 100, 150 and 200 states) was
compared with an equivalent model in which the states
were fixed to true part-of-speech tags for both training
and test data. These results are shown in table 4. Us-
ing the sampled states gives an improvement in parse
accuracy of approximately 5% for sampled trees and
an improvement of 1.6% for the most probable trees.
Although this is a modest improvement, it is a clear
quantitative indication that the discovered states do
indeed capture syntactically meaningful information.

5. Related Work

There has been much recent interest in nonparamet-
ric Bayesian models for PCFGs with latent variables
[Liang et al., 2007, Petrov et al., 2006, Finkel et al.,
2007], as well as general inference and learning frame-
works for Bayesian PCFGs [Johnson et al., 2007a,b].
While previous work has focused on latent variables,
state splitting, and inference in unlexicalized PCFG
models, the dependency models presented in this pa-
per are lexicalized. Lexicalization, in which parent–
child statistics are incorporated into the model, is an
important technique for building high-accuracy pars-
ing models, although state-splitting and discriminative
models can obtain similar benefits. Unfortunately, lex-
icalized models are much more likely to suffer from
sparsity problems. As a result, smoothing is critical—
as reflected in the structure of our hierarchical prior.
Previous nonparametric Bayesian models for gram-
mars have not concentrated on smoothing issues.

6. Conclusions

In this paper, we introduced a new generative depen-
dency parsing model based on the hierarchical Pitman-
Yor process. Using this model, we showed that the
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president year u.s. made is in
director years california offered are on
officer months washington filed was ,

chairman quarter texas put has for
executive example york asked have at

head days london approved were with
attorney time japan announced will and
manager weeks canada left had as

chief period france held ’s by
secretary week britain bought would up

10 would more his ms. sales
8 will most their mrs. issues
1 could very ’s who prices
50 should so her van earnings
2 can too and mary results
15 might than my lee stocks
20 had less your dorrance rates
30 may and own linda costs
25 must enough ’ carol terms
3 owns about old hart figures

Table 3. Example states inferred by the “syntactic topic” model. Each column in each row shows the words most likely
to be generated as children by states inferred from Treebank dependency trees. (From a model with 150 states.)

performance of Eisner’s generative dependency pars-
ing model can be significantly improved by using a
hierarchical Pitman-Yor prior and by sampling model
hyperparameters. On the Penn Treebank data, this
leads to a 26% reduction in parsing error over Eisner’s
model. We also presented a second Bayesian depen-
dency model, in which the local dependency distri-
butions are mediated by latent variables that cluster
parent–child dependencies. Not only do the inferred
latent variables look like finer-grained parts-of-speech,
they result in modestly improved parse accuracy when
substituted for part-of-speech tags in the model. Our
future work will include models that combine depen-
dency trees with both semantic and syntactic topics.
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Abstract

In this paper we introduce our attempts to in-
corporate the participant role information in
multiparty meetings for document modeling
using the hierarchical Dirichlet process. The
perplexity and automatic speech recognition
results demonstrate that the participant role
information is a promising prior knowledge
source to be combined with language models
for automatic speech recognition and interac-
tion modeling for multiparty meetings.

1. Introduction

In recent years there has been growing research in-
terest in the automatic speech recognition (ASR) for
multiparty meetings, which is of essential importance
for the subsequent meeting processing such as con-
tent analysis, summarisation, discourse analysis, and
information retrieval. In this paper, we consider an
improved language model (LM) in a state-of-the-art
large vocabulary ASR system for meetings, based on
the prior knowledge of participant roles. More specifi-
cally, we estimate the word distribution over the role of
each participant, i.e., P (w|r), and use this as unigram
marginals to adapt a conventional n-gram LM.

The AMI and AMIDA (http://www.amiproject.org)
projects are dedicated to the development of tech-
nologies to enhance the recognition and interpreta-
tion of interactions between people in multiparty meet-
ings (Renals et al., 2007). The AMI Meeting Cor-
pus collected by the AMI project consists of 100 hours
of multimodal meeting recordings with comprehensive
annotations at a number of different levels. About 70%
of the corpus was elicited using a design scenario, in

Appearing in the Workshop on Prior Knowledge for
Text and Language Processing at ICML/UAI/COLT 2008,
Helsinki, Finland, 2008.

which the participants play the roles of employees, i.e.,
project manager (PM), marketing expert (ME), user
interface designer (UI), and industrial designer (ID),
in an electronics company that decides to develop a
new type of television remote control. Our intuition
is that, since different participants play different roles,
there may be a different word distribution, and in turn
different dominant words, specific to each role. For ex-
ample, we expect a project manager is more likely to
speak words relating to the coordination of meetings,
i.e., meeting, project, or present, while a user interface
designer may favor words on interaction mediums like
screen, voice, or speech.

Topic models have received much attention in the ma-
chine learning community, which follows the “bag-of-
words” assumption, i.e., words in a document are ex-
changeable. In this paper we attempt to incorporate
the participant role as prior knowledge in topic models,
by assigning role information to exchangeable words in
a document. This could be achieved within the flexi-
ble framework of topic models, by introducing an ad-
ditional observed variable for the role into the graphi-
cal model. By assuming that each role has a mixture
distribution over the latent topics, we could infer the
topic distribution specific to each role. We could fur-
ther estimate P (w|r) for each role r by integrating out
the latent topics. Moreover, incorporating the role in
topic models enables not only the document modeling,
but also the interaction modeling in meetings.

An alternative approach to modeling the relationship
between the participant role information and lexical
words is to directly estimate the conditional probabil-
ity P (w|r) based on the co-occurrence statistics of roles
and words, using the maximum likelihood principle.
As a comparison to the probabilistic topic models, we
also introduce in this paper a deterministic approach
to modeling roles and words, by regarding the role as
an additional feature (factor) of lexical words in an
MLE-based LM.
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2. Modeling Approaches

We consider two modeling approaches to the estima-
tion of P (w|r): one is a hierarchical Bayesian model
using the hierarchical Dirichlet process (HDP) as the
prior, and the other is a factored approach using the
factored language model (FLM).

2.1. Hierarchical Bayesian Model

The hierarchical Dirichlet process (Teh et al., 2006)
is a nonparametric generalization of latent Dirichlet
allocation (LDA), which extends the standard LDA
model to infinite and hierarchical topic modeling.

Conversational speech consists of sequences of utter-
ances, which do not comprise well-defined documents.
We used the following procedure to obtain documents:
for each scenario meeting, first align all the words
in it along a common timeline; then for each sen-
tence/segment, collect those non-stop words belonging
to a window of length L as the document, by backtrac-
ing from the end time of the sentence/segment. The
role that has been assigned to the most of words in the
window is selected as the role for that document. We
use a moving window with L = 20 seconds over the
sequences of words to obtain documents.

We incorporate the participant role by extending the
2-level HDP (Teh et al., 2006) in Figure 1(A) to a third
level, as shown in Figure 1(B), role-HDP. An DP Gr

is assigned for each of the four roles (PM,ME,UI,ID),
which then served as the parent DP (the base proba-
bility measure) in the HDP hierarchy for all those DPs
corresponding to documents belonging to that role.

(A)

0

1

(B)

Figure 1. The graphical model depictions for (A) 2-level
HDP, and (B) role-HDP.

2.2. Factored Language Model

One straightforward method for modeling words and
roles is to use the maximum likelihood estimation
based on the co-occurrences of words w and the
role information r, i.e., training a bigram-like model
P (w|r) = Count(w, r)/Count(r). More generally, we
can use a factored language model (Bilmes & Kirch-
hoff, 2003) to model words and role deterministically.
The FLM, initially developed to address the language
modeling problems faced by morphologically rich or
inflected languages, is a generalization of standard n-
gram language models, in which each word wt is de-
composed into a bundle of K word-related features
(called factors), wt ≡ f1:K

t = {f1
t , f1

t , . . . , fK
t }. Fac-

tors may include the word itself. Each word in an FLM
is dependent not only on a single stream of its pre-
ceding words, but also on additional parallel streams
of factors. Combining with interpolation or general-
ized parallel backoff (GPB) (Bilmes & Kirchhoff, 2003)
strategies, multiple backoff paths may be used simul-
taneously.

We exploit two factors for word w at time t: the word
wt itself and the corresponding role rt, as shown in
Figure 2. All the words in a sentence share a com-
mon role, i.e., rt = rt−1 = . . . = r1 in Figure 2. We
use a simple backoff strategy, for example, by moving
from the model P (wt|rt) directly down to the unigram
model P (wt). We refer this model to the role-FLM.

gtmin=1
kndiscount

gtmin=1
kndiscount

Figure 2. The graphical model representation and backoff
path for role-FLM.

2.3. Combination with n-gram LMs

As in (Kneser et al., 1997), we use the dynamic uni-
gram marginals P (w|r), from either the role-HDP or
the role-FLM, for LM adaptation:

Padapt(w|h) = Pback(w|h) ·
(

P (w|r)
Pback(w)

)µ

/z(h) (1)

where h is the history of w, Pback(w|h) the baseline
n-gram, Padapt(w|h) the adapted n-gram, and z(h)
a normalisation factor. For the role-HDP, P (w|r) ≈∑K

k=1 φkw · θdk with φk estimated during training and
remaining fixed in testing, while θd are document-
dependent (and in turn are role-dependent because θd
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are derived from Gr) and thus are calculated dynami-
cally for each test document.

3. Experiments and Results1

3.1. Empirical Experiment

We first carried out some empirical analyses for the
HDP and the role-HDP. The HDP was implemented
as an extension to the SRILM toolkit2. We trained the
HDP and the role-HDP models using different values
(k = 1, . . . , 100) for the initial number of topics. We
used uniform distribution for H, i.e., Hw = 1/W . All
models were trained using the fold-2−4 of the AMI
scenario meetings, with a fixed size vocabulary of 7,910
words, by the Markov Chain Monte Carlo (MCMC)
sampling method. The concentration parameters were
sampled using the auxiliary variable sample scheme in
(Teh et al., 2006). We ran 3,000 iterations to burn-
in, then collected 10 samples from the posteriors to
calculate the unigram perplexity on the fold-1 testing
data, with the sample step of 5.

Figure 3 shows the perplexity results, from which we
can see that the role-HDP produced better results than
the HDP. Our understanding for the improvement is
that by using the role prior knowledge, documents with
the same role share the strengths in the HDP frame-
work. In addition, we show in Figure 4 the top two
topics for each role. It is interesting to find out that
each role has some specific topics with high probabil-
ities, while they also tend to interact with each other
on some common topics, i.e., the button topic appears
with high probability for all the four roles in Figure 4.
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Figure 3. The perplexity results for the HDP/role-HDP.

1Some of the results here were appearing in another
paper by the authors in (Huang & Renals, 2008).

2http://www.speech.sri.com/projects/srilm
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Figure 4. The example topics for the four roles using the
role-HDP.

3.2. ASR Experiment

To further investigate the effectiveness of employing
the role as prior knowledge for topic modeling, we per-
formed ASR experiments on multiparty meetings. We
used part of the AMI Meeting Corpus for our exper-
iments. There are 138 scenario meetings in total, of
which 118 were used for training and the other 20 for
testing (about 11 hours). The procedure and param-
eters used to train the HDP/role-HDP were the same
as those used in Section 3.1, except that we used a dif-
ferent split-up of the AMI scenario meetings for ASR.

We trained two baseline LMs: the first one used the
Fisher conversational telephone speech data (fisher-03-
p1+p2), and the second used three datasets from the
AMI training data, the Fisher, and the Hub-4 broad-
cast news data (hub4-lm96). The two baseline LMs
were trained with standard parameters using SRILM:
trigrams, cut-off value of 2 for trigram counts, mod-
ified Kneser-Ney smoothing, interpolated model. A
common vocabulary with 56,168 words was used for
the two LMs, which has 568 out-of-vocabulary (OOV)
words for the AMI test data.

We investigated the effectiveness of the adapted LMs
based on topic and role information from meetings on
a practical large vocabulary ASR system. The AMI-
ASR system (Hain & et al., 2007) was used as the base-
line system. We began from the lattices for the whole
AMI Meeting Corpus, generated by the AMIASR sys-
tem using a trigram LM trained on a large set of data
coming from Fisher, Hub4, Switchboard, webdata, and
various meeting sources including AMI. We then gen-
erated 500-best lists from the lattices for each utter-
ance. We adapted the two baseline LMs (Fisher and
AMI+Fisher+Hub4) using Equation (1) according to
the unigram marginals from the role-FLM, the HDP,
and the role-HDP respectively. For the HDP, we used
P (w|d) ≈

∑K
k=1 φkw · θdk as the unigram marginals,

i.e., the difference from P (w|r) by the role-HDP is
that in the HDP θd are only document-dependent
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Table 1. The %WER results of ASR experiments using
adapted LMs on the AMI scenario meetings.

LMs SUB DEL INS WER
Fisher 22.7 11.4 5.8 39.9

role-FLM-adapted 22.5 11.1 5.9 39.5
HDP-adapted 22.2 11.3 5.6 39.1

role-HDP-adapted 22.3 11.3 5.6 39.2
AMI+Fisher+Hub4 21.6 11.1 5.4 38.2
role-FLM-adapted 21.4 10.9 5.6 37.9

HDP-adapted 21.2 11.1 5.3 37.6
role-HDP-adapted 21.2 11.1 5.3 37.5

but not role-dependent. The topics were extracted
by the HDP/role-HDP models based on the previous
ASR outputs, using a moving document window with
a length of 10 seconds. Three adapted LMs together
with the baseline LM were then used to rescore the
500-best lists with a common language model weight
of 14 (the same as for lattice generation) and no word
insertion penalty. The adapted LM was destroyed af-
ter it was used to rescore the current N-best lists.

Table 1 shows the word error rate (WER) results. We
can see that both the HDP and the role-HDP adapted
LMs yield significant reductions (p < 0.01 according to
a matched-pair significance test 3) in WER, comparing
to the baseline LMs. Although the role-FLM adapted
LMs also reduce the WER, this deterministic approach
is not as effective as the probabilistic topic modeling by
introducing a latent variable – topic. However, there
is no significant difference between the HDP and the
role-HDP.

4. Discussion

Although the approach we used here to incorporate the
role as prior knowledge for topic modeling is straight-
forward, the preliminary experiments demonstrated
not only the better perplexity and WER results, but
also the ability for modeling specific topic distribu-
tions for each role. This suggests some future work on
the use of role information as prior knowledge is worth
further investigation in the following aspects:

Probabilistic. The fact that we only assign one role
for each document implies that we may lose some in-
formation, because there are potentially multiple roles
for a document by using a moving window to obtain
documents. Therefore, it is better to use a more prob-
abilistic way, for example, each document is regarded

3http://www.icsi.berkeley.edu/speech/faq/
signiftest.html

as a multinomial distribution over roles, and each role
a multinomial distribution over topics. Moreover, this
helps to model the interactions between roles.

Observed vs. Latent. Depending on whether we
treat the role variable as observed or latent, we can
exploit the role as prior knowledge for topic modeling
(as in this paper), or use other information to infer the
role for each document. The latter is useful for mod-
eling the human interactions in multiparty meetings.

Application. Even if we observed reductions in per-
plexity, it is not trivial to transfer the advantage of
using the role prior knowledge for topic modeling to
real applications such as on language modeling for au-
tomatic speech recognition in meetings. We observed
no significant difference between the HDP and the role-
HDP for ASR. We are interested in either a method of
explicitly conditioning on the role for language model-
ing, or an approach to tightly combining topic models
and n-gram models.
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Abstract
Sparse coding is an unsupervised learning al-
gorithm for finding concise, slightly higher-
level representations of an input, and has
been successfully applied to self-taught learn-
ing (Raina et al., 2007), where the goal is
to use unlabeled data to help on a super-
vised learning task, even if the unlabeled
data cannot be associated with the labels of
the supervised task. However, sparse coding
uses a Gaussian noise model and a quadratic
loss function, and thus performs poorly if
applied to binary valued, integer valued, or
other non-Gaussian data, such as text. Draw-
ing on ideas from Generalized linear models
(GLMs), we present a generalization of sparse
coding to learning with data drawn from
any exponential family distribution (such as
Bernoulli, Poisson, etc). This gives a method
that we argue is much better suited to model
other data types than Gaussian. We present
an efficient algorithm for solving the opti-
mization problem defined by this model. We
also show that the new model results in sig-
nificantly improved self-taught learning per-
formance when applied to text data.

1. Introduction

We consider the “self-taught learning” problem, in
which we are given just a few labeled examples for a
classification task, and also large amounts of unlabeled
data that is only mildly related to the task (Raina
et al., 2007; Weston et al., 2006). Specifically, the un-
labeled data may not share the class labels or arise
from the same distribution. For example, given only a
few labeled examples of webpages about “Baseball” or
“Football”, along with access to a large corpus of unre-
lated webpages, we might want to accurately classify
new baseball/football webpages. The ability to use
such easily available unlabeled data has the potential

to greatly reduce the effect of data sparsity, and thus
greatly improve performance on labeling or tagging ap-
plications in language processing.
Our approach uses the unlabeled data to learn a high-
level representation of the inputs, and then using this
representation to provide features for classification.
Raina et al. demonstrate such a method for domains
such as image classification, using the “sparse coding”
model (Olshausen & Field, 1996). In this model, given
real-valued vectors x ∈ Rk as inputs, we attempt to
learn a large set of basis vectors b1, b2, . . . , bn ∈ Rk
such that the input can be represented as a linear com-
bination of only a few basis vectors: i.e., x ≈

∑
j bjsj ,

where sj is the weight (or “activation”) for basis vec-
tor bj , and most sj values are zero (or, the vector s
is sparse). Informally, the activation vector s used to
reconstruct an input x often captures the few “most
important” patterns in x. For example, when this
model is applied to images, the basis vectors learnt by
the model represent various edge patterns, and thus s
captures the edges present in an image input x. In-
deed, when the activations s are used as features in
a standard supervised learning algorithm (such as an
SVM), the generalization performance is often better
than when using the raw input x as features.
The sparse coding algorithm for learning basis vec-
tors is based on a Gaussian noise model for input x:
P (x|b, s) = N (

∑
j bjsj , σ

2I), where σ2 is fixed. A
sparse prior P (s) ∝

∏
j exp(−β|sj |) is assumed on

the activations to penalize nonzero activations. Then,
given unlabeled examples {x(1), x(2), . . .} and the cor-
responding activations {s(1), s(2), . . .}, good basis vec-
tors are estimated by solving the MAP optimization
problem, which is equivalent to solving:1

min
{bj},{s(i)}

1
2σ2

∑
i ‖x(i) −

∑n
j=1 bjs

(i)
j ‖2 + β

∑
i,j |s

(i)
j |

subject to ‖bj‖2 ≤ c, ∀j = 1, ..., n.

1Following previous work, we constrain the norm of each
basis vector bj to make the problem well-posed.
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This optimization problem is convex separately in the
b and s variables (though not jointly convex). The
problem can be solved efficiently by alternating min-
imization over b and s variables (Lee et al., 2007).
Finally, given learnt basis vectors b, the features for
a new input example x are derived by estimating:
arg maxs P (s|x, b) = arg maxs P (x|b, s)P (s).

2. Self-taught learning for text data

The probabilistic model used in sparse coding assumes
that the input vectors x are real-valued, and that they
can be well described using a Gaussian noise model.
However, this is an inappropriate assumption for text
data, which is often represented as a binary “bag-of-
words” vector x ∈ {0, 1}k, where the i-th feature is 1
if the i-th word in our vocabulary occured in the doc-
ument, or as a word-counts vector x ∈ {0, 1, 2, . . . }k,
where the i-th feature represents the number of times
the i-th word occured in the document. In either case,
the input vectors are very poorly modeled by a con-
tinuous Gaussian distribution (which could take frac-
tional, or negative values). It is thus hardly surprising
that when sparse coding is applied to a self-taught
learning task for text, it only leads to small gains in
accuracy, even with huge amounts of unlabeled data;
in some cases, it can even hurt performance.
To address this problem, in this paper we generalize
the Gaussian probabilistic model behind sparse coding
in a principled way to “exponential family” of distri-
butions. This class of distributions is large enough
to include most commonly used distributions (includ-
ing the Gaussian, Bernoulli and Poisson distributions
among others), but also guarantees crucial proper-
ties that make efficient learning and inference possi-
ble (e.g., the maximum likelihood learning problem is
convex for any distribution in the family) (McCullagh
& Nelder, 1989). We call our model exponential family
sparse coding, and to differentiate it from the previous
model, we henceforth call that model Gaussian sparse
coding.

3. Exponential family sparse coding

Given a text document (input vector) x, we use
the standard exponential family model: P (x|b, s) =
h(x) exp(ηTT (x) − a(η)) with the natural parameter
η =

∑
j bjsj . Here the functions h, T and a specify the

exact exponential family distribution being used (e.g.,
h(x) = e−‖x‖

2/2/(2π)k/2, T (x) = x, a(η) = ηT η/2 lead
to a Gaussian distribution with covariance I). This in-
cludes the Gaussian sparse coding model as a special
case, and we can now use a Poisson distribution if the
input is integer-valued, or a Bernoulli distribution if

the input is binary.
With this generative model, the basis vectors b can
again be learnt from unlabeled data by solving the
MAP optimization problem, or equivalently:2

min
B,{s(i)}

P
i

“
− log h(x(i))− s(i)T

BTT (x(i)) + a(Bs(i))
”

+β
P

i,j |s
(i)
j |

s.t. ‖bj‖2 ≤ c, ∀j = 1, ..., n. (1)

Inspite of the generalization, this problem is still con-
vex separately in b and s (though not jointly).3 This
again suggests an alternating minimization procedure
iterating the following two steps till convergence: (i)
fix the activations s, and compute the optimal basis
vectors B; and, (ii) fix these basis vectors B, and com-
pute the optimal activations s.
Step (i) involves a constrained optimization problem
over B with a differentiable objective function. We can
thus apply projective gradient descent updates, where
at each iteration we perform a line search along the
direction of the (negative) gradient, projecting onto
the feasible set before evaluating the objective func-
tion during the line search. In our case, the projection
operation is especially simple: we just need to rescale
each basis vector to have norm c if its norm is greater
than c. In our experiments, we find that such a pro-
jective gradient descent scheme is sufficiently fast for
basis learning. We thus focus now on the algorithm
for computing the optimal activations in Step (ii).
Step (ii) computes the optimal activation s given
fixed basis vectors. The resulting problem involves
a non-differentiable L1-regularized objective function,
for which several sophisticated algorithms have been
developed, including specialized interior point meth-
ods (Koh et al., 2007) and quasi-Newton methods (An-
drew & Gao, 2007; Yu et al., 2008). When used for
computing activations with 1000 basis vectors, these
methods find the optimal solution in a few seconds per
unlabeled example. Since we often need to solve for
tens of thousands of unlabeled examples repeatedly in
the inner loop of the overall alternating minimization
procedure, these solvers turn out to be too slow for
high-dimensional problems with many basis vectors.
We now present an alternative, efficient algorithm for
computing the activations.

4. Computing optimal activations

We first note that since the optimal values for the ac-
tivation vectors s(i) do not depend on each other, and
can be optimized separately, it is sufficient to consider

2We use matrix notation B = [b1b2 . . . bn].
3This follows from the fact that a(η) must be convex in

η (McCullagh & Nelder, 1989).
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the following optimization problem for a single input
x and its activation vector s:

mins `(s) + β‖s‖1 (2)

where s corresponds to a vector of activations, and `(s)
is a specific convex function of s.
In the case of Gaussian sparse coding, `(s) is simply
a quadratic function, and the optimization problem
is an L1-regularized least squares problem that can
be solved efficiently (Efron et al., 2004; Lee et al.,
2007). This suggests an iterative algorithm for gen-
eral exponential family distributions: at each itera-
tion, we compute a local quadratic approximation ˆ̀(s)
to the function `(s), and optimize the objective func-
tion ˆ̀(s) + β‖s‖1 instead.4 Using a similar insight,
Lee et al. proposed the IRLS-LARS algorithm for the
case of L1-regularized logistic regression, using Efron
et al.’s LARS algorithm in the inner loop to solve the
approximated problem.
This method can be applied to other L1-regularized
optimization problems for which a local quadratic ap-
proximation can be efficiently computed. Indeed, for
the case of the L1-regularized exponential family in
Equation (1), we can show that the local quadratic
approximation at a point s is given by:

ˆ̀(s′) =
∥∥Λ1/2Bs′ − Λ1/2z

∥∥2
(3)

where Λii = a′′ ((Bs)i) for a diagonal matrix Λ, and
z = Λ−1(T (x)− a′(Bs)) +Bs.5

We further note that if the objective function `(s) is
reasonably approximated by a quadratic function, the
solutions to the successive quadratic approximations
should be close to each other. However, the LARS al-
gorithm used in IRLS-LARS cannot be initialized at
an arbitrary point, and thus has to rediscover the solu-
tion from scratch while solving each successive approx-
imation. On the other hand, the “feature-sign search”
algorithm (originally proposed in the context of Gaus-
sian sparse coding) can be initialized at an arbitrary
point (Lee et al., 2007), and can thus potentially solve
the successive approximations much faster. We pro-
pose to use the feature-sign search algorithm to opti-
mize each quadratic approximation.
The final algorithm, which we call IRLS-FS, is de-
scribed below. The algorithm is guaranteed to con-
verge to the global optimum in a finite number of it-
erations. (Proof similar to IRLS-LARS.)

4This procedure is an instance of a more general method
that is sometimes called Iteratively Reweighted Least
Squares (IRLS) in the literature (Green, 1984).

5To show that this is the local quadratic approximation
to `(s), it suffices to show that this has the same function

Algorithm 1: IRLS-FS algorithm

Input: B ∈ Rk×n: matrix, x ∈ Rk: vector.
Initialize s := ~0.
while stopping criterion is not satisfied do

Λii := a′′ ((Bs)i) (for diagonal matrix Λ)
z := Λ−1(T (x)− a′(Bs)) +Bs.
Initializing feature-sign search at s, compute:
ŝ := arg mins′

∥∥Λ1/2Bs′ − Λ1/2z
∥∥2

+ β‖s′‖1
Set s := (1− t)s+ tŝ, where t is found by a back-
tracking line-search that minimizes the original
objective function in problem (1). (See Boyd &
Vandenberghe, 2004 for details)

end while

5. Computational Efficiency

We compare the IRLS-FS algorithm against state-
of-the-art algorithms for optimizing the activations,
focusing on the case of binary sparse coding (i.e.,
x ∈ {0, 1}k). This case is especially interesting be-
cause this leads to an L1-regularized logistic regression
problem.6 This problem is of general interest (e.g., see
Ng, 2004), and customized algorithms have also been
developed for it.
We compare the algorithm with four recent algo-
rithms: the IRLS-LARS algorithm (Lee et al., 2006)
and the l1-logreg interior point method (Koh et al.,
2007) specifically for logistic regression, and the OWL-
QN (Andrew & Gao, 2007) and SubLBFGS (Yu et al.,
2008) algorithms for L1-regularized convex optimiza-
tion problems.7 All algorithms were evaluated on
nine L1-regularized logistic regression problems, which
arise when computing activations for text data. The
sparsity parameter β was set to produce roughly 20
nonzero activations per example on average. We mea-
sured the running time taken by each algorithm to
converge within a specified tolerance of the optimal

value, gradient and Hessian at s. Indeed, we have ∇` =

∇ˆ̀= −BTT (x) +BT a′(Bs), and ∇2` = ∇2 ˆ̀= BT ΛB.
6We note that in each L1-regularized optimization prob-

lem produced by exponential family sparse coding, the
number of “features” is equal to the number of basis vectors
used, but is independent of the dimensionality of inputs x
in the original problem. For example, when applied to text,
the number of “features” is equal to the number of basis
vectors, but is independent of the number of words in the
vocabulary, which could be large.

7Baseline algorithms: Lee et al. show that IRLS-LARS
outperforms several previous algorithms, including graft-
ing (Perkins & Theiler, 2003), SCGIS (Goodman, 2004),
GenLasso (Roth, 2004) and Gl1ce (Lokhorst, 1999). IRLS-
FS, IRLS-LARS and l1-logreg were implemented in Mat-
lab, and OWL-QN and SubLBFGS were compiled in C++
with optimization flags. Code for all baselines was obtained
from the respective authors.
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Dataset Small1 Small2 Small3 Medium1 Medium2 Medium3 Large1 Large2 Large3
IRLS-LARS 4.6 4.9 4.3 12.8 12.5 13.2 1131 1270 1214
l1-logreg 18.3 18.9 17.7 181 188 185 3277 3101 3013
OWL-QN 7.1 7.0 10.3 27.1 31.4 25.6 1018 739 906
SubLBFGS 33.0 22.3 23.1 101 142 57.2 1953 2717 1627
IRLS-FS 2.5 2.3 2.2 5.3 5.5 5.4 117 108 109

Table 1: Total running time in seconds for computing activations for 50 input examples for 9 problems (one per column).
There are 3 problems each of 3 different sizes, and they are labeled Small1 to Small3, Medium1 to Medium3, or Large1
to Large3 based on the size of the problem. The Small problems had 200 basis vectors and input dimension 369, Med
problems had 600 basis vectors and dimension 369, and Large problems had 1000 basis vectors and dimension 3891.

Dataset Col Alon Duln Duer Arr Mad Hep Spf Prom Wbc Ion Spl Spc Spam
IRLS-LARS 2.1 3.3 6.2 35.6 2.2 25.6 0.5 5.0 2.1 5.0 3.5 18.3 2.6 57.8
l1-logreg 18.3 16.8 13.6 14.4 34.8 509 1.0 3.0 2.0 3.8 2.7 12.8 2.0 37.1
OWL-QN 27.4 29.4 16.9 79.6 7.7 634 0.1 3.4 0.4 13.4 1.9 7.1 0.9 39.3
SubLBFGS 114 80.8 60.5 311 24.3 261 0.7 9.3 2.7 14.4 4.5 13.4 2.1 43.0
IRLS-FS 1.9 1.9 2.5 7.1 1.5 14.0 0.3 2.3 1.3 2.9 2.0 10.4 1.9 50.8

Table 2: Total running time in seconds for 50 trials of learning parameters of various L1-regularized logistic regression
benchmarks. The sparsity parameter β was picked to optimize generalization error of the resulting classifier. The datasets
are ordered from left-to-right by increasing fraction of nonzero parameter values at the optimal solution (e.g., the problem
Col had 0.2% nonzeros, Mad: 3.2%, Hep: 26.3%, Spam: 66.7%).

objective value.8

Table 1 shows the running times computed over 50
trials. IRLS-FS outperforms the other algorithms on
this task, showing that it is well-suited to exponential
family sparse coding. When a large number of basis
vectors are used (while keeping the number of nonzero
activations fixed), IRLS-FS can be 5 to 7 times faster
than the best baseline algorithm.
This poses the question: can IRLS-FS be a useful al-
gorithm for general L1-regularized optimization prob-
lems (not necessarily ones generated by the sparse cod-
ing problem)? We compare the algorithms above on 14
moderate-size benchmark classification datasets, and
apply L1-regularized logistic regression to them.9 The
value of β on each benchmark was picked to optimize
the generalization error of the resulting logistic regres-
sion classifier; unlike the earlier experiment, β was not
set explicitly to obtain sparse solutions. Table 2 shows
the running time of the algorithms to compute the op-
timal parameters. IRLS-FS outperforms the other al-
gorithms on 8 out of 14 of these benchmark datasets;
as expected, it performs best when the optimal param-
eters have few nonzero values.

8Details: Since IRLS-LARS solves the dual or Lasso
version of our problem (i.e., with a constraint C on the
L1 norm of the activations rather than a penalty β), we
follow Lee et al.’s method of using the KKT conditions to
convert between the constraint value C and the equivalent
penalty β for that problem. We ran all algorithms until
they reached an objective value of (1 + ε)fopt where fopt

is the optimal objective value (we used ε = 10−6).
9These datasets were used to evaluate IRLS-LARS and

were obtained from the authors (Lee et al., 2006).

6. Self-taught learning for text
documents

The model presented in this paper generalizes Gaus-
sian sparse coding. It is also closely related to expo-
nential family PCA (Collins et al., 2001), which corre-
sponds to setting the sparsity penalty β to zero, and
additionally constraining the basis matrix B to have
orthogonal columns. We now show that the exponen-
tial family sparse coding model can produce better
self-taught learning performance than either of these
previous methods.
We apply our algorithm to two self-taught learning
problems in text classification: one using binary-
valued input vectors x ∈ {0, 1}k, and another using
integer-valued (word count) vectors x ∈ {0, 1, 2, . . . }k.
We constructed five different webpage classification
problems, and a newsgroup classification problem. We
used 470,000 unlabeled news articles (from the Reuters
corpus) to learn basis vectors according to the binary
and Poisson sparse coding models.10 Table 3 gives ex-

10Details: The webpage classification problems were cre-
ated using subcategories of the Arts, Business, Health,
Recreation and Sports categories of the DMOZ hierar-
chy. Each of them consisted of 10 separate binary clas-
sification problems over a 500 word vocabulary, with stop-
word removal and stemming. The newsgroup classification
problem consisted of 10 binary classification problems con-
structed using the 20 newsgroups dataset. We used 600
basis vectors, and picked β to achieve roughly 10% nonzero
activations. For learning, we used stochastic updates with
mini-batches of 2000 randomly sampled examples, and as-
sumed that the basis vectors had converged when the ob-
jective function did not decrease for 10 consecutive mini-
batch iterations.
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Table 3: Ten examples of basis vectors trained on the
Reuters data using Poisson sparse coding. Each group of
five words were the most highly active words (i.e., had
the highest weight) for some basis vector. Thus, each set
of five words is judged to be highly correlated with each
other. The top half contains basis vectors over the vocabu-
lary for the Business category, the bottom half for the Arts
category.

amples of basis vectors that were learned by applying
Poisson sparse coding. Basis vectors appeared to en-
code related words and capture various “topics.”
Using the learnt basis vectors, we computed features
for each classification task using the binary and Pois-
son sparse coding model. We call our model “Ex-
pSC” and compare against several baselines: the raw
words themselves (“Raw”), Gaussian sparse coding
(“GSC”), exponential family PCA with the same bi-
nary or Poisson exponential family assumption (“Exp-
PCA”), and also Latent Dirichlet Allocation (LDA),
a widely-known topic model for text documents (Blei
et al., 2002). All baselines (except the raw features)
were trained using the same unlabeled data as our
model. We also consider combinations of the raw
word features with the other types of features (e.g.,
“Raw+ExpSC” indicates a combination of the raw fea-
tures and the ExpSC features). All features were then
evaluated using standard supervised-learning classi-
fiers over 100 trials each for 4, 10 and 20 training ex-
amples.11

Figure 1 shows the classification results obtained for
various training set sizes. The left 6 figures show re-
sults for Poisson sparse coding with varying numbers
of training examples on the x-axis; the right 6 figures
show results for binary sparse coding. Poisson and bi-
nary sparse coding reduce error significantly over the
raw features in five and four out of six tasks respec-

11To evaluate the dependency of our results on the choice
of classifier, we first evaluated many generic classifiers in-
cluding SVM, Gaussian discriminant analysis (GDA), ker-
nel dependency estimation (KDE), KNN, decision trees,
etc; then, we chose the three best classifiers (GDA, KDE,
and SVM) for the raw bag-of-words features. We report
average results of the best performing classifier for each
feature. We picked the β value used for computing the
features by cross-validation. We verified that tuning the
classifier hyperparameters by cross-validation does not sig-
nificantly affect the results.

tively. The results for Poisson sparse coding are par-
ticularly striking, showing 20-30% error reduction in
some cases.
Table 4 shows the average test error over all problems
for the binary and Poisson case. The exponential fam-
ily sparse coding features alone frequently outperform
the other features, and produce slightly better results
when used in combination with the raw features (Ex-
pSC+Raw). The other three methods for using unla-
beled data (GSC, ExpPCA, LDA) perform poorly in
many cases.

Discussion

In this paper, we present a general method for self-
taught learning, that extends previous models in a
natural way. The extensions can still be solved effi-
ciently using the IRLS-FS algorithm, which we show
to be an efficient algorithm for medium-sized L1-
regularized learning problems with sparse optimal so-
lutions. We have shown that our model achieves better
self-taught learning performance than Gaussian sparse
coding or exponential family PCA. Overall, our re-
sults suggest that exponential family sparse coding can
learn high-level representations of documents from un-
labeled data, and that this prior knowledge is useful
in document classification problems. We believe this
model could be applied more generally to other lan-
guage problems, including information retrieval and
word sense disambiguation, where large amounts of
unlabeled data are available.
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Abstract

In this paper, we propose a robust statisti-
cal semantic tagging model trained on com-
pletely unannotated data. The approach re-
lies mainly on prior domain knowledge to
counterbalance the lack of semantically anno-
tated treebank data. The proposed method
encodes longer contextual information by
grouping strongly related semantic concepts
together into cohesive units. The method is
based on hidden Markov model (HMM) and
offers high ambiguity resolution power, out-
puts semantically rich information, and re-
quires relatively low human effort. The ap-
proach yields high-performance models that
are evaluated on two different corpora in two
application domains in English and German.

1. Introduction

A spoken dialog system with an ideal speech recog-
nizer can barely serve any purpose without a spoken
language understanding unit (SLU) that can infer the
intention underlying a recognized utterance. Spoken
language understanding can be easy for simple appli-
cation domains where users are restricted in the choice
of their formulation of a spoken request. However, the
task gets more challenging when a dialog system allows
human-to-human like conversation because the natural
phenomena of spontaneous speech such as hesitations,
false starts, filled pauses, etc. introduce undesirable
noise into the input.

Spoken language understanding has been a topic of re-

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

search since the 70s (Woods, 1983) and spontaneous
spoken language understanding has been of particu-
lar interest since the early 90s when multiple research
laboratories from both academia and industry partic-
ipated in the DARPA-funded Air Travel Information
System (ATIS) evaluations (Price, 1990). In general,
the approaches in the domain of spoken language un-
derstanding can be grouped as data-driven, rule-based
and a combination of the two. Data-driven approaches
such as those implemented in CHRONUS of AT&T
(Pieraccini & Levin, 1993), and Hidden Understand-
ing Model of BBN (Miller et al., 1994) estimate model
parameters from data by counting the frequencies of
transitions between states, word observations while in
each state and which states start a sentence. These
statistical models are robust and perform well but re-
quire a large corpus of fully annotated training ex-
amples, which is often not practically available. An-
other popular statistical approach that uses HMMs in
SLU is the Hidden Vector State model of Cambridge
University (He & Young, 2005). In the Hidden Vec-
tor State Model, state transitions between two states
are decomposed into separate stack operations that
transform one state to the other. A remarkable fea-
ture of the HVS model is that it can be trained on
“lightly” annotated data and it captures hierarchical
structure. Rule-based systems, on the other hand,
such as those implemented in TINA of MIT (Sen-
eff, 1992), PHOENIX of CMU (Ward & Issar, 1994),
and GEMINI of SRI (Dowding et al., 1994) use hand-
crafted semantic rules to extract meaning from a spo-
ken utterance. Rule-based systems do not require a
large amount of semantically annotated data and they
perform very well when the structure of the spoken
utterance is covered by the grammar. However, rule-
based systems, in general, are very expensive to build
and maintain since they require extensive manual in-
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volvement and expertise.

Different combinations of rule-based and statistical ap-
proaches have also been investigated. For instance,
the generative HMM/CFG (context free grammar)
model described in (Wang et al., 2005) integrates a
knowledge-based approach into a statistical learning
framework.

In this paper, we describe an approach towards spo-
ken language understanding that makes extensive use
of a priori domain knowledge in order to build domain-
dependent semantic models with relatively less human
intervention on completely unannotated data. We es-
sentially add semantic information to the output of
the speech recognizer of our dialog system so that a
deterministic program can easily infer the intention
of the user from the output of the semantic tagger.
Assuming that an utterance consists of a sequence of
concepts, the purpose of the required model is to de-
termine the most likely sequence of semantic concepts
that could have generated the observed sequence of
words. The notably distinguishing ability of hidden
Markov models (HMMs) to estimate the probability
of hidden events from observed ones makes them a
natural choice for this kind of task.

The remaining part of the paper is organized as fol-
lows. Section 2 briefly describes the architecture of our
telephone-based spoken dialog system. The modeling
approach is described in detail in Section 3. Section
4 describes the data used in the experiments that are
described in Section 5. Finally, concluding remarks
are presented in Section 6.

2. Architecture of the Dialog System

As can be seen in the high-level architecture of the sys-
tem in Figure 1, our VoiceXML-based telephone dia-
log system consists of a telephony interface component
to deliver calls into the system; an input component
to accept, recognize and understand spoken requests
from a caller; an output component to play prompts
and responses back to the user; a back-end to serve
dialog scripts and other resources; and at the core is a
dialog manager that orchestrates the various compo-
nents of the system.

The input component of the dialog system consists
of an audio source component, a speech recognizer, a
grammar (language model) component and a seman-
tic analyzer. The recognition resources used by the
recognizer; namely, the acoustic model, the language
model, and the pronunciation lexicon are prepared of-
fline using HTK (Young et al., 2006) and the real-time
speech recognizer is built using ATK (Young, 2007).

Figure 1. High-level Block Diagram of the Dialog System.

The output of the speech recognizer is sent to the se-
mantic analyzer which we describe in this paper so that
the text output of the recognized utterance is enriched
with semantic information.

At the core of the system is c©OptimTalk 1 - a
VoiceXML platform which consists of not only a
VoiceXML interpreter but also a CCXML interpreter,
and other abstract interfaces for the integration of our
ASR engine, TTS engine, telephony interface, seman-
tic interpreter, etc. The VoiceXML interpreter in Op-
timTalk serves as the dialog manager in that it exe-
cutes the dialog by calling the appropriate methods of
the various components of the dialog system as shown
in Figure 1.

3. Modeling Approach

Understanding an application domain requires a pre-
cise identification of the activities, entities, events, at-
tributes and relations within the domain of discourse.
The ontologies of the two application domains of in-
terest in this paper - namely, airline travel planning
and train inquiries, are modeled in two stages. In the
first stage, a detailed list of concepts that are relevant
in each application domain are identified using prior
domain knowledge and domain-specific example sen-
tences from the training data. As a result, 68 semantic
concepts in the domain of airline travel planning and
50 in that of train inquiries are identified. In the sec-
ond stage, groups of attributes that describe a single
semantic concept are grouped together to form cohe-
sive units referred to as super-concepts. For instance,
a super-concept DATE contains attributes such as

1http://www.optimsys.eu
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DAY OF MONTH, DAY OF WEEK, MONTH, and
YEAR. As can be imagined, the prior knowledge used
to determine which attributes should belong together
to form a super-concept is a commonplace knowledge.
Moreover, in order to model multi-word city names
and train stations such as “New York City” or “Berlin
Friedrichstrasse”, we model each with multiple states.
The number of sub-concepts in a super-concept can
vary; on average, a super-concept contains 3.6 sub-
concepts in each application domain.

Accordingly, 14 super-concepts for airline travel plan-
ning and 9 for the domain of train inquires are iden-
tified. Figure 2 depicts examples of super-concepts
along with their attributes (sub-concepts) in the do-
main of airline travel planning.

Figure 2. Example super-concepts

Other single state concepts include COUNTRY,
STATE, TO, FROM, AT, IN, ON, ARRIVAL,
DEPARTURE, RETURN, COMMAND, YES, NO,
DUMMY, ...

The rationale behind grouping related sub-concepts
together is threefold. First, it improves the predic-
tive power of the model since adjacent related concepts
are well coupled. Second, the models produce outputs
that are semantically rich and more informative since a
phrase is more meaningful than a single word. For in-
stance, phrases like “Saturday the sixteenth of August
two thousand eight” or multiword location names such
as “Washington D. C.” etc. would be more informative
if the phrases are labeled as “DATE” and “CITY”,
rather than tagging each piece with an atomic se-
mantic label. Third, it offers high ambiguity resolu-
tion power. For instance, ”twenty six” in ”November
twenty six” would not be confused with other seman-
tic labels such as HOUR, MINUTES, QUANTITY,
FLIGHT NUMBER, ID NUMBER, etc. as DATE is
a super-concept whose attributes are well coupled.

The initial HMMs are defined to be fully connected

networks such that any state or sub-network can fol-
low any other single state concept or sub-network with
equal probability. Self-loops are allowed in most of
the semantic concepts to account for multiple obser-
vations from some concepts such as DUMMY, PE-
RIOD OF DAY, DAY OF MONTH, MINUTES, etc.
Every sub-network has its own non-emitting entry
and exit states and the transitions between the states
within a sub-network are initially ergodic. A one-step
transition from the entry state to the exit state of a
sub-network is explicitly prohibited to prevent non-
emitting loops. Finally, two more non-emitting states
INIT and FINAL are introduced to mark the begin-
ning and end of the entire network. Figure 3 shows
the partial structure of the HMM for the domain of
airline travel planning.

Figure 3. Structure of the HMM

The emission probabilities are initialized by classifying
the words in the vocabulary of the application domains
into the known set of lexical classes. All words belong-
ing to a semantic label are set equiprobable.

Once we define the model, it may be necessary to bias
the transition and emission probabilities of the HMM
a bit since we do not have hand-labeled corpus (Elwor-
thy, 1994). This can be done by performing prelimi-
nary tests on the training or development data and in-
troducing necessary contraints. For instance, in order
to disambiguate words belonging to multiple seman-
tic classes, some unlikely transitions that could not
be resolved by the model can be explictly prohibited.
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To provide easy tuning and to keep the level of hu-
man effort to the minimum, we implemented a model
compiler that generates the transition and emission
probabilities of the model given the structure and con-
straints of the HMM in the form shown in Figure 4.

Figure 4. Excerpt from the model definition

The initial model transition probabilities can be easily
tuned as required using the keywords “all”, “high”,
“low”, “except”, and “none”. The model compiler
also allows us to try different modeling approaches at
different levels of hierarchy with relatively less effort
than would be required otherwise. The keywords are
self-explanatory; for instance, “− >except{...}” means
that all transitions out of a state (e.g. INIT) or sub-
network (e.g. CITY) are equally likely except the
state(s) specified in braces (e.g. FINAL). The keyword
“high” sets a higher probability to the specified tran-
sitions than to the rest. For every sub-network the en-
try state is denoted by the name of the super-concept

(e.g. CITY) and the exit state by a tilde followed by
the name of the super-concept (e.g. ~CITY).

Given “well-informed” initial models, the Expectation-
Maximization (EM) algorithm can be used to estimate
reliable model parameters. The algorithm starts with
the carefully defined initial HMM described above and
iteratively refines the model parameter values. Once
we have a well-trained model, the Viterbi algorithm
can be used to find the highest probability semantic
label sequence which corresponds to the sequence of
observed words.

4. Data Description

The semantic model for airline travel planning domain
is trained and evaluated on the transcriptions of speech
data from the 2001 DARPA Communicator Evaluation
telephone speech corpus (Walker et al., 2003). Table 1
describes the training and test sets of the airline travel
planning domain used in the experiments described in
Section 5.

Table 1. Description of data for airline travel planning do-
main

Set # of Utt. # of Uniq. Words

Training 8000 915

Test 1000 581

The transcriptions of 8000 utterances were selected
from the training data that we used to build the acous-
tic model for our speech recognizer by removing too
many occurences of some very short utterances such as
“yes”, and “no”. For testing purposes, 1000 distinct,
relatively longer utterance transcriptions are selected
from a 5000 utterance test-set. The average number
of words per utterance are 4.04 and 8.98 in the train-
ing and test sets of the airline travel planning domain,
respectively.

For the domain of train inquiries, we use the transcrip-
tions of utterances from c©Erlanger Bahn Anfragen
(ERBA) speech corpus in German. Table 2 describes
the data used to build and evaluate the German se-
mantic model.

Table 2. Description of data for train inquiries domain

Set # of Utt. # of Uniq. Words

Training 8000 921

Test 1000 830
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The utterances in the domain of train inquiries are
long, well-structured, and grammatically correct ut-
terances. The average number of words per utterance
are 12.26 and 11.76 in the training and test sets, re-
spectively.

5. Experiments and Results

The performance of the systems is evaluated using pre-
cision, recall and F-measure where precision (P) is the
number of correctly labeled concept chunks out of all
tagged concepts, recall (R) is the number of correctly
identified concepts from the ground truth annotation.
F-measure is the harmonic mean of precision and recall
defined by Equation 1

F =
2PR

P + R
(1)

5.1. The Effect of the Proposed Modeling
Method

If we randomly assign to each token one of its possi-
ble tags, we achieve an average performance rate of
56.4% in F-measure. This can be considered as the
minimum average baseline performance on the airline
travel planning domain.

Table 3 summarizes the performance gain mainly due
to the modeling approach we described in Section 3.
“Flat” in Table 3 refers to a flat, ergodic HMM model,
before grouping of related concepts where each state
is one of the sub-concepts or single state concepts de-
scribed in Section 3. “Grouped” in Table 3 refers to
a model just after grouping related sub-concepts to-
gether. In both cases no tuning is performed.

Table 3. Flat vs. Grouped initial models on Communicator
task

Model P(%) R(%) F-Measure(%)

Flat 57.32 66.42 61.53

Grouped 85.67 77.98 81.64

As can be seen in Table 3, the performance was im-
proved by 20.11% absolute in F-measure just after
grouping related concepts together using our prior do-
main knowledge. This suggests the modeling approach
we used is quite suitable for this kind of task.

The experiments that follow describe the performance
of both airline travel planning and train inquiries sys-
tems stage by stage using the proposed modeling ap-
proach.

5.2. Performance of the Initial Models after
Tuning

Table 4 depicts the performance of the initial models
tuned as described in Section 3 before EM training.

Table 4. Performance of the tuned initial models

Data P(%) R(%) F-Measure(%)

Communicator 96.15 84.46 89.92

ERBA 94.90 94.19 94.54

As can be observed, the performance of the initial
model after tuning is improved significantly.

5.3. Performance of the Models after Training

The results after performing EM training are summa-
rized in Tables 5.

Table 5. Performance of the models after training

Data P(%) R(%) F-Measure(%)

Communicator 98.75 84.58 91.12

ERBA 96.94 96.19 96.56

The best performance was achieved after only one it-
eration of training on the airline travel planning and
two on the train information inquiries domain, respec-
tively. It can be noted in Table 5 that the recall,
mainly for the airline travel planning domain, is quite
low. This is due to unseen transitions and “out-of-
vocabulary” words (OOVs) that resulted in some un-
parseable utterances. This is, in turn, attributed to the
sparse data problem and the inevitability of OOVs. In
order to combat this problem, we smoothed transition
and emission probabilities. The recall in the train in-
quiries domain is high because the rate of OOVs in the
German test-set is low.

5.4. Performance after Smoothing

In the case of transitions, we assigned a very small non-
zero probability for all allowable transitions not seen in
the training data. For words not found in the lexicon,
we introduced a vocabulary item “oov” in those lexical
classes where there is no exhaustive list of words; for
instance, CITY, DUMMY, AIRLINE, etc. The prob-
ability of the “oov” word in a concept is set to the
sum of the probabilities of all words belonging to that
concept that occur only once in the training set; the
rest of the probabilities are discounted accordingly so

35



Using Prior Domain Knowledge for Semantic Tagging

that all sum up to one. As a result, all the sentences
could be parsed and 69% of the “oov” words out of 135
in the domain of airline travel planning were correctly
labeled.

Accordingly, the performance of the models is signifi-
cantly improved as can be seen in Table 6.

Table 6. Performance of the models after smoothing

Data P(%) R(%) F-Measure(%)

Communicator 96.91 97.12 97.01

ERBA 96.82 97.41 97.11

5.5. Example Tagged Outputs

An example tagged output of an utterance in the do-
main of airline planning is:
(I want to fly) DUMMY (from) FROM (Los Ange-
les) CITY (to) TO (Osaka) CITY (Japan) COUNTRY
(on) ON (September thirtieth) DATE (in the morning)
PERIOD OF DAY
An example tagged output of an utterance in the do-
main of train inquiries in German2 is:
(ich moechte) DUMMY (alle) MODIFIER (Ab-
fahrts) DEPARTURE (und) CONNECTIVE (Ankun-
ftszeiten) ARRIVAL (aller) MODIFIER (Zuege)
TRAIN (nach) TO (Minden) LOCATION (an) ON
(einem) DUMMY (Wochentag) DATE (zwischen neun
und sechs Uhr) PERIOD OF DAY

6. Conclusions

In this paper, we described the use of prior domain
knowledge to build an HMM-based semantic tagging
model with four main virtues - namely, it is trained on
completely unlabeled data, it offers high ambiguity res-
olution ability, it outputs naturally appealing and se-
mantically rich information, and it requires relatively
low human effort as the model itself takes care of many
sources of ambiguity. Moreover, the model is robust in
that it could parse unseen observations and could cor-
rectly label a significant amount of out-of-vocabulary
words. The performance of the proposed model is
97.01% for airline travel planning and 97.11% for train-
inquires system in F-measure on 1000-utterance test-
sets. The success of this approach relies mainly on the
use of a priori domain knowledge to build a reliable
initial model while keeping the human effort to the
minimum.

2Translation of the German utterance: I want all depar-
ture and arrival times of all trains to Minden on a weekday
between nine and six o’clock
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Abstract

This paper evaluates the use of prior knowl-
edge to limit or bias the choices of a classifier
during otherwise unsupervised training and
classification. Focusing on effects in the un-
certainty of the model’s decisions, we quan-
tify the contributions of the knowledge source
as a reduction in the conditional entropy of
the label distribution given the input cor-
pus. Allowing us to compare different sets of
knowledge without annotated data, we find
that label entropy is highly predictive of final
performance for a standard Hidden Markov
Model (HMM) on the task of part-of-speech
tagging. Our results show too that even ba-
sic levels of knowledge, integrated as labeling
constraints, have considerable effect on classi-
fication accuracy, in addition to more stable
and efficient training convergence. Finally,
for cases where the model’s internal classes
need to be interpreted and mapped to a de-
sired label set, we find that, for constrained
models, the requirements for annotated data
to make quality assignments are greatly re-
duced.

1. Introduction

This paper investigates one of the simplest methods
for integrating prior knowledge into the training of
an unsupervised classifier, in particular the restric-

Appearing in Workshop on Prior Knowledge for Text and
Language, Helsinki, Finland, 2008. Copyright 2008 by the
author(s)/owner(s).

tion or, more generally, weighting of output labels for
each given input. In this setting, we focus on how the
knowledge source constrains the set of available choices
for the learner, effectively reducing the uncertainty in
the classification decision. More precisely, viewing this
guidance as a distribution over label output for the
input data, we then may quantify and compare the
effects of different sets of knowledge in terms of condi-
tional entropy, without the need for annotated data.

To evaluate the relationship between knowledge con-
straints, uncertainty, and classification performance,
we take the basic task of part-of-speech tagging,
with the standard, first-order Hidden Markov Model
(HMM) tagger of Merialdo (1994). We apply a number
of basic constraint sets during training and evaluation,
from lexical rules to partial tagging dictionaries, and
find that the conditional label entropy is highly predic-
tive of final model performance, with even the weakest
constraints leading to large increases in classification
accuracy. In addition, we see considerable reductions
of variance in performance with respect to initial con-
ditions and accelerated training convergence. Finally,
addressing the problem of assigning interpretable la-
bels to internal model classes, we find that the more
constrained models require much less annotated data
to find quality mappings.

The remainder of the paper is organized as follows.
After discussing related work in the next section, we
formalize the learning setting and clarify our entropy
calculation in Section 3. Following a brief description
of our constraint sets in Section 4, we present our re-
sults in Section 5 and conclude with a discussion in
Section 6.
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2. Related Work

A major impetus of the present study was John-
son’s (2007) comparison of Expectation-Maximization
(EM) and Bayesian estimators for unsupervised tag-
ging, in particular the following conclusions of that
work: (1) EM can be competitive with more sophis-
ticated Bayesian methods, (2) greatly subject to the
choice of evaluation method, but (3) to a certain ex-
tent, it is possible to compensate for EM’s weakness
in estimating skewed distributions by constraining the
model to exclude rare events. While this is certainly
not an argument against the use of better estimators,
it does suggest the potential benefits of even simple
means to guide model training.

Merialdo (1994) introduced the statistical tagging
models employed in this paper and many, many others,
both for supervised and unsupervised training. Like
the original, much subsequent work on unsupervised
tagging has relied on a full dictionary of possible tags
for each word, which in practice constrains the training
sufficiently to obviate the need for remapping of model
output. More recent approaches with discriminative
models (Smith & Eisner, 2005) and Bayesian estima-
tors (Goldwater & Griffiths, 2007) have achieved good
performance while reducing the dictionary. Haghighi
and Klein (2006) require only a limited set of class
prototypes and representations of their context distri-
butions, while Toutanova and Johnson (2008) use only
the possible groups of tags over which words are seen
to vary.

Our simple integration of knowledge constraints may
be viewed as an instance of virtual evidence (Pearl,
1988), a method to account for external judgements
not easily expressed in terms of the probability dis-
tributions and dependencies encoded by the model.
Bilmes (2004) suggests virtual evidence as a means to
integrate the assessments of external models. Chang
et al. (2007) uses weighted constraints successfully
to guide search in an iterative algorithm for semi-
supervised learning.

3. Knowledge as a Constraint on
Uncertainty

To evaluate the effects of prior knowledge in entropic
terms, we extend the usual formulation of a classifier to
include, along with each input x, a mapping φx(y) of
each output label y to a non-negative weight. That is,
we define a classifier as a mapping X × (Y → R)→ Y.
In the supervised case, φx(y) is non-zero for exactly
one value of y, while in the purely unsupervised case,
the weights are equal for all values of y. Normalizing

the weights and interpreting them as a distribution
p(Y = y|X = x), the conditional entropy H(Y |X) is
a natural measure of the uncertainty facing the clas-
sifier and a means to compare and predict the effects
of different sets of knowledge.1 Because the uniform
distribution has the maximum entropy for an event
space of a given cardinality (Cover & Thomas, 1991),
any adjustment to the label weights must reduce en-
tropy relative to the purely unsupervised case. As-
suming this reweighting does not penalize or eliminate
the correct label, we expect a similar improvement to
model accuracy.

3.1. Entropy Calculation

For sequential labeling tasks such as part-of-speech
tagging, we generally label each token individually to
avoid sparsity in our estimation, and so it is natural
to take the x and y in the p(y|x) above to refer to a
single input token and label. Some of the constraints
in our experiments involve context, however, so that
φx(y) may vary between instances of x in the corpus.
Accordingly, we must introduce some notion of context
C and calculate the entropy as

H(Y |X, C) =
X

x

X
c

p(x, c) H(Y |X = x, C = c)

=
X

x

p(x)
X

c

p(c|x)
X

y

p(y|x, c) log p(y|x, c)

If, however, we estimate p(c|x) by simple counts over
contexts that are equivalent under our constraints, we
effectively sum out c, computing H(Y |X = x) as an
average of H(Y |X = x,C) in all contexts. Thus, while
our calculations use p(y|x, c), we will continue to speak
of H(Y |X) for the remainder of the paper.

4. Constraints on Unsupervised
Tagging

Great care is always required to evaluate an unsuper-
vised classifier fairly against a labeled corpus, but eval-
uation is even more of a delicate matter when addi-
tional prior knowledge is involved. Ideally our knowl-
edge should not be derived from the corpus, or we are
crossing the line into supervised learning, but, practi-
cally, a successful set of constraints must accord with
the knowledge implicit in the annotated data and be
expressed in similar terms.2 Accordingly, unless noted
otherwise, we construct the following constraint sets

1This value also accords with the common informal
characterization of classification difficulty in terms of aver-
age possible labels per input element.

2For example, an educated speaker of English would dif-
ferentiate between the uses of the word ‘to’ as a preposition
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from the knowledge of a native speaker and from gen-
eral grammar resources, independent of the corpus.

Base Lexical Constraints For our base rule set, we
include knowledge about punctuation, numbers, and
capitalization, with numbers forced to either contain
a digit or recursively to follow another possible number
(to handle, e.g. ‘10 million’), and proper nouns defined
similarly with respect to capitalization.

Closed Tags For each closed part-of-speech tag, we
then add (incomplete) lists of possible words, derived
from external sources as available.

Top Words Like much work on unsupervised tag-
ging, we finally apply a tagging dictionary built from
the corpus, but only for the 100 or 200 most common
words, a much more limited amount of annotation.

For most of the experiments, we apply the above as
hard constraints, with all violating hypotheses ex-
cluded, but we also examine the use of soft constraints,
where hypotheses that observe the rules are simply
preferred.

5. Experimental Results

5.1. Experimental Overview

In our experiments, we performed unsupervised train-
ing of the simple first-order HMM tagging model of
Merialdo (1994), using the EM algorithm with a va-
riety of constraint sets. Our implementation used the
Graphical Models Toolkit (GMTK) (Bilmes & Zweig,
2002), with hard and soft constraints integrated via
the toolkit’s deterministic node construct.3 For train-
ing and evaluation, we used the Wall St. Journal por-
tion of the Penn Treebank, version 3 (Marcus et al.,
1993), with data sets containing the 48k, 96k, and 193k
words following the start of section 2.

To account for the local search properties of EM, we
repeated each experiment 10 times, training for 500 it-
erations, with parameters initialized by small, random
perturbations from the uniform distribution. Because
our constraints cause no changes to the model’s pa-
rameter set, it was possible to use the same random
initializations across constraints for each data set, and
thus attempt to control for any bias from particularly
good or bad initialization points.4

and as an infinitive verb marker, but in the Penn Treebank
corpus, both are labeled ‘TO’.

3We thank Chris Bartels for assistance on model imple-
mentation.

4From casual inspection, however, we did not see any

For evaluation, we used the ‘many-to-one’ and ‘one-
to-one’ labeling procedures as described by Johnson
(2007), which greedily assign each model state to the
annotated tag with which it occurs most often, respec-
tively either allowing or prohibiting multiple states to
map to a single tag. While, as Johnson (2007) and
(Haghighi & Klein, 2006) mention, we may cheat with
the many-to-one labeling by inflating the number of
model states, this flaw seems less critical if the state
count equals the size of the tag set, as in our experi-
ments.

5.2. Results and Analysis

As summarized in Table 1 we find that even the least
constrained models show considerable improvement
over the baseline, with up to 20-30 percentage points
gained in accuracy. Despite the simplistic nature of
the model, performance is often surprisingly close to
much more sophisticated models and training tech-
niques, e.g. (Smith & Eisner, 2005; Haghighi & Klein,
2006; Goldwater & Griffiths, 2007). As we might ex-
pect, the effects are most pronounced on the smaller
data sets, where the constraints serve as a strong prior
compensating for lack of evidence, similar to what we
see with the Bayesian models of Goldwater and Grif-
fiths (2007). The effect on both the many-to-one and
one-to-one label assignments is roughly equal across
experiments, so that the difference in accuracy be-
tween the two assignments changes little as we add
constraints.

To assess the effect of uncertainty on final model per-
formance, we computed the Pearson correlation coef-
ficient r2 between the label entropy and the classifier
accuracy, as shown in Figure 1. While the two are not
fully correlated – and we should not necessarily expect
them to be – the entropy measure is quite indicative
of performance, and we conclude that is a reasonable
means for predicting the effects of domain knowledge
when annotated data is unavailable for evaluation.

Of course, knowledge is helpful only if the correct
answer is not among the excluded hypotheses. We
explored the effects of imperfect knowledge by ap-
plying our closed-tag rules set as a hard constraint
and then as a soft constraint with relative likelihood
weights ranging from 2:1 to 16:1. Though these rules
are incomplete for most of the tags covered, and thus
the correct labels for many words were excluded, we
saw the hard constraints perform best, edging out the
highest-weight soft constraints. It appears that, while

performance patterns across runs. One might argue that
different constraints lead to completely different optimiza-
tion surfaces and extrema under EM.
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Model
48k 96k 193k

H(Y |X) N:1 1:1 H(Y |X) N:1 1:1 H(Y |X) N:1 1:1

Base 5.49 33.8 (3.7) 21.7 (2.8) 5.49 42.9 (4.4) 30.1 (3.2) 5.49 52.1 (2.5) 34.4 (3.1)
Lower case 5.49 42.3 (2.2) 29.7 (2.3) 5.49 48.9 (2.4) 34.6 (2.5) 5.49 52.7 (2.3) 36.8 (1.9)
+Baselex 4.31 53.6 (0.8) 39.8 (1.9) 4.29 57.3 (0.8) 42.4 (1.6) 4.30 60.7 (0.8) 43.9 (1.7)
+Closed 3.71 64.9 (0.8) 54.3 (0.8) 3.69 66.2 (0.5) 55.5 (0.9) 3.70 67.4 (0.6) 56.4 (0.6)
+Top 100 3.49 69.2 (0.0) 57.8 (0.3) 3.47 70.1 (0.1) 58.6 (0.2) 3.48 71.0 (0.2) 59.5 (0.1)
+Top 200 3.49 71.9 (0.1) 60.5 (0.6) 3.47 72.8 (0.1) 61.7 (0.3) 3.48 73.8 (0.1) 62.1 (0.3)

Table 1. Tagging accuracy with increasing knowledge (as measured by conditional label entropy) on different data sets.
Models were evaluated using the many-to-one and one-to-one label assignments, with results averaged over 10 runs,
standard deviation in parentheses. Except for the base model, all words were mapped to lower case to reduce vocabulary
size.
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Figure 1. Correlation between conditional entropy
H(Y |X) and accuracy, for all runs on the 193k data
set.
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Figure 2. Mean accuracy for constraint sets over train-
ing iterations (only minor increases after 200), for 45-
state bigram, 193k data set.

the hard rules forced errors, the most common words
in each tag were covered fairly well by the grammar
lists we used, and the extra reduction in uncertainty
outweighed the more obscure errors. A similar effect
is observed in Banko and Moore (2004), where they
find quite significant gains by filtering out the rare
tags of each word. This does not mean necessarily
that only hard constraints are useful (indeed, Chang
et al. (2007) finds soft constraints to be superior), but
it seems they can be beneficial even when they over-
simplify the facts, especially for a simple model that
has little hope of labeling rare and difficult events cor-
rectly. We assume, too, that it would be more ideal
to separate rules according to our confidence in them,
and assign weights accordingly.

Finally we found that increased knowledge constraints
lead to a reduction in the variance of model perfor-
mance across runs, a major benefit given the problems
of local extrema in most unsupervised methods and the
difficulty of choosing an optimal model without anno-
tated data. For our most constrained ‘Top 100’ and

‘Top 200’ model sets, the standard deviation of the ac-
curacy was generally under 0.5 percentage points. Ad-
ditional knowledge also constrained the training pro-
cess, with accuracy converging in fewer iterations. Fig-
ure 2 plots the accuracy for models trained on the 193k
data set, illustrating how the addition of rules leads to
a steeper optimization surface for EM.

5.3. Labeling and Annotation

While the use of fully annotated data to label inter-
nal model states is a practical necessity of evaluation
in this and similar work, such an artificial scenario is
problematic for those real-world situations where clas-
sifier output needs to be interpreted or passed to an-
other component in the pipeline (i.e. not just treated
as clustering). In such cases, we face the question of
how much labeled data is required to perform a quality
label assignment.

To explore this issue, we labeled the output of different
models trained on the 193k data set, but with only
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Mapping Accuracy and Labeled Data

Figure 3. Accuracy convergence of many-to-one labeling
methods, as increasing portions of the training data an-
notations are used to make label assignments, for models
trained on the 193k corpus.

part of the annotated data available to generate the
mappings. Figure 3 shows the results of the many-to-
many method, plotting each data set proportion with
the accuracy of the induced label mapping, relative
to the best accuracy when all data was used.5 As
an example, consider the case of the unconstrained,
lowercased model. With 10% of the data, or roughly
19k words, the labeling accuracy was 48.1, compared
to 52.7 when the entire set is used, so that this partial-
data assignment performs at 0.91 of its full accuracy.

Our first impression is that labeling performance con-
verges relatively quickly, but we should note that even
the 5% portion represents nearly 10,000 words of an-
notation. Still, with the more constrained knowledge
sets, 90% of optimal accuracy is reached with only 2%
of the data (4k words), so once again the use of prior
knowledge is extremely beneficial in a practical setting.

6. Discussion

We have presented the view of prior knowledge as a re-
duction of uncertainty in the training of unsupervised
classifiers, showing label entropy to be an effective and
predictive measure of the contributions of that knowl-
edge, and a means for assessment without annotated
data. We found that quite basic domain knowledge can
lead to significant performance improvements, with

5One-to-one convergence was slightly faster, but the rel-
ative rates of the different constraints were similar.

the additional benefits of faster training convergence,
better stability, and reduced data requirements for la-
bel mapping. While the effects here are no doubt exag-
gerated by our impoverished models and data sets and
the simplicity of the task, our results suggest that even
the simple integration of prior knowledge is worthwhile
where labeled data is lacking.
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Abstract

In this work we apply Dirichlet Process Mix-
ture Models to a learning task in natural
language processing (NLP): lexical-semantic
verb clustering. We assess the performance
on a dataset based on Levin’s (1993) verb
classes using the recently introduced V-
measure metric. In, we present a method to
add human supervision to the model in or-
der to to influence the solution with respect
to some prior knowledge. The quantitative
evaluation performed highlights the benefits
of the chosen method compared to previously
used clustering approaches.

1. Introduction

Bayesian non-parametric models have received a lot of
attention in the machine learning community. These
models have the attractive property that the number
of components used to model the data is not fixed in
advance but is actually determined by the model and
the data. This property is particularly interesting for
natural language processing (NLP) where many tasks
are aimed at discovering novel, previously unknown
information in corpora.

In this work, we apply the basic models of this class,
Dirichlet Process Mixture Models (DPMMs) (Neal,
2000) to a typical unsupervised learning task in NLP:
lexical-semantic verb clustering. The task involves
discovering classes of verbs similar in terms of their

Appearing in ICML Workshop on Prior Knowledge for Text
and Language Processing, Helsinki, Finland, 2008.

syntactic-semantic properties (e.g. MOTION class for
the verbs “travel”, “walk” and “run”). Such classes
can provide important support for other NLP tasks
and applications. Although some fixed classifications
are available (e.g. Levin (1993)), these are not compre-
hensive and are inadequate for specific domains such
as the biomedical one (Korhonen et al., 2006b).

The clustering algorithms applied to this task so far
require the number of clusters as input (Schulte im
Walde, 2006; Korhonen et al., 2006b). This is prob-
lematic as we do not know how many classes exist in
the data. Even if the number of classes in a particu-
lar dataset was known (e.g. in the context of a care-
fully controlled experiment), a particular dataset may
not contain instances for all the classes. Moreover,
each class is not necessarily contained in one cluster
exclusively, since the target classes are defined man-
ually without taking into account the feature repre-
sentation used. The fact that DPMMs do not require
the number of target clusters in advance, renders them
particularly promising for the many NLP tasks where
clustering is used for learning purposes.

In addition to applying the standard DPMM to verb
clustering we also present a method to add human su-
pervision to the model in order to to influence the so-
lution with respect to some prior intuition or some
considerations relevant to the application in mind.
We achieve this by enforcing pairwise clustering con-
straints on the solution discovered by the model. We
evaluate these methods on two different datasets in-
cluding general English and biomedical verbs, respec-
tively. Our results compare favourably to earlier re-
sults reported with verb clustering and demonstrate
the potential of DPMM based models for discovering
novel information from natural language data.
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Figure 1. Graphical representation of DPMMs.

2. Unsupervised clustering with
DPMMs

With DPMMs, as with other Bayesian non-parametric
models, the number of mixture components is not fixed
in advance, but is determined by the model and the
data. The parameters of each component are gener-
ated by a Dirichlet Process (DP) which can be seen
as a distribution over the parameters of other distri-
butions. In turn, each instance is generated by the
chosen component given the parameters defined in the
previous step:

G|α, G0 ∼ DP (α, G0)
θzi
|G ∼ G (1)

xi|θzi
∼ p(xi|θzi

)

In Eq. 1, G0 and G are probability distributions over
the component parameters (θ), and α > 0 is the con-
centration parameter which determines the variance
of the Dirichlet process. We can think of G as a ran-
domly drawn probability distribution with mean G0.
Intuitively, the larger α is, the more similar G will be
to G0. zi is the component chosen for instance xi, and
θzi

its parameters. The graphical model is depicted in
Figure 1.

The prior for assigning instance xi to either an existing
component z or to a new one znew conditioned on the
other component assignments (z−i) is given by:

p(zi = z|z−i) =
n−i,z

N − 1 + α
(2)

p(zi = znew|z−i) =
α

N − 1 + α

where n−i,z is the number of instances assigned to

component z excluding instance xi and N is the to-
tal number of instances. A clustering of the instances
is generated by assigning more than one instance to
the same mixture component.

The prior in Eq. 2 exemplifies two main properties of
the DPMMs. Firstly, the probability of assigning an
instance to a particular component is proportionate to
the number of instances already assigned to it (n−i,z).
In other words, DPMMs exhibit the “rich get richer”
property. Secondly, the probability that a new cluster
is created depends on the concentration parameter α.

A popular metaphor to describe DPMMs is the Chi-
nese Restaurant Process. Customers (instances) arrive
at a Chinese restaurant which has an infinite number of
tables (components). Each customer chooses to sit at
one of the tables that is either occupied (p(zi = z|z−i))
or vacant (p(zi = znew|z−i)). Popular tables attract
more customers.

An alternative view of DPMMs is the stick-breaking
construction (Sethuraman, 1994). In this construc-
tion, the mixing proportions of the components (πk)
are produced as follows:

πk = βk

k−1∏
j=1

(1− βj) (3)

βk ∼ B(1, α)

where B is the Beta distribution. It can be verified
that

∑∞
k=1 πk = 1. Intuitively, the mixing proportion

of each component is obtained by successively breaking
a stick of unit length. As a result, the mixing propor-
tion of a new component gets progressively smaller.
In order to generate an instance xi, the component zi

is chosen using a multinomial distribution parameter-
ized by the mixing proportions πk, and the instance is
generated as in Eq. 1.

3. Evaluation

The evaluation of unsupervised clustering against a
gold standard is not straightforward because the clus-
ters found by the algorithm are not associated with
the classes in the gold standard. Formally defined,
the method partitions a set of instances X = {xi|i =
1, ..., N} into a set of clusters K = {kj |j = 1, ..., |K|}.
To evaluate the quality of the resulting clusters, we use
an external gold standard in which the instances are
partitioned into a set of classes C = {cl|l = 1, ..., |C|}.
The aim of a clustering algorithm is to find a parti-
tioning of the instances K that resembles as closely as
possible the gold standard C.

Most work on verb clustering has used F-measure or
the Rand Index (Rand, 1971) for quantitative eval-
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uation. However, Rosenberg and Hirschberg (2007)
point out that F-measure assumes (the missing) map-
ping between cl and kj . Also, in their experimental
assessment they show that when the number of clus-
ters not representing a particular class was increased
the Rand Index did not decrease. Another recently in-
troduced metric, variation information (Meilă, 2007),
while it avoids these problems, its value range de-
pends on the maximum number of classes |C| and
clusters |K| involved in the evaluation, rendering the
performance comparisons between different algorithms
and/or datasets difficult (Rosenberg & Hirschberg,
2007). Rosenberg and Hirschberg suggest a new
information-theoretic metric for clustering evaluation:
V-measure. V-measure is the harmonic mean of homo-
geneity and completeness which evaluate the quality of
the clustering in a complementary way. Homogeneity
assesses the degree to which each cluster contains in-
stances from a single class of C. This is computed as
the conditional entropy of the class distribution of the
gold standard given the clustering discovered by the
algorithm, H(C|K), normalized by the entropy of the
class distribution in the gold standard, H(C). Com-
pleteness assesses the degree to which each class is con-
tained in a single cluster. This is computed as the con-
ditional entropy of the cluster distribution discovered
by the algorithm given the class, H(K|C), normalized
by the entropy of the cluster distribution, H(K). In
both cases, we subtract the resulting ratios from 1 to
associate higher scores with better solutions:

h = 1− H(C|K)
H(C)

c = 1− H(K|C)
H(K)

V =
2 ∗ h ∗ c

h + c
(4)

We should note that V-measure favors clustering so-
lutions with a large number of clusters (large |K|),
since such solutions can achieve very high homogene-
ity while maintaining reasonable completeness (Rosen-
berg & Hirschberg, 2007). To demonstrate this bias
for the dataset used in the following section, the clus-
tering solution in which each verb is assigned to a
singleton cluster achieves 100% homogeneity, 53.3%
completeness and 69.5% V-measure, which are in fact
higher than the scores achieved by any of the cluster-
ing methods evaluated in the following sections. While
increasing |K| does not guarantee an increase in V-
measure (splitting homogeneous clusters would reduce
completeness without improving homogeneity), it is
easier to achieve higher scores when more clusters are
produced. The lenience of V-measure towards such

solutions reflects the intuition mentioned in the intro-
duction that a single class is likely to be contained in
more than one cluster given the representation used.
As our method does not require the number of clusters
in advance, it is worth keeping this bias in mind.

4. Experiments

Following Kurihara et al. (2007), we used variational
inference in order to perform parameter estimation for
the DPMMs. In particular, we approximated the in-
finite vector of the mixing proportions using a finite
symmetric Dirichlet prior. The distributions generat-
ing the instances of each component were Gaussians
with diagonal covariance. The initial number of com-
ponents was set to 100 and the concentration param-
eter alpha was set to 1.1

After inferring the parameters of the DPMM from the
data, for each instance we obtain a probability distri-
bution over the components, in other words a “soft”
clustering. In order to produce a clustering solution
in which each instance is assigned to one cluster only,
each instance is assigned to the component with the
highest probability. As a result, the components of
the mixture are considered to be the clusters of the
clustering solution. However, the transformation de-
scribed above can result in fewer clusters than com-
ponents, since there may be components that are not
the most probable ones for any instance of the dataset,
resulting in empty clusters.

To perform lexical-semantic verb clustering we used
the dataset of Sun et al. (2008). It contains 204 verbs
belonging to 17 fine-grained classes in Levin’s (1993)
taxonomy so that each class contains 12 verbs. The
classes and their verbs were selected randomly. In Sun
et al.’s dataset, the features for each verb are their
subcategorization frames (SCFs) and associated fre-
quencies in corpus data, which capture the syntac-
tic context in which the verbs occur in text. SCFs
were extracted from the publicly available VALEX lex-
icon (Korhonen et al., 2006a). VALEX was acquired
automatically using a domain-independent statistical
parsing toolkit, RASP (Briscoe & Carroll, 2002), and
a classifier which identifies verbal SCFs. As a conse-
quence, it includes some noise due to standard text
processing and parsing errors and due to the subtlety
of argument-adjunct distinction.

As a pre-processing step, we used the logarithms of the
frequencies instead of the frequencies themselves, to
smooth the very skewed distributions that are typical
to natural language. This has a down-scaling effect

1http://mi.cs.titech.ac.jp/kurihara/vdpmog.html
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on extremely frequent features, without reducing them
to the same scale as infrequent ones. Subsequently,
the feature vector of each verb was normalized to unit
length so that the frequency of the verb does not affect
its representation.

Furthermore, dimensionality reduction was applied
due to the large number of sparse features. The latter
have similar distributions across verbs simply due to
their sparsity. Since DPMMs do not weigh the fea-
tures, a large number of sparse features is likely to in-
fluence inappropriately the clustering discovered. Nev-
ertheless, sparse features incorporate useful semantic
distinctions and have also performed well in some pre-
vious works. Therefore, rather than excluding them,
we used principal component analysis (PCA) to reduce
the dimensionality, employing the same cut-off point
in all our experiments.

We evaluated the performance of the DPMMs in
lexical-semantic clustering using the dataset of Sun
et al. and experimented with various versions of the
VALEX lexicon and the feature sets. In order to al-
leviate the effect of the random initialization, we ran
each experiment 200 times. We achieved the best re-
sults with the cleanest version of the lexicon. Our
performance was 69.5% homogeneity, 53.7% complete-
ness and 60.5% V-measure, discovering 61.1 clusters
on average. The best performance achieved in pre-
vious work was 59% in V-measure (Sun et al., 2008)
using pairwise clustering (Puzicha et al., 2000). How-
ever, this result was achieved by setting the number of
clusters to be discovered equal to the number of classes
in the dataset, while DPMMs discover the number of
clusters in the dataset.

5. Adding supervision

While the ability to discover novel information is at-
tractive in NLP, in many cases it is also desirable to
influence the solution with respect to some prior intu-
ition or some considerations relevant to the application
in mind. For example, while discovering finer-grained
lexical-semantic classes than those included in the gold
standard is useful, some NLP applications may bene-
fit from a coarser clustering or a clustering targeted
towards revealing some specific aspect of the dataset.
For example, in the task of verb clustering, “encom-
pass” and “carry” could be in the same cluster if the
aim is to cluster all verbs meaning INCLUSION to-
gether, but they could also be separated if the aspect
of MOTION of the latter is taken into account.

As an extension to this work, we implemented a semi-
supervised version of the DPMMs that enables human

supervision to guide the clustering solution. The hu-
man supervision is modelled as pairwise constraints
over instances, as in Klein et al. (2002): given a pair
of instances, either they should be clustered together
(must-link) or not (cannot-link). This information can
be obtained either from a human expert, or by ap-
propriate manipulation of extant resources, such as
ontologies. Specifying the relations between the in-
stances results in an indirect labeling of the instances.
Such labeling is likely to be re-usable, since it defines
relations between the datapoints rather than explicit
labels. The former are more likely to be useful to mul-
tiple tasks which might not have the same labels but
could still take advantage of relations between data-
points.

The constraints will be added to the model by tak-
ing them into account during parameter estimation.
We built a Dirichlet process mixture model using a
standard sampling inference scheme (algorithm 3 from
Neal (2000)). We chose the multinomial distribution
to model the components. Following Neal (2000), we
integrated analytically over the parameters θzi

of the
model (Eq. 1 in Section 2).

In order to add supervision to the Dirichlet Process
model we sample from distributions that respect the
constraints imposed. In more detail, if two instances
are connected with a cannot-link constraint, we will
sample only from distributions that keep them in dif-
ferent components. Therefore, we set to 0 the proba-
bility of assigning an instance to a component contain-
ing cannot-link instance(s). Accordingly, in case they
are connected with a must-link constraint, we sample
only from distributions that keep them in the same
component. Therefore, we set to 1 the probability of
assigning an instance to a component containing must-
link instance(s).

The expectation is that such constraints will not only
affect the participating instances but the overall clus-
tering as well. By guiding the clustering solution in
this manner the DPMMs may discover knowledge bet-
ter suited to the user’s needs.

6. Experiments with supervision

In order to experiment with this method of adding su-
pervision to the DPMMs, we implemented the DPMM
model described in the previous section. The α pa-
rameter was determined by using a Gamma prior in
Metropolis sampling scheme, which was run after each
sampling of a component assignment zi (Eq. 1).

In this second set of experiments we used the dataset
of Korhonen et al. (2006b). It consists of 193 medium
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to high frequency verbs from a corpus of 2230 full-text
articles from 3 biomedical journals. The features, as in
the Sun et al. (2008) dataset, were the subcategoriza-
tion frames (SCFs) and their associated frequencies in
the corpus, which were extracted automatically, result-
ing in 439 preposition-specific SCFs.

A team of domain experts and linguists were involved
in creating a gold standard for this dataset. The for-
mer analyzed the verbs requiring domain-knowledge
and the latter the general English and/or scientific
ones. This effort resulted in a three-level gold standard
which exemplifies the need for human supervision in
order to influence the clustering solution discovered by
the DPMMs, since ideally we would like to be able to
discover any of these solutions. The number of classes
was 16, 34 and 50 at each level of granularity.

As in Section 4, the feature set was very sparse and
therefore we applied dimensionality reduction. How-
ever, PCA could not be used, since we used the multi-
nomial distribution to model the components which
cannot accept negative values. Therefore, we applied
non-negative matrix factorization (NMF) (Lin, 2007)
which decomposes the dataset in two dense matrices
with non-negative values. In order to simulate the
process of obtaining human supervision, we generated
random verb pairs which we labelled as must-link or
cannot-link according the version of the gold standard
we aimed for.

We used 35 dimensions for the NMF dimensionality
reduction. The base measure G0 used was the nor-
malized mean of the dataset, the initial value for the
α was 1 and all the instances were assigned to a sin-
gle component initially. We generated 100 pairs of
verbs and obtained their must-links or cannot-links
for each of the three level of granularity of the gold
standard. First, we ran the DPMM without any su-
pervision, in order to adapt itself to the data without
any constraints for 100 iterations of the Gibbs sam-
pler. Then, we ran the model using the constraints
to restrict the sampling for another 100 iterations and
obtained the final component assignment.

The results from these experiments appear in Table 1.
The rows labeled “vanilla” contain the results for the
standard unsupervised model. The other rows are la-
belled according to the version of the gold standard
followed by the number of links obtained from it. The
number of clusters discovered by all the versions of the
model did not vary substantially, being between 37 and
41. It can be observed that adding supervision to the
model guides it to clustering closer to the version of the
gold standard the supervision was obtained from. For
example, adding 100 links from the coarsest version

hom comp V
16 classes

vanilla 77.09% 64.11% 70%
link16 100 82.16% 64.52% 72.28%
link50 100 77.53% 62.69% 69.32%

gauss 78.54% 50.22% 61.26%
34 classes

vanilla 70.24% 78.94% 74.34%
link34 100 73.19% 79.24& 76.10%

gauss 77.30% 66.79% 71.65%
50 classes

vanilla 69.07% 87.43% 77.17%
link16 100 70.87% 84.71% 77.17%
link50 100 71.19% 87.63% 78.56%

gauss 76.53% 74.49% 75.49%

Table 1. Results on the biomedical verb dataset.

which contains 16 classes (row “link16 100” in the “16
classes” part of the table) improves the V-measure by
2.28% when evaluating on the same version. However,
when evaluating on the finest grained version of the
standard (containing 50 classes), then the V-measure
remains identical and only the homogeneity and com-
pleteness scores change. On the other hand, adding
100 links from the latter version of the gold standard,
improves the performance by 1.39% when evaluating
on it. As expected though, the performance drops for
the 16-class version, since the supervision guides the
clustering to a different solution. Adding supervision
from the 34-class version, improves the performance
by 1.76% in v-measure (row “link34 100”). Overall,
the model is adapted towards the clustering solution
aimed for. In the rows labeled “gauss” we report the
result with the DPMM using Gaussians used in the
experiments of Section 4, which discovered 63.23 clus-
ters on average. The new model outperforms it at all
level of gold standard, even without using supervision.

It must be noted that the different levels of granular-
ity could have been achieved by appropriate tuning
of the concentration parameter α (Eq. 1). However,
to a non-expert in non-parametric modelling we be-
lieve it could be easier to simply provide examples of
verbs that he or she would consider appropriate to be
clustered together or separately. Moreover, α would
affect the granularity of the clustering globally, while
in a given application one might prefer to influence it
more locally, something that can be achieved with the
inclusion of pairwise links.
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7. Conclusions - Future work

This paper makes several contributions. We ap-
plied DPMMs to a typical NLP learning task (lexical-
semantic verb clustering) where the ability to discover
the number of classes from the data is highly attrac-
tive. We experimented with two different datasets in-
cluding (i) general English and (ii) biomedical verbs.
Our quantitative evaluation using the recently intro-
duced V-measure shows that the method compares fa-
vorably to earlier verb clustering methods which all
rely on a pre-defined number of target clusters. In
addition, we demonstrated how such models can be
adapted to different needs using supervision in the
form of pairwise links between instances.

The results encourage to apply DPMMs to further
datasets and tasks. For verb clustering, we plan to
investigate hierarchical Bayesian non-parametric mod-
els (Heller & Ghahramani, 2005) and to extend our
experiments to larger datasets. We plan to conduct a
thorough investigation of the ability of DPMMs to dis-
cover novel information not included in gold standards.
Our preliminary assessment showed that many “er-
rors” are due to the DPMM identifying verbs which are
in fact too polysemous to be classified in single classes
in large un-disambiguated input data and discovering
semantically related classes as well as sub-classes of
existing fine-grained classes. With respect to adding
supervision to the model, we intend to explore ways in
which the DPMM would select the links between in-
stances to be labelled as in Klein et al. (2002), instead
of obtaining them at random. Finally, an extrinsic
evaluation of the clustering provided by DPMMs as
part of an NLP application is likely to be very infor-
mative on their practical potential.
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