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Preface

During the last few years (2004-2007), there have been several breakthroughs in the area of Minimum
Description Length (MDL) modeling, learning and prediction. These breakthroughs concern the efficient
computation and proper formulation of MDL in parametric problems based on the “normalized maximum
likelihood”, as well as altogether new, and better, coding schemes for nonparametric problems. This
essentially solves the so-called AIC-BIC dilemma, which has been a central problem in statistical model
selection for more than 20 years now. The goal of this workshop is to introduce these exciting new
developments to the ML and UAI communities, and to foster new collaborations between interested
researchers.

Most new developments that are the focus of this workshop concern efficient (in many cases, linear-
time) algorithms for theoretically optimal inference procedures that were previously thought not to be
efficiently solvable. It is therefore hoped that the workshop will inspire original practical applications
of MDL in machine learning domains. Development of such applications recently became a lot easier,
because of the new (2007) book on MDL by P. Griinwald [1], which provides the first comprehensive
overview of the field, as well as in-depth discussions of how it relates to other approaches such as Bayesian
inference. Remarkably, the originator of MDL, J. Rissanen, also published a new monograph in 2007;
and a Festschrift in Honor of Rissanen’s 75th birthday was presented to him in May 2008.
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MDL Tutorial

Peter Griinwald

We give a self-contained tutorial on the Minimum Descriptioength (MDL) approach to modeling,
learning and prediction. We focus on the recent (post 199%hdlations of MDL, which can be quite
different from the older methods that are often still callgdDL’ in the machine learning and UAI com-
munities.

In its modern guise, MDL is based on the concept of a ‘universadel’. We explain this concept at
length. We show that previous versions of MDL (based on dleatavo-part codes), Bayesian model se-
lection and predictive validation (a variation of crosdidation) can all be interpreted as approximations
to model selection based on 'universal models’. Modern MDéspribes the use of a certain ‘optimal’
universal model, the so-called ‘normalized maximum liketbd model’ or ‘Shtarkov distribution’. This
is related to (yet different from) Bayesian model selectigth non-informative priors. It leads to a penal-
ization of ‘complex’ models that can be given an intuitivfetiential-geometric interpretation. Roughly
speaking, the complexity of a parametric model is directlgted to the number of distinguishable prob-
ability distributions that it contains. We also discuss samcent extensions such as the 'luckiness prin-
ciple’, which can be used if the Shtarkov distribution is afided, and the 'switch distribution’, which
allows for a resolution of the AIC-BIC dilemma.

The talk assumes no prior knowledge of information theohe menu is as follows:

Codes and Probability Distributions

Universal Coding

The Bayes, 2-part and Normalized Maximum Llkelihood énsal Model
MDL Model Selection

Relation to Bayes factor model selection and Cross-&tbd

The Luckiness Principle, The Switch Distribution
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Efficient Computation of NML for Bayesian Networks

Petri Myllym &ki
Department of Computer Science & Helsinki Institute foromhation Technology
P.O. Box 68, FI-00014 University of Helsinki, Finland

Abstract

Bayesian networks are parametric models for multidimeradi@omains exhibiting
complex dependencies between the dimensions (domairbles)aA central problem
in learning such models is how to regularize the number adipaters; in other words,
how to determine which dependencies are significant andhndme not. Thenormal-
ized maximum likelihood (NMLdistribution or code offers an information-theoretic
solution to this problem. Unfortunately, computing it fab#rary Bayesian network
models appears to be computationally infeasible, but wevdtaw it can be computed
efficiently for certain restricted type of Bayesian networ&dels.

1 Normalized Maximum Likelihood

Let
11 1,2 0 Tim X1,:
n 2,1 T22 -t X2m X2
r = . . . . = . = (X:,1X:,2 t 'X:,m) y
Tn1 Tp2 - Tn,m Xn,:
be a data matrix where each rawy,. = (z;1, % 2,-..,%im), 1 <1 < n, is anm-dimensional observa-
tion vector, and columns af* are denoted by. 1,...,X. .
A parametric probabilistic modeM = {p(z™ ; 0) : 6 € O}, where®© is a parameter space,

assigns a probability mass or density value to the datanidersal modefor M is a single distribution
that, roughly speaking, assign almost as high a probaliditgny data as the the maximum likelihood

parameterd(z").
Formally, a universal model(x") satisfies
lim 1 In pi(x A; 6(="))
noon s plan)
i.e., the log-likelihood ratio, often called the ‘regres,allowed to grow sublinearly in the sample size
The celebratedormalized maximum likelihoo@NML) universal model [19, 22]

ny .__ p(xn ) é(:(,n)) _ / no. Af.n n
pnur(2™) = 76'/\4(71) , Cpm(n) = p(m ; 6(2™)) dx
is the unique minimax optimal universal model in the senaéttie worst-case regret is minimal. In fact,
it directly follows from the definition that the regret is argtant depending only on the sample size
L P 0am)
pNuL(27)

=0, (1)

=InCunm(n) .



For some model classes, the normalizing factor is finite drihe rangeX™ of the data is restricted, see
e.g. [19, 20, 2]. For discrete models, the normalizing camstC v (n), is given by a sum over all data

matrices of sizen x n:
Cu(n)= > pa™; (")) .
wneXﬂ.

2 Bayesian Networks

Let us associate with the columns,,, ..., x. ,,, a directed acyclic graph (DAGY;, so that each column
is represented by a node. Each nallg, 1 < j < m, has a (possibly empty) set parents Pa;, defined
as the set of nodes with an outgoing edge to n&deWithout loss of generality, we require that all the
edges are directed towards increasing node indexPeg.C {1,...,5 — 1}. If this is not the case, the
columns in the data, and the corresponding nodes in the gecaptbe simply relabeled, which does not
change the resulting model. Figure 1 gives an example.

N D
()

Figure 1: An example of a directed acyclic graph (DAG). Theepés of nodeXs are{ X, X5, X7}. The
descendants oX, are{ X5, Xg}.

The idea is to model dependencies among the nodes (i.emuos)uby defining the joint probability
distribution over the nodes in termslotal distributions each local distribution specifies the conditional
distribution of each node given its parentéX; | Pa;),1 < j < m. Itis important to notice that these
arenot dependencies among the subsequent rows of the data mafrbut dependencies ‘inside’ each
row, x;.,1 <+ <n. Indeed, in all of the following, we assume that the rows adependent realizations
of a fixed (memoryless) source.

The local distributions can be modeled in various ways, lauetwe focus on the discrete case. The
probability of a child node taking value; ; = r given the parent nodes’ configuratiom, ; = s, is
determined by the parameter

Ojipa, (1,8) =p(zij =7 [pa;, ; =s; Ojps;) , 1<i<n1<j<m,

where the notatiofi; p,, (7, s) refers to the component of the parameter vegigr, . indexed by the value
r and the conﬁguratlos of the parents ofX ;. For empty parent sets, we Iga, ; = 0. For instance,
consider the graph of Fig. 1; on each rdw< i < n, the parent configuration of colunjyn 8 is the
vectorpa, g = (1, ;5,7 7); the parent configuration of columyn= 1is pa, ; = 0, etc.

The joint distribution is obtained as a product of local disttions:
0) = [[ p(x.; | Paj 5 O;pa;) - 2
j=1

This type of probabilistic graphical models are called Bdae networks [18]. Factorization (2) entails a
set of conditional independencies, characterized by deccMarkov properties, see [16]. For instance,
thelocal Markov propertyasserts that each node is independent of its non-descerglasn its parents,
generalizing the familiar Markov property of Markov chains



3 NML for Bayesian Networks

The NML distribution based on (2) and a fixed Bayesian netvgodph structur& is given by

[T, p(x.; | Pay 5 O(™))

puL(z”; G) = Coln) ; 3)

where .
Cg(n) =Y [ p(x.; | Pa;; (=) . (4)

™ j=1

The required maximum likelihood parameters are easilyuatad since it is well known that the ML
parameters are equal to the relative frequencies:

. {i : x;; =rpa, ; =s}
ej‘Paj (7"7 S) = | ’{Z/Zj pa.: ] :Z’js}‘ |
L pag

where|S| denotes the cardinality of s6t However, direct summing over all possible data matricesis
tractable except in toy problems where@ndm are both very small.

; (5)

For a single (independent) multinomial variable withvalues, the normalizing constant can be computed
in quadratic time using the recursion [7, 11]:

rt= 3 () (2) ) o), ©

rilra! \n n
r141re2=0 1202

which holds for allK* = 1,..., K — 1. A straightforward algorithm based on this formula can bedus
to computeCy (n) in time O (n?log K). In [5, 9] the quadratic-time algorithm was further imprdwve

O (nlognlog K) by writing (6) as a convolution-type sum and then using thst Faurier Transform
algorithm. However, the relevance of this result is uncthar to severe numerical instability problems it
easily produces in practice. Moreover, although thesdtsekave succeeded in removing the exponen-
tiality of the computation of the multinomial NML, they arélssuperlinear with respect ta. In [10]

a linear-time algorithm based on the mathematical tecln@fgenerating functions was derived for the
problem. In this paper it was shown how the properties of theadledCayley's tree functio, 1] can

be used to prove the following remarkably simple recurrdnomula:

= Cxc(n). )

It is now straightforward to write a® (n + K) time algorithm for computing the multinomial NML
based on this result. The algorithm is also very easy to imptd and does not suffer from any numerical
instability problems.

Cr+2(n) =Ck41(n) +

The one-dimensional single multinomial case is of courdeadequate for many real-world situations,
where data is typically multi-dimensional and involves qex dependencies between the domain vari-
ables, but it is a useful building block that can be exploitéth more complex Bayesian networks. An
example of a domain where the multinomial NML can be direafiplied is histogram density estimation,
as demonstrated in [10].

In [11], a quadratic-time algorithm for computing the NMLrfa specific Bayesian network structure,
usually called the Naive Bayes, was derived. In this cas®#yesian network forms a single-layer tree
where one of the variables is the root, an the other varidbtes the leaves. This model family has been
very successful in practice in mixture modeling [14], chustg of data [11], case-based reasoning [12],
classification [3, 13] and data visualization [8]. The timmmplexity of the algorithm isO (n2 + L),
where L denotes the number of values of the root variable. This resas further improved in [17]
to O (n2) For more complex Bayesian network structures, we have bbknto derive an algorithm



which runs in polynomial time with respect to the the numbievadues of the leave nodes, but is expo-
nential with respect to the number of values of the non-lewaes [15, 23]. For Bayesian networks of
arbitrary complexity, it appears that the problem of conmuthe NML is not feasible [6]. However,
recently developed new variants [21] of the standard NMEo#éin alternative, computationally efficient
information-theoretic approach for regularizing Bayasi@twork models.

Acknowledgments. This work was supported in part by the Academy of Finland under thggir€ivi and by
the Finnish Funding Agency for Technology and Innovation under thpgts Kukot and PMMA. In addition, this
work was supported in part by the IST Programme of the Europeam@aiity, under the PASCAL Network of
Excellence.
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Tracking the Best Predicting M odel

Steven de Rooij*

Abstract

According to standard MDL and Bayesian model selection, ezl (roughly) prefer
the model that minimises overall prediction error. But i thoal is to predict well, it
may well depend on the sample size which model is most usefiredict the next out-
come. By re-interpreting the Bayesian prediction straggissociated with the models
as “experts”, we can use the various algorithms for “expadking” to improve model
selection for prediction without introducing a substant@mputational overhead.

1 Modd Sdlection Preliminaries

A model M = {Fy|0 € O} is a set of probability distributiondViodel selection is choosing the “most
useful” model based on the available observatiohs= z1,..., 2, € X™. For simplicity, we consider
only model selection criteria that satisfy Dawidsak preguential principle [1, 2]. That is, models are
considered “useful” if we can use them to constiorediction strategies that give high probability to the
data, or, equivalently, achieve low accumulated predictimor, where prediction error is measured using
logarithmic loss. More discussion about how our resultatesto model selection for other applications,
such as truth finding, can be found in [4]. To further simplif\e presentation, we assume thatis
countable, we identify probability distributions with thdefining mass functions, and we treat the sample
sizen as a given rather than considering random processes.

As the most important special case, we consider Bayes fatidel selection, where prior distributions

wy, . .., wy are defined on the parameter spa@gs. . . , © i of each of the models. By “integrating out”
the parameter we obtain, for each modé|,, an associated marginal distribution:
Pp(z™) = / Py(x™)wy(0)d6. (1)
0€O,,

By subsequently defining a prior distributid¥ on the models, we can then use Bayes’ rule to compute
the posterior odds
P(Mla™) W)  Pi(a")
P(Mjlam)  W(j) Pji(an)’
in other words, the posterior odds are the prior odds migtigby the probability ratio of the data, which
is called the “Bayes factor”.

We now take a step back and use the chain rule for conditionagility to rewrite (1) as
Pi(z") = Py(x1) - Pu(xa|zt) ... Py(xp|z™h),

to obtain a prediction strategy. Thus, Bayes factor modettien satisfies the weak prequential principle,
and it is an example of the model selection criteria we cansid

*Based on joint work with Tim van Erven, Wouter Koolen and Petdm@mld



2 Example: First vs Second Order Markov Chains

We give a concrete, simple example of Bayes factor modetsete Let M; and M- be the sets of all
first and second order Markov chains on the 8-bit ASCIP8eftY'| = 256. The models are parameterised
by their transition probabilities. Now Ié?; and P, be corresponding Bayesian prediction strategies based
on uniform priorsw; (¢) = 1 andws(#) = 1. We also use a uniform pridi’ (1) = W(2) = 1 on the
models. Finally let:" be the sequence of ASCII symbols that constitute Alice in tdskand, which has

n = 152089. We can now calculate

P(Myla™) — Py(z™) 2750907 923985

P(M2|xn) - Pz(xn) T 9-593132 :
Thus, Bayes factor model selection tells us that the oddsaevhelmingly in favour of the first order
Markov model. This suggests that we should also expgdb issue better predictions, i.e. if Carroll

were to rise from the grave and write an additional chaptéiddoeloved story, we might expect that
assigns higher probability to, and accumulates less losthahnew chapter.

This assumption turns out to be false, certainly in this gdemThe reason is that the incurred loss for
P, and P, is not evenly distributed over the entire sample, which rsdhat even thouglt, may have
accumulated less loss overall, it may still be the case fhas making better predictiorat the current
sample size. This becomes very clear if we look at the;, of the Bayes factor as a function of the length
of the prefix of the novel.

From the graph it is clear that around

prefix length 78,000, the two predic- 45000
tion strategies perform more or less 40000+ q
equally well, since the Bayes factor 354
hardly changes there. Beyond sample

size 78,000, the strategy based on th@ 30000
second order Markov chain model ac-§ 25000
cumulates less loss, causing the Baye§ 20000
factor to decrease. Howevey has ac- 15000
quired so much evidence in its favour,2
that it will take many outcomes before 10000

P5 can finally catch up in terms of ac- 5000 R
cumulated prediction error. Only then ‘ ‘ ‘

will P, be preferred by Bayes factor 0 40000 80000 120000 160(
model selection. We call this ttwatch- prefix length

up phenomenon.

To put this example in perspective, note that we ratetrying to suggest that either the models or the
priors we used are reasonable. We used this extremely ngirapme only for simplicity and because
it illustrates the phenomenon we are interested in so well. One may ask fitteromenon would still
occur if we had used better models. The answer is yes: eviea ihbdels are chosen carefully so that one
of the considered models is “true”, i.e. it contains theriisttion from which the data were sampled, then
it may still be the case that, at lower sample sizes, the gtiedistrategies associated with other, simpler
models may be much more effective, so that the catch-up phenon will still occur. Furthermore, the
processes we encounter in practice are often so complegvbatthe best models we can come up with
are naive, and we are forced to use uninformative priors. @maeple is the nonparametric setting, see
[4]. We would still like to make the best predictions we camenthose circumstances!

3 Expert Tracking

To improve predictive performance when the catch-up phemamn occurs, we would like to figure out
which prediction strategy issues the best predictionsjugitoverall, butat each sample size. For in-

10



Figure 1: Bayesian Model Averagin

1 1) ~(1) 1 >
w(A)
0 -
w(B
w(©) (3 -3
w(D)@ ~3) ~3) ~(3) =
@
n=1 n=2 n=23 n=4

stance, in the Alice example we would want to switch from prtéah according toP; to prediction
according toP, around sample size 78,000 rather than never.

It turns out that algorithms to do just this already existmidy, we may think of the prediction strategies
Py, ..., Pk associated with the models as “experts”, which is just arotbord for an algorithm that
issues predictions given a sequence of past observatioasvil\how describe some known algorithms
for prediction advice that are useful in this context.

As explained in [5], many algorithms for prediction with expadvice can be implemented by forward
propagation on hidden Markov models (HMMs). Bayesian Mddaraging (BMA) is one of the sim-
plest. It mixes the expert predictions according to thestpoor weights as follows:

P(zpiala™) Zpk Tnp1 |z )w(k|z"). 2)

Figure 1 shows the corresponding HMM for four experts lathéle .., 4. It can be interpreted as a
description of a prior distribution, not on the experts, batsequences of experts. Namely, the prior
probability that experk is used at sample sizeis the sum of the weights of all paths from the starting
state to the state(s) associated with expeat sample sizex. The weight of a path is the product of
its transition probabilities. The HMM in Figure 1 containgly one path to each expert and that path
visits no other experts. Thus, only expert sequences timdicoexactly one expert receive nonzero prior
probability: switching between experts is not catered for. This inability to swhelween experts needs
to be addressed in order to alleviate the catch-up problem.

A second simple algorithm for prediction with expert advioes to the other extreme: here it is not only
possible to use different experts at different sample skzgiswhich expert is used at sample size- 1
does not evedepend on which expert is used at sample siZeThe corresponding prediction strategy is

P(2n1a]a") ZPk (@npa]a™ (k). (3)

In their groundbreaking paper “Tracking the Best Exper}; Ferbster and Warmuth interpolate between
these two extreme approaches: rather than never or alwagysstwitch to a different expert with fixed
probability o, as in Figure 3. Note that, as before, forward propagation on this HMM onlgd®to
maintain K weights, and requires total running time proportional te tumber of expert&” and the

Actually, unlike FixedShare, the HMM in Figure 3 allows switching to the sanpegtxHowever, it can be made
to simulate FixedShare by using a slightly lower valuedor

11



Figure 2: Elementwise Mixture

-7
7
sample sizen. The corresponding prediction strategy is in between (&8)(&)t
K
P(apalr™) = Pe(wnat|2")(1 = 0) P(K, = Kla") + aw(k)). (4)
k=1

Herbster and Warmuth compare the logarithmic loss incubgedrixed-Share to that incurred by any
partition of the data inten blocks, where any expert is used within each block. They shetyv

Pr-par(z™)

log Pe(z"[o) <(n—1)H(a)+log K+ (m —1)log(K — 1),
provided that the parameteris optimally tuned tqm — 1) /(n—1). This result can be applied directly to
our Alice in Wonderland example: ideally we would partitidre data intan = 2 blocks, with the split
appearing somewhere around sample size 78,000. The Fha@-8ound tells us that, compared to this
optimal partition, the logarithmic loss using the Fixedaghalgorithm ist most (TL*l)H(ﬁ)‘i’l <17
bits higher. This overhead is negligible compared to the,gahich is of the order of 9,000 bits, as can
be read from the log Bayes factor graph. Namely, compareditmu’; for the entire book, we gain the
difference between the height of the graph at index 78,0688utel 33,000 bits) and at full sample size
(around 24,000 bits).

The Fixed-Share algorithm does require tuning of the switghiate alpha. However, by letting the
probability of the switching transitions decrease as ationof the sample size, it is possible to do away
with the parametetv at only a moderate cost in terms of the performance guaraMeee information
about other expert tracking algorithms in HMM format is giva [5].

12
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Abstract

The minimum description length principle in wavelet deimaiscan be extended from
the standard linear-quadratic setting in several ways. ¥g¢eribe briefly three exten-
sions: soft thresholding, histogram modeling and a muitigonent approach. The
MDL hard thresholding approach based on the normalized maxi likelihood uni-
versal modeling can be extended to include soft threshglsliminkage, which can be
considered to give better results in some applications. DLMistogram denoising
approach the assumptions of the parametric density moaleisd data can be relaxed.
The informative and noise components of the data are modadthdequal bin width
histograms. The method can cope with different noise 8istions. In multicompo-
nent approach more than one non-noise components areéadiuthe model, because
it is possible that in addition to the random noise there mapther disturbing signal
elements, or that the informative signal is comprised oessmwdifferent components
which we may want to observe, separate or remove. In thess eakling informa-
tive components in the model may result result in bettergoerénce than in the NML
denoising approach.

1 Introduction

The observed data is thought to be corrupted by additiveengis = x™ + €™, where the noise term
€" is often assumed to be comprised of i.i.d. Gaussians. Ghermtthonormal regression mati¥

he discrete wavelet transform (DWT) of the noisy data is defm&" = W7Ty". The aim of wavelet
denoising is to obtain modified coefficient® representing the informative part in the data. In MDL
setting wavelet denoising is seen as a model selection Tdsklinear regression model can be rewritten
as a density functiorf (y"|cZ!, 02, 7) = ﬁ exp { —55z||ly™ — WcZ||} , where the structure index

T (270
~ defines which rows of the regressor matrix are included imtbdel, or equivalenty, which elements
of ¢” are non-zero. We may now define the NML density function, asimphe well-known maximum
likelihood estimates for parameters and calculate the alizing factor by a renormalization scheme
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discussed in Rissanen [1], and the result is a denoisingyicnit

i€y i¢v @)
Ink(n — k) + L(v)

k 1 9 n—k 1 9
5111 (kzc1' + 9 ln mzcj

1

2
approximating the stochastic complexity. The selectiory ahd the resulting coefficient vectef are
obtained by minimizing the criterion. Furthermore, thetesion is shown to be minimized by the
coefficients with largest magnitudes. For the code lengthtfe model class a code length function
L(v) =In (}) is recommended in [2].

2 MDL soft thresholding

An extension to wavelet denoising is to include soft thréding shrinkage [3]. In essence, soft
thresholding the observed wavelet coefficients with a tioksparameten gives two subsets indexed
by v1 andv2: ¢,, = (&y,(1);---»Cy (k) COrresponding to the shrinked informative’ coefficients

¢; = sign(c;)(|ci| — A), @andé,, = (€,(1)s - - - » Eyo(n—k)) CONtaining then — k unmodified 'noise’ coeffi-
cients for whichsign(c; ) (|c;| — A) < 0. A useful analogy is to think the process as data transrmigsier

a channel. The sender must transmit enough informationaoelannel to the receiver so that the receiver
is capable of reconstructing the original data from thedmaitted signal. In this case we transmit, with
as short a code length as possililesoft thresholded coefficients, andn — k noise coefficients.,,,

so that whem\ (which also must be transmitted) is known the receiver is édkeconstruct the original
data.

The code length for the wavelet coefficients is obtained lopdimg the subsets,, andc,, with separate
NML codesLnm (¢4, |v1) and Lywe (¢4, |72), respectively. For computing the NML code length for any
sequence, see [4]. The code length of the model clags,, 2, A), is also required for describing the
parameter of the shrinkage function as well as the indexsedsid~,. The code length may be further
divided into L(~1,72,A) = L(7v1,72|A) + L()), whereL(v1,72|A) = In (}) gives the code length for
choosing thek coefficients intoy; out of a total ofn coefficients when\ is fixed. L()) is required to
describe the threshold parameter value. Howel/€k) may be considered to be a constant that can be
ignored in the final criterion. Finally, the encoding is merhed by a two-part encoding where the total
code length is given by the sufinm (é+, |71) + Lame (€4, |7v2) + L(71, 72, A). Applying the Stirling’s
approximation to Gamma functions and ignoring all termsstamt with respect té gives the criterion
for choosing the optimal parameter

koo (1L
m)%n [2 In (k: Z&m))
i=1

n—k 1
- 2
+ 92 ln<n_kzcv2(i)>
i=1
1
+§lnk(n—/€)+l}(7) . @

The criterion (2) is almost identical to the original MDL desing criterion (1): the difference is in the
first term, where in the soft thresholding criterion there sinrinked wavelet coefficient values instead of
the originals.
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3 MDL histogram denoising

The NML approach is restricted to the quadratic-linear aasehich noise is assumed to follow Gaussian
distribution. We obtain another denoising criterion by éwgmg histogram models. The main idea is to
model the wavelet coefficients representing the denoiggthkic™, by an equal bin width histogram at
each resolution level of the wavelet transform, and thefmefits representing the nois&, by a single
equal bin width histogram. Minimization of the total codadgh yields the optimal way of dividing the
coefficients into ones representing informative signalmmide. For information on how to compute the
stochastic complexity for the data string given the numbdaims in the fixed bin width histogram, see

[5, 6].
The key parts of the MDL-histo denoising algorithm discasgemore detail in [7] are summarized as
follows:

1. Obtain the set of wavelet coefficients = ¢, . .., ¢!~ through the-level wavelet transform.

2. Recursively on resolution levels= 1, . .., r fit a anm-bin histogramA; to the coefficients:

and select a tentative collection of bifig with the number of chosen bins; = |S;|. Denote
by n; (;y the number of points falling in the bin &f; having index(j). The bins inS; containk;
retained coefficients. The retained and residual coeffisianlevel; are written as two strings
¢ andél’, respectively.

ur MNi41

. Fita histogram with\/ bins to the residual coefficients = ¢)*,..., ¢, ¢, 1", ..., ¢/~ where

the first: residual strings are obtained by setting the already retbdoefficients to zero.

. Find the optimalS; by minimizing the criterion

g:u]{}{log2 <ni’(1), Ny ,(my;)s ( kz))

i tmy 41 ik — ks
log, (n m )+10g2( ?] 1 b )
k

Z i —ki+ M R
1 kil —
+ logy < M T Rilogs
i—1 o
+ k; log, () + Z ;| logs ()
=1 A

— (n—1)logy M + 2log, logy, M
+ nlogy R; +log, R; + 2log; log, Ri} )

wherev; is the number of coefficients falling into thigh bin of the M -bin histogram fitted to
the residual string”, R is the range of wavelet coefficientB; are the levelwise ranges of the

coefficients ang '~ ! ;; denotes the number of retained coefficients in the so famipeid sets
S;j,j <. Forthe first Ievek = 1 this sum is zero.

The denoised signal results from the inverse transformess#guence of retained coefficieats: ¢” =

Ana
it

e

y Cpooe

4 Multicomponent denoising

Itis possible that in addition to the random noise there negther disturbing signal elements, or that the
informative signal is comprised of several different comgats which we may want to observe, separate
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or remove. With more than one informative component in theyhnmeasured data a multicomponent
approach may result in better performance than the origiizll denoising method [8].

Roos et al. [9, 10, 2] have shown that a criterion similar ® tnormalization result can be obtained
by a different derivation, details of which can be found i8,[2]. In short, they define a model for the
wavelet coefficients, in which each coefficient is distrdaliiccording to a zero-mean Gaussian density
with varianceo? if it belongs to the set of informative coefficients indexgd or according to a zero-
mean Gaussian density with variancg if it represents noise, with the restrictiori > o%,. Again, the
optimal denoising result is given by theminimizing the normalized maximum likelihood code length
of the data given the model class definechby

This approach may be extended by usingsaussian components and specifying the restriction far the
variance parameters;? > ... > o2,. The NML code length for this model can be calculated in a
manner following the derivation in [10] for the two-companeenoising criterion. The derivation turns
out to be straightforward since the normalizing integratdas intom parts, each depending only on the
coefficients determined by the respective indexysetWe obtain a criterion

m

ki 1 , 1
i=1 JIEYi (4)
o2
+ L(y1,...,7m) + mloglog —** + const,

min

where const refers to terms constant with respect to thiseles andn, andos? . ando? . are hyper-
parameters for the maximum and minimum variance, respgtihe last two terms can be ignored if
we wish to find the optimain-component result. However, if we want to compare the redolt two
approaches with different number of components, for exampl = 3 andms = 4, we cannot remove

the term involving the hyperparameters as it affects the ¢edgth.
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Sequential and Factorized NML models
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1 INTRODUCTION

Bayesian networks are among most popular model classesstwete vector-valued i.i.d data. Currently
the most popular model selection criterion for Bayesiamvogts follows Bayesian paradigm. However,
this method has recently been reported to be very sensititetchoice of prior hyper-parameters [1]. On
the other hand, the general model selection criteria, Al@ifi2l BIC [3], are derived through asymptotics
and their behavior is suboptimal for small sample sizes.

This extended abstract is based on an unpublished mantiggrip which we introduce a new effective
scoring criterion for learning Bayesian network strucstbe factorized normalized maximum likelihood
(fNML). This score features no tunable parameters thusdivgithe sensitivity problems of Bayesian
scores. It also has a probabilistic interpretation whiatdg a natural way to use the selected model for
predicting future data.

2 BAYESIAN NETWORKS

Bayesian network defines a joint probability distributioor fan n-dimensional data vectoX =
(X1,...,X,), where eachX; may haver; different values which, without loss of generality, can be
denoted ag1,...,7;}.

2.1 Model class

A Bayesian network consists of a directed acyclic graph (PDAGand a set of conditional proba-
bility distributions. We specify the DAG with a vect@r = (G4,...,G,,) of parent sets, so that
G; C {X1,...,X,} denotes the parents of variablg, i.e., the variables from which there is an arc
to X;. Each parent se¥; hasq; (¢; = preci rp) possible values that are the possible value combina-

tions of the variables belonging ;. We assume an enumeration of these values and denote tligsfiact
G, holds thej*" value combination simply bg; = j.

The conditional probability distributionB(X; | G;) are determined by a set of parametés ia the
equation

P(Xi=Fk|G;=j,0)=0i.

We denote the set of parameters associated with varigpley ©;. Given a Bayesian networlG, ©)
the joint distribution can be factorized as

P(z|G,0) =[] Pxi| Gi,©:) =[] bic.a.- (1)
=1

=1
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2.2 Data

To learn the Bayesian network structures, we assumeldataV i.i.d instantiations of the vectoX, i.e.,
an N x n data matrix without missing values. We select columns ofiidita matrixD by subscripting it
with a corresponding variable index or a variable set.

Since the rows are assumed to be i.i.d, the probability of a data matrix @oabculated by just taking
the product of the row probabilities. Combining equal tegiesds

qi Ty

PG =T[T]TI5:" @

i=1j=1k=1
whereN;;, denotes number of rows in whicki; = k and its parents contain th&" value combination.
For a given structurér, the maximum likelihood parameters are simply the reldtieguencies found in

the dataﬁijk = EkNiﬁfkk Setting paramete&jk to their maximum likelihood values for dafa, gives

the maximized likelihood?(X | G, ©(D)). In the following, we denote the value(D | G, ©(D)) by
P(D |G

3 Model selection

The number of possible Bayesian network modelsrfafariables is super exponential, and the model
selection task has been shown to be NP-hard for practidatyaalel selection criteria such as AIC, BIC,
and marginal likelihood [5]. However, all popular Bayesiatwork selection criteri& (G, D) feature a
convenientdecomposability

SCOREG, D) = zn: S(D;, Dg,) 3)

that makes implementing a heuristic search for models e@gie

Many popular scoring functions avoid overfitting by balamgthe fit to the data and the complexity of
the model. A common form of this idea can be expressed as

SCOREG, D) =log P(D | G) — A(D,G), 4)
where A(D, G) is a complexity penalty. For exampley\B¢ = . ql(“ D log N, and AAIC =
Zi qi(ri —1).

3.1 Bayesian Dirichlet scores

The current state-of-the-art is to use marginal likelihsodring criterion

SBD(Dia DG,;a 5[) = log/ P(DZ‘DG” el)W(91|O@)d91 (5)
0;
The most convenient form of this, the Bayesian Dirichlet jBidore, uses conjugate priors in which

parameter vector®;; are assumed independent of each other and distributed mhBirdistributions
so that

W0 | ci) = HP i | Qije)s (6)

in which 0;; ~ Dir(asj1,...,0,). With a ch0|ce ofcviji, = W we get a family of BDeu scores
popular for giving equal scores for different Bayesian regtstructures that encode same independence

1We often drop the dependency on G from the notation when it is clear frermathtext.
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assumptions. The BDeu score depends only on single panamebet recent studies show that model
selection is very sensitive to it.

For predictive purposes it is natural to parameterize thdehkearned with the3 D-score by expected
parameter values

gBD _ Nijr + ok
ijk T T .
! 1 [Nijir + Qiji]

(7)

4 FACTORIZED NML

The factorized normalized maximum likelihood (fNML) scasebased on the normalized maximum
likelihood (NML) distribution [7, 8]
P(D | M
P (D | M) = # (8)
>p P(D" [ M)
where the normalization is over all data sétsof a fixed sizeN. The log of the normalizing factor is
called theparametric complexitgr theregret Evaluation of the regret is often hard due to the exponkentia

number of terms in the sum. We propose a decomposable famdonormalized maximum likelihood
criterion with a local score

P(D; | Dg,)
Snui(Di, De,) = log Paui(D; | Dg,) = log ~ - ;
S0, P(DL| D)

where the normalizing sum goes over all the possiblecolumn vectors of lengthV, i.e., D, €
{1,...,7}¥. Using recently discovered methods for calculating thesEfgr a single--ary multinomial
variable [9] the fNML-criterion can be calculated as effitlg as other decomposable scores.

For predictive purposes its is natural to parameterize thaaiearned with thENML-score by predictive
conditional NML parameters [10]

e(Nijr) (Nijr +1)
Sy €(Niji ) (Nijrr + 1)

Oijr =

(9)

wheree(n) = (21",

Empirical tests with real data sets indicate that the fNMlest#on criterion performs very well in a code
length sense when compared with the state of the art BDegriorit The predictive capabilities of the
Bayesian and fNML approaches are currently under investiga
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Generalization Theory of Two-part Code MDL
Estimator

Tong Zhang
Department of Statistics
Rutgers University

| will present a finite-sample generalization analysis aj{part code MDL estimator. This method selects
a model that minimizes the sum of the model description lepfis the data description length given
the model. It can be shown that under various conditionsiabtrate of convergence can be achieved
through an extended family of two-part code MDL that ovengleze the model description length.

As an example, we apply MDL to learning sparse linear repiasi®ns when the system dimension is
much larger than the number of training examples. This isablpm that has attracted considerable
attention in recent years. The generalization performahegwo-part code MDL estimator is calculated
based on our theory, and it compares favorably to other ndstBoch as 1-norm regularization.
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Abstract

The normalized maximum likelihood (NML) model [2]-[4] for elass of Markov
sources [6] was recently used for the compression of fulbgess, obtaining for the
human genome the best existing compression results [1].ndlg that one of the un-
derlying biological features that the compression algamiimplicitly uncovers is the
existence of approximate gene duplication. We proposefiretemethod based on the
same NML models for the segmentation of DNA sequences foowering gene dupli-
cations [5]. Several analysis tasks in genomic sequencelvépreliminary segmenta-
tion or clustering of the data, which can be performed by almnmof techniques, based
on various similarity measures. Here we review and furthesye the application of
MDL techniques for genomic sequence analysis. The prodessguence matching
will be used for solving the problem of uncovering gene deations with the help of a
preliminary segmentation of a complex DNA locus, known tgeéhavolved through a
series of duplications.
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| nformation Consistency of Nonparametric Gaussian
Process M ethods

Matthias W. Seeger

Joint work with S. Kakade and D. Foster [1].

We present information consistency results for nonparamsequential prediction with Gaussian pro-
cesses. The connection to nonparametric MDL is through thguential approach, as detailed in
Grunwald’s 2007 book, Sect. 13.5. Our proof technique is efgarg, making use of a convex dual-
ity previously useful to obtain PAC-Bayesian bounds. We albtain precise information consistency
rates for a wide range of kernels and input distributiong)gikernel eigenvalue asymptotics. In all these

cases, the linear expert space is an infinite-dimensionakifan space, but still very reasonable rates are
obtained.

References

[1] M. Seeger, S. Kakade, and D. Foster. Information coesist of nonparametric Gaussian process
methods.|EEE Transactions on Information Theory, 54(5):2376—2382, 2008.

27






