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Preface

During the last few years (2004-2007), there have been several breakthroughs in the area of Minimum
Description Length (MDL) modeling, learning and prediction. These breakthroughs concern the efficient
computation and proper formulation of MDL in parametric problems based on the “normalized maximum
likelihood”, as well as altogether new, and better, coding schemes for nonparametric problems. This
essentially solves the so-called AIC-BIC dilemma, which has been a central problem in statistical model
selection for more than 20 years now. The goal of this workshop is to introduce these exciting new
developments to the ML and UAI communities, and to foster new collaborations between interested
researchers.

Most new developments that are the focus of this workshop concern efficient (in many cases, linear-
time) algorithms for theoretically optimal inference procedures that were previously thought not to be
efficiently solvable. It is therefore hoped that the workshop will inspire original practical applications
of MDL in machine learning domains. Development of such applications recently became a lot easier,
because of the new (2007) book on MDL by P. Grünwald [1], which provides the first comprehensive
overview of the field, as well as in-depth discussions of how it relates to other approaches such as Bayesian
inference. Remarkably, the originator of MDL, J. Rissanen, also published a new monograph in 2007;
and a Festschrift in Honor of Rissanen’s 75th birthday was presented to him in May 2008.
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MDL Tutorial

Peter Grünwald

We give a self-contained tutorial on the Minimum Description Length (MDL) approach to modeling,
learning and prediction. We focus on the recent (post 1995) formulations of MDL, which can be quite
different from the older methods that are often still called’MDL’ in the machine learning and UAI com-
munities.

In its modern guise, MDL is based on the concept of a ‘universal model’. We explain this concept at
length. We show that previous versions of MDL (based on so-called two-part codes), Bayesian model se-
lection and predictive validation (a variation of cross-validation) can all be interpreted as approximations
to model selection based on ’universal models’. Modern MDL prescribes the use of a certain ‘optimal’
universal model, the so-called ‘normalized maximum likelihood model’ or ‘Shtarkov distribution’. This
is related to (yet different from) Bayesian model selectionwith non-informative priors. It leads to a penal-
ization of ‘complex’ models that can be given an intuitive differential-geometric interpretation. Roughly
speaking, the complexity of a parametric model is directly related to the number of distinguishable prob-
ability distributions that it contains. We also discuss some recent extensions such as the ’luckiness prin-
ciple’, which can be used if the Shtarkov distribution is undefined, and the ’switch distribution’, which
allows for a resolution of the AIC-BIC dilemma.

The talk assumes no prior knowledge of information theory. The menu is as follows:

1. Codes and Probability Distributions

2. Universal Coding

3. The Bayes, 2-part and Normalized Maximum LIkelihood Universal Model

4. MDL Model Selection

5. Relation to Bayes factor model selection and Cross-Validation

6. The Luckiness Principle, The Switch Distribution
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Efficient Computation of NML for Bayesian Networks

Petri Myllym äki
Department of Computer Science & Helsinki Institute for Information Technology

P.O. Box 68, FI-00014 University of Helsinki, Finland

Abstract

Bayesian networks are parametric models for multidimensional domains exhibiting
complex dependencies between the dimensions (domain variables). A central problem
in learning such models is how to regularize the number of parameters; in other words,
how to determine which dependencies are significant and which are not. Thenormal-
ized maximum likelihood (NML)distribution or code offers an information-theoretic
solution to this problem. Unfortunately, computing it for arbitrary Bayesian network
models appears to be computationally infeasible, but we show how it can be computed
efficiently for certain restricted type of Bayesian networkmodels.

1 Normalized Maximum Likelihood

Let

xn :=









x1,1 x1,2 · · · x1,m

x2,1 x2,2 · · · x2,m

...
...

. ..
...

xn,1 xn,2 · · · xn,m









=









x1,:

x2,:

...
xn,:









= (x:,1x:,2 · · ·x:,m) ,

be a data matrix where each row,xi,: = (xi,1, xi,2, . . . , xi,m), 1 ≤ i ≤ n, is anm-dimensional observa-
tion vector, and columns ofxn are denoted byx:,1, . . . ,x:,m.

A parametric probabilistic modelM := {p(xn ; θ) : θ ∈ Θ}, whereΘ is a parameter space,
assigns a probability mass or density value to the data. Auniversal modelfor M is a single distribution
that, roughly speaking, assign almost as high a probabilityto any data as the the maximum likelihood
parameterŝθ(xn).

Formally, a universal model̂p(xn) satisfies

lim
n→∞

1

n
ln

p(xn ; θ̂(xn))

p̂(xn)
= 0 , (1)

i.e., the log-likelihood ratio, often called the ‘regret’,is allowed to grow sublinearly in the sample sizen.
The celebratednormalized maximum likelihood(NML) universal model [19, 22]

pNML(xn) :=
p(xn ; θ̂(xn))

CM(n)
, CM(n) =

∫

Xn

p(xn ; θ̂(xn)) dxn

is the unique minimax optimal universal model in the sense that the worst-case regret is minimal. In fact,
it directly follows from the definition that the regret is a constant depending only on the sample sizen:

ln
p(xn ; θ̂(xn))

pNML(xn)
= lnCM(n) .
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For some model classes, the normalizing factor is finite onlyif the rangeXn of the data is restricted, see
e.g. [19, 20, 2]. For discrete models, the normalizing constant,CM(n), is given by a sum over all data
matrices of sizem× n:

CM(n) =
∑

xn∈Xn

p(xn ; θ̂(xn)) .

2 Bayesian Networks

Let us associate with the columns,x:,1, . . . ,x:,m, a directed acyclic graph (DAG),G, so that each column
is represented by a node. Each node,Xj , 1 ≤ j ≤ m, has a (possibly empty) set ofparents, Paj , defined
as the set of nodes with an outgoing edge to nodeXj . Without loss of generality, we require that all the
edges are directed towards increasing node index, i.e.,Paj ⊆ {1, . . . , j − 1}. If this is not the case, the
columns in the data, and the corresponding nodes in the graph, can be simply relabeled, which does not
change the resulting model. Figure 1 gives an example.

X1

X2

X3

X4

X5

X6
X7

X8

Figure 1: An example of a directed acyclic graph (DAG). The parents of nodeX8 are{X1,X5,X7}. The
descendants ofX4 are{X5,X8}.

The idea is to model dependencies among the nodes (i.e., columns) by defining the joint probability
distribution over the nodes in terms oflocal distributions: each local distribution specifies the conditional
distribution of each node given its parents,p(Xj | Paj), 1 ≤ j ≤ m. It is important to notice that these
arenot dependencies among the subsequent rows of the data matrixxn, but dependencies ‘inside’ each
row,xi,:, 1 ≤ i ≤ n. Indeed, in all of the following, we assume that the rows are independent realizations
of a fixed (memoryless) source.

The local distributions can be modeled in various ways, but here we focus on the discrete case. The
probability of a child node taking valuexi,j = r given the parent nodes’ configuration,pai,j = s, is
determined by the parameter

θj|Paj
(r, s) = p(xi,j = r | pai,j = s ; θj|Paj

) , 1 ≤ i ≤ n, 1 ≤ j ≤ m ,

where the notationθj|Paj
(r, s) refers to the component of the parameter vectorθj|Paj

indexed by the value
r and the configurations of the parents ofXj . For empty parent sets, we letpai,j ≡ 0. For instance,
consider the graph of Fig. 1; on each row,1 ≤ i ≤ n, the parent configuration of columnj = 8 is the
vectorpai,8 = (xi,1, xi,5, xi,7); the parent configuration of columnj = 1 is pai,1 = 0, etc.

The joint distribution is obtained as a product of local distributions:

p(xn ; θ) =

m
∏

j=1

p(x:,j | Paj ; θj|Paj
) . (2)

This type of probabilistic graphical models are called Bayesian networks [18]. Factorization (2) entails a
set of conditional independencies, characterized by so called Markov properties, see [16]. For instance,
the local Markov propertyasserts that each node is independent of its non-descendants given its parents,
generalizing the familiar Markov property of Markov chains.
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3 NML for Bayesian Networks

The NML distribution based on (2) and a fixed Bayesian networkgraph structureG is given by

pNML(xn ; G) =

∏m

j=1
p(x:,j | Paj ; θ̂(xn))

CG(n)
, (3)

where

CG(n) =
∑

xn

m
∏

j=1

p(x:,j | Paj ; θ̂(xn)) . (4)

The required maximum likelihood parameters are easily evaluated since it is well known that the ML
parameters are equal to the relative frequencies:

θ̂j|Paj
(r, s) =

∣

∣{i : xi,j = r,pai,j = s}
∣

∣

∣

∣{i′ : pai′,j = s}
∣

∣

, (5)

where|S| denotes the cardinality of setS. However, direct summing over all possible data matrices isnot
tractable except in toy problems wheren andm are both very small.

For a single (independent) multinomial variable withK values, the normalizing constant can be computed
in quadratic time using the recursion [7, 11]:

CK(n) =

n
∑

r1+r2=0

n!

r1!r2!

(r1

n

)r1
(r2

n

)r2

· CK∗(r1) · CK−K∗(r2), (6)

which holds for allK∗ = 1, . . . ,K − 1. A straightforward algorithm based on this formula can be used
to computeCK(n) in timeO

(

n2 log K
)

. In [5, 9] the quadratic-time algorithm was further improved to
O (n log n log K) by writing (6) as a convolution-type sum and then using the Fast Fourier Transform
algorithm. However, the relevance of this result is uncleardue to severe numerical instability problems it
easily produces in practice. Moreover, although these results have succeeded in removing the exponen-
tiality of the computation of the multinomial NML, they are still superlinear with respect ton. In [10]
a linear-time algorithm based on the mathematical technique of generating functions was derived for the
problem. In this paper it was shown how the properties of the so-calledCayley’s tree function[4, 1] can
be used to prove the following remarkably simple recurrenceformula:

CK+2(n) = CK+1(n) +
n

K
· CK(n). (7)

It is now straightforward to write anO (n + K) time algorithm for computing the multinomial NML
based on this result. The algorithm is also very easy to implement and does not suffer from any numerical
instability problems.

The one-dimensional single multinomial case is of course not adequate for many real-world situations,
where data is typically multi-dimensional and involves complex dependencies between the domain vari-
ables, but it is a useful building block that can be exploitedwith more complex Bayesian networks. An
example of a domain where the multinomial NML can be directlyapplied is histogram density estimation,
as demonstrated in [10].

In [11], a quadratic-time algorithm for computing the NML for a specific Bayesian network structure,
usually called the Naive Bayes, was derived. In this case theBayesian network forms a single-layer tree
where one of the variables is the root, an the other variablesform the leaves. This model family has been
very successful in practice in mixture modeling [14], clustering of data [11], case-based reasoning [12],
classification [3, 13] and data visualization [8]. The time complexity of the algorithm isO

(

n2 + L
)

,
whereL denotes the number of values of the root variable. This result was further improved in [17]
to O

(

n2
)

. For more complex Bayesian network structures, we have beenable to derive an algorithm
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which runs in polynomial time with respect to the the number of values of the leave nodes, but is expo-
nential with respect to the number of values of the non-leavenodes [15, 23]. For Bayesian networks of
arbitrary complexity, it appears that the problem of computing the NML is not feasible [6]. However,
recently developed new variants [21] of the standard NML offer an alternative, computationally efficient
information-theoretic approach for regularizing Bayesian network models.

Acknowledgments. This work was supported in part by the Academy of Finland under the project Civi and by
the Finnish Funding Agency for Technology and Innovation under the projects Kukot and PMMA. In addition, this
work was supported in part by the IST Programme of the European Community, under the PASCAL Network of
Excellence.
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Tracking the Best Predicting Model

Steven de Rooij∗

Abstract

According to standard MDL and Bayesian model selection, we should (roughly) prefer
the model that minimises overall prediction error. But if the goal is to predict well, it
may well depend on the sample size which model is most useful to predict the next out-
come. By re-interpreting the Bayesian prediction strategies associated with the models
as “experts”, we can use the various algorithms for “expert tracking” to improve model
selection for prediction without introducing a substantial computational overhead.

1 Model Selection Preliminaries

A model M = {Pθ|θ ∈ Θ} is a set of probability distributions.Model selection is choosing the “most
useful” model based on the available observationsxn := x1, . . . , xn ∈ Xn. For simplicity, we consider
only model selection criteria that satisfy Dawidsweak prequential principle [1, 2]. That is, models are
considered “useful” if we can use them to constructprediction strategies that give high probability to the
data, or, equivalently, achieve low accumulated prediction error, where prediction error is measured using
logarithmic loss. More discussion about how our results relate to model selection for other applications,
such as truth finding, can be found in [4]. To further simplifythe presentation, we assume thatX is
countable, we identify probability distributions with their defining mass functions, and we treat the sample
sizen as a given rather than considering random processes.

As the most important special case, we consider Bayes factormodel selection, where prior distributions
w1, . . . , wk are defined on the parameter spacesΘ1, . . . ,ΘK of each of the models. By “integrating out”
the parameter we obtain, for each modelMk, an associated marginal distribution:

Pk(xn) :=

∫
θ∈Θk

Pθ(x
n)wk(θ)dθ. (1)

By subsequently defining a prior distributionW on the models, we can then use Bayes’ rule to compute
the posterior odds

P (Mi|x
n)

P (Mj |xn)
=

W (i)

W (j)
·
Pi(x

n)

Pj(xn)
,

in other words, the posterior odds are the prior odds multiplied by the probability ratio of the data, which
is called the “Bayes factor”.

We now take a step back and use the chain rule for conditional probability to rewrite (1) as

Pk(xn) = Pk(x1) · Pk(x2|x
1) · . . . · Pk(xn|x

n−1),

to obtain a prediction strategy. Thus, Bayes factor model selection satisfies the weak prequential principle,
and it is an example of the model selection criteria we consider.

∗Based on joint work with Tim van Erven, Wouter Koolen and Peter Grünwald
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2 Example: First vs Second Order Markov Chains

We give a concrete, simple example of Bayes factor model selection. LetM1 andM2 be the sets of all
first and second order Markov chains on the 8-bit ASCII setX , |X | = 256. The models are parameterised
by their transition probabilities. Now letP1 andP2 be corresponding Bayesian prediction strategies based
on uniform priorsw1(θ) = 1 andw2(θ) = 1. We also use a uniform priorW (1) = W (2) = 1

2 on the
models. Finally letxn be the sequence of ASCII symbols that constitute Alice in Wonderland, which has
n = 152089. We can now calculate

P (M1|x
n)

P (M2|xn)
=

P1(x
n)

P2(xn)
=

2−569147

2−593132
= 223985.

Thus, Bayes factor model selection tells us that the odds areoverwhelmingly in favour of the first order
Markov model. This suggests that we should also expectP1 to issue better predictions, i.e. if Carroll
were to rise from the grave and write an additional chapter tohis beloved story, we might expect thatP1

assigns higher probability to, and accumulates less loss on, that new chapter.

This assumption turns out to be false, certainly in this example. The reason is that the incurred loss for
P1 andP2 is not evenly distributed over the entire sample, which means that even thoughP1 may have
accumulated less loss overall, it may still be the case thatP2 is making better predictionsat the current
sample size. This becomes very clear if we look at thelog2 of the Bayes factor as a function of the length
of the prefix of the novel.

From the graph it is clear that around

2

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0  40000  80000  120000  160000
prefix length

lo
g 

 B
ay

es
 fa

ct
or

prefix length 78,000, the two predic-
tion strategies perform more or less
equally well, since the Bayes factor
hardly changes there. Beyond sample
size 78,000, the strategy based on the
second order Markov chain model ac-
cumulates less loss, causing the Bayes
factor to decrease. HoweverP1 has ac-
quired so much evidence in its favour,
that it will take many outcomes before
P2 can finally catch up in terms of ac-
cumulated prediction error. Only then
will P2 be preferred by Bayes factor
model selection. We call this thecatch-
up phenomenon.

To put this example in perspective, note that we arenot trying to suggest that either the models or the
priors we used are reasonable. We used this extremely naive example only for simplicity and because
it illustrates the phenomenon we are interested in so well. One may ask if thephenomenon would still
occur if we had used better models. The answer is yes: even if the models are chosen carefully so that one
of the considered models is “true”, i.e. it contains the distribution from which the data were sampled, then
it may still be the case that, at lower sample sizes, the prediction strategies associated with other, simpler
models may be much more effective, so that the catch-up phenomenon will still occur. Furthermore, the
processes we encounter in practice are often so complex thateven the best models we can come up with
are naive, and we are forced to use uninformative priors. Oneexample is the nonparametric setting, see
[4]. We would still like to make the best predictions we can under those circumstances!

3 Expert Tracking

To improve predictive performance when the catch-up phenomenon occurs, we would like to figure out
which prediction strategy issues the best predictions, notjust overall, butat each sample size. For in-
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Figure 1: Bayesian Model Averaging
1 1 1 1

2 2 2 2
w(B)

w(A)

w(C)

w(D)
3 3 3 3

4 4 4 4

n = 1 n = 2 n = 3 n = 4

stance, in the Alice example we would want to switch from prediction according toP1 to prediction
according toP2 around sample size 78,000 rather than never.

It turns out that algorithms to do just this already exist. Namely, we may think of the prediction strategies
P1, . . . , PK associated with the models as “experts”, which is just another word for an algorithm that
issues predictions given a sequence of past observations. We will now describe some known algorithms
for prediction advice that are useful in this context.

As explained in [5], many algorithms for prediction with expert advice can be implemented by forward
propagation on hidden Markov models (HMMs). Bayesian ModelAveraging (BMA) is one of the sim-
plest. It mixes the expert predictions according to their posterior weights as follows:

P (xn+1|x
n) =

K∑
k=1

Pk(xn+1|x
n)w(k|xn). (2)

Figure 1 shows the corresponding HMM for four experts labeled 1, . . . , 4. It can be interpreted as a
description of a prior distribution, not on the experts, buton sequences of experts. Namely, the prior
probability that expertk is used at sample sizen is the sum of the weights of all paths from the starting
state to the state(s) associated with expertk at sample sizen. The weight of a path is the product of
its transition probabilities. The HMM in Figure 1 contains only one path to each expert and that path
visits no other experts. Thus, only expert sequences that contain exactly one expert receive nonzero prior
probability: switching between experts is not catered for. This inability to switchbetween experts needs
to be addressed in order to alleviate the catch-up problem.

A second simple algorithm for prediction with expert advicegoes to the other extreme: here it is not only
possible to use different experts at different sample sizes, but which expert is used at sample sizen + 1
does not evendepend on which expert is used at sample sizen! The corresponding prediction strategy is

P (xn+1|x
n) =

K∑
k=1

Pk(xn+1|x
n)w(k). (3)

In their groundbreaking paper “Tracking the Best Expert” [3], Herbster and Warmuth interpolate between
these two extreme approaches: rather than never or always, they switch to a different expert with fixed
probability α, as in Figure 3.1 Note that, as before, forward propagation on this HMM only needs to
maintainK weights, and requires total running time proportional to the number of expertsK and the

1Actually, unlike FixedShare, the HMM in Figure 3 allows switching to the same expert. However, it can be made
to simulate FixedShare by using a slightly lower value forα.
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Figure 2: Elementwise Mixture
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Figure 3: Fixed-Share
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sample sizen. The corresponding prediction strategy is in between (2) and (3):

P (xn+1|x
n) =

K∑
k=1

Pk(xn+1|x
n)((1− α)P (Kn = k|xn) + αw(k)). (4)

Herbster and Warmuth compare the logarithmic loss incurredby Fixed-Share to that incurred by any
partition of the data intom blocks, where any expert is used within each block. They showthat

log
Pm-part(x

n)

Pfs(xn|α)
≤ (n− 1)H(α) + log K + (m− 1) log(K − 1),

provided that the parameterα is optimally tuned to(m−1)/(n−1). This result can be applied directly to
our Alice in Wonderland example: ideally we would partitionthe data intom = 2 blocks, with the split
appearing somewhere around sample size 78,000. The Fixed-Share bound tells us that, compared to this
optimal partition, the logarithmic loss using the Fixed-Share algorithm isat most (n−1)H( 1

n−1 )+1 ≤ 17
bits higher. This overhead is negligible compared to the gain, which is of the order of 9,000 bits, as can
be read from the log Bayes factor graph. Namely, compared to usingP1 for the entire book, we gain the
difference between the height of the graph at index 78,000 (around 33,000 bits) and at full sample size
(around 24,000 bits).

The Fixed-Share algorithm does require tuning of the switching rate alpha. However, by letting the
probability of the switching transitions decrease as a function of the sample size, it is possible to do away
with the parameterα at only a moderate cost in terms of the performance guarantee. More information
about other expert tracking algorithms in HMM format is given in [5].
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Abstract

The minimum description length principle in wavelet denoising can be extended from
the standard linear-quadratic setting in several ways. We describe briefly three exten-
sions: soft thresholding, histogram modeling and a multicomponent approach. The
MDL hard thresholding approach based on the normalized maximum likelihood uni-
versal modeling can be extended to include soft thresholding shrinkage, which can be
considered to give better results in some applications. In MDL histogram denoising
approach the assumptions of the parametric density models for the data can be relaxed.
The informative and noise components of the data are modeledwith equal bin width
histograms. The method can cope with different noise distributions. In multicompo-
nent approach more than one non-noise components are included in the model, because
it is possible that in addition to the random noise there may be other disturbing signal
elements, or that the informative signal is comprised of several different components
which we may want to observe, separate or remove. In these cases adding informa-
tive components in the model may result result in better performance than in the NML
denoising approach.

1 Introduction

The observed data is thought to be corrupted by additive noise, yn = xn + ǫn, where the noise term
ǫn is often assumed to be comprised of i.i.d. Gaussians. Given the orthonormal regression matrixW
he discrete wavelet transform (DWT) of the noisy data is defined ascn = W

T yn. The aim of wavelet
denoising is to obtain modified coefficientsĉn representing the informative part in the data. In MDL
setting wavelet denoising is seen as a model selection task.The linear regression model can be rewritten
as a density functionf(yn|cn

γ , σ2, γ) = 1
(2πσ2)n/2 exp

{

− 1
2σ2 ||y

n −Wcn
γ ||
}

, where the structure index

γ defines which rows of the regressor matrix are included in themodel, or equivalenty, which elements
of cn

γ are non-zero. We may now define the NML density function, compute the well-known maximum
likelihood estimates for parameters and calculate the normalizing factor by a renormalization scheme
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discussed in Rissanen [1], and the result is a denoising criterion

k

2
ln





1

k

∑

i∈γ

c2
i



+
n− k

2
ln





1

n− k

∑

j /∈γ

c2
j





+
1

2
ln k(n− k) + L(γ)

(1)

approximating the stochastic complexity. The selection ofγ and the resulting coefficient vectorcn
γ are

obtained by minimizing the criterion. Furthermore, the criterion is shown to be minimized by thek
coefficients with largest magnitudes. For the code length for the model class a code length function
L(γ) = ln

(

n
k

)

is recommended in [2].

2 MDL soft thresholding

An extension to wavelet denoising is to include soft thresholding shrinkage [3]. In essence, soft
thresholding the observed wavelet coefficients with a threshold parameterλ gives two subsets indexed
by γ1 and γ2: ĉγ1

= (ĉγ1(1), . . . , ĉγ1(k)) corresponding to the shrinkedk ’informative’ coefficients
ĉi = sign(ci)(|ci| −λ), andc̃γ2

= (c̃γ2(1), . . . , c̃γ2(n−k)) containing then− k unmodified ’noise’ coeffi-
cients for whichsign(ci)(|ci|−λ) < 0. A useful analogy is to think the process as data transmission over
a channel. The sender must transmit enough information overa channel to the receiver so that the receiver
is capable of reconstructing the original data from the transmitted signal. In this case we transmit, with
as short a code length as possible,k soft thresholded coefficientŝcγ1

andn − k noise coefficients̃cγ2
,

so that whenλ (which also must be transmitted) is known the receiver is able to reconstruct the original
data.

The code length for the wavelet coefficients is obtained by encoding the subsetŝcγ1
andc̃γ2

with separate
NML codesLNML (ĉγ1

|γ1) andLNML (c̃γ2
|γ2), respectively. For computing the NML code length for any

sequence, see [4]. The code length of the model class,L(γ1, γ2, λ), is also required for describing the
parameter of the shrinkage function as well as the index setsγ1 andγ2. The code length may be further
divided intoL(γ1, γ2, λ) = L(γ1, γ2|λ) + L(λ), whereL(γ1, γ2|λ) = ln

(

n
k

)

gives the code length for
choosing thek coefficients intoγ1 out of a total ofn coefficients whenλ is fixed. L(λ) is required to
describe the threshold parameter value. However,L(λ) may be considered to be a constant that can be
ignored in the final criterion. Finally, the encoding is performed by a two-part encoding where the total
code length is given by the sumLNML (ĉγ1

|γ1) + LNML (c̃γ2
|γ2) + L(γ1, γ2, λ). Applying the Stirling’s

approximation to Gamma functions and ignoring all terms constant with respect tok gives the criterion
for choosing the optimal parameterλ,

min
λ

[

k

2
ln

(

1

k

k
∑

i=1

ĉ2
γ1(i)

)

+
n− k

2
ln

(

1

n− k

n−k
∑

i=1

c̃2
γ2(i)

)

+
1

2
ln k(n− k) + L(γ)

]

. (2)

The criterion (2) is almost identical to the original MDL denoising criterion (1): the difference is in the
first term, where in the soft thresholding criterion there are shrinked wavelet coefficient values instead of
the originals.

16



3 MDL histogram denoising

The NML approach is restricted to the quadratic-linear casein which noise is assumed to follow Gaussian
distribution. We obtain another denoising criterion by employing histogram models. The main idea is to
model the wavelet coefficients representing the denoised signal, ĉn, by an equal bin width histogram at
each resolution level of the wavelet transform, and the coefficients representing the noise,c̃n by a single
equal bin width histogram. Minimization of the total code length yields the optimal way of dividing the
coefficients into ones representing informative signal andnoise. For information on how to compute the
stochastic complexity for the data string given the number of bins in the fixed bin width histogram, see
[5, 6].

The key parts of the MDL-histo denoising algorithm discussed in more detail in [7] are summarized as
follows:

1. Obtain the set of wavelet coefficientscn = cn1

1 , . . . , cnr
r through ther-level wavelet transform.

2. Recursively on resolution levelsi = 1, . . . , r fit a anm-bin histogramHi to the coefficientscni
i

and select a tentative collection of binsSi, with the number of chosen binsmi = |Si|. Denote
by ni,(j) the number of points falling in the bin ofHi having index(j). The bins inSi containki

retained coefficients. The retained and residual coefficients at leveli are written as two strings
ĉni
i andc̃ni

i , respectively.

3. Fit a histogram withM bins to the residual coefficients̃cn = c̃n1

1 , . . . , c̃ni
i , c

ni+1

i+1 , . . . , cnr
r where

the firsti residual strings are obtained by setting the already retained coefficients to zero.

4. Find the optimalSi by minimizing the criterion

min
Si,M

{

log2

(

ni

ni,(1), . . . , ni,(mi), (ni − ki)

)

+

log2

(

ni + mi + 1

ni

)

+ log2

(

n−
∑i−1

j=1 k̂j − ki

ν1, . . . , νM

)

+ log2

(

n−
∑i−1

j=1 k̂j − ki + M

M

)

+ ki log2

(

R

m

)

+ ki log2

(

M

Ri

)

+





i−1
∑

j=1

k̂j



 log2

(

M

Ri

)

− (n− 1) log2 M + 2 log2 log2 M

+ n log2 Ri + log2 Ri + 2 log2 log2 Ri

}

, (3)

whereνj is the number of coefficients falling into thejth bin of theM -bin histogram fitted to
the residual string̃cn, R is the range of wavelet coefficients,Ri are the levelwise ranges of the
coefficients and

∑i−1
j=1 k̂j denotes the number of retained coefficients in the so far optimized sets

Sj , j < i. For the first leveli = 1 this sum is zero.

The denoised signal results from the inverse transform of the sequence of retained coefficientsĉ = ĉn =
ĉn1

1 , . . . , ĉnr
r .

4 Multicomponent denoising

It is possible that in addition to the random noise there may be other disturbing signal elements, or that the
informative signal is comprised of several different components which we may want to observe, separate
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or remove. With more than one informative component in the noisy measured data a multicomponent
approach may result in better performance than the originalMDL denoising method [8].

Roos et al. [9, 10, 2] have shown that a criterion similar to the renormalization result can be obtained
by a different derivation, details of which can be found in [10, 2]. In short, they define a model for the
wavelet coefficients, in which each coefficient is distributed according to a zero-mean Gaussian density
with varianceσ2

I if it belongs to the set of informative coefficients indexed by γ, or according to a zero-
mean Gaussian density with varianceσ2

N if it represents noise, with the restrictionσ2
I ≥ σ2

N . Again, the
optimal denoising result is given by theγ minimizing the normalized maximum likelihood code length
of the data given the model class defined byγ.

This approach may be extended by usingm Gaussian components and specifying the restriction for their
variance parameters,σ2

1 ≥ ... ≥ σ2
m. The NML code length for this model can be calculated in a

manner following the derivation in [10] for the two-component denoising criterion. The derivation turns
out to be straightforward since the normalizing integral factors intom parts, each depending only on the
coefficients determined by the respective index setγi. We obtain a criterion

m
∑

i=1





ki

2
ln

1

ki

∑

j∈γi

c2
j +

1

2
ln ki





+ L(γ1, . . . , γm) + m log log
σ2

max

σ2
min

+ const,

(4)

where const refers to terms constant with respect to the index sets andm, andσ2
max andσ2

min are hyper-
parameters for the maximum and minimum variance, respectively. The last two terms can be ignored if
we wish to find the optimalm-component result. However, if we want to compare the results for two
approaches with different number of components, for example m1 = 3 andm2 = 4, we cannot remove
the term involving the hyperparameters as it affects the code length.
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Sequential and Factorized NML models

Tomi Silander Teemu Roos Petri Myllymäki
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1 INTRODUCTION

Bayesian networks are among most popular model classes for discrete vector-valued i.i.d data. Currently
the most popular model selection criterion for Bayesian networks follows Bayesian paradigm. However,
this method has recently been reported to be very sensitive to the choice of prior hyper-parameters [1]. On
the other hand, the general model selection criteria, AIC [2] and BIC [3], are derived through asymptotics
and their behavior is suboptimal for small sample sizes.

This extended abstract is based on an unpublished manuscript [4] in which we introduce a new effective
scoring criterion for learning Bayesian network structures, the factorized normalized maximum likelihood
(fNML). This score features no tunable parameters thus avoiding the sensitivity problems of Bayesian
scores. It also has a probabilistic interpretation which yields a natural way to use the selected model for
predicting future data.

2 BAYESIAN NETWORKS

Bayesian network defines a joint probability distribution for an n-dimensional data vectorX =
(X1, . . . ,Xn), where eachXi may haveri different values which, without loss of generality, can be
denoted as{1, . . . , ri}.

2.1 Model class

A Bayesian network consists of a directed acyclic graph (DAG) G and a set of conditional proba-
bility distributions. We specify the DAG with a vectorG = (G1, . . . , Gn) of parent sets, so that
Gi ⊂ {X1, . . . ,Xn} denotes the parents of variableXi, i.e., the variables from which there is an arc
to Xi. Each parent setGi hasqi (qi =

∏

Xp∈Gi
rp) possible values that are the possible value combina-

tions of the variables belonging toGi. We assume an enumeration of these values and denote the factthat
Gi holds thejth value combination simply byGi = j.

The conditional probability distributionsP (Xi | Gi) are determined by a set of parameters,Θ, via the
equation

P (Xi = k | Gi = j,Θ) = θijk.

We denote the set of parameters associated with variableXi by Θi. Given a Bayesian network(G,Θ)
the joint distribution can be factorized as

P (x | G,Θ) =

n
∏

i=1

P (xi | Gi,Θi) =

n
∏

i=1

θiGixi
. (1)
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2.2 Data

To learn the Bayesian network structures, we assume dataD of N i.i.d instantiations of the vectorX, i.e.,
anN × n data matrix without missing values. We select columns of thedata matrixD by subscripting it
with a corresponding variable index or a variable set.

Since the rowsD are assumed to be i.i.d, the probability of a data matrix can be calculated by just taking
the product of the row probabilities. Combining equal termsyields

P (D | G,Θ) =
n
∏

i=1

qi
∏

j=1

ri
∏

k=1

θ
Nijk

ijk , (2)

whereNijk denotes number of rows in whichXi = k and its parents contain thejth value combination.

For a given structureG, the maximum likelihood parameters are simply the relativefrequencies found in
the data:̂θijk =

Nijk
P

k′ Nijk′

. Setting parameterŝθijk to their maximum likelihood values for dataD, gives

the maximized likelihoodP (X | G, Θ̂(D)). In the following, we denote the valueP (D | G, Θ̂(D)) by
P̂ (D | G)1.

3 Model selection

The number of possible Bayesian network models forn variables is super exponential, and the model
selection task has been shown to be NP-hard for practically all model selection criteria such as AIC, BIC,
and marginal likelihood [5]. However, all popular Bayesiannetwork selection criteriaS(G,D) feature a
convenientdecomposability

SCORE(G,D) =
n
∑

i=1

S(Di,DGi
) (3)

that makes implementing a heuristic search for models easier [6].

Many popular scoring functions avoid overfitting by balancing the fit to the data and the complexity of
the model. A common form of this idea can be expressed as

SCORE(G,D) = log P̂ (D | G)−∆(D,G), (4)

where ∆(D,G) is a complexity penalty. For example,∆BIC =
∑

i
qi(ri−1)

2 log N , and ∆AIC =
∑

i qi(ri − 1).

3.1 Bayesian Dirichlet scores

The current state-of-the-art is to use marginal likelihoodscoring criterion

SBD(Di,DGi
, ᾱ) = log

∫

θi

P (Di|DGi
, θi)W (θi|αi)dθi. (5)

The most convenient form of this, the Bayesian Dirichlet (BD) score, uses conjugate priors in which
parameter vectorsΘij are assumed independent of each other and distributed by Dirichlet distributions
so that

W (θi | αi) =

qi
∏

j=1

P (θij | αij∗), (6)

in which θij ∼ Dir(αij1, . . . , αijri
). With a choice ofαijk = α

qiri
we get a family of BDeu scores

popular for giving equal scores for different Bayesian network structures that encode same independence

1We often drop the dependency on G from the notation when it is clear from the context.
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assumptions. The BDeu score depends only on single parameter α, but recent studies show that model
selection is very sensitive to it.

For predictive purposes it is natural to parameterize the model learned with theBD-score by expected
parameter values

θBD
ijk =

Nijk + αijk
∑ri

k′=1[Nijk′ + αijk′ ]
. (7)

4 FACTORIZED NML

The factorized normalized maximum likelihood (fNML) scoreis based on the normalized maximum
likelihood (NML) distribution [7, 8]

PNML(D | M) =
P̂ (D | M)

∑

D′ P̂ (D′ | M)
, (8)

where the normalization is over all data setsD′ of a fixed sizeN . The log of the normalizing factor is
called theparametric complexityor theregret. Evaluation of the regret is often hard due to the exponential
number of terms in the sum. We propose a decomposable factorized normalized maximum likelihood
criterion with a local score

SNML(Di,DGi
) = log PNML(Di | DGi

) = log

(

P̂ (Di | DGi
)

∑

D′

i
P̂ (D′

i | DGi
)

)

,

where the normalizing sum goes over all the possibleDi-column vectors of lengthN , i.e., D′

i ∈
{1, . . . , ri}

N . Using recently discovered methods for calculating the regret for a singler-ary multinomial
variable [9] the fNML-criterion can be calculated as efficiently as other decomposable scores.

For predictive purposes its is natural to parameterize the model learned with thefNML-score by predictive
conditional NML parameters [10]

θijk =
e(Nijk)(Nijk + 1)

∑ri

k′=1 e(Nijk′)(Nijk′ + 1)
, (9)

wheree(n) = (n+1
n

)n.

Empirical tests with real data sets indicate that the fNML selection criterion performs very well in a code
length sense when compared with the state of the art BDeu criterion. The predictive capabilities of the
Bayesian and fNML approaches are currently under investigation.
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Generalization Theory of Two-part Code MDL
Estimator

Tong Zhang
Department of Statistics

Rutgers University

I will present a finite-sample generalization analysis of two-part code MDL estimator. This method selects
a model that minimizes the sum of the model description length plus the data description length given
the model. It can be shown that under various conditions, optimal rate of convergence can be achieved
through an extended family of two-part code MDL that over-penalize the model description length.

As an example, we apply MDL to learning sparse linear representations when the system dimension is
much larger than the number of training examples. This is a problem that has attracted considerable
attention in recent years. The generalization performanceof a two-part code MDL estimator is calculated
based on our theory, and it compares favorably to other methods such as 1-norm regularization.
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Abstract

The normalized maximum likelihood (NML) model [2]-[4] for aclass of Markov
sources [6] was recently used for the compression of full genomes, obtaining for the
human genome the best existing compression results [1]. We show that one of the un-
derlying biological features that the compression algorithm implicitly uncovers is the
existence of approximate gene duplication. We proposed a refined method based on the
same NML models for the segmentation of DNA sequences for uncovering gene dupli-
cations [5]. Several analysis tasks in genomic sequences involve preliminary segmenta-
tion or clustering of the data, which can be performed by a number of techniques, based
on various similarity measures. Here we review and further pursue the application of
MDL techniques for genomic sequence analysis. The process of sequence matching
will be used for solving the problem of uncovering gene duplications with the help of a
preliminary segmentation of a complex DNA locus, known to have evolved through a
series of duplications.
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Information Consistency of Nonparametric Gaussian
Process Methods

Matthias W. Seeger

Joint work with S. Kakade and D. Foster [1].

We present information consistency results for nonparametric sequential prediction with Gaussian pro-
cesses. The connection to nonparametric MDL is through the prequential approach, as detailed in
Grünwald’s 2007 book, Sect. 13.5. Our proof technique is elementary, making use of a convex dual-
ity previously useful to obtain PAC-Bayesian bounds. We also obtain precise information consistency
rates for a wide range of kernels and input distributions, using kernel eigenvalue asymptotics. In all these
cases, the linear expert space is an infinite-dimensional function space, but still very reasonable rates are
obtained.
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